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SECTION I

INTRODUCTION

The treatment of soil-structure interaction is of considerable importance in

analyses of the integrity of structures in ground-shock environments. There is

currently one basic approach to the nonlinear treatment of the problem: finite

element or finite difference methods. Finite element or finite difference methods

can model the problem to almost any accuracy desired but the large number of equa-

tions required generally precludes efficient computation. The number of equations

can be reduced through special elements representing quiet boundaries or specific

radiation properties, but modeling with these special elements requires consider-

able skill and may necessitate a complete finite element model for validation. An

approach to achieve a method more versatile than special elements and more economi-

cal than finite element or finite difference for the treatment of these problems

may be to consider a boundary element formulation. Such an approach is pursued in

this study: an analytical approximation of the soil-structure interaction requir-

ing boundary elements is combined with the modeling capabilities of the finite

element (FE) method while avoiding the burden of many elements in the soil.

This report examines a boundary-element (BE) treatment of the surrounding non-

linear soil that is an extension of a BE method for a linear soil [1]. In the lin-

ear problem, the structure was modeled with an available FE code, and the soil-

structure interaction was reduced to a surface relationship through the use of a

doubly asymptotic approximation (DAA) [2], which required the application of BE

techniques (3]. The linear study focused on the two-dimensional plane-strain re-

sponse of structures surrounded by an infinite elastic medium; the approach was

shown to produce results of acceptable accuracy.

In the nonlinear soil problem, the linear structure is still modeled with an

available FE code. The soil-structure interaction is reduced to a surface relation-

ship for the linear portion of the soil behavior and a volume relationship for the

nonlinear portion through the use of a modified DAA, which still involves the appli-

cation of BE techniques. The nonlinear problem requires a considerable increase in

the complexity of the analysis. One, volume information is needed to evaluate the

volume relationship; hence, additional data must be generated and stored, Two, the

DAA must be modified to provide a wave propagation model for soil response based on

an ll-plasticity model. And three, the wave-decoupling that occurs from assumirg the

incident and scattered waves are algebraically additive must be examined carefully.

5
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To study the nonlinear problem effectively, a simple problem that retains the

physics but eliminates much of the generality was developed. The simple problem is

the axisymmetric response of an internally loaded, plane strain circular infinite shell

surrounded by an infinite 2-D nonlinear soil. This model eliminates the wave-

decoupling, since there is no incident wave, but includes the first two aspects of

the nonlinear problem. A simple study of the wave-decoupling effect, not considered

in this report, is given in Appendix A.

The report first addresses the outline of the theory: the linear theory is

reviewed, the governing nonlinear equations are given, and alternate approaches are

considered. Then the computational strategy is presented, followed by numerical

results and conclusions. Figures and tables are grouped at the end of the section

in which they are first mentioned.
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I
SECTION II

TECHNICAL DISCUSSION

The first part of this section describes the theoretical development of doubly

asymptotic, boundary-integral analysis techniques for nonlinear media. First, the

elastic formulation is reviewed [1, 21. Then the extension to inelastic soil

response is described. The introduction of the doubly asymptotic approximation leads

to two possible formulations for the treatment of inelastic effects; both of these

are considered. In addition, two alternate formulations are presented.

Treatment of an inelastic material by the boundary element method has

been described in considerable detail by Swedlow and Cruse [3) and by Mendelson [4].

Mukerjee [5], however, has shown that these descriptions are incorrect for two-dimen-

sional plane-strain response. The results of these previous developments are used in

this report without detailed derivation; however, an outline of the correct deriva-

tion is given in Appendix B.

The second part of this section describes the computational strategy used to

solve the equations governing inelastic soil-structure interaction. Empha-

sis is placed on the methods used to determine the volume information, displacements,

strains and nonlinear effects. The details of the linear portion of the computations

have been treated previously [1).

2.1 REVIEW OF THE LINEAR DAA FORMULATION

The matrix FE equation of motion for a linear-elastic structure, embedded in a

surrounding linear-elastic medium and excited by known forces applied to the struc-

ture and by an incident wave propagating through the medium, is

M q + K q = f + f +f (1)
-S - S-s -S - -S

where M and K are the mass and stiffness matrices for the structure, S is the

structural displacement vector, f is a vector of known forces applied to the struc--S

ture, fI and fS are surface-force vectors associated with the incident and scattered

waves, respectively, and a dot denotes temporal differentiation. The DAA is now

introduced to evaluate the scattered force vector fS 121. This approximation, which

is a surface interaction approximation that replaces the infinite volume of an ex-

ternal surface of the structure, is expressed as [I]

fS p D T GT A C G S + DT K u (2)
-S~ -n -S -m i-S(2

7
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where p is the mass density of the medium, D and G are coordinate transformation

matrices, A is a diagonal surface element area matrix, C is a diagonal sound-speed

matrix for the medium, K is a full surface-stiffness matrix for the medium, uS is

the computational scattered-displacement vector for the surface elements, and a

superscript T denotes matrix transposition. The doubly asymptotic nature of the

DAA is apparent from (2), i.e., at low frequencies, xS is small relative to uS' and

(2) reduces to a static stiffness relation; at high frequencies, the reverse is

true, and (2) reduces to a radiation damping relation.

With structure-medium surface compatibility and elastic field superposition

requiring that Dq = u, + uS, (1) and (2) may be combined to obtain

T T
M j + P D A C G D 4 + ( + D+ K D) q -

+f DT £TT

I + P AC C i + D T K m I. (3)-s m -I - -m-m .

In the development of the nonlinear problem that follows, only known forces applied

to the structure are considered, so f = u = 0. For this situation, (3) reduces to

TDT GT A C G D + (Ks + D K D) q = f (4)

- -- m - -s

2.2 NONLINEAR DAA FORMULATION

In (4), the elements of C are the dilitational and shear sound speeds for the

medium [1]. One effect of inelastic behavior is to alter these sound speeds; at

present, however, this alteration is neglec .d on the assumption that the dominant

effect of inelastic behavior of the medium manifests itself in a displacement-

dependent form. Also note that the assumptions (u = uI + u s and f = f I +  S) alter

the functional dependence of the incident and scattered waves, an important consid-

eration for the nonlinear problem. A simple study of these assumptions are pre-

sented in Appendix A, but the effects of the assumptions are not considered further

in this report.

In order to include the displacement-dependent effects of material inelasticity,

it is necessary to consider the two-dimensional boundary-integral equation [3,4,51

Xuk (P) + fTk(P,Q)uz(Q)dL(Q) = fuk (P,Q)t (Q)dL(Q)

L L

+ fEmk(p Q)cZm()dA(p) fuk1(p Q)bZ(p)dA(p) (5)

A A

8



where P is a point either on the structure-medium interface L or in the surrounding

region A, Qis a point on L, p is a point in A, A= if P is on L ane A = 1 if P is

in A, uk and tk are components of the displacement and traction vectors pertaining

to the kth Cartesian direction, respectively, T and Uk  are components of second-

order tensors, which constitute Green's functions, E Zmk is a component of a third-

order tensor, which also constitutes a Green's function, c is a component of the

plastic-strain tensor and b is a component of a body force vector inA. Through the div-

ision of L into a series of boundary elements (BE), and A into an array of finite

quadrature elements (QE), (5) may be expressed in matrix notation, for u and t on L, as

Su = Ft + Bc - Eb (6)

in which the 2x2 elements of S, F and E are given by

sk = f Tk 6 dL.
ij ijk ij d

L.
3

Fij = U nj . dL.
ijij f3i 3

L.

kY = k i d.11ij f U ij j d~ 
7

A

and the 2x3 elements of B are given by

Bmk Q Imk .mB.J = E.. nj dA.j (8)

A.
3

11 12 22 11 22In (6) c is arranged in groups as (c , , p ) and b as (b , b2 ) In (7),

6ij and 6 are Kronecker deltas, i and j are BE indices for L in the first two of

(7), j is a QE index for A in the third of (7), and nR are assumed BE shape-

functions, t is an assumed QE shape-function, L is the length of the jth boundary

element, and the kernels T. . and U.. are given in Appendix B. In (8), i is a BE13 13 9.

index for L, j is a QE index for A, ni is an assumed QE shape-function, A. is the
3mk

area of the Jth QE, and the kernel inj is given in Appendix B.

