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SUMMARY

The purpose of the study reported here was to develop and explore new

techniques and procedures to aid in the design and assessment of reentry

vehicles for survival against X-rays from exoatinospheric nuclear bursts.

At present, a primary source of design information for reentry vehicle

hardness against X-rays is underground nuclear testing. With the advent

of a comprehensive nuclear test ban treaty, this source of proof data will

no longer be available.

To prepare for the day when underground nuclear test data would no
* longer be available, Defense Nuclear Agency (DNA) initiated a program to

develop a Nuclear Hardness Evaluation Procedure (NHEP). From this program

has evolved the NHEP methodology, developed by Effects Technology, Inc.,

and a consortium of cooperating Agencies and Contractors. This methodology

consists of a step-by-step general procedure for assessing reentry vehicle

hardness, supported by a nuclear weapons effects data base.

An important tool which has been utilized to demonstrate the effective-

ness of the NHEP methodology is the TRW-developed Failure Analysis by

Statistical Techniques (FAST) code. The FAST code calculates the system

probability of survival and associated confidence level for a system sub-

jected to a defined environment. During two previous studies. TRW developed

the use of FAST as a final step in the NHEP methodology.

In addition, new design optimization techniques were developed to

identify optimal vehicle design configurations to assure maximum system

hardness or minimum system weight at a prescribed probability of survival

and confidence level. These optimization techniques were incorporated into

a new computer code, BASH (Balanced System Hardness), and the utility of

these design optimization techniques was verified by subsequent review of

the BASH optimized design configurations, both by FAST code assessment and

by engineering analysis.

, ,L " . .... i . ... . .. . , .. ..... .



The present study is an extension of those previously reported NHEP
efforts. In the current study, the FAST methodology was extended to pro-
vide new techniques for estimating the potential benefits of testing
under uncertainty. A new computer code named ELF, Evaluation of Likelihood
Function, was developed to provide a thorough evaluation of test results.
To provide a demonstration of the ELF code, this code was used to assess
the graphite resin magnetic flyer plate test data.

A conditional probability version of the FAST code, FAST7, was
developed which shows great promise for test planning and evaluation. In
addition, as a part of this contractual effort, TRW provided consultation
and support to Lockheed Missiles and Space Company (LMSC) in the FAST
assessment of a Reference reentry vehicle design.
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1.0 INTRODUCTION

1.1 Background

The purpose of the study reported here was to develop and explore new

techniques and procedures to aid in the design and assessment of reentry

vehicles for survival against X-rays from exoatmospheric nuclear bursts.

At present, a primary source of design information for reentry vehicle

hardness against X-rays is underground nuclear testing. With the advent of

a comprehensive nuclear test ban treaty, this source of proof data will no

nger be available.

To prepare for the day when underground nuclear test data would no

*longer be available, Defense Nuclear Agency (DNA) initiated a program to

develop a Nuclear Hardness Evaluation Procedure (NHEP). From this program

has evolved the NHEP methodoloiy, developed by Effects Technology, Inc.,

and a consortium of cooperating Agencies and Contractors. This methodology

consists of a step-by-step general procedure for assessing reentry vehicle
hardness, suppr ted by a nuclear weapons effects data base.

An imper.,ant tool which has been utilized to demonstrate the effective-

ness of the NHEP methodology is the TRW-developed Failure Analysis by

Statistical Techniques (FAST) code. The final step in the NHEP methodology

is the integration of the data generated and compiled using this procedure,

and the evaluation of reentry vehicle hardness at a prescribed confidence

level. The FAST code is the analytical tool selected for this task.

The FAST code calculates the system probability of survival and

associated confidence, :o' . system subjected to a defined environment.

Hardness pro'babiliLy ,' , ) scified for the components of a system are

in 'grated by a series ( ,t Carlo calculations to provide a hardness

pr. )ability statement 'or the 5ystem. The FAST code provides the means by

which these data on rte.'n, r ry vehicle component hardness and hardness uncer-

tainty can be combined -u estimate the vehicle hardness level and the

associated probability of survival and confidence level.

During two previous studies, TRW developed the use of FAST as a final

step in the NHIEP methodology. A major contribution to those efforts was

made by McDonnell Douglas Astronautics Company (MDAC), by applying the

Nuclear Hardness Evaluation Procedures to determine the reentry vehicle

component hardnesses, and the uncertainties in these hardness estimates.

6



These data were then used by TRW to develop probabilistic models of

component hardnesses and to integrate these hardness models with the FAST

code to obtain vehicle system hardness estimates with their associated

probability of survival and confidence levels.

In addition, new design optimization techniques were developed to

identify optimal vehicle design configurations to assure maximum system

hardness or minimum system weight at a prescribed probability of survival

and confidence level. These optimization techniques were incorporated into

a new computer code, BASH (Balanced System Hardness), and the utility of

these design optimization techniques was verified by subsequent review of

the BASH optimized design configurations, both by FAST code assessment and

by engineerinq analysis.

1.2 Scope and Objectives

The present study is an extension of those previously reported NHEP

efforts. In the current study, the FAST methodology was extended to pro-

vide new techniques for estimating the potential benefits of testing

under uncertainty.

A new computer code named ELF, Evaluation of Likelihood Function was

develooed during the study to provide a thorough evaluation of test

results. To orovide a demonstration of the ELF code, this code was

used to assess the graphite resin magnetic flyer plate test data. In

addition, as a part of this contractual effort, TRW provided consultation

and support to Lockheed Missiles and Space Company (LMSC) in the FAST

assessment ot a Reference reentry vehicle design.

For convenience, the final report of these activities has been subdi-

vided into two volumes. Volume I, Applications, describes the results of

the evaluations performed on the graphite resin magnetic flyer plate tests

and their impact on predictions of reentry system performance. Also in-

cluded in Volume I are the results of the analyses performed on the LMSC

Reference reentry vehicle. Volume I is classified Secret.

Volume II of the Final Report, Methods, describes in detail the devel-

opment of the statistical and analytical techniques that were evaluated

during this study, and the methods that were incorporated into the ELF code.

Also reported in this volume is a new version of the FAST code, FAST7,

Conditional Probability FAST, which was developed during tnis eftort,

and w1ich shows great promise for test planning and evaluation.

7



2.0 TEST PLANNING AND EVALUATION

Test planning and evaluation is an important area of decision making

under uncertainty. The reentry vehicle designer is often faced with the

weighty question of whether to proceed with a particular test or test series

or not. To answer this question, he must be able to determine both the cost

of the test, and the cost impact of the probable improvement in system per-

formance that can be realized as a result of the tests.

Fortunately, these two aspects of the problem are separable, and can

be decoupled without seriously degrading the outcome of the analysis. The

determination of testing costs is accomplished by cost estimators using

standard estimating techniques. Likewise, the cost savings that result

from system performance increases involve the judgment of trained cost

* estimators. The present study does not address the issue of cost estimating,

*but rather is intended to provide a methodology to assess in a meaningful

way the improvement of system performance that may result as a consequence

of testing.

In an uncertain world, the performance of a system may he specified in

terms of its ability to survive under a aiven load, expressed as probability

of survival and associated confidence level, and the system cost or weiqht

required to achieve this survivability. An improvement in system performance

may be expressed in terms of an improvement in any of these criteria.

The complete characterization of the probabilistic response of a typi-

cal system or component to a univari _0 stimulus is qiven by the response

surface illustrated in Fiqiure 1. This surface shows the probability of

survival, P , of thesystem as a function of the load, S, or stimulus level5

applied to the system, over a rangIe Of confidence levels, C.

Confidence is the perceived probability that at least the proportion of

the population indicated will survive the qiven load shown by the correspond-

inq probability-versus-load plane. The best estimate curve of probability

of survival versus load is usually taken to be at the 50-percent confidence

plane. In Fiqure 1, probability-of-survival-versus-load planes are indi-

cated for confidence values of 0.10, 0.50, and 0.90. The projection of

these intersections onto a sinqle plane produces the useful plot shown on

the right side of Fiqure 1.
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The response surface shown in Figure 1 is predicated on the premise

that there are two distinct types of uncertainties affecting the response

of the system: uncertainties which are random, and uncertainties which are

systematic, and that random uncertainties determine the probability of sur-

vival of the system modeled, while systematic uncertainties affect the
confidence ascribed to that probability of survival. Although this

representation of the consequences of variation analysis is admittedly

simplistic, experience has demonstrated that, in practice, it provides a

useful method of accounting for the effects of uncertainties.

