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SECTION I

INTRODUCTION

Integrated optics offers the advantage of performing optical functions

within a very small physical package. Implicit in this small size is the

potential for integrating a large number of elements onto a single sub-

strate, the limit on packing density being the limits of photolithography.

Recent developments in the areas of bistable optical devices and residue

arithmetic have shown there is a significant potential for performing

computational functions with optical devices. Implementing the concepts

with integrated optics technology then can produce a capability to per-

form computations with the inherent speed advantage of optics.

First, consider the bistable optical device. It becomes apparent

from a brief study of bistable optical devices that a prominent application

is to perform logic functions. Since this application is so prominent,

it is natural to consider the idea of an optical computer. The possibility

of an optical computer has been considered in the past and the conclusion

was reached that thermal dissipation problems will prevent a sufficiently

dense packing of devices to use the high speed potential of optics. The

basic assumption is that energy in the signal used to switch a gate must

be dissipated at or near the gate as occurs with electronic functions.

Analysis then shows that the theoretical limit for electronic devices is

significantly lower than for optical devices. These analyses were per-

formed without a knowledge of bistable optical devices and are in error

in terms of the basic assumption.

While it cannot be demonstrated that an optical computer is feasible,

it is at least conceivable and one can consider data processing in a

computer format with no RC time constant limitations. To some extent,

the point is moot since the limitations ascribed to optics apply to a

large scale computer such as the IBM 360. The Air Force has no specific

need to develop such computers, but there is a need for on-board compu-

tational capabilities in aircraft. Without an a priori ban on optics

such applications can be considered as important uses for bistable optical

devices.

1|
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The area of residue arithmetic is interesting since it shows a

way of performing computations that are many times faster than can be

done with binary arithmetic. A review of residue arithmetic operations

shows that the basic functions can be performed optically in an integrated

optics format.

Both the bistable device area and the residue arithmetic area are

applicable to optical computing and represent a significant application

potential for integrated optics.

In the following discussion a brief overview of bistable optical

devices and residue arithmetic Is provided. A discussion of the

theoretical limits of power dissipation is also provided.

4.

2
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SECTION II

BISTABLE OPTICAL DEVICES

The possibility of a bistable optical device was first suggested in

1969 (Reference 1) but it wasn't until 1976 (Reference 2) that such a

device was first demonstrated. The first demonstration used sodium vapor

in a Fabry-Perot interferometer. Operation depended on the nonlinear dis-

persion of the sodium vapor near the absorption lines. Since then a

Fabry-Perot with a Kerr effect medium (MBRA) (Reference 3) has been demon-

strated, as have a number of hybrid devices using electrical feedback

(References 4, 5, and 6) including tntegrated optics format (Reference 7).

For discussion purposes the simplest system to examine is a hybrid

Fabry-Perot device using a linear electro-optic material as shown in

Figure 1. The Fabry-Perot is initially adjusted so the Fabry-Perot is

not tuned to its high transmission state. The output power is sampled

using a beam splitter, detected and then amplified. The amplified signal

appears as a voltage across the linear electro-optic material and produces

a phase shift in the crystal, moving the operating point nearer to a

Ainpl i fi er ,Detector

Beam Splitter

P1  Pt

Mirrors Electro-Optic Crystal

Figure 1. Hybrid Fabry-Perot BOD

3
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tuning peak of the Fabry-Perot. The material is linear, but since the

voltage is proportional to the output intensity, and thus E2 , we effec-

tively have a nonlinear feedback. The transmission of a Fabry-Perot can

be written as:

P t (I - R) 2

p 1 - R)Z + 4Rsin/E

where T is the transmission, Pi the input power, Pt the output power, R is

the Fabry-Perot mirror reflectivity and 6 is the one-way phase shift.