In the present implementation, the shape functions E., n , , and rm are

taken as unity over each element, so that each element is described by a single,

centrally located, nodal point. Hence, UkZ constitutes the displacement in the kth

ij

9



direction at nodal point i due to a unit point load in the £th direction at a point
Ymkon element j. The associated stresses at i are given by oij = E.. ek, where the e.j k9 km k

are the Cartesian base vectors. Incidentally, T.° = Em nk, where k are the

direction cosines for the surface normal at i. The numerical integration method

used to evaluate the first two of (7) is described in [1], and the method used for

the last of (7) and for (8) is given in Appendix C.

In (6) F is a nonsingular matrix; hence (6) may be rewritten as

-i1-
ts = K -F Be +F E b (9)-S ' - -p - -

-1

where K = F S is the linear surface-stiffness matrix for the medium [see (2)]

and the subscript S has been added to indicate that the scattered wave is modeled.

Equations (2) and (9) are now combined to give

fS = p T Gr A C G i + D  K - T F-1 B e + D T F - I E b (10)S m - -S - -M -p

which represents a possible DAA for an inelastic medium. In the development that

tollows, the body force b is not considered until the alternate formulations are

presented; see Section 2.3. In 2.3.1 the body force is viewed as the acceleration

of the mediumand the linear damping term, the first term in (10), is replaced by the

body force term. The requirements and assumptions used to derive (3) and (4) are

applied again to combine (1) and (10) to obtain the governing nonlinear equation of

motion

+KpDT GT AC GD s + Dr K ) = f + Q (11)

~ -- M~ (K - -s

where Q = DT F-1 B Ep is a psuedo-force vector that accounts for medium inelas-

ticity. As the DAA is a surface approximation [1] and the evaluation of

Q requires volume information to calculate Ep, an additional model must be con-

structed to generate the volume information. Two possible volume-information models

are now examined.

2.2.1 Quasi-Static DAA

Inasmuch as the psuedo-force vector Q may be viewed as a correction to the
linear surface-stiffness frevco

force-vector K'M q, a possible volume-information

model might derive from the static solution for the medium based on the current

soil-structure tractions and displacements. In [3,4,5] integral-equation formulas

are given for medium strains due to boundary tractions and displacements; these may

be cast into matrix notation for easy computational implementation. Unfortunately,

I10



these strain formulas did not prove to be computationally efficient. The kernels

were poorly behaved because they are based on derivatives of the U.. kernel, whichi3

itself exhibits marginal numerical behavior. This difficulty was overcome through

the use of the boundary-integral equation for displacements due to boundary trac-

tions and displacements, i.e., (5) with A = 1. In matrix notation (5) becomes, for

A= 1,

m u + t + p (12)

where u is the displacement vector in the medium, u and t are the boundary-displace--m- -

ment and boundary-traction vectors, the 2x2 elements of S and F are given by

kZ T ki C t dLjij f ij j

L.
J

k2. f k £ 9.

F = U.. nrj dL. (13)

L.
J

and the 2x3 elements of B are given by

9mk 2 rmk Zm
B f I. . dA. (14)

A.J

Most of the symbols in (12), (13), and (14) have been defined previously; here,

however, i is a QE index for A and j is a BE index for L in (13), and i and j are

QE indices for A in (14).

Equation (12) efficiently provides the displacements in the medium; from these

displacements, the strains are quickly computed from finite-difference expressions.

With the strains available, the computations to determine s from the inelastic-p

medium behavior proceed in a straightforward manner; the details are given in Sec-

tion 2.4.

A difficulty was encountered in using the quasi-static DAA formulation for one

of the two inelastic soil models considered. To explain this difficulty, it is neces-

sary to discuss briefly the two inelastic soil models.

The first model considered, the mechanical sublayer model [6], is a basic J2 (second

deviatoric stress-tensor invariant) flow rule theory commonly used for the elasto-

k n1
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plastic behavior of metals. This model was chosen because it is simple and because

a computational subroutine was readily available at the laboratory. It was recog-

nized that this model would not properly represent soil behavior but it would pro-

vide a first step in the verification of the nonlinear DAA formulation. As shown

in Section 3.0. the quasi-static DAA with this plasticity model produced acceptable

results.

The second model considered is a cap model [7], herein called the Cap model (also

see [8] for details of the Cap model subroutine). This inelastic soil model was de-

veloped to model granular soils under dynamic loading conditions and is based on a

yield (failure) surface that is a function of I (first stress-tensor invariant) and

J2" Although this model is regarded as an excellent model for dynamically loaded

soils, it appears to be incompatible with the static soil behavior assumed for the

quasi-static DAA formulation.

To understand the difficulty encountered with the Cap model, the static solu-

tion of the 2-D plane strain cylindrical cavity of radius a for internal loading in

an infinite elastic medium is considered. For an internal axisymmetric applied dis-

placement, ua' or a pressure giving rise to ua, the displacement and stresses in the

elastic medium are

uaa
u - ' u = 0 (15)r r

and

2u aGa
a .. .. 0 (16)

r 2 - 0; z
r

where ur and u0 are the radial and tangential displacements, r is the radial coor-

dinate measure, ar, a0 and az are the stresses in cylindrical coordinates and G is

the elastic shear modulus. With this stress field (16), the expression for II be-

comes

I r r + + O = 0 (17)

Hence, for this simple axisymmetric static problem, I1 is always zero, and the quasi-

static DAA formulation produces a stress field with no I component. In the actual

dynamic problem, inertial forces in the medium give rise to a significant I compon-

ent, as well as a J2 component, so that the stress state at the failure surface is

quite different from that predicted by the quasi-static DAA. Hence, the quasi-static

DAA formulation does not produce responses that are comparable to a finite-element

dynamic response calculation.

12
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In summary, although the result for the quasi-static DAA with a J2 plasticity

model were encouraging, the results with the Cap model were not. Therefore a DAA

formulation that more realistically reflects the dynamic nature of the problem was

explored.

2.2.2 Quasi-Dynamic DAA

As the DAA was known to produce good results for an elastic problem, the physi-

cal model that corresponds to the elastic DAA was sought. This development can most

easily be described in terms of the following problem: the plane-strain excitation

of an infinite medium surrounding an infinite, circular cylindrical cavity by means

of transient pressurization of the cavity.

For a linear medium, the DAA says that radial stress is given by

a (r,t) = - p c 6 (rt)-- u (rt) (18)
r r ' r r

where the DAA surface (i.e., the surface defined by the soil-structure interface)

has been positioned at an arbitrary radial position r. In this equation, p, c and

v are the density, dilatational velocity and shear modulus for the medium, respec-

tively, uris radial displacement, and the dot denotes temporal differentiation.

But, from elasticity theory,

a (r,t) p 21- u (r,t)
r r r

ur(rt) = r (r,t) (19)

where 0 is the dilatational displacement potential. Hence (18) and (19) yield, for

the "internal forcing" problem considered here,

O(r,t) = q(a,t - r-a) (20)
c0

where a is the radius of the cavity. Now this result constitutes a plane-wave treat-

ment of the radiated wave. Hence the DAA not only provides, through (18), a radiated-

wave stress-displacement relation at r = a, but also provides the displacement field

in the medium, viz.,

u (rt) - ur(at - (21)

rr

For an elasto-plastic medium, a surface relation such as (18) is not sufficient

to determine surface response. In this case, "volume information" is also needed.

13



Such information is provided by application of the method of characteristics to the

radiated wave, which leads to the behavior illustrated in Figure 1. The character-

istics, which constitute loci of constant displacement, define the displacement

field in the medium at any time of interest. Straight characteristics indicate

linear wave propagation, while curved characteristics indicate nonlinear wave pro-

pagation.