Random uncertainties are the result of the many indeterminable

differences that occur from one system to the next, or from one run to the

next. These differences exist at some level no matter how carefully the

system is specified, or how rigorously quality control is excerised in

the manufacture or operation of the system.

Systematic uncertainties in the response of the system exist because

of a lack of complete knowledge of the underlying processes affecting the

variable under analysis. If this ignorance could be reduced by additional,

more refined research or testing, or by implementing more sophisticated

analytical procedures, the amount of systematic uncertainty affecting the

probability of survival could be reduced.

Random and systematic uncertainties have distinctly different effects

on the survivability of the system. Random variations in system properties

cause some systems to be harder, and others to be softer. These variations

tend to average out when the probability of survival of a large number of

systems is considered. Thus, while random variations cause a dispersion in

the hardness distribution, they do not generally affect the central tendency

of the distribution.

On the other hand, systematic uncertainties represent potential dif-

ferences between the real performance of a system and its predicted

performance based on analytical models and model parameter values. These

potential differences dictate the probability of a bias or shift in the

hardness distribution. Thus, because systematic uncertainties obscure the

central location of the hardness distribution, these uncertainties reduce

the system confidence shown in Fiqure 1.

10



The first step in the analysis of the benefits resulting from testing

is the selection of possible tests to be considered. The possibilities

include both system tests and component tests. However, it is nearly always

true that component tests will be less expensive than system tests. Thus,
the designer will ordinarily elect to analyze tests of components, search-

ing especially for those components having large systematic uncertainties

which intuitively would tend to have the greatest effect on system

un,ertainty.

When candidate tests have been selected for analysis, sensitivity

studies are performed to estimate the impact on system performance of

each of the tests selected. Using the FAST code, the effect of the com-

* ponent uncertainties on system performance is simulated by making a series

* of runs while varyinq the uncertainties of the selected component.

*These sensitivity studies will provide results which may >e expressed,

for example, as shown in Figure 2. For a constant level of probability of

survival, confidence, and load, the cost or weight of the system will de-

crease as systematic, or bias, uncertainty for a given component decreases.

Thus, by decreasing the systematic uncertainty associated with the com-

ponent, it is possible for the system to display a lower cost at the same

load level, or the same cost or weight at a higher load level.

90 1 I
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0 80 -*9
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z 70 O
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Figure 2. Component Uncertainty Sensitivities
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An alternative is the use of the Balanced System Hardness (BASH) code

for performing the sensitivity analyses without the need for the Monte Carlo

procedure which is the basis of the FAST code. The BASH code, besides being

more quick and efficient, provides directly an optimization of the mix of

components in the final system design. (2)

To determine the utility of a given test, it is then necessary to esti-

mate the change in component systematic uncertainty that would result from

additional test data. By the use of the sensitivity plots of Figure 2, the

system improvement can be evaluated as a function of these changes in

component uncertainty.

Two different approaches for the analysis of the effects of testing
were investigated during this study. The first is a method for analysis

* of test data that utilizes maximum likelihood estimation of the distribu-

tional parameters. This method is embodied in a new computer code named

ELF, Evaluation of Likelihood Function. The second approach involves the

use of conditional probability, and has been incorporated into a new version

of the FAST code named FAST7.

Both of these computer codes can be used to objectively evaluate system-

atic uncertainties based on test results. The ELF code can be used to

analyze both attributes (pass/fail) and variables test data so long as the

test simulation is perfect. Where there is uncertainty in the simulation

of the operation conditions by the test, this additional uncertainty must

be accounted for outside the ELF code, as discussed below.

The FAST7 code is a powerful tool for analyzing the effects of pass/fail

data, and it does not require perfect test simulation. In addition, FAST7

can be used at subsystem, or system levels, and can analyze correlations

between component responses.

12



3.0 PARAMETRIC ANALYSIS METHOD

The first requirement for a testing cost/benefit analysis

is to establish reliable, objective techniques for reduction of raw test

data to usable statistical models. The criteria for measuring the success

of the data reduction techniques include the following: (i) they must

produce results which can be reproduced by workers throughout the com-

munity; (ii) they must be stable in the sense that they will yield

reasonable results even if only limited data are available; and (iii)

they must provide results in a form that are compatible with cost/benefit

modeling.

One useful methodology developed during this study which meets the

, criteria stated above is the so-called parametric analysis described here.

This method depends upon the estimation of the statistical parameters

which determine the distribution of the test variables. A later section of
this report will discuss a method which is not dependent on the estimation

of parameters to determine distributional information regarding the test

variables. This is the conditional probability analysis method.

In general terms, the parametric analysis method is based upon the

construction and application of mathematical models of the results of

repetitive experiments. These models make possible the study of the pro-

perties of the experiment, and predictions about the outcome of future

trials of the experiment.

The conclusions drawn from this use of mathematical modeling are

statistical inferences, and the process involved is decision-making

based upon probability. Most of the decisions or inferences made by

statisticians fall into one of two categories; either they involve

the estimation of the parameters of a frequency function, or they involve

testing some distributional assumption about the frequency function selected

for the model. In the parametric analysis method developed during this study,

both types of statistical decisions are utilized in analyzing test data.

The method that is usually preferred by most statisticians to co nstruct

a point estimate of a parameter of a frequency function of a random

variable from several independent observations is the maximum likelihood

method. By definition, the maximum likelihood estimator of a parameter

of a frequency function is the estimator that maximizes the likelihood

13



function in terms of that parameter. The likelihood function is simply

the joint frequency function of the several independent observations,

formed by multiplying together the frequency functions of each observation.

A statistical test of a distributional assumption provides an

objective technique for assessing whether an assumed distributional

model provides an adequate discription of observed data. The following

basic steps are usually involved: (1) a figure of merit, or modulus,

known as a test statistic is calculated from the observed data; (2) the

probability of obtaining the calculated test statistic, assuming the selected

distributional model is correct, is determined; and (3) if the probability

of obtaining the calculated test statistic is low, it is concluded that the

assumed distributional model does not provide an adequate representation of

the data.

The definition of low depends on the user's preferences and the

consequences of rejecting the model. A probability of 0.10 or less is

usually said to be low. If the probability associated with the test

statistic is not low, then the data provide insufficient evidence that the

assumed model is adequate.

Note that although this procedure permits a distributional model to

be rejected as inadequate, it does not prove that the model is correct. The

outcome of a statistical test is highly dependent upon the amount of avail-

able data: the more data there are, the better are the chances of identi-

fying an inadequate model. If too few data points are available, even a

distributional model that deviates grossly from the assumed model frequently

cannot be established as inadequate.

Finally, after point estimates of the distributional paraneters have

been determined, and the distributional hypotheses utilized in the analysis

have been tested, confidence bounds on the estimated distribution can be com-

puted based on the test data sample size and behaviour. These confidence

bounds act as a buffer on the estimated distribution function to account for

uncertainties in the estimation of the parameters.

The parametric analysis methods outlined here were developed and

codified in the Evaluation of Likelihood Function (ELF) computer code during

this study. The development of the methodology, and its application to a

typical data analysis problem are described in the following sections of

* -this report.

14



3. 1 MAXIMUM LIKELIHOOD ESTIMATION

Typically, experimental data may be categorized as one of two types,

either quantitative or quantal. Quantitative data are those for which both

the stimulus, or load, applied to the test specimen, and the response of the

specimen, can be measured quantitatively; quantal, or attributes, data are

those data for which the response is not quantitative, but rather is of the

all-or-nothing, pass-or-fail, type.

Quantitative data are comparatively easy to analyze statistically be-

cause the stimulus for each data point is associated with a specific quanti-

tative response. Quantal data, on the other hand, present special problems

in analysis because the responses are not proportionally related to the

*stimuli. In addition, quantal data are less powerful in the sense that each

response contains less information than a corresponding quantitative test

point.

