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I. INTRODUCTION 

The boundary layer formed on an artillery projectile in flight 
is a narrow region in which viscous effects are important. Outside 
of this region viscous effects can be ignored.  It is, therefore, 
possible to compute air flows about projectiles in two regions.  First 
an outer region in which viscous effects are ignored and second an 
inner region where they predominate. The interaction of the inner 
viscous flow on the outer inviscid flow may be calculated by displacing 
the body surface outward slightly to account for the air which is 
pulled along by the viscous forces in the boundary layer.  In the 
three-dimensional case associated with an artillery projectile at angle 
of attack in a steady air flow, this displacement effect may be 
computed by solving a differential equation due to Moore1. Moore's 
differential equation is a first order partial differential equation 
involving certain boundary layer integrals and an inviscid solution 
for the flow outside of the boundary layer.  For the purpose of this 
report these input quantities will be assumed to be known and the 
solution of the differential equation alone will be dealt with. 

In this report, Moore's equation is first analyzed and a numerical 
technique developed for its solution. The accuracy of this technique 
will then be demonstrated by comparison with an exact analytical 
solution which is available for the special test case of laminar super- 
sonic flow over a cone. Up to the present, displacement effects used 
in the computation of Magnus forces on artillery projectiles2 have been 
obtained from solutions of Moore's equation obtained from a numerical 
technique developed by Sanders3. Comparison is also made with the 
results of Sanders' technique for a similar case of supersonic flow 
over a cone with a turbulent boundary layer.  It should be noted that 
the present method is more than 10 times faster than Sanders' technique. 

II. THE EQUATION 

The usual formula for the displacement thickness in two dimensions 
is expressed as: 

h 
6* = /o (1 - pu/peuj dy (1) 

F. K.  Moorej   "Displaaement Effect of a Three Dimensional Boundary 
Layer/' NACA Teohnioal Note 2722,  June 1952. 

W.  B.  Sturek3  et al,   "Computation of Magnus Effects for YawedJ 

Spinning Body of Revolutions" AIAA Journal,   Vol.   16,  pp.   687-692, 
July 1978. 

R.  Sanders,   "Three-Dimensional,  Steady,  Inviscid Flow Field Calcu- 
lations with Applications to the Magnus Problem," Ph.D.   Thesis 
Department of Mechanical Engineering,   University of California- 
Davis,   California,   1974. 
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where p is the density and u the velocity tangent to the surface.  The 
density p and velocity u are the density and velocity immediately 

outside of the boundary layer. These edge quantities may be obtained 
from an inviscid solution. The integral in Equation (1) is taken along 
a line in the direction normal to the surface.  It runs from the surface 
to a point h which is well outside of the boundary layer. The coordinate 
system used is shown in Figure 1. 

As Moore1 points out the velocity tangent to the surface may have 
two components, u and w in three dimensions; see Figure 2. There are 
consequently two integrals in the form of Equation (1) given by, 

6Y = J
h (1 - pu/p u ) dy (2) 
o 

e e' 

6z = /h (1 - pw/pewe) dy (3) 
o 

The proper displacement thickness. A, for steady flow may be 
obtained from these two integrals by solving the differential equation, 

3 [p u (A-6J]/3X + 3 [p w fA-6 )]/3z = 0 (4) 

which was derived by Moore1. 

This equation has been written in a Cartesian coordinate system 
shown in Figure 2 with the coordinate x and z directions and the corres- 
ponding velocities u and w lying in the plane of the body surface. The 
y direction is normal to the surface.  For projectiles it is more con- 
venient to express Equation (4) in cylindrical coordinate system as 
shown in Figure 3.  In this coordinate system the equation becomes, 

3 [RpeUe(A-6x)]/3x + 3 [p^jA-S^ ]/36 = 0 (5) 

where 

6  = Jh (1 - pu/peue) dy   and   
6
e = /  C1 " Pw/Pe

we) dy 
o o 

and where R is the radius from the center line of the projectile to its 
surface. 

Note that the integral 6Q is undefined where p w is 0.  The v e e 
expression p w 6 which occurs in Equation (5) does not suffer from the 

difficulty; however, and in fact, lim 6 may be finite as w ->- 0. 