In accordance with Figure 1, nonlinear DAA computations proceed as follows:

1. Surface response is determined at t = At based on linear-elastic medium

behavior.

2. The surface displacement ur(a,O) is prescribed at r - a = c At and average

strains are calculated for the region 0 < r - a < c At.

3. The state of the medium at r = At is found to be linear-elastic.

4. Surface response is determined at t = 2At based on linear-elastic medium

behavior.

5. ur (a,0) andur (a, At) are prescribed at r - a = 2c At and r - a = c At, re-

spectively; average strains are calculated for the region 0 : r - a 2c At.

6. The state of the medium at t = 2At is found to be linear-elastic for

r - a z c At and inelastic for r - a < c At.

7. A local propagation veloicty c' = c(r=a) is calculated and surface response

is determined at t = 3At based on inelastic medium behavior.

8. ur(a,0), ur(a,At) and u r(a,2At) are prescribed at r - a = 3c At, r - a = 2c At

and r - a = c'At, respectively; average strains are calculated for the
2

region 0 S r - a , 3c At.

9. The state of the medium at t = 3At is found to be linear-elastic for

r - a a 2c At and inelastic for r - a < 2c At.

10. Local propagation velocities c; c(r=a) and c" = c(r=a+cAt) are calculated
3

and surface response is determined at t = 4At based on inelastic medium be-

havior.

Note that this procedure, which pertains to a volume-wave (VW) model, defines a new

characteristics grid at each time step. For computational purposes, two single-

dimension arrays are required to store the displacement and its radial location; for

a nonaxisymmetric problem these would be two-dimensional arrays. Also in the cal-

culations, characteristics-grid displacements and slopes (first-derivatives) are

14



interpolated to yield nodal values for a fixed spatial grid, from which medium

strains are calculated. This is required for efficient computation of the volume

integral for nonlinear DAA analysis; otherwise the boundary matrix B [see (12)]

would have to be recomputed at each time step. Note the volume matrices S, F and

in (12) are not required, so considerably less storage is required.

For the volume-wave model just discussed, radial displacement does not attenu-

ate with distance [see (21)]. However, during the study of an alternate formulation,
1

as discussed in Section 2.3, an attenuation of - Iwas found to represent more accu-
V7r

rately the exact response (as might be expected). Hence this attenuation was

actually used to generate the characteristics-grid displacements for the VW model.

The quasi-dynamic DAA was partially successful. The no-I 1 problem encountered

with the quasi-static DAA was not encountered with the quasi-dynamic formulation.

The characteristics-grid displacement described above, agree with FE solutions for

very early times. At later times, however, agreement fades, because the tensile-

cutoff feature in the Cap model produces displacement responses in the

medium that are not properly treated by the simple characteristics rethod developed

for the quasi-dynamic DAA. As partial compensation, the DAA characteristics-grid was

modified to treat tensile cutoff (a loss of soil strength in tension) by not allowing

a displacement to propagate into or out of a region of tensile cutoff. The dis-

placement in the tensile cutoff region was interpolated from the two points adjacent

to the region. This means that back reflections from the inner surface or a region

in cutoff are ignored. Such reflections would be difficult to include in the cal-

culations and would border on actually solving for the dynamic displacement field in

the medium. The goal of this study has been to avoid costly calculations; the in-

clusion of reflections would be costly.

2.3 ALTERNATE FORMULATIONS

Two alternate formulations of the dynamic soil-structure interaction problem and

a modification of the DAA approach are considered here. The first formulation treats

the radiation damping in terms of a body-force field associated with the acceleration

field in the medium, which is obtained from the volume-wave model discussed in Section

2.2.2. The second formulation is based on the use of "infinite elements" [10] in lieu

of boundary elmeents. Finally, the DAA modification addresses tensile cutoff in the

Cap plasticity model.
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2.3.1 Body Force Formulation

This formulation is best explained by examining the governing equation for the

medium and then reconsidering the arguments put forward to develop the DAA [1,2].

For two-dimensional plane strain, including plastic flow, the Navier equation, which

governs the behavior of the medium, may be written as

2 p + 2v (r b.

2 + 1 (u 2& - b.! +7 ui v (uj,j),i ij,ji 1-2v (k,k)i G

i,jk = 1,2, (22)

2
where V is the Laplacian operator, u is the displacement field, V is Poisson's

ratio, G is the elastic shear modulus, ep is the plastic strain field, b is the body

force field, p is the mass density and a superimposed dot indicates a time deriva-

tive; see Appendix B for a derivation of (22). Terms appearing in the DAA relation

(10) are readily associated with terms in (22). First, the stiffness-force term in-

volving Km is associated with the left side of (22); second, the plastic term B p

is associated with the eP terms in (22); finally, the damping force term involving

aC is associated with the inertia term pui in (22) (see, e.g., [9]).

Rigorously speaking, the inertia term is costly to compute, requiring a finite-

element mode] of the medium for practical problems. However, the volume-wave model

described in Subsection 2.2.2 directly provides the displacement history of the medium,

so that the acceleration U . may easily be computed from a three-point backward dif-1

ference formula. The static boundary integral equation (5) does not admit an accel-

eration term, but inertial forces may easily be included by considering them as body

forces. Hence, from (22), the body-force computational vector in (9) is given by

b = -pG (23)

so that the surface relationship is given by (10) with C = 0 and b is given by (23).

Hence, for fs = fI = 0, (1) becomes

M 4 + (K + D r K D)q = f + - D F - I E b. (24)

Solutions obtained from (24) were quite satisfactory for elastic medium response,

but P satisfactory for inelastic response. To obtain converged solutions, the med-

ium quadrature grid must be uniform and fixed-increment time integration is required.

Even then, the medium solution jumps about too much to obtain smooth inelastic re-

sponse.
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2.3.2 Infinite Elements

In this section, some recent developments in the application of finite-element

methods to infinite media are discussed (10]. Although an alternate formulation

based on infinite elements was not pursuedin this study, the formulation merits con-

sideration, as it is attractive from two viewpoints [11]. First, the method is based

on variational principles that provide symmetric matrices without resort to ad hoc

symmetry procedures. Second, the extensive software developed for finite-element

methods is directly applicable to these infinite elements. The second item is prob-

ably the more important, as a considerable portion of this study effort was devoted

to the development of special software for boundary-integral equation methods. To

date, infinite-element concepts have been applied only to fluid media [10], so fur-

ther development work would be required for application to inelastic solid media.

2.3.3 Separation Model

One additional modeling concept was employed in an attempt to account more real-

istically for tensile cutoff phenomena embodied in the Cap plasticity model f7,8].

For the axisymmetric problems studied here, tensile cutoff occurs on a circle speci-

fied by a certain radial distance out from the soil-structure interface. As tensile

cutoff represents the inability of the soil to support a tensile load, the soil be-

yond the tensile cutoff circle no longer provides-stiffness and separation occurs.

Hence, after tensile cutoff occurs, the system of interest is assumed to be composed

of the structure and a surrounding annulus of soil, i.e., the soil is no longer in-

finite. This separation model can be partially, partially in that reflections from

the tensile cutoff surface are not considered, incorporated in the computations.

The incorporation involves a modification to the elastic soil contribution, the Km

matrix, and the inelastic contribution, Q. The procedures to affect the modifications

are presented below, first for the elastic modification and then the inelastic one.

From the theory of elasticity [16], the stiffness for the infinite medium is

2Tapi

K. = --- (25)
i r (a)r

and for the annulus

2aPi 47G (1+) (b2 a ) (26)K - =._ ___ -.- -- (26)
a Ur(a) [(a2 +b 2 ) + V(b 2_2) _ 2 2a2

where pi is the internal pressure, ur (a)is the radial displacement at the radius a

where the pressure pi is applied, G is the soil's shear modulus, v is the soil's
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Poisson's ratio, and b is the radius of the tensile cutoff circle. As a check, (26)

reduces to (25) as b - . Hence the ratio of the two soil stiffnesses is obtained as

K = Ka/Ki (27)

and the separation due to tensile cutoff is accounted for by scaling Km by K to pro-

duce the correct stiffness for the annulus. The calculations for g, the inelastic

component, due to c are then performed for the annulus only. Note that the same-p

model would be obtained if the soil matrices in (12) and (24) were recomputed for

the proper annulus, but this would be very expensive. Unfortunately, the numerical

results, Section 3.0, show that this additional "refinement" in the model did not

greatly improve the results.

