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of small kernel convolution operators. The SVD expansion can be truncated to
a relatively few terms without significantly affecting the filter output.

A statistical analysis of finite word-length effects in SVD/SGK convolu-
tion is presented. Two important issues, related to the implementation of the
filters in cascade form, scaling and section ordering, are also considered.

Computer simulation of image convolution indicates that 12 bits are
required for the SGK/SVD accumulator memory and 16 bits are required for
quantization of filter coefficients to obtain results visually indistinguishable
from full precision computation. A normalized mean square error between the
SVD/SGK processed output and the direct processed output is chosen as an
objective criterion function. It is shown that a subjective visual improvement
is obtained by resetting the output mean to be equal to the input mean.

The transformation technique developed for the one-dimensional case is
used to parametrically modify the cutoff frequency of a baseline SVD/SGK
convolution filter. A detailed discussion of the one-dimensional case is
presented, and its applicability to SVD/SGK convolution filters is described.
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APSTRACT

This dissertation describes vspc-.ciIl-purposc !7iqna]

processor for performing two-dimensional convolution with a

minimum amount of hardware using the conce-pts of sinqular

value decomposition (lv-D) and small qcncratinq kernel" M-C7)

convolution. The SVD of an im pulIse rrsponsep of a

two-dimensional finite impulse responsc (FTP) fil-e~r is

employed to decompose a? filter into ai SUM of

two-dimensional separable linear operjators. I+hrSr lirnear

opetors are themselves decomoosed into a seoucnc'- of smrallI

kernel convolution op(rators . The cVD) ExpEnsion c;an h(e

trUncated to a reletively few terms .i thout siq ri f i can t1y

effecting the filter output.

A statistical analysis of finite word-length effects

in SVD/ECK convolution is presented. Two important issues,

related to the implementation of the filters in cascade

form, scaling and section ordering, Ere also considered.

Computer simulation of image convolution indicates

that 12 bits are required for the SC-1/SVD accumulator

memory and 16 bits are required for quantization of filter

coefficients to obtain results visually indistinguishable

from full precision computation. A norirali7cd mean souare
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error between the SVD/SCK processed output and the direct

processed output is chosen as an objective criterion

function. it is shown that a subjective visual improvemcnt

is obtained by resetting the output mean to be eoual to the

input mean.

The transformation techniaue developed for I-he

one-dimensional case is used to parametrically modify i-he

cutoff frequency of a baseline SVD/FCK convolution fill-er.

A detailed discussion of the one-dimensional case is

presented, and its applicability to SVD/SGK convolution

filters is described.
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CHAPTER I

INTRODUCTION

During the last decade, the field of digital signal

processing has been- extremely dynamic and active. There

have been many applications of digital signal processinq

techniques in digital communication, seismic processing,

radar processing, sonar processing, speech processing, and

image processing.

One of the important areas in digital signal

processing is digital filtering. The term "digital

filtering" can be viewed as a computational process or

algorithm by which a sampled signal or a sequence of

numbers, acting as an input signal, is transformed into a

second sequence of numbers called the output. There are

two major types of digital filters: infinite impulse

response (IIR) filters and finite impulse response (FIR)

filters. Digital filtering is mainly concerned with filter

design and its implementation.

If the present output of a system is calculated from

the past, present, and, in the noncausal case, future

inputs, the system is called nonrecursive. If the present
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output of a system is calculated from the past and present

inputs and outputs, the system is called rpcursive. Tn

both recursive and nonrecursive systems, the relation

between an input sequence x(n) end an output seouence y(n)

can be characterized by a difference ecuation of the form

M N
y(n) akf(n-k)- E bk (n-k) (-1)

k=O k=O

Conceptually, M and N can be finite or infinite. A system

in which bk = 0, for k = ],....N, is nonrecursive, and can

be implemented by an FTP filter. The system in which FN>_

and bk is not zero is recursive, and it can be implemented

by an TIR filter. Choosing between an FIR filter and an

IIR filter depends upon the relative advantages and

disadvantages the filter offers for a specific problem.

Signal processing is, of course, not limited to

one-dimension. Many signals are inherently

two-dimensional; thus, two-dimensional signal processing

techniques are required. Image data is a typical

two-dimensional signal. Digital filtering with FTR filters

has many applications in image processing. For instance,

image restoration to remove blur and to suppress noise

generally requires digital filtering. Tn most cases,

digital filtering reouires implementation of a

two-dimensional convolution.

2
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The term "implementation" means that the algorithm is

either written in a computer language for a general-purpose

computer or is realized with special-purpose hardware. In

general, the implementation of two-dimensional convolution

in image processing has been confined primarily to computer

programs with a general-purpose computer, where virtually

unlimited memory, processing capability, and time, are

readily available. But the required processing time is

often quite enormous because of the huge amounts of data to

be processed and the restricted input-output transfer rate

between the computer and display. An image size of 512x512

pixels is common in image processing. An alternative to

the use of a general-purpose computer is to utilize

Integrated Circuit (IC) technology. Recent advances in TC

technology now make the realization of a real-time signal

processor capable of performing two-dimensional convolution

practical. High speed digital multipliers, memory and

display circuitry are now commercially available. As a

result, significantly more sophisticated algorithms can now

be chosen for problem solving. The trend is to develop

special-purpose signal processors to take advantage of

recent developments in digital circuits (1-1 to 1-3]. In

the design of such a special-purpose signal processor,

speed, complexity, power consumption, computing capability,

and cost, are all factors to be considered.
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Recently, a technique called small generating kernel

(SGK) convolution has been proposed [1-4]. SGK convolution

is a processing technique for performing convolution on a

two-dimensional data array by seouentially convolving the

array with a small size convolution kernel, say 3x3. This

idea was first suggested by Mersereau et al. [1-5] and

generalized later by Abramatic and Faugeras [1-4]. Fince a

large size kernel convolution is performed by a sequential

small size kernel convolution, and the implementation is

highly modular, the SCK approach makes the hardware

implementation quite appealing if a proper design procedure

to specify the small size kernel operators is found.

In the one-dimensional case, any impulse response can

be decomposed into small size convolution operators,

typically 3xl. This property can be seen in the cascade

form for FIR filters. But, theoretically, exact

decomposition of a large size convolution operator into

small size convolution operators is impossible in the

two-dimensional case. This is the reason why the design

procedure for SGK convolution leads to a complicated and

time-consuming optimization problem. The inherent

difficulty in finding small size convolution operators

motivates the development of a new algorithm for the

two-dimensional convolution. The proposed SVD/SGK

convolution method also makes use of SGK convolution,

however, the size of small size convolution operators is
4



3x1, rather than 3x3.

This dissertation describes a special-purpose signal

processor with a minimum amount of hardware for performing

two-dimensional convolution using the concepts of singular

value decomposition (SVD) and SGK convolution. To extend

the usefulness of SGK convolution, two-dimensional FIR

filters of size N1 xN 2  are decomposed into a sum of

two-dimensional separable filters by means of the SVD of

their impulse response matrix H. The SVD expansion can be

truncated to K terms (K, R, where R is a rank of H),

without significantly affecting the output of the filter.

Whenever the two-dimensional FIR filter is separable, the

convolution can be performed by one-dimensional processing.

This is a reason why the SVD expansion can be very useful

for implementing two-dimensional nonseparable filters. It

was noted that each one-dimensional FIR filter can be

realized as a cascade of second-order SOK filters. Thus,

it is possible to implement a two-dimensiona] convolution

by a sequential convolution with one-dimensional

second-order SGK filters. As an example, one can think of

using such a convolution technique for convolving images at

real-time rates on an image display system.

When a digital signal processing algorithm is

implemented with a special-purpose signal processor,

account must be taken of the errors caused by finite
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word-length in representing filter coefficients and signal

values. Implementation with finite word-length can be

modeled by injecting white noise into signals whenever a

rounding operation is performed. The goal of this error

analysis is to minimize the required word-length subject to

some reasonable error tolerance. The problem is to

determine the best ordering and scaling procedure in order

to minimize the required word-length. To solve these two

problems, we show that how the theory, for the

one-dimensional case, can be modified to the

two-dimensional case.

The second issue investigated in this dissertation is

parametric design. The concept of parametric design is to

generate a class of two-dimensional FIR filters with a

variable cutoff frequency from previously designed baseline

SVD/SGK convolution filters. Tn the case of

one-dimensional FIR filters, Oppenheim et al. [1-61 have

proposed a transformation for designing a variable cutoff

digital filter. But, very little work has been reported in

the two-dimensional case. It is shown that the cutoff

frequency of a SVD/OGK convolution filter can be varied by

the use of a one-dimensional transformation. Tt is

believed that such a variable cutoff SVD/SCK convolution

filter has numerous applications in image processing.

Adaptive filtering will be very useful in image

restoration. For example, the cutoff frequency of a Wiener

6

a|



filter could be changed, and an observer could effectively

examine the processed image in real-time.

This dissertation consists of seven chapters. A

review of SCK and SVD/SCK convolution is presented in

Chapter 2. Chapter 3 discusses the effect of using

fixed-point arithmetic. This chapter includes a derivation

of the noise formula to predict total roundoff noise.

Scaling and section ordering for SVD/!CK convolution are

described in Chapter 4. Tn Chapter 5, a series of

experimental results based on computer simulation is

presented. Pmong these results is the confirmation of the

derived noise formula using a random number array as an

input. A simple technique to reduce the normalized mean

square error (NMSF) between the SVD/SGK processed output

and the direct processed output is also given. The

effectiveness of this technique is demonstrated visually.

Chapter 6 deals with the parametric design of SVD/SGIF

convolution filters. . detailed discussion of the

one-dimensional case is presented, and its applicability to

SVD/SGK convolution filters is described. Several design

examples for two-dimensional, as well as one-dimensional

cases, are shown in this chapter. Finally, Chapter 7

discusses the conclusion and possible extension of this

work.
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CHAPTER 2

SEQUENTIAL CONVOLUTION TECHNIQUES

2.1 Introduction

Two-dimensional convolution has found numerous

applications within the field of two-dimensional signal

processing [2-1,2-21. For example, image enhancement,

image restoration, and digital filtering generally require

two-dimensional convolution. Referring to Fig. 2-1, an

output array G(j,k) is obtained by convolving the input

array F(j,k) with the impulse response of the system

H(j,k). The two-dimensional direct convolution algorithm

can be expressed by the double sum

j k
G (j ,k) =F (j ,k)*@H (j ,k) =- -F(m,n)H(j-m+l,k-n+l) (2-1)

m=1 n=1

where G(j,k) is the M1 xM2 output array, F(i,k) is the NIxN2

input array, and H(j,k) is the 11 xL2 convolution kernel

array, called an impulse response. The input and output

dimensions are related by Mi= Ni+Li-l for i=1,2. In Fq.

(2-1), the symbol @@ denotes a two-dimensional

convolution. The symbol 0 will be used to represent a

8
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one-dimensional convolution throughout this dissertation.

In the direct convolution lqorithm, the. output,

G(j,k), is the weighted sum of all values of te input

array. The drawback of using the direct convolution

algorithm of Ea. (2-1) is that it reauires many arithmetic

operations. The number of additions and multiplicotions

for direct convolution is NIN 2 LL 2.

In 1965, Turkey and Cooley [2-31 opened a new era in

digital signal processing. They discovered a fast Fourier

transform (FFT) algorithm, which is an efficient method for

computing a discrete version of the Fourier transform

(DFT). The two-dimensional DFI pair of a finite array

X(j,k) for j,k = 0,1,..., N-1 can be written in the form

N-1 N-i

N ~v=2E 1 X (j, k) e xp u N-(j + vk)

j=0 k=0

(2-2)
N-1 N-1

X (j ,k)= Z(u,v)exp --- (uj+vk)

U=0 v=0

where i = -I, u,v are spatial frequency variables, and

Z (u,v) denotes the Fourier transform. Both .(u,v) and

X(j,k) are, in general, complex series. Consider the

following relation in the frequency domain

.S(u,v) = J(u,v)W[(u,v) (2-3)

I0



where (u,v) , j (u,v) and A (u,v) are discrete Fourier

transform of the array G(j,k) , F(j,k) , and H(j,k),

respectively. By the definition of the DFT, C(j,k) can be

expressed as

N1-1 N2_I

[a~kr~~ (u, v)' (u, v1 N {i(1 +2 (2-4)
u=O v=O

Thus, computation of t.he discrete convolution of two arrays

can be obtained indirectly using the DFT. Considerable

computational efficiency can be gained by the FFT

convolution technique. In general, computation requires
2 2
N +4N log2 N operations when N=N 2=N f2-41.

Fourier domain processing is more computationally

efficient than the direct convolution of Fq. (2-1) if the

size of the impulse response is sufficiently large. The

cross over point for the two implementations occurs for a

lOxlO impulse response with large input arrays f2-51,

Because, in many practical applications, the size of an

impulse response is larger than 10xl, then Fourier domain

processing is an efficient computation technique.

Furthermore, the efficiency of Fourier domain processing

can be increased by overlap-add or overlap-save techniques

[2-61.

Several other techniques, for example, number

theoretic transforms, have been reported concerninq

ii



convolution computation [2-7,2-81. So far, the tcchnioues

we have discussed can be implemented by proarams for

general-purpose computer or special-purpose hardware.

Recently, due to the dramatic development in LarF' Scale

Integrated (LSI) circuit technology, real-time low cost

hardware implementation of a two-dimensional convolution is

of great interest. Low cost hardware implementaticn is

possible if the size of the convolution kernels is kept

small because the cost of hardware is proportional to the

size of the convolution kernel. The technicuo, commonly

referred to as SGK convolution, makes this task possible.

A review of these methods is given in Section 2-2. The

basic concepts of the SVD technicue dealing with

nonseparable impulse response and application to seauential

convolution is discussed in Section 2-3. A new convolution

technique is proposed in Section 2-4. Its application to

an image processing display system is described in Section

2-5.

2.2 Review of Small Generating Kernel Convolution

SGK convolution is a processing techniaue for

performing convolution on two-dimensional data arrays by

sequentially convolving the arrays with small size

convolution kernels. The output of the SCK convolution

operation closely approximates the output obtained by

convolution with a large kernel prototype filter. The

12
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motivation behind SGK convolution is that it can be uscd to

approximate any impulse response of an FTP filter, and that

its structure permits implementation of the convolution by

sequential convolution with small size kernels.

McClellan [2-9] was the first to propose a technioue

for designing such a class of filters by transforming

one-dimensional linear phase filters* into two-dimensional

linear phase filters. By assuming that the prototype

filter is a linear phase filter, his algorithm transforms a

one-dimensional filter h(u) into a two-dimensional filter

W (u,v) by means of transformation given by

cosw = Acosu+Bcosv+Ccosu.cosv+D (2-5)

The McClellan transformation is an extremely useful tool,

requiring only moderate computation, for designing many

common types of two-dimensional FIR filters. FIR filters

up to order 100 can be designed using this method.

Mersereau et al. [2-101 generalized the McClellan

transformation for two-dimensional FIR filters and showed

an efficient way to implement the filters designed by this

method. The significance of their implementation of the

designed filter is that a large two-dimensional convolution

*A linear phase filter implies symmetry of the filter.

13



can be replaced by a sequential convolution with small size

kernel operators. A description of the algorithm follows.

The frequency response of a one-dimensional linear

phase filter of odd length L is

L-1
2

h(u) = "h(n) [cosul n  (2-6)

n=0

where h(n) represents the filter impulse response. Because

the frequency response of a cascade form is the product of

the frequency response of individual stages, the term

[cos u]n  of Eq. (2-6) can be considered as a total

frequency response obtained by cascading n identical

filters each with a frequency response cos u. It is

beneficial to rewrite Fq. (2-6) in terms of the z-transform

to obtain
L-1

L-1 2

H(z)= h(n)z -n=h(O)+-h(n) [p1 (z)]n (2-7a)

n=O n=O

where

z-i
PI(Z) = z+z (2-7b)

Figures 2-2 to 2-4 show three basic implementation

structures proposed by Mersereau et al. [2-1I1.