In quantal analysis, each individual test specimen has a particular

stimulus level, called a tolerance, at which it will fail. If a particular

specimen is tested at a stress level below its tolerance level, it will

survive and if it is tested at a stress level greater than its tolerance

level, it will fail. The test data represent a sample from a total popu-

lation of material specimens which have a continuously distributed tolerance

level. It is this tolerance levcl distribution that determines the prob-

ability of failure, P, of a particular specimen at a given test level.

Tables 1 and 2 contain a summary of magnetic flyer impact test results

for Tape Wound Carbon Phenolic (TWCP)/silicone rubber/0.120 graphite resin

specimens. These data were assembled by E. A. Fitzgerald of McDonnell

Couglas Astronautics Company from tests conducted as a part of the Graphite

Resin Screening Program, the Dynamic/Degraded Properties Program, and the

NHEP Program. (3 ) The test levels are given in terms of the front face

pressure on the TWCP, which is an approximate measure of the tensile

stresses inside the graphite resin composite. The criteria for pass and

fail used by Fitzgerald in rating the performance of the specimens are:

Pass, no more than one hairline crack or delamination visible in the

substructure by optical or X-ray examination; and Fail, any damage more

extensive than that described above, including multiple hairline cracks or

delaminations, single open cracks, or detached spalls.

15



Table 1. Graphite Resin Test Data

PRESSURE
TEST S LOG(S) RESULT DESCRIPTION

I 2.4000 .87547 PASS FLAT, 6DA EPOXY (ORSP-2)

2 3.7000 1.30833 PASS FLAT, GA EPOXY (ORSP-2)

3 5.2000 1.64966 FAIL FLAT, SPA EPOXY (GRSP-Z)

* 4 2.4000 .87547 PASS FLAT, 6OA EPOXY (SRSP-2)

5 3.7000 1.30833 PASS FLAT, GPA EPOXY (SRSP-2)

6 5.2000 1.64866 PASS FLAT, GIA EPOXY (GRSP-2)

7 2.4000 .87547 PASS FLAT, NDAC EPOXY (ORSP-2)

8 3.7000 1.30833 PASS FLAT, NPAC EPOXY (BRSP-2)

9 5.2000 1.64866 PASS FLAT, NDAC EPOXY (GRSP-2)

10 4.9000 1.58924 FAIL FLAT, SA EPOXY (GRSP-3)

11 4.9000 1.59924 FAIL FLAT t SPA EPOXY (GRSP-3)

12 3.7000 1.30833 FAIL FLAT, SPA EPOXY (ORSP-3)

13 3.7000 1.30833 PASS FLAT, SPA EPOXY (GRSP-3)

14 4.9000 1.58924 PASS FLAT, NPAC EPOXY (GRSP-31

15 6.0000 1.79176 PASS FLAT, NDAC EPOXY (6RSP-3)

16 4.9000 1.58924 PASS FLAT, HOAC EPOXY (GRSP-3)

17 8.7000 2.16332 FAIL FLAT, IIDAC EPOXY (GRSP-3)

Io 2.4000 .87547 PASS FLAT, MOAC POLYIIIDE (GRSP-3)

19 2.9000 1.06471 PASS FLAT, HDAC POLYIIDE (GRSP-3)

20 4.9000 1.58924 PASS FLAT, NDAC POLYIPIDE (ORSP-3)

21 6.7000 2.16332 FAIL FLAT, NDAC POLYINIDE (ORSP-3)

22 6.0000 1.79176 FAIL FLAT, NDAC POLYINIDE (ORSP-3)

23 2.4000 .87547 PASS RING, SDA EPOXY (GRSP-3)

24 4.9000 1.58924 FAIL RING, ODA EPOXY (SRSP-3)

25 3.7000 1.30833 PASS RING, SPA EPOXY (SRSP-3)

26 2.4000 .87547 FAIL RING, NPAC EPOXY (GRSP-3)

27 4.9000 1.58924 FAIL RING, MDAC EPOXY (ORSP-3)

28 3.7000 1.30833 FAIL RING, MPAC EPOXY (ORSP-3)
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Table 1. Graphite Resin Test Data (Cont'd)

PRESSURE
TEST S LOG(S) RESULT DESCRIPTION

29 3.7000 1.30833 FAIL RING, HDAC POLYINIDE (6RSP-3)

30 1.9000 .64185 PASS FLAT, MDAC EPOXY (DDPP)
31 1.9000 .64185 PASS FLAT, MDAC EPOXY (DDPP)
32 1.9000 .64185 PASS FLAT, NDAC EPOXY (DDPP)
33 1.9000 .64185 PASS FLAT, MDAC EPOXY (DDPP)

34 1.9000 .64185 PASS FLAT, NDAC EPOXY (DDPP)
35 1.9000 .64185 PASS FLAT, MDAC EPOXY (DPP

36 2.8000 1.02962 PASS FLAT, MDAC EPOXY (DDPP)
37 2.8000 t.02962 PASS FLAT, MDAC EPOXY (DDPPI
38 3.6000 1.28093 PASS FLAT, MIDAC EPOXY (DDPP)
39 2.9000 1.06471 PASS FLAT, MDAC EPOXY (DDPP)
an 2.9000 1.06471 PASS FLAT, MDAC EPOXY (DDPP)

Al 2.4000 .87547 PASS ARC, MDAC EPOXY (NNEP)
42 2.9000 1.06471 FAIL ARC, MDAC EPOXY (NHEP)
43 3.7000 1.30833 PASS ARC, MDAC EPOXY (NNEP)
44 3.7000 1,30833 PASS ARC, MDAC EPOXY (NHEP)
45 4.9000 i.58924 FAIL ARC, MLAC EPOXY (HHEP)

46 2.4000 .87547 PASS ARC, MDAC POLYIMIDE (NHEP')
47 2.9000 1.06471 FAIL ARC, MDAC POLYIMIDE (NHEP)
48 3.7000 1.30833 PASS ARC, MDAC POLYIMIDE (NHEP)

49 3.7000 1.30833 FAIL ARC, MDAC POLYIMIDE (NHEP)
50 4.9000 1.58 924  FAIL ARC, MDAC POLYIMIDE (NHEP)

5 1.6000 47000 PASS RING, MPAC EPOXY (NHEP)
52 1.6000 A7000 PASS RING, MDAC EPOXY (NHEP)
53 2.9000 1.06471 FAIL RING, MDAC EPOXY (NHEP)
54 2.9000 1.0647! PASS RING, MDAC EPOXY (NHEP)
55 3.7000 1.30833 FAIL RING, MDAC EPOXY (NHEP)
56 3.7000 1.30833 FAIL RING, APAC EPOXY NHEP)

57 2.9000 1.06471 PASS RING, MDAC POLYIMIDE (NHEP?
58 2.9000 1.06471 PASS RING, MDAC POLYIMIDE (NHEP)

.17
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As indicated in Table 2, the data consist of a total of 58 tests, with

33 flat, 15 ring, and 10 arc specimens having been tested. Two contractors

are represented, McDonnell Douglas Astronautics Company (MDAC) with a total

of 45 specimens, and General Dynamics (GDA) with 13 specimens. Forty-five

of the specimens were fabricated from epoxy resin reinforced with graphite
fibers, and 13 were made from graphite-reinforced polyimide.

The information recorded for each test point consists of the pressure
level (S, kbar) induced in the material specimen, and the quantal response
of the specimen, i.e., whether it passed or failed the applied stress.
Also shown in Table 1 are the logarithms of the test pressure levels, and a

description of the material sample.

