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ARETRACT

This dissertation describes ¢ cspecizl-purpose signal
processor for performing two-dimensionsl convolution with a
minimum emount of hardwere using the concepts of singulear
value decomposition (8VD) and smzll gonerating kernel (SCK)
convolution, The €&VD of &an impulse response of a
two-dimensionel f{nite impulse response (FTR) filter ie
employed to decompcse 2 filter intc a sum of
two-dimensional seperable linear operators. These lipeer
cperators are themselves decomposed into a sccuence of emeall

kernel conveclution operetors. The €VD expencgion can he

trunceted to a reletively few terms without significantly

cffecting the filter output.

A stetistical anelysis of finite word-length cffects
in SVD/SGK convolution is presented. Two important issues,
releted to the implementztion of the filters in casceade

form, sceling and section ordering, are also considered,

Computer simulation of 1image convolution indicetes
thet 12 bitse are required for the SCK/SVD accumuletor
memory and 16 bits are recuired for quantization of filter

coefficients to obtain results visuelly indistinguishehle

from full precision computation. A normalized mean scuere
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error between the SVD/SCK processed output and the direct
processed output 1is chosen as an objective criterion
function. Tt is shown that a subjective visusl improvement
3 is obtained by resetting the output mean to be ecual to the

input mezan.

The transformetion techrnique developed for the
one-dimensional <cacse 1is used to parametrically modify the
cutoff frecuency of a baseline SVD/SCK convolution filter,
A detailed discussion of the one-dimensional <case is
presented, and its applicebility to &VD/SGK convolution

filters is descrihed.
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CHAPTER 1

INTRODUCTION

During the last decade, the field of digitel signal
processing has been- extremely dynamic and active. There
have been many applications of digital signal processing
technigques in digital communication, seismic processing,
radar processing, sonar processing, speech processing, and

image processing.

One of the important areas in digital signal
processing is digital filtering,. The term "digital
filtering" can be viewed as a computational process or
algorithm by whichv a sampled signal or 2 seqguence of
numbers, acting as an input signal, is transformed into o
second sequence of numbers called the output. There are
two major types of digital filters: infinite impulse
response (IIR) filters and finite impulse response (FIR)
filters. Digital filtering is meinly concerned with filter

design and its implementation.

If the present output of a system is calculated from
the past, present, and, in the noncausal case, future

inputs, the system is called nonrecursive. If the present

1
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output of & system is calculated from the pzst end present
inputs and outpute, the system is called recursive. In
both recursive 2and nonrecursive systems, the relastion
between an input sequence x(n) end an output secuence y(n)

can be characterized by & difference ecuation of the form

M N

= -k) - - -1

y (n) Zakf(n k) Zbky(n k) (1-1)
k=0 k=0

Conceptually, M and N can be finite or infinite. A gyctem
in which by = 0, for k = 1,...,N, is nonrecursive, and cen
be implemented by an FIR filter. The system in which M2
and Dby is not zero is recursive, end it can be implemented
by en IIR filter. <(Choosing between an FIR filter and an
IIR filter depends wupon the relative adventages &nd

disadvantages the filter offers for a2 specific problem.

Signal ©processing is, of course, not limited to
one-dimension. Many signals are inherently
two-dimensional; thus, two-dimensional signal ©processing
technigues ere required. Image dete is & typicel
two-dimensionzl signal. Digital filtering with FIR filters
has many applications in image processing. For instance,
image restoration to remove blur and to suppress noise
generally requires digital filtering. In mcst ceses,

digitel filtering reguires implementation of F

two-dimensional convolution.




The term "implementation" means that the slgorithm is
either written in & computer language for 2 general-purpose
computer or is realized with special-purpose hardware. In
general, the implemertation of two-dimensional convolution
in image processing hes beer confined primarily to computer
programs with &a generzl-purpose computer, where virtually
unlimited memory, processing capability, and time, are
readily availeble. .But the reguired processing time is
often quite enormous because of the huge amounts of data to
be processed znd the restricted input-output trensfer rate
between the computer and display. BAn image size of 512x512
pixels 1is common in image processing. An alternative to
the use of a general-purpose computer is to utilize
Integrated Circuit (TC) technology. Recent advances in IC
technology now make the realization of a real-time signsal
processor capable of performing two-dimensional convolution
practical. High speed digital multipliers, memory and
display <circuitry are now commercially available. As a
result, significantly more sophisticated zlgorithms can now
be chosen for problem solving. The trend is to develop
special-purpose signal processors to take advantage of
recent developments in digitel circuits [1-1 to 1-2]. 1In
the design of such & special-purpose signal processor,

speed, complexity, power consumption, computing capability,

and cost, are all factors to be considered.




Recently, a technique called small generating kernel
(SGK) convolution has been proposed [1-4]. SGK convolution
is a processing technigue for performing convoluti&n on a
two-dimensional data array by seauentially convolving the
array with a small size convolution kernel, say 23x3. This
idea was first suggested by Mersereau et al. [1-5) and
generalized later by Abramatic and Faugeres [1-4]. CSince a
large size kernel convolution is performed by a sequential
small size kernel convolution, and the implementation is
highly moduler, the SCK approach makes the hardwere
implementation quite appealing if a proper design procedure

to specify the small size kernel operators is found.

In the one-dimensional case, any impulse response can
be decomposed into smell size convolution operators,
typically 3xl. This property can be seen 1in the cascade
form for FIR filters. But, theoretically, exact
decomposition of a large size convolution operator into
small size <convolution operators 1is impossible in the
two-dimensional case. This is the reason why the design
procedure for SGK convolution leads to s complicated and
time-consuming optimization problem. The inherent
difficulty in finding small size convolution operstors
motivates the development of & new algorithm for the
two-dimensional convolution. The proposed SVD/SGK

convolution method also makes wuse of SGK convolution,

however, the size of small size convolution operators is
4




3x1, rather than 3x3.

This dissertation describes a special-purpose signal
processor with & minimum amount of hardware for performing
two-dimensional convolution using the concepts of <singular
value decomposition (SVD) and SGK convolution. To extend
the usefulness of 8GK convolution, two-dimensional FIR
filters of size leN2 are decomposed 1into & sum of
two-dimensional separable filters by means of the 8VD of
their impulse response matrix H. The SVD expansion can be
truncated to K terms (K< R, where R it & rank of B,
without significantly affecting the output of the filter.
Whenever the two-dimensional FIR filter is separable, the
convolution can be performed by one-dimensional processing.
This is a reason why the SVD expansion can be very useful
for imrlementing two-dimensional nonseparable filters. Tt
was noted that each one-dimensional FIR filter can be
realized as a cascade of second-order SCGK filters. Thus,
it is possible to implement a two-dimensional convolution
by a sequential convolution with one-dimensional
second-order SCGK filters. As an example, one can think of
using such a convolution technigue for convolving images at

real-time rates on an image display system.

When &a digital signal processing algorithm is
implemented with 8 speciel-purpose signal ©processor,

account must be taken of the errors caused by finite

5




word-length in representing filter ccefficients and signal
values. Implementation with finite word-length can be
modeled by 1injecting white noise into signels whenever =
rounding operation is performed. The goal of this error
analysis is to minimize the required word-lenath subject tc
some reasonable error tolerance. The problem ic to
determine the best ordering znd scaling procedure in order
to minimize the required word-length. To solve these two
problems, we show that how the theory, for the
one-dimensional case, can be modified to the

two-dimensional case.

The second issue investigated in this dissertation 1is
parametric design. The concept of parametric design is to
generate a class of two-dimensional FIR filters. with 2
variable cutoff fregquency from previously designed baseline
SVD/SGK. . convolution filters. In the case of
one-dimensional FIR filters, Oppenheim et al. [1-6]1 have
proposed a transformation for designing a variable cutoff
digital filter. But, very little work has been reported in
the two-dimensional case. It is shown that the cutoff
frequency of a SVD/SGK convolution filter can be varied by
the use of a one-dimensional transformation. Tt is
believed that such a variable cutoff SVD/SCK convolution
filter has numerous czpplicestions in 1image ©processing.

Adaptive filtering will be very useful in image

restoration. For example, the cutoff freguency of a Wiener
6




filter could be chenged, and an observer could effectively

examine the processed image in real-time.

This dissertation consists of sceven chapters., A
review of SCK and EVD/SCK convolution 1is presented in
Chapter 2. Chapter 3 discusses the effect of wusing
fixed-poirt arithmetic. This chapter includes a derivation
of the noise formule to predict total roundoff noise.
€celing &and section ordering for SVD/SCK convolution ate
decscribed in Chapter 4. In Chepter &5, & series of
experimental results based on computer cimulation is
presented. 2mong these results ic the confirmation of the
derived noise formule wusing a rendom number srray as an
input. A simple technique to reduce the normalized mean
square error (NMSE) bLetween the SVD/SGK processed output
ané the direct processed cutput 1is also given. The
effectiveness of this technique is demonstrated visuelly.
Chapter 6 deals with the perametric design of &VD/SCGK
convolution filters. 2 detailed discussion of the
one~dimensional case is presented, and its applicability to
SVD/SGK convolution filters is described. Seversl design
examples for two-dimensional, as well &as one-dimencsional
cases, @are shown in this <chapter. ~inally, Chapter 7

discusses the conclucsion and possible extension of this

work,




CHRPTER 2

SEQUENTIAL CONVCLUTION TECHNIQUES

2.1 1Introduction

Two-dimensional convolution has found numerous
applications within the field of two-dimensional signel
processing [2-1,2-2]. For exemple, imsge enhancement,
image restoration, and digital filtering generally require
two-dimensional convolution. Referring to Fig. 2-1, an
output array G(j,k) is obtained by convolving the input
array F{(j,k) with the impulse response of the system
H{(j,k). The two-dimensional direct convolution algorithm

can be expressed by the double sum

;o x
G(3,K)=F(3,K)88H(3,k)=) " D Flmn)H(j-mrl,k-n+l)  (2-1)
m=1 n=1

where G(j,k) is the M;xM, output array, F(i,k) is the NyxM,
input array, and H(j,k) 1is the leL2 convolution kernel
array, called an impulcse response. The input and output
dimensions are related by Mj= Nj+L;j-1 for i=1,2. 1In Fq.

(2-1), the symbol ®® denotes a two-dimensionz)

convolution. The symbol ® will be used to represent 2
8
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one~dimensional convolution throughout this dissertation.

In the direct convolution =&algorithm, the output,

G{(j,k), is the weighted sum of 2ll velueg of the input

array. The drawback of wuging the direct convolution

algorithm o¢f Ea. (2-1) is that it reaquires many arithmetic

operations. The number of additions and wmultiplications

for direct convolution 1is NlNZLle.

In 1965, Turkey and Cooley [2-31 opened new ere 1in

a

digital signal processing. They dicscovered a fast Fourier

transform (FFT) &algorithm, whiclh is an efficient method for
computing a discrete version of the Fourier transform
(DFT). The two-dimensional COFT pair of a finite array
X(j,k) for j,k = 0,1,...,N~-1 can be written in the form
N-1 N-1
2 (u,v)= 12-2 E X(3,k) exp{ -%’]i(ujwk)}
N'320 k=0
(2-2)
N-1 N-1
X(j,k E Z( u,v)exp{géi(uj+vk)}
u=0 v=0
where i =‘V—1, u,v are spatial frequency variables, and
Z (u,v) denotes the Fourier trensform. Both <« (u,v) and
X(j,k) are, in general, complex series. Consider the
following relation in the freguency domain
&(urv) = E(U,V)ﬁ'(U,V) (2"'3)
10




where 4 (u,v), & (u,v) and & (u,v) are discrete Fourier
transform of the erray ¢C{(j.k), F(i.,k), and HE(i.k),
respectively. By the definition of the DFT, C(i,k) can be
expressed as

Nl-l N2~l

G(j, k)= [J(u,v)uu,vﬂew{fi(gi * }35)} (2-4)
1 2
u

=0 v=0
Thus, computation of the discrete convolution of two arrays
can be obtained indirectly wusing the DFT, Considerable
computational efficiency can be gained by the FFT
convolution technigue. In general, computation requires

2 2
N +4N log, N operations when N1=N2=N [2-41.

Fourier domain processing is more computationally
efficient tﬁan the direct convolution of Fg. (2-1) if the
size of the impulse response is sufficiently large. The
cross over point for the two implementations occurs for a
10x10 impulse response with 1large input arreys [2-5}.
Because, in many practical applications, the size of an
impulse response is larger than 10x10, then Fourier domzin
processing is an efficient computation techniqgue.
Furthermore, the efficiency of Fourier domein processing
can be increased by overlap-add or overlap-save technigues

[2-6].

Ceveral other techniques, for example, number

theoretic transforms, have been reported concerning

11



convolution computation [2-7,2-8). ©So far, the technioues
we have discussed can be implemented by proarems for &
general-purpose computer or special-purpoce hardware.
Recently, due to the drametic development in Large Scale
Integrated (LSI) circuit technology, real-time low cost
hardware implementation of 2 two-dimensionel convolution is
of great interest, Low cost hardware imgplementeticn is
possible if the size of the convolution kernels jg kept
small because the cost of hardware is proportional to the
size of the convolution kernel. The technique, commonly
referred to as €GK convolution, mekes this task possible.
2 review of these methods is given in Section 2-2. The
basic concepts of the SVD techniogue dealing with
nonseparable impulse response and application to sequential
convolution is discussed in fection 2-3. A new convolution
technique is proposed in Section 2-4. TIts application to
an image processing display system is described in Section

2-5.

2.2 Review of Small Generating Kernel Convolution

SGK convolution 1is & processing techniaue for
performing convolution on two~-dimensionel data arrays by
sequentially convolving the arrays with small size
convolution kernels. The output of the SCK convolution
operation closely approximates the output obtained by

convolution with a 1large kernel prototype filter. The

12




motivation behind SCGK convolution is that it cen be used to
approximate any impulse response of an FIR filter, and that
its structure permits implementation of the convolution by

sequential convolution with small size kernels.

McClellan [2-6] was the first to propose &2 technicue
for designing such a <cless of filters by transforming
one-dimensional linear phase filters* into two-dimensional
linear ©phase filters. By assuming that the prototype
filter is a linear phase filter, his algorithm trensforms &
one-dimensionel filter h{u) into & two-dimensional filter

e

% (u,v) by means of transformation given by
cosw = Acosu+Bcosv+Ccosu-.cosv+D (2~5)

The McClellen transformation is an extremely useful tool,
requiring only moderate computation, for designing many
common types of two-dimensional FIR filters. FIR filters

up to order 100 can be designed using this method.

Mersereau et al., {2-10] generalized the McClellsan
transformation for two-dimensional FIR filters and showed
an efficient way to implement the filters designed by this
method. The significance of their implementation of the

designed filter is that a large two-cdimensional convolution

*A linear phase filter implies symmetry of the filter.

13
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can be replaced by a sequential convolution with small size

kernel operators. & description of the algorithm follows.

The freguency response of & one-dimencsional lineer

phase filter of odd length L is

L-1
2

h(u) = jz:h(n)[cosu]n (2-6)
n=0

where h(n) represents the filter impulse response. Beczuse
the freguency response of a cascade form is the product of
the frequency response of individual stages, the term
[cos u]n of Eg. (2-6) <can be considered as a total
frequency response obtained by cascading n identicsal
filters each with a freguency response coS u. It is
beneficial to rewrite Fg. (2-6) in terms of the z-transform

to obtain

L-1
L-1 2
H(z)= Zh(n)z_n=h(0)+ h(n) [pl(Z)]n (2-72)
n=0 n=0
where
-1
= ¥z (2-7b)
pl(z) 5

Figures 2-2 to 2-4 show three basic implementation

structures proposed by Mersereau et al. [2-11].




Referring to Fig. 2-2, implementation of 2

L-1
two-dimensional filter consists of a ((= ) staqge
identical sequential convolution, Note that p,(z) is

replaced by & two-dimensional filter Rg(z ,22), which is

1
obtezined by the McClellan transformation. The o-th staae
output Cqg(zqy,2p) is obtzined from the cumuletive sum of the

a-th stage as

Oq(zl'ZZ) = Oq_l(21122)+h(Q)Aq(21,22) (2-82)

where

Ac(z )

L (21025) = Ag (2102, He(2y,2,) (2-8b)

The term Oo(zerZ) corresponds to the cutput array

G(zl,zz), or eguivalently

Q
[
=1

The convolution indicated in Egs. (2-8) and (2-9) could be
implemented directly from the direct convolution algorithm
of Eq. (2-1). The other structures, shown 1in Figures 2-3
and 2-4, also can be implemented in & similar menner
[2-117]. Mersereau et al. also pointed out that the
computational efficiency, 1i.e., number of multiplication
and addition operations reguired for implementation, is

greater than the number for either the direct
' 15
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implementation or an FFT implementation for filters of

order up to 50x50.