Taking the feedback into account, we can write the phase shift as:

6 27ni- + ,y
X pt

where n is the zero voltage index, 1 is the cavity length, X is the free

space wavelength and K is a constant depending on the detector and

amplifier characteristics. Rearranging this last equation we can write:

P
-- = -6 - 2ffnl/X
P KPi

and we thus have a pair of simultaneous equations. Pt is not readily

written in terms of Pi. and we need to resort to either a graphical

solution as shown in Figure 2 or a computer solution. Using the computer

to solve the equations numerically is implemented as follows. If we

can substitute the last equation in the first, we can write:

P- 0 Pt (1 + A sin 2 2%(aP t + b)l

where A = 4R/(l - R)2 , K = 2na, b = nl/A. Thus, for a given Pt we can

calculate the value of Pi for a given selection of b. Since we have the

variables Pi, Pt and b the solution is a surface-in-three space that has

a very interesting fold as shown in Figure 3. I have shown only one

fold, but in fact there are an infinite number of folds that require

large input powers to be attainable and, thus, may not be of practical

interest. To see the bistable characteristic we note that for a given

4
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Phase Shift Equation

C

Fabry-Perot
7/ Curve

b
d

a

2irnI 6

Figure 2. Graphical Solution

The dots represent operating points. The outer straight lines
represent the critical switching points and the middle represents
the bistable operation. The labelled points correspond to
Figure 4.

5
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P t

b

Figure 3. Bistable Surface

value of b, which represents the mistuning of the Fabry-Perot, we get acurve as shown in Figure 4. If the input power is increased from zero,
Pt increases slowly until the point a is reached where the slope becomesinfinite and the output power increases suddenly to point b. As P. isincreased beyond b there is only a small increase in Pt" Then considerlowering P i. As Pi proceeds below b, there is only a small decrease in
Pt until point c is reached where the slope again goes to infinity andthe system jumps to point d. Thus, we have traced out a hysteresis
loop between two stable output states.

6
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P/ b

C4

a

Pi

Figure 4. Hysteresis Curve

To consider the applications, I have shown in Figure 5 a series of

Pt vs Pi curves for increasing values of b. In the upper graph the first

fold is too far away to be reached by reasonable input powers. As we

proceed, the fold "comes into view" and then reaches a low power "S"

shaped region, wh.h is the center graph. In this case, the device has

application both as a memory element and as a switch. As a memory

element, we can consider the upper and lower levels as 1 and 0 respectively.
As a switch, we can see that a control beam of power greater than that

at a (Figure 4) will turn the device "on" and by lowering the input

power below that at d, we can turn the device "off". It is assumed
here that the "on" and "off" states would be explored by a second beam

of small enough intensity to not alter the state.

Operation for logic gates can best be obtained with the b value
in the fourth curve. Referring to Figure 6(a) the amplitude of two
concurrent optical pulses is shown where either pulse is large enough

to turn the device on and we have an "or" gate. In Figure 6(b) we have

the case where neither pulse is large enough to turn the device on and
both pulses must be present for an on state, thus giving an "and" gate.

7
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100

0w0

Figure 5. Effects of Variation of b
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(a) ___________________

(b)

p 1 b

Figure 6. Ristable Application
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In this state, we also have limiter action since increasing the input

intensity beyond the "o" power produces very little change in the
output power. The Fabry-Perot type device is basically a three-port

device, and the input power that is not transmitted appears as a reflected
power and constitutes a third port. Since it is the inverse of the
transmission it provides a negation function and we have "o" and "nand"
gate capabilities. In this same mode, we can also show amplifier action

as shown in Figure 6(c). If an input power Pb provides a bias as shown,
a variation of the input power about, the bias level will be amplified
as shown.

Another interesting implementation is shown in Figure 7A. In this
case, we have so called A$ reversal switch (Reference 6) between two
waveguides. The feedback from the sampled beam is used to switch the

output from the lower channel waveguide (zero input power condition) to
the upper channel waveguide. We consider an input beam made up of pulses

as shown in Figure 7B. In the Figure, PC is the power required for the
high output condition in terms of an "S" curve (port 1) and P a is the

power for the low output condition (port 2). In the portion of the
input (Reference 1), the input power is lowered below Pa to reset the

device and then in region (Reference 2) the power returns either to the

operating level or becomes higher than PC and, thus either port I or
port 2 is selected. A bit stream of the indicated intensity follows

the two initial addressing pulses. This is a very clear example of a
case where the power used for switching the device is part of the optical
stream and is not dissipated at the gate.

Note that the system described was outlined in terms of a specific

device, but the characteristics apply to any bistable device whether
purely optical or hybrid. Also note that the system is a perfect example

of the cusp catastrophe described in catastrophe theory (Reference 8) and
the cusp is evident in the trace of the fold edges on the b -P. plane in
Figure 3.

