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• ,J kthat the number can be contained in a fixed amount of memory by storing it as
the residue of a modulus.
The number of messages required to implemetit the exclusion can be reduced by
using sequential node-by-node processing, by using broadcast message techniques
or by sending information through timing channels.
The 4eaders and writers"'-problem is solved by a simple modification of the'
algorithm.
The modifications necessary to make the algorithm robust are described.
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Abmtract

An algorithm is proposed which creates mutual exclusion in a
computer network whose nodes can communicate only by messages and
do not share memory.

The algorithm sends only 20(N-1) messages, where N is the
number of nodes in the network, per critical section invocation.
This number of messages is a minimum if parallel, distributed,
symmetric control is used; hence, the algorithm is optimal in this
respect. The time needed to achieve mutual exclusion is also
minimal under some general assumptions.

Like Lamport's "bakery algorithm," unbounded sequence numbers
are used to provide first-come first-served priority into the
critical section. It is shown that the number can be contained in
a fixed amount of memory by storing it as the residue of a
modulus.

The number of messages required to implement the exclusion
can be reduced by using sequential node-by-node processing, by
using broadcast message techniques, or by sending information
through timing channels.

The "readers and writers" problem is solved by a simple
modification of the algorithm.

The modifications necessary to make the algorithm robust are
described.
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Introuctio

An algorithm is proposed which creates mutual exclusion in a

computer network whose nodes can communicate only by messages and do not

share memory.

It is assumed that there is an error-free underlying communications

network, but transit times may vary and messages may not be delivered in

the order sent. Nodes are assumed to operate correctly; the conse-

quences of node failure are discussed later. The algorithm is sym-

metrical, exhibits fully distributed control, and is insensitive to the

relative speeds of nodes and communication links.

The algorithm uses only 2*(N-1) messages between nodes, where N is

the number of nodes, and is optimal in the sense that a symmetrical,

distributed algorithm cannot use fewer messages if requests are

processed by each node concurrently. In addition, the time required to

obtain the mutual exclusion is minimal under the assumptions that the

nodes do not have access to timing-derived information and that they act

symmetrically.

While many writers have considered implementation of mutual exclu-

sion [2,3,4,5,6,7,8,9), the only earlier algorithm for mutual exclusion

in a computer network was proposed by Lamport [10,11J. It requires

approximately 30(N-1) messages to be exchanged per critical section

invocation. The algorithm presented here requires fewer messages
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A node enters its critical section after all other nodes have been

notified of the request and have sent a reply granting their permission.

A node making an attempt to invoke mutual exclusion sends a REQUEST

message to all other nodes. Upon receipt of the REQUEST message, the

other node either sends a REPLY immediately or defers a response until

after it leaves its own critical section.

The algorithm is based on the fact that a node receiving a REQUEST

message can imediately determine whether the requesting node or itself

should be allowed to enter its critical section first. The node

originating the REQUEST message is never told the result of the com-

parison. A REPLY message is returned immediately if the originator of

the REQUEST message has priority; otherwise, the REPLY is delayed.

The priority order decision is made by comparing a sequence number

present in each REQUEST message. If the sequence numbers are equal, the

node numbers are compared to determine which will enter first.

The network consists of N nodes. Each node executes an identical

algorithm but refers to its own unique node number as ME1 .

Each node has three processes to implement the mutual exclusion:

1 ME is a pun on "mutual exclusion."



1. One is awakened when mutual exclusion should be invoked on

behalf of this node.

2. Another receives and processes REQUEST messages.

3. The last receives and processes REPLY messages.

The three processes run asynchronously but operate on a set of

common variables. A semaphore is used to serialize access to the common

variables when necessary. If a node can generate multiple internal

requests for mutual exclusion, it must have a method for serializing

those requests.

The algorithm is expressed below in an ALGOL-like language.