Another structure of interest, shown in Fig. 2-5, was
proposed by McClellan and Chan [2-12). They noted thet
Eﬁ%&:ﬁ is the n-th degree Chebyshev polynomizl in the
variable pl(z) cf Ea. (2-6). Unfortunately, an arbitrery
two-dimensional impulse response cannot be implemented in
this way because it is not always symmetriceal. The
implementations discussed so far are applicable only to
McClellan transformed filters. The elementary filters of
Figures 2-2 to 2-4 do not necessarily has the same
freqguency response. The limitation of the previous
implementstion has motivated a search for more generel
design techniques for a <class of two-~dimensional FIR

filters that can be easily implemented by sequential

convolution with small size kernels, say 3x3.

Abramatic and Faugeras [2~13 to 2-15] presented a
synthesis procedure, described in Fig. 2-6, for designing
such a class of filters. 1In comparison with Fig. 2-2, the
elementary second-order filters have different transfer
functions. The sequential filter proposed by Mersereau et
al. is 2 special case of this class of filters. The design
procedure approximates the prototype filter by meens of
minimizing the mean squere error [2-13] or Chebyshev error

[2-14} between the epproximete and prototype filters.

19
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Another simple filter with Properties similar tg rhose

Tontioned above {g shown in Fig, 2-7.

2.3 sve Expension of 2 Non-Fepararie

——— L ——— —l

Impulse Response Matrjy

——————

In  the Previoye fectiong, en SCK convolutiop
technigues for two»dimensionel cenvolution vere discusced.
The concern here is withn fhnother  filter Structyure bagea
upon €GK convolution with emell gige kernele, fypically
3x1. The besis for the new Epproach is - REErix  oxpansion
by use of the singular value decomposition [2-161. 7The
reason for choosing the SVD technique in image prooessinq

epelications is discusged.

2 two~dimensional impul ge response cen be
characterized 8¢ a matrix, If we Consider ap erbitrary

real impulse response which i modejegd by the let’_.2 matrix

(11,1, H(1,2)..... .. FH(1,L,) 'I
H(2,1) :

H=|: : (2-10)
H(L, 1) H(Ll,Lz)J

Suppose the impul e response i¢ fpetially irvariant and  ig

of scpereble form such that

23
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H =S.£T (2"11)

where ¢ and r are column vectors representing column and
row one-dimensional impulse responses, respectively. We
have used the superscript T to denote trsnsposition. Then,
two-dimensional <convolution may be performed by sequential
row and column one-dimensionel convolutions. BAs a.Aresult,
one can obtain a substantial decease 1in the number of
multiplication and addition operations if the input array
size becomes large. If the input array size is NxN, the
separable convolution operators of Eqg. (2-11) reguires
N2(L1+L2) multiplications compared with N2L1L2
multiplications regquired in the nonseparable czase (fewer
are required if the impulse response matrix possesses
symmetry) . Unfortunately, we cannot assume that the
prototype impulse response matrix H is always separable.
Cne way of dealing with the nonseparability problem is to
use the €EVD technigue. 1In the SVD matrix expansion, any
arbitrary L, xL, matrix of rank R can be decomposed into the
sum of a weighted set of unit rank L, xL, matrices. The
significance of the SVD expansion is demonstrated by noting
that the nonseparable matrix H is the sum of individual

separzble matrices of unit rank [2-17].

According to the SVD expansion, there exist an LjxL,

unitary matrix U and an L_xL

’ unitary matrix vV for which

1

P
uTH v = 27

(2-12)
25




where

(2% (1) 0

——— (2-171)

-
e
H
o
>
7o)
—---}-——---_—

1

is an L2xLl matrix with a generasl diagonal entry 2?9y for

j=1,2,...R celled & singular velue of H. The singular

values can be obtained by sauare rooting the eigenvalues of

T T .
HH or H H. The columns of U are the eigenvectors of EET

and the columns of V are the eigenvectors of H'H. fince

T . .
HH and ETH are symmetricel and square, the eigenvealues

p) - 3 w
k'f(j) are real, and the eigenvectors set tgj} ' XXj + for

j=1,2,...R are orthogonsal,

Since matrices U and V are unitary matrices,
Eq. (2-12) 1is eqguivalent to Eg. (2-14). Hence, H can be

decomposed as

(2-14)

Equation (2-14) can be reformulated into series form é&s

26




R
. T
H = Az . X -15
H }E: (Duy vy (2-15)
j=1

If we let

1
c. = A3 (j)u. {(2-163)
-] ] =]
r. = v, (2-16b)
=) =]
are one-dimensional column and row

where c¢. and r .
=3 -3

convolution operators, respectively, then

R R
H = Cc -rT = H 2-17
pd 2 :_j =3 Z =5 {2-172)
N =1

where

= c.+r. (2-17b)

It should be observed that the vector outer product E.'VT

J 3
of the eigenvectors forms a set of separable unit rank
matrices each of which 1is weighted by a corresponding
singular value of H, as shown in Fig. 2-8. 1If matrix H is
separable, then we have only one SVD expansion term. 1f
matrix H is not separable, theoretically, the exact

representation of H needs R terms. Hence, the number of

multiplication operations for direct convolution requires

RNZ(L1+L2) multiplication operations, as shown in Fig. 2-9.
27
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If we assume that the singular values A%(j) are
listed in order of decreasing magnitude, then the &VD
expansion of Eq. (2-17a) can be always rewritten as

H=Hoyp + Ex (2-18a)
[
where
'K
ESVD = ZEJ (2-18b)
j=1
R
- (2-18c)
j=K+1

where K is the number of retzined term for ESVD and the

"Hat" symbol (") represents the approximation of H. The
matrix EI( denotes the truncation error as a vresult of
retaining the first K terms. OCbviously, §1(=g for K = R.

It can be shown that the case for K = 1 corresponds to the

minimum mean square error (NMSE) separable approximation of

H [2-18]. 1If the elements of é for K=1 are not <close

in comparison to the elements of H, we may add the next

largest singular value term for a closer approximation of

H.

In general, we will be satisfied with a multi-stege

expansion that will closely approximate H. One of the most

commonly used numerical error measurements is the

Let us define the €VD
30

normalized mean square error (NMSE).




approximation error ¢y for the measurement of the degree
of approximation by reteining only the first K terms in the

expansion as

)IDDLEEIEN G
2

€ = - (2-19)

J
K Zztﬁ(i,j)!z
j

i

If 211 singular velues are the same magnitude, we have to
retain R terms. If, however the first few singular values
are very lerge compared with the magnitude of the rest of

the singular values, it would be sufficient to retain only

the first few terms for approximation. Two questions
naturally oarise. How meny terms will be sufficient for
close oapproximation in most practical cases? What

characteristics of 1impulse responses are reouired to

approximate H by 2 few singuler value terms?

In most cases, an imaging system can be modeled by a
superposition integral relating the input &nd output
continuous fields of a2 linear system [2-4]. In order to
reduce the problem to & discrete model, the point spread
function (PSF) of the imaging system, as well as the input
and output images, should be discretized. The matrix H
resulting from the PSF samples 1is nearly singular or
ill-conditioned since the rows of the matrix H are

approximately 2 linear combination of one another

[2-19,2-201.
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Ill-conditioning of a matrix can be described by its
condition number [2-21]. The condition number of given

matrix A is defined in terms of the ratio

X
cla) = —% (2-20)
min
of the largest A to smallest A singular
max min

value of A. The condition number is a useful tool for
explaining the effect of perturbation caused by additive
noise on the accuracy of computation involved [2-22]. The
condition number approaches infinity as Aﬁin goes to
zero. In this case, the matrix is called ill-conditioned
and will have a 1large condition number. In an idesl
imeging system, characterized by a delta function point
spread function, the condition number is unity since &l1
singular values have the same magnitude. CSometimes it is
convenient to demonstrate matrix conditioning by showing
singular value magnitude plots. Referring to Fig. 2-10, a
well-conditioned matrix requires more terms in a €SVD
expansion than an ill-conditioned matrix. But, it is noted
here that ill-conditioned and nearly singular problems oare
very common in imaging systems [2-4]). Therefore, we do not
need to retain all terms in the SVD expansion, but only a
few terms because of ill-conditioning of the PSF matrix
itself. The usefulness of the 8VD expansion can be

demonstrated by noting that we can trade off between the

32
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Figure 2-10. Singular value plot
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am.unt of NMSE and the computational efficiency by choosing
the number of terms 1in the SVD expansion. By retsining
only K terms 1in the SVD expansion, the recuired

s . . 2 . .
multiplication 1is KN (L1+L2). Computetioneal efficiency
LqL

12

(Ll+ L2)

still holds as long as KNZ(L1+L2)5 N2L1L2, or K<

2.4 The SVD/SGK Cascade Convolution Techrique

In the previous section, zpproximion of a nonsep-rable
impulse response matrix H in terms of the sum of individual
seperable matrices of unit rank was discussed. To
implement the SVD convolution, each separable convolution
operator is implemented in parallel, and summedé together,
as shown in Fig. 2-9. In this section, €VD and SGK
technigues are combined to obtain a more versatile
two-dimensional convolution technique requiring z simpler

implementation.

Since each SVD expanded separable matrix of unit renk
is an outer product of the one-dimensional column and the
row operator Ej and Ej' here each Sj and Ej ie to be
considered as a one-dimensional FIR filter. There are a
variety of alternative forms 'in the FIR filter realization.
Pealization of FIR filters generslly tokes the form of a
nonrecursive computation algorithm. One way of realizing
FIR filters for hardware simplicity is to use a cascade

form. In the cascade form, the z-transform of the impulse

response with the length of L can be expressed as a product
34




of second-order SGK filters as

O

Q
H(z)= Tl H (z)= T1 [B, \+B) jz "+6, ,z 7] (2-21)
k=1 k=1
where the Bj x ere real numbers and ¢, the number of

convolution stages, 1is

2 -
) 0= L (2-22)
2

When L is even, one of the kernel terms B, ,will be zero.
Here we shall be concerned only with the case of odd length
impulse response. The kernel of each second-order SGK

filter can be easily obtained by solving the zeros of the

polynomial H(z) because H(z) is & polynomial in z-l of
degree L-1.
A new approach for two~-dimensional SVD/SCK

convolution, shown in Fig. 2-11, 1is to realize each

one-dimensional convolution operator 32 and for

r
- %
£2=1,2,...,K as a sequence of second-order SCK filters.
Referring to Fig. 2~-11, the z-transform of the SVD/SGK

convolution filter is

K
. = 2-23
H(zy.2y) = :E:CQ(ZI)RQ(ZZ) (2-232)
=1

or

35
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K
Q Q
H(zy,2,)= [j_]lci’lul)] [_1_11R2,j<22>] (2-23b)
=1 T 37
vhere
Q
Colzy) = T Cy ;(zy) (2-243)
i=1
Q
RQ(zz) = iglRQ'j(Zz) (2-24b)

The terms Cy(zl) and Rﬂ(zz) for 2=1,2,...K denote the
z-transform of each column and row one dimensional
convolution operator, as defined in Eg. (2-16), and each
ng}zl), RQA(22) for i, = 1,...C is the z-transform of the

second-order SGK filter.

One of the most important reasons for wusing FIR
filters 1is that they «can be designed to possess linear
phase, & feature that is very useful in speech processing
and data transmission. It is easy to see where the zeros
2f such linear phase FIR filters can lie by examining their
z-transforms because a linear phase filter is symmetrical.

In the general cese, the filter system function is
L-1
H(z) = S‘h(n)z‘“
(2-25)
n=0

Linear phase FIR filters have a symmetry property such that

37




h(n) = h(L-1+n) (2-26)

Therefore, by using Eg. (2-26), Ea. (2-25) can be rewritten

as
- A5 Ll (Lol
Hiz) = 2 {noy 22«2 2]
L-3 - (L=3)
+h(1) [z 2 42 2 1] (2-27)
+ .. .}
If z is replaced by é—% then we cbktain
(L-1) _ (L-1) (L-1)
H(z) = z 2{h(O) [z 2 +2 2 ]
J(L=3) (-3
sz 2 vz 2 ] (2-28)
+ ... }
By comparing Eq. (2-27) with Eg. (2-28), one obtains
-(L-1) -1
H(z) = z H(z ™) (2-29)

Equation (2-27) shows that the zeros of H(z) are identical

to the zeros of H(z‘l). In other words, if H(z) has a

complex zero a+ib, with a2+t3 #1, then B(z) must have a

minor image zero —I¥B . Since the impulse response of
a+i

the filter is a real number, every complex zero of H(z) has

its complex conjugate as another zero,

The discussion above leads immediately to the possible

2

form of Hk(z). For every complex zero of H(z), a +b2# 1,

38
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the cecond-order SGK filter will be of the form

-1 -1

Hk(z) = [z —(ak+ibk)][z —(ak~ibk)] (2-30)

If the zero, a , is not complex, then the form of €CK
filter is

Hy (2} = [z_l"a][z—l- %] (2-31)

1f the zeros are either -1 or 1, then the zero is its own
complex conjugate as well as & mirror image. 1In this case,

the form of the SGK filter 1is
Hk(z) = (z “* 1) .(2-3?)

From the discussion above, the following rule of zero

grouping can be stated:

1) Complex zeros are grouped together in conjugete
pairs.

2) Real zeros, that zre reciprocel of each other,
are paired together.

3) Double or higher multiplicity zeros are paired

together in pairs.

The rule of zero grouping guarantees that &ll kernels
are reel numbers. The proposed SVD/SGK convolution has
both advantages and disadvantages. Since two-dimensional

large kernel convolution is replaced by a cascade of

one-dimensional SGK filters, the processing complexity can
39




be reduced., Also, from a theoretical point of view, there
is no approximation error in realizing the cascade form
because all kernels can be found exactly by simply solving
for the zeros of H(z). Only the SVD truncation error
defined in Section 2-3 will be introduced. On the other
hand, computational inefficiency <could be one of the
disadvantages of replacing two-dimensional SGK filters by
one-dimensional SGK filters, It is possible, however, to
perform two-dimensional SGK filter convolution instead of
one-dimensional since we can rewrite Eq. (2-23) in the

alternative form

K
~ _ Q
H(zy,2,) -Z '1_11H2’i(z1,z2)] (2-13a)
£=1 -7
where
Hg,i(zl’zz) = Cz,i(zl’zz)Rz,i(Zl'zz) (2-33b)

As a matter of fact, the two-dimensional SGK filter will
increase computational speed by a factor of two, but the
hardware is more costly and the processing more complex.
Implementation of a two-dimensional SGK filter, in genersal,

requires nine multipliers and adders.

2.5 1Image Processing Display Implementation

There are many ways to implement the SVD/SGK

convolution method. The goal of this section 1is to

40




describe how to organize the implementation and apply
SVD/SGK convolution to an image processing display system.
Let us denote F(j,k) as a filter input array with a size of
NxN and the array G(j,k) as its output. We also assume
that the size of the prototype impulse response is
(2041 ) x(2Q+1) . For simplicity, we shall discuss only
implementation for one term in the &VD expansion because
the SVD/SGK convoclution consists of K identical paths. The
implementation iterates 2Q stages. The node labeled
Yi(j,k) for i =1,2,...,20 is an intermediate array, which
will be used in the next convolution. In other words, at
each node, the array Yi_l(j,k) is used to produce array
Y;i(3,k). Therefore, YQQ(j,k) corresponds to the final
output array G(j.kl}. Once the array Y; (j,k) has been

computed from Yiwl(j'k)’ Y {j,k) is no longer needed and

i-1
that Y, can then be stored in place of Y 1+ To implement
SVD/SGK convolution, it is then necessary to have at 1least
one common storage for the intermediate array Yi(j,k) for
i=1,2,...,20. But the storeage array should be
initialized by the input array F(j,k). As the computations
proceed zlong the chain of SGK filters, each Y;(j,k) will
be larger in extent than its predecessor Yi"l(j,k).

Therefore, the required storage size must be 1large enough

to hold (N+2Q)x(N+2Q) pixels.