III.  ANALYSIS OF THE EQUATION 

Equation (5) is a member of the class of partial differential 
equations for which characteristic paths exist. Along these paths the 
partial differential equation may be written as an ordinary differ- 
ential equation.  In order to produce a stable numerical scheme for 
the solution of Equation (5) it is necessary to understand the nature 
of these characteristic paths.  The characteristic paths of Equation 
(5) may be obtained if it is rewritten in the form 

9 (A-6 )/3x + (w /Ru )9(A-6 )/9e = AfA-fi )+B        (6) 
A. (.-     C A A 

where A = -r9p u R/9x +9p w /9 e)/R p u , 
^ Ke e      e e       e e 

B = 9[p W (6-6 )]/96 
e e 

Consider paths in the 9, x plane which satisfy the condition 

de/dx = w /Ru . (7) 
e  e 

Along these paths Equation (6] becomes, 

9(A-6 )/9x + (d0/dx)9(A-6 )/96 = A(A-6 )+B 
X X A 

or 

d(A-6 )/dx = A (A-6 )+B. (8) 
X A 

The partial differential Equation (5) has been transformed into the 
ordinary differential Equation (8).  The lines along which 

d9/dx = w /Ru 
e  e 

are thus characteristic paths of Equation (5).  Equation (8) was 
written in terms of (A-6 ) as A is approximately equal to 6  for 

X X 
slender bodies of revolution at small angles of attack and this form 
emphasizes the difference between A and 6 . 

Some facts useful to the development of a solution algorithm 
are obtained from Equation (8).  If (A-6 ) is known at any point along 

a characteristic then Equation (8) can be solved to find its value at 
all other points along the characteristic. In particular, the 
knowledge of the solution at one point allows one to determine the 
solution at a nearby point. This-solution may be used, .to obtain 
the solution at another point, etc.  Further, the solution along any 
characteristic path is independent of the solution along any other 
characteristic path. 



IV.  SOLUTION TECHNIQUE 

The existence of the characteristics allows one to produce a 
marching solution to Equation (6). The solution is known at the tip 
where the displacement thickness is zero. The solution down stream 
of the tip may be found by integrating Equation (8).  In a numerical 
marching scheme the solution may be obtained on the surface at a plane 
cutting the projectile across its centerline in terms of the solution 
at a nearby plane closer to the tip. The solution at the next plane 
down the body may then be determined and the process continued until 
the entire solution has been found.  Difference equations can be written 
using one sided differences to replace the derivatives in Equation (6) 
giving, 

[Rp u  (A-6 )]. . , L e e ^  x^Ji,j+1 

= [RPeUe (A-6^]^. + (Ax/Ae)  {[P^CA-Sg)]^.       O) 

where the subscripts refer to grid points given in the computational 
molecule shown in Figure 4 and where Ax gives the grid separation in 
the x direction and AS gives the grid separation in the 6 direction. 
As Rp, u , p , w , 6 „ and 6 are known functions at all of the grid 

e  e  e   0    x 
points and as A is known on the plane of grid stations labeled with j 
it is possible to evaluate the left hand side of Equation (10) and 
solve for A at grid stations j+1.  The solution may be marched by 
this technique from nose to tail. 

It should also be noted that if the functions A and B are slowly 
varying and can be considered to be constant in some neighborhood 
of a point at which (A -6 ) is known, then the solution to Equation 

(8) in that neighborhood may be written immediately as. 

AT 
(A- 6 ) = Ce  -B/A (10) 

where 

x 

C = (A - 6 )  + B/A 
^    x o 

and where (A-6 )  is the known value of (A-6 ).  This local solution 
^  x o ^  x 

implies that the solution will tend to approach the local value of 
-B/A if one proceeds along the characteristic path in the right 
direction.  The solution will diverge exponentially if one moves in 
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the wrong direction, however. Also, small errors made in a numerical 
procedure will either grow or damp depending on the direction of march. 
If A is negative then the poxitive x direction is the direction in 
which errors will damp exponentially. The characteristic length for 
this damping is 1/A.  This length for the case of a cone in supersonic 
flow is about equal to the distance from the tip to the point on the 
body at which one is working. Hence, the damping is not rapid and 
care must be taken that the solution is started properly.  Starting 
the solution from A = 0 at the tip has proved to be sufficient. 

Caution must also be employed in setting up the differencing. 
The solution A is dependent only on values of A backward along the 
characteristics and this fact must be born in mind when setting up the 
computational molecule. The method will be stable only if the domain 
of dependence of the numerical scheme contains the characteristic path 
leading to the point at which A is to be evaluated.  This can be 
assured if the grid points used in the difference form of the 6 
derivative term always stradle the characteristic path that contains 
the point where the new solution is to be obtained.  This condition 
restricts the allowed grid spacing and also forces one to select 
forward or backward differencing for the 0 derivative depending on 
the direction of w . 

V.  RESULTS 

The accuracy of the algorithm may be gauged by a comparison with 
a formula given by Moore1 for A in terms of 6 and <5 along the surface 

of a cone at small angle of attack in supersonic flow. This formula 
states that. 

A = 6 + (20/3 sin 6 )A0 (5n - 6 ) cos 6 
x c 2   6   x 

where 6 is the cone half angle, a is the angle of attack, and A is 
C " 

a constant dependent on the cone vertex angle and the Mach number. 
For a 10° half angle cone at Mach 3 the constant A- may be taken to 

be 1.43. 

