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In the investigation of the vibrational response of a mortar tube
system which is subjected to initial conditions, boundary constraints
and applied actions with the normal mode method of dynamic analysis a
nonlinear equation occurred for which no explicit solution could be
Since this equation of motion describing the

found in the literature.

vibrational displacement of a conical ballistic tube with a concentric
Aruvrlimndemisa hawma 10 Tnnhamanée ¢a manmir mambam an 10all1 an A Sicha cuired awma
Cyiillulle UVULIC 10 l1auelivclulL LU bally mviialr ad weoell ads s i1 LUUT OSyadiroud,
an explicit analytical solution is being derived for a variable domain
characteristic to ballistic tubes.

2. FORMULATION OF THE EQUATION FOR THE TRANSVERSE VIBRATIONS
OF A CONICAL BALLISTIC TUBE WITH A CYLINDRIC BORE

The transverse vibrational displacement of a beam with arb1trary
cross section under the iﬁfiu‘ﬁce of applied forces is governed by the
annatinn nf marinn
V\tu“\--&\lll Vi WMV LAVIL

[EI y"(x,t)]" + pA y(x,t) = F(x,t), (2.1)

where y is the lateral displacement x the coordinate measured along the

axis of the beam, t the time variable, E Young's modulus of elasticity,
I the moment of inertia of the cross-sectional area with respect to x,
n the dencitv A he crncc_ceactinna araa and Ffy ) tha artinag farrce
| il letu‘i—] ) % “idw Wk W I T A VILG L “ah wis =223 . Ll\’ \-l il “\a\-‘lls AW
The symbols ' and + denote the partial derivatives

2—-and 3 , respectively,

3x ot ¥

Adopting the normal mode method of dynamic analysis the solution of
the inhomogeneous equation for a given set of boundary conditions can be
approx1mated to any degree of accuracy by superimposition of orthonormal

functions representing eigen-solutions of the homogeneous equation to
the specific boundary problemsl Hence the problem of deriving the
solution to Eq (2.1) for a set of boundary conditions is reduced to

16

SOLVlﬂg the nomogeneous part1a1 differential equatlon for the same set

AEf hAsind ~ o -

P i
OI pbounaary conaitior

[EI y"(x,t)]" + pA y(x,t) = O (2.2)

Is. Timoshenko, D. H. Young, W. Weaver, Vibration Problems in Engineering

.Li

1974, G. Wiley and Sons, Inec., NY.



Since flexural rigidity (E
independent for prac cticall

an engih (pA)
all gun tube v1brat ional problems, we can

where a is the frequency of vibration and o is the phase angle, and
obtain a homogeneous fourth-order ordinary differential equation for the
displacement amplltude g(x):
- - 2 . :
[EIg'']'' - a“pAg = 0 (2.4)
The fundamental system of solutions consists, in this case, of four
linearly independent solutions, 81> 8y E3» and 84> which must be found
for the construction of the general solution to Eq. (2.4):
4
g = ; c g U
bed 17N (2.5)
1
The constants €15 €55 Czs and ¢, must be determined to within an
arbitrary constant in each particular case from the boundary conditions
at +tha and Af +ha haam Trn ganaral +ha and haimAdawy ~Aandi+sinane FAaw gan
au LIIC Cliu vl LIIT UvUcTall. 418 ECIIULGL, Lilc ©liu uuuuual,v CUlIUlL LAVIIO 11Ul 5uu
tube vibratlonal response problems are physical constraints on deflection
y, slope y', bending moment [EIy''], and shearing force [EIy'']'. For

example, at a fixed end the deflection and slope are equal to zero
(y =0, y' = 0); at a simply supported end the deflection and bending

moment are equal to zero (y' = 0, [EI y"] = 0); and at a free end the
bending moment and the shearing torce both vanish ([EIy''] = 0, [EIy'']"
= 0). At an interior boundary the continuity of deflection, slope,
bending moment and shearing force must be preserved. Since these functio
appear in the formulation of the eigenvalue problem, we will derive
explicit analytic expressions for them concurrently.