Because the implementation of SVD/SGK convolution is

highly modulzr, the «concept of SVD/SGK convolution is
41
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ideally suiteé for implementation by & digitel imaqe
display system. Two-dimensionel convolution performed by 2
digitsl computer in imége processing is often cuite time
consuming because of the seriel nature of the computation
and the slow input-output trarsfer réate between the
computer and display [2-23]. But solid <cstete device
technology makes it possible to develop memory devices that
produce pixels at e seriel rate of ecbout 10 million per
second. Fiqure 2-12 is a basic diegram of the architecture
for SVD/SGK convolution [2-23]. 1In the operation of this
hardware, an originzl imege to be convolved is written into
an accumulator memory with & size of (N+2Q)x(N+20Q). The
accumulator will thus appear as an arrey of nonzero velues
encircled with ¢ squere rings of zeros. Then the input
srray is sequentially convolved with & 2x1 impulse response
operator, depending on the row or column direction. Three
multiplication and three addition operations are performed
for each pixel. 2after each convolution, the microprocessor
will update the kernels of the 3x1 convolution operator.
This process proceeds for 20 stages, equivelent to 2C frame
time. Thus, after 2Q frame times, the contents of the
accumulator memory are added to the partial sum memory,
which is initialized by zero, and return to the original
image. This processing completes the first term of the SVD
expansion. The partial sum memory cen be displeyed, if

desired. Thie process is repeated for the remzining SVD
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Figqure 2-12. SVD/SGK convolution architecture
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terms, resulting in & totasl processing time of 2KQ frame
time intervels. For conventionel 30 frame/second
operation, the SVD/SCK convolution operation can be
completed in 2K¢/30 seconds, far less than the 20 to 20

seconds required by a hardware floating point processor.
2.6 Conclusion

In this chapter, it was shown that the SVD expansion
of the impulse response of & two-dimensional FIR filter is
a very useful technique for a two-dimensional convolution.
The SGK and £&VD/SGK convolution methods are attractive

techniocues for simplifying the computaetional reqguirement of

two-dimensional convolution. The SVD/SCGK convolution
approach is attractive for two reasons. First, lerge
two-dimensionsal convolution is replsced by cseguential

one-dimensional convolution with small size convolution
operators. If one 1is interested in implementing 8VD/SGK
convolution with specizl-purpose hardware, that epproach
reduces both the cost and the complexity of the processing.
Second, the design for the SVD/SGK convolution filter s
simple and fast, and the design procedure introduces a very
small approximation error caused by retaining only the
first few terms of the SVD expansion. But the design for
the SGK convolution filter generelly leads to complicated,
time~-consuming nonlinear optimization programs. To utilize

SVD/SGK convolution on the digital image display system, a
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besic diagram of the architecture for SVD/SGK convolution

was introduced.




CHAFTER 3

FINITE WCRD-LENGTH FFFECTS IN SVD/SCGK CCNVCLUTICN

3.1 1Introduction

Until now, we have assumed full precision
implementation for S&VD/SGK convolution. we will now
discuss some practical problems that must be considered
when digital signal processing algorithms are implemented
with programs for general-purpose computers or, especielly,
with special-purpose hardware. These problems are caused
by the use of finite word-length registers to represent
signal values, coefficient values, and arithmetic
operations. Because of finite word-length, a gquantized
number will not take the exact value assigned by the design

procedure.

When a signal, to be processed digitally, is obtained
by sampling a band-limited signal, the numbers must be
represented by a finite word-length register in the digital
machine, This conversion process between analog samples

and discrete valued samples 1is <called the gquantization

process. This quantization process 1is &an irreversible
nonlinear operation, when the filter <coefficients are
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quantized for digital implementation, the resulting filter
must be checked to be sure thet it is close enough to the
desired response. In addition, finite word-length
operation has 2 strong effect on both the cost and cspeed of
the system. If the word-length is large, then the cost of
hardware will be expensive and the processing speed low.
Therefore, reducing the word-length as much as possible is

e major goel.

It should be noted here that effects of finite
word-length in a digital filter depend on many issues such
as whether fixed-point or floating-point arithmetic is
used, whether the fixed-point number represents a fraction
or an integer, and whether gquantization is performed by

rounding or truncating.

In & digital system, nunbers, generally, are
represented by a radix of 2. Thus, numbers arec represented
by strings of binary digits, either =zero or one. 1f a
word-length of b bits is chosen to represent numbers, 2
different numbers can be represented. There are two ways
to represent binery numbers, depending on the location of
binary points. In fixed-point arithmetic, the position of
2 binery point 1is assumed to be fixed. The bits to the
right of a binary pcint are the fractional part and those
to the left of the binary point ere the integer part. But,

with no loss c¢f generality, we assume throughout this
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dissertation that the position of the binary point is just
to the right of the first bit. Thus, the range of numbers
that can be represented with b bits is -1.0 to 1.0—2—(b-l?
It is noted that the signal magnitude can be scaled to any
desired range. Certainly, the binary point could be moved
further to the right to =allow a signal with magnitude

greater than unity, but the price peid 1is greater

complexity in hardware.

There are three formats commonly used to represent
fixed-point numbers, depending on the way of expressing
negative numbers: sign and magnitude, 2's complement, 1's
complement. The sign and magnitude, the most simple
format, represents the magnitude by a binary number; the
sign is represented by the leading digit. It is useful to
assume that in all three representations, the 1leading bit
is zero for a positive number and one for a negative
number. For this reason, the leading bit is called a2 sign
bit. But the sign and magnitude format presents an
inherent proklem in performing simple arithmetic, such as
addition. Therefore, the sign and magnitude format is

generally avoided in a digital system.

For 1's complement representation, positive numbers
are represented as in the sign and megnitude format. A
negative number is represented by complementing all of the

-~

bits of the positive number . In 2's complement
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representation, positive numbers are represented as in the
cign and megnitude format. But & negative number is
represented by subtracting the magnitude from 2.0. The
choice among the three formats depends on hardware
consideretion. The two's complement format is widely
chosen in most digital systems because it conveniently
performs subtraction using a2n adder. Another advantage of
using the 2's complement format is that the correct total
sum will be obtained even when partial sums overflow or

underflow.

In fiXxed-point arithmetic, the result of adding two
b-bit numbers 1is still b bits. However, the magnitude of
the resulting sum can exceed  unity. This phenomenon,
called overflow, is inherently related to the limited
dynamic range of fixed-point arithmetic. Scaling can be
performed to avoid undesired overflow. The product of two
b-bit numbers results in a 2+b-bit number . 1f
multiplication is carried out p times, the required
word-length for representing the result is p.b bits. This
is <cleerly an unacceptable situation for the hardware and
economy. To remedy this problem, truncating or rounding
operations to fit the results of multiplication into a
finite word-length register is necessary. The error due to
truncating or rounding of p bits of word-length into g bits

(p29) of word-length 1is commonly referred as roundoff

error., Considerable attention has been paid to
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investigating the effect of roundoff error on digital

filter implementation in the last decade [3-1 to 2-5].

Floating-point arithmetic is & method for providing
automatic scaling. An arbitrary finite number x can be

represented exactly using the flcating point representation

X = sign(x)c - 2% (3-1)

where c, the mantissa, is & full ©precision binary number
such that 1/2<¢<1 and i, the exponent, is an integer.
The number of bits, b, in a flowing-point representation
should be divided into the number of bits by, for the
mantissa and the number of bits by for the exponent.
2lthough floating-point arithmetic reguires truncating or
rounding operations in both multiplicetion and addition
[3-6], it provides more dynamic range than fixed-point

arithmetic,

The comparison between fixed-point and floating-point
arithmetic depends on the input probability density
function, 1input power spectral density, and filter
frequency response {3-7}. 1If the floating-point mantissa
and fixed-point word-length have the same word-length, then
floating-point arithmetic is more advantageous. Cenerally,
when a large dynamic range 1is required, floating-point
arithmetic generates less roundoff noise because it

provides automatic scaling [3-1]). But it should be noted
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here that floating~point arithmetic is significantly more
complicated and expensive in hardware than fixed-point
arithmetic. When economy and speed are of major concerns,

fixed-point arithmetic is usually a logical choice.

The comparison between truncating end rounding depends
on whether fixed-point or floating point arithmetic is used
and how negative numbers are represented. However,
experiments have <chown that the errors generated by
truncation are more severe than those generated by rounding
becazuse of a Dbies [3-3]. Truncation operation is not

commonly used in prectical digital system.

The next problem of concern is fraction or integer
multiple representation of numbers., In integer multiple
representation, all numbers are represented by 2_N, where N
is an integer. Therefore, the multiplication operation
reguires only a shift operation. This shift operation will
increase computational speed and simplify the hardware.
But one can expect losses in dynamic range and accuracy in
arithmetic, Since accuracy is essential in finite

word-length arithmetic, fraction representation is commonly

chosen.

Due to all these reasons, attention will be focused on
fixed-point arithmetic with the rounding operation and

fraction representation. Another reason for restricting

our attention to fixed-point arithmetic 1is that the
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overflow resulting from the limited dynamic renge can be

avoided by proper scaling of the signsl level.

3.2 Preliminary Stetement

Fixed-point arithmetic with finite word-length cauces
three common error sources [3-3]:
1) CQuentization of the input signal into &a set of

discrete values causes inaccuracies.

2) Representation of the filter <coefficients by =&
finite word-length changes the filter

characteristics.

3) Rounding or truncating of the results of
srithmetic operations within the filter causes
errors, known as roundoff* noise in the filter

output.

Overflow can also be & problem within filters. However,
the overflow problem can be avoided if the signals eare

properly scaled. This problem will be discussed later.

The first source of error above, commonly referred to
as A/D noise, is inherent in any analog-to-digital (2/D)

—— - - — -

*This term is universally adopted whether rounding or
truncation operation is actually performed.
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conversion process, and has been studied in great depth
[3-5]. It is noted here that the input data array is
already a quantized version in most practical cases. For
example, 8-bit image date is common in image processing.
Furthermore, it shall be shown later that the effect of
input cquantization 1is far less severe than the effect of
roundoff noise. Hence, the effect of 2/D noise has been

excluded in this study.

The second source of error mentioned above occurs
because the filter coefficients, following &z design
procedure, which would normally use full precision, must be
guantized with finite word-length. This quantization of
the filter coefficients will alter the transfer function.
This error differs from structure to structure. It is
advantageous to use a structure that is insensitive to
filter coefficient guantization. 1In general, the effect of
filter coefficients 1in accuracy 1is most severe 1in 3
higher-order filter when the filter is realized in the
direct form than when it is realized in the parallel or
cascade form. As a rule, therefore, the parallel or
cascade form should be used for higher-order filters
whenever possible (3-3). Experimental results have shown
that the amount of error is not significant 1in our case.
Therefore, no particular emphasis will be made in this

study, except in Chaper 5.

53




The third source of error mentioned ebove is of major
concern in fixed-point arithmetic, and is the major subject
of the next section. Roundoff noise is the most important
factor in determining the complexity of hardware and speed.
Large word-length will slow down computational speed.
Furthermore, the price paid by increasing the word-length
for filter coefficients is negligible compared to the price
paid by increasing the word-length for reducing roundoff
error. In addition, a 1limit <cycle <can occur in the
recursive realization of FIR filters [3-9]). However, 2

limit cycle cannot occur in the nonrecursive structures.

3.3 Fixed-Point Arithmetic

3.3.1 Roundoff Error

The direct form of discrete convolution can be

characterized as a calculation of the sum of products

N N

S = Za(n)b(n) = Zc(n) (3-2)

n=1 n=1

Let us assume that a(n) and b(n) are (b+l)-bit numbers
(including sign bit) and products are rounded to less than
(2b+1) bits, but more than (b+l) bits. Then, the rounded

products can be written as

[c(n)]r = c(n) + e(n) (3-3)

54




The releation between [c(n)], and c(n) is shown in Fig. 2-1

~ 14

where [c(n)]r denotes the rounded number and e{(n)

represents the error resulting from rounding. In

fixed-point arithmetic, the error made by rounding with

(bl+1) bits satisfies the inequality
-b ~-b

1 1
2 2
- 5 < ens = (3-4)

2

Thus, the resulting sum can be expressed as

N

N
s, = j{:[c(n)]r =5 + :E:e(n) (3-5)
n=1

n=1

Let us assume that the resulting sum £ will be stored into

(bh+1) bits of word-length. Then, the resulting sum

rounded to (b2+1) bits can be rewritten as

N
52 = Sl + v =295+ E e(n) + v (3-6a)
n=1
where
2—b2 2--b2
- jf*—s v< 3 (3-6b)

Therefore, by combining Egs. (3-5) and (3-6), we obtain

! "By

s, ~s]¢ 2= N + 2

2
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N ' -3 teecwns

The characteristic of the roundoff noise at the output
depends on the location where rounding is performed. There
are two possible locations for rounding. First, if all
multiplications are performed with full precision, rounding
is performed only &sfter summation. Then, from Eg. (3-5),
e(n)= 0 for n = 1,2,...N so that

. ~b,

5,51 25— (3-8)

If all multiplication products scre rounded for storage

before addition, v = 0 and

_bl

2
|S,-8|g 5— N (3-9)

Unfortunately, &all1 of the bounds derived are for worst
cases, and thus, are of little practical usefulness. In
the following discussion, we will derive more useful

bounds.

2 less conservative estimate of the noise caused by
rounding can be obtained by a statistical approach [3-3].
It should be noted here that a precise analysis of roundoff
noise is generally complicated, and not reaguired in
practical applications. The purpose of error analysis is
to determine word-length within a filter to satisfy some

specification with reasoneble tolerance. Furthermore, &
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final decision concerning word-length is insensitive to
inaccuracies in the error anelysis. Thus, an analysis

correct to within 30 % to 40 % is often acceptable [2-6]).

The statistical approach considers the errors
introduced by rounding to be smzll random aguantities. This
viewpoint simplifies the analysis and enables useful
theoretical results to be derived. Many computer
simulations results have verifed the wvalidity of the
statistical approach [3-3 to 3-5]. It has been claimed
that the statistical approach tends to be more accurste
when the number of quantization levels is not tooc smell

[3-3].

Three common assumptions ere made concerning the

effect of rounding {3~3). They are:
1) The error sequence e(n) is & white-noise seguence.

2) The probability distribution of the error sequence
e(n) 1is wuniform over the range of guantization

intervals.
3) The error sequence e(n) is uncorrelated with the

input and itself.

The uncorrelatedness assumption is particularly

attractive because the total error due to rounding is the

sum of each rounding error. There are some controversies
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’ T

over the validity °of the assumptiong we haye made, poy
instance, if the input isg constant, we  wilj} See clearly

that 313 three aSsumptiong above are invaligqg, In such

is no longer Uncorrelateq with the input, But thege
assumptiong Seem to be valid fop most fFiltere with input
signals of feasonable amplityde and Spectra} Context, ¢
uncorrelatedness is not éSsumed , then the 2nalysig will e
more complicated, and the resulte will be dependent on the

Particular input signal or Class of inpuyt Signalse [3-271.

exactly, ang founding jg bPerformeg only after they are
Summeqd , l.e., at the filter Output, Then only one Noise

SOurce jgq Present jp the filter, and jt Superimposeg on the

There are 20 23x1 SGK filterg in  each Svp €Xpansion
Stage, o] columns and o rows, Let yg define a
two—dimensional 3x3 filter, t.’xz,m), depending on  the
columnp Or row direction. The subscript j denoteg the j-th

Stage gyp €Xpansion, Thus, let
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[0 c 0]
0 0 for column convolution ‘
LO 0
t. . {(2,m) = (3-10)
I3 0 0 07 :
ry ¥, r3 for row convolution
L0 O 0

for i=1,2,...,2Q. Figure 3-3 shows the roundoff noise
model for the SVD/SCGK convolution filter. The mean and

variance of the error seqguence e(n) can be shown to be

mg, = 0 (3-11)
2 .27k
e 12

We assume that the rounding is performed with (b+l) bits
word~length., In this model, a given error seguence e{n) is
filtered by succeeding sections, so that the output noise
variance will depend upon the ordering of the second order

SCK filters.