Table 3 shows the sample data from Table 1 after it has been classi-
fied. Because only eleven test levels were represented in the raw data, it
was possible to classify these data at point values of the independent

variable (rather than within arbitrary cell boundaries). At each test level,
Table 3 shows the test level, s, the logarithm of the test level, the number

of specimens tested, N, the number of specimens failed, R, and the fraction

Table 3. Classified Graphite Resin Test Data

CLSISIFIED INPUT DATAi

GROUP S LOB(S) N R PF

1 1.6000 0.47000 2 0 0.00000
2 1.9000 0.64105 6 0 0.00000
3 2.4000 0.87547 0 1 0.12500
4 2.6000 1.02962 2 0 0.00000
5 2.9000 1.06471 9 3 0.33333
6 3.6000 1.28093 1 0 0.00000
7 3.7000 1.30833 14 6 0.42857
8 4.9000 1.58924 9 6 0.66667
9 5.2000 1.64866 3 I 0.33333
10 6.0000 1.79176 2 1 0.50000
11 8.7000 2.16332 2 2 1.00000
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of the specimens that failed, PF. Classification of the quantal data, and

calculation of the fraction failed, makes it possible to plot these data in

terms of stimulus (stress) and response (failure probability), as shown in

Figure 3.

The next step in the statistical analysis of these data is to fit a

predictive model to the data points shown in Figure 3. This is done by:

(1) assuming a frequency function for the data; (2) estimating the para-

meters of the frequency function by the maximum likelihood method; and (3)

testing the assumptions of the frequency function selected.

Maximum likelihood estimating consists of determining the maximum of

the likelihood function, where the likelihood function is the joint prob-

ability density function for all the independent observations. For the

: classified data of Table 2, a Bernoulli process is assumed to model the

response of the specimens at each test level, because each specimen is

assumed to respond independently, with two possible outcomes for each sample.

Then the probable function at any test level may be predicted by the bino-

mial frequency function

f= (n) r Qn - r

where: f = Probability function for the test level

n = Number of data points at test level

r = Number of failures at test level

P = Probability of failure at test level

Q = Probability of survival at test level

=1-P

The likelihood function, which is the joint probability function for

all the levels tested, is expressed as the product of the binomial prob-

ability functions for each of the k test levels, or

k
L = , n r n - r (2)r~ i i

i=l

A lognormal distribution was assumed for the population from which the

test data shown in Table I were drawn. This assumption is later tested, as

discussed below. Utilizing the notation of Abramowitz and Aitchison (5 ,

the following definitions are provided
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x = log e s (3)

where s = Test level

x = Logarithm of test level

For a lognormally distributed variable, s, the transform variable, x

is normally distributed with mean, u, and standard deviation, a. It is

convenient to introduce the standardized normal deviate

Z = (X_ ) (4)

which is normally distributed with a zero mean and a unit standard deviation.

The frequency function for the standardized normal deviate, z, is

given by the familiar relationship

1 12
Z(z) = e- 2 z (5)

F2

and the probability of failure is given as the integral of equation 5,

or

/

p(z) f Z(t) dt (6)

The likelihood function, L, given by equation 2 describes all the

probable outcomes of sample testing in terms of the distributional para-

meters p and a. A typical likelihood function is illustrated in Figure 4.

The maximum likelihood estimates of the distributional parameters are ob-

tained by determining the maximum value of this function.

The classical method of determining the maximum likelihood estimates
A A

of the mean and standard deviation, P and a , consists of differentiating

the likelihood function with respect to each of the parameters, setting

the differentials equal to zero, and solving the resulting equations for

the distributional parameters. That is, the equations

aL 0 ; -2 0 (7, 8)

A A
are determined and solved for P and a.
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Because equation 2 is not amenable to simple ana±ytical methods of

solution, it was found expeditious to solve these relationships by numerical

methods. Two separate numerical methods were investigated during the study,

the Probit Analysis method and a search technique. Computer routines were

designed, implemented, and validated for each of these methods, and a com-

bination of both methods was incorporated into the ELF code.

The name Probit Analysis has come to mean the method developed and pop-
(6) (7)

ularized by Bliss and Finney . This method was originally confined to

problems in biological assay, i.e., "the measurement of the potency of any

stimulus, physical, chemical, or biological, physiological or psychological,

by means of the reactions which it produces in the living matter '' 7 )  it

, is now recognized that the Probit Analysis method can be applied to any
(5, 8)

data for which appropriate data transformations can be determined

The basis of the Probit Analysis method is transformation of the test

data in such a way that it can be fitted with a best (in the least squares

sense) linear regression curve. More specifically, where quantal data are

under analysis, the data are classified, and the fraction of samples failing

in each class group are treated as the dependent variable.

Traditionally, the independent variable, or the logarithm of the

variable when appropriate, has been taken to be normally distributed. Even

though this assumption has long been associated with Probit Analysis, it is

not clear that it is essential to the method. When the normal distribution

is assumed, however, the values of the independent variable are conveniently

transformed into standard normal deviates to linearize the data fit.

The method of solution utilized in the Probit Analysis method is

(5)
facilitated by the introduction of two new parameters 5

, which are defined

as

S= - p/a (9)

0 i/u (10)

Using these new parameters, equation 4 is transformed to the linear

relationship

z = a + i. x (11)
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and Equations 7 and 8 are replaced by the relationships

k nZ
E (r/n - P) = 0 (12)

j=1

) x n- (r/n - P) = 0 (13)

1=1

which may be solved iteratively for the parameters o and 3. Because of

the popularity of this method, packaged computer routines for Probit

Analysis are generally available in the scientific community(9 )

A two-dimensional search technique, augmented by a quadratic predictor

, algorithm, was also developed which rapidly and efficiently finds the

maximum likelihood estimates for 4 and 0 . The two methods of solution for

* the maximum likelihood estiPites o' the parameters of the tolerance distri-

butions resulting from the test data were evaluated for accuracy and

efficiency. It was found that the two techniques complement each other in

the sense that where a -)articular data set gives one method convergence

problems, the other method usua 1" can converce iuickly. For this reason,

the ELF' clde contains a hybrid al(orith' which utilizes ;)oth techniaues.

Tests of the two distributional assumptions upon which the parametric

analysis method is based are incorporated into the ELF code. The first

distributional assumption is that at a given test level, each test may be

considered to be the result of a Bernoulli process. Tnat is to say, each

test specimen responds independently, and with one of two possible outcomes,

pass or fail, with probabilities P and Q. On this basis the test data at

each test level may be described as being purely binomially distributed.

This hypothesis is tested by the use of a chi-square test.

The second distributional assumption that was made was that the test

samples were drawn from a population that is lognormally distributed.

Although the assumption of this frequency function is not essential to the

parametric analysis method, it is a convenient assumption and it will be
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shown to have much utility for the data analyzed. The present version of

the ELF code assumes the lognormal distribution, and tests this assump-

tion by means of the Wilk-Shapiro W-Test.

3.2.1 Chi-Square Test

The most commonly used, and most versatile procedure for evaluating

distributional assumptions is the chi-square goodness-of-fit test. To use

this test, the data are grouped and compared to the expected number of

observations based on the assumed distribution. The major advantage of

the chi-square test is its versatility. It can be applied in a simple way

to test any distributional assumption, without requiring 
knowledge of the A

values of the distribution parameters. Its major disadvantage is its lack

of sensitivity in detecting inadequate models when few observations are

available.

2
The chi-square statistic, X , is defined by the relationship4

2 k (0 i - e i ) 2

= (14)e.
i=l 1

where k = number of pairs of frequencies to be compared

oi = i th observed frequency

e. = i th expected frequency

A value of X2 of zero would correspond to exact agreement between observation
2and expectation, while increasingly large values of X represent increasingly

poor experimental agreement.

To provide a continuous measure of the goodness of fit implied by the
X2 statistic, it is necessary to introduce a new frequency function which

approximates the frequency function of X2 very well for large n. This new
frequency function is obtained from the limit of the moment generating func-

2
tion of X when n approaches infinity as

1 X2

f(X ) = 2 e (X ) (15)

The parameter P is called the degrees of freedom because it repre-

sents the number of independent pairs being compared. Since the continuous

chi-square distribution of equation 15 is only an approximation to the

26
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discrete chi-square frequency function, judgment must be exercised with

this test when very small samples are examined. Experience and theory

indicate that the approximation is usually satisfactory, provided e0 > 5,

and k > 5. Below these levels the chi-square test results are suspect
(1 0 ).

