
. ADADB3 279 CONNECTICUT UNIV STORRS F/6 9/2

. :I I

DATA STRUCTURE DEFINITION AND ACCESS CONTROL. FACILITIES FOR LAN'-ETC(U)
0 APR 80 9 6 CLAYBROOK DAA629-78-6-0118

UNCLASSIFIED ARO-126.-EL PB.

I 'NOmniI

L.1

11111 '*~hi
32 111.12

till. 2 112.2

1.25 11111 1 f I8

MIRCP IN V O I S CA RT

eUncloissified
SECURITY CLASSIFICATION OF THIS PAGE (Whena Dote Ente...E0

REPOT DCUMNTATON AGEREAD INSTRUC=INSREPOT DCUMETATON PAGEBEFORE COMPLETINO FORM

MY NUMBERACCESSION NO. S. RECIP ENT'S CATALOG NUMBER

.V1

hAA RUCTURE EFINITION AND ACCESS CONTROL I SeD7 -1 An7*I

'. CONTOLLIN F NAELAD ADDRESS E&-

.14,1 MONIOING GEN CY AESAOESt II,~ Ir, Ccntoltn rook IS. SECURITY CL Of ,

1--rERFOMINGORGNIZAION AMEAND DDRES 1. PROGRAMELEMET, OJECTNGASK

16. CONTROLJINOFFC STATME AND tADRES

U. S.PLEmNTResac NOTESAp 8

auho4s aMNTPnd shoNC d nAEt b ORSIfeentfrond asroii anOfficia IS prten oSEtheRArY

pozit'n, olic, *r ecisons nles so Unigntedsyifterdcmnain

computedfr programss; itrbtinuniitd

A7 DSTRACUTI(ONt u ST T MN T (ofe tde ibstract entered In tilock y20, oIt di mfern)rmRe ot t

programmingplanguagesnTheoresearchgwasonotinended to includae thodeg of ah
complete) lanug bhutd inste ionolved the developclearment of rgrmmn lAruag
feates thatlidy in thedevelopmentes of agagdesignted ohr producingtreiable

so9 wre KYWRSfoTe onD waso o bfe csapyabl Ientofy speblcifyngnipemninerwd)v

ofe views of t The intarhe i were a to develop a dil tacapableuof defin~o

featurs thataidi th deelpmn of language desind for prodcing rS~elibl~e .e

- ''~80 4 15005

un si ibsle a
SECURITY CLASSIFICATION OF THIS PAGE(Vhen Does Eatomre) 16264.2-EL

ABSTRACT CONTINUED

real world data objects as well as system-oriented data objects. In addition,
the DSDF was to merge the language view of real world and system data objects.

DI!3t

Uncl ssi i L
SCRTCL S PCTINOTHSPAEM Dsntet

Final Report

U. S. Army Research Office Grant No. DAAG29-78-G-0118

entitled

Data Structure Definition and Access Control
Facilities for Languages Designed for the

Development of Reliable Software

University of Connecticut 7T0rr V

September 1, 1978 - August 15, 1979

Billy G. Claybrook

Principal Investigator

80 4 15 005

Problem Studied

The proposed research was to develop a data structure definition facility

(DSDF) and an access control facility suitable for inclusion in high-level

programming languages. The research w.,s not intended to include the design of

a complete language but instead involved the development of prograrming

language features that aid in the development of languages designed for pro-

ducing reliable software.

The DSDF was to be capable of specifying and implementing a wide variety

of views of data. The intentions were to develop a facility capable of defining

real world data objects as well as system-oriented data objects. In addition,

the DSDF was to merge the language view of real world and system data objects.

Results of the Research

To meet the objectives of this research, an encapsulation mechanism, the

module, was designed for specifying and implementing abstract data types (or

data objects) in high-level programminglanguages. The format of the module is

illustrated in Figure 1; it is similar in some respects to other encapsulation

mechanisms such as the cluster in CLU [31. Parameterized types are permitted

within the module context and restrictions to them, if any, can be specified.

The rh specification is an explicit specification of the rights to objects

of the type being defined.

The logical structure (LS) component of a module specification essentially

characterizes a data object by defining restrictions to relationships. An LS,

by itself, does not specify a data type; instead, it highlights features of a

data type and communicates them to the user and to the implementer of the type.

