AD=ADB3 279 CONNECTICUT UNIV _STORRS
DATA STRUCTURE DEFINITION AND ACCESS CONTROL FACILITIES FOR LAN—-ETC(U)
APR 80 B & CLAYBROOK DAA029-75-6-0115
UNCLASSIFIED ARO=1626% , 2~E|

r———-———-

|0 ¥l fjlz
g £
||||| TR =
- K]

22 i ne

MICROCOPY RESOLUTION TEST CHARI
NATICNG, BURES o8 WTANDARD w3

B~ o e e i, .

S e

Ll

« Uncaussified .

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

REPORT DOCUMENTATION PAGE BEFOGE COMPLETING FORM

ADAOB3279

TREPORT NUMBER
Lo L T

7y A e ~
‘é TA STRUCTURE DEFINITION AND ACCESS CONTROL ‘"‘

ACCESSION NOI 3. RSCIFSNT'S CATALOG NUMBER
”~

[

-

At e o 4 o

| EACILITIES FOR LANGUAGES DESIGNED FOR THE

DEVELOPMENT OF BELIABLE SOFTWARE
. AU PRDESNSREITY. R L M .. CT OR GRANT NUMBER(s)
- ~ . - ; : / A ___'__‘,__,M
26 siny G./Claybrook! Y DAAG29=78-G=91 la(qpﬁ
-———‘“’ d e s ot et - s ‘
10. PROGRAM ELEMENT, PROJECT, TASK

). PERFORMING ORGANIZATION NAME AND ADDRESS

AREA & WORK UNIT NUMBERS

Urrvershtpegf=foutir=-trrorime
Columirirreiuatifurrhreioftl.
« S T P
'. CONTROLLING OFFICE NAME AND ADDRESS E 12
U. S. Army Research Office ! Apr 8p

F. 0. brx 12211

4 3 ’ :’\ ‘:,.._.
Research Triangle Park, ..C 27709 13 { g
T€ WMONITORING AGENCY NAME & ADORESS(I! different trom Controlling Office 1S. SECURITY CL . (ot

Unclassified

b, 1Se. DECL ASSIFICATION/ DOWNGRADING
. SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Repor

Approved for putlic release; distributi~n unlimited. g } :

17. DISTRIBUTION STATEMENT (of the sbatract entered in Block 20, {! different from Report)

18. SUPPLEMENTARY NOTES
The view, .pinicns, and/cr findings contained in this repcrt are those of the
author(s) and should nct be construed as an official Department of the Army
position, policy, r decision, unless sc Jdesignated by cther documentation.

19. KEY WORDS fContinue on reverse side if necossary and identity by block number)

computers

data structure
computer programs
programming languages

g ABSTRACT (Continue on reverse side If neceseery and Identify by block number)

The purpose of the research described here was to develop a data structure defin
facility (DSDF) and an access control facility suitable for inclusion in high-le
programming languages. The research was not intended to include the design of a
complete language but instead involved the development of programming language

features that aid in the development of languages designed for producing reliable

ifion

v#l

software. The DSDF was to be capable of specifying and implementing a wide varie;y‘w’r

of views of data. The intentions were to develop a facility capable of defining

o0 ,')2:”" 1473 €oition oF 1 nOV 6S 'S MRGOLETE

i .nclassified {g‘y"’

7 &1 I/ ,‘[_‘ (7&‘Cj.'ger.-.-vv Wt ‘24"“‘ ~F vi-: gmd..fp_om..

80

5
Ed

6

. uncimssitiea
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) 16264, 2-EL

i. ABSTRACT CONTINUED

real world data objects as well as system-oriented data objects. In addition,
the DSDF was to merge the language view of real world and system data objects.

f

3 P TIN SAEEO I " o

.

: Unclassif g

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) a5

-]
A

P s

Final Report

U. S. Army Research Office Grant No. DAAG29-78-G-0118
{ entitled

; Data Structure Definition and Access Control
. Facilities for Languages Designed for the
: Development of Reliable Software

University of Connecticut/ STorrs

September 1, 1978 - August 15, 1979

Billy G. Claybrook

Principal Investigator

1

Problem Studied

The proposed research was to develop a data structure definition facility
(DSDF) and an access control facility suitable for inclusion in high-level
programming languages. The research wus not intended to include the design of
a complete language but instead involved the development of programming
language features that aid in the development of languages designed for pro-
ducing reliable software.

The DSDF was to be capable of specifying and implementing a wide variety
of views of data. The intentions were to develop a facility capable of defining
real world data objects as well as system-oriented data objects. In addition,

the DSDF was to merge the language view of real world and system data objects.