14
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Referring to Fig. 2-2, implementation of a
L-I

two-dimensional filter consists of a C(= 2 stage

identical sequential convolution. Note that pl(z) is

replaced by a two-dimensional filter Pf(z 1 , 72, which is

obtained by the McClellan transformation. The o-th staqe

output Ocq(z 1 ,z2) is obtained from the cumuletive sum of the

a-th stage as

0q(Zl1Z 2  = q- 1(zli 2 )+h(q)A q (lz2) (2-8a)

where

Aq (211Z 2) Aq 1 (Zlz 2 )Hf(ZlZ 2) (2-8b)

The term OQ(zl,z2) corresponds to the output array

G(z 1 ,z 2) , or equivalently

Q

OQ(zlZ 2 ) = -h(Z) [Hf(Zl 1 z2] F(zl,z 2 ) (2-9)
Z=i

The convolution indicated in Eqs. (2-8) and (2-9) could be

implemented directly from the direct convolution algorithm

of Eq. (2-1). The other structures, shown in Figures 2-3

and 2-4, also can be implemented in a similar manner

[2-11]. Mersereau et al. also pointed out that the

computational efficiency, i.e., number of multiplication

and addition operations required for implementation, is

greater than the number for either the direct

15
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implementation or an FFT implementation for filters of

order up to 50x50.

Another structure of interest, shown in Fig. 2-5, was

proposed by McClellan and Chan [2-12]. They noted that
znz --n

Z is the n-th degree Chebyshev polynomial in the
2

variable p1 (z) of Eq. (2-6). Unfortunately, an arbitrary

two-dimensional impulse response cannot be implemented in

this way because it is not always symmetrical. The

implementations discussed so far are applicable only to

McClellan transformed filters. The elementary filters of

Figures 2-2 to 2-4 do not necessarily has the same

frequency response. The limitation of the previous

implementation has motivated a search for more general

design techniques for a class of two-dimensional FIR

filters that can be easily implemented by sequential

convolution with small size kernels, say 3x3.

Abramatic and Faugeras [2-13 to 2-151 presented a

synthesis procedure, described in Fig. 2-6, for designing

such a class of filters. Tn comparison with Fig. 2-2, the

elementary second-order filters have different transfer

functions. The sequential filter proposed by Mersereau et

al. is a special case of this class of filters. The design

procedure approximates the prototype filter by mee-ns of

minimizing the mean square error [2-131 or Chebyshev error

[2-141 between the approximate and prototype filters.

k 19
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Another simpleC filter with propetis similar to mentioned above is shown in Fig. 2-7.

2.3 svr Exp no of a 2 I-ireful~~ ~! s }pnc ,a t r j X

In thi Previour twect ions, n £CK convolution
-dfor twOimensional 

convo2u tiOn were di ..SC U .d
The concern here is with another fI ter Structure has(8upon SCK convolution 

with small sir kerne3xI. The basis for the new approach is a mtri, expanslly
by use of the singular value decomFpostion 2-a6n. The
reason for choosing te 'VD techniue n poitie processing

aPPlications is discussed.

A two-dimensional 
impulse response can bpcharacterized 

as a matrix. If we consider an arbitraryreal impulse response which is modeled by the L xi. matrix

1 2
"H{I, ) H( 2} H(IL2)

H (2,1)

H -- 
( 2 -i 0 )

H L, ) H LL , L2
1'I/ 2)

Suppose the impulse response s sP.tialy invariant an, ;,
of Scperab3 form Such that
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H =c rT (2-11)

where c and r are column vectors representing column and

row one-dimensional impulse responses, respectively. We

have used the superscript T to denote transposition. Then,

two-dimensional convolution may be performed by sequential

row and column one-dimensional convolutions. As a result,

one can obtain a substantial decease in the number of

multiplication and addition operations if the input array

size becomes large. If the input array size is NxN, the

separable convolution operators of Eq. (2-11) reouires
2 2

N2 (LI+L 2 ) multiplications compared with N LIL 2

multiplications required in the nonseparable case (fewer

are required if the impulse response matrix possesses

symmetry) . Unfortunately, we cannot assume that the

prototype impulse response matrix H is always separable.

One way of dealing with the nonseparability problem is to

use the SVD technique. In the SVD matrix expansion, any

arbitrary L1 xL2 matrix of rank R can be decomposed into the

sum of a weighted set of unit rank L1 xL2 matrices. The

significance of the SVD expansion is demonstrated by noting

that the nonseparable matrix H is the sum of individual

separable matrices of unit rank [2-171.

According to the SVD expansion, there exist an LIxL 2

unitary matrix U and an L2xL 1 unitary matrix V for which

U H V = A (2-12)
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where

"jZ(1) 0 0

X (2)

0AA 2(R)0 (2-11)

0 0

is an L 2 x 1 matrix with a general diagonal entry (j) for

j=l,2,.. .R called a singular value of H. The singular

values can be obtained by square rooting the eigenvalues of
T TT

HH or H H. The columns of U are the eigenvectors of BET

and the columns of V are the eigenvectors of H TH. Fince

HHT  and H TH are symmetrical and square, the eigenvalues

X (j) are real, and the eigenvectors set u , {v for

j = 1,2,...R are orthogonal.

Since matrices U and V are unitary matrices,

Eq. (2-12) is equivalent to Eq. (2-14). Hence, H can be

decomposed as

H =(uI u2 u ]A Vl

K2

(2-14)

vL 2

Equation (2-14) can be reformulated into series form as

26
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R

H Z:X',j'u v T (2-15)
j=l

If we let

C (j)u (2-16a)

r . v. (2-1 6b)
-J -J

where c and r are one-dimensional column and row-] -J

convolution operators, respectively, then

R R

H = E T = (2-17a)
-j £ E- -3
j=w j=1

wh e re

T
H. = c *r. (2-17b)

I -J -j

It should be observed that the vector outer product u..vT
3 -3

of the eigenvectors forms a set of separable unit rank

matrices each of which is weighted by a corresponding

singular value of H, as shown in Fig. 2-8. If matrix H is

separable, then we have only one SVD expansion term. If

matrix H is not separable, theoretically, the exact

representation of H needs R terms. Hence, the number of

multiplication operations for direct convolution requires

RN2(LI+L 2 ) multiplication operations, as shown in Fig. 2-9.
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If we assume that the singular values A1 (j) are

listed in order of decreasing magnitude, then the SVD

expansion of Eq. (2-17a) can be always rewritten as

H = SVD + E (2-18a)

where

K

H = H. (2-1 8b)
--SVD E 3

j=1

R

-K -- Hj (2-1 8c)

j=K+l

where K is the number of retained term for HSVD and the

"Hat" symbol ( ̂) represents the approximation of H. The

matrix E K denotes the truncation error as a result of

retaining the first K terms. Obviously, EK =0 for K = R.

It can be shown that the case for K = 1 corresponds to the

minimum mean square error (NMSE) separable approximation of

H [2-18]. If the elements of H for K=I are not close-- - SVD

in comparison to the elements of H, we may add the next

largest singular value term for a closer approximation of

H.

In general, we will be satisfied with a multi-stage

expansion that will closely approximate H. One of the most

commonly used numerical error measurements is the

normalized mean square error (NMSE). Let us define the FVD

30
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approximation error EK for the measurement of the degree

of approximation by retaining only the first K terms in the

expansion as

C j (2-19)

1 J

If all singular values are the same magnitude, we have to

retain R terms. If, however the first few singular values

are very large compared with the magnitude of the rest of

the singular values, it would be sufficient to retain only

the first few terms for approximation. Two questions

naturally arise. Pow many terms will be sufficient for

close approximation in most practical cases? What

characteristics of impulse responses are reouired to

approximate H by a few singular value terms?

In most cases, an imaging system can be modeled by a

superposition integral relating the input and output

continuous fields of a linear system [2-4]. In order to

reduce the problem to a discrete model, the point spread

function (PSF) of the imaging system, as well as the input

and output images, should be discretized. The matrix H

resulting from the PSF samples is nearly singular or

ill-conditioned since the rows of the matrix H are

approximately a linear combination of one another

[2-19,2-201.
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Ill-conditioning of a matrix can be described by its

condition number [2-21). The condition number of given

matrix A is defined in terms of the ratio

max

C[A) max (2-20)

min

of the largest 2 to smallest x singular
max min

value of A. The condition number is a useful tool for

explaining the effect of perturbation caused by additive

noise on the accuracy of computation involved [2-22). The

condition number approaches infinity as min goes tomin

zero. In this case, the matrix is called ill-conditioned

and will have a large condition number. In an ideal

imaging system, characterized by a delta function point

spread function, the condition number is unity since all

singular values have the same magnitude. Sometimes it is

convenient to demonstrate matrix conditioning by showing

singular value magnitude plots. Referring to Fig. 2-10, a

well-conditioned matrix requires more terms in a SVD

expansion than an ill-conditioned matrix. But, it is noted

here that ill-conditioned and nearly singular problems are

very common in imaging systems [2-4). Therefore, we do not

need to retain all terms in the SVD expansion, but only a

few terms because of ill-conditioning of the PSF matrix

itself. The usefulness of the SVD expansion can be

demonstrated by noting that we can trade off between the

32



1/.

X-'Ii

R N
a) ill -conditioning

N
b) good -conditioning

1i2

N
c) ideal- conditioning

Figure 2-10. Singular value plot

33

7W



am,)unt of NMSE and the computational efficiency by choosing

the number of terms in the SVD expansion. By retaining

only K terms in the SVD expansion, the recuired

multiplication is KN 2(L I+L 2 Computatione.l efficiency

still holds as long as KN 2(L 1 +L2 )_5 ?LL.2, or K< L 2
(L + L2)"

2.4 The SVD/SGK Cascade Convolution Technique

In the previous section, approximion of a nonseprab]e

impulse response matrix H in terms of the sum of individual

separable matrices of unit rank was discussed. To

implement the SVD convolution, each separable convolution

operator is implemented in parallel, and summed together,

as shown in Fig. 2-9. Tn this section, SVD and SGK

techniques are combined to obtain a more versatile

two-dimensional convolution technique requiring a simpler

implementat ion.

Since each SVD expanded separable matrix of unit rank

is an outer product of the one-dimensional column and the

row operator cj and r., here each cj and rj is to be

considered as a one-dimensional FIR filter. There are a

variety of alternative forms -in the FIR filter realization.

Realization of FIR filters generally takes the form of a

nonrecursive computation algorithm. One way of realizing

FIR filters for hardware simplicity is to use a cascade

form. In the cascade form, the z-transform of the impulse

response with the length of L can be expressed as a product

34



of second-order SGK filters as

Q Q

I (z)= Hk(Z)= 1 [o,k l,kZ-l+62 , kz  ] (2-21)

k=l k=1

where the Bj,k are real numbers and Q, the number of

convolution stages, is

,Lodd2 C(2-22)
, L even

When L is even, one of the kernel terms 2,kwill be zero.

Here we shall be concerned only with the case of odd length

impulse response. The kernel of each second-order SGK

filter can be easily obtained by solving the zeros of the
-1

polynomial H(z) because H(z) is a polynomial in z of

degree L-1.

A new approach for two-dimensional SVD/SCK

convolution, shown in Fig. 2-1, is to realize each

one-dimensional convolution operator c and r for£-

C= 1,2,...,K as a sequence of second-order SGK filters.

Referring to Fig. 2-11, the z-transform of the SVD/SGK

convolution filter is

K

H(Zlz2)= C(zl)R (z2 ) (2-23a)

k=i

or

35
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Q Q

H z f2llC (Z jR Z 2 (2-23b)

-he r e

Q
Cc, (z1 ) = nI C i ±(z1 ) (2-24a)

~i=1 /

Q
R 9 (z2) = i l .R9., (z2 ) (2-24b)

i=1 -

The terms C,(zl) and FU(z 2) for 2 =,2 . K denote the

z-transform of each column and row one dimensional

convolution operator, as defined in Eq. (2-)6), and each

C9 i(z1 ) , RQi(z2) for i,j = 1,...C is the z-transform of the

second-order SGK filter.

One of the most important reasons for using FIR

filters is that they can be designed to possess linear

phase, a feature that is very useful in speech processing

and data transmission. It is easy to see where the zeros

-f such linear phase FIR filters can lie by examining their

z-transforms because a linear phase filter is symmetrical.

In the general case, the filter system function is

L-1

H(z) = .h(n)zn 2E (2-25)
n=O

Linear phase FIR filters have a symmetry property such that
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h(n) = h(L-l+n) (2-26)

Therefore, by using Eq. (2-26), Ea. (2-25) can be rewritten

as

(L 2L ) L-I (L- )

H(z) = h(O) z 2 + z 2
L-3 (L-3)

+h(l) k[z + z (2-27)

-1
If z is replaced by z , then we obtain

(L-l) ( L-i) (L-i)

H(z) = z 2 h(o) [z 2 + z 2]

- (L-3) (L-3)

+h(i)z 2Z + Z 2] (2-28)

By comparing Eq. (2-27) with Eq. (2-28), one obtains

-CL-i) -

H(z) = z H(z ) (2-29)

Equation (2-27) shows that the zeros of H(z) are identical

to the zeros of H(z-1 ). In other words, if H(z) has a

complex zero a+ib, with a 2+b 2 0 1, then H(z) must have a

minor image zero --I- . Since the impulse response of
a+ib

the filter is a real number, every complex zero of H(z) has

its complex conjugate as another zero.

The discussion above leads immediately to the possible

form of Hk(z). For every complex zero of 1(z) , a 2+b ,

38



the second-order SGK filter will be of the form

Hk(z) = [z -(ak+ibk)I [z -(ak-ibk (2-30)

If the zero, Ct , is not complex, then the form of FGIY

filter is

H (z) = [z- .] [z- (2-31)
k .

If the zeros are either -l or 1, then the zero is its own

complex conjugate as well as a mirror image. In this case,

the form of the SGK filter is

-1+

fk(z) = (z 1 1) (2-32)

From the discussion above, the following rule of zero

grouping can be stated:

1) Complex 2eros are grouped together in conjugate

pairs.

2) Real zeros, that are reciprocal of each other,

are paired together.

3) Double or higher multiplicity zeros are paired

together in pairs.

The rule of zero grouping guarantees that all kernels

are real numbers. The proposed SVD/SGK convolution has

both advantages and disadvantages. Since two-dimensional

large kernel convolution is replaced by a cascade of

one-dimensional SGK filters, the processing complexity can
39
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be reduced. Also, from a theoretical point of view, there

is no approximation error in realizing the cascade form

because all kernels can be found exactly by simply solving

for the zeros of H(z). Only the SVD truncation error

defined in Section 2-3 will be introduced. On the other

hand, computational inefficiency could be one of the

disadvantages of replacing two-dimensional SGK filters by

one-dimensional SGK filters*. It is possible, however, to

perform two-dimensional SGK filter convolution instead of

one-dimensional since we can rewrite Eq. (2-23) in the

alternative form

K
H (zl'Fz2) = H ,i (Zl'Z2) (2-33a)

where

H ,i(zl, 2 = C ,i (ZlZ 2 )R Z0i(z1,Z 2  (2-33b)

As a matter of fact, the two-dimensional SGK filter will

increase computational speed by a factor of two, but the

hardware is more costly and the processing more complex.

Implementation of a two-dimensional SGK filter, in general,

requires nine multipliers and adders.

2.5 Image Processing Display Implementation

There are many ways to implement the SVD/SGF

convolution method. The goal of this section is to
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describe how to organize the implementation and apply

SVD/SGK convolution to an image processing display system.