To some extent, a logical structure specifies what an object looks like, (inde-

pendent of any representation). In general, a logical structure component of a

-2-

module module name [<parameters, if any>]

restrictions to parameters

rights

logical structure

isname

objects

attributes

relationships

invariant assertions

semantics of operations

constructive

nonconstructive

representation

implementation

end module name

Figure 1. Format of a module

module can contain multiple logical structure specifications, each one named

(using lename in Figure 1) and giving a different view of the data type. Normally,

hovever, only one logical structure specification is given per data type.

The semantics of operations can be specified in three ways: (1) by using

-3-

the constructive approach described in this paper and in Claybrook, et al. '1],

(2) by using Guttag's axioms F21 (only one logical structure specification is

meaningful in this case), or (3) by using both the constructive approach and

Guttag's axioms. The representation and implementation specifications are self-

explanatory.

The Logical Structure

Basically, the logical structure of a data object is characterized by

specifying relationships between constituent object types and by defining re-

strictions to relationships. Each LS specified in the logical structure component

of a module is given a name such as GTREE in the genealogy tree data type

specified in Figure 2. A logical structure specification can then be referred

to by this name. The name(s) of the component object types are given in the

objects section. The attributes of each component object are given in the

attributes section; they are given in the form of a function from objects to values.

The relationship names and the object type(s) involved in a relationship are

given in the relationships section. The relationships are binary relationships

and are specified in functional form.

module genealogytree

rights addperson, addchild

logical structure
Isname GTREE
objects PERSONS
attributes NAME: PERSONS to string

DOB: PERSONS to integer
relationships

CHILDOF: PERSONS to PERSONS
PARENTOF: PERSONS to PERSONS REDUNDANT
NEXTALPHA: PERSONS to PERSONS REDUNDANT
NEXTOLDEST: PERSONS to PERSONS REDUNDANT

Figure 2. A genealogy tree data type.

-4-

Invariant assertions
Vx,y: PERSONS

1. if x CHILDOF y then DOB(x) > DOB(y)
2. If x 0 y then NAME(x) 0 NAME(y)
3. CHILDOr has indeRree at most 2
4. CHILDOF is acyclic
5. x CHILDOF y iff y PARENTOF x
6. NEXTALPHA is ordered on NA'E and is linear
7. NEXTOLDEST is ordered on DOB and is linear

semantics of operations

OCCUR - occurrence <P: collection PERSONS, N: collection NA!I.,
D: collection DOB, CO: CHILDOF, PO: PARENTOF, NO: NEXTOLDEST,
NA: NEXTALP HA>

operations wrt GTPEE
add_person (OCCUR, NEWNAME, SOMEDOB) - if NEWNAME e {N(n)ln c p1

then ERROR else <P', N', D', CO, PO, NO', NA'>
where x: PERSONS and x d P

P, " P u{xl
N' - N u{<x, NEWNAMIE>}
D' - D u{<x, SOMEDOB>)

end add_person

addchild (OCCUR, NEWNAME, SOMEDOB, PARENT NAMEI, PARENT NAINLE2)
if NEWNAME c {N(n) In c P) or PARENTNAMEl i {N(n) f-n e P)
or PARENTNAMEZ e. (1(n) n i P)
or D(PARENT_NAME1) > SOMEDOB
or D(PARENT NAME2) > SOMEDOB then ERROR

else <P1, N', D', CO', PO', NO', NA'>
where newnode: PERSONS and newnode i P

x E P PARENT NAMEI N(x)

y £ P PARENTNAME2 - N(y)
P' P u {newno-de}
N' Nu (<newnode, NEWNAME>I
D' = D u {<newnode, SOIIEDOB>)
CO' = COu {<newnode, x>, <newnode, y>)
PO' = POu (<x, newnode>, <y, newnode>}

end add-child

end genealogy-tree Figure 2. (Continued)

*In both the addjperson and add child operations in Figure 2, we indicate that
the redundant relations NO and NA are actually affected, even though the operation
definitions do not explicitly show this.

The most important Ingredient of a logical structure is the invariant

assertion. The primary function of the invariant assertion Is to specify res-

trictions to each of the relationships named in the relationships section. In

-5-

addition, invariant assertions can also specify relationships between relations

(see the genealogy tree data type example in Figure 2 for the relationship between

the CHILDOF and PARENTOF relations). The relationships section and the invariant

assertions section permit the specifier of a data type to communicate to both the

user and the implementer of the data type what he considers to be the type's most

important aspects.