SHARED DATABASE

CONSTANT
me, I This node's unique number
N; I The number of nodes in the network

INTEGER Our-SequenceNumber,
I The sequence number chosen by a request
I originating at this node

HighestSequence_Number initial (0),
I The highest sequence number seen in any
I REQUEST message sent or received

OutstandingReply-Count;
I The number of REPLY messages still
I expected

BOOLEAN Requesting.CriticalSection initial (FALSE),
I TRUE when this node is requesting access
I to its critical section

Reply-Deferred [1:N] initial (FALSE);
I ReplyDeferred[j] is TRUE when this node
I is deferring a REPLY to J's REQUEST message

BINARY SEMAPHORE
Sharedvars initial (1);

I Interlock access to the above shared
I variables when necessary
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PROCESS WHICH INVOKES MUTUAL EXCLUSION FOR THIS NODE

Comment Request Entry to our Critical Section;
P (Shared-vars);

Comment Choose a sequence number;
RequestingCriticalSection := TRUE;
OurSequenceNumber := HighestSequenceNumber + 1;

V (Sharedcvars);
OutstandingReply-Count := N-I;
FOR J := I STEP I UNTIL N DO IF J NEQ me THEN

SendjMessage( REQUEST(OurSequence_Number,me),J);
Comment sent a REQUEST message containing our sequence number

and our node number to all other nodes;

Comment Now wait for a REPLY from each of the other nodes;
WAITFOR (Outstanding..ReplyCount z 0);

Comment Critical Section Processing can be performed at this
point;

Comment Release the Critical Section;
RequestinCritical_.Section := FALSE;
FOR j := 1 STEP 1 UNTIL N DO

IF ReplyDeferred[J] THEN
BEGIN

ReplyDeferred(j] := FALSE;
SendMessage (REPLY, J);
Comment send a REPLY to node j;

END;

PROCESS WHICH RECEIVES REQUEST(k,J) MESSAGES

Comment k is the sequence number begin requested,
j is the node number making the request;

BOOLEAN Deferit;
I TRUE when we cannot reply immediately;

HighestSequenceNumber :=
Maximum (HighestSequenceNumber, k);

P (Shared-vars);
Defer-it :2

RequestingCritioalSection
AND ((k > Our_sequence_Number)

OR (k % OurSequenoe_"umber AND j > me));
V (Shared.vars);
Comment Deferit will be TRUE if we have priority over

node J's request;
IF Deferit THEN ReplyDeferred[j] := TRUE ELSE

Send-Message (REPLY, J);
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PROCESS WHICH RECEIVES REPLY MESSAGES

OutstandingReplyCount := OutstandingReplyCount - 1;

The REPLY processing can be represented by a decision table:

Condition and action entries Rule number
I h11 213 4 15

Receiving node is also IN I Y I Y I Y I Y
requesting the resource , , , ,

Received message's sequence , - I < I > I = =
, number compared to ours 1

, Received message's node number '<1>1
I compared to ours

, Send REPLY back XI XI 'X I

I Defer the REQUEST I i i X I I tI

Imagine a three node network using this algorithm. Initially the

highest sequence number at each node is zero. Solid lines show REQUEST

messages; the number is the sequence number of the request. The dashed

lines show REPLY messages.

In Figure A, Node 3 is the first to attempt to invoke mutual

exclusion. It chooses sequence number 1 and sends REQUEST messages to

Nodes 1 and 2.

But before either message can arrive, Node 2 wishes to enter its

critical section. It also chooses sequence number 1 and sends REQUEST

messages to the other nodes (Figure B).
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Figure A Figure 3

3 3

1 3

Figure C Figure F

3 3

Figure E FigureF
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In Figure C Node 213 messages have arrived. At Node 1, which has

not yet made a request itself, a REPLY is immnediately generated. At

Node 3, 2'3 request is found to have an identical sequence number to 3's

request; Node 2 wins on the node number tie-breaking rule. A REPLY is

sent. But at Node 2, 3's request is found to have an identical sequence

number but loses the tie-breaker. A reply is deferred.

Figure D shows Node 1 making a request to enter its critical

section. It uses sequence number 2 since it has received a REQUEST

message with a sequence number of 1 (from Node 2). Due to an anomaly in

the communications system, the REQUEST message to Node 2 overtakes the

REPLY that is on its way there. No reply message is sent since the

message's sequence number is higher than Node 2's sequence number.

In Figure E, Node 2 can now enter its critical section since it has

received both of the necessary replies. Node 1's REQUEST has also

arrived at Node 3 but is being deferred since the request's sequence

number is higher than that selected by Node 3.

When Node 2 has finished its critical section processing, it sends

REPLY messages back to both Nodes 1 and 3 (Figure F).