In order to derive this formula Moore assumed that A, 6 , and 6 , x      t) 
grew along the body as X2, that the inviscid flow was conical and that 
6 . was constant in 6. A comparison with the results of Moore's 

6 
formula is seen in Figure 5. This figure shows A, 5 , and 6 

as calculated for a 10° half angle cone at Mach 3 pitched to 2° angle 
of attack. These quantities are shown as a function of azimuthal angle 
at a station 15 cm. from the tip. The quantities 6 and 6 which are 

11 



input into Moore's equation for A were calculated with a finite 
difference boundary layer code originally developed by Dwyer and 
Sanders4. These calculations were made for laminar flow as this 
assumption is necessary to obtain Moore's analytical formula.  The 
accuracy of this code when applied to turbulent flow has been 
established2. Turbulent displacement thicknesses do not, however, 
exhibit the strong singular behavior seen on the leeward side in this 
figure and the spike on the leeward side of the cone seen in this 
figure is probably not well resolved.  Further, as seen in Figure 5, 
the assumption which Moore made in obtaining his analytical solution 
that 6 is constant about the cone is not followed on the leeward side 

6 
by the 6Q calculated from this code. One should, therefore, expect 

0 

to find agreement only on the windward side between the three- 
dimensional displacement thickness calculated by Moore's formula and 
that calculated by the technique presented here. 

On the windward side of a cone it is possible to solve the 
displacement thickness equation more accurately.  The result is 

A = 5 + (2o(/3 sine )A (6 -6 )/[l + 2 a/3 sin 6 )] 

Given the input quantities A_, 5. ,6 , a and 6 , this formula is 
Z    D   X C 

exact on the windward side.  Comparison of the results of this formula 
and the present theory are shown in Figure 6.  This figure shows the 
development of the displacement thicknesses A, 5 , and 6 along the 

windward ray for the same case as discussed above. The agreement 
between the two calculations of A is felt to be quite good. 

The reason for the development of the technique that is presented 
here is to improve upon the earlier method of Sanders. A comparison 
of the results of the two techniques for a turbulent boundary layer 
on a 10° half angle cone at 2° angle of attack can be seen in Figure 7. 
It is evident that there is some discrepancy particularly near the 
tip.  It is felt that the starting conditions used by Sanders are 
somewhat in error. 

Figures 8 and 9 show the displacement thickness for the pro- 
jectile body shown in Figure 10.  These figures show curves made 
at successive stations along the body. The body shown in this figure 
has a nose similar in shape to that used on the M549 projectile. 

H.  A. Dwyer and B.  R.   Sanders,   "Magnus Forces on Spinning 
Supersonic Cones.  Part I;  The Boundary Layer, " AIM JoiAimal, 
Vol 14,  p.   498,  April 1976. 
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The caliber is, however, enlarged. This body also has a straight 
cylindrical tail section instead of a boattail as found on the M549. 
The Mach number is transonic at M = .94 with a well developed shock 
aft of the corner where the ogive and the tail sections join.  The 
inviscid transonic flow about this body was obtained from a small 
disturbance potential technique developed by Reklis, Sturek, and Bailey5, 
In both Figures 8 and 9, the angle of attack is 4° and the boundary 
layer is turbulent. The body used for Figure 8 was not spinning while 
the body used for Figure 9 was spinning at 10,000 rpm. As can be seen 
in both cases the boundary layer builds up evenly on the nose.  It 
thins over the corner between the nose and the cylindrical portion. 
It thickens rapidly through the supersonic region aft of this corner 
and then grows steadily over the afterbody. The boundary layer on the 
spinning body is skewed slightly to one side in the direction of spin. 

VI.  CONCLUSIONS 

A simple and accurate technique for the solution of the dis- 
placement thickness equation has been obtained.  The accuracy of the 
present technique has been established in a comparison with an exact 
result for a supersonic cone. The present technique has required 
about 1/10 of the computer time necessary for the earlier method. 
The present technique has been used to obtain results for spinning 
projectile shapes in transonic flow and it appears suitable for use in 
computing displacement effects on realistic projectiles. 

R.  P.  Reklisj  W.  B.  Sturek^ and F.  R.  Bailey,   "Computation of 
Transonic Flow Past Pvojeatiles at Angle of Attaak," Paper 78-1182, 
presented at AIAA 11th Fluid and Plasma Dynamics Conference, 
10 July 1978. 
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BODY 

Figure 1. Two-Dimensional Coordinate System 

Figure 2. Three-Dimensional Cartesian Coordinate System 
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Figure 3. Three-Dimensional Cylindrical Coordinate System 

Figure 4. Computational Grid 
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ALL   DIMENSIONS   IN CALIBERS 

Figure 10. Dimensions of Projectile Shape 
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