10
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Port 1

T Port 2

Pt

waveguides electrodes

Figure 7A. Aa Switch with Feedback

operating level

Figure 7B. Self-Addressed Data Stream
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Bistability has been shown in a number of implementations, which are

described briefly below, preceded by the references.

(Reference 2) The device demonstrated uas a Fabry-Perot interfero-

meter filled with Na vapor and the effect used was the nonlinear disper-

sion near the Na absorption lines. A 12 mW dye laser was used to show

bistability but no risetimes were quoted.

(Reference 9) A Fabry-Perot with an enclosed ruby rod was used and

operation depended on nonlinear dispersion. The source was a ruby laser

with a 20 mW average output. The laser was Q-switched and, thus, had a

high output power. Again, no risetime numbers were given.

(Reference 4) This is a hybrid device which is shown above in

Figure 1. The material was KDP. Switching was accomplished with 1 mW

but no risetimes are given.

(Reference 3) This device is a Fabry-Perot using MBBA as a Kerr

liquid. Switch times were in the Usec range and were dominated by the

MBBA relaxation times. A Q-switched ruby laser was the source.

(Reference 7) This is a hybrid device using a Fabry-Perot built

onto a diffused waveguide in LiNbO 3. Hysteresis was observed with a 5 nW

input. Switching time was 200 psec with 1 pJ switch energy. A hybrid

device is projected with no amplification that can provide 1 nsec switch

time, 1 pJ switch energy at 1 mW power level.

(Reference 5) This is a hybrid device using bulk LiNbO3 in a standard

polarization rotation modulator format. Switching was accomplished with

a .5 mW HeNe laser.

(Reference 6) This is the hybrid device shown in Figure 7. The

hysteresis curve was obtained by operating between 10 and 70 nW. The

switch time was 300 Usec and the switch energy was 3 pJ.

The implementations listed above are only a sample of what has

appeared in the literature, but are representative. The hybrid devices

are interesting demonstrations but are not likely to be useful in competing

12
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with electronic circuitry since they themselves require electrical con-

nections for operation and would be subject to the same risetime limitations.

The completely optical devices that have been demonstrated are bulk

devices and require relatively large optical powers for operation. The

requirement for a useful device is an.all optical device that can be

made in an integrated optics format and does not require large optical

power for operation. Such devices are feasible and can be expected to

be demonstrated in the near future.

13
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SECTION III

RESIDUE ARITHMETIC

An interesting application of integrated optics arises in the use

of residue arithmetic to perform computer functions instead of the usual

binary arithmetic and has been proposed in the literature (Reference 10).

To understand the application, we need a small digression into the

results of modern algebra (Reference 11). The first basic point is

expressed as follows:

Euclidean Algorithm

For any integers a, b we find integers p, q such that

a - qb + r

where q is the quotient and r is the remainder. We then introduce the

concept of congruence, which has the sumbol E.

Congruence

Given m, for any two integers a, b we can write, by the

Euclidean algorithm,

a = qam + ra

b - qbm + rb

Then a b(mod m)

if and only if ra rb

Thus, we say a is congruent to b modulo m if the remainder for a equals

the remainder for b. To say it another way, two integers are congruent

relative to a modulus m if they differ by a multiple of m. A familiar

example of congruence is given by ordinary clock time. Thus we speak

2 o'clock and not 14 o'clock.

14
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lhu , yiven any modulus m we can reduce all the integers into

congruence classes mod m. Let us then suppose that we have a set of

moduli m1, m2 , . . mn such that all the moduli are relatively prime.

If for an integer a we find its remainder, or residue, for each modulus,

we can represent a as an n-tuple by

a (r1, r2 .... , r )