In this study we are only interested in the case where Young's
modulus of elasticity and the density are constant and the beam is a
conical ballistic tube with a cylindric bore. The geometry of the beam

is outlined in Figure 2.1.

o
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Figure 2.1. Geometry of the Concentric Circular Conic Beam
with a Concentric Circular Cylindric Bore

From geometric considerations we can derive the following relations:
Rl - R

X = - LI‘ + -’ (— Lg + Lr\ ....variable, (2.6)
2~ e\ /

27 R
er-=¢ [ dé [ %ar = 53-1;4 - r4\ ....flexural rigidity,(2.7)
o % ‘

2n R
r r I 2 2\
PA=p [ d¢ [ rdr = pm {R” - r") ....mass per unit length.(2.8)
%0 s \ /

Substituting Eqs. (2.6), (2.7), and (2.8) into Eq. (2.4), we obtain
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By multiplying this expression by 2" and differentiating it again twice,

-

we get
r . —
l?ng%JZZ = ELJ a mM+VvV)i(n+v1Dn+m+v-2) _ (3.6)

x(n +m+ v - 3)z0MV-4)

By substituting into Eq. (3.2), we have

a0
+
;: a m+vi(n+v-1) [(..*\9*2)(!\.*\.)1-1}2““
v=0
+v- +v-2
+4(n + v + 1) (n + v)zn 1 +6(m+VvV)(n + v - 1)zn v
o
n#v-31 4 A\ n+v
t4(n + v - DD(n + v - 2)z | - w2+ 2)z az = 0. (3.7)
4 4 Y
v=0
The uniqueness theorem of power series requires that the coefficients of
each power of z on the left hand of Eq. (3.7) must vanish individually.
n-3
The lowest power of z appearing in Eq. (3.7) is z for v = 0.
The requirement that the coefficient is zero yields
2
4n(n - 1) "(n - 2)ao = 0. (3.8)
Since a, by definition, is the coefficient of the lowest non-vanishing
terms of the series, we have
2
nin - °xn - 2) = 0. (3.8.1)

The roots of this indicial equation are n
three independent power series

_ } : v _ § : v _ 2 Z : v
g = alvz » By =2 azvz , g3 =z asvz . (3.9)
v=0

v=0 v=0

0, 1, 1, 2 resulting in



Since n = 1 is a double root, a fourth linearly independent solution may
be obtained by multiplying the regular solution g7(z) by a logarithmic
term and adding another power series:

(=]

g,(z) = g,(2)In z + z a, 2", (3.10)
v=0

For the eigenvalue problem we need, in addition to the deflection g(z),
the slope g, the bending moment [EIgZZ], and the shearing force [E1g27]7.

To directly obtain explicit expressions for these physical functions, we
will slightly modify the approach. Integration of Eq. (3.2) leads to

(23 + 422 4 6z + 4) =K+ /dzz(Z + 2)g(2) (3.11)
o, e N [ 2 . : ] zkn"z*" (3.11.1)
Th T Ly l.k +2+vVv k + 3+ vJ

0 n n :

.forn=1, 2, 3 and kn =0, 1, 2.
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Substituting the power series Eqs. (3.9) and (3.10) into this equation, we
have

ao

z : | 3 2 k+v-1
a 6( + g) 6( + v -19 G: + 4z + 62 + 4]z
nvl n n ‘

O - 4 = 7

. (3.12.1)
Kn+4+\)-|

for n =1, 2, 3 and kn =0, 1, 2;

5: 3 2 ky+v-1
In 2z a%('k7 + v\ k7 + v -1 z2° + 4z + 62 + 4]z

_— T\ " /

0

\ \ ¢ 7 \ /
f: ko-kq
+ a, 26 + q - ]z +a, tk, +v k, + v -1
M v 2 4v\4 J \ 4 /
o U L / ] )
/[ 2 k,+v-1
x (z' + 4z + 62z + 4}z
\ ’ o
= 4 4 14 ‘17\ 7 ; a 1 r 2
- Ko * Kl zto ,‘ ° L2V k2 + 3 + v I k2 + 2 + v
\ 0 L