The invariant assertions have at least two important uses. First, and per-

haps most importantly, they specify what Taylor L43 refers to as thu "meaning" of

a relationship. For instance, the is-part-of and is-spouse-of relationships are

syntactically equivalent but have much different occurrence structures. Secondly,

the invariant assertions can be used directly or indirectly to provide a defini-

tive test for valid versus invalid occurrence structures when operations are

applied.

The syntax for the assertions is given in Appendix A along with a catalog

of properties for relations. Many of these properties are defined using first-

order predicate calculus notation. Using names to describe properties makes the

invariant assertions easier to read, write and specify.

Semantics of Operations

Previously, we said that the semantics of operations can be specified in

three distinct ways: (1) by using the constructive approach described in this

paper, (2) by using Guttag's axioms, or (3) by using both the constructive

approach and Guttag's axioms.

The operations (constructive approach) are defined in terms of how they

affect an occurrence of the data object being specified. An occurrence of a

data type is represented as a tuple of elements such as OCCUR in Figure 2. In

general, the elements in a tuple consist of collections of instances of all

object types, collections of all attribute values, and all relations. For

example, in Figure 2, P is a collection of PERSONS, N is a collection of NAME's,

D is a collection of DOB's, and CO, PO, NO, and NA are the four relations

restricted by the invariant assertions of the LS named GTREE. An operation

definition, then, consists of specifying how the operation affects each of the

elements in the occurrence tuple. Not all operations make changes to an occur-

rence, nor do all operations affect all elements in an occurrence tuple. For

example, a find-children operation (not specified) for the genealogy tree data

type does not affect an occurrence, and the add-person operation shown in Figure

2 does not change the CHILDOF or PARENTOF relations.

Figure 3 illustrates the stack data type, specified using the principal

investigator's constructive approach and Guttag's nonconstructive approach.

Redundant specification appears to be useful because Guttag's axioms are useful

for verifying that an implementation is correct and the constructive specifica-

tion is useful as an aid to both the user and the implementer of the type.

The utility of redundant specification is a topic of future research.

module stack

rights top, pop, push

logical structure
lsname STK
objects NODE
attributes VALUE: NODE to string
relationships ONTOPOF: NODE to NODE
invariant assertions

1. ONTOPOP is linear

semantics of operations
OCCUR occurrence <N: collection NODE, V: collection VALUE,

0: ONTOPOF>

Figure 3. stack data type specified (partially
specified) using both Claybrook's
constructive approach and Guttag's
nonconstructive approach

-7-

operations wrt STK

constructive

emptystack() - <0, 0, 0 >
push (OCCUR, NEWVALUE) * <N', V', 0'>

where for x: NODE and x d N and a c N 3 (ly c N)(<y, a >C 0)

N' - N u {x}
V - V u {<x, NEWVALUE>)
0' - if OCCUR - emptystack() then 0

else 0 u {<x, a>)

end push

pop (OCCUR) - if OCCUR - emptystack() then ERROR
else <N', V', O'>
where for x: NODE, xc N and (Za c N)(<a, x>4E 0)

N' - N - {x)
V - V - {<x, V(x)>}
0' - 0 - {<x, a> I <x, a >EO}

end pop

top (OCCUR) = if OCCUR - emptystack() then ERROR
else V(x), where x c N and ('y c N)(<y,x> 4 0)

end top

nonconstruc tive
declare stk: stack; elm: integer

pop(NEWSTACK) - NEWSTACK
pop(push(stk, elm)) - stk
top(NEWSTACK) - ERROR
top(push(stk, elm)) - elm

end stack

Figure 3. (Continued)

Redundant Relations

A relation is classified as redundant if it can be totally specified in

terms of the attributes and non-redundant relations. Intuitively, a redundant

relation does not provide any new information; it merely highlights a particular

aspect of the logical structure. NEXTALPHA, NEXTOLDEST and PARENTOF relations

are redundant in the genealogy tree logical structure (see Figure 2). CHILDOF

is not redundant since it provides new information which cannot be obtained from

~-8-

the attributes. Note that since CHILDOF and PARENTOF are almost interchangeable,

one could have chosen CHILDOF as the redundant relation and PARENTOF as the non-

redundant relation. Non-redundant relations must be included in each operation

definition, whereas redundant relations need not be included in the operation

definition. In some cases, the specifier may choose to define how an operation

actually affects a relation, even though the relation is redundant. This approach

assures the implementer of all changes that an operation makes to all relations,

including redundant relations.