The chi-square test possesses the useful property that it is

applicable even when the cell probabilities depend upon unknown parameters,

provided that the unknown parameters are replaced by their maximum likeli-

hood estimates and one degree of freedom is deducted for each estimated
(10)

P=rameter

For the binomial relationship of equation 14, the cni-square statistic

may be more easily calculated from the relationship

k 2

X n(r/n - P) (16)
i~l PQ

(5)
which is chi-square distributed with k - 2 degrees of freedom

The probability level associated with the distributional assumption

is given by the integral of equation 15 as

Q(X2 !V) =f f(tIP) dt (17)

x
2

This integral gives the probability of obtaining the calculated value of X
2 ,

given v degrees of freedom. Figure 5 shows a range of probability values

given by equation 17 as a function of X2 and v. Equation 17 has been incor-

porated into the ELF code, providing an automatic evaluation of the chi-

sauare test of a set of test data.

3.2.2 The Wilk-Shapiro W-Test

The W-test is an effective new statistical procedure for evaluating the

assumption of normality (or lognormality) against a wide range of alterna-

tive distributions, even if only a relatively small number of observations

are available. The test statistic is obtained by dividing the square of a
(11

combination of sample order statistics by the sample variance
( l) The

W-statistic is given by the relationships
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W b 2/S2 (18)

1
b an  + (X -xi) (19)

2
s (;x i X) (20)

where: x i = ordered sample data such that x 1 < x2 < x 3 < ... < xn

A = n/2 for n even

= (n-l)/2 for n odd

x = mean of data sample

and the values of the coefficients, a, are given in Table 4.

Figure 6 shows the relationship between sample size, W-statistic, and
the probability of the calculated W-statistic. Note from Figure 6 that to
obtain 0.50 probability, a W-statistic of greater than 0.90 is needed, even

for the smallest sample size.

Hahn and Shapiro have approximated the results in Figure6 with an
(12)empirical Johnson SB distribution . This approximation makes possible

the calculation of the standard normal deviate, corresponding to the prob-

ability, P, of a given W-statistic by the equation

(W - E
z=Y + n log ) (21)

e 1-W

where the constantsYV 7, and E are given in Table 5. This relationship
allows the continuous calculation of the approximate probabilities associ-
ated with a given value of the W-statistic, and is incorporated into the

ELF code.

3.3 CONFIDENCE BOUNnS

In the parametric analysis method, confidence bounds on the estimated

lognormal distribution are calculated from the test data by classical
means. These confidence bounds account for the uncertainties in the esti-
mates of the distributional parameters p and a that are the result of the
sample size and behavior. These bounds assume that the test is perfectly
calibrated, and that it simulates the operational conditions perfectly.
Uncertainties in test calibration and simulation fidelity represent separate
issues discussed later in this volume.

29



r- 00 C4 N 0 -C

1-4 L M O-4 r4 C> a4.40

Ch me N r-oL C a%

00 00 000000000000wv 4 o w 4 4

fnA ~ O M W -0Un I - n r-( 0 fnj D o w IV
H ~ ~ LnM -0f C w n N 4 - - - 40 a

1-1 'n ml .j-4q0 D 1 v M N N -4 -4- a0Q0 (D

C3~ ~ ~ D -4 k4 04 m m 0 v M '4
E-1 r-4 w m CN tD rn LA r- M -4 LA11 N M W N

0 Ln n .- 4 Q(C4 vA m"N- 4 -40 0a

.-4 mH q aA~'4I %D r-4 - m C w 000

4 1'0 ~ A

0000 "000000iM N n000 %
00'i N-4%-114 ~r -4 mCD 0N

(Ih L m -i o N "m"N -

0 -4Nt 0-L , r N LA0(D% Mor- IW -4

41 0 000 CIC1 -000000N-4-4-4000(

m rA qODN-4a -HC
4-4 (N 0 - ON oc4L 0O%o r mw

0)- v enr- N4 q( CC4 -j,0 00

0 ~ 00 0 000000000 1 ( C C
1-4 t.0LA %De m - - - r %

'0 c ~ 0000 H o N C4,DLn-4 w v -

w4 000 000000000 -1a 0

LA 0 C;C 2 L ; A OC C

to- 4 N, %0 r-v wN0a NULn

L ( .DN N'00 -4 -4 -4 Cla

N r %0 CD 0 A a% r-un M

00 w 00NLn00 v000

W LAOn W 0
(4 0 -

-4 wmwI
0) L 000 00

r- 4(n L 0 -%4 00 0-4.4

30



0.900

S0.85-

Lo.50

0.75-

0.700

0.85 I

0 5 105 2 53 54 55

1 .01
0.759

0.80

0 .65

o0.9

0.38~

0.10
0.2

0.1 - 5 50

0
0.70 0.75 0.80 0.85 0.90 0.95 1.00

W-STAT1ST IC

a.W-TEST PROBABILITIES

Figure 6. Wilk-Shapiro W-Test

31



w a ON 1V 0- r- % D m
SN N N Ln %.D 0 Ln 0)

wO N %D LA m N N .-4 1-4 CD
N . rq N N N " N4 N N

Ln -:3 as o w w Ln wO N %D
m~ " m N- mO0- m~~

M2 sr D N- N- N- N OCOC O

.- 4 -4 1-4 1-4 1-4 -4 -4 -1 1-1 -4 -4 1-4

94J
-14

m' N n 00 mA C 1n-4 m CO LA)
N- ~.-4 CO '-4 LA m~ 1- 0 00(

m Ln r- LA -4 qA LA LA LA

.4)
(4

.4.)