. 1 'I zkz’k4 . a 1 I' 2
k + 4 &+ v Avw L + 3 4+ 0y L + 2 +
.\2 R v,| Fv 1\4 [h4 \%
-— AN 1, . ,"‘
2 K4+\)+J
A ey ey z C o (3.12.2)
4 d 7 !



for n = 4 and k4 to be determined.
The uniqueness of power series requires that the total coefficient of
each power of z vanishes all by itself. For the indicial equation roots
n=1, 2, and 3, we have

0 1 2 3
: -K. = 0: -K- = 0: -KZ =0
z KU 0; KU 0; Ko 0
-———————;-Kg =0;n=1, 2,3
2! ot e 2142 =0, k%4214 =0
z K 1.4a,, ; 1 )1 R
3
-K1 + 2.1.4a30 0
—_— K? = San 3> D= 1,2,3
»
22 2.1.6a,. + 3.2.4a._ = 0
’ 12 T3 T
2.1 6321 + 3.2 4a22 =0
2.1.6a30 + 3.2.4a31 =0
3 a 1 a n=1,2,3
——————-’ = - — H =
n,4-n 2 "n,3-n T
4
2> 2.1.4a + 3.2.6a + 4.3.4a - Z2a =0
‘o 12 13 14 ~ 3.2 10
2 1.4a2l + 5.2.0a22 + 4.3.4323 =0
2.1 4330 + 3.2.6a31 + 4.3.4a32 =0

(Equations continued on next page)
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;4-n

SN S - S PSRRI B (1) B
f1a T 773 |70 Azt lap 3\ alOJI
- 1 3 _
an,s-n = -73 [2 . 3'28n,4-n + 2.1an’3_n ; n=2,3
L J
4
2. 2.1a. .+ 3.2.4a._ + 4.3.6a. . + 5.4.4a. - -2 2a__+a__\=n
: %12 7913 U914 ' 15 4.3 \"11 ~ "10
4
w -—
2.1a21 + 3.2.4a22 + 4.3.6a23 + 5.4.4a24 " 7.3 2320 =0
4 4 6 + 5 A Aa = 0
2 1a30 + 3.2..331 + 3 -332 + 5.4.424, 0
r
1 3 1 1
—_— = -— |=. 4. . = . 2. - e
35 5.4 |2 - 438yt 3280+ 7. 213, -
[A\/ \1
x T} 28, +alO)J
r
- 1 13 1 1
324 =-57|2 4.3323 + 3.2a22 + 7 2.1a21 73
FARFRY -1
N
\&/ zoJ
R N
433 5.4 |2+ %32 T oecg Ty fedagg
L X J
4
ns- Z Da a A 2 A~ s E A LA . L A L/ﬂ \_
z . u.t_als + 4,5 ‘+¢114 + J5.4 Odls + 0.3.4:116 - 2 \312 + all/ =
(1)4 -
3 2322 + 4 3.4a23 + 5.4 6a24 + 6.5.4a25 T 2321 + 320’ =
K
3 4331 + 4.3 4a32 5.4 oa33 + 6 5.4334 vt 2a30 =0
a = - Ié- 5.4a + 4.3a +~£ 3.2
— > 3, ;. " %5 !_2' “"n,6-n T 08y s5n Y7 - 3-8

(Equations continued on next page)
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5.4 \4 /J \ 1,3-n 1,2~ l/l
1 |3 1 L
Pag " [5 » S.4ag0 + 4385, v 7. 3,235 - £y
/ 4\ 1
x | & 2a
4 30
) A \
5. 4.3314 . 5.4.4315 + 6.5.6a16 + 7.6.4a17 - gjg‘\zals * 312) =0
w4 / \
4.3a23 + 5.4 4a24 + 6.5.6a25 + 7.6-4326 ~ 6.5 (2322 * aZl) =0
o )
4 3a32 + 5.4 4333 + 6.5.6334 + 7.6.4a35 - \2a31 + a30/ =0
a _ 1 r3 6.5a + 5.4a
- . 2
- = 3,,8-n 7.6 LZ »7-1 ,6-
4
1 1 w ) (
+ Y 4 3an,5-ﬁ " 6.5 \Z_} \zan,4—ﬁ * an,o—u/J
n = 1) 2’ 3
(3.13)