which is essentially the same as representing a vector as an n-tuple of

its components. Moreover, it can be easily shown that this representation

is unique for any a such that

a :s T mi

To see the advantage of residue arithmetic over binary arithmetic, we

will compare some simple operations in each system. In performing

addition in a binary form the basic function can be shown in terms of

the diagrams in Figure 8. The basic procedure for adding 2 single digit

binary-numbers utilizes the half adder. The two inputs A, B can be 0 or I

and the outputs are the sum and the carry digit (i.e., 1 + 1 = 0 and

carry 1). The gates are labeled with the Boolean operations. If we add

2-digit binary numbers, the right most digits are added by a half adder

and the next two digits are added by the full adder, which uses the carry

digit as an input. Depending upon the number of digits in the numbers

to be added, additional full adders can be included. The significant

point here is that binary addition is inherently a serial process. An

array of adders would in general be clock driven, but each pair of digits

can only be added after sufficient time for the carry digit to be trans-

ferred from the proceeding stage. To be specific, consider the addition

number 4 and 9. Encoding the numbers we have

4 - 100

9 - 1001
and adding we have

1001
100

1101

is
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A

HIalf Adder

A

B

Cv

c 
S

Full Adder

Figure 8. Half and Full Adders

16
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where the serial procedure is quite evident. To do the same operation
in residue arithmetic, we use the moduli 2, 3 and 5. Now 4 (mod 2) 0,
4 (mod 3) =l, and 4(mod 5) =4. The 9(mod 2) =1, 9(mod 3) =0,
9 (mod 5) = 4. Thus the encoding is

4 +(0,1,4)

9 -~(1,0,4)

Adding we have 014
104

113

where we have used the fact that 8 (mod 5) -3. We note that
13 (mod 2) =1, 13 (mod 3) =1 and 13 (mod 5) =3 so we indeed have
the right answer. The residue numbers can be decoded by algorithm
in a way similar to that in which binary numbers are decoded. In adding,

each row is added independently since the idea of a carry digit is
meaningless here. Thus, all the rows can be added simultaneously and
we have the capability for a basically parallel process. The capability
to do parallel processing offers a tremendous capacity for increasing
the speed of computations. For instance, if a binary number has n
digits, the arithmetic processes can be n times faster with residue
arithmetic.

To see how integrated optics can apply, consider the simple case of
adding the number three to any number mod 5. If the number were
0, 3 + 0 a 3, if it were 1, 3 + 1 = 4, etc. and the addition process
becomes a permutation of the integers as shown in Figure 9(A). This
sort of operation can be readily implemented in an integrated optics
format by using Bragg deflectors as shown in Figure 9(8).

A complete discussion of residue arithmetic has been given by Szabo
(Reference 12). An important limitation of residue arithmetic is the fact
that division is not always directly realizable because of the integer
representation, and is, thus, not likely to be used for general purpose
computing. However, there are a number of mathematical operations that do
not require division such as fast Fourier transforms and matrix manipula-
tions. Thus, where division is not required and speed is important,
residue arithmetic provides an extremely important capability.

17
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0 1 2 3 4

0 1 2 3 4
Permutation of Integers Under Addition

A

Input Representing 0

Brgg iSlab Waveguide

Deflectors

Output Representing 3

B

,Figure 9. Optical Permutation
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SECTION IV

OPTICAL LOGIC

The question of whether optical logic could be practically realized
has been addressed in the literature. In the latest paper, Keyes
(Reference 13) rejects the possibility of optics competing with elec-
tronics. Reference is made to an earlier paper as the basic reference
(Refere nce 14). The argument advanced goes as shown below. In elec-
tronic logic, the energy used to change the state of the device (i.e.,
charge transported to produce a voltage) must be dissipated at the
device. Fairly good estimates can be made of the maximum rate at which
excess power can be removed from a planar array, and thus for a given
dissipation a maximum density of devices can be derived. Whatever the
intrinsic speed of a device is, if an array of devices requires a wide
separation for thermal reasons, then propagation times must be included
and the effective speed of the device must be less than the intrinsic
speed. Then the assumption is made that for any optical logic device
the interaction energy must be dissipated the same way. As the next
step, the minimum power required for three different optical techniques
is considered. The resultant graph, comparing the electronic and optical
theoretic limits, is reproduced in Figure 10. The curves on the graph
are as follows: HT, the dotted line, Is the thermal transfer limit;
COH is based on the phenomena of self-induced transparency; NL is a
nonlinear device based on a Pockels effect to produce polarization
rotation; BA is a bleachable absorber; CA is a curve I added which is
taken from Keyes' 1975 paper (Reference 13) and represents the then
conmmercially available electronics; EL is the fundamentol electronics
limit where k is the Boltzmann constant, T is the temperature, e is the
electronic charge and Z0is the impedence of free space. Note that these
curves are a lower limit and in practice levels much larger than this must
be used both optically and electronically. Thus, for the curve CA the
lowest energy per step is 4(10)-". which is 1010 times the thermal
limit of kT.