2.4 COMPUTATIONAL STRATEGY

The governing equations of motion for the DAA formulation (11) and for the body

force formulation (24) are simply nonlinear second-order equations that are common

in structural dynamics analysis. Therefore, these equations are readily solved by

direct time integration methods for nonlinear structural dynamics analysis [12,13,

14]. These methods fall into one of two categories: an implicit method [12] and an

explicit method [13,14]; their relative merits will be discussed in Section 3. Both

require that software be available to generate the linear coefficient matrices, the

nonlinear terms and the forcing function. The procedures for the linear terms and

the forcing function are presented in [1], so the emphasis here is on the nonlinear

terms.

First, a brief overview of the steps required to compute the nonlinear terms is

presented. Then the techniques used to implement the volume-wave model and the soil

inelasticity treatment are discussed.

2.4.1 Overview of Nonlinear Computations

The plastic strain Ep is the key quantity that must be computed to solve the

nonlinear equations (11) and (24). The medium acceleration is also needed for (24),

but this is relatively simple to compute and will be dealt with later. The following

steps are involved in the computation of EP:

nn n

1. At the n-th time step, the solution vector qn is known; hence, from u =2

n is known.

2. The vector un is used to compute the displacements in the medium, either

from (12) or in accordance with the volume-wave model described in Subsec-

tion 2.2.2. The details of this calculation are considered below.
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3. Through application of the proper differentiation formulas, the total-
n .

strain vector c is determined for the centroids of the quadrature elements

in the medium. The details of this calculation are also considered below.

n n n-1 n-I
4. The strain-increment vector is determined from An = - , where

has been retained from the previous time step.

5. The strain-increment vector Ac
n and the previous total-stress vector an-1

nare sufficient to compute the total-stress vector at the n-th step, a

based on the inelastic constitutive relationships discussed in Subsection

2.2.1.

6. The elastic-strain vector ( e)n is computed as

( e) n = PI an

where P is the array of elastic-material coefficients that relates strains

to stress.

7. The plastic-strain vector (Ep n is obtained as

(E) n n - en
= - (r )

Figure 2 illustrates steps 6 and 7.

8. The nonlinear force Qn is computed by matrix-vector multiplication; see the

definition following (11).

9a. For the explicit integrator, the solution at n+1 is obtained from informa-
n+l

tion at n, so q is now computed.

9b. For the implicit integrator, the solution at n+l is obtained from an extra-
Qn adn-i n+1polation based on Q and Q . The corrected value of Q , which is com-

puted from the solution qn+lis then compared to Q n+ - extrapolated; if the

difference lies within an acceptable error bound, the integration proceeds;

if not, an iteration procedure is carried out until satisfactory converg-

ence is achieved within a reasonable number of iteration cycles or the cal-

culation is aborted.

2.4.2 Volume Information Computations

The displacements in the medium are computed either from a quasi-static model,

as described in Subsection 2.2.1, or from a quasi-dynamic model, as described in Sub-

section 2.2.2. The reason for computing the displacements in the medium is to deter-

mine strains by numerical differentiation. The plastic strains, assumed to be uniform
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over each quadrature element, are computed at fixed grid points at the center of

these prescribed quadrature elements. A sketch of some typical quadrature elements

and the plastic strain points is shown in Figure 3.

For the quasi-static model the displacements in the medium are computed from

(12), where the coefficient matrices are evaluated such that the displacements are

obtained at the points marked with an xin Figure 3. These points are chosen to be

half-way between the plastic strain points in both the radial and tangential direc-

tions. This location is ideal, as it avoids singular points in the evaluation of

(12) and provides simple but accurate differentiation formulas to compute the strains.

As an example, the strains at strain point 4 are computed as

Du -u 5+ u6
r r r

r Ar5_ 6

u Du u 5 + u  (6u +u)
__r + 6 r r 2

0 rr 5+ r +r +r6 -84

(28)

r0 = 1 r--O + 6r r

rO r aO 0 r r

u + u uo + uI u5 + u6
2 r r + a e u 6

5 6  Ae 8 4  Ar 5-6 r + rr + -r (_ r +

where the subscripts r,6 refer to the polar-coordinate directions and the superscripts

refer to the medium displacement indices. Note that, for strain points adjacent to

the boundary, e.g., 1,3,5, ... , the boundary-displacement value is used as one of

the medium displacement points. In this study only calculations for axisymmetric

problems were performed, so T r0 and the second term in e vanished. For general geo-

metries, the quadrature elements may be viewed as finite elements, the medit , dis-

placements computed at the proper nodes, and standard finite-element methods used to

compute the strain for the quadrature (finite) element [15].

For the quasi-dynamic model, the medium displacements are not computed at fixed

points; instead, grid points are generated by the location of a particular displace-

ment on its characteristic. These grid points are positioned as

d 1  = Ati.c(dl) + At 2 .c(d 2 ) + .. + At .c(d )n n

d At2c(d2 ) + .. + At c(d ) (29)
,2 2 n. n

d = At "c(d n )
n n n

iI

m i Il I Imm I~ll~ I---------Im----



where d is the radial distance from the boundary at time t , At. is the j-th timenn j
step and c(d.) is the dilatational sound speed for the medium at the d. location.

j J

The variation in the medium's sound speed is determined from

c = (30)

where B, the bulk modulus, and p, the shear modulus, are determined from the stress

and strain increments for the quadrature element under consideration.

As indicated in the displacement snapshot shown in Figure 4, the displacement

of the medium at d is computed asn

u n  u(t ) (31)
n

where u(t n ) is the radial displacement at the boundary at time t , and a is the rad-n n

ius of the boundary. This corresponds to cylindrical spreading of the scattered wave.

To compute strains, the slope 3u /r and the displacementu are required at eachr r

plastic-strain point. These values are determined as follows. For plastic-strain

point 1, the average slope and displacement over the quadrature element are computed

as (see Figure 4)

dn -Un+l + u\ dn- -d nU Un___
u (Pl) n n) + n n
r RI d AR1  -i - dn!)

+ AR1  - d n -l n-I  + u i
AR1  \n-2 - d n-l/ (32)

d ( Un+1 + u\ dln - dn n +Un-1
Ur(Pl) = - ' +

rkAR n+k 2  ,)+ AR 1  (n 2

+ AR1 - d n + u(AR1 )
AR1  2

where u(ARl) is evaluated at AR1 by linear interpolation between unI and Un-2. For

plastic-strain point 2 in Figure 4, the average slope is simply the slope of the

straight line joining UnI and un- 2, and the average displacement at the plastic-

strain point is determined by linear interpolation between un-i and n2*

After the strains are computed, Steps 4-9 in Subsection 2.4.1 are straightfor-

ward, as these steps are typical of any transient structural dynamics analysis,
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(12,13,14,15]. Finally, the medium-acceleration values required in (23) are provided

by numerical differentiation based upon displacement values at three consecutive time

steps.

Note that displacements and strains are computed in polar coordinates [see, e.g.,

(32)], while the coefficient matrices for the governing equations (11) and (24) are

computed in Cartesian coordinates, which are the global coordinates. Therefore,

polar-coordinate displacements and strains are transformed to Cartesian coordinates

before the matrix-vector multiplications in (11) or (24) are performed.