""""""""" e g FE=es s i d b alli alzi 3-135 321’
a5, and a,; to zero. By inspection and mathematical induction we obtain
the following recurrence relations for the coefficients:

1 2 3
KO = KO = KO =0
I/]' — V2 - N VS - QA
Al = nl = u, nl = 0430

e e .1 )
‘11 7 %12 " %137 Y %14 T35 \7/

(Equations continued on next page)
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i

4
a #0 a = - = a = i_ a = - l— . a = 1 + 1 w_
30 ’ 31 2’ 32 24 * "33 16 34 240 300 \4

1 3
ovil - T+ mM+v -1 [5 m+v-1) (n+v- z)an,v
1
+ MmM+v-2)(n+v - S)an,v-l + Z—(n +v-3)(n+v-4)
. (A
8 an,v-z T+ v-1) (n+v-2) \1—7 \?an,v-s * an,v-42]
. forn=1, 2, 3and v=4,5, 6, .... . (3.14)
To derive the irregular solution, we apply the uniqueness theorem of power
series to Eq. (3.12.2). Because the logarithmic terms vanish, we have
0
z 4.1a,, + K, =0

yAR -6.1a20 - 4.3a21 + 1(1 =0
— =
K1 6a20
2 .
YA -4.la,, - 6.3a,, - 4.5a,,
LU L1l P4

This expression is # 0; to cancel it we must require that

-4.la20 - 6.3a2l - 4.5a22 - 4.3.2a40 =0

(Equations continued on next page)
19



3.
rA -l.la20 4.3a21 - 6.5a22 - 4.7a23 - 6.3.Za40 - 4.4.3a41
—_— a > a
- —
41 48 20
4 7 4
[N]
. - - - - - —————2a.. - 4.3%.2a.
z 3a21 4.5a22 6.7a23 4,9324 5 Zazo 4.3._340
(3.4)
-6.4.3341 - 4.5.4a42 =0
a l-7 . 31 /m4\]
—_— = —
42 |Te0 * 3600 \a7/ | *20
5 9w4
z -5a 4.7a - 6.9a - 4.1la - (2a + a )
22 23 24 25 L4-5)2 \ 21 2%
—3.Za40 - 4.4.3341 - 6.5.4a42 - 4.6.5343 =0
1 f {3 1 ]
—_— i ==, = . 4a 4.3a - 3.2a
B3, 6.5 |2 .43y, + 4.3a,, + 7 40]
{ 3 1 9
+ tlla,. + 5 . 9, + 7a,, + — . 5a
L 25 2 24 23 4 22 (4.5)2
o) (. \1)
\a=/ (%821 * 3} | ¢
N \ /74)
6 llw4
zZ -7a - 4.9a - 6.11a - 4.13a - 2a + a
. 22 21
23 24 25 26 " 5 6)2 \ 22 21
4
w -
-4.3a41 - 4.5.4342 - 6.6.5a43 - 4.7.6a44 + 6 2340 0

(Equations continued on next page)
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1
1

. 6.5a,, + 5.4a,, + - . 4.3a,,
e £V T4 b4

L

o

w
=
.

f
| (
- (‘”— 2a40:|| + [13:5126 + % . llay. + 9

4
‘”% 72,4 * -1 3 (%‘ (2322 * arn
(5.6)° \*/ /1)
7 : 13 w4
2 -9a,, - 4.1lay; - 6.13a,¢ - 4.15a,, - —=— (2a23 + azz)
0.7)
4 )
w
-5.4a,, - 4.6.5a,, - 6.7.6a,, - 4.8.7a,  + S (Za41 . a40)
L[ :
——l> d,. = - = = . - - -
3 aqb — (L‘ 7.6a + 6.5a + 7 5 4a4Z
1 / A\ 9 r 3
w
- 7‘6(4_ (2341 * a40) v |15ay, * 7 - 133y
- 4
1 13 w )
tllaye + 7. 92y, + 7 |77 (%85 *+ 2