Let us define gjjfz,m) to be the impulse response from

’

the noise source ei(n) to the output. Thus,

{g,m)e8t

g"i(glm)=t ]'i+2

3-12
i (Q:m)OO---QQtj’ZQ(Q.m) ( )

ji+l

The mean and variance of the roundoff noise are then given
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by

(3-12)

2 _ 2 2
oei = erZlqj'i(ﬁ,m) |
L om

and the total noise variance 1is the sum of each noise

variance of the 3x1 SGK filter. Therefore,

2Q

2 2 2

. = . {(2,m -14

3=l T[Ty, tem 7] -1
i=1" 2 m

If an impulse response H 1is epproximated by K singulsr

values, then the total output noise varience due to

rounding is

K K 20
Oiotafzc?cizzZ[ZE'%J‘“"“”ZH (3-15)
j=1 j=1'i=1 i m

If the two-dimensionel impulse response (2 ,m) consists

9,1
of N1 SGK filters for the columns and (20—i—N1) SGK filters

for the rows, then gj ﬂz,m) can be rewritten as
r

c r
gj,i(z’m) = gj,i(g)gj,i(m) (3-16)
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In vector form, Eq. (3-16) is equivalent to

) (3-17)

where g§'iand 3§,i are one-dimensional impulse responses
obtained by convolving N, SGK filters for the columns, and
(ZQ~i—N1) SGK filters for the rows, respectively. 1f g .
consists of only SGK filters for the columns or the rowgi

then g? ana g? should be

j,i 3.1
0
c - (3-183)
95,1 |1t
0
or
r T _ (3-18b)
Note that

2 2
> 3ey, s em %= 30 0e5 s (153 1eT  m |2 (3-19)
L m

£ m

Substituting Eg. (3-19) into Eg. (3-20), we obteain

~
~M
a_

c 2 r 2
j,i(z)l Zlqj,im)l ]} (3-20)
m
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Equation (3-20) 1is a theoretical formula predicting
rouvndoff noise with (b+l) bits word-length. 7Its validity

will be demonstrated in Chapter 5.
3.32.2 A/D Error

Next an eattempt has been made to show that the input
A/D ncise ig negligible <corpered to the roundoff noise.
Again, the staticstical meocdel 1is chosen, and the input
guantizetion 1is considered as an 1injection of additive
noise to the input. The noise gGuantitites ere uniformly
distributed over one quantization interveal and
statistically independent. €ince the first place where
gquantization of the input signal may take plasce is at the
2/D converter, the A/D noise effect is independent of the
structure we used to reelize the filter. Figure 3-4

describes the statistical model for 2/D noise,

If the quantizer has & word-length of (t+1) bits, then

the 1input to the actual filter is x(z,m)+%bafz,m), where

?A/& % ,m) is the quantization error, bounded by
=t -

—5§—-5 e (2,m < 2-%. Let us define the ocutput error
A/D 2

array, E(L2,m), as
E(2,m) = H(Q,m)QOeA/D(Q,m) (2-21)

¢ince the filter is linear, it cen be shown that F(¢,m) bas
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zero mean ang veriance given by

2 2 N )
Sa/p = Op QL0 HGm)! (3-22a)
iom
where
2 _ ,~2t
t 12 (3-22b)

It is noted that the filter has been normelized, so that

P IUEE <
2 m

Such @ normelized filter will not <chaenge image contrast

W
|
N
(O8]
—

between input and output. Therefore, it is obvious that

ZZIH(Q,m)IstZH(z,m) =1 (3-24)
£ m £ m

Using Egs. (3-17) and (3-19), and assuming that the
guantizer has the same word-length as a multiplier, it can

be shown that

2 2

OA/D < o, (3-25)

It is shown that the A/D noise is smaller than or equal to
that of roundoff noise, In general, A/D noise |is

ne3li1gible compared to roundoff noise.
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It 1s necessery to remerk on the effect of filter
coefficient guantization. although zerc locetion &nd
frequency response sensitivities to coefficient chénqes cen
readily be obtained, no general stetistical analysis of the
type given in Section 3-3 has been obtezined to describe the
cascade form of FIR filters. Herrmann and Schuessler [2-9]
worked on this problem only experimentelly, not

theoretically.
3.4 Conclusion

The accuracy of & digitel filter is 1limited by the
finite word-length used in 1its implementetion. When a
digital filter is implemented with specizal-purpose
hardware, one 1is ususlly interested 1in determining the
minimam wofd—length needed for &a specified performance
accuracy. Also, word-length 1is &an important factor in
determining the complexity of hardware and speed. Thus, it

is very important to understand the effect of guantization.

In this chapter, attempts have been made to oanalyze
relevant effects of wusing fixed-point arithmetic for
SVD/SGK convolution from a stetistical viewpoint. Cur
consideration of finite word-length effect began with 2
discussion of the various methods of number representation
that are commonly used in digital system. The following

discussion focused on three common source of errors caused

by implementstion with finite word-length. Then, we showed
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how & statistical znalysis can estimete the effects of

guantization in SVD/SCK convolution. Statistical methods

were shown to be very efficient in systems with

non-cdeterministic signels. It was also shown that roundoff

noise is of mejor ccncern in digital implementation, and e

theoretical formule to predict
variance of SVD/SGK conveclution was
was shown to be negligible in
dependence of the roundoff noise on
demonstrated. The discussion of
dynamic range consideration in the

is the subject of the next chapter.

total roundoff noise
derived. The 2/D noise
our case. Finally, the
section ordering was
section ordering and a

fixed-point aritbmetic
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CHAPTER 4

SCALING AND SECTICN CRDERING

4.1 1Introduction

In the previous chapter, a theoretical formula for

predicting roundoff noise variance was derived. Cne
important constraint should be imposed on the
implementation with fixed-point oarithmetic. There is a

finite dynamic range of fixed-point arithmetic. To ensure
that the final output be correct, overflow at the output of
any second-order SGK filter must be avoided. 1If the output
of each section (SGK filter) exceeds the finite dynemic
range of the filter, undesired signal distortion will be
introduced to the output. For example, given the dynamic
range of (-1.0, 1.0), adding two numbers may result in a
number that is not within the given range. Truncating or
rounding operations that assign the 1limit value to the
result (say -1.0, or 1.0) introduce an error. This problem
directs attention to the need for a scaling procedure for
the filter paremeters of each SVD/SGK section in order to

prevent overflow.

Another issue, section ordering, is also important to
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minimize roundoff noice. 2As seen in Fg. (3-15), the toteal
rounccff noise has a strong dependence on section ordering,
i.e., gjj}ﬂ,m) will be different if the ordering is
'
different. For example, Schussler [4-1] hes demonstrated
that a FIR filter with a2 length of 33, ordered one way,
produces 02= 2.402, where (Q 1is the aquantization step,
while ordered another wey yields 02= 1.5x108Q2. Al though
this experiment demonstrated two extreme cases, it <clearly
shows the 1importance of section ordering in cascade form
FIR filters. CSince the respective difference is so large,

determining the minimum roundoff noise ordering is

essential.

Unfortunately, attempts to find optimel ordering
become impractical since, given M sections, there are M!
possible orderings. Even for & moderate value of M, say
M=7, searching 5040 possible orderings is very
time-consuming. Furthermore, due to the analyticel
complexity of Eg. (3-15), no analytical eapproach to finding

an optimal ordering seems possible.

Chan and Rabiner [4-2] 1investigeted the section
ordering problem of one-dimensional, cascade form FIR
filters guite intensively and reported their results, based

on the experiment, as follows:

1) Most orderings have very low noise compared tn the

max imum possible value. More specific, for a FJPR
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lowpass filter with length 11, they showed that
approximately two-thirds of the orderings have
noise variance less than 4% of the maximum, of
which nine-~tenth have noise variance less than 14%

of the maximum.

2) There is a large gap between smell and large noise
variance distribution, and the noise values within

the gap are produced by very few orderings.

Their conclusions are encouraging. Since the large
majority of possible orderings are very close to the

minimum noise variance ordering, finding & suboptimal

'6rdeiing is possible with reasonable computations. Instead

of finding a time-consuming optimal ordering, it may be far
more practical to use a suboptimal ordering method that can
rapidly determine an ordering that is close to the optimal.
Furthermore, the reduction in roundoff noise gained by
finding the optimum ordering is very small, compared to a

good suboptimal ordering.

Based wupon their experiments, Chan and Rabiner
proposed a simple one-dimensional ordering algorithm [4-21,
which has proven to be very efficient in minimizing
roundoff noise variance.

The purpose of this chepter 1is to discuss sceling
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procedures and ordering algorithme for SVD/SGK convolution.
Two existing scaling methods, sum and Lp—norm scaling, are
discussed, and applications to 8VD/SGK convolution are
given in Section 4-2. A brief review of the Chan and
Rabiner ordering algorithm and 1its generalization to

SVD/SGK convolution are described in Section 4-3.

4.2 Scaling Procedure

Scaling is important because the computational dynamic
range sets a practical limit to the maximum value of signal
levels representable in the filter. The theoretical basis
for the scaling procedure chosen here is Jackson's work
[4-3], commonly referred to as sum scaling. To formulate
the required overflow constraints, let us assume that an

input signal x(n,m) is bounded in magnitude by 1.0.

. o - -

We shall consider a scaling procedure in which a
(20+1)x (20+1) FIR filter is implemented by SVD/SGK
convolution. There are 20 3x1 SGK filters for the columns
and rows in each €VD expansion stage. To simplify
notation, only one SVD expansion stage will be considered.

Therefore, the subscript j will be dropped.

We will define f;(2 ,m) to be the impulse response from

the input tc the i-th section. The z-transform of fi(z,m)

can be written s




Fi(zl,zz)

ZZ fl (2,m)z ‘;zz_m
2 m

i
éngp(zl,zz)

(4-1)

where Tb(zl,zz) is the z-transform of tp(Q,m), as defined
in Eg. (3-10). Let S; be the scaling factor for the i-th

)
section and‘Ti(zl,zz) be a scaled z-transform of Ti(z ,22).

1
Then

]

and the scaled transfer function from the input to the i-th

section is

! - ! -2 _-m
F.(zy,2,) —ZZfi(l,m)zl z, (4-32a)
£ m

or

. Fi(zl'ZZ) = n T (zlrz )_ n S n T (21,22)

Letting vi(z,m) be the output at the i-th section, vi(z,m)
is obtainéd by convolving the input array x(2,m) with the

1
impulse response fi(z,m). Thus

Vi(zlm)

3D x(p,q) £, (2-p+l,m=g+1) (4-4)
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and | vi(l,m)l ie bounded by

(v, (2,m) |

A

x| ST g (e |
P g

(4-5)

i
2%Vl n ISPIZZ|fi(P,q)|
p=1 p g

Therefore, a necessary. and sufficient condition on the
scale factor to ensure that the output of each section is

bounded in magnitude by 1.0 is that

i

(4-6

|x(2om) | IDI=11|sp| ZZ £, (p,a)| < 1.0 )
P g

Since |x(2,m)| is bounded by 1.0, Eg. (4-6) 1is equivalent

to

p=1

i -1
Mis,| < [ZE £, (p,q) I] (4-7)
P g

The scaling procedure of Eq. (4-7), satisfied with

eguality, is called sum scaling.

Another scaling procedure, referred to as Lp-norm

scaling, was also introduced by Jackson [4-3]). Note that

the i~th section output vi(l,m) satisfies the condition

m n
]
v, (2,m) = —lf f..[ai(u,v)X(u,v)dudv (4-8)
i 4
Zn Zq 75




where 3'(u,v) and i fu,v) =zre the Fourier trensform of
]
fi(ﬂ,m) and x(%,m) respectively. Here we z2ssume that the

input x(2,m) is a deterministic signeal.

The Lp-norm of 2 Fourier transform &(u,v) is Qefined

T Hi
1 p 1/p
HHHp =[:——-7 ;&'(U,V)‘ dUdV] (4_9)
am Sy o=

Equations (4-~8) and (4-9) immediztely lead to the relztion

as

m m
|v, (2,m)|< ‘ijr./-“V(u,v)x(u,v)Idudv = [l ryxiy (4-10)
1 4 L - i

Applying the Schwartz inequality to Eqg.(4-10) vyields the

relation
T T
\vi(z,m) |25-1—2f |:§i(u,v) lzdudv-flx(u,v) l?‘dudv (4-11a)
47 o J
or
2 1
lvi oym) %<l F 1, HXIT (4-11b)
In general, it can be shown that
] '
Ies- x [T lF 1l - Xl (4-12)




for
+

IR
Q-

ana p,a2>21. Therefore, with Lp—norm scaling, the reauired

condition and preventing overflows is satisfied by
' -13
IVi(Qrm)ISHFin HXHq (4-13)

Rased on Eq. (4-13), & sufficient condition for scaling can
be given 1if one has knowledge of the Lp—norm cf the input
signal. One particularly interesting case is p => and

g = 1. 1In this case, the input signal should be bounded by

ul us
—71 _[ /Ix(u,v)ldudv < 1.0 (4-14)
4T
- =T

Then, the necessary and sufficient condition on the scale
factor to quarantee that the output of each section is

bounded in magnitude by 1.0 is that

. MAX '
IFi Ml = ] znsusn 1; (wvyfis 1.0 (4-15)

which is eguivalent to

i
IMs. <

-1

MAX '

-ngugn | F, (u,v) | (4-16)
-n<vEn 1




The scaling procedure of Eg. (4-16), satisfied with

) eguality, is known as peak scaling [4-3].

The two scaling procedures discussed above are
summarized as follows. If the input signal is bounded by

| x(&,m)| £ 1.0, then each scale factor S; can be comp. ed

according to the following procedure:

1. Compute

2 .
. = £. ’ =1,2,...,2
of ZZI ; m) | for i Q (2-178)
2 m
2. Then
g% for i=1
i
5. = (4-17b)
i
9i-1

If input signal is bounded such that

it ™
4—12/ flx(u,v)ldudvs 1.0 (4-183)
ui

-7 “m

then each scale factor S; is computed as follows:

1. Compute




i (4-18b)
. = -m<u< T ’ f .=, F e e ey - D
A _:@3_5 Idl(u v) | or i=1,2 20
2. Then
;L for i=1
£
S, = (4~18¢C)
i
i-1 for i=2,3,...,20
Vi

But, it chould be noted here that Eg. (4-16) cannot he used
in the case of a random input signal, because if the signal
is random, its Fourier transform does not exist. Ipstead
of wusing the Fourier transform, the equivelent condition
can be obtained with the appropriate power spectral density

and autccorrelation function [4-23.

Experimental results indicate that the two scaling

procedures vyield noise vériances thet are similar [4-21.
In general, sum scaling is much simpler to perform than
peak scaling in FIR filter cases. With peak sceling, one
must find the maxima of the |F;(u,v)| for all i. Even
using the FFT algorithm will reguire more computations than
finding ;Zm:lfi(l'm)l for all i, It has been claimed
that sum scaling 1is too conservative to be used in TIR
filter cases [4-4]. PBut this is not of major concern in
the case of a FIR filter. Therefore, in order to save

-

computation time, we shall focus on sum scaling throughout
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this study.

The sum sceling of Eg. (4-7) recuires computation of
the two-dimensional 1impulse responce fi(i,m) for 211 1.
Since each SVD-expanded matrix Hj of Fa. (2-17) is
separable, further simplification is possible for SVD/SCK
convolution. Note that each separable matrix Ej is eén
outer product of one-dimensional column and row convolution
operators Ej and £j' Instead of applying the sum scaling
by computing fi(z,m), the same result will be obtained by
applying the sum scaling to Sj and £j independently. The

following Lemma will generalize the above argument.

Lemma: If a two-dimensional separeble impulse response

matrix H 1s realized in the one-dimensional cascade

form, sum sceling can be applied to the
one-dimensional convolution operators ¢ end r
independently.

Proof: 1In the SVD/SGK convolution system, there are ¢
3 x1 SCK filters for the «columns and rows of the
input image. Given a certain ordering, there are Nl

3 x 1 SGK filters for the columns and (i-Nj) 3 x )1 SCK

filtcrs for the rows from input to the 1i-th section.

Let wus @assume the i-th section iz & filter for the

column. From the sum scaling of Eq. (4-17), we have




8]

ZZifl L) | Z\fl l()c)]z,fllm
= i-1 = -
%1 9 Zzlf (%, m)l Z,f ”)IZ'f (4-19)

where fi(Q) and fi(m) are one-dimensional impulse
responses cbtained by convolving the Nl filters of the
columns and (i-N;) filters of the rows. The
superscripts c,r are associated with column and row,

respectively. But,

r r
SolEipm] = Y m] (4-20)
m m

Therefore,

[£5_(2) ]
s, =

¥
. Z]f (2) ] (4-21)
) .

which is equivalent to one-dimensional sum scaling.

By the Lemma, two-dimensional sum scaling is shown to

be eqguivalent to two one-dimensional sum scaling

operations. The same Lemma can be applied to peak scaling.