Because the nonlinear formulations require additional matrices, only one-half

the problem is modeled to reduce storage requirements, with the x2-axis in Figure 3

chosen as a plane of symmetry. The symmetry condition is easily established for the

FE structure [15], but that for the BE model is not as readily determined (see Appen-

dix D). Finally, it is important to mention that, although calculations were only

performed for axisymmetric problems, most of the analysis software was constructed

to treat more general non-axisymmetric problems.
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SECTION 1II

NUMERICAL RESULTS1
The numerical results presented in this section illustrate the characteristics

of the soil-analysis formulations described in Section 2. All the results pertain

to the axisymmetric response of either an infinite, circular cylindrical cavitv or

an infinite, circular cylindrical shell surrounded by an infinite soil-medium to an

internal triangular pressure pulse. The computational model for the shell is a fin-

ite-element one, as provided by the REXBAT Code [17]. Two inelastic models for the

soil are considered: 1) the J2 mechanical sublayer model [6] and 2) the Cap model

[7,81; see Subsection 2.2.1. As eight elements over half the ci-cumference (the x2-

axis being the symmetry axis) produce excellent results for the elastic problem,

eight elements are used in all the examples. The governing equations of motion are

solved with the stand-alone time-integration packages described in [12, 13 and 14].

These packages permit both automatic-step and fixed-step integration using the im-

plicit Park method [12] or the explicit central-difference method [13,14].

The following comparisons are presented in this section:

1. Responses produced by the doubly asympt tic approximation (DAA) are com-

pared with exact responses for an elastic medium surrounding an infinite

cylindrical cavity;

2. DAA and body-force responses are compared with exact responses for an

elastic medium surrounding an infinite cylindrical shell;

3. Quasi-static and quasi-dynamic DAA responses are compared with NONSAP re-

sponses for an inelastic (J2-plasticity theory) medium surrounding an

infinite cylindrical cavity;

4. Quasi-static DAA responses are compared with TRANAL responses for an inelas-

tic (Cap model) medium surrounding an infinite cylindrical shell;

5. Quasi-dynamic DAA responses are compared with TRANAL responses for an in-

elastic (Cap model) medium surrounding an infinite cylindrical shell; and

6. Quasi-dynamic body-force responses are compared with TRANAL responses for

an inelastic (Cap model) medium surrounding an infinite cylindrical shell.

The first three comparisons demonstrate the satisfactory accuracy of the DAA

and body force formulations for an elastic medium, and a J2-plasticity model inelas-
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tic medium. The remaining comparisons demonstrate the unsatisfactory accuracy of

these formulations for the Cap model inelastic media.

3.1 ELASTIC MEDIUM: DAA AND EXACT RESULTS

In [1], the elastic response of an infinite cylindrical shell embedded in an

elastic medium to an incident dilatational wave was computed with the DAA formuli-

tion and compared with the corresponding exact response. Satisfactory agreeient

was observed. In this study, internal triangular pressure pulses are considered in

lieu of an incident wave. Hence, it is appropriate to compare results produ(ed bv

the DAA formulation with their exact counterparts for the internal loading.

The problem considered is the response of a cavity in a 2-D plane strain elastic

medium with an elastic shear modulus, G, of 200,000 psi, Poisson's ratio, v, of 0.25
3and a weight density of 117 lbs/ft . The internal pressure pulse is an isosceles

triangle of durations T, 2T, 4T and 8T, where T is the transit time of a dilatational

wave across the diameter of the cavity. The exact response is obtained by the resid-

ual potential method [2] and the DAA response is obtained by discrete element methods

[1]. The DAA peak-displacement errors are 20.8%, 24.1%, 22.7% and 15.7% for the

pulse widths of T, 2T, 4T and 8T, respectively. These DAA results are not as accur-

ate as those reported in [1], but they are still considered acceptable; the introduc-

tion of a cylindrical shell would yield results accurate to within 10%-20%, as ob-

served in [1]. Note that the most inaccurate responses are obtained for the inter-

mediate pulses, whose dominant frequency components lie in the intermediate frequency

range, where the DAA is most inaccurate.

3.2 ELASTIC MEDIUM: DAA, BODY-FORCE AND EXACT RESULTS

This problem was studied to determine the proper volume-wave model (Subsection

2.2.2) and to illustrate the accuracy of the body-force formulation (Subsection 2.3.1).

The problem models the response of an infinite cylindrical shell of radius/thickness

= 50, where the radius is lm (39.3701 in.), E = 30 x 106 psi, v = 0.3, and p = 460

lb/ft 3 embedded in an elastic soil which has the following properties: G = 559 ksi,
3v = 0.3313, and p = 125 lb/ft . The pressure pulse is a triangle with a rise time

of 0.07288 ms, a duration of 0.7288 msec (1 transit time across the diameter) and a

peak pressure of 1 ksi.

Figure 5 shows exact [2] and DAA [see equation (4)] displacement responses.

Note that the DAA underpredicts the peak and is more heavily damped. Figure 6 illus-

trates the displacement responses for the exact and body-force, (25) with Q = O, form-

ulations. Note that the peaks are nearly identical; the only difference occurs at

2
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later times. The difference occurs because the body-force calculation is very

sensitive to numerical noise that accumulates throughout the computations. To

achieve the results shown in Figure 6 the characteristics volume-wave model dis-

placement was attenuated by ai7r, where a is the radius of the soil-structure inter-

face and r is the distance from the origin. In addition the true area of the quad-

rature elements was used. Without the attenuation, a cylindrical plane wave model,

the DAA damping results are essentially reproduced.

These results demonstrate that the volume-wave model of Subsection 2.2.2 is

highly accurate for elastic medium response. The body-force formulation would

therefore be preferred over the DAA formulation, except that it has the following

shortcomings. First, the volume integration must enclose all of the medium through

which the wave front of the outgoing wave passes. Fortunately, however, large ele-

ments can be used; in this problem, for example, 18 radial elements were used to

reach 10 cavity radii out into the medium. Second, numerical noise produced by the

double-differentiation of displacement was so severe that obtaining a reliable solu-

tion was difficult. The only satisfactory results were obtained with quadrature

elements of uniform radial dimension and time integration with a small fixed-step.

The time increment required to obtain a satisfactory solution was roughly one-fourth

that required to obtain a satisfactory solution with the DAA formulation. The ex-

plicit central-difference method was much superior to the implicit Park method for

solving the body-force equations of motion.

The numerical noise problem discussed above may be circumvented by other stra-

tegies; two examples follow. One, the boundary acceleration, obtained from ii =D,

could be propagated into the medium as the boundary displacements are in the VW

model. Two, the field acceleration can be computed from a first differentiation of

the stress field, i.e., from a force balance. Either of these methods should pro-

duce a smoother acceleration field for computational purposes. These methods were

not pursued in this study.

3.3 J 2-THEORY MEDIUM: DAA AND NONSAP RESULTS

This problem involves the elastic-plastic response of an infinite cylindrical

cavity surrounded by a J2-plasticity theory inelastic medium; see section 3.1 for

the elastic response. The cavity has a radius of 25.0 inches. The material proper-

ties are E = 500,000 psi, v = 0.25, C = 200,000 psi, a von Mises yield stress of

7500 psi, a slope of 50,000 psi after yield (0.1 the elastic slope) and a density
3

of 117 lb/ft . A J2 flow rule plasticity model is used for the DAA computations.
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This is based on a two element mechanical sublayer model [6]. The excitation is

provided by an internal pressure pulse represented by an isosceles triangle with a

17,800 psi peak and a duration of 1.71 msec (2 transit times: 2 diameters). For

the cavity, M = K = 0 so the governing equation (11) becomes a first-order equa-

tion. Therefore, the implicit integration must be used to solve this problem, as

the central-difference explicit integrator is valid only for second-order equations.

The radial displacement response, shown in Figure 7, was computed with both

the quasi-static DAA (Subsection 2.2.1) and the quasi-dynamic DAA (Subsection 2.2.2)

formulations, for comparison with the NONSAP Finite Element Code [18]. For the

quasi-static DAA calculation, the centroids of the volume (area) quadrature elements

are located at 28.75, 40.00, 62.50, 107.50, and 197.50 inches. For the first quasi-

dynamic DAA calculation, thc centroids of the quadrature elements are at 27.50,

32.50, 37.50, 42.50, 47.50, 52.50, 67.50, 82.50, 97.50, 112.50, 127,50, 142,50,

192.50, 242.50, 292.50, 342.50, 392.50 and 442.50 inches. The second quasi-dynamic

DAA calculation makes use of only the first 6 quadrature elements characterizing

the first quasi-dynamic calculation.