(4

4

4-4

~~10 CD LAr4(1 C ) 0 LA CD-i ONL

~~~C -4 mf N L (M Lo -A 0' N '-T 0N -4 LAN

-4

LA Nr 001OD .M CO N - LA) 1-410 LAt
0N 04C m .-4 LA CD 1.0 1.0 CO m LA)

.0 C) LA 0- M M. W9 ND W CN M~

0 -4 0- N N N0 N m W m m F-

m -c' LA 10 N- CO m o r-i Nm -T

32



For the case where the sampled population is normally distributed,

confidence bounds on the estimation of u and a may be calculated by the use
(13)of the non-central t-distribution (  . This distribution is based upon the

non-central t parameter, t', which is defined by the equation

t = z + 4, (22)

where: z = standardized normal deviate (see equation 4)

= non-centrality constant parameter

X = chi-square parameter (see equation 14)

= degrees of freedom of chi-square parameter

The probability density function for non-central t is given by the expres-

sion

I'I ++i) l exp Hhvf(t I1,A)= 2 1(rt

(23)

where Hh (x) exp - (u+x) 2 I du
(24)

is the Hh function as defined by Fisher(13)

Given that the test data sample is drawn from a normal population with
a mean, y, and a standard deviation,r, let z(P) represent a standard normal
deviate such that a proportion P of the population will lie below the limit
U(P) = A + z(P) a. If a random sample of n observations from the population
is available, with a sample mean x and a standard deviation S, then a con-
stant Kc can be defined such that 100C percent of the time p + z(P)O< x + KcS.
In other words, there is confidence, C, that at least the proportion P of
the population will lie below x + KcS.

This probability/confidence statement may be expressed

C = Pr IP + z(P)a S x + KcSI (25)

The quantity in braces may be rewritten as
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x Qhsrn+z(P) 1r ] c n (26)

so that the term to the left of the inequality is equivalent to non-central

t defined in equation 22. Then equation 25 may be expressed as

C = Pr It' I v,< < Kc fnl (27)

where = z(p) fl (28)

, ) =n- 1 (29)

For convenience, 8 is used to define the operation

tsE) (t v,a) = f(t'lv,A) dt' (30)

= r I t' :S t 31

Then the inverse operation,E8-l, gives the value of to corresponding to a

specified probability level. The solution of equation 25 for Kc may now be

written as

Kc (l - CI "A) (32)

This equation provides the standoff distance corresponding to a specified

probability of failure (implied byA) and confidence level, C. Using the
A A

maximum likelihood estimates, ; and a, as the sample parameters, the actual

limit at any probability/confidence limit is given by

A A - 1

U(P,C) = p+ a e (l - C v,A) (33)

'n

It is interesting to note that the non-central t-distribution has not

received wide use in the scientific community. This is partly due to the

fact that this distribution is a fairly recent development. The definitive

exposition of the theory was not presented until the work of Johnson and

Welch was published in 1940(13) . The main reason this distribution has not

been significantly utilized, however, is the difficulty encountered in

evaluating the functions which define the non-central t-distribution.
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The non-central t-distribution is often confused with the Student's

t-distribution, which is a relatively simple function to evaluate. The

Student's t-distribution is useful in evaluating the confidence limits of

a distribution where the measure of dispersion, a, is known, and only the

measure of central tendency, p. is subject to uncertainty. The Student's

t-distribution is a special case of the non-central t-distribution, for the

situation where.A, the non-centrality constant, is equal to zero.

Modernly, the solution for the integral of the non-central t-distri-

bution is available in many of the complete software libraries. However,

no solutions for the inverse of the non-central t indicated in equation 31

were found during this study, either in software libraries or in the

scientific literature. Solutions for both the probability integral and the

inverse function were developed and incorporated in the ELF code during
thi.- qtudy.

* Numerical solutions for the probability integral of the non-central

t-distribution and its inverse were developed by the following methods.

First, the probability integral was evaluated by a method suggested by
(14)

Owen . The integral of equation 30 was integrated by parts repeatedly,

yielding distinct expressions for even and odd degrees of freedom, v. For

even degrees of freedom, the terms resulting from the repeated integrations

are evaluated by series expansion in terms of the standard normal integral.

For odd degrees of freedom, the solution is expressed in terms of the
(15)standard normal integral function and the T-function defined by Owen

An economical numerical solution for the Owen T-function was developed
(16)based on a Gaussian quadrative method given by Young and Minder

An efficient numerical method was developed for the solution of the

inverse of the integral of the non-central t-distribution involving secant-

guided trial-and-error iterations. An initial estimate of the solution is

provided by assuming that the sample is normally distributed, using a

formula suggested by Johnson and Welch (1 3 )  Subsequent estimates are

calculated by the secant method, constrained by the false position, or

regula falsi, technique. This trial-and-error method is greatly accelerated

by transforming the values of the iterations into the normal probability

plane. Even though this transformation is only approximate for the non-

central t probability curves, it linearizes these S-shaped curves

sufficiently so that the secant estimations converge quadratically.

35



Validation of the software resulting from these studies was accom!plishedI (17)by reproducing the tables of Resnikoff and Lieberman This volume is

the standard resource for non-central t-distribution tables. Unfortunately,

the accuracy of the integral tables presented is only four significant

figures, and the tables of percentage points of t given were developed

by inverse interpolation in the probability tables.

The ELF code rountines were also tested against tables by Owens
(19) (8) (20)

Bombara , Natrella , and Pearson Finally, the code was self-

tested by calculating probabilities and then inverse probabilities, to see

how close the routines could come to the starting point.

3.4 ELF CODE RESULTS

Figure 7 shows the ELF code output resulting from the analysis of the

total quantity of data available, as given in Table 1. At the top of the

page are listed the 11 test levels, or groups, into which the data were

classified. Given in the listing are the group number, the test level, S,

the logarithm of the test level, the total number of tests at this level,

N, the number of failures at this level, R, and the fraction failed at this

level, PF = R/N.

The maximum likelihood estimates of the parameters of the population

represented by this sample are given at the center of the page. The median

of the population, m, is estimated at 4.334 and the K-factor characterizing

the random variations exhibited by the samples, KR' is seen to be 2.719,

the mean is given as 1.466, and the standard deviation is 0.510.

The median and the K-factor represent the measures of central tendency

and spread of the data, respectively, in the natural, or untransformed,

domain, and the mean and the standard deviation represent the same proper-

ties of the data sets in the logarithm domain. These parameters are

defined mathematically by the following relationships

x = log e  s (34)

where s = measure of load
(here, oressure level, kbars)

x logarithm of load
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I.
1

PROGRAM ELF
DATE: 30 MAR 79
TIME: 09.30.00.
ITEM: ALL AVAILABLE DATA

CLASSIFIED INPUT DATA:

GROUP S LOG(S) N R PF

1 1.6000 0.47000 2 0 0.00000
2 1.9000 0.64185 6 0 0.00000
3 2.4000 0.87547 B 1 0.12500
4 2.8000 1.02962 2 0 0.00000
5 2.9000 1.06471 9 3 0.33333
6 3.6000 1.28093 1 0 0.00000
7 3.7000 1.30833 14 6 0.42857
8 4.9000 1.58924 9 6 0.66667
9 5.2000 1.64866 3 1 0.33333

10 6.0000 1.79176 2 1 0.50000
11 8.7000 2.16332 2 2 1.00000

58

MAXIMUM LIKELIHOOD PARAMETERS

MEDIAN = 4.33355 MEAN 1.46639
K-FACTOR 2.71935 STD DEV 0.51041

GOODNESS-OF-FIT TESTS

CHI-SQUARE TEST OF VILK-SHAPIRO TEST OF
BINOMIALITY OF DATA LOGNORMALITY OF DATA

CHI-SQUARE = 4.50737 U-STATISTIC = 0.98380
DEG OF FREEDOM = 9 SAMPLE SIZE 11

PROBABILITY = 0.87497 PROBABILITY 0.98133

Figure 7. ELF Code Analysis Summary
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For s lognormally distributed, x is normally distributed with a

probability density function

f(x) 1 e (35)

The mean of the log of load, g, is defined as

xL f f(x) dx (36)

and the standard deviation of the load, , is the square root of the variance

or - f(x) dx (37)

The median, m, is given implicitly by the expression

m

0.5 =f f(x) dx (38)

Finally, the K-factor, defined by the expression

K = exp (1.96W} (39)

is a factor applied to the median to give the upper and lower bounds

corresponding to 95 percent of the population.

The results of the tests of the distributional assumptions are shown

at the bottom of the the page. The chi-square statistic used to test the

assumption of binomiality of the performance of the specimens at each test

level is seen to be equal to a value of 4.507. The probability of achiev-

ing a value of chi-square equal-to-or-greater than this value, with 9

degrees of freedom, is 87.5 percent. In other words, the odds against

the binomiality assumption being correct for this data set are only 12.5