From this pattern we can deduce the general recurrence formula:

1 [ . . 3
Pl T T BTGB Y u‘z‘ (3+ )2+ Va, ,+ (2+v)A+ V)
1 (1 1 /..,4\
x a4,v—1 + Z’( + V)V a4;v-2 - (3 +v)(2 +v) kz_}
/79 a \ + [-(7\) + 7)Y a <+ é (Dvy + A
NP3 T Bauag ) [TV T) 2y s g (2 r S)a
| )
4
2v + 5)
+ (2v + 3) a + = (2v + Da + (
2,\)"‘1 4 2, (,J + 3)2(\! . 2)2 \



To ascertain that Frobenius' method yields series solutions which not
only <af1<Fv our fourth-order differential eauation but also converge

19399 § 2caLiad VLl AUVURRLLAIITUIESL Gl iSaitiivaaca =G iVl UL Gaov LUV SL

over the region of interest (0 <z< 1), we have to determine the convergence
of the series. The recurrence formulae (3.14) and (3.16) exhibit a

4 . . . .
w } dependence for the coefficients a, which is of the following
s
\4 ./ :
structure:

210’ 2n1’ %n2* %3~ \77)
\ 7/
‘4‘) 1
w
an4’ anS’ an6’ an7 n if_

an8’ an9’ anlO’ anll v \F_)

. (3.17)
’l‘kn‘.,\t,\«n wa 1111 Annlary #ha NITAT AmbhAaweE cmndiaA tactdt +~ +ha madsin AL ¢ha
illcicivic, wWT wilill appily LIIT U ALCHIUTI L 1allu LTOL LU LULIIT 1daltlvu vl LIic
coefficients a and a . For large v, we can approximate the

n,v+4 n,v

recurrence formulae for the regular solutions, Eq. (3.14), and for the
nonlogarithmic part of the irregular solution, Eq. (3.5), by

\ (3.18)
/

8]
"

[}
NI
[+§)

)

[

]
£ =
»
s

+ 0 (
\

In order to deduce a recurrence formula which contains only terms propor-

tional to a .» @ ., a _ ,,...we will use the recurrence formula for
n, v+4’ n,v ii,v-4

the (v+3)-th term in addition to that of (v+4)-th term.

3 1 /1
an v+3 s - 5'an v+2 N a'n +1 Z-a AV} +0 (;1 (3~19)
VY EEEELE A L R sV \v/

Addition and subtraction of Eqs. (3.17) and (3.18) yield
_ _ 4 1 1 1

an,V+3 T g-an,v+4 T2 an,v+2 * _ﬁian,v +0 (v) (3.20)
a . -4;3 - a - 3_.3 + 0 /l\ (3.21)
n,v+l 5 “n,v+4 n,v+2 10 “n,v \v} . (3.21)



These relations still contain the coefficient a . o- To eliminate the

a .2 dependency, we apply relations (3.20) and (3.21) to the

[(v+3)-2,(v+1)-2] and [(v+3)-4,(v+]1)-4]-th coefficients.

s

a . =-%a . -za _+z—a __+0(<) (3.22)
n,v+l > mn,v+s < 1N,V <0 n,v-2 \v/
a = g—a - a - g:-a ~ + 0 (1- (3.23)
n,v-1 5 "n,v+2 n,v 10 "n,v-2 \v/
a = - i—a - i—a L+ ;=-a + 0 (l- (3.24)
n,v-1 5 " n,v 2 "n,v-2 20 "n,v-4 \v/
_4 3 1)
n,v-3 5 %,y " %n,v-2 " 10 ?n,v-4 0 (v (3.25)
By successive substitution of Eqs. (3.21), (3.22), (3.23), and (3.24)
and simple manipulation we obtain the following identity in the form of
a limit
lim‘ “n,ved Tny 3 Pnyv 1, oY l. 0 (3261
a a 16 a 64 Kv ; (3.20)
Vo n,v n,v-4 n,v-4
Setting
R = 1i /ani\)+4\_ 1i [ n,v \ (3. 27"
R ey A S (3.27)
v \ n,v / v\ n,v-4

and taking the limit as v»>~, we derive a quadratic equation for the
ratio of the coefficients:

3 )
RS+ 2R - 27 =0 . (3.28)
Its roots are
_ 1 1
R=-7 and i3 (3.29)
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Using these values, we can establish a lower bound of the radius of
convergence for the series solution as

/ 1 1\
i i
r* = min (|R1| 7' IRy " 7) =min 2,2 =7 , (3.30)
which is equal to the distance between the point z = 0 and the regular
singular peoints z = (- 1 * i), Since our power series, Egqs (3.9) and
(3.10) are of the form
o Qo
(z) = 2% a 2z +8, (z1lnz) ) a, 2’ (3.31)
&n N Lz n,v 4n nz y. iaZ,v )
o o

(n=1, 2, 3, 4; 64n...Kronecker delta function);

they converge at the point z = 0., The power series solution to Eq. (3.2),

4
g(z) = E Yngn(z), (Yn... arbitrary constants), (3.32)
1
10
is convergent for z = relv, O<r«<r*, - m< 6 <m, in the z-plane cut
along the negative real axls and unlformly and absolutely convergent for
any interior domain, r < r**, where 0 < r** < r* = V2 .
iy
A
T

R NN
[[ e

-z || g
BRANCH CUT \ \

DUE TO LOG Z ‘\\ //

Figure 3.1. Domain of Convergence for g(z).
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n+v

Since each of the terms gnv(z) =a z * 8,,(z 1n 2z) a,,% »
n=1, 2, 3, 4, is a continuous function of z and the partial solutions

’
g,» n =1, 2, 3, 4, converge uniformly for |z| < r**, the power series
solution g(z), Eq. (3.31), is a continuous function in our domain of
uniform convergence. With gnv(z) continuous and g(z) uniformly convergent,

both the differentiated and the integrated series are power series which
again are continuous functions and have the same radius of convergence
as the original series.

By use of Eqs. (3.31), (3.16), and (3. 14) and performing some trivial
mathematical manipulations we can express deflection, slope, bending

moment and chearlng force as

ﬂ
L5 2) = 2 'Ykg(’h k; z2), 2 =1, 2, 3, 4, (3.33)
k=1 '

where the parameter £ refers to the following physical functions:

2 =1 ... g(z); deflection
d
L =2 . 5 g(z); slope
az *~ *
r, PN 1
L =3 ... [((z + 1) - 1) ——7-g(z) ; modified bending moment
dz
[ o 2 =
L =4 g? l((z + 1)4 - ‘) é—i-g(z) ; modified shearing force.
L dz J (3.34)

The vy, are the coefficients of the four linearly independent solutions
N

g1, k; z), k=1, 2, 3, 4, and must be determined to within an arbitrary
constant in each particular case from the boundary conditions. The four

e DLLICal MVl LAVIlS .

linearly independent solutions and their mod1f1ed derivatives are given
by
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gL, k; 2z) c(L, k, n)zn + 64kg(2, 2; z)In z, (3.35)
n=0
where the coefficients c(2, k, n) are defined as
c(%, k, -n) = 0 for alln =0, 1, 2, 3,, (3.36)
c(l, 1,0 =1; (1, 2, 0) =c(1, 3,0) =c(1, 4, 0) =
c(l, 1, 1) = 0; ¢c(1, 2, 1) = 1; c(l, 3, 1) =c(1, 4, 1) =0
c(1, 1, 2) =c(1, 2, 2) =0; c(1, 3,2) =1; c(l,4,2) =0
1, k = L r3 1 2 1, k 2
C(, :n)—'n(n_l)il.?(n')(n')c(’ ,n-1)+(n-)
x (- 3)c(l, k,n-2) +5@-3)(n-4)cd, k, n - 3)
() |
- (%) f(c1. x 4 + o(l. k. n - 5))
(n-Dh-2\4/ \FELE, K, o= A O, K, 7]
8, {-(Zn—l) <(1,2,n-1)+3 (2 -3
xc(l,2,n-2)+(2n-5)c(l,2,n—3)+z(2n—7)
[ 2\
xc(l,2, n-4) + —2n -3 2’2_\(2c(1, kK, n - 5)
(n - 1)"(n -2 \ /
+c(l, k,n-6)|p;n-=3,4,s5, (3.36.1)
d)