Figure 7 shows that all the DAA formulations produce similar responses. This

indicates that the quasi-static and quasi-dynamic models are essentially equivalent

for an inelastic J2 material, and that only a relatively small volume near the soil-

structure interface need be considered to obtain a converged solution. Figure 7

also shows that the DAA response peaks are approximately 37% smaller than the NONSAP

peak, and that the DAA permanent displacements are approximately 33% smaller than the

NONSAP permanent displacement. This compares with the 24.1% underprediction of peak

response by the DAA in the elastic case discussed in Subsection 3.1.

This response problem is considered to represent an overly severe test of the

DAA for a J2 material. This is because no embedded structure is included to miti-

gate inaccuracies introduced by the DAA (cf. Subsection 3.1). In any case, inelas-

tic soil behavior is not described by J2 plasticity theory, so the more realistic

Cap model must be introduced, as described in the following.

3.4 CAP-MODEL MEDIUM: QUASI-SIATIC DAA AND TRANAL RESULTS

To provide check cases for the quasi-static DAA formulation of Subsection 2.2.1,

the problems shown in Table 1 are considered. These problems were run on the DAA

code and the TRANAL code (19]. The material properties used in these calculations

are shown in Table 2. The Cap model data [20] was modified slightly to provide an

elastic response before yielding by taking x° -- R(A-C). This modification was nec-

30



essary to move the J2-failure surface up the J 2-axis; otherwise yielding occurs

immediately with the quasi-static DAA formulation.

For these check cases agreement between the DAA and TRANAL responses was non-

existent. For the profile 2 pressure pulse the DAA response predicts P = 4800 psi,e

while TRANAL predicts P = 1500 psi. For the nonlinear calculations at P = 2P ande o e

5Pe , the agreement is even poorer. In addition, nonlinear calculations for the same

peak pressure are in poor agreement. This poor agreement is characterized by magni-

tude differences of a factor of 3-10 and the shape of the displacement histories not

being similar. The basic reason for the poor comparison is the fact that the quasi-

static DAA stress field has no II component for the internal axisymmetric load (see

Subsection 2.2.1). For this reason, the quasi-dynamic DAA formulation of Subsection

2.2.2 was developed.

3.5 CAP-MODEL MEDIUM: QUASI-DYNAMIC DAA AND TRANAL RESULTS

These check cases, shown in Table 3, are very similar to the internal-excita-

tion axisymmetric cases considered in Section 3.4. Except a slightly different

pressure pulse is used; the reason for this is discussed below. Now the peak pres-

sure is chosen as 7.35 ksi instead of being based on the pressure to cause yielding

of the soil. The material properties are also very similar; see Table 4. Now Xo

is -0.0441 ksi as given in [20]. Since the quasi-dynamic DAA is based on reproduc-

ing, as best as possible, the actual volume displacement, the modification to X to

move the initial yield surface is no longer needed. And with this XC0 there is

essentially no elastic response so defining the peak based on Pe is no longer applic-

able.

Figures 8 and 9 show displacement response histories produced by the quasi-

dynamic DAA (Q-D DAA) formulation without "separation", along with corresponding

TRANAL response histories [21]. Except at very early times, agreement between the

DAA and TRANAL histories is nonexistent. Actually, the histories begin to diverge

when tensile cutoff occurs in the TRANAL calculations. This occurs roughly at t/T =
2

0.5 for the short pulse and t/ T = 2.0 for the long pulse. The crude DAA separation

model of Subsection 2.5 hardly improves the situation, as shown in Figures 10 and 11.

Indeed, the DAA results of Figure 11 diverge.

In all of the DAA calculations, the volume (area) integration encompassed a

region enclosing the farthest circle reached by the outgoing wave front. For the

short pulse, eighteen radial elements were used, with the centroids at 40.57, 42.97,

45.37, 47.77, 50.17, 52.57, 62.17, 71.77, 81.37, 90.97, 100.6, 110.2, 148.6, 187.0,
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225.4, 263.8, 302.2, and 340.6 inches. For the long pressure pulse, seventeen ra-

dial elements were used, with the centroids at 41.07, 44.47, 47.87, 51.27, 54.67,

58.07, 73.47, 88.87, 104.3, 119.7, 135.1, 150.5, 220.9, 291.3, 361.7, 432.1, and

502.5 inches. The quasi-dynamic Cap-model calculations were quite sensitive to

variations in the volume mesh; this is in contrast to the relative insensitivity

exhibited in the quasi-dynamic calculations for the J2 model.

The calculations presented in this subsection were performed with the central-

difference explicit time integrator. The explicit integrator was eventually chosen

over the implicit one because it was faster and more reliable when confronted with

the highly irregular nonlinear soil stiffness forces associated with the tensile

cutoff and dilatancy aspects of the Cap model.

3.6 CAP-MODEL MEDIUM: BODY-FORCE RESULTS

The last attempt to obtain reasonable correlation with the TRANAL results in-

volved the body-force formulation discussed in Subsection 2.3.1. The problem solved

pertains to the short pressure pulse described in Table 3. Body-force displacement

response is compared with TRANAL response in Figures 12 and 13. The correlation be-

tween body-force and TRANAL results is seen to be poor. A comparison of Figures 8

and 10 with Figures 12 and 13, respectively, shows that the body-force and quasi-

dynamic-DAA formulations produce similar responses, indicating consistency between

the two formulations.

To obtain stable body-force solutions, a small fixed time step was used in the

explicit integrations and the 18 volume elements were all 20 inches in radial dimen-

sion. The "no separation" calculation involved a constant elastic sound speed in

the soil, while the "separation" calculation involved a variable sound speed. The

variable sound speed option produces the slowly growing instability shown in Figure

13, as discussed in Subsection 2.3.1.
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Table 1. DAA-SSI Check Funs: I

Medium: NTS Tuff (Mighty Epic Model)

Shell: Steel a = 50) h

a = im (39.3701 inches)

Excitation: Internal Triangular Pulse

Internal: p(O,t) P f(t)0

t is a convenient
f(t) delay constant

t- tr-- tf

Large Yield Profile 1: t rt = 2, t = 8

Near Surface - Profile 2: t It = 0.2, t f/t = 1.8
Small Yield

a

Two pressure magnitudes: P o/Pe P /Pe 5

where Pe is the maximum pressure-loading for
which the medium remains elastic.

Thus we have: Four Internal-Excitation Axisymmetric Cases
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Table 2. Material Properties

Inelastic Medium NTS Tuff (Mihty Epic Model)

Elastic Portion

K = 100 Kb = 1,470 ksi

G =  38 Kb =  559 ksi

Failure Surface

A = 0.5 Kb - 7.36 ksi

B = 0.52 Kb
- 1 = 0.03537 ksi

- 1

C = 0.44 Kb = 6.486 ksi

TCUT = 0.1 Kb = 1.47 ksi (tension cutoff)

Cap

R= 3

W = 0.015

X = -2.676 ksi
O

Mass Density

p = 2 gm/cm
3 = 3.879 slug/ft

3 (125 #/ft )

Wave Speeds

C = 9,100 fps
P

C = 4,560 fps
S

Elastic Steel

E = 30,000 ksi

G = 11,538 ksi

= 0.3

p = 14.3 slug/ft
3 (460 #/ft

3)

Cp = 30,166 fps

Cs = 10,780 fps
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Table 3. DAA-SSI Check Runs: 2

Medium: NTS Tuff (Mighty Epic Model) Oh

Shell: Steel (a/h = 50, where a = 1 meter = 3.28 feet)