Since f;(4,m) is separable, then

Ji(u,v) = 4 (u) 4 (4-22)

Jl
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Therefore,

MAX MAX MAX '
[‘“5“5“ |34 (wev) ﬂ{musﬂ 45w ﬂ[—ns\zg ERl (4-23)

-n<v<n

4.3 Section Ordering

The next step, given the scaling procedure chosen, is
to choose an ordering for the sections to minimize the
total roundoff noise. As an approach toc determine an
ordering algorithm for SVD/SGK convolution, a
one-dimensional ordering algorithm for the cascade form FIR
filter will be introduced. 1If 2 FIR filter of size (20+1)
is realized in cascade form, there are ¢ sections of
second-order filters and (¢! ©possible orderings. TIf we
define bi(k) for i=1,2,...,0 to be the impulse response
from the (i+l)-st secticn to the output, the total roundoff

noise variance can be shown to be [4-2]

~2b

Q
"12: - “*212 Z [E |b; (k) 12] (4-24)
i=1  k

Here we assume that the rounding is performed only after
the products are represented in full accuracy. The best
ordering will minimize the total output noise variance.
Based on the Chan and Rabiner experiment, the proposed

algorithm is summarized as follows (4-2]:
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Beginning with i = Q, assign the i-th section,
together with the section already assigned, that

yields the smellest possible value for ‘z:lbi_l(k)lz.
k

This algorithm is suboptimal since the algorithm
minimizes the output noise variance from individual
sections instead of minimizing the sum of the output noise
variance. However, 'in all cases tested, the algorithm has
proved to yield section ordering very close to the optimum
ordering because a large majority of possible orderings

yield small output noise variance, as discussed before.

In SVD/SGK convolution, there are a total of 20 3 x 1
SGK filters. Searching (2Q)! possible ordering is an
enormous task. But we shall see, based on the existing
theory, the generalization of a one-dimensional ordering
algorithm for SVD/SGK convolution is possible, and the

proposed algorithm will prove to be efficient and simple.

Let us rewrite the output noise variance formula for

SVD/SGK convolution, as derived in Egs. (3-15) and (3-20),

as
Stotal = 12 2 {Z(ZZ |9j’i(2,m)l )} (4-25)
j=1 *i=1 "2 m
,-2b 2Q (4-26)
2 = c 2 r 2
Ototal'Tz"Z{Z(Z!gj'i(l)l Elqj i(m)] )}
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c r . .
where gj’i(z,rn) ’ gj,i(g), and gj’i(m) are already defined in
Section 3-3. Again, only one SVD expansion term will be

considered; therefore, the subscript j will be dropped.

Using Eg. (4-25), it is guite simple to extend the
Chen and Rabiner ordering algorithm to SVD/SCGK convolution.
But the significance of using Fg. (4-26) to search for an
ordering algorithm for SVD/SGK convolution is that the
ordering problem can be treated as solving two

. . . . c 2
one-dimensional ordering problems. Since 2 ]qi(2)| and

2 L L : .
Z ]g’i:(m)l are positive numbers, the following is
m

satisfied:

min Zlg(i:(l) IZZIQJi:(m) |2]
L 2 m
= min Zlgi(l) |2]min|:z Iin’(m) |2]
L 2 m

Rather than minimizing ;Z |g,(;a,m)|2 , an equivalent
m 1

(4-27)

condition can be obtained by minimizing 2;|gci:(2)12 and
Z[gli(m) |2 separately. Thus, minimizng Ig"l"(g)lz and
zz:|g§_(m)| 2 is equivalent to two one-dimensional ordering
prngblems. After ordering column and row operators
independently, the remaining step is to decide whether the
SGK filter on the column or on the row should be assigned

at the i-th section.

To show the rationale for the algorithm

mathematically, assume that (2¢-i) SGK column operators and
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row operators have been already assigned with Nl column
operators and (ZQ-Nl-i) row operators., Now, we want to
select the i-th section of the 8&VD/SGK convolution. To

simplify the discussion, let us d&efine

a; =195, (W12 (4-28)
2

2
By =2, lal,, m] (4-29)
m

I1f we had assigned the next filter on the columns to the
i-th section, then the output noise variance would be

proportional to
c _ c 2
E] = 8, Zlgi(z)l (4-30)
2

If we had assigned the next filter on the rows to the i-th
section, the resulting output noise variance would be

proportional to
r r 2
E; = a; 3 19y (m| (4-31)
m

By comparing Eg and Eﬁtof Egs. (4-30) and (4-31), one can
easily decide whether the filter on the columns or the

.filter on the rows should be assigned to the i-th section.

Since ojr By for i=1,2,...Q0 can be obtained as a

result of one-dimensional orderings for the column and row
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operators, this procedure 1is far simpler than using

qu (4—25)0

In brief, the proposed ordering algorithm is

summarized as follows:

l. Find a one-dimensional ordering to the column and
the row operators by using the Chan and Rabiner

algorithm and store ase By for i=1,2,...¢.

2. Beginning with i=2Q, compare E: and Ez given by
Egs. (4-30) and (4-31), respectively, to decide
whether the filter on the rows or the filter on
the columns should be assigned to the i-th

section.

This proposed algorithm is also suboptimal in minimizing

z Z | gi(jz,,m)|2 rather than minimizing E aj v where
[} m

T
oj = ;2 19, (gom) |2,
m

4.4 Conclusion

In addition to the effect of finite word-length
discussed in Chapter 3, the problems of overflow and
section ordering to minimize the total roundoff noise are
of great importance when a digital filter is realized in
cascade form. To prevent overflow, the filter parameters

and input signals must be scaled so that no overflow occurs

following addition. Proper ordering must also be found for
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a filter in cascade form because the output roundoff noise

has a strong dependence on the way it is ordered.

Following the discussion of two different scaling
methods, sum and Lp-norm scalings, sum scaling was chosen
because sum scaling is simple and easy to employ. A
detailed sum scaling procedure for SVD/SGK convolution.was
presented., Because separable matrices result from the SVD
expansion of &a nonseparable impulse response matrix, the
two-dimensional scaling problem turned out to be two
one-dimensional scaling problems. The proof was given in a

Lemma.

Next, the section ordering problem was considered.
Extending the existing one-dimensional suboptimal ordering
algorithm proposed by Chan and Rabiner [4-4], a generalized
two-dimensional suboptimal ordering algorithm for SVD/SGK
convolution was proposed. Because it is actually
equivalent to two one-dimensional ordering problems, the
proposed ordering algorithm is very simple and fast to
compute. The experimental results based on the proposed

ordering algorithm, which is shown to be very efficient,

will be discussed in Chapter 5.
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CHAPTER 5§

EXPERIMENTAL RESULTS CF SVD/SGK CONVOLUTION

USING FIXED~POINT ARITHMETIC

5.1 Introduction

In this chapter, computer simulation experimental
results for SVD/SGK convolution are presented. Two
prototype filters with linear phase have been chosen for
the experiments. One 1is a lowpass filter, the other, a
bandpass filter. The sizes of the filters are 15x15 and
11x11, respectively. Perspective views of the frequency
response of the prototype filters are given in figures 5-1
and 5-2, respectively. Figure 5-3 shows the SVD
approximation errors for the expansion of the prototype
filters. It 1is observed that the NMSE decreases very
rapidly in both cases. 1In the case of the lowpass filter,
the SVD approximation error with 3-stage expansion is
0.5336 %. In the case of the bandpess filter, the §VD
approximation error for a 4-stage expansion is 0.7825 %,
Numerical and photographical results related to the outputs
of this SVD/SGK convolution when the inputs sre random

numbers and real imzge are presented in this chapter.
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5.2 Fixed-Point Arithmetic Experimental Results

Our experiments were made in the following framework.
We shall wuse M to denote the word-length for repgesentinq
filter coefficients and N to denote the word-length for
storing intermediate results. Furthermore, we thall adopt
the policy that all signal levels that &re representzble by
given word-length be constreined within the range of
{ -1,1). A multipiier with input signel level greater than
unity may need to be followed by extra accumulators and
extra wide adders. Hence, more hardwere is recuired. The
number of rounding operations within 3x1 SCGK filters is
assumed to be one. In other words, since the typical
operation performed in convolution is a sum of products, we
assume here that the rounding operation is performed only
after the products have been summed with full precision.
In addition to this, the <cascade form of the SVD/SCK
convolution requires a proper section ordering. The

suboptimal ordering algorithm discussed in Chapter 4 was

adopted to minimize roundoff noise. Because of the
guadrilateral symmetry of the prototype filters used, the
one-dimensicnel column and row convolution operators
obtained from the SVD expansion of H were identical. Thus,
their cascade forms were identical. The ordering algorithm
ended with a perfect interlace scheme; each filter for the
rows convolution was followed by a filter for the columns

convolution and vice versa. But it can be proved thet this
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result, although often true, cannot be generzlized to all

ceses of guadrilateral symmetricel filters,

Then, after the ordering procedure, sum scaling weas
applied tc the filter coefficients so that overflow will
not occur within filters. Unfortunately, large differences
in magnitude among the coefficients causes the scaled
filter coefficients to exceed the given dynemic range of
word-length. In this case, the filter coefficients were
further divided by their maximum coefficient to insure that
the scalecd filter coefficients lie within the given dynamic

range of word-length for the filter coefficents.

5.2.1 Roundoff Error

To confirm the wvalidity of the noise formule of
Eq. (3-15), derived in Chapter 3, a uniform density random
number array of 46x46 pixels has been generated as an
input. The statistical approach used to snalyze roundoff
noise in Chapter 3 is not practical if the input is
deterministic. For this analysis, an image array has been
modeled as a Markov process with an adjacent pixel
correlation coefficient along lines of 0.95 ({5-1].
Furthermore, it hes been assumed that the maximum signal
magnitude of the input array is unity, so that all signals

are represented by given dynamic ranges of word-length.

If the filter size is 15x15, then the output size is
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60x60. Because the noise formula is velid only under
"steady state" conditions, the actual output is taken over
2 32x32 portion of the output array, ignoring a btand of
width of 14 along each of the four edges of the real output
array. The designed SVL/SGK convolution filter was
convolved with the given input array in fixed-point
arithmetic. The filter coefficients were represented by
floating-point with 36 bits ‘of word-length. The standard
deviation of the actuel errors produced at the output with
rounding to N bits was measured and compered with its
theoretical estimetes computed from the noise formule of
Eg. (3-15). The system of Fig. 5-4 was used to measure the
value of for various word-length of storage [5-2]1. The
system H“le,zz) was implemented with fleceting-point
arithmetic with 36 bits of word-length. Table 5-1 shows
the experimental results. There is good agreement between
the predicted and measured velues. This confirms the
validity of our model and a statistical approach to analyze

the roundoff noise.
5.2.2 Filter Coefficient Quantization Effect

In Chapter 3, the quantization effect of the filter
coefficients was shown to be not as severe as that of
rounding. Before we present the experimental results, it
would be beneficial to discuss the error measurement of s

pair of images. A true comparison between a pair of images
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TABLE 5-~1

Standard deviation of output noise caused bv rounding

operations for a prototype filter

N Theoryv Experiment
8 0.552x10"2 | 0.719x1072
10 0.138x1072 | 0.191x1072
12 0.345x107° | 0.465x107>
14 0.862x10"% | 0.117x107%
16 0.216x10™%4 | 0.201x107¢
Lowpass Filter
N Theory Exveriment
8 0.329x107% | 0.439x107!
10 0.823x1072 | 0.111x107%
12 0.206x1072 | 0.270x107 2
14 0.514x10"° | 0.685x10”>
16 0.129x107> | 0.173x107°

Bandnass Filter
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should follow some objective «criteria. Tt is decireble
that the objective criteria be methematically tractible and
reasonably calculable so that they cean be used 2s obijective
performance functions to eveluete an image procesgsing
system. Considerable attention has bkeen peid tro try
development of such criterie [5-37. Unfortunately, bteoouce
of the complexity of the human visual system, there arc no
universelly accepted criteria to measure image fidelity.
But, the most commonly used quantitative measure of & pair
of image is the normalized meean sauare error (NMSFY, ac
defined in Chapter 2 [5-4]. We shell use the NMSF e our
objective criterion throughout thie dissertation, Tat le
5-2 shcows the computed NMSE between floeting-point
arithmetic with 36 bits of word-length and fixed-point
arithmetic with different N and M bits of word-length. 1In
all ceses, the results obtained with M =16 bits ar~ close
to those with full precision. Tt is concluded that 16 bits
of word~length to quantize filter coefficients is
sufficient without reducing filter performance
significently. 1In Chapter 3, it wes shown that the storage
reaquired for the filter coefficient is far less than that
recuired for the dsta. We will then consider that it is
more practical to reduce the word-length reguired for the

data storeage.
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TABLE 5-2

Fixed-point imolementation error for various
word-length

N M 8 12 16 30
8 3.4221 1.4033 .3197 1.3450
10 3.3241 0.7768 .3174 0.3082
12 3.3706 0.6223 .0843 0.0741
14 3.3700 0.5995 .0221 0.0194
16 3.3693 0.5993 .0088 0.0048
Floating 3.3690 0.5990 .00765 0.0000065
Lowpass Filter
N M 8 12 16 30
8 7.9396 7.3349 .1219 7.1115
10 3.9017 1.8639 .8007 1.7972
12 3.5280 0.6642 .4529 0.4463
14 3.5184 0.4887 .1123 0.1081
16 3.5196 0.4842 .028 0.028
Floating 3.5190 0.4841 .00435 0.0000191
Bandpass Filter
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5.2.3 Output Image Comparison

In order to evaluate the performance of the SVD/SGK
convolution more precisely, 1let us define the following
NMSE factors. Assuming that G and F are output and input

arrays, respectively, then we shall use the following

notation
= F H
& = %8 1 (5-1a)
a - 0 (5~1b)
Sgyp = E 88 Hgyp
é A (5-1c)
Ssvp/sek = E 88 Hoyp/sek
where H 1is a prototype impulse response, E SVD is the
approximation of E by retaining & few dominant terms in the
SVD expansion of H, and H is the SVD/SGK convolution
- ~ SVD/SGK
realization of ESVD. In Eg. (5-1c), the term on the right

has been computed using fixed-point arithmetic. Then we

define

Z Z 16 (1,3) ~Ggyp (1,3) 12742

-|_1 J
€ =
1 . 2
G(i, 5-
E E |G(i,3)) ] (5-2a)
i ]




o ——— W -

- ~ o _k 2 b
ZE: }E:'GSVD(l’J) Sgyp/sek (1030 17] 1/2 (5-2b)
T (5-2b)
2 = ———
L:i: EE:{GSVD(I’J)‘ _

A . 2 1/2
ZZlcu,J) ~Ggyp, sak (103 | ‘| e,
3

jz: :E:IG(l 3) |2

Two errors are inveolved in 8VD/SGK convolution with

fixed-point arithmetic: is the error caused by the SvD

£1
epproximation, and €, is the error dve to fixed-point
arithmetic, €3 1is the total error. Teble 5-3 summarizes
the computed NMSE with different word-length of data
storage. In this experiment, the filter ccefficients were
guantized with 16 bits, and the input wss & randem erray
with correletion coefficients of 0.95. Returning to
Eg. (5-2), we shall derive an ugper bound of the total
error €3 . Since the total error €3 is contributed by €1
as well as €5, this bound will be very useful in SVD/SGK

convolution implementation. Let us rewrite Fa. (5-2) in

terms of a matrix Fuclidean norm, which is defined to be

el = [ X ew12] (5-3)
i 3

Hence, Eg. (5-2) can be rewritten as

2 2 G 2
€y ” E[l =l'§ -ESVD’! :
(5-4a)
2 A 2 ~ N 2
€3 Il Ggypll © =1l Sgyp Ssvp/sax ! (5-4b)
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2 ~ 2
e3 16 11 %= 16 - Ggyp sak!! (5-4c)
But note thet
| 6-G Il 2= 1] 6-Ggyp*Cayp=C |2
Z2728VD/SGK Z7Zgvyp ZgVD =SVD/SGK (5-5)

Using the Schwartz ineguality on the right hand side of

Eg. (5-5), we have

_: 2 -G 3 _A 2 5-6
Il 6-Ggyp sex!! % (11 6-Ggyp Il +1l Sgyp=Ceyp/ser!! ) (5-6)
Subc*ituting Eg. (5-4) into Fg. (5-6) results in
2 2 2 2 2 - 2 _
2|l all e 11 6l Z+2e e, 1l Gl Ggypll+65 11 Ggyp Il (5-72)
Therefore
Il Sy
-SVD
€, € €, + ~ €, +E (5-7b)
3 1 2 1 72
Il Gl
since

Returning to Table 5-3, we can see that the €3 error never
exceeds the bound given by Eq. (5-7b). However, the
fixed-point implementationverror €4 could be reduced to
less than 1.6 % NMSE with 12 bits word-length of storage.