percent based on this test. The W-statistic computed for the data set is

0.984, and the probability level associated with this statistic, for a

sample size of 11, is 98.13 percent. Thus, the tests of the distributional

assumptions give little indication of nonconformity of this data set.
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Figure 3 gives tabulated values of the estimated distribution of the

probability of .ailure for the graphite resin test specimens. These values
were computed from the sample by the ELF code for three confidence levels:

10, 50, and 90 percent. The 50-percent confidence values represent the

best estimate lognormal distribution for this population. The 10 and

90-percent confidence values represent the systematic uncertainty based

on the sample size and variation, assuming perfect test calibration and

test simulation. These confidence bounds are theoretically exact, being

computed by the use of the non-central t-distribution, as described above.

Figure 9 shows a fragility curve, i.e., a plot of probability of
failure versus test level, for the test data of Table 1. This plot illus-

trates the grouped data points, listed in Table 3, together with the 10,

50, and 90-percent confidence curves tabulated in Figure 8. Also shown on

this plot are the number of tests in each group, N, and the number of

specimens which failed in each qroup, R.

Tor example, at the test level of 6 kbar, two specimens were tested,

with one passing and one failing, giving an experimental failure probability

of 50 percent. The best estimate curve, on the other hand, predicts a

failure probability for the total population at this test level of 73.7

percent, or about three out of four. At the test level of 3.7 kbar, it is

seen that 14 specimens were tested, of which 6 failed, giving an experi-

mental failure rate of 42.9 percent. In comparison, the best estimate

prediction of failure rate at this test level is seen to be 37.8 percent.

As intuition would predict, the larger the sample at any given test

level, the more nearly the measured probability of failure matches the

predicted probability of failure. With the maximum likelihood estimation

method employed by the ELF code to analyze these test data, the best

estimate distribution is optimized in the sense of minimizing the distance

from each data point, on the basis of the number of tests at that point.

In other words, the points seen plotted in Figure 3, each of which repre-

sents a group of test data, were weighted in the analysis according to the

number of tests in the qroup.
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MEDIAN = 4.3335 MEAN = 1.4664
K-FACTOR = 2.7194 STD DEV x 0.5104
SIZE a 58 6ROUPS c 11

ALL AVAILAILE DATA

TEST LEVEL, S (UNCERTAINTY FACTOR, KB)

PROD CONFIDENCE
(PF) 10.0 50.0 90.0

0.10 0.7020 ( 1.2747) 0.8949 ( 1.1997) 1.0737
1.00 1.0899 ( 1.2125) 1.3215 ( 1.1564) 1.5308
2.00 1.2743 ( 1.1919) 1.51808 ( 1.1448) 1.7368
3.00 1.4067 ( 1.1794) 1.6590 ( 1.1366) 1.8657
5.00 1.6090 ( 1.1630) 1.0714 ( 1.1261) 2.1073
10.00 1.9763 ( 1.1399) 2.2528 ( 1.1116) 2.5043
15.00 2.2675 ( 1.1260) 2.5533 ( 1.1034) 2.8172
20.00 2.5269 (1.1162) 2.8205 ( 1.0979) 3.0966
25.00 2.7705 ( f.1086) 3.0716 ( 1.0942) 3.3612
30.00 3.0068 ( 1.1030) 3.3166 ( 1.0917) 3.6208
35.00 3.2413 ( 1.0985) 3.5607 ( 1.0903) 3.8820
40.00 3.4780 ( 1.0951) 3.8087 ( 1.0896) 4.1502
45.00 3.7207 ( 1.0925) 4.0649 ( 1.0898) 4.4301
50.00 3.9729 ( 1.0908) 4.3335 ( 1.0908) 4.7270
55.00 4.2391 ( 1.0898) 4.6199 ( 1.0925) 5.0474
60.00 4.5251 ( 1.0896) 4.9307 ( 1.0951) 5.3995
65.00 4.8376 ( 1.0903) 5.2742 ( 1.0985) 5.7938
70.00 5.1866 ( 1.0917) 5.6624 ( 1.1030) 6.2457
75.00 5.5871 ( 1.0942) 6.1135 ( 1.1089) 6.7785
80.00 6.0645 ( 1.0979) 6.6583 ( 1.1162) 7.4320
85.00 6.6661 ( 1.1034) 7.3550 ( 1.1260) 8.2019
90.00 7.4991 ( 1.1116) 8.3360 ( 1.1399) 9.5024
95.00 8.9116 ( 1.1261) I0.0353 ( 1.1630) 11.6715
97.00 9.9591 ( 1.1366) 11.3200 ( 1.1794) 13.3505
98.00 10.8007 ( 1.1448) 12.3648 ( 1.1919) 14.7376
99.00 12.2677 ( 1.1584) 14.2106 ( 1.2125) 17.2301
99.90 17.4914 ( 1.1997) 20.9850 ( 1.2747) 26.7500

Figure 8. ELF Code Estimated Distribution
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3.5 APPLICATION OF ELF RESULTS

The fragility of the graphite resin specimens given by the curves of

Figure 9 represents a nearly complete description of the performance of

this material based on the available test data. Random uncertainties in

the material performance are specified by the random K-factor, KR,.

listed at the top of the figure.

The confidence bounds shown in Figure 9 reflect a major portion of

the systematic uncertainty affecting the performance of the material,

i.e., the uncertainty resulting from the approximation due to sampling.

* -However, there are additional systematic uncertainties that need to be

accounted for in a complete fragility statement. These are the uncertain-

*ties due to test simulation fidelity and test calibration.

When the systematic uncertainties can be assumed to be lognormally

distributed with constant parameters, these components of systematic

uncertainty can be simply root-sum-squared together to provide the total

uncertainty. A thorough discussion of the rationale behind this assertion

is given in the report of the previous study
(2 ).

The difficulty which arises in the implementation of this strategem

is that the systematic uncertainty given by the non-central t-distribution

is not constant over the range of probabilities, as shown in Figure 10.

The factor which relates the confidence bounds varies continuously as prob-

ability of failure varies.

Figures 10 illustrates the variation in the confidence bounds

given by the non-central t-distribution. Figure 10 is a listing of the

2.5, 50.0, and 97.5 percent confidence curves for the tests of MDAC

graphite epoxy rings. In Figure 11, the data have been transformed to the

16garithm/probability plane so that a lognormal curve appears as a

straight line. The straight solid line in the center of the plot is the

best estimate (50-percent confidence) lognormal distribution based on the

maximum likelihood estimators printed at the top of the figure.

The curved solid lines in Figure 11 are the non-central t confidence

bounds for 2.5- and 97.5-percent confidence (95 percent of the population

included). Finally, the dashed lines in the figure represent constant KB

factor loci used to approximate the 2.5/97.5 confidence bounds. Note that

the constant K B factor which determines the position of the dashed lines is

based on matching confidence bounds at the 2.5-percent confidence level

and a probability of failure of 10 percent.
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MEDIAN = 2.4378 NEAN = 0.8911

K-FACTOR = 1.5786 STD DEV - 0.2329

SIZE w 9 GROUPS = 5
MDAC EPOXY RINGS

TEST LEVEL, S (UNCERTAINTY FACTOR, KB)
---------------------- --------------------------------------------------------

PROD CONFIPENCE
* (PF) 2.5 50.0 97.5

---------------------- --------------------------------------------------------

0.10 0.5915 ( 2.0062) 1.1868 1.3008) 1.5437

1.00 0.8229 C 1.7229) 1.4178 1.2391) 1.7569

2.00 0.9244 ( 1.6343) 1.5108 1.2196) 1.8426

3.00 0.9946 C 1.5815) 1.5729 1.2082) 1.9003

5.00 1.0980 C 1.5135) 1.6618 ( 1.1939) 1.9841

10.00 1.2749 ( 1.4186) 1.8086 C 1.1761) 2.1271

15.00 1.4064 ( 1.3616) 1.9149 C 1.1680) 2.2366

20.00 1.5173 C 1.3207) 2.0039 1.1645) 2.3336

25.00 1.6165 C 1.2889) 2.0835 ( 1.1642) 2.4256

30.00 1.7082 ( 1.2631) 2.1577 C 1.1664) 2.5167

35.00 1.7940 ( 1.2418) 2.2287 ( 1.1700) 2.6093

40.00 1.8779 ( 1.2238) 2.2983 ( 1.1772) 2.7055

45.00 1.9588 C 1.2087) 2.3676 1.1856) 2.8070

50.00 2.0382 ( 1.1961) 2.4378 ( 1.1961) 2.9158

55.00 2.1171 ( 1.1856) 2.5100 ( 1.2087) 3.0339

60.00 2.1965 C 1.1772) 2.5857 ( 1.2238) 3.1645

65.00 2.2775 1.1708) 2.6664 ( 1.2418) 3.3111

70.00 2.3613 1.1664) 2.7542 ( 1.2631) 3.4790

75.00 2.4500 1.1642) 2.8523 ( 1.2889) 3.6763

80.00 2.5466 1.1645) 2.9656 ( 1.3207) 3.9166

85.00 2.6571 1.1680) 3.1034 ( 1.3616) 4.2256

90.00 2.7938 ( 1.1761) 3.2859 ( 1.4186) 4.6613

95.00 2.9953 ( 1.1939) 3.5762 ( 1.5135) 5.4125

97.00 3.1272 C 1.2082) 3.7783 ( 1.5815) 5.9751

98.00 3.2252 ( 1.2196) 3.9336 ( 1.6343) 6.4288

99.00 3.3826 ( 1.2391) 4.1915 ( 1.7229) 7.2216

99.90 3.8496 ( 1.3008) 5.0075 ( 2.0062) 10.0461

Figure 10. Estimated Distribution for MDAC Epoxy Rings
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The system designer will try to assure that the system will exhibit

an adequate probability of survival at a medium to high level of confidence.

Because Figure 11 is plotted in terms of failure probability, it is neces-

sary to work on this plot with the complements of the desired values of

probability and confidence. In other words, a desired probability-of-

survival/confidence of 90/90 will be read on this plot as probability-of-

failure/confidence of 10/10.

Confidence bounds of 2.5 and 97.5 percent are plotted in Figure 11
because these levels have been conventionally accepted as the levels used

to define a constant KB (see equation 39). When designing for confidence,

. it is likely the designer would work to less stringent confidence levels

* if possible.

Matching the constant KB lines at 10-percent PF causes an over-conser-

vative bound at failure probability levels of 50 percent and above. On the

other hand, at low probabilities of failure, the constant KB bound is seen

to be overly optimistic. The log-probability transform of Figure 11 is

ideal for illustrating the difficulties that arise in trying to select a