None of the three optical systems described by Keyes are here con-
sidered for optical logic, and the assumption about power loss cannot

L be evaluated without a speciftc proposal. Instead we consider the

19
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1 /HT

/ A

/- // N

BA

10-12 10 0 lo o-6

t (sec)

HT Thermal Transfer Limit

COH Self-Induced Transparency

tIL Pockels Effect

BA Bleachable Absorber

CA Commnercially Available Electronics

EL Electronic Limit (kT/e) 2/Z 0

Figure 10. Thermal Limits
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bistable optical device, and as a specific example consider a Fabry-Perot

device. The Fabry-Perot is basically a three-port device, thus there is

an input port defined by the direction of the incident light, an output

port defined by the direction of the incident light, an output port

defined by the direction of the transmitted light when the device is "on"

and an output port defined by the direction of the reflected light when

the device is "off." Any light beam incident on the device leaves by

one of the output ports. Selection of the output port can be done by

the method described for the optical waveguide As reversal switch

described above, and the addressing function is part of the data stream.

In the and gate function, if one pulse is incident, it exits by way of

the reflected port while if two pulses are present they both exit by

way of the transmitted port. When the device is in the "on" state,

there is a large increase of the optical field intensity in the cavity

that builds up with the Fabry-Perot response time. When the incident

light is removed the cavity field then decays. One might expect that

the decaying field would loose its directional knowledge, since the

incident field is gone, and bleed out both output ports, but this is not

a loss mechanism.

In examining the above cases, it is seen that there is no inherent

loss mechanism involved with the logic function. To find loss mechanisms

one must consider the inherent loss in optical propagation. The loss

mechanisms fall in the categories of absorption, scattering from non-

uniformities or defects in the material and photon-phonon interactions.

Both absorption and scattering from defects can, in principle, be

reduced to negligible levels. Brillouin scattering, which is due to

interactions with thermodynamic fluctuations In material properties and

Raman scattering, which is due to interactions with optical phonons are

the fundamental loss mechanisms. Brillouln scattering does not, per se,

represent a mechanism for heating but the scattered light, which is lost

from the waveguide, could be absorbed in the substrate or in nonoptical

structures on the substrate. Stokes shifted Raman scattering represents

the only fundamental mechanism that can produce heating effects, but the

cross section for Raman scattering is typically an order of magnitude

21
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less than that for Brillouin scattering (Reference 15). There is, thus,

some suncertainty in fundamental heating effects, the limits being some-

where between Brillouin and Raman scattering.

For practical application, a bistable optical device is required

which is all optical and can be fabricated in an integrated optics

format. While such a device is, in general, feasible, it has not yet

been demonstrated. To ;,ake an estimate of potential function, we will

consider the all optical Fabry-Perot devices which have been discussed

including the ruby rod (Reference 9), the Na-vapor (Reference 2), the

MBBA (Reference 3) and the GaAs device (Reference 18). In the GaAs

device the nonlinear effect is produced by refractive index changes due

to excitonic absorption. It is assumed that an integrated optical

device will use a channel waveguide, which we take to have a square

cross section. Depending on the materials, the cross sectional dimension

can have an order of magnitude ranging from 0.1 p to 1. p. The power

density required for switching for each of the four devices discussed

above is tabulated below. Also tabulated is the laser power required

to produce the power density in a I v guide, a .1 p guide, and the

length of the cavity.

P D(w/m 2) Po (1U) Po (.11j) length(cm)

ruby 1.0(10)3  1.0(10)- 5  1.0(10)- 7  .5

Na .5 5(10)9 5(10) 11 11

MBBA 1.7(10) 5  1.7(10)- 3  1.7(10) - 5  1.0

GaAs 3.4A10) s  3.4(1o)- 3  3.4(10 5)-  4(10 4) -

The loss data of Miyashita (Reference 16) for optical fibers ranges

from 2 db/km at .85 P down to .2 db/km at 1.55 p and is approximately at

the theoretical limit set by Brillouin scattering. For a given loss,

the power goes as

P - P10
L X/ 1O

0
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where L is the loss in db/km and X is the path length in km. Then

d= -P 10-LX/lo ( - In 10) dx

Thus, in a length dx, the power lost is

dP =P L(.23)dx

and

for dx in cm. dP -P 0L(.23) (10)- 5dx

If we assume a square cross section waveguide of dimension at,

the propagating power density P D is

For a length dx, the surface area A is
A - czdx

and the power loss density D P is

DP P P 0L(.23)(1O)_
5

For a Fabry-Perot with a cavity length dx, the round trip transit

time t r is
2dx

t r M

neglecting the index of the medium in the Fabry-Perot. With a reflectance
of .9, the rise time of the cavity, t rti is approximately