The ¢, error is dominant in the bandpass filter cace.
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TABLE 5-3

Summary of experiment

N 8 10 12 14 16 o

€ 0.0243 0.0243 0.0243 0.0243 0.0243 0.0243

€, 1.3451 0.3174 0.0843 0.0195 0.0048 0.0000065

€3 1.3445 0.3174 0.0883 0.0297 0.0249 0.0243

Lowpass Filter

eiN 8 10 12 14 16 o

€ 3.4981 3.4981 3.4981 3.4981 3.4981 3.4981

€, 7.1115 1.7972 0.4464 0.1082 0.0284 0.0000191

€4 7.9674 4.0326 3.5160 3.4989 3.4984 3.4981 '

Bandpass Filter

102




——

Obviously, the €1 error decreases as more terms are
retained in the SVD expension. Furthermore, there 1is no
reason to believe that €1 will be the same order as gy of
Eg. (2-19). For instance, g, of the bandpass filter is
0.7825 & with & 4-stage expansion, PRut, € is 3.498 3.
But, the situation is guite opposite in the lowpass filter
cases. 2ppendix 2 describes the relation between the €
and €1 errors. As shown in Eq. (A-16) of Appendix &2, the
€1 error 1is mainly attributed to the mean difference
between G zand é . Given fixed €, v
= ~SVD k
increases as the mean difference increases,

the ¢ error

1

The prime goel of this error analysis is to reduce the
error and to force the SVD/SCK processed output closer to
the direct processed output. If we correct the output so
that H‘QSVD equals to mg, then the el error is the same

order as €. In the following, we shall develop a simple

algorithm to force the mean difference equal tec zero.

Assuming the filter is time-invariant and linear and

m e is the mean of the input array, then

= i 4 5-8
mg Mg ZZH(I,J) ( )
i 3
But, the prototype impulse response matr x H is normalized

such that ZZ H(i,j) = 1, therefore,

m,= mg (5-9)
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Also,

m, =m Heor (1, ) .
8sup fzz:wo (5-108a)
13
where
- _ 2. T (5-10b)
Hoyp = 2o ) (B)ey 1y
i=1

Substituting Eg. (5-8) into Eg. (5-10) yields in Eg. (5-11)

o = m(1.0- Z Z Hoyp (1/3)] (5-11)
1 J
where o represents the mean difference, i.e., m -m, .
9 SYsvp
In order for m, to be equal to m,, we simply add
9svD g

the gquantity o to every output pixel. This simple point
by point operation will significantly reduce the € error,

Hence, the overall error €3 will be reduced.

Table 5-4 shows the effectiveness of the mean

correction procedure in overall performance. Compare s3and

54, where 54 denotes the total error after mean correction.

and ZZ ﬁ (i,3j) would be

£ i 3 SvD
fully justified in the bandpass filter case since &

The extra computation of m

substantial reduction in NMEE can be obtained. The
usefulness of this simple mean correction procedure in a
photographic example will be demonstrated further in the

next section.
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TABLE 5-4

The NMSE compariscon of before and after
mean correction

No
8 10 12 14 16 Rounding

Before 1.3445 |1 0.3174 | 0.0883 | 0.0297 | 0.0249| 0.0243

After 1.3449 | 0.3180 | 0.0864 { 0.0265 | 0.0179| 0.0173

Lowpass Filter

No

8 10 12 14 16 Rounding

Before 7.9674 1 4.0326 | 3.5160 { 3.4989 | 3.4984| 3.4981

After 7.3556 1 2.083511.1237 | 1.0170 | 1.0156( 1.0143

Bandpass Filter
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The experiments heve been repeated with verying
correlation coefficients of input arrays. The results cre
shown in Table 5-5. Experimentzlly, it has been concluded
that the fixed-point implementation error 1is cuite
independent of the correlation coefficient of the input
erray. These results confirm that the model employed wes

sufficiently velid for simulation.

5.3 Real Image Experimental Results

In this section, photograpic results, based on
computer simulation, for SVD/SGK convolution are presented.
The SVD/SCK <convolution methcd with a fixed-point
arithmetic has bLteen applied to the convolution of real

images as a test of its velidity.

From previous experimental results, wusing rendor
number arrsys as en input, it was concluded that 16 bits of
word-length for filter coefficient cuantizetion end 12 bits
for date storsge, i.e., rounding, were sufficient to limit
the effects of guantization end roundoff noise to less then
1.0 & NMSE for most precticel ceses. 2lthough this
conclusion is based on the particulsr model discussed 1in
the previous section, we shall use the same word-length in
the experiment with rezl images. Figure ©5-52 shows an
original aerial scene image. The original image contains
256x256 pixels with each pixel 2mplitude quantized over the

integer range 0 to 2%5. In the first step o¢f the
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Summary of experiment with varyina correlation

TABLE 5-5

coefficient of the input arrav

0.0 0.1 0.3 2.5 0.7 0.9
0.0807 0.0771 0.0684 0.0573 0.0442 0.0289
0.1227 0.1175 0.1224 0.1144 0.1180 0.1072
0.1463 0.1391 0.1369 0.1304 0.1273 6.1187
0.1462 0.1393 0.1391 0.1273 i 0.1252 0.1195

Lowpass Filter

0.0 0.1 0.3 0.5 0.7 0.9
2.9375 2.9332 2.9609 3.0376 3.1653 3.4213
0.4248 0.4201 0.4288 N.4369 0.4485 ' 0.4483
2.9557 2.9335 2.9681 3.050 3.1625 3.4440
0.7460 0.7562 N.7561 0.7967 0.8378 1.0970

Bandpass Filter
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simulation, each pixel of the original image was normelized
to the range (0.0 to 1.0. Figures 5-5b and 5-5c illustrete
the direct prccessed output with prectotype lowpess ané
baendpass filters, respectively. The direct processed
outputs were obtsined using floeting-point erithmetic with
36 bits of word-length. A comparison of direct and SVD/SCK
convolution for lowpass and bandpess filters with N = 12
and M = 1¢ bits, 1g given in Figurcse %-¢ and F£-7,
respectively. There are noc aprerent differences in viesual
results for direct ancé SVL/SCK convoluticn. The measured
KMSE &and absolute difference imege, multiplied by B
specified scele factor, are &lso presented to show the
accuracy of &VvD/SCGK convolution. In both cases, the
resulting errors are 1less then 1.0 %. This experiment
verifies the velidity of the model wused 1in the previous
section. Figures 5-8 oand 5-%¢ contein simulation reculte
for the .experiment of Figuree 5-6 and 5-7 when the
word-length for data storege is reduced by setting N = €.
Cbviously, the error contribution caused by 1insufficient

word-length for rounding is significant.

To illustrete how the different SVD approximetions of
& given prototype impulse recponse affect the outpute,
Figures 5-10 &nd 5-11 show the SVD/SCK processed output
with different K. In thic experiment, X = 12 anéd ¥ = 16

were assumed. It is noted that the filter with K =

corresponés to the MMSE serparable &spproximaticn of the
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(a) (b)

(c)

Figure 5-5, Example of direct processing convolution
a) Original

b) Lowpass filter
¢c) bandpass filter

109




- Best
Available
Copy



(c) (d)

Figure 5-6. Comparison of direct and SVD/SGK
Convolution for lowpass filter with
L=15, K=3, M=16 bits and N=12 bits.

a) Original

b) Direct

c) SVD/SGK (NMSE=0.06398%)

d) Absolute difference X scale
factor 200
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(c)

Figure 5-7.

(d)

Comparison of direct and SVD/SGK
convolution for bandpass filter with
L=11, K=4, M=16 bits and N=12 bits

a) Original

b) Direct

c) SVD/SGK (NMSE=0.8742%)

d) Absolute difference X 40




(a) (b)

(c) (d)

Figure 5-8. Comparison of direct and SVD/SGK
convolution for lowpass filter with
L=15, K=3, M=16 bits and N=8 bits.

a) Original

b) Direct

c) SVD/SGK (NMSE=1.1037%)

d) Absolute difference X 200
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(c)

Figure 5-9.

Comparison of direct and SVD/SGK
convolution for bandpass filter with
L=11, K=4, M=16 bits and N=8 bits.

a)
b)
c)
d)

Original

Direct

SVD/SGK (NMSE=8.049%)
Absolute difference X 40



(c)

Figure 5-10.

Lowpass SVD/SGK convolution with
K=1,2, L=15, M=16 bits and N=12
bits.

a) SVD/SGK, K=1

b) Absolute difference X 200
c) SVD/SGK, K=2

d) Absolute difference X 200
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S,

Bandpass SvD/sgk convolution with
K=1,2,3, L=11, M=16 bits and N=12 bhjtg.

a)
b)
c)
d)
e)
f)

SVD/SGK, K=1

Absolute difference x 40
SVD/SGK, K=2

Absolute difference x 40
SVD/SGK, K=3

Absolute difference x 40




(e)

(Continued)

1

1

Figure 5-
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prototype impulse response. For the lowpass filter, there
is no significant wvisual difference among different K's.
Eut, there is & significent difference in the bendpsss

filter.

Figures 5-12 and 5-13 illustrate the <c¢ffect of tre
mean correction algorithm. Although thcre is an obvious
improvement in image quelity in the bandpsss filter, the
improvement in the lowpess filter is not noticeable becauce
the output mean before meean correction in the Jlowpess
filter is &lready <close to the input meen. The mecsured
NMSEs (before and after), computed means, &znd ZZEISVD(i'j)

are listed in Table 5-6. e

For the bendpass filter with K = 1, before mean
correction, the €VD approximation error is so severe that
the SVD/SGK processed output is clmost seturated. After
mean correction, the output is subjectively satisfying, &nd
the resulting NMSF is significantly reduced. This
experiment visually demonstrates the effectiveness of the

mean correction procedurc.
5.4 Conclusicn

This chapter has presented experimentel results of
SVD/EGK convolution wusing fixed-point arithmetic besed on
computer simulation. First, the derived noise formule

predicting roundoff noice hes been confirmed
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(a)

(c)

Figure 5-12.

(b)

(d)

Comparison between before and after
mean correction with L=15, M=16
bits and N=12 bits (lowpass).

a) SVD/SGK (K=1l), before
b) SVD/SGK (K=1l), after
c) SVD/SGK (K=2), before
d) SVD/SGK (K=2), after
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(a) (b)

Figure 5-13. Comparison between before and after
mean correction with L=11, M=16 bits,
and N=12 bits (bandpass).

a) SVD/SGK (K=l), before
b) SVD/SGK (K=1), after
c) SVD/SGK (K=2), before
d) SVD/SGK (K=2), after
e) SVD/SGK (K=3), before

f) SVD/SGK (K=3), after 119

.




(£)

Figure 5-13 (Continued)
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TABLE 5-6

Summary of expneriment with real image

. Before After T rog H9)
NMSE(3) | Mean | NMSE(%)| Mean | * 7 SVP S
1 12,6752 0.8122 1.9035 0.7210 1.1278
2 3.1634 0.6973 0.3658 0.72006 0.9682
3 0.0739 0.7201 0.0640 0.72001 0.9998
Lowpass Filter me = 0.7202064
Before After .
k f § Hoyp (147)
NMSE (%) Mean NMSE (%) Mean
1 134.6718| 1.7231 23.3312| 0.7202 2.3928
2 15.5961] 0.6046 3.3338) 0.7199 0.8397
3 13.8732| 0.6167 2.5028{ 0.7200 0.8564
4 2.8910 ) 0.7592 0.8742] 0.7206 1.0543
Bandpass Filter me = 0.7202064
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experimentally. This experiment verifies that the
statisticel noise model used to znslyze the roundeff error.
It hes been found thet M = 16 bits and N = 17 -bite &re
sufficient to 1limit the effects of c<cuantizeticn e&nd
roundoff noise to lecs then 1.0 % NMSEF in meost ceses., To
obtain & reasoneble decreese in the NMSF, ¢ simple meen
correcticn elgorithm was propcsed. The imege cueality
improvement cobteinable by resetting the output meen equel
to the input rnean has been demonstrated. The pictoricl
imeges resulting from SVL/SCK convelution, ac shown in this
chapter, suggest thet thie technique may hzve come

epplication in rezl-time imege dicsplay system.
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CEAFTIEFR ©

PARAMETRIC DESIGN AND FIXED-POINT TMFLEMENTATICN

OF EVD/ECGK CONVCLUITCN FILTEERS

6.] Introduction

In this chapter, we will <consider the problem of
designing an SVD/SGK convolution filter for which the
cutoff frecuency 1is perametrically varieble. Varieble
cutoff freguency filters have numerous sapplicetions in
image processing. For example, one might cecvuentially
obtain & best restored 1image by <changing the cutoff
freguency, hence the frecuency response, of the restoration

operator.

Since filter coefficients are generclly a function of
the filter «cutoff freaguency, one can change the filter
cutoff frecuency by varying all of the filter coefficients.
But this procedure reguires changing a number of
parameters. Therefore, it is often impractical ard too
complicated. It would ke more vpracticel if one could
construct & filter so thet the cutoff frecuency is

controlled by only ¢ few peremeters, <ay one or two.
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Based on the ezrlier work of Constandinides [6-1,6-21,

Schussler and Winkelnkemper [6-3] were the first to design

such a variable cutoff frequency digital filter. Tt  hes

» been shown, that by replacing ¢ach deley element in the
basic filter structure with a first-order cll-pass network,
e transformed fiiter whose frequency response is identical
to that of the basic filter on 2 distorted frequency scele
is obtained. Unfortunately, the method described is
restricted to FIR filters, and is nct epplicable to T7TIR
filters. Furthermore, the resulting trensformed filter is
an IIR filter because by replacing the basic element, the
first-order all-pass network becomes recursive.
Consequently, the lineer phace property of the basic FIR

filter is lost. But, the veriation of the cutoff frequency

can be accomplished. Cppenheim et 3l. [6-4] proposed 2 new
frequency transformation technigue in which the resulting
transformed filter is still an FIR filter, and the phase is
lineer if the  basic filter is 2 linear phase FIR filter.
By noting the fact that the SVD/SGK convolution filter is
essentially a sum of separeble filters, each weighted by a
singular value, and each separable filter 1is an outer
product of one-dimensional <c¢olumn and row convolution
operators, it 1is possible to extend the proposed
one-dimensional frequency transformetion technique to the
SVD/SGK convolution filters. We shall show that this

approéech is quite successful in designing a verieble cutoff
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EVD/SGK convolution filter. In this chapter, we shall
discuss only 2 lowpass-to-lowpass transformation,
Modification for highpass-to-highpass or
bandpass-to-bandpass is rather straightforward in nmost
ceses, We assume here that the basic filter is a
two-dimensional FIR filter with linear phase. The basic
concepts of frequency transformation and modificetion to
the SVD/SCK convolution filter are discussed in fection
6-2. A fixed-point implementation of the varisble cutoff
SVD/SGK convolution filter and experimental recsults ere

described in Section 6-3.

6.2 Frequency Transformation

of Linear Phase FIR Filters

A one-dimensional FIR filter with impulse response of

length 2C+1 has a freguency response

2Q
h(eduy = Z h(m)e ™ J0U (6-1)
m=0

A linear phase filter is symmetrical so that

h(m) = h(Q-m) (6-2)

for m = 0,1,...,0. Thus

Q-1
hed%y= &7 h (o) + Y 2h (m)coslu(0-m)]] (6-3)
m=1
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Letting n = ¢-m, Eg. (6-2) becomes

Q
hely = e779Q Za(n)cosu (6-4)

n=0
where 2(0) = h(Q) and a(n) = 2h(¢-n) for n = 1,2,...,C.

We note theat

T (cosu)-= cosnu (6-5)

where Tn is the n-th dJdegree Chebyshev polynomiel thet

satisfies the recursicn formule

= - 6"6)
Tn+l(x) 2xTn(x) Tn*l(x) (
for n = 1,2,...,0. Thus, Eg. (6-4) can be reformulated ac
.« « Q
he? = e 3 b(n) (cosu)” (6-7)
: n=0

The new coefficient b(n)y, for n=0,3,...,0, 1is obtained
from the Chebyshev polynomial recursion formula of
Eg. (6-6). The basic approach [6-5] to the variable cutoff

linear phase filter is to use the transformation
P

_ k
cosu = ZAk(cosB) (6-8)
k=0
where u and 2 are the frecguency variables of the besic end
transformed filters, resrectively. The trapcformation

described ebove preserves the frecuency response  of  the
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basic filter, elthough the frecuency scale is distorted by
the trensformation. By substituting the transformetion of
Ec. (6-8) 1into Eg. (6-7), the frecquency response of the

trensformed filter is found tc be

Q P
j8y, _ .-JBQP oy k
hT(e ) = e [Z b (n) ZAk(cosr:) :l (6-9)
n=0 k=0

From Eg. (6-9), it 1is noted thet the 1impulse response
dimension of the transformed filter is now 20P+1. By
eppropriately controlling the parameters LI for
k =0,1,...,F, the cutoff frecuency of the transformed

filter can be veried.