Results of the Research

To meet the objectives of this research, an encapsulation mechanism, the
module, was designed for specifying and implementing abstract data types (or
data objects) in high-level programming languages. The format of the module is
illustrated in Figure 1; it is similar in some respects to other encapsulation
mechanisms such as the cluster in CLU {37, Parameterized types are permitted
within the module context and restrictions to them, if any, can be specified.
The rights specification is an explicit specification of the rights tc objects
of the type being defined.

The logical structure (LS) component of a module specification essentially

characterizes a data object by defining restrictions to relationships. An LS,
by itself, does not specify a data type; instead, it highlights features of a
data type and communicates them to the user and to the implementer of the type.
To some extent, a logical structure specifies what an object looks like, (inde-

pendent of any representation). In general, a logical structure component of a

module module_name [<parameters, if any>]

restrictions to parameters
1 :
i rights

H .
i .

j logical structure

lsname

objects

attributes

relationships

.
.
.

invariant assertions

e S I ANI AN A5 7~

} .

semantics of operations

constructive

nonconstructive

.
.
.

representation

implementation

end module name

Figure 1. Format of a module

module can contain multiple logical structure specifications, each one named
(using lsname in Figure 1) and giving & different view of the data type. Normally,

however, only one logical structure specification is given per data type.

The semantics of operations can be specified in three ways: (1) by using

the constructive approach described in this paper and in Claybrook, et al. [1],

(2) by using Guttag's axioms [21 (only one logical structure specification is
meaningful in this case), or (3) by using both the constructive approach and

Guttag's axioms. The representation and implementation specifications are self-

explanatory.

The Logical Structure

.

Basically, the logical structure of a data object is characterized by
specifying relationships between constituent object types and by defining re-

strictions to relationships. Each LS specified in the logical structure component

of a module is given a name such as GTREE in the genealogy tree data type

specified in Figure 2. A logical structure specification can then be referred

to by this name. The name(s) of the component object types are given in the
objects section. The attributes of each component object are given in the
attributes section; they are given in the form of a function from objects to values.
The relationship names and the object type(s) involved in a relationship are

given in the relationships section. The relationships are binary relationships

and arec specified in functional form.

module genealogy tree
rights add_person, add_child

logical structure
lsname GTREE
objects PERSONS
attributes NAME: PERSONS to string
DOB: PERSONS to integer
relationships
CHILDOF: PERSONS to PERSONS
PARENTOF : PERSONS to PERSONS REDUNDANT
NEXTALPHA: PERSONS Lo PERSONS REDUNDANT
NEXTOLDEST: PERSONS to PERSONS REDUNDANT

Figure 2. A genealogy tree data type.

invariant assertions
Vx,y: PERSONS
1. 1f x CHILDOF y then DOB(x) > DOB(y)
2. 1f x ¥ y then NAME(x) ¥ NAME(y)
3. CHILDOT has indegree at most 2
4. CHILDOF is acyclic
5. x CHILDOF y iff y PARENTOF x
6. NEXTALPHA is ordered on NAME and is linear
7. NEXTOLDEST is ordered on DOB and is linear

semantics of operations

OCCUR = occurrence <P: collection PERSONS, N: collection NAME,
D: collection DOB, CO: CHILDOF, PO: PARENTOF, NO: NEXTOLDEST,
NA: NEXTALPHA>

operations wrt GTREE
add_person (OCCUR, NEWNAME, SOMEDOB) = if NEWNAME € {N(n)|n € p}
then ERROR else <P', N', D', CO, PO, NO', NA'> *
where x: PERSONS and x ¢ P
P' = P yu{x}
N' = N u{<x, NEWNAME>}
D' = D u{<x, SOMEDOB>)

end add_person

add_child (OCCUR, NEWNAME, SOMEDOB, PARENT NAME1, PARENT NAME2) *
1f NEWNAME € {N(n) |n € P} or PARENT NAMEl ¢ {N(n) T n € P}
or PARENT NAME2Z ¢ {N(n) n € P}
or D(PARENT NAME1) > SOMEDOB
or D(PARENT NAME2) > SOMEDOB then ERROR

else <P', N', D', CO', PO', NO', NA'>
where newnode: PERSONS and newnode ¢ P
x € P 3 PARENT_NAMEL =~ N(x)
y € P ? PARENT NAME2 = N(y)
P' = Py {newnode}
N' = Ny {<newnode, NEWNAME>}
D' = Du {<newnode, SOMEDOB>}
CO' = COu {<newnode, x>, <newnode, y>}
PO' = POu {<x, newnode>, <y, newnode>}

end add_child

end genealogy-tree Figure 2. (Continued)

*In both the add person and add_child operations in Figure 2, we indicate that

definitions do not explicitly show this.