Let us denote F(j,k) as a filter input array with a size of

NxN and the array G(j,k) as its output. We also assume

that the size of the prototype impulse response is

(2Q+I)x(2Q+l). For simplicity, we shall discuss only

implementation for one term in the SVD expansion because

the SVD/SGK convolution consists of K identical paths. The

implementation iterates 2Q stages. The node labeled

Yi(j,k) for i = 1,2,...,2Q is an intermediate array, which

will be used in the next convolution. In other words, at

each node, the array Yi-l(j,k) is used to produce array

Yi(j,k). Therefore, Y2Q (j,k) corresponds to the final

output array G(j,k) . Once the array Yi (j,k) has been

computed from Y il(j,k), Yi 1l(j,k) is no longer needed and

that Yi can then be stored in place of Y i-l To implement

SVD/SGK convolution, it is then necessary to have at least

one common storage for the intermediate array Yi (j,k) for

i = 1,2,...,2Q. But the storage array should be

initialized by the input array F(j,k). As the computations

proceed along the chain of SGK filters, each Yi(j,k) will

be larger in extent than its predecessor Y, (j ,k)

Therefore, the required storage size must be large enough

to hold (N+2Q)x(N+2Q) pixels.

Because the implementation of SVD/SGK convolution is

highly modular, the concept of SVD/SGK convolution is

41
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ideally suited for implementation by a diqita] imaqe

display system. Two-dimensional convolution performer by e

digital computer in image processing is often ouite time

consuming because of the seripl nature of the computation

and the slow input-output transfer rate between thb

computer and display [2-23] Put solid state device

technology makes it possible to develop memory devices that

produce pixels at a serial rate of about 10 million per

second. Figure 2-12 is a basic diagram of the architecturp

for SVD/SGK convolution 12-231. Tn the operation of this

hardware, an original imace to be convolved is written into

an accumulator memory with a size of (N+20)x(N+2C). Thp

accumulator will thus appear as an array of nonzero values

encircled with Q square rings of zeros. Then the input

array is sequentially convolved with a 3x1 impulse response

operator, depending on the row or column direction. Three

multiplication and three addition operations are performed

for each pixel. After each convolution, the microprocessor

will update the kernels of the 3x] convolution operator.

This process proceeds for 2( stages, equivelent to 20 frame

time. Thus, after 2Q frame times, the contents of the

accumulator memory are added to the partial sum memory,

which is initialized by zero, and return to the original

image. This processing completes the first term of the SVD

expansion. The partial sum memory can be displayed, if

desired. This process is repeated for the remaining SVD

42

-low,-

.. . .. - - .,,m i -,w i .,,, i i i ,, u I m



I DISPLAY

I II

[D/A 8131

sum PARTIAL SUM
MEMORY

-
CONVOLVER 'PROCESSOR

ACCUMU-ATOR ORIGINAL
MEMORYI 

IG MEOR

Figure 2-12. SVD/SGK convolution architecture
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terms, resulting in a total processing time of 2KQ frame

time intervals. For conventional 30 frame/seconO

operation, the SVD/SCK convolution operation can bp

completed in 2KQ/30 seconds, far less than the 20 to 30

seconds required by a hardware floating point processor.

2.6 Conclusion

In this chapter, it was shown that the SVD expansion

of the impulse response of a two-dimensional FIR filter is

a very useful technique for a two-dimensional convolution.

The SGK and SVD/SGK convolution methods are attractive

technioues for simplifying the computational requirement of

two-dimensional convolution. The SVD/SCK convolution

approach is attractive for two reasons. First, large

two-dimensional convolution is replaced by sequential

one-dimensional convolution with small size convolution

operators. If one is interested in implementing SVD/SGK

convolution with special-purpose hardware, that approach

reduces both the cost and the complexity of the processing.

Second, the design for the SVD/SGF convolution filter is

simple and fast, and the design procedure introduces a very

small approximation error caused by retaining only the

first few terms of the SVD expansion. But the design for

the SGK convolution filter generally leads to complicated,

time-consuming nonlinear optimization programs. To utilize

SVD/SGK convolution on the digital image display system, a
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basic diagram of the architecture for SVD/SGK convolution~
was introduced.
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CHAPTER 3

FINITE WCIEL-LENGTH FFFECIS IN SVD/SCK CCNVOLUTION

3.1 Introduction

Until now, we have assumed full precision

implementation for SVD/SGK convolution. We will now

discuss some practical problems that must be considered

when digital signal processing algorithms are implemented

with programs for general-purpose computers or, especially,

with special-purpose hardware. These problems are caused

by the use of finite word-length registers to represent

signal values, coefficient values, and arithmetic

operations. Because of finite word-length, a auantized

number will not take the exact value assigned by the design

procedure.

When a signal, to be processed digitally, is obtained

by sampling a band-limited signal, the numbers must be

represented by a finite word-length register in the digital

machine. This conversion process between analog samples

and discrete valued samples is celled the quantization

process. This quantization process is an irreversible

nonlinear operation. hhen the filter coefficients are

46
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cuantized for digital implementation, the resulting filter

must be checked to be sure that it is close enough to the

desired response. In addition, finite word-length

operation has a strong effect on both the cost and speed of

the system. If the word-length is large, then the cost of

hardware will be expensive and the processing speed low.

Therefore, reducing the word-length as much as possible is

a major goal.

It should be noted here that effects of finite

word-)ength in a digital filter depend on many issues such

as whether fixed-point or floating-point arithmetic is

used, whether the fixed-point number represents a fraction

or an integer, and whether quantization is performed by

rounding or truncating.

In a digital system, numbers, generally, are

represented by a radix of 2. Thus, numbers are represented

by strings of binary digits, either zero or one. If a

word-length of b bits is chosen to represent numbers, 2b

different numbers can be represented. There are two ways

to represent binary numbers, depending on the location of

binary points. In fixed-point arithmetic, the position of

a binary point is assumed to be fixed. The bits to the

right of a binary point are the fractional part and those

to the left of the binary point are the integer part. Put,

with no loss of generality, we assume throughout this
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dissertation that the position of the binary point is just

to the right of the first bit. Thus, the range of numbers

that can be represented with b bits is -1.0 to 1.0-2

It is noted that the signal magnitude can be scaled to any

desired range. Certainly, the binary point could be moved

further to the right to allow a signal with magnitude

greater than unity, but the price paid is greater

complexity in hardware.

There are three formats commonly used to represent

fixed-point numbers, depending on the way of expressing

negative numbers: sign and magnitude, 2's complement, l's

complement. The sign and magnitude, the most simple

format, represents the magnitude by a binary number; the

sign is represented by the leading digit. It is useful to

assume that in all three representations, the leading bit

is zero for a positive number and one for a negative

number. For this reason, the leading bit is called a sign

bit. But the sign and magnitude format presents an

inherent problem in performing simple arithmetic, such as

addition. Therefore, the sign and magnitude format is

generally avoided in a digital system.

For l's complement representation, positive numbers

are represented as in the sign and magnitude format. A

negative number is represented by complementing all of the

bits of the positive number. In 2's complement
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representation, positive numbers are represented as in the

sign and magnitude format. But a negative number is

represented by subtracting the magnitude from 2.0. The

choice among the three formats depends on hardware

consideration. The two's complement format is widely

chosen in most digital systems because it conveniently

performs subtraction using an adder. Another advantage of

using the 2's complement format is that the correct total

sum will be obtained even when partial sums overflow or

under flow.

In fixed-point arithmetic, the result of adding two

b-bit numbers is still b bits. However, the magnitude of

the resulting sum can exceed unity. This phenomenon,

called overflow, is inherently related to the limited

dynamic range of fixed-point arithmetic. Scaling can be

performed to avoid undesired overflow. The product of two

b-bit numbers results in a 2.b-bit number. If

multiplication is carried out p times, the required

word-length for representing the result is p.b bits. This

is clearly an unacceptable situation for the hardware and

economy. To remedy this problem, truncating or rounding

operations to fit the results of multiplication into a

finite word-length register is necessary. The error due to

truncating or rounding of p bits of word-length into q bits

(p >q) of word-length is commonly referred as roundoff

error. Considerable attention has been paid to
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investigating the effect of roundoff error on digital

filter implementation in the last decade [3-1 to 3-5].

Floating-point arithmetic is a method for providing

automatic scaling. An arbitrary finite number x can be

represented exactly using the floating point representation

x = sign(x)c ( 2 i  (3-1)

where c, the mantissa, is a full precision binary number

such that 1/2!5c_51 and i, the exponent, is an integer.

The number of bits, b, in a flowing-point representation

should be divided into the number of bits bl, for the

mantissa and the number of bits b 2 for the exponent.

Although floating-point arithmetic reouires truncating or

rounding operations in both multiplication and addition

[3-6], it provides more dynamic range than fixed-point

arithmetic.

The comparison between fixed-point and floating-point

arithmetic depends on the input probability density

function, input power spectral density, and filter

frequency response [3-7). If the floating-point mantissa

and fixed-point word-length have the same word-length, then

floating-point arithmetic is more advantageous. Cenerally,

when a large dynamic range is required, floating-point

arithmetic generates less roundoff noise because it

provides automatic scaling [3-1]. But it should be noted
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here that floating-point arithmetic is significantly more

complicated and expensive in hardware than fixed-point

arithmetic. When economy and speed are of major concerns,

fixed-point arithmetic is usually a logical choice.

The comparison between truncating and rounding depends

on whether fixed-point or floating point arithmetic is used

and how negative numbers are represented. However,

experiments have shown that the errors generated by

truncation are more severe than those generated by rounding

because of a bias 13-3]. Truncation operation is not

commonly used in practical digital system.

The next problem of concern is fraction or integer

multiple representation of numbers. In integer multiple
-N

representation, all numbers are represented by 2 , where N

is an integer. Therefore, the multiplication operation

requires only a shift operation. This shift operation will

increase computational speed and simplify the hardware.

But one can expect losses in dynamic range and accuracy in

arithmetic. Since accuracy is essential in finite

word-length arithmetic, fraction representation is commonly

chosen.

Due to all these reasons, attention will be focused on

fixed-point arithmetic with the rounding operation and

fraction representation. Another reason for restricting

our attention to fixed-point arithmetic is that the
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overflow resulting from the limited dynamic range can be

avoided by proper scaling of the signal level.

3.2 Preliminary Statement

Fixed-point arithmetic with finite word-length causes

three common error sources [3-3]:

1) Quantization of the input signal into a set of

discrete values causes inaccuracies.

2) Representation of the filter coefficients by a

finite word-length changes the filter

characteristics.

3) Rounding or truncating of the results of

arithmetic operations within the filter causes

errors, known as roundoff* noise in the filter

output.

Overflow can also be a problem within filters. However,

the overflow problem can be avoided if the signals are

properly scaled. This problem will be discussed later.

The first source of error above, commonly referred to

as A/D noise, is inherent in any analog-to-digital (A/D)

*This term is universally adopted whether rounding or

truncation operation is actually performed.
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conversion process, and has been studied in great depth

[3-51. It is noted here that the input data array is

already a quantized version in most practical cases. For

example, 8-bit image data is common in image processing.

Furthermore, it shall be shown later that the effect of

input quantization is far less severe than the effect of

roundoff noise. Hence, the effect of A/D noise has been

excluded in this study.

The second source of error mentioned above occurs

because the filter coefficients, following a design

procedure, which would normally use full precision, must be

quantized with finite word-length. This quantization of

the filter coefficients will alter the transfer function.

This error differs from structure to structure. It is

advantageous to use a structure that is insensitive to

filter coefficient quantization. In general, the effect of

filter coefficients in accuracy is most severe in a

higher-order filter when the filter is realized in the

direct form than when it is realized in the parallel or

cascade form. As a rule, therefore, the parallel or

cascade form should be used for higher-order filters

whenever possible [3-3]. Experimental results have shown

that the amount of error is not significant in our case.

Therefore, no particular emphasis will be made in this

study, except in Chaper 5.
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The third source of error mentioned above is of major

concern in fixed-point arithmetic, and is the major subject

of the next section. Roundoff noise is the most important

factor in determining the complexity of hardware and speed.

Large word-length will slow down computational speed.

Furthermore, the price paid by increasing the word-length

for filter coefficients is negligible compared to the price

paid by increasing the word-length for reducing roundoff

error. In addition, a limit cycle can occur in the

recursive realization of FIR filters [3-9]. However, a

limit cycle cannot occur in the nonrecursive structures.

3.3 Fixed-Point Arithmetic

3.3.1 Roundoff Error

The direct form of discrete convolution can be

characterized as a calculation of the sum of products

N N

S = 1a(n)b(n) = Z-c(n) (3-2)

n=l n=l

Let us assume that a(n) and b(n) are (b+l)-bit numbers

(including sign bit) and products are rounded to less than

(2b+l) bits, but more than (b+l) bits. Then, the rounded

products can be written as

[c(n)] r = c(n) + e(n) (3-3)

54

L _ 7 , - . ....... .. . .._-- , _ . . . .'4 -



The relation between [c(n)Ir and c(n) is shown in Fig. 3-1,

where [c(n)]r denotes the rounded number and e(n)

represents the error resulting from rounding. In

fixed-point arithmetic, the error made by rounding with

(b,+l) bits satisfies the inequality

-bI  b
2 2 _

2 e(n) 2 2 (3-4)

Thus, the resulting sum can be expressed as

N N

Si Z [c(n)] = S + e(n)

n=l n=1

Let us assume that the resulting sum S will be stored into

(b2+1) bits of word-length. Then, the resulting sum

rounded to (b2 +l) bits can be rewritten as

N

S2 = 1 + V S + E-e(n) + v (3-6a)
n=l

where

-b -b
2 2

2 < v< 2 (3-6b)

Therefore, by combining Eqs. (3-5) and (3-6), we obtain

] -bl -b2
2 b1 2-b2

Is2- s N + 2 (3-7)
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Figure 3-1. Rounding of two's complement number
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The characteristic of the roundoff noise at the output

depends on the location where rounding is performed. There

are two possible locations for rounding. First, if all

multiplications are performed with full precision, rounding

is performed only after summation. Then, from Eq. (3-5),

e(n)= 0 for n = 1,2,.. .N so that

2-b 2

Is 2 -s 2 2- (3-8)

If all multiplication products are rounded for storage

before addition, v = 0 and

2-bl

is2-sI-2 2 N (3-9)

Unfortunately, all of the bounds derived are for worst

cases, and thus, are of little practical usefulness. In

the following discussion, we will derive more useful

bounds.

A less conservative estimate of the noise caused by

rounding can be obtained by a statistical approach 13-3].

It should be noted here that a precise analysis of roundoff

noise is generally complicated, and not reauired in

practical applications. The purpose of error analysis is

to determine word-length within a filter to satisfy some

specification with reasonable tolerance. Furthermore, a
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final decision concerning word-length is insensitive to

inaccuracies in the error analysis. Thus, an analysis

correct to within 30 % to 40 % is often acceptable [3-61.

The statistical approach considers the errors

introduced by rounding to be small random quantities. This

viewpoint simplifies the analysis and enables useful

theoretical results to be derived. Many computer

simulations results have verifed the validity of the

statistical approach [3-3 to 3-5]. It has been claimed

that the statistical approach tends to be more accurate

when the number of quantization levels is not too small

[3-3].

Three common assumptions are made concerning the

effect of rounding [3-3]. They are:

1) The error sequence e(n) is a white-noise secuence.

2) The probability distribution of the error sequence

e(n) is uniform over the range of quantization

intervals.

3) The error sequence e(n) is uncorrelated with the

input and itself.