If P

1, then Fa. (6-8) becomes
cosu = AO+AlcosB (6-10)

and for E

2, the transformetion sssumes the form

_ 2
cosu = AO+Alc058+A2cos g (6-11)

We shall «call the trensformations of Eg. (6-10) and
Eg. (6-11) first-order and second-order transformations,
respectively. The nature of the first-order transformation
is depicted in Fig. 6-1. For first-order transformation,
if one is interested in increasing the cutoff freauency,
i.e., u, <8, s where u, and g, corresponé to the cutoff

frecuency of the basic and transformed filters,

recpectively, one may prefer to constrein the transformed
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H (u)

BASIC
FILTER

cos u

cos u=A +A, cos 8

Figure 6-1.

—

-1 cosB
TRANSFORMED FILTER

M(B)

\

-1 cosB

Nature of the first-order transformation
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frequency response magnitude st B = 0 to be equal to that

of the bacic filter. iethematically, it cen be shown as

ho (1B = h(elY (6-12)
£=0 u=0

in which case, AO+A1 = 1. But, in order to ensure that

lcosu| <1, AO should lie in the renge of

0<Aa;< 1 (6-13)

By chenging the frecuency control parameter AO from zero to
unity, we <can obtain a transformed filter whose cutoff

frequency 1s given by

- cos u_-A
B, = cos 1 [___.hfu_g] (6-14)
l-AO

In other words, if we wish to increase the filter cutoff
c

freguency from q to Q: with u, < Qﬂ then the control

parameter AO is obtained from Eg. (6-15) as

cosB_ - cos u
c o)

A =
0 cosg_-1 (6-15)

where 0< A0< 1. To decrease the cutoff frequency of the

basic filter, the correspondence is

iR - ju
hT(e ) h(e’™)

B=m7 u=n

{6-16)
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.ﬂm"‘ »

Equation (6-16) leads to the constraint that A, = 1-A; the

parameter Ao is restricted to the range of

"l<A; =0 (6-17)

The resulting transformed filter cutoff freaquency is given

by

~ _1pcos u_ A,
b = oo (] (5-16)
0

Let us associate the complex variable 2z with the basic

filter system function H(z) and the complex variable Z with

the transformed filter system function HT(Z). Then, the

transformation of Eg. (6-8) is eguivalent to

P
24z % _ 2: z+271 K
5 T Ay (=) (6-19)
k=0

If the filter is implemented as a cascade of SGK filters,
it 1is noted here that the SGK filter should be symmetrical
because the transformation is applicable only to a linear
phase filter. 1In Chapter 2, it was shown that the complex
zeros of H(z) should be grouped together in conjugate peirs
to ensure that all kernels for 3x] SGK filters are real.
But, a resulting 3x1 SGK filter may not be 1linear phase.
For example, the 3x1 SGK filter from grouping complex
conjugate pair zeros not on the unit circle will not be

symmetriceal. In order to ensure that all SGK filters are
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linear phase, complex zeros not on the unit circle should

be grouped together in groups of four, corresponding to the

*
complex conjugates and reciprocals, i.e., a, a ,!;,J%. As
a o

a consequence, H(z) will have fourth-order SCGK filter with

system function of the form

2
ro o+l
H.(z) = 1-2( )cosH.z 1+(r?+ A, 4cos26.)z—2
i r. i i 2 i
i r;
. (6-20
r?+l -3 -4 )
-2 = )coseiz +z

1

where r; and Gi are the magnitude and phase of one of the

complex zeros not on the unit circle.

The same rule of zero grouping in Chapter 2 can be
eapplied to the real zeros and complex zeros on the unit
circle. Therefore, we can obtain a realization of H(z) in
terms of a cascade of second- or fourth-order linear phase
SGK filters. The z-transform of the second- or

fourth-order SGK filters can be written eas

2
-1l n

H;(z) = D b;(n) (22— (6-21)

n=0
But H(z) can be factored in the form
Ql Ql 2 z+z-1 n
H(z) = 21 Hi(Z) = .nl [Ebl(n)( 2 )] (6-22)
i= i=

n=0
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for ClSCH To obtein & variable cutcff 1lineer crhase
filter, based on the SVD/SGK convolution, ecach SCK filter
is trensformed in the menner described earlier. The
Z-transform of the transformed filter is

Ql Q 2 P

T .

i=1 i i=1

Therefore, the coefficients of the transformed €CGK filter
are expressed in terms of the parameters P ané the
coefficients of the baesic filter (see Appendix BE). Ry
controlling the parsmete. Ak, the transformed filter cutoff
freauency can be varied. Before we present the

experimental results, let us define a

(6-24)

which will be wused to describe the degree of the
transformation. Figure 6-2 shows the frecuency response of
a typical lowpass filter and the parameters thet define it.
The three parameters Ay v Ay and Af charoecterize the
frequency response of the filter. 1If the parameters for
the transformed filter sre <close to those of the basic
filter, then the transformation will adecquately preserve

the frequency response of the besic filter,
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Figure 6~2. Definition of lowpass filter parameters
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In order to verify the first-order transformation, the
following experiment was performed. The basic filter is @
one-dimensional linear phase lowpass filter with an impulse
response length of 15. The measured cutoff fregquency of
the basic filter is 0.6739. Throughout this chapter, the
specified frequency 1is normalized to the range of (0,71 ).
Figure 6-3 shows the frequency responses of the transformed
filter with the parameter By varied from 0.1 to 0.8. Table
6-1 summarizes the filter parameters and the desired and
measured cutoff frequencies of the transformed filters.
There is excellent agreement between the two values, Rut
it is observed that the first-order transformation does not
adequately preserve the frequency recponse of the basic
filter as Ag goes to 1. In the case of Ao > 0.6, the
resulting transformed filters can not be considered to be
lowpass filters, because the first-order transformation
does not constrain the fregquency response at u =8 =7,
Experimental evidence shows that there 1is @a trade off
between R and the preservation of the fregquency response of
the basic filter. To preserve the freguency response of
the basic filter more adegquately, R should be relatively
small. Thus, the penalty paid for large R is that the
transformed filter does not preserve the freguency response

of the basic filter as shown in Fig. 6-3.

As alternative to the first-order transformation, one

apply -] second-order transformation. Tn the
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Figure 6-3. First-order transformation examples
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TABLE 6-1

List of the transformed filters and their cutoff
frequencies usinag first-order transformation

Cutoff Frequency

AO Al A2 o Desired Measured REE)
0.0 | 0.0 n.11x107% | 0.367 | 0.6739  n.6739 0.9
0.1 | 0.0 0.39x107° | 0.398 | 0.7119  0.7127 5.6
0.2 | 0.0 |-0.22x10"> | 0.419 | 0.7572  0.7383 | 12.4 |
0.3 | 0.0 0.37x107% | 0.471 | n.8125  0.R137 | 21.6
0.4 | 0.0 0.19x10"% | 0.523 | 0.8219 0.8833 | 30.9
0.5 | 0.0 o.14x10” Y | 0.701 | 0.9730 0.8571 | 44.1
0.6 | 0.0 0.38x107™% | 0.754 | 1.°001 1.1027 | 63.2
0.7 | 0.0 0.14x10” | N.a. 1.2960 1.1299 | 92.3
0.8 | n.0 ] o0.38x10° | w.a. 1.6640 1.6703 |146.9
*AO = 0.0 means a basic filter.
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secona-ordcr transfcrmation, there are three parameters,

) and P7 to be controlled. Feor the case in which the

0 ’ Al 14
cutoff frecuency of the trancsformed filter is greater then
or ecual to thec cutoff frecuency of the becsic filter, we

can put ancther constraint on the transformation. That is

—

N
|

[
n

=T u="

Py impoecing the constreint of Ea. (€-25), we can preserve
the frequency response of the basic filter better than when
the first-order transformetion is used. But we chall show
that the second-order transformation severely restricte the
renge of trensformation. Ry using a2 similar anslysics, ac
used in the first-order transformation, it cen be shown

that the psrameter A is restricted to the range

0
0 <A, < 1 u_ < R
=0- 2 c = “c
1 (6-26)
-z £ < )
2 - A0 0 Yo 2 Bc
and the desired cutoff frequency Bc is given by
. [ 1- \fl-llAO(cosuc—Ao)
Po T ©O8 (6-27)
2A

0

Detailed derivations of Fas. (6-26) znd (6-27) eare
given in  Appendix C. Althrouagh the trensformation 1is

echieved by varying the parameter Por the meximum or

Tinimum I3 cen be obtzired  when Ag = 1/2 or -=1/2,
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respectively. By substituting AO = +1/2 into Fo. (6-27),
we obtain the maximum or minimum attaineble cutoff
frequency with the second-crder transformation. The
relationship between Ug anéd maximum or minimum etteinekle
Bc is shown in Fig. 6-4. Figure 6-%5 shows the results with
the second-order traensformetion. Teble 6-2 shbows the
measured filter paremeters. The basic filter is the same
as previously described. Upon comperison of the
first-order &and the second-order transformetions, the
second-order trensformetion is seen to adecuately preserve
the frequency response of the basic filter if SC is within
the transform range. Eut, the resulting trensformed filter
has an impulse response length of 4Q+), 1instead cof 20+]

obtained as with the first-order trensformetion.

A second-order transformation is still possible even
if the desired cutoff frequency Bcis out of the trensform
range. To extend the transform range, for the case of

u, £ B,, the constraint given in the Eaq. (6-25) is forced

o)
to be satisfied at B = al, where 0 < ay < @, rather then
at L= m. The price paid for relaxing the constraint is
that the transformed filter characteristics are =sacrificed
to some degree. In this case, the parameter 7y lies in the
range of

cosul+3
0<a,s
4 (6-28)
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where the matching point «, is obtazined from

1
4(cos u_-1)
a, = cos"l < 2 +1
"1 (cosBc*l) (6-29)

But, it should be noted here thatrxl eguals 7 whenever the
desired B, is within the transform range. For the cese of

Uc >£:, the constraint given in Eg. (6-12) also can be

relaxed by locating the metching point at ﬁ=ry2, where
0<a; < m. The renge of A, can be shown to be
COSQ2—3
7 S Ap< 0 (6-30a)
where
-1 4 (cosu,+1)

a, = cos 5 = 1 (6-30b)
(cosBc+l)
Figure 6-6 illustrates the frequency response of the
transformed filter with the (relaxed) second-order
transformation, Table 6-3 lists the matching points, the
desired and measured cutoff frequencies, and R. There is
also good zgreement between the desired and measured cutoff
frequencies. 2s shown in Fig. 6-6, relaxation of the
constraints in the second-order transformation allows the
basic filter to trensform in the desired manner, but the

trancsformation gredually degrades the freauency responcse of
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Figure 6-5. Second~order transformation examples
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TABLE 6-2

List of the transformed filters and their cutoff
frequencies using second-order transformation

Cutoff Frequency
Aq Al A2 A€ : R(%)
Desired Measured
-0.5 0.0 0.llx10_2 0.272 0.4788 0.4794 -28.9
-0.3 0.0 O.llxlO_2 0.304 0.5362 0.5371 -20.4
-0.1 0.0 0.llx10—2 0.346 0.6181 0.6194 -8.3
0.0 0.0 O.llxlO"2 0.367 0.6739 0.6739 0.0
0.1 0.0 O.llxlOm2 0.398 0.7444 0.7463 10.5
0.3 0.0 O.llxlO_2 0.408 0.9477 0.9489 49.6
0.5 0.0 O.llxlO"2 0.356 1.2252 1.2283 81.8
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the treansformed filter as R increases. It is believed that
with the second-order transformation, there should also be:
a trade off between E and the preservation of the freguency

response of the basic filter.

To extend the discussed frequency trensformation
technique to SVD/SGK convolution filters, it is noted again
here that a SVD/SGK convolution filter 1is & sum of
separable filters,‘and each separable filter is decomposed
into an outer product of one-dimensional convolution
operators on the columns &nd rows of the input image. TIf
the basic SVC/SCK convolution filter is &2 two-dimensional
FIR filter with linear phese, each SVD-expended separable
filter is also a two-dimensional FIR filter w1 h linear
phase., We assume here that the size of the basic filter is
(20+1)x(2C+1) . Thus, each separable <i{ilter has the

property that

Hi(n,m) = Hi(Q—n,Q-m). 0 <m,ng O

(6-21)
€ince Hi(n,m) is separable, then
H; (n,m) = h{(n)h (m) (6-32)
But, from Eg. (6-31), Hj(n,m) is also decomposed into
H, (n,m) = h‘i(Q—n)hi(Q—m) (6-22)

Therefore, the convolution operators on the column and row,

hi(n) and hi(m), are also one-dimensional linear phase FIR
145
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filters.

Figure 6-7 illustrates the frequency responses of the
SVD-expanded separable filters on the horizontal sxis. The
prototype filter is a two-dimensional linear phase lowpass
filter; and the SVD/SGK convolution filter was obtezined by
truncating the SVD expansion to 4 terms. The first-stage
separable filter corresponding to the largest singular
value shows almost the same freaguency characteristics as
the basic filter. But the other separable filters
corresponding to the next largest singular values no longer

are lowpass filters,

But a variable cutoff SVL/SGK convolution filter is
obtained by simply transforming each of the one-dimensional
convolution operetors on the columns and rows of the input
image. Specifically, the z-transform of the 8VD/SGK

convolution filter is given by

H (zy,2 )=:£: HS . (z) I HY . (2 J
svp/sck (%122 2=1[.=1 S LTI R IS
or
Ko (% 2 o zl+zIl n
Hsvo/scx(zl'%"Z n sz,i(“’ (== (6-34b)
=1 n=1

= -1
o] 2 Z,+2 m
: ﬁ[ b . m (22— ]}
i=1 Z; '
m=

but 01,02550. The Z-transform of the transformed SVD/SGK
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filter is obtzined by substituting (_2*271y in Fo. (6-34) by
: )

the trensformetion

-1 P -1
fl+22 = AC(EliEE_~)k
2 k 2
N k;O _ -1 K (6-7%)
- Z
22+z2 _ :E:Ai('z z_ﬁ)
o= 2
2
k=0

1f the besic filter |is lineer phase with cutoff
freguencies, ucl and uc2along the horizontsl and vertical
axes, respectively, and if one is 1interested in changing
the cutoff freguencies to Be. &nd g . besically the

transformation is per formed ase it wes in the

one-dimensionzal case.

An example of the first-order transformation on the
SVD/SGK convolution filter is shown in Fig. 6-8. The beasic

filter has quadrilateral symmetry with cutoff freqguencies

ucl = uC2= 0.7097. 2 perspective view of the frequency

response is shown in Fig. 6-9S. Unlese steted otherwice,
u =u., = and = = are assumed for the
€1 €2 e Bcl 8C2 BC

trensformation. Figure 6-8 shows the cross-sectional view
of the frequency response on the horizontal axis. 1In the
case of U, < BC, the transformetion works dquite edeguately,
but not for uc> ec . Teble 6-4 summarizes the filter
parameters and the measured and desired cutoff frecuencies.

Figure 6-10 shows another basic filter, which also pPOsSsesses

guadrilateral symmetry with cutoff freguency u, = 1.126€.
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Figure 6-9.

Perspective view of the frequency
response of the basic filter
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TABLE 6-4

List of the transformed SVD/SGK convolution filters and
their cutoff frequencies using first-order transformation

Cutoff Frequency
{(Horizontal)

Filter 84 A, Af ) R(%)
Desired Measured
1* 0.2510.02] 0.272 0.7097 0.7097
2 0.08 ] 0.04 ] 0.188 0.6500 0.6056 ~-8.4
3 0.0179.081} 0.272 0.5800 0.4684 -18.3
4 0.02 1 0.04) 0,241 0.8500 0.8515 ©19.8
5 0.02(0.03]0.283 0.9500 7.9520 33.9

*Basic Filter
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The results of the first- and second-order trensformations
are shown in Figures 6-11 and 6-12. Figure 6-11
corresponds to the horizontal, and Fig. 6-12 corresponds to
the diagonal direction. Comparison of the first-order and
cecond-order transformestion shows that the second-order

transformation yields far superior results (See Table 6-5).