The most important ingredient of a logical structure is the invariant
assertion. The primary function of the invariant assertion is to specify res-

trictions to each of the relationships named in the relationships section. 1In

the redundant relations NO and NA are actually affected, even though the operation

addition, invariant assertions can also specify relationships between relations

(see the genealogy tree data type example in Figure 2 for the relationship between

the CHILDOF and PARENTOF relations). The relationships section and the invariant

assertions section permit the specifier of a data type to communicate to both the
user and the implementer of the data type what he considers to be the type's most
inportant aspects.

The invariant assertions have at least two important uses. First, and per-
haps most importantly, they specify what Tayior (4! refers to as the "meaning” of
a relationship. For instance, the is-part-of and is-spouse-of relationships are
syntactically equivalent but have much different occurrence structures. Secondly,
the invariant assertions can be used directly or indirectly to provide a defini-
tive test for valid versus invalid occurrence structures when operations are
applied.

The syntax for the assertions is given in Appendix A along with a catalog
of properties for relations. Many of these properties are defined using first-
order predicate calculus notation. Using names to describe properties makes the

invariant assertions easier to read, write and specify.

Semantics of Operations

Previously, we saild that the semantics of operations can be speciflied in
three distinct ways: (1) by using the constructive approach described in this
paper, (2) by using Guttag's axioms, or (3) by using both the constructive
approach and Guttag's axioms.

The operations (constructive approach) are defined in terms of how they
affect an occurrence of the data object being specified. An occurrence of a
data type is represented as a tuple of elements such as OCCUR in Figure 2. In

general, the elements in a tuple consist of collections of ingtances of all

object types, collections of all attribute values, and all relations. For

example, in Figure 2, P is a collection of PERSONS, N is a collection of NAME's,

D 1s a collection of DOB's, and CO, PO, NO, and NA are the four relations
restricted by the invariant assertions of the LS named GTREE. An operation
definition, then, consists of specifying how the operation affects each of the
elements in the occurrence tuple. Not all operations make changes to an occur-
rence, nor do all operations affect all elements in an occurrence tuple. For
exanple, a find-children operation (not specified) for the genealogy trece data
type does not affect an occurrence, and the add_person operation shown in Figure
2 does not change the CHILDOF or PARENTOF relations.

Figure 3 illustrates the stack data type, specified using the principal
investigator's constructive approach and Guttag's nonconstructive approach.
Redundant specification appears to be useful because Guttag's axioms are useful
for verifying that an implementation is correct and the constructive specifica-
tion is useful as an aid to both the user and the implementer of the type.

The utility of redundant specification is a topic of future research.

module stack

rights top, pop, push

logical structure
1sname STK
objects NODE
attributes VALUE: NODE to string
relationships ONTOPOF: NODE to NODE
invariant assertions
1. ONTOPOP is linear

gemantics of operations
OCCUR = occurrence <N: collection NODE, V: collection VALUE,
O: ONTOPOF>

Figure 3. stack data type specified (partially
specified) using both Claybrook's
constructive approach and Guttag's
nonconstructive approach

1 vt B N ST (S SN et . 0 YO

operations wrt STK

constructive

emptystack() = <p, @, 0 >
push (OCCUR, NEWVALUE) = <N', V', 0'>
where for x: NODE and x ¢ N and a ¢ N 3 (fy € N)(<y, a >€0)
N' = N u {x}
V' = v y {<x, NEWVALUE>}
0' = if OCCUR = emptystack() then @
else 0 u {<x, a>}

end push

pop (OCCUR) = if OCCUR = emptystack() then ERROR
else <N', V', O'>
where for x: NODE, x ¢ N and (Za € N)(<a, x>€ 0)
N' = N - {x}
V' =V - {<x, V(x)>}
0' = 0 - {<x, a> | <x, a >¢ 0}

end pop
top (OCCUR) = if OCCUR = emptystack() then ERROR
else V(x), where x € N and (#y € N)(<y, x> € 0)

end top

nonconstructive
declare stk: stack; elm: integer
pop (NEWSTACK) = NEWSTACK
pop(push(stk, elm)) = stk
top (NEWSTACK) = ERROR
top (push(stk, elm)) = elm

end stack

Figure 3. (Continued)

Redundant Relations

A relation is classified as redundant if it can be totally specified in
terms of the attributes and non-redundant relations. Intuitively, a redundant
relation does not provide any new information; it merely highlights a particular
aspect of the logical structure., NEXTALPHA, NEXTOLDEST and PARENTOF relations
are redundant in the genealogy tree logical structure (see Figure 2). CHILDOF

is not redundant since it provides new information which cannot be obtained from

the attributes. Note that since CHILDOF and PARENTOF are almost interchangeable,

one could have chosen CHILDOF as the redundant relation and PARENTOF as the non-
redundant relation. Non-redundant relations must be included in each operation

definition, whereas redundant relations need not be included in the operation

definition. In some cases, the specifier may choose to define how an operation
actually affects a relation, even though the relation is redundant. This approach
assures the implementer of all changes that an operation makes to all relations,

including redundant relations.