Excitation: Internal Triangular Pulse, Axisymmetric Case

Internal Pressure P(t) = P f(t)
o

where Po = jKb = 7.35 ksi and f(t) is defined as

follows:

f(t)

ttf

a. Short Pulse (Small Yield)

tr/t = 0.2, tf/t = 1.8

b. Long Pulse (Large Yield)

tr/ti = 2, tf/t = 8

In both cases, t, = a/Cp, C is the wave speed

in the medium.
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Table 4. Material Properties

Inelastic Medium NTS Tuff (Mighty Epic Model)

Elastic Portion

K = 100 Kb = 1,470 ksi

G = 38 Kb = 559 ksi

Failure Surface

A - 0.5 Kb = 7.36 ksi

B = 0.52 Kb
-1 = 0.03537 ksi

-1

C = 0.44 Kb 6.468 ksi

D = 1.8 Kb
- I  0.12245 ksi

-I

TCUT = 0.1 Kb = 1.47 ksi (tension cutoff)

Cap

R= 3

W = 0.015

X= -0.003 Kb = -0.441 ksi0

Mass Density

Pm = 2 gm/cm
3 = 3.879 slug/ft

3 (125 #/ft
3)

Wave Speeds

C = 9,100 fps
pm
Csm = 4,560 fps

Elastic Steel

E = 30,000 ksi

G = 11,538 ksi

v = 0.3

PS = 14.3 slug/it
3 (460 #it/ft 

3 )

C p 20,166 fpsps
C s 10,780 fps
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SECTION IV

CONCLUSION

The numerical results of the previous section indicate that the doubly asymp-

totic approximation produces reasonable results for nonlinear medium-structure

interaction when the medium obeys . work-hardening J2-plasticity theory. For a more

realistic soil model (viz., the Cap model), however, reasonable results have not

been obtained. In particular, the aspect of the Cap model that creates difficulties

for the quasi-static DAA is the hydrostatic-stress invariant I. This impediment

led to the introduction of the volume-wave model to create the quasi-dynamic DAA.

Unfortunately, the dilatancy and tensile cutoff aspects of the Cap model create dif-

ficulties that are not resolved by the quasi-dynamic DAA. An alternative to the DAA,

an acceleration body-force approximation based on the volume-wave model, was devel-

oped. This approximation, however, possesses marginal numerical stability and yields

results that are no better than those produced by the quasi-dynamic DAA.

Perhaps the primary conclusion that may be drawn from this study is that the

uniformity assumptions inherent in boundary-element formulations cannot be avoided.

Hence, the appearance of dilatancy or tension cutoff, which lead to highly nonuniform

material behavior, cannot be tolerated outside the surface to which the DAA is ap-

plied. This implies that a DAA may be used outside of a nonuniform region treated

with finite-difference or finite-element methods. If hydrostatic-stress effects are

negligible outside that region, a quasi-static DAA may suffice. If they are not

negligible, a volume-wave model may be required to produce a quasi-dynamic DAA. In

the event that internal-forcing problems are satisfactorily treated in this manner,

problems involving excitation by incident waves require the use of a wave decoupling

approximation such as that discussed in Appendix A.

It is clear from the preceding discussion that boundary-element and infinite-

element methods for nonlinear soil-structure interaction analysis are in an embry-

onic state of development. Furthermore, because of the complexities involved in

their formulation and implementation, the prospects for near-term utilization are

not very promising. However, the payoff associated with their successful applica-

tion is sufficiently great that promising ideas for their development should be

pursued.
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APPENDIX A

WAVE DECOUPLING APPROXIMATION

This appendix presents a brief discussion of the approximation introduced into

the DAA from the decomposition of surface forces and displacements into incident and

scattered wave components. A simple bar model, which illustrates the physics, is con-

sidered.

The basic concept underlying the soil-structure interaction model presented

here is the replacement of the effectively infinite volume of medium surrounding the

structure by an interface surface that provides to the structure an approximate repre-

sentation of the dynamic behavior of the medium. This representation is one that ap-

proaches exactness in both the low-frequency and high-frequency limits; hence the

name "doubly asymptotic approximation". An associated concept is the decomposition

of surface forces and displacements into two sets, one pertaining to the incident

wave (flUl) and the other pertaining to the scattered wave (fs,Us). In this connec-

tion, a second approximation is introduced, viz., a "wave decoupling approximation"

(WDA), which will now be described.

Figure A-1 shows a rigid mass embedded in a grounded vertical bar that is load-

ed at the top by a slowly varying "incident" force f I* The bar material has zero mass

density and exhibits bilinear-hysteretic constitutive behavior. The graph labeled

"exact" shows the stress-strain trajectory for a point just below the mass at eight

incremental stages of the loading process. The graph labeled "approximate" shows the

corresponding trajectory produced by the WDA, as follows. A load increment AfI is

applied to the bar with the "scattered" force fs = Mg neglected; this leads to Point

1' on the trajectory. The force f is then considered, which leads to Point 1 on the

trajectory. An additional load increment is applied to the bar with f neglected;

this leads to Point 2'. Then the force fs is again considered, which leads to Point

2. This process continues until Points 6' and 6 are reached; a load increment 6f I

is then subtracted from f I 6Afl' which leads to Points 7' and 7. Finally, another

load increment Af is subtracted from f, = 5Afl' which leads to Points 8' and 8.

The trajectories of Figure A.1 indicate that the WDA is in error only during un-

loading, where path-dependent constitutive behavior becomes manifest. This implies

that the WDA should be accurate during the loading phase of a multi-dimensional dyna-

mic interaction analysis for a structure whose bulk stiffness and mass properties are

comparable to or greater than those of the surrounding medium. In any case, the WDA
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should be accurate whens is much smaller than f Because f decreases with in-creasing distance from the surface of a 2-D or 3-D structure, improved aceura -maytherefore be obtained by moving the interface surface out from the structure's sur-face, treating the medium thus enclosed as part of the structure.
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APPENDIX B

OUTLINE OF THE DERIVATION OF THE
BOUNDARY INTEGRAL EQUATION FOR INELASTIC MEDIUM

This appendix outlines the initial steps in the derivation of the boundary in-

tegral equation for an inelastic medium (5). The derivation is carried out to the

point at which other investigators [3,4] have incorrectly neglected a term, as point-

ed out by Mukerjee [5]. The steps that involve the boundary integral equation itself

are not presented as the use of Kelvin's solution, Betti's reciprocal theorem and the

divergence theorem to obtain this equation has been thoroughly studied [3,4,5,22,231.

The total strain c.. is written as the sum of the elastic and plastic strain toi3

give

. = Ee + j (B-l)
13 i 1iJ

The total strain is related to the displacement by the linear kinematic relation

C = (u i, j + u j,i)/2 (B-2)

In [3,41 the volumetric plastic strain Ekk is assumed to be zero; an incorrect assump-

tion for two-dimensional plane strain [5] and for three-dimensional plasticity theory

involving volumetric changes, such as the Cap model [7]. Here the assumption

kk # 0 (B-3)

is made. Hence, from Hooke's law, (B-l), (B-2) and (B-3) the stress aij becomes

a = U 6. + (u + u i) - X 6 - 211J (B-4)
ij k,k ij i ("j + j,i) kk ij ij

where X and p are the Lame coefficients. Finally, from the equilibrium equation

a ij~j= -b i  (B-5)

and (B-4) the Navier equation for inelastic medium becomes

Sp + 2v p b.

uijJ (l-2v) k,ki 2ij,j l-2v kk, i -G (B6)

where G = p and Poisson's ratio, v = X/2(X+p).

The two basic paths to follow in the boundary integral equation derivation start

with Betti's reciprocal theorem and use (B-4) [3] or start with B-6 [4]. In both

B-1
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cases the underlined term is not included in [3,4], but Mukherjee [5] presents a cor-

rect derivation of the kernels.