The uncorrelatedness assumption is particularly

attractive because the total error due to rounding is the

sum of each rounding error. There are some controversies
58
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over thevldt
instae ,f the alin of the assumptions we have made. or
instance if the input is Constant, we will see clearlythat all three assumptions 

above are invalid. 
Tn such

cases, the roundoff noise is a deterministicis no longer Uncorrelated 
With the input But theseassumptions 

seem to be valid for most filters with input
signals of reasonable amplitude and spectral context. ifuncorrelatedness 

is not assumed, then the analysis will bemore complicated, 
and the results will be dependent on the

Particular 
input Signal or class of input signals [3-21.

Based on the discussion 
above, Fig. 3-2 Shows a noise

model of a 3x1 SGI( filter in which the rounding Operationis replaced by an additive roundoff noise. in this
we assumed that all multiplication 

products are represented
exactly, and rounding is Performed 

only after they are
Summed, i.e., at the filter Output Then only one noisesource is present in the filter, and Then on he
output. it superimposes on theThere are 2 Q 3xl SGK fin 

each Sv
stage, Q columns and i rowse et us define a
two-dimensional 3x3 filter, 0tros e t ' de fin e a
Column or row direction j~~ ), depending on theu The subscript j denotes the i-th
Stage SVD expansion- 

Thus, let
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c[ 0
c 2  0 for column convolution

00 01t .j ( z,m) = 0 0 -0

1 r2 for row convolution

X 0

for i=i,2,...,2Q. Figure 3-3 shows the roundoff noise

model for the SVD/SGK convolution filter. The mean and

variance of the error sequence e(n) can be shown to be

Me = 0 (3-]1)
02 2 -2b

e 12

We assume that the rounding is performed with (b+l) bits

word-length. In this model, a given error sequence e(n) is

filtered by succeeding sections, so that the output noise

variance will depend upon the ordering of the second order

SGK filters.

Let us define gji (Z,m) to be the impulse response from

the noise source ei(n) to the output. Thus,

gj,3 i( m)=tj'i+l ( m)**tj,i+2 (im)O ... Ostj,2Q (Z,m) (3-12)

The mean and variance of the roundoff noise are then given
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by

m =0
e.1

a =G2 EE, ,i m) 2 (3-1)
e. e~~

and the total noise variance is the sum of each noise

variance of the 3xl SGK filter. Therefore,

2Q

2 2 ( j i , 2] (3-14)oj =

i=l £ m

If an impulse response H is approximated by K singular

values, then the total output noise variance due to

rounding is

K K 2Q

ot o t a l = L . E o  o C-E I E [E E mIgj, j(",m) (3-15

j=l j =1 m

If the two-dimensional impulse response gj,i( ,m) consists

of N1 SGK filters for the columns and (2Q-i-N I ) SGK filters

for the rows, then gj,i(Z,m) can be rewritten as

gj,i(km) g3, (k ) g 3 , ( m ) (3-16)
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In vector form, Eq. (3-16) is eauivalent to

Sg' C ji( r )T (3-17)

where 9 cand r are one-dimensional impulse responses

obtained by convolving N 1 SGK filters for the columns, and

(2Q-i-N) SGK filters for the rows, respectively. If q
1 -j'i

consists of only SC-K filters for the columns or the rows,

then gc and should be

c ~ (3-18a)

or

(r T [0 1 01 (3-1.8b)

Note that

EEJg~ (Z~m)l 2= E gc' 12 gr g~(m) 12 (-9

k m 9.m

Substituting Eq. (3-19) into Eq. (3-20) , we obtain

2 2~- 2b K 2
a totl T_ gc1 Z 12 E Igr (m) 12 B (3-20)
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Equation (3-20) is a theoretical formula predicting

roundoff noise with (b+l) bits word-length. Its validity

will be demonstrated in Chapter 5.

3.3.2 A/D Error

Next an attempt has been made to show that the input

A/D noise is negligible coripared to the roundoff noise.

Again, the statistical model is chosen, and the input

quantization is considered as an injection of additive

noise to the input. The noise quantitites are uniformly

distributed over one quantization interval and

statistically independent. Since the first place where

quantization of the input signal may take place is at the

AID converter, the A/D noise effect is independent of the

structure we used to realize the filter. Figure 3-4

describes the statistical model for AID noise.

If the quantizer has a word-length of (t+l) bits, then

the input to the actual filter is x(k,m)+eA/d ,m) , where

e / P ,m) is the quantization error, bounded by
A/

e< Z,m) < 2- Let us define the output error
'AD 2

array, E(k,m) , as

Since the filter is linear, it can be shown that F( ,m) has
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zero mean and variance given by

A/D =tL.d.E (3-22aM

where

2 2 -2t
t 12 (3-22b)

It is noted that the filter has been normalized, so that

E= 1 (3-23)
Rv m

Such a normalized filter will not change image contrast

between input and output. Therefore, it is obvious that

E2 IH(Zm) 1 2<  H(km) = 1 (3-24)

m Z m

Using Eqs. (3-17) and (3-19) , and assuming that the

quantizer has the same word-length as a multiplier, it can

be shown that

A/D a 2 (3-25)

It is shown that the A/D noise is smaller than or equal to

that of roundoff noise. In general, A/D noise is

n74 1igible compared to roundoff noise.
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It is necessary to remark on the effect of filter

coefficient quantization. Pithough zero location an0

frequency response sensitivities to coefficient chanqes can

readily be obtained, no general statistical analysis of the

type given in Section 3-3 has been obtained to describe the

cascade form of FIR filters. Herrmann and Schuessler [2-91

worked on this problem only experimentally, not

theoretically.

3.4 Conclusion

The accuracy of a digital filter is limited by the

finite word-length used in its implementation. When a

digital filter is implemented with special-purpose

hardware, one is usually interested in determining the

minimum word-length needed for a specified performance

accuracy. Also, word-length is an important factor in

determining the complexity of hardware and speed. Thus, it

is very important to understand the effect of quantization.

In this chapter, attempts have been made to analyze

relevant effects of using fixed-point arithmetic for

SVD/SGK convolution from a statistical viewpoint. Cur

consideration of finite word-length effect began with a

discussion of the various methods of number representation

that are commonly used in digital system. The following

discussion focused on three common source of errors caused

by implementation with finite word-length. Then, we showed
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how a statistical analysis can estimate the effects of

ouantization in SVD!SCK convolution. Statistical methods

were shown to be very efficient in systems with

non-deterministic signals. It was also shown that roundoff

noise is of major concern in digital implementation, and a

theoretical formula to predict total roundoff noise

variance of SVD/SGK convolution was derived. The /D noise

was shown to be negligible in our case. Finally, the

dependence of the roundoff noise on section ordering was

demonstrated. The discussion of section ordering and a

dynamic range consideration in the fixed-point arithmetic

is the subject of the next chapter.
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CHAPTER 4

SCALING AND SECTICN ORDERING

4.1 Introduction

In the previous chapter, a theoretical formula for

predicting roundoff noise variance was derived. One

important constraint should be imposed on the

implementation with fixed-point arithmetic. There is a

finite dynamic range of fixed-point arithmetic. To ensure

that the final output be correct, overflow at the output of

any second-order SGK filter must be avoided. If the output

of each section (SGK filter) exceeds the finite dynamic

range of the filter, undesired signal distortion will be

introduced to the output. For example, given the dynamic

range of (-1.0, 1.0), adding two numbers may result in a

number that is not within the given range. Truncating or

rounding operations that assign the limit value to the

result (say -1.0, or 1.0) introduce an error. This problem

directs attention to the need for a scaling procedure for

the filter parameters of each SVD/SGK section in order to

prevent overflow.

Another issue, section ordering, is also important to
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minimize roundoff noise. As seen in Eq. (3-15), the total

roundoff noise has a strong dependence on section ordering,

i.e., g, .( ,m) will be different if the ordering is
3,1

6ifferent. For example, Schussler [4-11 has demonstrated

that a FIR filter with a length of 33, ordered one way,

produces o2= 2.4Q 2 , where Q is the quantization step,

2 8
while ordered another way yields o = l.5x08 Q. Although

this experiment demonstrated two extreme cases, it clearly

shows the importance of section ordering in cascade form

FIR filters. Since the respective difference is so large,

determining the minimum roundoff noise ordering is

essential.

Unfortunately, attempts to find optimal ordering

become impractical since, given M sections, there are M!

possible orderings. Even for a moderate value of M, say

M = 7, searching 5040 possible orderings is very

time-consuming. Furthermore, due to the analytical

complexity of Eq. (3-15), no analytical approach to finding

an optimal ordering seems possible.

Chan and Rabiner [4-2] investigated the section

ordering problem of one-dimensional, cascade form FTP

filters ouite intensively and reported their results, based

on the experiment, as follows:

i) Most orderings have very low noise compared to the

maximum possible value. More specific, for a FTP
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lowpass filter with length ]1, they showed that

approximately two-thirds of the orderings have

noise variance less than 4% of the maximum, of

which nine-tenth have noise variance less than 14%

of the maximum.

2) There is a large gap between smell and large noise

variance distribution, and the noise values within

the gap are produced by very few orderings.

Their conclusions are encouraging. Since the larqe

majority of possible orderings are very close to the

minimum noise variance ordering, finding a suboptimal

ordering is possible with reasonable computations. Instead

of finding a time-consuming optimal ordering, it may be far

more practical to use a suboptimal ordering method that can

rapidly determine an ordering that is close to the optimal.

Furthermore, the reduction in roundoff noise gained by

finding the optimum ordering is very small, compared to a

good suboptimal ordering.

Based upon their experiments, Chan and Rabiner

proposed a simple one-dimensional ordering algorithm [4-21,

which has proven to be very efficient in minimizing

roundoff noise variance.

The purpose of this chapter is to discuss scaling
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procedures and ordering algorithms for SVD/SGK convolution.

Two existing scaling methods, sum and L -norm scaling, arep

discussed, and applications to SVD/SGK convolution are

given in Section 4-2. A brief review of the Chan and

Rabiner ordering algorithm and its generalization to

SVD/SGK convolution are described in Section 4-3.

4.2 Scaling Procedure

Scaling is important because the computational dynamic

range sets a practical limit to the maximum value of signal

levels representable in the filter. The theoretical basis

for the scaling procedure chosen here is Jackson's work

[4-3], commonly referred to as sum scaling. To formulate

the required overflow constraints, let us assume that an

input signal x(n,m) is bounded in magnitude by 1.0.

We shall consider a scaling procedure in which a

(2Q+l)x(2Q+]) FIR filter is implemented by SVD/SGK

convolution. There are 2Q 3x1 SGK filters for the columns

and rows in each SVD expansion stage. To simplify

notation, only one SVD expansion stage will be considered.

Therefore, the subscript j will be dropped.

We will define fi(k ,m) to be the impulse response from

the input to the i-th section. The z-transform of fi(Z ,m)

can be written as
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Fi (zlz=2 fi(km)zl kz2 M

(4-1)
i

= fl T (z1 ,z2 )
p=l 

P

where Tp(z l z2 ) is the z-transform of tp( Q,,m) , as defined

in Eq. (3-10). Let Si be the scaling factor for the i-th

section and .T (zlpz 2 ) be a scaled z-transform of T (zlz 2 ).

Then

Ti(Zlz 2 ) = SiTi(z 1 I z 2 ) (4-2)

and the scaled transfer function from the input to the i-th

section is

-9.- rn- f (43)-
Fi(zZ 2 ) =- 4 .f i(Z,m)zl z2  (4-3a)

m m

or

Fi (zl, 2 = n T (zlz 2 )= 2 Si T (zlI z2  (4-3b)
p=l p=l p=l

Letting vi(k,m) be the output at the i-th section, vi( z ,m)

is obtained by convolving the input array x(k,m) with the

impulse response f i( ,m). Thus

k M

vi(tm) = ~x(pq)fi(Z-p+l m -q+ l ) (4-4)

p q
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and I v. (-,,m) is bounded by1

Ivi(Zm)I< x(Z,m)'max i If ' (Z ' m)

p q (4-5)
i

-x(z,m) I ma n is I Ifi(P, q)p=ax p l
pcq

Therefore, a necessary, and sufficient condition on the

scale factor to ensure that the output of each section is

bounded in magnitude by 1.0 is that

i
Ix(km)I max Is P I if 1 (p,q) I < 1.0 (4-6)

p q

Since I x(k,m)l is bounded by 1.0, Eq. (4-6) is equivalent

to

np Is I < If i (p,q) 1 (4-7)p=l pqI

The scaling procedure of Eq. (4-7) , satisfied with

equality, is called sum scaling.

Another scaling procedure, referred to as L -norm
p

scaling, was also introduced by Jackson [4-3]. Note that

the i-th section output vi(k,m) satisfies the condition

vi(zm) = 2I- i(uv)%(uv)dudv (4-8)
- -f 75



where j'(u,v) and (uv) e re the Fourier transform o f

fj( 9 m) and x(9.,m) respectively. Here we assume that the

input x(9,m) is a deterministic signal.

The L p-norm of a Fourier transform 1(u,v) is defined

as

11HII 4 T i f(fuv)Pdudv Ip(4-9)

Equations (4-8) and (4-9) immediately lead to the relation

Applying the Schwartz inequality to Ea.(4-lO) yields the

relation

2 T

or

22

In general, it can be shown that

F' X P.~i *li (4-12)
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for
11 1
+-=

P q

and p,q > 1. Therefore, with L -norm scaling, the reauiredp

condition and preventing overflows is satisfied by

Ivi(Zm) I < II ilp II X11 q (4-13)

Based on Eq. (4-13), a sufficient condition for scaling can

be given if one has knowledge of the L P-norm of the input

signal. One particularly interesting case is p =- and

q = 1. In this case, the input signal should be bounded by

I

1f fl%(uv)Idudv < 1.0 (4-14)

4 -1T - I T

Then, the necessary and sufficient condition on the scale

factor to guarantee that the output of each section is

bounded in magnitude by 1.0 is that

I [ MAX
iF. = -<U Ii(U'V)< 1. 0

t _ v< •v (4-15)

which is equivalent to

- MAX ~i,
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The scaling procedure of Eq. (4-16) , satisfied with

equality, is known as peak scaling [4-3].

The two scaling procedures discussed above are

summarized as follows. If the input signal is bounded by

ix(Z,m) I <1.0, then each scale factor Si can be comp ed

according to the following procedure:

1. Compute

G2 =EZ lfi(Z,m)I for i=1,2,...,2Q
1 (4-17a)

Zm

2. Then

1 for i=1

s. (4-17b)

-- l for i=2,3,. .. ,2Q

1

If input signal is bounded such that

4- z(u,v)ldudv < 1.0 (4-18a)

1T -1T

then each scale factor Si is computed as follows:

1. Compute
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F MAX 1MAXu< (4-18b)
i L- -<U<T j (u,v)I for i=1,2,... ,2Q

2. Then

1
1- for i=1

S. = (4-18c)

1 i-i for 1=2,3,... ,2Q
Y i

But, it should be noted here that Eq. (4-16) cannot Ie used

in the case of a random input signal, because if the signal

is random, its Fourier transform does not exist. Istead

of using the Fourier transform, the equivalent condition

can be obtained with the appropriate power spectral density

and autocorrelation function 14-3).

Experimental results indicate that the two scaling

procedures yield noise variances that are similar [4-21.

In general, sum scaling is much simpler to perform than

peak scaling in FIR filter cases. With peak scaling, one

must find the maxima of the 3ji(u,v)J for all i. Even

using the FFT algorithm will require more computations than

finding A Ifi(,m)l for all i. It has been claimedZ m

that sum scaling is too conservative to be used in TIP

filter cases [4-4]. But this is not of major concern in

the case of a FIR filter. Therefore, in order to save

computation time, we shall focus on sum scaling throughout

-79

L I

, _ ann unmum uumu , nmnmnm mml nllnu mi l I ini lll n inunu nin m .



this study.