20dx
C

*6.6(1O)-10dx
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Then the energy lost in the rise time, J, is

j -t t dP

6.6dx2 P L(.23)(10)- 5

If there are no material risetime limitations, J represents the minimum
energy loss for a switching function.

Tabulated below are the risetime, t tr' the area (cadx) for a~=l and
the area for ci=.l for the four materials.

Risetime area(a.') area(cs-.1)

Ruby 3.3(10)-10 5.(10)-5 5.(10)-6

Na 7.3(10)-9 1.1(1(3)- 1.1(10)-4

HM 6.6(10)-10 1.(10)-4 1.0(10)-5

GaAs 2.6(10)-13 4. (10)-8  4. (10)-9

Tabulated below is the power loss for L=2, .2 and at~l, .1.

Power Loss (d0)

awl az-1 a-i.1 a-.1
L-2 L-.2 L-2 L-.2

Ruby 2.3(10)-11 2.3(jO)- 12  2.3(10)-13 2.3(10)-14

Na 2.5(10)-13 2.5(10)-14 2.5(10) 15 2.5(10)-16

HMB 7.8(10)-9 7.8(10)-10 7.8(10)11l 7.8(10)-12

GaAs 5.3(10)-12 5.8(10)13 5.8(10.)1+ 5.8(10)-5

On the basis of the above data, the power loss density is tabulated.
This factor represents the thermal loss that must be dissipated by

cooling and is in watts/cm.
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Power Loss Density (w/cm
2)

a-l a-I a=.1
L-2 L-.2 L-2 L-.2

Ruby 4.6(10)- 7  4.6(10)-8 4.6(10) -' 4.6(10) - 9

Na 2.3(10)- I0 2.3(10)- 11 2.3(10) - 11 2.3(10)-12

MBBA 7.8(10) - 5  7.8(10) - 6  7.8(10)-6 7.8(10) -7

GaAs 1.5(10)-  1 1.5(10)- 1.5(0) -  1.5(19)- 6

Using the above data the values for J(dP x t rt) were calculated

for L=2, .2 and a=l, .1. These numbers represent the minimum energy for

a switching event that appears as a loss. The values for J are tabulated

below.

J (Joules)

L-2 L-.2 L-2 L-.2

Ruby 7.6(10)- 21 7.6(10)- 22 7.6(10)- 23 7.6(10)-24

Na 1.8(10)- 21 1.8(10)-22 1.8(10)-23 1.8(10)-24

BBA - 5.1(10)- 18 5.1(10)- 19 5.1(10)- 20 5.1(10)- 21

GaAs 1.5(10)- 24 1.5(10) - 2 s  1.5(10)-26 1.5(10) - 2 7

The value of log J vs. log t for al, L=2 is plotted in Figure 11.

Materials are thus postulated that have nonlinear effects which are

real, but have losses at the theoretical limit. None of the bistable

systems considered here could function at the limiting speed nor could

they show the ultimate loss. However, they serve to point out that the

switching energy is not the same as the energy loss at the switch. Thus,

the switching energy Is provided by an external source, and the production

of heat, which limits device density, can be projected to be extremely

low.
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General thermodynamic arguments may be made that because the

entropy is changed by switching, a minimum energy of kTln2 must be

involved (Reference 17). In this case the kT energy factor refers to

the minimum energy required for switching and is not a minimum energy

dissipation. The switching energy for a bistable device is provided

by the input optical beam, and it is this energy that the kT factor

refers to.

MBBA

~.-RUBY
-12 *--------GaAs

-1 6 
-

---- ---- ---- kT
-24

-28

-12 -10 -8 -6 -4 -2

log t

Figure 11. Log J vs. Log t for a=1, L=2
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