Another interesting trensformation is the case of

8 R. . An exam@le of changing the cutoff freouency so
€1 * %

theat , d :f
uC1< Ecl an uC2:>,c2
and the resulting filter perspective view of the freouency

, is presented in Fig. €-17,

respor.se is given in Fig. 6-14. 1In this experiment, the
ceconé-order trensformation is wused with the same basic

filter shown in Fig. 6-10.

6.3 Fixed-Point Implementation

Once again, it is of great interest to implement a2
variable cutoff 8VD/SCK convolution filter with
specisl-purpose fixed-point arithmetic hardware. Since the
transformation is mainly concerned with the cutoff
freguency of the transformed filter, the effect of
fixed-point implementation on the cutoff frecuency is
significant. Experimental evidence shows that a lowpess
filter with filter coefficients rounded to 16 bits is
sufficient for both first- and second-order transformation.

1he freauency responses with different word-length for

filter cocfficient guantization and with no rounding are
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plotted in Figures 6-15 and 6-36. In the case of
first-order traensformation, the response for the 8&-bkit case
deviates from the 1ideal response <cignificantly at the
beginning of thc pescsbend, wherces no visikle errors =re
seen  enywhcre in the stopbena. In the <cese of the
csccond-order transformation, the response for the 12-bit
cese shows the same charactericstics. Fut the responses for
l16-bit for both first- and seconc-order trencsformations are
almost the seme ac the ideal. Thic experiment shows that,

for s lowpess filter, the cascede form is highly sensitive

to inaccurate <coefficients 1n the ©pesskend, but the
behavior in the stopkand is much 1less sensitive. ™
addition, the second-order transfcormaetion reguires =

greater word-length to quantize the filter coefficients
than the first-order trensformation docs. The becic filter

weés the same &s shown in Fig. 6-10.

In order to invegtigate the roundoff ncicse effect on
the fixed-point implementaticn of the wveriable cutoff
SVD/SCK convolution filter, the rendom number array with e
size of 46x46 wac used again as an input. The correlation
coefficient wae (.95, Basically, the seme scal ing
procedure was used to prevent overflow, and the suboptimal
ordering zlgecrithm of Chepter 4 to minimize the roundoff
ncise. Theoretical estimates of the roundoff noise

(standerd deviation), based on the noise formule derived in

Chapter 3, were computed and compared with the mecsured
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values. Table 6-€ summarizes the results. ™n this
experiment, we assumed that M = 16 bits and that only one
rounding operation is performed within the SCK filter.

{ Excellent agreement between the two values is observed. Tt

!

is believed, sgain, that M = 16 anéd N = 12 are sufficient
to achieve less then 1 % NMSF for both first- and
cecond-order transformations. Surpricsingly, it is noted
that the required word-length for the veriable SVD/SCK
convoluticn filter is the same &as recuired that in the

SVD/SGK convolution filter.

6.4 Conclusion

In this chapter, attempts have been mede to develor =
design technigue for wvariable cutoff SVD/SCK conveolution
filters. We considered first- and secona-order
transformations. Second-order transformetion, in genereal,
exhibits better results, but it inherently limite the range
of transformation. It has been shown that second-order
transformation is still possible if the specified
constraint is relaxed. PBut the price peid for relexing the
constraint 1s degradetion of the freauency characteristic
of the transformed filter. 1In &ddition, the second-order
trensformation doubles the size of the transformed filter.
The problem of implementing the trensformed filter in
fixed-point arithmetic wes also discussed. For & lowpess

filter, it was shown thaet the cascade form is highly
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TABLE 6-6

Standard deviation of the transformed filter caused
by roundina operation

M=16
N Theory Experiment NMSE (%) |
-2 -2 B
8 0.337x10 0.548x10 2.10
10 0.841%10 > 0.119x10" 2 1.21
12 0.211x107° 0.295x10" > 0.47
14 0.526x10 2 0.768x10 * 0.32
16 0.132x10" " 0.203x10" " 0.08
First-Order Transformation
M=16
N Theory Experiment NMSE (%)
8 0.379x10 0.925x10 16.23
10 0.946x10 0.107x10 1.14
12 0.237x10 0.314x10 0.53
14 0.592x10 0.743x10 0.2,
16 0.148x10 0.305x10 0.13

Second-Order Transformation
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sensitive to inaccuratc coefficients in the p=sssberd, but
not in the stop band. Finally, it ic believed thet M = 1¢
endéd N = 12 eare sufficient to obtain less than 1 % NMSF in

most practical caces.
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CHRETER 7

SUMMARY AND FUTURE WORK

In this dissertaion, attempts heve been maede to
describe a novel architecture for performing
two-dimencsional convolution with & minimum amount of

hardware using the concept of seguential SGK convolution.

The singular value decomposition of an impulse
response of & two-dimensional FIR filter has proven to be
useful in designing two-dimensionazl approximating FIR
filters that <can be implemented 25 & cascade of 3x1
convolution operators. The usefulness of the SVD has been
demonstrated by noting a trade off between approximetion
error and computational speed. The SVD/SGK convolution
approach is particularly attractive when one is interested
in implementing & two-dimersional convolution with a
digital image display system. An approach to
implementation for SVD/SGK convolution that employs a small
set of relatively simple digital «circuvits has been
described. It hac been demonstrated that the statistical
approach is wvcry useful to anclyze effects of finite

word-length in representing filter coefficients and signal
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magnitudes. A theoretical formuls for predicting the totel
roundoff noise hes been derived and confirmed

experimentally.

Two important issues involving the implementation of a
digital filter as a cascade of second-crder filters,
scaling and section ordering for SVD/SGK convolnution, were
also considered. We have shown how the algorithm availeble
in the domain of one-dimensional siganal processing can be
extended to two-dimensional signal processing. Cne
interesting result is thet roundoff noise cen be reduced by
interlacing row and column oriented elementazry second-order

filters.

Experimental results dealing with image <convolution

show that 12 bits are required for memory storzge (the most

"egpénsive pért in image‘display systems), and 16 bits ere
needed for filter coefficient quantization if one desires
to get results indistinguishable from the output using full
precision. These features casn be reduced if one allows
some distortion in the image outputs. It has been shown
that the guality of an SVD/SCGK processed output is improved
by resetting the output mean to be equal to the input mean.
Since it 1is impractical to compute the output mean, a
simple algorithm for resetting the output meen was

proposed. The effectiveness of the proposed algorithm hae

been demonstrated vicsually.
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It has been shown that perametric modification of the
cutoff frequency of a filter is possiktle with
transformation. Easicelly, the approach developed in the
one-dimensional case by Cppenheim et 21. [7-1) wes used. P
detailed analysis for first- and second-order
transformations was made, and several design examples were
Fresented. In the first-crder transformation, the
transformation could not properly preserve the frequency
response of basic filter as the dJegree of transformation
increased., In the second-order transformetion, due to
inherent characteristice of trigonometric functions in the
transformation, the trensformation works only in a 1'mited
range. 1In other words, it is impossible to «change the

cutoff frequency of the basic filter arbitrsrily. PBut the

resulting transformed filter shows & frequency responce
almest identical to the basic filter within the
transformation range. It was found that, by relexing the
specified constraint, arbitrary variation of the cutoff
frequency of the basic filter with the second-order
transformation is still feasible. But a degradation of the
transformed filter frequency response was also observed.
It is believed that with both transformations, there should
be & trade off between the degree of transformation and the
preservation of the freguency response of the basic filter.
Finally, it wse found experimently that 12 bits for the

accumulator memory and 16 bits for the filter coefficients
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are also sufficient to 1limit «gquantization and roundeff
noise effects to less than 1 % NMSE in both the first- 2nd

second-order transformations.

Several problems are worthy of further investigation.
If one is particularly interested in implementetion speed,
the SGK convolution approach is always faster than the
SVD/SGK convolution approach. Comparison of the processing
frame cycle required for SéK and SVE/SGK convolution shows
that only ¢ frame cycles are needed with SGK convolution,
while the SVD/SGK convolution requires 2KQ frame cycles
when the size of impulse response is (2Q+1)x(20+1) and ¥ is
the number of csingular values employed. Finding & <cimple
analytical design procedure for an SGK convclution filter
is still problem. An elternative to one-dimensional
SVD/SGK convolution is to wuse two-dimensionel SVD/SCK
convolution. Twoidimeﬁéibﬁal SVD/SGK convolution reduces
the computational speed by & factor of 2. 7In this case,
the scaling procedure should be carefully chosen to use the
full dynamic range of the given word-length. Tt is zlso
expected that two-dimensional EVD/SGK convolution reaquires

a greater word-length.

In the previous approach to the parametric design, we

used one-dimensional methods to design a variable cutoff

SVD/SGK convolution filter. 1In addition, the bzsic filter

wae restricted to be linear phace. 2 generelized design
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technique for the two-dimensional variable cutoff digital
filter would be useful. Finally, entending SGK or SVD/SGK
convolution to the recursive approach would also help solve

the two-dimensional signal processing problem.
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AFFENLIX &

Kelation between and ¢ FError
Let G and ESVD be the output array of size MxM as
defined 1in Section 5-2. Their variances o¢° and G% are
q a
given by
.o 2
)IDDLIETSIEL
i S B (A-1) ‘
g 2
M
~ . 2
ZZ]GSVD“'J’"’“@'
o2 1 3 (2-2)
g M
output array C

where m' and m .
g g

and G , respectively.
SVD
E=¢G-
then, its variance is given

3 316, 3) “Ggyp (. 3) -mrmy |

2 i 3

denote the mean of the

If the error array E is defined as

e (A-3)

Ssvp

by

(P-4)

After some algebraic manipulation,

M2

it can be shown that
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o Lo 12 2 12
ZE[G(l,J)~GSVD(1,3)I -M (mq-—m.g..) (A-5)
i j

2 2_ 2,2 -
Mog_ZZJG(l,j)[ Mom, (R=6)
i ]
Cividing Eg. (A-5) by Eg. (2-6), we obtain the following

, Zchlj NEWIE

relation.

7 (A-7)

z ? 16(5,3)~Ggyp (1, 3) |2

s »|6(i,3) |
i i3 |
Note that

]
3

where ¢ =m
m

Q
H[ﬂ [t}

? |G (4,3) ~Ggyp (1,3) |2 (3-8

. ..12
Z)ZJ'G(lrJ)l
i3
and if we let
e2M2

:E:}: .. A ]
lG(lrj)" GSVD(ll])‘
1 1
2,2
m_M
l_ g (P‘g)

Y3 leti i1’
i3
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then,
2
Oe
—_ = £ LI (A—lo)
o2
g

Suppose F(k,%) is an input array and mf denotes its mean,

then 02 and o; can be also expressed by

2 S ey . R
ol —}:Z ZZ (H(1,3)=Ho,n (1,3) 1A (G-1",9-3") (3-11)
it 5 i . )
.[H(i',j')—HSVD(i’,j')]
and
2 _ N [ 21
o'g = ZZ H(i,j)A(1i,i',5- JUYH(i',3") (A-12)
i' 3t i3
where
Mi,3) = DD IF(k,8)-m ] [F (k+i 2+3)-m_] (A=13)
k 2

Combining Egs. (A-11) and (2-12), and substituting into

Eq. (A-10), yields R
?vzj:' Z Z [H(i,j)-HSVD(i,j)]A(i-i', 3.3

2
€% =
EE E ZH(lJ)A(ll' i=i"
l' 'l
' - st (A-14)
] [H(i',3") HSVD(l 'J")
H(i',3j")
.q
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2
But the first term in Fg. (A-11) 1is -equivalent to ¢y,
Thus,
2 2
€, T gk * O (A-15)
or 1
[ 5:2 M2 12
m
1- - 5
> S 16(3,3) =6gyp (1,3) ]
= E . i3
£17 By 73 (A-16)
m- M
1- g
Y
S o]
i)
L i

It is clear that El will decrease if one can set €m close

to zero.
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APPENDIX B

Relation between Basic Filter Coefficients and

Transformed Filter Coefficients

Let h(n) for n = 0,1,...,2C+]1 represents  an impulsce
response of the basic filter end a(n) for n = 0,1,...,20P+]
represents the impulse response of the transformed filter.
It was shown that the Fourier transform of a symmetrical
filter can be expressed as

Q
e = 739 3" b(n) (cosw)™ (B-1)

n=0

The new coeffigient b(n) is obtained from the Chebyshev
polynomial recursion formula. The relation between h(n)

and b(n) is given by

b(0) 0 1 0 h(0)
b(2) o 1 o {h

for ¢ = 1 and
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-1 0 1 0 -1 h(0)
b(1) 0 1 0 1 0 h (1)
b (2) = 2 0 0 0 2 h(2) (B-2b)
b(3) 0 1 0 1 0 h(3)
b(4) -1 0 1 0 -1 h(4)
L ] I
for ¢ = 2. By expanding Eg. (6-9) with P = 1,2, the
coefficient a(n) can be exprescsed in terms of b(n) and the
control parameter Pk'
If P = 1, then
A1 _
ra(0) 0 & 0] [ p(0]
. 1 -2
a(l) =13 Ay 5 b(1) (B-2a)
A1
[ a(2) [ O -5 04 L b(2)]
for ¢ = 1 and a
~a{0), -0 0 71 0 04 p b(0)q
A ’ A
a(l) 0 v AOAl T 0 b (1)
2
A 2 A A
1 0 A + 1 0 1
a2)| = |5 = 7o - 3 3| | P (e-3py
A Al
a(3) 0 — AOAl — 0 b(3)
4 4
Layd Lo o Ay o o4 Lpea-
3
for ¢ = 2, where AO+A1= 1l for u <B,C and -AO+A1= 1 for
ua> BC'
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If P = 2, the relation ig given by

A,
Ay
a(l) 0 > 0
a(2)| =11 A +A~;2 1 b(1) (P-43a)
2 0 2 7
A
a(3) 1
0 = 0
A
La(4)-J Lo 7}3 04 Lb(2)
for 9 = ) and
"a(of fo 0 m 0o o] [b(o)
a(l) 0 o m, 0 0
a2 0 my m, my 0 b(1)
a(3) 0 m5 me mg 0
1
a0 = 13 mg my 2| b2 (B-4D)
a(s) 0 m5 m6 mS 0
a(6) 0 my m, my ¢ b(3)
a(7) 0 0 m, 0 0
[a(8) ] L0 0 om0 o] |bea)
where
2
moe 2
17 7%
A A
_ M1
My = =3
A
)
M3 = ¢
Af Agh, Ag
m :'..f-l
5 3
17,




——

3
me = Aghyt 7 BB,
m =i\_0.+i2_
7 3 3
A
20N 3 .2
mg =22+ Laaa, +3al

for 0 = 2. But, A0= —A2 and A1= 1 when P = 2.

Therefore, the relation between a(n) and h(n) can be
obtained directly by substituting Egq. (BR-2) into Eg. (B-3)
for first-order transformation and 1into Eag. (B-4) for

second-order transformation.
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AFPFENDIX C

Lerivetion of Egs. (6-26) and (6-27)

The second-order transformetion can be characterized
by
cosu = AO + AlcosB + A2c0528 (C-1)
By imposing the constrsints at ¢ and 1w, we obtein

A, + A, + A

s
Il

0 1 2
(C-2)
-1 = AO - A1 + A2
Equation (C-2) immediectely leads to the relations
Ao = -A2 (C-3a)
= -3b
Al 1 (C-2b)
Substitution of Eg. (C-3) into Eg. (C-1) results in
2
cosu = AO + cosB - Aocos B (C-4)
The range of Ay, setisfying,
-1 < f£(x) <1 (C-5)
will ensure that l[cos ul <1 where f(x)y = A0+x—A0x2,

x=cos B but =-1<x <1, Note that f(x) is & cuadratic
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function in x and elways passes through two points, (-1,
-1) &and (1,1). The only case for which the condition of
Egq. (C-5) is being satisfied is shown in Fig. C-1. That

is equivelent to solving

1
fig >1 , A, >0 (C-62a)

1
aAs <7l Ag <0 (C-6b)

Egustion (C-6) gives the range of AO such that

1 1
25i% 23 (C=7)
but, C <2< % corresponds to the case of u, < B, and
1 -
’iﬂiAo.ﬁo corresponds to the case of u, > Bc ’

respectively. Ao = 0 means that the transformed filter is

identiceal to the basic filter.

The relztion between ucand Bcis obtained by solving
Eg. (C-7), which 1is a quadratic function in cos B, That

is

1+v/1-4A . (cosu _~A_.)
cosB = - 0 c 0 (C-8)

ZAO

| ; But the plus sign in Eg. (C-8) is discarded since

[cosB]| <1,
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Figure C-1. Illustration of condition
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