The sum scaling of Eq. (4-7) reouires computation of

the two-dimensional impulse response fi (,m) for all i.

Since each SVD-expanded matrix H. of Fo. (2-17) is

separable, further simplification is possible for qVD/SCK

convolution. Note that each separable matrix H, is an

outer product of one-dimensional column and row convolution

operators c. and r.. Instead of applying the sum scaling3 -3

by computing fi(Z,m) , the same result will be obtained by

applying the sum scaling to c, and r. independently. The3 -j

following Lemma will generalize the above argument.

Lemma: If a two-dimensional separable impulse response

matrix H is realized in the one-dimensional cascade

form, sum scaling can be applied to the

one-dimensional convolution operators c and r

independently.

Proof: In the SVD/SGK convolution system, there are Q

3 x 1 SGK filters for the columns and rows of the

input image. Given a certain ordering, there are N1

3 x 1 SGK filters for the columns and (i-N I) 3 x I SGK

filturb for the rows from input to the i-tb section.

Let us assume the i-th section iz a filter for the

column. From the sum scaling of Eq. (4-17), we have
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0± fIf-1 ( ,m) 1f c - I() I (M)fri) (1

S:- f k ) 4-19)

Zm in

where fc(k) and fr(m) are one-dimensional impulse
1 1

responses obtained by convolving the N1 filters of the

columns and (i-NI) filters of the rows. The

superscripts c,r are associated with column and row,

respectively. But,

f r mf i ) (4-20)
m m

Therefore,

c

Si = 2 f ( )  4-]

(4-21)

which is equivalent to one-dimensional sum scaling.

By the Lemma, two-dimensional sum scaling is shown to

be equivalent to two one-dimensional sum scaling

operations. The same Lemma can be applied to peak scalinq.

Since fi(2,m) is separable, then

c(Uv) -4(U) r (v) (4-22)
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Therefore,

MAX ]LMAX c MAX r 4-" <u< i(u',v) [= <<T (u )  v () (4-23)

4.3 Section Ordering

The next step, given the scaling procedure chosen, is

to choose an ordering for the sections to minimize the

total roundoff noise. As an approach to determine an

ordering algorithm for SVD/SGK convolution, a

one-dimensional ordering algorithm for the cascade form FIR

filter will be introduced. If a FIR filter of size (2Q+1)

is realized in cascade form, there are C, sections of

second-order filters and 0! possible orderings. If we

define b.(k) for i=l,2,...,Q to be the impulse response1

from the (i+l)-st section to the output, the total roundoff

noise variance can be shown to be [4-2]

2-2b 
Q (44

2 2or 12E [E bk)(-4
i=l k

Here we assume that the rounding is performed only after

the products are represented in full accuracy. The best

ordering will minimize the total output noise variance.

Based on the Chan and Rabiner experiment, the proposed

algorithm is summarized as follows [4-2]:
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Beginning with i = Q, assign the i-th section,

together with the section already assigned, that

yields the smallest possible value for I bi-1 (k)
k

This algorithm is suboptimal since the algorithm

minimizes the output noise variance from individual

sections instead of minimizing the sum of the output noise

variance. However, in all cases tested, the algorithm has

proved to yield section ordering very close to the optimum

ordering because a large majority of possible orderings

yield small output noise variance, as discussed before.

In SVD/SGK convolution, there are a total of 2Q 3 x 1

SGK filters. Searching (2Q)! possible ordering is an

enormous task. But we shall see, based on the existing

theory, the generalization of a one-dimensional ordering

algorithm for SVD/SGK convolution is possible, and the

proposed algorithm will prove to be efficient and simple.

Let us rewrite the output noise variance formula for

SVD/SGK convolution, as derived in Eqs. (3-15) and (3-20),

as

total 12 E Igji(,m) 2) (4-25)j= =1 £ m

bK 2Q ( (4-26)

total 12 E E m) 1 2
j=l = k i83
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where g. .(,m) , gC (), and g.ri(m) are already defined in
3J11i J,1

Section 3-3. Again, only one SVD expansion terom will be

considered; therefore, the subscript j will be dropped.

Using EQ. (4-25), it is quite simple to extend the

Chan and Rabiner ordering algorithm to SVD/FIGK convolution.

But the significance of using Eq. (4-26) to search for an

ordering algorithm for SVD/SGK convolution is that the

ordering problem can be treated as solving two

one-dimensional ordering problems. Since E gc(,)I 2 and

m g are positive numbers, the following is

satisfied:

=min Elg c ( £ ) 1Ig in Ii m
(4-27)

Rather than minimizing I(m)I 2  an equivalent
m

condition can be obtained by minimizing Llgc(Z 2 and

X Igrj(m) 12 separately. Thus, minimizng ' ;g (i) 2 and

SIgr(m)I2 is equivalent to two one-dimensional ordering
m

problems. After ordering column and row operators

independently, the remaining step is to decide whether the

SGK filter on the column or on the row should be assigned

at the i-th section.

To show the rationale for the algorithm

mathematically, assume that (2Q-i) SGK column operators and
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row operators have been already assigned with V 1 column

operators and (2Q-N1-i) row operators. Now, we want to

select the. i-th section of the SVD/SGK convolution. To

simplify the discussion, let us define

= (Ig )()I 2 (4-28)

i =.. Igi(m)I 2 (4-29)

m

If we had assigned the next filter on the columns t~o the

i-th section, then the output noise variance would be

proportional to

E gi ( £) I (4-30)

If we had assigned the next filter on the rows to the i-th

section, the resulting output noise variance would be

proportional to

1 jgr(m)a 2 (4-31)
m

By comparing E and Ei of Eqs. (4-30) and (4-31), one can
1 1

easily decide whether the filter on the columns or the

filter on the rows should be assigned to the i-th section.

Since ai, i for 1-1,2,...Q can be obtained as a

result of one-dimensional orderings for the column and row
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operators, this procedure is far simpler than using

Eq. (4-25).

In brief, the proposed ordering algorithm is

summarized as follows:

1. Find a one-dimensional ordering to the column and

the row operators by using the Chan and Rabiner

algorithm and storb ti.6i for i=1,2,...Q.

2. Beginning with i=2Q, compare Ec and Er given by

Eqs. (4-30) and (4-31) , respectively, to decide

whether the filter on the rows or the filter on

the columns should be assigned to the i-th

section.

This proposed algorithm is also suboptimal in minimizing

gi( ,m)l2 rather than minimizing where
£ mi

Gi= F~ Lf
Z M- "M)12.

4.4 Conclusion

In addition to the effect of finite word-length

discussed in Chapter 3, the problems of overflow and

section ordering to minimize the total roundoff noise are

of great importance when a digital filter is realized in

cascade form. To prevent overflow, the filter parameters

and input signals must be scaled so that no overflow occurs

following addition. Proper ordering must also be found for
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a filter in cascade form because the output roundoff noise

has a strong dependence on the way it is ordered.

Following the discussion of two different scaling

methods, sum and Lp-norm scalings, sum scaling was chosen

because sum scaling is simple and easy to employ. A

detailed sum scaling procedure for SVD/SGK convolution was

presented. Because separable matrices result from the SVD

expansion of a nonseparable impulse response matrix, the

two-dimensional scaling problem turned out to be two

one-dimensional scaling problems. The proof was given in a

Lemma.

Next, the section ordering problem was considered.

Extending the existing one-dimensional suboptimal ordering

algorithm proposed by Chan and Rabiner [4-4], a generalized

two-dimensional suboptimal ordering algorithm for SVD/SGK

convolution was proposed. Because it is actually

equivalent to two one-dimensional ordering problems, the

proposed ordering algorithm is very simple and fast to

compute. The experimental results based on the proposed

ordering algorithm, which is shown to be very efficient,

will be discussed in Chapter 5.
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CHAPTER 5

EXPERIMENTAL RESULTS OF SVD/SGK CONVOLUTION

USING FIXED-POINT ARITHMETIC

5.1 Introduction

In this chapter, computer simulation experimental

results for SVD/SGF convolution are presented. Two

prototype filters with linear phase have been chosen for

the experiments. One is a lowpass filter, the other, a

bandpass filter. The sizes of the filters are 15x15 and

llxll, respectively. Perspective views of the frequency

response of the prototype filters are given in figures 5-1

and 5-2, respectively. Figure 5-3 shows the SVD

approximation errors for the expansion of the prototype

filters. It is observed that the NMSE decreases very

rapidly in both cases. In the case of the lowpass filter,

the SVD approximation error with 3-stage expansion is

0.5336 %. In the case of the bandpass filter, the SVD

approximation error for a 4-stage expansion is 0.7825 *.

Numerical and photographical results related to the outputs

of this SVD/SGK convolution when the inputs are random

numbers and real image are presented in this chapter.

88

_________________________________________



k4 11/ I

Figure 5-. Perspective view of the frequencyresponse of the prototype lowpass
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Figure 5-2. Perspective view of the frequency
response of the prototype bandpass
filter
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Figure 5-3. NMSE versus number of singular value
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5.2 Fixed-Point Arithmetic Experimental Results

Our experiments were made in the following framework.

We shall use M to denote the word-length for representing

filter coefficients and N to denote the word-length for

storing intermediate results. Furthermore, we shall adopt

the policy that all signal levels that are representable by

given word-length be constrained within the range of

-1,1). A multipiier with input signal level greater than

unity may need to be followed by extra accumultors and

extra wide adders. Hence, more hardware is reouired. The

number of rounding operations within 3x1 SG filters is

assumed to be one. In other words, since the typical

operation performed in convolution is a sum of products, we

assume here that the rounding operation is performed only

after the products have been summed with full precision.

In addition to this, the cascade form of the SVD!SGK

convolution requires a proper section ordering. The

suboptimal ordering algorithm discussed in Chapter 4 was

adopted to minimize roundoff noise. Because of the

quadrilateral symmetry of the prototype filters used, the

one-dimensional column and row convolution operators

obtaincd from the SVD expansion of H were identical. Thus,

their cascade forms were identical. The ordering algorithm

ended with a perfect interlace scheme; each filter for the

rows convolution was followed by a filter for the columns

convolution and vice versa. But it can be proved that this
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result, although often true, cannot be qeneralized to all

cases of quadrilateral symmetrical filters.

a-hen, after the ordering procedure, sum sca]ing was

applied to the filter coefficients so that overflow will

not occur within filters. Unfortunately, large differences

in magnitude among the coefficients causes the scaled

filter coefficients to exceed the given dynamic range of

word-length. In this case, the filter coefficients were

further divided by their maximum coefficient to insure that

the scaled filter coefficients lie within the given dynamic

range of word-length for the filter coefficents.

5.2.1 Roundoff Error

To confirm the validity of the noise formula of

Eq. (3-15), derived in Chapter 3, a uniform density random

number array of 46x46 pixels has been generated as an

input. The statistical approach used to analyze roundoff

noise in Chapter 3 is not practical if the input is

deterministic. For this analysis, an image array has been

modeled as a Markov process with an adjacent pixel

correlation coefficient along lines of 0.95 [5-1].

Furthermore, it has been assumed that the maximum signal

magnitude of the input array is unity, so that all signals

are represented by given dynamic ranges of word-length.

If the filter size is 15x!5, then the output size is
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60x60. Because the noise formula is valid only under

"steady state" conditions, the actual output is taken over

a 32x32 portion of the output array, ignoring a band of

width of 14 along each of the four edges of the real output

array. The designed SVD/SGK convolution filter was

convolved with the given input array in fixed-point

arithmetic. The filter coefficients were represented by

floating-point with 36 bits of word-length. The standard

deviation of the actual errors produced at the output with

rounding to N bits was measured and compared with its

theoretical estimates computed from the noise formula of

Eq. (3-15). The system of Fig. 5-4 was used to measure the

value of for various word-length of storage 15-21. The

system H (zl ,z2) was implemented with floating-point

arithmetic with 36 bits of word-length. Table 5-1 shows

the experimental results. There is good agreement between

the predicted and measured values. This confirms the

validity of our model and a statistical approach to analyze

the roundoff noise.

5.2.2 Filter Coefficient Quantization Effect

In Chapter 3, the quantization effect of the filter

coefficients was shown to be not as severe as that of

rounding. Before we present the experimental results, it

would be beneficial to discuss the error measurement of a

pair of images. A true comparison between a pair of images
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TABLE 5-1

Standard deviation of output noise caused by rounding
operations for a prototype filter

N Theory Experiment

8 0. 552x10- 0. 7i9x10-2

10 0.139xl0- 0.191X10- 2

12 0.345xl0- 0.465xlO)

14 0.862xl10 4 O.117x10-4

16 0. 216xlO0 0. 291l10 4

Lowpass Filter

N Theory Experiment

8 0.329xl 1 0.439xl10'

10 0.823xl10 O.111x101

12 0.206xl10 0.270x10-2

14 0.514xl10 0.685xl10 3

16 0.129xlO03  0.173x10-3

Bandrass Filter
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should follow some objective criteria. It is desira lep

that the objective criteria be mathematically tractible and

reasonably calculable so that they can bf used as ohjrc'i,e

performance functions to ev6luatc an iraa pr -s sn

system. Considerable attention has been pai c o ttf

development of such criteria [5-3]. UnfortunatfIy, tcLsr

of the complexity of the human visual system, there -rc no

universally accepted criteria to measure image fidelity.

But, the most commonly used quantitative measure of a pair

of image is the normalized mean souarE error (NMSF) , ;3

defined in Chapter 2 [5-41. We shall use the NMF -s rur

objective criterion throughout this dissertation. 73atl

5-2 shows the computed NMSE between floatinq-poilrt

arithmetic with 36 bits of word-length and fixed-point

arithmetic with different N and M bits of word-length. In

all cases, the results obtained with M -16 bits ar', close

to those with full precision. It is concluded that 16 bits

of word-length to quantize filter coefficients is

sufficient without reducing filter performance

significantly. In Chapter 3, it was shown that the storage

required for the filter coefficient is far less than that

recuired for the data. We will then consider that it is

more practical to reduce the word-length required for the

date storage.

97

4Mk,f



TABLE 5-2

Fixed-point imolementation error for various
word-length

8 12 16 30

8 3.4221 1.4033 1.3197 1.3450

10 3.3241 0.7768 0.3174 0.3082

12 3.3706 0.6223 0.0843 0.0741

14 3.3700 0.5995 0.0221 0.0194

16 3.3693 0.5993 0.0088 0.0048

Floating 3.3690 0.5990 0.00765 0.0000065

Lowpass Filter

8 12 16 30

8 7.9396 7.3349 7.1219 7.1115

10 3.9017 1.8639 1.8007 1.7972

12 3.5280 0.6642 0.4529 0.4463

14 3.5184 0.4887 0.1123 0.1081

16 3.5196 0.4842 0.028 0.028

Floating 3.5190 0.4841 0.00435 0.0000191

Bandpass Filter
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5.2.3 Output Image Comparison

In order to evaluate the performance of the SVD/OIC

convolution more precisely, let us define the following

NMSE factors. Assuming that G and F are output and input

arrays, respectively, then we shall use the following

notation

S= F Se H-- --(5-la)

(5-1b)GSVD F 00 HSVD

A (5-1c)
GSVD/SGK F @@ -!SVD/SGK

where H is a prototype impulse response, H is the-- - SVD

approximation of H by retaining a few dominant terms in the

SVD expansion of H, and H is the SVD/SGK convolution- -svD/sGK
realization of H * In Eq. (5-ic), the term on the right

has been computed using fixed-point arithmetic. Then we

define

IG (i,j)) 12  (5-2a)

ii9
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LIGsvD(i'j)-GsvD/SGK(ij)K 1/2 (5-2b)

E2 =  1 (5-2b)

E 6svD (i 'j) 2
iij

= j 1 2 11

Two errors are involved in SVD/SCK convolution with

fixed-point arithmetic: c1 is the error caused by the SVD

approximation, and £2 is the error due to fixed-point

arithmetic. E3 is the total error. Table 5-3 summarizes

the computed NMSE with different word-length of data

storage. In this experiment, the filter coefficients were

quantized with 16 bits, and the input was a random erray

with correlation coefficients of 0.95. Returning to

Eq. (5-2), we shall derive an upper bound of the total

error E3 . Since the total error E3 is contributed by £1

as well as £2, this bound will be very useful in SVD/SC-

convolution implementation. Let us rewrite F. (5-2) in

terms of a matrix Euclidean norm, which is defined to be

G ,, = [ G(i j) 2 1/2 (53)

1 3

Hence, Eq. (5-2) can be rewritten as

2 21z 11 Gil :i g G_ SVD I2
(5-4a)

2 A 2 2
C 2 -SVD VDI I GSvD-GSVD/SGK II (5-4b)
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3 1G 112 - IG GSVD/SGK11 (5-4c)

But note that

g-GSVD/SGK1 2 +G-G vD+GsvD-G SVD/SGK(5 2

Using the Schwartz inequality on the right hand side of

Eq. (5-5), we have

S2 2II _SVD/SGK 11  < (11 G-GSvDII +11 GSVD-GSVD/SGKII (5-6)

SubFtituting Eq. (5-4) into Ea. (5-6) results in

£311 Gfl 2<11 2+ 2 II+EESVDII+ II GSVDl 2 (57a)

Therefore

II SVD 11

E3 -E + 2 i 1 2 (5-7b)11 GII

since

11 G SVDI I-11I GII (5-7c)

Returning to Table 5-3, we can see that the e3 error never

exceeds the bound given by Eq. (5-7b). However, the

fixed-point implementation error £2 could be reduced to

less than 1.0 % MSE with 12 bits word-length of storage.