As the only difference occurs in the plastic strain term the kernels for the

tractions, displacements and body force in (7) remain unchanged from the linear the-

ory. For two-dimensional plane strain they are [1,22,23]

3 rij [ 'nj ( 2 r j)

+ C4 knI rj - r ijk)' (B-7)

U = CI(' C2 £n r.. - r ) (B-8)U.. c(kz C lJ i.k ri,,

and the correct Z kernel (8) is given by Mukerjee [5] as

E"k = -I C4 k r. +,m r. , -6 r,

14(k imk rijC4 m ij,k

+ 2 rij,k r ij,i r ij'm (B-9)

where C1, C2, C3 and C4 are material constants, ri is the distance from a node point

on thei-th element to the variable (field) point of integration on the j-th element,
k.

n. is the unit normal to the surface of the j-th element, n. is the cosine of the

angle between nj and the k-th Cartesian direction, 6 k is a Kronecker delta, and a

subscript following a comma represents spatial differentiation with respect to the

indicated cartesian coordinate at point j.

Equation (B-9) is valid for two-dimensional plane strain. Also, the X kernel

given in [3] for the three-dimensional case is incorrect for plasticity which in-

cludes volumetric strain.

B-2
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APPENDIX C

NUMERICAL EVALUATION OF NONLINEAR COEFFICIENT MATRICES

This appendix discusses the numerical approach used to evaluate the integral
_kmk

in (8) to determine the matrix elements B.. . The evaluation of the first two inte-

grals in (7) was presented in [] and the integrals in the third of (7) and (13) and

(14) follow the approach presented here, so they are not explicitly considered.

As the shape function n. in (8) is chosen to be 1 the integral (8) reduces to

B..mk Z.km k dAj (C-i)

1JJ A.

and from Appendix B

E* -mk 1 [(1-2v)(6 r +6 r )
3 -k4(l-L)rij ijm mk ijQ

- km rij,k + 2rij,k rij,, rij,.] (C-2)

where

= )x2 + (x2 2
rij [(Xj -lj 2i - x2j)

"rij,k (Xkj - )/ri,

k Vetc., are Kronecker deltas and i,j,k,i,m = 1,2. The geometry associated with

the integration is shown in Figure C-I. This illustrates that the index i pertains

to a fixed node point and the index j pertains to a point within the quadrature element

A. Note, r is the distance between the points i and j and for a specific r.i,

rij,k is the cosine (k-l) and sine (k=2) of the angle between the x,-global axis and

the line rij. The quadrature element is defined as an eight node (arabolic interpo-

lation) curvilinear quadrilateral. This representation allows, where applicable,

direct usage of finite element numerical integration methods and in other situations

a convenient method for describing the geometry through the shape functions. In this

example the plastic strains are evaluated at the center of element (the point 0 in

Figure C-l) and assumed to be uniform over Aj, as discussed in Section 2.2.

Three distinct cases arise in the integration of (C-1): i) i is not in A,
3

(including the boundary) and a # 8 (see Figure C-1); 2) 1 is not in A and a = B and

c-1



3) i is in A Case 1 is easily integrated by standard numerical integration formu-

las over the square shown in the upper-righthand corner of Figure C-i. That is, for

integration purposes, the curvilinear quadrilateral is mapped onto the square, a

standard method in finite element analysis; see [24] for example. Here both one-

point (E= n= 0) and four-point ( = .1 + , +4) discrete integrations were found
to produce 3 to 4 figure accuracy. The four-point integration rule was used during

the latter stages of the study, but generally the one-point integration rule is suf-

ficient. For rij (j at the centroid 0) greater than the minimum arc length from i+1

to i or i to i-i, the general rule would be to use one-point integration, otherwise

use four-point integration.

Cases 2 and 3 are covered by the same method. Here the basic problem is the

singularity in the integrand (C-2) for case 3. The problem for case 2 appears to

come from the even-odd behavior of the integrand when a = a. The method that re-

solves the case 3 singularity problem also resolves the case 2 difficulty, so they

are treated together. To eliminate the singularity, i/rij, the integration over A.
J

is changed to polar coordinates p,e with the origin at i [25] (see Figure C-2). The

rij,k terms are functions of 8; see discussion below (C-2), so (C-i) now has the form

B = ff. f(e)pdpdO (C-3)

Note that, with this polar coordinate system p = r, hence (C-3) becomes

B = f(e)dpde, (C-4)

so the singularity is removed. The integration (C-4) is carried out over the four

triangles shown in Figure C-2. For i on the boundary of A. only 3 or 2 trianglesmkJ

are needed to cover A. Also, note that, f(i) = r ij jrk [see equation (C-2)]. The

integral (C-4) is evaluated by applying the three-point one-dimensional Gaussian

quadrature rule [26] first to dp and then dO. The three-point rule is used as it

produces accuracy comparable to case 1.
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APPENDIX D

BOUNDARY INTEGRAL EQUATION MATRICES

WITH SYMMETRY CONDITIONS

In this appendix the formulation of boundary integral equation matrices for a

symmetry condition is presented. To illustrate the formulation the derivation of

the linear stiffness matrix for a symmetry condition is considered. The other ma-

trices, E and E, are treated similarly, so they are not considered here.

The formulation is best illustrated by considering the simple example shown in

Figure D-1, the x2 -axis being an axis of symmetry. Matrices are to be formulated for

only one-half the problem such that the symmetry condition is properly represented.

The node points are selected as shown, such that two nodes are on the symmetry axis,

e.g., nodes 1 and 11 in this example. Note, that to obtain the same response from

the half (symmetry) model as from the full model, the half model tractions must be

one-half the full model tractions but the displacements are equal at nodes 1 and 11.

Thus, the sum of the two half models produces the full model. For the two half mod-

els the matrix equation for displacements and tractions may be written as

{L--- (D-l)

L21 Z~'2 I e41 2

where the subscript r indicates the retained degrees of freedom and the subscript e

indicates the degrees of freedom eliminated by applying the symmetry condition. The

submatrices in (D-1) are composed of the following elements:

S The first 22 rows and columns of S (Note, there are 22 rows because

there are 11 nodes and 2 DOF/node)

S The first 22 rows and the last 20 columns of S and the last 2 columns
-z12'

of 2 are the first 2 columns and 22 rows of S.

S1 The first 20 rows and 22 columns are the last 20 rows and first 22

columns of S and the last 2 rows and 22 columns are the first 2 rows

and 22 columns of S.

2 The first 20 rows and columns are the last 20 rows and columns of S,

the last 2 rows and 20 columns are the first 2 rows and last 20 col-

umns of S, the last 2 columns and 20 rows are the first 2 columns and

D-1
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the last 20 rows of S, and the last 2 rows and 2 columns are the first 2

rows and columns of S.

For F11' F12' F21 and -22 the arrangement of elements based on F are identical to

S S S and S with an exception. The exception is that the elements of the
-11' -12' -21 4-22
first and last two columns of each of the four submatrices are divided by two; this

accounts for the one-half value of the traction. In the above S and F refer to the

full problem matrices; see equation (6).

The e-degrees of freedom are related to the r-degrees of freedom by

u = T u and t = T t (D-2)
-e - -r -e - -r(D2

where the transformation matrix T imposes the symmetry condition. For this problem

the components in the x1-direction are equal in magnitude and opposite in sign and

the components in the x2-direction are equal in magnitude and sign. Thus, T is a

very sparse matrix composed of + and - l's.

Enforcing the equivalence of virtual work for the full model and the symmetry

model gives

S = S +S T+TT + S
--r -12 -21 +  T-22

and (D-3)

F = F +F +  T  F + TT F T
'- 11 -12-~ - - 2 1  - -22-~

where superscript T indicates matrix transposition. Equations (D-3) may appear to

require as much storage for assembly as the full model matrices, but they do not as

each of the four terms are assembled individually and stored in S and F as they

are generated. The stiffness matrix K for the symmetry model is then formed from
-i

K F_1 S (D-4)
~r -r -r

If a method existed to directly generate the boundary element stiffness with-

out forming F and S and then solving for K the matrix algebra presented could be

eliminated. The K matrix would simply be assembled for half the problem and the

boundary conditions for symmetry imposed, as is done in the finite element method.
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