constant KB. However, the presentation of these data in the natural,

untransformed plane as shown in Figure 12 provides a better perspective of

the tradeoffs involved. The discrepancies are here not so exaggerated as

in the transform plane.
Figures 13 and 14 provide a similar comparison for constant KB lines

matched at a probability of failure of 20 percent, and 15 and 16 illustrate

a match at 30 percent probability of failure. If it is remembered that the

system designer is most concerned with a range of probabilities of failure

from about 50 percent to 5 percent, the constant K B line matched a prob-

ability of failure of 20 percent appears to provide an approximation that

would be adequate for many design problems.

From Figure 10, the 95-percent included confidence factor at a prob-

ability of failure of 20 percent is seen to be 1.32. This is the approxi-

mate measure of systematic uncertainties due to sampling effects. Fitzgerald

of MDAC estimated that differences between the pulse simulated by the

magnetic flyer plate in the test, and the pulse induced by exoatmospheric

X-rays would cause a systematic uncertainty factor of 1.20. He also

estimated calibration uncertainties to yield a factor of 1.10.(2)
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These elements of systematic uncertainty can be combined to give a total

systematic uncertainty

K B = exp {[(loge 1.32) 2 + (loge 1.20)2 + (loge 1.10) 2]2 (40)

= 1.41

This is the value of KB for aero-shell spall used in the BASH code analyses

of the reentry vehicle presented in Volume I.
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4.0 CONDITIONAL PROBABILITY FAST

The FAST code has been applied under the NHEP program to assess the

hardness of reentry vehicles to exoatmospheric X-rays and to determine the

associated confidence level. Confidence, C, is defined as the estimated

likelihood that at least a prescribed proportion, P, of a flight of reentry

vehicles will have a given fluence capability,0 P/C" In running the FAST

code for a given threat, responses are simulated at several fluence levels

by Monte Carlo techniques. Confidence estimates Ci(0i, P) are calculated

for each fluence at a prescribed probability. The fluence capability 0P/C.

is then found by interpolation:

+ (vu rl) (C - Cl(0 , P)) 41)0C. u(Oc=) Cl1 11 ,1P

By repitition of this process, fluence capability can be plotted as a

function of threat temperature, T. These 0-T plots are the desired end

produce of the Nuclear Hardness Evaluation Procedures.

Early in the NHEP program, the question was raised of how the 0-T

curve changes given one or more successful underground test of a reentry

system, subsystem, or component. A partial answer to this question has

already been obtained during a previous study. (2) In that study, the method
(21)of conjugate distributions was used to update the survivability-versus-

confidence curve at a given threat and fluence level, based upon r success-

ful tests out of n. Assuming that P/C curves generated by the FAST code

are adequately fitted by beta distribution functions with parameters r', n'

then the post test distribution was estimated by a beta function having

the parameters r" = r + r'; n" = n + n'. (21)

The method of conjugate distributions has a number of limitations

which preclude its general use for updating 0-T plots. These limitations

include:

1) Inability to correct for other than tested fluence levels;

2) Inability to correct for other than tested threats;

3) Inability to account for less than perfect simulation of the
operational environment by the test environment;

4) Inability to update subsystem or systems survivability
based on component testing; and
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5) Questionable applicability of the beta distribution function
for all systems and subsystems. Poor fits have occasionally
been observed with this distribution.

However, these limitions have been overcome by a new version of FAST, known

as Conditional Probability FAST, FAST7.

FAST7 computes conditional probability, defined as the probability

that an event will occur given the condition that a different event is known

to have occurred. The standard notation for the probability that event A

will occur given that event B has occurred is P(AIB).

Inputs to the previous versions of FAST are allowed in the form of

series systems, such as Sl = Cl r C2, where a failure of either component

Cl or C2 fails the system; or parallel systems, such as S2 = Cl u C2,
where a failure of both components fails the system. Parentheses are also

allowed in combination with the Boolean operators r) and u to build fairly
complex logic.

Parentheses and Boolean operators are not used in defining conditional

probabilities. The only permitted forms for conditional probabilities are:

S3 = SIIS2, (42)

or

S3 = SlI SSl (43)

or

S3 = SlI C1 (44)

Systems or subsystems defined above may not be used further. However,

these restrictions (discussed below) do not limit the general applicability

of the method, since any series or parallel event can be represented as a

system, subsystem, or component to designate a complex event.

After the conditional probability has been properly defined in the

FAST7 input, the code computes the fluence capability by the following steps:

1) A set of bias variation values are randomly selected in the
outer iteration loop;

2) The code computes a probability of survival for the systems or
subsystems representing events A and B; and

3) The code locates the appropriate cell in the FAST outputhistogram for event A.

For example, if a probability of survival of 0.92 is computed, the appro-

priate cell might be represented by the cell boundaries 0.90 and 0.95,

with the midpoint 0.925. Instead of adding a one to the sum in this cell,
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the probability of survival of the system or subsystem representing event B

is added to the sum. Then, a new set of systematic or bias variations are

drawn in the outer iteration loop, and steps 1 through 4 are repeated.

At the end of a FAST7 run, the P/C histogram includes the estimated

likelihoods, C", that the probability of survival of the system representing

event A is at least some specified value, P, given that a system represent-

ing event B has survived. Hence, the confidence estimate, C", is the con-

fidence in P5 (A) conditional upon survival of B. In fact, event B need not

represent a successful test. A test failure could be modeled in the FAST

code by using the reciprocal of the fragility parameter and the reciprocal

of the fragility curve, as explained below.

Given conditional confidence estimates, C", fluence capability is com-

puted as before

P/C 1 u0 )( Ou -01) (C" - Cl (01 P)) (45)P/C = i +  CU(ouP) - C 1 (0I,P)

Fluence-Threat capability plots are then obtained by repeating this process

for other threats.

It is interesting to compare the method conjugate distributions dis-

cussed above with the method of FAST7. The method of conjugate distribution

requires that both the test environment and the environment of the assess-

ment be the same. The FAST7 method does not require this restriction because

the system representing event B (the test outcome) can share some or all of

the uncertainties of event A (the system assessment) without having the

identical environment. Moreover, simulation uncertainties can be modeled in

the FAST7 assessment by including an extra transfer function or USER sub-

routine with the component inputs which describe the tested failure modes.

Furthermore, the models of the tested failure modes need not include, all of

the failure modes of the system A assessment model.

The FAST7 likelihood estimates do not rely upon beta distribution fits

to subsystem and system survivability-confidence statements, and they can

accurately predict the entire P/C curve provided sufficient Monte Carlo

iterations are performed.
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5.0 CONCLUSIONS

The purpose of this study was to develop and demonstrate new techniques

for estimating the potential benefits of testtng dnder uncertainty. A

methodology is presented for estimating the reduction in the systematic

uncertainty of a selected component resulting from testing, and for eval-

iating the system benefit associated with this uncertainty reduction.

Two different approaches for the analysis of the effects of testing

were investigated during this study. The first is a method for analysis

of test data that utilizes maximum likelihood estimation of the distribu-
tional parameters. This method is embodied in a new computer code named

ELF, Evaluation of Likelihood Function. The second approach involves the

use of conditional probability, and has been incorporated into a new

version of the FAST code named FAST7. Both of these cdmputer codes can

be used to objectively evaluate systematic uncertainties based on test
results.

As a result of the exploratory work performed with these computer codes
during the present study, the following conclusions can be drawn:

0 The ELF code, utilizing maximum likelihood
estimation, was demonstrated to provide a
simple and effective method to objectively
measure the effects of testing on component
uncertainty.

* The FAST7 code, utilizing conditional prob-
ability, was shown to provide a general
technique for test analysis which can even
account for uncertainties in test simulation.
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