The E1 error is dominant in the bandpass filter case.
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TABLE 5-3

Summary of experiment

N
ei. 8i0 1214 16

811

1  0.0243 0.0243 0.0243 0.0243 0.0243 0.0243

2  1.3451 0.3174 0.0.843 0.0195 0.0048 0.0000065

E3  1.3445 0.3174 0.0883 0.0297 0.0249 0.0243

Lowpass Filter

>i_ 8 10 12 14 16

c1  3.4981 3.4981 3.4981 3.4981 3.4981 3.4981

c2  7.1115 1.7972 0.4464 0.1082 0.0284 0..0000191

c 3  7.9674 4.0326 3.5160 3.4989 3.4984 3.4981

Bandpass Filter
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Obviously, the E1  error decreases as more terms are

retained in the SVD expansion. Furthermore, there is no

reason to believe that c 1 will be the same order as tk of

Eq. (2-19). For instance, Ek of the bandpass filter is

0.7825 % with a 4-stage expansion, Put, c 1 is 3.498 %.

But, the situation is quite opposite in the lowpass filter

cases. Appendix A describes the relation between the ek

and E:i errors. As shown in Eq. (A-16) of Appendix A, the

el error is mainly attributed to the mean difference

between G and G . Given fixed tk the C, error
- SVD

increases as the mean difference increases.

The prime goal of this error analysis is to reduce the

error and to force the SVD/SG( processed output closer to

the direct processed output. If we correct the output so

that m ^  equals to m g, then the E1 error is the samegSgVD

order as ck" In the following, we shall develop a simple

algorithm to force the mean difference equal to zero.

Assuming the filter is time-invariant and linear and

mf is the mean of the input array, then

m= mf H(i,j) (5-8)

ij
But, the prototype impulse response matr'x H is normalized

such that -H(i,j) = 1, therefore,

ij

m m (5-9)
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Also,

m^ mf , HSV D(i'j) (5-10O)
i j

where

K T (5-10b)

H SVD = Z (i) cr ri
i=l1

Substituting Ea. (5-8) into Eq. (5-10) yields in Eq. (5-11)

a = mf [1.0- HSVD(i,j)] (5-I)

iij
where a represents the mean difference, i.e., m -m^ .

g gSVD

In order for m, to be equal to rag, we simply add

the quantity a to every output pixel. This simple point

by point operation will significantly reduce the 61 error.

Hence, the overall error 63 will be reduced.

Table 5-4 shows the effectiveness of the mean

correction procedure in overall performance. Compare e3 and

- , where E denotes the total error after mean correction.4 4

The extra computation of imf and EE H (i,j) would be
i j SVD

fully justified in the bandpass filter case since a

substantial reduction in NMSE can be obtained. The

usefulness of this simple mean correction procedure in a

photographic example will be demonstrated further in the

next section.
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TABLE 5-4

The NMSE comparison of before and after
mean correction

8 10 12 14 16 No

Rounding

Before 1.3445 0.3174 0.0883 0.0297 0.0249 0.0243

After 1.3449 0.3180 0.0864 0.0265 0.0179 0.0173

Lowpass Filter

8 10 12 14 16 No

Rounding

Before 7.9674 4.0326 3.5160 3.4989 3.4984 3.4981

After 7.3556 2.0835 1.1237 1.01-70 1.0156 1.0143

Bandpass Filter
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The experiments hcve been repeated with varying

correlation coefficients of input arrays. The results are

shown in Table 5-5. Experimentally, it has been concluded

that the fixed-point implementation error is quite

independent of the correlation coefficient of the input

array. These results confirm that the model employed was

sufficiently valid for simulation.

5.3 Real Image Experimental Results

In this section, photograpic results, based on

computer simulation, for SVD/SGF convolution are presented.

The SVD/SCK convolution method with a fixed-point

arithmetic has been applied to the convolution of real

images as a test of its validity.

From previous experimental results, usinq randor

number arrays as an input, it was concluded that 16 bits of

word-length for filter coefficient ouantization end 12 bits

for data storage, i.e., rounding, were sufficient to limit

the effects of quantization and roundoff noise to 1 ss than

1.0 % NMSE for most practical cases. Although this

conclusion is based on the particular model discussed in

the previous section, we shall use the same word-length in

the experiment with real images. Fiqure 5-5a shows an

original aerial scene image. The original image contains

256x256 pixels with each pixel Amplitude quantized over the

integer range 0 to 255. Tn the first step of the
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TABLE 5-5

Summary of experiment with varyino correlation
coefficient of the input array

EiO 0.0 0.1 0.3 0.5 0.7 0.9

Ci 0.0807 0.0771 0.0684 0.0573 0.0442 0.0289

F2 0.1227 0.1175 0.1224 0.1144 0.1180 0.1072

C3 0.1463 0.1391 0.1369 0.1304 0.1273 0.1187

£4 0.1462 0.1393 0.1391 0.1273 0.1252 0.1195

Lowpass Filter

0.0 0.1 0.3 0.5 0.7 0.9

£1 2.9375 2.9332 2.9609 3.0376 3.1653 3.42131

£2 0.4248 0.4201 0.4288 0.4369 0.4485 0.4483

E3 2.9557 2.9335 2.9681 3.050 3.1625 3.4440

£4 0.7460 0.7562 0.7561 0.7967 0.8378 1.0970

Bandpass Filter
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simulation, each pixel of the original image was normal i ?cd

to the range 0.0 to 1.0. Figures 5-5b and 5-5c illustrete

the direct processed output with prctotype ]owpass arc

bandpass filters, respectively. The direct processed

outputs were obtained using floating-point arithmetic wit

36 bits of word-length. A comparison of direct =nd 5VD/S0-Y

convolution for lowpass and bandpass filters with = 12

and Y" = 16 bits, is given in Figures 5-f and r-7,

respectively. There are no apparent differences in visual

results for direct and SVD/SCK convolution. The rreasurcd

NMSE and absolute difference image, multiplied by a

specified scale foctor, are also presented to show thr

accuracy of SVD/EGK convolution. In both cases, thr

resulting errors are less than 1.0 %. This experiment

verifies the validity of the model used in the previous

section. Figures 5-8 and 5-9 contain simulation results

for the -experiment of Figures 5-6 and 5-7 when the

word-length for data storage is reduceC. by setting N = C.

Obviously, the error contribution caused by insufficient

word-lcngth for rounding is significant.

To illustrate how the different SVD approximations of

a given prototype impulse response affect the outputs,

Figures 5-10 and 5-1 show the SVD/SCK processed output

with different K. In this Experiment, t. = 12 and V = 16

were assumed. It is noted that the filter with K =

corresponds to the MMSE separable approximation of the
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(c)

Figure 5-5. Example of direct processing convolution

a) Original
b) Lowpass filter
c) bandpass filter
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prototype impulse response. For the lowpass filter, there

is no significant visual difference among different F's.

5ut, there is a significant difference in the bandpass

filter.

Figures 5-12 and 5-13 illustrote the effect of the

mean correction algorithm. Although there is an obvious

improvement in image quality in the bandpass filter, the

improvement in the lowpass filter is not noticeable because

the output mean before mean correction in the ]owpas

filter is already close to the input mean. The rreasurece

NMSEs (before and after), computed means, and EZ HSVD ,
iij

are listed in Table 5-6.

For the bandpass filter with K = 1, before mean

correction, the SVD approximation error is so severe that

the SVD/SGK processed output is almost saturated. After

mean correction, the output is subjectively satisfying, and

the resulting NMSF is significantly reduced. This

experiment visually demonstrates the effectiveness of thr

mean correction procedure.

5.4 Conclusion

This chapter has presented experimental results of

SVD/SGK convolution using fixed-point arithmetic based on

computer simulation. First, the derived noise formula

predicting roundoff noise has been confirmed
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(a) (b)
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(c) (d)

Figure 5-12. Comparison between before and after
mean correction with L=15, M=16
bits and N=12 bits (lowpass).

a) SVD/SGK (K=1), before
b) SVD/SGK (K=1), after

c) SVD/SGK (K=2), before
d) SVD/SGK (K=2), after
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(c) (d)

Figure 5-13. Comparison between before and after
mean correction with L=11, M=16 bits,
and N=12 bits (bandpass).

a) SVD/SGK (K=1), before
b) SVD/SGK (K=1), after
c) SVD/SGK (K=2), before
d) SVD/SGK (K=2), after
e) SVD/SGK (K=3), before
f) SVD/SGK (K=3), after19
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(e)

Figure 5-13 (Continued)
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TABLE 5-6

Summary of exneriment with real image

Before After
k H (i ,j)

NMSE(%) Mean NMSE(%) Mean 1 SVD

1 12.6752 0.8122 1.9035 0.7210 1.1278

2 3.1634 0.6973 0.3658 9.72006 0.9682

3 0.0739 0.7201 0.0640 0.72001 0.9998

Lowpass Filter mf = 0.7202064

Before After
k i C SD i (

NMSE (%) Mean NMSE(%) Mean i j SVD ij)

1 134.6718 1.7231 23.3312 0.7202 2.3928

2 15.5961 0.6046 3.3338 0.7199 0.8397

3 13.8732 0.6167 2.5028 0.7200 0.8564

4 2.8910 0.7592 0.8742 0.7206 1.0543

Bandpass Filter m = 0.7202064
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experimentally. This experiment verifies that the

statistical noise model used to analyze thE roundeff error.

It has been found that F = 16 bits and N = 1 - its- arc

sufficient to limit the effects of cuanti7etion and

roundoff noise to less than 1.0 % NMSF in mcst casCs. To

obtain a reasonable decrease in the NMSF, a simple wean

correction algorithm was proposed. The imaqe cua] ity

improve ment obtainable by resetting t-he output T epn eoual

to the input mean has been demonstrated. The pictcrial

images resulting from FVr/SCK convolution, as shown in this

chapter, suggest that this tochnioue may have some

application in redl-time image display system.
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PARAMFUIRC DESIGN AND FIXFD-POINT TMFPFTNTI\TTTONF

OF SVD/SGK CONVCL[U'ITCN FILTEFS

6.] Introduction

in this chapter, we will consider the problem of

designing an SVD/SGK convolution filter for which the

cutoff frequency is parametrically variable. Variable

cutoff frequency filters have numerous applications in

image processing. For example, one might secuentially

obtain a best restored image by changing the cutoff

frecuency, hence the frequency response, of the restoration

operator.

Since filter coefficients are generally a function of

the filter cutoff freauency, one can change the filter

cutoff frequency by varying all of the filter coefficients.

But this procedure requires changing a number of

parameters. Therefore, it is often impractical and too

complicated . It would be more practical if one coul1

construct a filter so that ths cutoff frecuency is

controll.d by only E few paramE.ters, say one or two.
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Based on the earlier work of Constandinides [6-1 ,6-21

Schussler and Winkelnkemper [6-3] were the first to desiqn

such a variable cutoff freouency digital filter. It hEs

been shown, that by replacing c .ch delay element in the

basic filter structure with a first-order all-pass network,

a transformed filter whose frequency response is identical

to that of the basic filter on a distorted frequency scale

is obtained. Unfortunately, the method described is

restricted to FIR filters, and is not epplicable to TTP

filters. Furthermore, the resulting transformed filter is

an lIP filter because by replacing the basic element, the

first-order all-pass network becomes recursive.

Consequently, the linear phase property of the basic FIR

filter is lost. But, the variation of the cutoff frequency

can be accomplished. Oppenheim et al. [6-41 proposed a new

frequency transformation technique in which the resulting

transformed filter is still an FIR filter, and the phase is

linear if the basic filter is a linear phase FIR filter.

By noting the fact that the SVD/SGK convolution filter is

essentially a sum of separable filters, each weighted by a

singular value, and each separable filter is an outer

product of one-dimensional column and row convolution

operators, it is possible to extend the proposed

one-dimensional frequency transformation technique to the

SVD/SGK convolution filters. We shall show that this

approach is quite successful in designing a variable cutoff
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SVD/SGK convolution filter. In this chapter, we shall

discuss only 0 lowpass-to-lowpass transformation.

Modification for highpass-to-highpass or

bandpass-to-bandpass is rather straightforward in most

cases. We assume here that the basic filter is a

two-dimensional FIR filter with linear phase. The basic

concepts of frequency transformation and modification to

the SVD/SGK convolution filter are discussed in Fection

6-2. A fixed-point implementation of the variable cutoff

SVD/SGK convolution filter and experimental results are

described in Section 6-3.

6.2 Frequency Transformation

of Linear Phase FIR Filters

A one-dimensional FIR filter with impulse response of

length 2Q+1 has a frequency response

2Q
h(eJu) E h(m)e - jmu (6-1)

m=0

A linear phase filter is symmetrical so that

h(m) = h(Q-m) (6-2)

for m = 0,1,...,Q. Thus

Q-1
h(eJU) e-JUQ[h(Q)+ E-2h (m)cos[u(Q-m)]] (6-3)

m=1

125

,-- ,.=,m=mp- ,m m~ ~ m m..m ,m I



Letting n = Q-m, Eq. (6-3) becomes

0

(e]U) ejuQ a(n)cosu (6-4)

n=O

where a(O) = h(Q) and a(n) = 2h(Q-n) for n = ,2,...

W&e note that

T (cosu) = cosnun

where T is the n-th degree Chebyshev polynoiriF1 that
n

satisfies the recursion formula

Tn+ l (x) = 2xT n(x) - Tn-1 (x) (6-6)

for n = ],2,...,Q. Thus, Eq. (6-4) can be reformulated Ps

Q

(eJU) = e-UQ E b(n) (cosu)n  (6-7)

n=O

The new coefficient b(n), for n = 0,]...,C, is obtained

from the Chebyshev polynomial recursion formula of

Eq. (6-6). The basic approach [6-51 to the variable cutoff

linear phase filter is to use the transformation
P

cosu Ak (Coss) k (6-8)
k=O

where u and S are the frequency variables of the basic and

transformed filtcrs, respectively. The transforTrtion

described ebcve Frrs(rves the frccuncv response of tbc
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basic filter, although the frecuency scale is distorted by

the transformation. By substituting the transformation of

Ea. (6-8) into Eq. (6-7) , the frequency response of the-

transformed filter is found to be

h T(e e - jQI b(n) Ak(cOs6) (6-9)
n=0 k=O

From Eq. (6-9) , it is noted that the impulse response

dimension of the transformed filter is now 2OP+]. By

appropriately controlling the parameters Ak, for

k = 0,1,...,P, the cutoff frequency of the transformed

filter can be varied.