(¥
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c(2;, k, n) =nc(l, k, n + 1) + 6 c(l 2, n+1); for all n=0,1,2,3,...
‘ (3.36.2)
c(3, 1, 0) =¢c(3, 2, 0) = c(3, 3, 0) =0; c(3, 4, 0) =
c(3, 1, 1) =c(3, 2,2 =0; c(3,3,2 =8; c(3,4,2)-=
4 (
c(3, k, n) = —2—— J[2c(1, k, n-3) +c(l, k, n - 4)]
i(n - 1)
2 1 i
n = -
-641(11(11—-1). [ZC(I, 2, n-3) + c(1, 2, n—4)]},
n=2, 3,4, ... : (3.36.3)
c(4, 1, 0) =c(4, 2, 0) = 0; c(4, 3, 0) = 8; c(4, 4, 0) =
:m4\
c(4, k, n) = (H_ i [2¢(1, k, n - 2) + c(1, k, n - 3)]
1 !
-8,, = [2¢(1, 2, n -2) +c(, 2, n - 3)]} ;
b B SV §
n=1, 2, 3, ... (3.36.4)
and § is the Kronecker delta function (8 =0 form# n and § =1
4k 7\ , mn
for m = n).
4. FREE LATERAL VIBRATIONS OF A CONICAL BALLISTIC
TUBE WITH A CYLINDRIC BORE

The determination of the eigenvalues of the separation constant
1 2 b ] a1 E ] a2 - r~ P ) ~ o~ - N =
a = ko and the relative values of the coefficients v, v,, v3, and v,

are contingent on the boundary conditions at the ends of the beam. Let

us assume that the solution of Eq. (3.2), g(1, z) ; Y g(l oW ;z),

is constrained
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This equation furnishes the means for the determination of the eigenvalues

(m \ and, conseaquently, from qu (4.2) the ratios of the coefficients

Y2/Y1, Y4/, and 74/71 and from Eq. (3.33) the eigenfunctions g (1;z) as
well., '

The roots of the characteristic Eq. (4.3) represent the eigenvalues

of the system and correspond to the natural frequencies of the beam
c t+tha knnnﬂarv conds

.
nwd +ha +h 13+ Ta+s
101-5, uq \.-r . J-J » and the ortnogonality relation

/ 4\
for the eigenfunctions, one can show that the eigenvalues \w }n must be

2 . .
positive or zero. Due to the complexity of the functions g(&, k; z; w')
the eigenvalues w4)n cannot be determined analytically but must be found

numerically,

As a numerical example, we will consider the eigenvalue problem of
the free transverse vibration of a circular conical tube with a circular
cylindric bore where the bottom of the cone is a fixed end and the top
is allowed to vibrate freely (Figure 4.1) and compare the solution to

ig nvnk]nw with +tha fraa +wancy

~L
this PTOo.€Mm Wiln TN€ IrTee Transverse vi ions of a circular tube.

A R S

} ANIRNNARRR RS

f
i 4 |
i r Ry
1 |
e L
FIXED END FREE END
Figure 4.1. Geometry of Numerical Example

o . s . . c o ox a3 3 .