Summary of Results

The significant accomplishments of the year's research efforts include:
1 the specification of the module encapsulation mechanism as a means
for specifying and implementing abstract data types,

2) the development of the logical structure component of the module,

in particular the invariant assertions, for specifying restrictions
to relationships between constituent object types, and
3) the development of the notation for specifying the semantics of
operations (using the constructive approach to specification). %
The combination of these three things provide the basis for a number of further
research topics, including verifying the correctness of implementations of

abstract data types., *

*
This is one of the objectives of the renewal year of this grant.

1.

References

Claybrook, Billy G., et al. 'Logical Structure Specification and Data

Type Definition," Proceedings of ACM 79 Conference, October 1979,

pPP. 203-211.

Guttag. Johm V. et al. "Abstract Data Types and Software Validation,"
CACM, Vol. 21, December 1978, pp. 1043-1064

Liskov, Barbara, et al. "Abstraction Mechanisms in CLU," CACM, Vol. 20,
August 1977, pp. 564-576.

Taylor, Robert W. '"Observations on the Attributes of Database Sets,"

Data Base Description, Douque, B. C. and Nijssen, G. M. (eds.),

North-Holland, Amsterdam 1975, pp. 73-84.

-10-

Appendix A

This appendix specifies the syntax for invariant assertions and presents
a catalog of names that are used to expedite and facilitate the specification
of invariant assertions,

An assertion is of the form:

<Relation name> <ncise words> <property>

ON <object set>
or assertion in first-order predicate calculus augmented by standard set

notations involving the named objects, attributes, and relationships,

Notes

<Relation name> is any relation named in the relationships section of the LS.

<noise words> may be added for readability.
<property> may have embedded parameters and are defined in the following catalog.
ON <object> is optional. <object> 1s the name of a set of objects named in

the objects section of the LS.

The default value is the set of objects on which relation is defined.

In the following catalog, R stands for the relation parameter and A stands
for the object set parameter. Embedded parameters are underlined.
noloops (Va:A)(not aRa).
nocycles CVa:A)CVn:integet)(ibl. byy eees b 1A)
(aRb, and b.Rb

1 1772
acyclic R has noloops and R has nocycles.

and .., and bnRa and a¥b and n2l).

indegree n (Va:A)(indegree(a)=n).*

outdegree n (Va:A) (outdegree(a)=n).*

indegree at most n (Va:A) (Indegree(a)sn).*

.
#
i
1

«ll-

outdegree at most n (Va:A)(outdegree(a)sn).*
n:m correspondence R has indegree at most n and R has outdegree at most m.
reflexive (¥a:A)(aRa)
symmetric (Va:A)(Vb:A)(aRb 1iff bRa).
anti-symmetric (va,b:A){(aRb and bRa implies a=b).
transitive (Vva,b,c:A)(1if aRb and bRc then aRc).
partition R is reflexive, symmetric and transitive.
partially ordered R 1is reflexive, anti-symmetric and transitive,
totally ordered R is partially ordered and (Va,b:A)(aRb or bRa).
linear R is acyclic with (card{A}s<l or (3JaecA) (indegree (a) =
0 and outdegree (a)=1 and (IbeA) (indegree (b)=1 and
outdegree (b)=0 and (Vc:A)(if c¥a and c#b then
indegree (c) = outdegree (c)=l1.) |
ordered on x R is linear and (Va,b:A) (aRb implies x(a) < x(b)).
tree A=p or (Ja:A)(indegree (a)=0 and (Vb:A)(if a#b then indegree (b)=1))
and R is acyclic.

pair (da,b:A)(A={a,b} and R = {<a,b>}).
star (@a:A) (indegree(a)=0 and (vb:A) (if a¥b then indegree (b)=1 and

outdegree (b)=0).
set of Y (yP)(if PcA and (Vx:P)[@a:A) (a £ p and (aRx or xRa)) then

BRM\P is Y on P).

forest R 1is a set of tree.
pairs R is a set of pair.
stars R is a set of star.

.*indegree (a) = card{b|aRb} and outdegree (a) = card {b|bRal}.

Publications

"Logical Structure Specification and Data Type Definition," Proceedings

of the ACM 79 Conference, October 1979, pp. 203-211.

Personnel
Billy G. Claybrook, Principal Investigator (12 months)
Donald Criscione, Graduate Research Assistant (11 months)

Craig Cleaveland, Consultant (1 month)