If P = 1, then Ea. (6-8) becomes

cosu = A 0+A COS (6-10)

and for P = 2, the transformation assumes the form

cosu = A0+A1cos +A2cos
2  (6-i)

We shall call the transformations of Eq. (6-10) and

Eq. (6-1) first-order and second-order transformations,

respectively. The nature of the first-order transformation

is depicted in Fig. 6-1. For first-order transformation,

if one is interested in increasing the cutoff frequency,

i.e., U c  , where u c and ec correspond to the cutoff

frequency of the basic and transformed filters,

respectively, one may prefer to constrain the transformed
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Cos U

-r COS u A0 + A, cos,

4n-

I -I Cos3

CZ TRANSFORMED FILTER

I -I Cos/

Figure 6-1. Nature of the first-order transformation
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frequency response magnitude at B = 0 to be equal to that

of the basic filter. Methematically, it can be shown as

hT (eJB = = h U=O (6-12)
S=O u=O

in which case, A0 +A 1 1. But, in order to ensure that

cosu1l , A0 should lie in the range of

0 < A0 < 1 (6-13)

By changing the frecuency control parameter A 0 from zero to

unity, we can obtain a transformed filter whose cutoff

frequency is given by

Bc = Cos- 1 [cos uc'-Ao] (6-14)
1-A0

In other words, if we wish to increase the filter cutoff

frequency from uc to B with uc< , then the control

parameter A 0 is obtained from Eq. (6-15) as

cosB - cos uc c
A0 - cosB (6-15)

c

where 0< A0 < 1. To decrease the cutoff frequency of the

basic filter, the correspondence is

hT (e j 3 h(eJu)I (6-16)
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Equation (6-16) leads to the constraint that A = 1-A 0 ; the

parameter A 0 is restricted to the range of

-1 < A0 < 0 (6-17)

The resulting transformed filter cutoff freauency is given

by

8c = cos - ] (6-18)+ A0

Let us associate the complex variable z with the basic

filter system function H(z) and the complex variable Z with

the transformed filter system function HT(Z). Then, the

transformation of Eq. (6-8) is equivalent to

Pz+z- IA Z+Z-I k

2 Ak( 2 (6-19)
k=0

If the filter is implemented as a cascade of SGK filters,

it is noted here that the SGK filter should be symmetrical

because the transformation is applicable only to a linear

phase filter. In Chapter 2, it was shown that the complex

zeros of H(z) should be grouped together in conjugate pairs

to ensure that all kernels for 3xl SGK filters are real.

But, a resulting 3xl SGK filter may not be linear phase.

For example, the 3xl SGK filter from grouping complex

a conjugate pair zeros not on the unit circle will not be

symmetrical. In order to ensure that all SGK filters are
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linear phase, complex zeros not on the unit circle should

be grouped together in groups of four, corresponding to the

complex conjugates and reciprocals, i.e., O, a ,- ,--.
a V

a consequence, H(z) will have fourth-order SGK filter with

system function of the form

r2+1 -1 2 2 -2
Hi(z) = i-2( 1-)cosOiz +(r2+ -- + 4cos 2.)z

1 r. 1

2 (6-20)

r +1 i-(-.)cosO01
1

where ri and 0i are the magnitude and phase of one of the

complex zeros not on the unit circle.

The same rule of zero grouping in Chapter 2 can be

applied to the real zeros and complex zeros on the unit

circle. Therefore, we can obtain a realization of H(z) in

terms of a cascade of second- or fourth-order linear phase

SGK filters. The z-transform of the second- or

fourth-order SGK filters can be written as

2 -in

Hi (z) = b i (n)(z+z (6-21)

n=0

But H(z) can be factored in the form

Q1 Q1-n
H(z) = n Hi (z) = [Ebi(n)(zz) (6-22)

i=l l
n=0
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for 0ioQ. 1 obtain a variable cutoff linear phase

filter, based on the SVD/SGK convolution, each SCK filter

is transformed in the manner described earlier. The

Z-transform of the transformed filter is

Q1 Q1

HT(Z) =il H (Z) = i n )  A -- 6-7T T.i i~ E ~b(n)[ k 6-
n=0 k=0

Therefore, the coefficients of the transformed SGK filter

are expressed in terms of the parameters Ak and the

coefficients of the basic filter (see Appendix F). Py

controlling the paramete Pk' the transformed filter cutoff

freauency can be varied. .efore we present thP

experimental results, let us define a

S -u

R u - C 100 (6-24)
c

which will be used to describe the degree of the

transformation. Figure 6-2 shows the frequency response of

a typical lowpass filter and the parameters that define it.

The three parameters 1  , and Af characterize the

frequency response of the filter. If the parameters for

the transformed filter are close to those of the basic

filter, then the transformation will adequately preserve

the frequency response of the basic filter.
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pass bnF
1.0, -- transition (Case 1)

t: 0.6-
z

~0.4-

0. - - -- stop b nd

ILpass bond -
1.0 =!

08transition (C ase 2)
bond

-0.6 Afz A
0O.4-

0 ---- - - - -- - - -stop band A

orI

Figure 6-2, Definition of lowpass filter parameters
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In order to verify the first-order transformation, the

following experiment was performed. The basic filter is a

one-dimensional linear phase lowpasz filter with an impulse

response length of 15. The measured cutoff frequency of

the basic filter is 0.6739. Throughout this chapter, the

specified frequency is normalized to the range of (0,7).

Figure 6-3 shows the frequency responses of the transformed

filter with the parameter Ak varied from 0.1 to 0.8. Table

6-1 summarizes the filter parameters and the desired and

measured cutoff frequencies of the transformed filters.

There is excellent agreement between the two values. But

it is observed that the first-order transformation does not

adequately preserve the frequency response of the basic

filter as A0 goes to 1. In the case of A0 > 0.6, the

resulting transformed filters can not be considered to be

lowpass filters, because the first-order transformation

does not constrain the frequency response at u = = T.

Experimental evidence shows that there is a trade off

between R and the preservation of the frequency response of

the basic filter. To preserve the frequency response of

the basic filter more adequately, R should be relatively

small. Thus, the penalty paid for large P is that the

transformed filter does not preserve the frequency response

of the basic filter as shown in Fig. 6-3.

As alternative to the first-order transformation, one

may apply a second-order transformation. Tn the
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Figure 6-3. First-order transformation examples
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TABLE 6-1

List of the transformed filters ahd their cutoff

frequencies usina first-order transformation

Cutoff Frequency'
A0  A1  Af R(%)

0 1 Desired Measured

0.0* 0.0 O.llxlo - 0.367 0.6739 0.6739 0.

-3
0.1 0.0 0. 39x10 0. 39R 0.711) 0.7'1127 5.6

0.2 0.0 -0.22x10 0.4191 0.7-)72 0.53 12.4

0. 3 0.0 0 .3 7 x10 0. 471 0.8125 0.Rl1 2r) 2.6

-1
0.4 0.0 0.19xIO 0.523 0.8319 0.8833 30.9

0.5 0.0 0.14x10- 0.701 0.9730 0.8571 44.4

0.6 0.0 0.38x10' 0.754 1.001)D 1.1027 63.2

0.7 0.0 0.14x10 N.A. 1.2960 1.1299 92.3

0.8 0.0 0.38x10 N.A. 1.6640 1.6703 146.9

*A 0.0 means a basic filter.
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second-order transformation, there are three parameters,

A0' Ai, and P2 to be controlled. For the case in which the

cutoff frequency of the transformed filter is greater than

or eCual to the cutoff frecuency of the basic filter, we

can put another constraint on the transformation. TIhat is

' Ce ) e= e j
T (6-2)

7 U= T

Py imposing the constraint: of Ea. (6-25) , we can preserve

the frequency response of the basic filter better then when

the first-order transformation is used. Put we shall show

that the second-order transformation severely restricts the

range of transformation. By using a similar analysis, as

used in the first-order transformation, it can be shown

that the parameter A 0 is restricted to the range
0

0 < A0 < 1 u < E

(6-26)
1 -< A < 0 U > 2c
2 -0 c c

and the desired cutoff frequency 6c is given by

co - 1-4A0 (cosuc- A)(
= (6-27)

2A0

Detailed derivations of Fos. f6-26) and (6-27) are

given in Appendix C. Ithouch the transformat ion is

achieved by varying the paramEter O0 the max imum or

minimum R can be c)bt-ir.<cr w hcn A0  1/2 or -1/2,
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respectively. By substituting A0 = + 1/2 into Fa. (6-27),

we obtain the maximum or minimum attainable cutoff

frequency with the second-order transformation. The

relationship between uc and maximum or minimum attainabl

a c is shown in Fig. 6-4. Figure 6-5 shows the results with

the second-order transformation. Table 6-2 shows the

measured filter parameters. The basic filter is the same

as previously described. Upon comparison of the

first-order and the second-order transformations, the

second-order transformation is seen to adecuately preserve

the frequency response of the basic filter if i is withinC

the transform range. But, the resulting transformed filter

has an impulse response length of 4Q+], instead of 2(+1

obtained as with the first-ordcr transformation.

A second-order transformation is still possible even

if the desired cutoff frequency 6c is out of the transform

range. To extend the transform range, for the case of

u c < Sc, the constraint given in the Ea. (6-25) is forced

to be satisfied at 6 = a1 , where 0 < al < 7, rather than

at C= 7T. The price paid for relaxing the constraint is

that the transformed filter characteristics are sacrificed

to some degree. In this case, the parameter AO lies in the

range of

cosal+3

0  4 (6-28)
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where the matching point Q 1 is obtained from

4(cos u -1) +

C s (Cos s -1) 2(6-29)

But, it should be noted here that aI equals - whenever the

desired Bc is within the transform range. For the case of

Uc >Lc, the constraint given in Eq. (6-12) also can be

relaxed by locating the matching point at r= 2 , wh rr

0<- < C T. The range of A0 can be shown to be

cos(X2 -3
4 < A0 < 0 (6-30a)

where

-i [4(cosuc+l) 1
a2 = Cos -(Cos +1) 2 (6-30b)

Figure 6-6 illustrates the frequency response of the

transformed filter with the (relaxed) second-order

transformation. Table 6-3 lists the matching points, the

desired and measured cutoff frequencies, and R. There is

also good agreement between the desired and measured cutoff

frequencies. As shown in Fig. 6-6, relaxation of the

constraints in the second-order transformation allows the

basic filter to transform in the desired manner, but the

transformation grodually degrades the freauency response of
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Figure 6-5. Second-order transformation examples
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TABLE 6-2

List of the transformed filters and their cutoff
frequencies using second-order transformation

Cutoff Frequency
A0 Al A2 Af P(%)
0 1 2 Desired Measured

-0.5 0.0 0.11xl0 - 2  0.272 0.4788 0.4794 -28.9

-0.3 0.0 0.llxlO - 2  0.304 0.5362 0.5371 -20.4

-0.1 0.0 0.llxlO - 2  0.346 0.6181 0.6194 -8.3

0.0 0.0 0.11xl0- 2  0.367 0.6739 0.6739 0.0

0.1 0.0 0.11xl0 -2  0.398 0.7444 0.7463 10.5
-2

0.3 0.0 0.11xl0 0.408 0.9477 0.9489 40.6

0.5 0.0 0.llxlO - 2  0.356 1.2252 1.2283 81.8
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the transformed filter as P increases. It is believed that

with the second-order transformation, there should also be

a trade off between F and the preservation of the freauency

response of the basic filter.

To extend the discussed frequency transformation

technique to SVD/SGK convolution filters, it is noted again

here that a SVD/SGK convolution filter is a sum of

separable filters, and each separable filter is decomposed

into an outer product of one-dimensional convolution

operators on the columns and rows of the input image. If

the basic SVD/SCK convolution filter is a two-dimensional

FIR filter with linear phase, each SVD-expanded separable

filter is also a two-dimensional FIR filter wL h linear

phase. We assume here that the size of the basic filter is

(2Q+l)x(2C.+i). Thus, each separable filter has the

property that

Hi(n,m) = Hi(Q-n,Q-m), 0 !5 m,n< Q (6-31)

Since Hi(nm) is separable, then

Hi (nm) = hC (n)h r(m)
i i (6-32)

But, from Eq. (6-31), Hi(n,m) is also decomposed into

HI(n'm) = hi(Q-n)hr(Q-m) (6-3?)

Therefore, the convolution operators on the column and row,

hC(n) and hr(m) , are also onr-dimensional linear phase FIR
1 1• 145
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filters.

Figure 6-7 illustrates the frequency responses of the

SVD-expanded separable filters on the horizontal axis. The

prototype filter is a two-dimensional linear phase lowpass

filter, and the SVD/SGK convolution filter was obtained by

truncating the SVD expansion to 4 terms. The first-stage

separable filter corresponding to the larqest singular

value shows almost the same freauency characteristics as

the basic filter. But the other separable filters

corresponding to the next largest singular values no longer

are lowpass filters.

But a variable cutoff SVE/SGK convolution filter is

obtained by simply transforming each of the one-dimensional

convolution operators on the columns and rows of the input

image. Specifically, the z-transform of the SVD/SGK

convolution filter is given by

K QI Q2H :Zll )= PH: l H ,(
SVDSGK 2 Zi 1j=l k 2] (6-34a)

or

K Q 1 2  Zi+Z 1 ni

HSVD/SGK(z,2)= _.1"  j, (n) ( 2 (6-34b)

i=l n=2Q
9=1M -l2

but Q Q <0. The Z-transform of the transformed SVD/GK
' 1 146
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filter is obtained by substituting (_ t ) in Ca. (6-34) by2

the transformation

Z + P -I
2 E k 2

k=0 - 6-" 5)

Z 2+Z2 P Z 2 +Z 2  k
2 2 E. A k ( 2

k=0

If the basic filter is linear phase with cutoff

freouencies, uc1 and u.2 along the horizontal and vertical

axes, respectively, and if one is interested in changing

the cutoff frequencies to BC and 2 , basically the

transformation is performed as it VIas in the

one-dimensional case.

An example of the first-order transformation on the

SVD/SGK convolution filter is shown in Fig. 6-8. The basic

filter has quadrilateral symmetry with cutoff frequencies

ucl = Uc2 = 0.7097. A perspective view of the frequency

response is shown in Fig. 6-9. Unless stated otherwise,

ucl = U ad are assumed for thel.= Uc2 =u c  C = 8c2 = c

transformation. Figure 6-8 shows the cross-sectional view

of the frequency response on the horizontal axis. In the

case of uc < 8c, the transformation works quite adequately,

but not for u > . Table 6-4 summarizes the filter
c c

parameters and the measured and desired cutoff frecuencies.

Figure 6-10 shows another basic filter, which also possesses

quadrilateral symmetry with cutoff frequency u. = 1.2266.
148
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Figure 6-8. First-order transformation on the SVD/SGK
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Figure 6-9. Perspective view of the frequency
response of the basic filter
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TABLE 6-4

List of the transformed SVD/SGK convolution filters and
their cutoff frequencies using first-order transformation

Cutoff Frequency

(Horizontal)

Filter A1 A2  Af ... . . R(%)
Desired Measured

1* 0.25 0.02 0.272 0.7097 0.7097

2 0.08 0.04 0.188 0.6500 0.6056 -8.4

3 0.01 0.08 0.272 0.5800 0.4684 -18.3

4 0.02 0.04 0.241 0.8500 0.8515 19.8

5 0.02 0.03 0.283 0.9500 ).9520 33.9

*Basic Filter
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Figure 6-10. Perspective view of the frequency
response of the basic filter
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The results of the first- and second-order transformations

are shown in Figures 6-11 and 6-12. Figure 6-11

corresponds to the horizontal, and Fig. 6-12 corresponds to

the diagonal direction. Comparison of the first-order and

second-order transformation shows that the second-order

transformation yields far superior results (See Table 6-5).