We select steel with a density ot 7.84 x 10 kg/m and Young s
modulus of elasticity of 2.1 x 1011 Pa as the tube material, a beam
length of 1.00m, an interior radius of 0.05m and for the circular pipe
an exterior radius of 0.06m and determine the exterior radii Rr and Rz
by keeping the volume constant

A. S. Elder, '"Free and Forced Vibrations of a Tapered Cantilever Beam,"
University of Delaware; M. A. Thesis, June 1956.
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vh. cone LEs !'% (‘D‘z * DEDr + RZ) - 1’2] = ‘vplpe = -,l—g(Rz - 1.,2\
) - N W)
and varying R

[\8)
———
,77
1,
N
‘;U

; R_and R, > r. (4.5)

Nl
=i
—
h—d
|
VS
N,
Lo
"
I

7
~
~

Tables 4.1, 4.2, and 4.3 are representative samples of the obtained
numerical results.

TABRLE 4.1, NATURAL FREQUENCIES OF A CONCENTRIC CIRCULAR
CONE WITH A CYLINDRIC BORE AS FUNCTION OF THE °

MODE OF VIBRATION FOR R = 0.95

n Q W A
n n n

1 9.23175 6.32619 45929

2 18.66643 15.83683 17867

3 28.86741 26.50023 08933

4 39.18171 37.09654 .05621

5 49.56180 47.69570 .03913

6 59,98144 58.29474 .02893

7 70.42839 68.89379 .02227

8 79.49283
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TABLE 4.2. NATURAL FREQUENCIES OF A CONCENTRIC CIRCULAR
CONE WITH A CYLINDRIC BORE AS FUNCTION OF THE
MUUL Ur VIDFAILUN TTUK K = ~U.JO
n ﬂn wn' An
1 3.67169 6.32619 -.41960
2 13.36686 15.83683 -.15596
3 24.81891 26.50023 -.06345
4 35.66632 37.09654 ~ -.03855
5 46.41514 47.69570 -.02685
6 57.11542 58.29474 -.02023
7 68.89379
8 75.49283
TABLE 4.3. NATURAL FREQUENCIES OF A CONCENTRIC CIRCULAR
CONE WITH A CYLINDRIC BORE AS FUNCTION OF VARIOUS
RADII
|R| 2, (+|R]) W, 2, (-[R])
6.01764
90233 6.66899
.80417 10.15110 7.48786 5.16764
70550 8.52967
.60631 12.37331 9.92501 7.75756
.50661 11.87835
40637 17.10772 14.80818 12.69508
30560 19.69097
.20429 31.65520  29.45615 27.34957
.10243 58.75086
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Tables 4.1 and 4.2 contain the first eight natural frequencies, Q_,

ucelltles N 5

AL A e At o 2

of a concentric circular a concentric circular cylindric bore

t
and R expressed by the ratio R =
i S\, /. i

- - ]
\BQ Rr)/max \RR Rr}' The w 's are the corresponding eigenvalues for
the circular tube. The quantity An = [Qﬁ - wnl/wﬁexpresses the deviation
of e from w, . Table 4.3 exhibits the dependence of the first natural

frequency on the radii of the cone.

1
f the numerical

1+ =+ ge
resuit to tne geom

ication of th ietrical descript-
ion of gun tubes for lateral tube motion can best be seen from Figure
4.2. Here we plotted the deviation of the natural frequencies of the
concentric circular cone with a concentric circular cylindric bore from
the circular tube versus the normalized difference between the left and
right radii of the cone. The plot displays clearly that for eigen-
frequencies in the lower principal mode of vibration the commonly used

-

approximation of a conical gun tube by a cylindric beam is not justified.
However, for the higher principal modes of lateral vibration we can well
substitute the eigenvalues of the beam for the correct oneés.

Having the natural frequencies determined we can use Eq. (3.33) to
compute the deflections of the centerline of the concentric circular
cone with a concentric cylindric bore in the r-th mode. Figure 4.3 is a
representative example. The values on the abscissa correspond to the
deflections of the beam axis normalized by the maximum displacement and
of the }'\Agm Frnm the left ]'\ru

on the ordinate to the axial distanc rom left boundary

Ll i $o R ) LiiT GAaG

normalized by the layer of the beam

('D

W
N
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