Summary of Results

The significant accomplishments of the year's research efforts include:

1) the specification of the module encapsulation mechanism as a means

for specifying and implementing abstract data types,

2) the development of the logical structure component of the module,

in particular the invariant assertions, for specifying restrictions

to relationships between constituent object types, and

3) the development of the notation for specifying the semantics of

operations (using the constructive approach to specification).

The combination of these three things provide the basis for a number of further

research topics, including verifying the correctness of implementations of

abstract data types. *

This is one of the objectives of the renewal year of this grant.

I.

-9-

References

1. Claybrook, Billy G., et al. "Logical Structure Specification and Data

Type Definition," Proceedings of AC I 79 Conference, October 1979,

pp. 203-211.

2. Guttag. John V. et al. "Abstract Data Types and Software Validation,"

CA..._, Vol. 21, December 1978, pp. 1043-1064

3. Liskov, Barbara, et al. "Abstraction Mechanisms in CLU," CACM, Vol. 20,

August 1977, pp, 564-576.

4. Taylor, Robert W. "Observations on the Attributes of Database Sets,"

Data Base Description, Douque, B. C. and Nijssen, G. M. (eds.),

North-Holland, Amsterdam 1975, pp. 73-84.

-10-

Appendix A

This appendix specifies the syntax for invariant assertions and presents

a catalog of names that are used to expedite and facilitate the specification

of invariant assertions.

An assertion is of the form:

<Relation name> <noise words> <property>

ON <object set>

or assertion in first-order predicate calculus augmented by standard set

notations involving the named objects, attributes, and relationships.

Notes

<Relation name> is any relation named in the relationships section of the LS.

<noise words> may be added for readability.

<property> may have embedded parameters and are defined in the following catalog.

ON <object> is optional. <object> is the name of a set of objects named in

the objects section of the LS.

The default value is the set of objects on which relation is defined.

In the following catalog, R stands for the relation parameter and A stands

for the object set parameter. Embedded parameters are underlined.

noloops (Va:A)(not aRa).

nocycles (Va:A)(Vn:integer)(1bl, b2 , ..., b n:A)

(aRb 1and b Rb2 and ... and bnRa and a~b and n2l).

acyclic R has noloops and R has nocycles.

Indegree n (Va:A)(indegree(a)=n).*

outdegree n (Va:A)(outdegree(a)-n).*

indegree at most n (Va:A)(indegree(a)Sn).*

r-11

t ~outdegree at most n (Va:A)(outdegree(a)!5n).*

n:m correspondence R has indegree at most n and R has outdegree at most mn.

reflexive (Va :A) (aRa)

symmetric (Va:A)CVb:A)(aRb if f bRa).

anti-symmetric (Va,b:A)(aRb and bRa implies a-b).

transitive (Va,b,c:A)(if aRb and bRc then aRc).

partition R is reflexive, symmetric and transitive.

partially ordered R Is reflexive, anti-symmetric and transitive.

totally ordered R is partially ordered and (Va,b:A)(aRb or bRa).

linear R is acyclic with (card{A}51 or (3aeA) (indegree (a)

o and outdegree (a)inl and (UbEA)(indegree (b)-l and

outdegree (b)=O and (Vc:A)(if coa and c~b then

indegr.ee (c) - outdegree (c)1l.)

ordered on x R is linear and (Va,b:A) (aRb implies x(a) < x(b)).

tree A-0 or (3a:A)(indegree (a)0O and (Vb:A)(if ajb then indegree (b)-l))

and R is acyclic.

pair (3a,b:A)(A={a,b) and R - {ca~b>D).

star (3a:A)(indegree(a)-0 and (Yb:A) (if a~b then indegree (b)-l and

outdegree (b)mO).

set of Y (yP)(if PcA and (Vx:P)(C'a:A) (a 0 p and (aRx or xRa)) then

I P is Y on P).

forest R is a set of tree.

pairs R is a set of pair.

stars R is a set of star.

.*indegree (a) -cardfblaRb) and outdegree (a) -card {bjbR&).

- * -12-

Publications

"Logical Structure Specification and Data Type Definition," Proceedings

of the ACM 79 Conference, October 1979, pp. 203-211.

Personnel

Billy C. Claybrook, Principal Investigator (12 months)

Donald Criscione, Graduate Research Assistant (11 months)

Craig Cleaveland, Consultant (1 month)