Another interesting transformation is the case of

c I  6c 2 An example of changing the cutoff freouency so

that u c <  ,C1 and u > 2 , is presented in Fig. 6-110

1K c c 2  2

and the resulting filter perspective view of the frequency

response is given in Fig. 6-14. in this experiment, the

second-order transformation is used with the same basic

filter shown in Fig. 6-10.

6.3 Fixed-Point Implementation

Once again, it is of great interest to implement a

variable cutoff SVD/SGK convolution filter with

special-purpose fixed-point arithmetic hardware. Since the

transformation is mainly concerned with the cutoff

frequency of the transformed filter, the effect of

fixed-point implementation on the cutoff frequency is

significant. Experimental evidence shows that a lowpass

filter with filter coefficients rounded to 16 bits is

sufficient for both first- and second-order transformation.

The freauency responses with different word-length for

filter cocfficient quantization and with no rounding are
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plotted in Figures 6-15 and 6-16. In the case of

first-order transformation, the response for the 8-bit case

deviates from the ideal response significantly at the

beginning of the possband, whereas no visible errors cre

sern anywhcr in the stopban6. Tn the cEsE of the

sccond-order transformation, the response for the 2-h it

case shows the same characteristics. Put the responses for

I6-bit for both first- and secone-order transformations arc

almost the same as the ideal. This experiment shows that,

for a lowpass filter, the cascade form is highly sensitive

to inaccurate coefficients in the passband, but the

behavior in the stopband is much less sensitive. T

addition, the second-order transformation requires

greater word-length to quantize the filter coefficients

than the first-order transformation does. The basic filter

was the same as shown in Fig. 6-J0.

In order to investigate the roundoff noise effect on

the fixed-point implementation of the variable cutoff

SVD/SCK convolution filter, the random number array with a

size of 46x46 was used again as an input. The correlation

coefficient was 0.95. Basically, the same scalina

procedure was used to prevent overflow, and the suboptimal

ordering algorithm of Chapter 4 to minimize the roundoff

noise. Theoretical estimates of the roundoff noise

(standard deviation) , based on the noise formula derived in

Chapter 3, were computed and compared with the measured
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values. Table 6-6 summarizes the results. Tn this

experiment, we assumed that M = 16 bits and that only one

rounding operation is performed within the SGK filter.

Excellent agreement between the two values is observed. Tt

is believed, again, that M = 16 and N = 12 are sufficient

to achieve less than 1 % NMSF for both first- and

second-order transformations. Surprisingly, it is noted

that the required word-length for the variable SVD/SGK

convolution filter is the same as recuired that in the

SVD/SCK convolution filter.

6.4 Conclusion

In this chapter, attempts have been made to dccvclor

design technique for variable cutoff SVD'ECK convolution

filters. We considered first- and seconn-ordr

transformations. Second-order transformation, in qeneral,

exhibits better results, but it inherent'y limits the r[nqe

of transformation. It has been shown that second-order

transformation is still possible if the specified

constraint is relaxed. Put the price paid for relaxing the

constraint is degradation of the freauency characteristic

of the transformed filter. In eddition, the second-ordcr

transformation doubles the size of the transformed filter.

The problem of implementing the transformed filter in

fixed-point arithmetic was also discussed. For a lowpass

filter, it was shown that the cascade form is highly
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TABLE 6-6

Standard deviation of the transformed filter caused

by roundina operation

M= 16

N Theory Experiment NIMSE(% I

2 -2
8 0.337x10 2  0.548x10 2.10

10 0.84T1O 0.119x10- 1.21

12 0.211x103' 0.295x103 - 0. 47

14 0. 526x1O- 0. 76Rx10- 0. 32

16 0.132xl10 0.203x10- 0.08

First-Order Transformation

M= 16

N Theory Experiment NMSE(%)

8 0.379x10 0.925x10 16.23

10 0.946x.10 0.107x10 1.14

12 0.237x10 0.314x10 0.53

14 0.592x10 0.743xl0 0.2

16 0.148x10 0.305x10 0.13

Second-Order Transformation
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sensitive to inaccurate coefficients in the pssbznd, but

not in the stop band. Finally, it is believc that M = 16

and N = 12 are sufficient to obtain less than I % NMFF in

most practical cases.
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CRAPTFR 7

SUMMARY AND FUTURE WORK

In this dissertaion, attempts have been made to

describe a novel architecture for performing

two-dimensional convolution with a minimum amount of

hardware using the concept of sequential ,CK convolution.

The singular value decomposition of an impulse

response of a two-dimensional FIR filter has proven to bp

useful in designing two-dimensional approximating FIR

filters that can be implemented as a cascade of 3x!

convolution operators. The usefulness of the SVD has been

demonstrated by noting a trade off between approximation

error and computational speed. The SVD/SCK convolution

approach is particularly attractive when one is interested

in implementing a two-dimensional convolution with a

digital image display system. An approach to

implementation for SVD/SGK convolution that employs a small

set of relatively simple digital circuits has been

described. It has been demonstrated that the statistical

approach is vcry useful to analyze effects of finite

word-length in representing filter coefficients and signal
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magnitudes. A theoretical formula for predicting the total

roundoff noise has been derived and confirmed

experiment ally.

Two important issues involving the implementation of a

digital filter as a cascade of second-order filters,

scaling and section ordering for SVD/SGK convolution, were

also considered. We have shown how the algorithm available

in the domain of one-dimensional signal processing can he

extended to two-dimensional signal processing. One

interesting result is that roundoff noise can be reduced by

interlacing row and column oriented elementary second-order

filters.

Experimental results dealing with image convolution

show that 12 bits are recuired for memorv storage (the most

e~pbnsive part in image display systems), and 16 bits are

needed for filter coefficient quantization if one desires

to get results indistinguishable from the output using full

precision. These features can be reduced if one allows

some distortion in the image outputs. It has been shown

that the quality of an SVD/SGK processed output is improved

by resetting the output mean to be equal to the input mean.

Since it is impractical to compute the output mean, a

simple algorithm for resetting the output meen WaMS

proposed. The effectiveness of the proposed algorithm ha?

been demonstrated visually.
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It has been shown that parametric modification of the

cutoff frequency of a filter is possible with

transformation. Basically, the approach developed in the

one-dimensional case by Oppenheim et al. [7-11 was used. A

detailed analysis for first- and second-order

transformations was made, and several design examples were

presented. In the first-crder transformation, the

transformation could not properly preserve the frequency

response of basic filter as the degree of transformation

increased. In the second-order transformation, due to

inherent characteristics of trigonometric functions in the

transformation, the transformation works only in a l'mited

range. In other words, it is impossible to change the

cutoff frequency of the basic filter arbitrarily. But the

resulting transformed filter shows a frequency response

almest identical to the basic filter within the

transformation range. It was found that, by relaxing the

specified constraint, arbitrary variation of the cutoff

frequency of the basic filter with the second-order

transformation is still feasible. But a degradation of the

transformed filter frequency response was also observed.

It is believed that with both transformations, there should

be a trade off between the degree of transformation and the

preservation of the frequency response of the basic filter.

Finally, it was found experimently that 12 bits for the

accumulator memory and 16 bits for the filter coefficients
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are also sufficient to limit auantization and rouneoff

noise effects to less than 1 % NMSE in both the first- 6nd

second-order transformations.

Several problems are worthy of further investigation.

If one is particularly interested in implementation speed,

the SGK convolution approach is always faster than the

SVD/SGK convolution approach. Comparison of the processing

frame cycle required for SCK and SVD/SGK convolution shows

that only 0 frame cycles are needed with SGK convolution,

while the SVD/SGK convolution requires 2KQ frame cycles

when the size of impulse response is (20+I)x(20+]) and 9 is

the number of singular values employed. Finding a simple

analytical design procedure for an SGK convolution filter

is still problem. An alternative to one-dimensional

SVD/SGK convolution is to use two-dimensional SVD/FCK

convolution. Two-dimensional SVD/SGK convolution reduces

the computational speed by a factor of 2. Tn this case,

the scaling procedure should be carefully chosen to use the

full dynamic range of the given word-length. It is also

expected that two-dimensional SVD/SGK convolution reouires

a greater word-length.

In the previous approach to the parametric design, we

used one-dimensional methods to design a variable cutoff

SVD/SGK convolution filter. In addition, the basic filter

was restricted to be linear phase. A generalized design
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technique for the two-dimensional variable cutoff digital

filter would be useful. Finally, entending SGK or SVD/SGK

convolution to the recursive approach would also help solve

the two-dimensional signal processing problem.
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APPENDIX A

Relation between c and c Error
k 1

Let G and G be the output array of size MxF as

2 2
defined in Section 5-2. Their variances 0 and c, are

g g
given by

2 i j G (i, j )IM)

g M2

G SIVD c ij)-m
2^ j (Ax-2)M

where m and m. denote the mean of the output array C
g g

and G , respectively. If the error array E is defined as
SVD

E= G - SV D  (A-3)

then, its variance is given by

E E G (i' J)- -svD (i'J) -mg+Mrd 1

2 i 2

0 2 (P-4)
e M2

After some algebraic manipulation, it can be shown that
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MoE= I:IG(i,j)-GsvD(i,j (m q-m) (A-5)

i 
j

and

M2 2  J!G(lj)I 2 _M2m (A-6)
' g

i j

Dividing Eq. (A-5) by Eq. (A-6), we obtain the following

relation.
2 1 ZIG(i'j)-GsvD(ii) 2

e i j
2 2

1m (A-7)

T, IG(i,j)-GsvD (i,j)1
2

ij
m22

1 - g
j' j G (i, j) 12

i 3
where c m =m, Note that

1; Z G(i,j)-GsvD (i,j)1 2 (A8

21 2

1 1 jG(i,j) 2

ij
and if we let

SIGci,j)- 6svD(i"j 12
1-2 m 2

m2M2
9 - 2( - 9 )

ij
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*then,

2
Ce 2

cr 2 (A-10)

Suppose F(k,k) is an input array and m f denotes its mean,

then cF and a 2can be also expressed bye g

[H (1','' kSVD ~ 'Ij
and

a 9 H(i,i) A(i,i'Ij.j' )H(i',j (A12

ij' i j

wh er e

Combining Eqs. (A-li) and (A-12) , and substituting into

Eq. (A-10), yields

if if i j
[H (it ,j')H SVD (i' j)] A-4
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2

But the first term in Fq. (A-i) is equivalent to tk

Thus,

2 2
1 Ek a (A-15)

or 2

2
- 2G(ij

i 3El=Ek "  mn2 M2  (A-16)

g

1- G i, 2.

It is clear that E1 will decrease if one can set Em close

to zero.
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APPENDIX B

Relation between Basic Filter Coefficients and

Transformed Filter Coefficients

Let h(n) for n = 0,1,...,2Q+l represents an impulse

response of the basic filter and a(n) for n = 0,1,... ,2QP+]

represents the impulse response of the transformed filter.

It was shown that the Fourier transform of a symmetrical

filter can be expressed as

Q

h(eju) = e - j u Q 1b(n)(cosu)n

n=O

The new coe.ff.iient b(n) is obtained from the Chebyshev

polynomial recursion formula. The relation between h(n)

and b(n) is given by

F2O)1 F01  0 Fh2b (1) 1 0 1 h(l) (P-2a)

Lb(2) 0 1 2 ((2)2

for Q = 1 and
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b(0) -1 0 1 0 -i h(0)

b(1) 0 1 0 1 0 h (1)

b(2) 2 0 0 0 2 h(2) (B-2b)

b(3) 0 1 0 1 0 h(3)

b(4) -1 0 1 0 -1 (4)

for C = 2. By expanding Eq. (6-9) with F = 3,2, the

coefficient a(n) can be expressed in terms of b(n) and the

control parameter Pk'

If P = 1, then

A

a( _0 2 0 b(0)

1 1
2() - A0 [ b(1) (P-3a)

A1

a(2) 0 1 0 b(2)

for = l and A
a(O) 0 0 1 0 0- b(0)

A 1  A 1

a(l) 0 -1- A0A 1  T 0 b(1)

1 A0  
2  2 A0

a(2) = 0 A 0 + 1 0 b(2)(- -- 7 (2 (P-3b)

A 1 A 1

a(3) 0 -- Ao IA 1 b(3)
4 4

"a(4) 0 0 A1  0 0 b(4)
4

for Q = 2, where A +A = 1 for u < c and -A 0+AI= 1 for
0 1 c-c0

u C> Bc -
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If p = 2, the relation is given by

a(l) 0 0. b(O)a(1) 0 A2 0
A 2all) 0

_ 
A£

2(2 A0 + b(l) (P-4e)

a(3) AI
0

A2a (4) - 0 A2for Q I and

a(O) 0 0 m 0 0 b(O)

a(l) 0 0 m20 0
a(2) 0 m3 m 4 m3  0 b(1)

(3) 0 m5 m 6 m5  0
a(4) - m7  m 8 n7 b(2) (B-4b)
a(5) 0 m 5  mi m5  0
a(6) 

3  4  m3  0 b(3)
a(7) 0 0 m2  0
a(8) 0 0 m 0 0 b(4)

where
2

SA2

AIA
m 2 1

2 4
A 2

m3=T

2
4 A1  AoA2 A- + 02+ A24 4 -4- 

(F-4c)
A1

5 4-

17,



6 0 1 4 1 2

M A 0+A
r7  _f- 4

2 A 13 2
Th8 A= + -- +A 0A 2+-^ A2

for 0=2. But, A 0= -A 2and A,= I when P = 2.

Therefore, the relation between a(n) and h(n) can be

obtained directly by-substituting Eq. (B-2) into Eq. (B-3)

for first-order transformation and into Ea. (B-4) for

second-order transformation.
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APPENDIX C

Derivation of Eqs. (6-26) and (6-27)

The second-order transformation can be characterized

by
cosu = A 0 + A1 cos + A2 cos 2 

(C-i)

Ey imposing the constraints at 0 and n, we obt )in

1 =A0 + A1 + A 2

(C-2)

-1 = A - A 1 + A 2

Equation (C-2) immediately leads to the relations

A0  -A2 (C-3a)

A1 = 1 (C-3b)

Substitution of Eq. (C-3) into Eq. (C-1) results in

cosu = A 0 + cosB - A 0 cos 2 (C-4)

The range of A 0 , satisfying,

-i < f(x) < 1 (C-5)

will ensure that fcos ut < 1 where f(x) = A0 +x-0x 2

X-coso but -1< x <1. Note that f(x) is a cuadratic
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function in x and always passes through two points, (-I,

-1) and (1,i). The only case for which the condition of

Eq. (C-5) is being satisfied is shown in Fig. C-1. That

is equivalent to solving

1
2A1_ A0 > 0 (C-6a)

1 < -1 , A0 < 0 (C-6b)

Equation (C-6) gives the range of A0 such that

-1 < A < 1 (C-7)

but, 0 <i- < 1 corresponds to the case of u<c and

-I<A 0 <0 corresponds to the case of uc >

respectively. A0 = 0 means that the transformed filter is

identical to the basic filter.

The relation between u c and c is obtained by solving

Eq. (C-7), which is a quadratic function in cos 8. That

is

1+V1-4A0 (cosuc-AO)cosoc  0 (C-8)
2A 0

But the plus sign in Eq. (C-8) is discarded since

fcos I <1.
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