In Figure G, Nodes 1 and 3 have received their REPLY messages from

Node 2 but not yet from each other. Node 3's request has arrived at

Node 1. Since it bears a smaller sequence number, a REPLY is im-

mediately generated.

Figure H shows Node 3 entering its critical section after it

received both replies.
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In Figure I, Node 3 has finished its critical section processing

and is returning the deferred REPLY message to Node 1.

Finally in Figure J, Node 1 begins critical section processing. At

the conclusion of its critical section, Node 1 does nothing since it

knows of no other node wishing to invoke mutual exclusion.

22L Disusion

The sequence numbers are similar to the numbers used by Lamport's

"bakery algorithm."[9] The node with the lowest number is the next one

to enter the critical section. Ties are broken by comparing node

numbers. A REPLY is generated when its sender agrees to allow the node

sending a REQUEST to enter its critical section first.

The sequence numbers prevent high numbered nodes from being "shut-

out" by lower numbered nodes. Once Node A's REQUEST messages have been

processed by all other nodes, no other node may enter its critical

section twice before Node A has entered its critical section.

The sequence numbers and node numbers form a virtual ordering among

requesting nodes. No one of the nodes has any more information than a

list of some or all of the other nodes following it in the virtual

order. Yet the system as a whole defines a unique virtual ordering

based on a first-come-first-served discipline.



_3. Asrions

M.I utual Ry .glufio

Mutual exclusion is achieved when no pair of nodes is ever simul-

taneously in their critical sections. For any pair of nodes, one must

leave its critical section before the other may enter.

Assrtion* Mutual ex£zuioaah is

Proof: Assume the contrary, that at some time two nodes (A and B)
are both in their critical sections at the same time. Examine the
message traffic associated with the current cycle of the algorithm
that occurred in each node just prior to this condition. Each
node sent a REQUEST to the other and received a REPLY.

s Node A sent a REPLY to Node B's REQUEST before
choosing its own sequence number. Therefore A will

choose a sequence number higher than B's sequence
number. When B received A's REQUEST with a higher
number, it must have found its own
RequestingCriticaiSection=TRUE since this is set to be
TRUE before sending REQUEST and A had received this
request before sending its own REQUEST. The algorithm

then directs B to defer the REQUEST and not reply until
it has left its critical section. But then Node A could
not yet be in its critical section contrary to assump-
tion.

Case LL. Node B sent a REPLY to A's REQUEST before choosing its
own sequence number. This is the mirror image of Case
I.

Case IL Both nodes sent a REPLY to the other's REQUEST after
choosing their own sequence numbers. Both nodes must
have found their own Requesting-_CriticalSection to be
TRUE when receiving the other's REQUEST message. Both
nodes will compare the sequence number and node number
in the REQUEST message to their own sequence and node
numbers. The comparisons will develop opposite senses
at each node and exactly one will defer the REQUEST
until it has left its own critical section contradicting
the assumption.

Therefore, in all cases the algorithm will prevent both nodes from
entering their critical sections simultaneously and mutual exclu-

sion is achieved.
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The system of nodes is said to be deadlocked when no node is in its

critical section and no requesting node can ever proceed to its own

critical section.

Assetions Deadlock j imsible-

Proof: Assume the contrary, that deadlock is possible. Then
all requesting nodes must be unable to proceed to their critical

sections because one or more REPLYs are outstanding. After a
sufficient period of time, the only reason that the REPLY could
not have been received is that the REQUEST is deferred by another
node which itself is waiting for REPLYs and cannot proceed.
Therefore, there must exist a circuit of nodes each of which has
sent a REQUEST to its successor but has not received a REPLY.

Since each node in the loop has deferred the REQUEST sent to
it, it must be requesting the critical section itself and have
found that the sequence-number/node-number pair in that REQUEST
was greater than its own. But this cannot hold for all nodes in
the supposed circuit, and thus the assertion must be true.

Starvation occurs when one node must wait indefinitely to enter its

critical section even though other nodes are entering and exiting their

own critical sections.

kAsetion: StArlation is i&2si±la

Proof: Assume the contrary, that starvation is possible.
Nodes receiving REQUEST messages will process them within finite
time since the process which handles them does not block. After
processing the REQUEST sent by the starving node, a receiving node
cannot issue any new requests of its own with the same or lower
sequence number. After some period of time the sequence number of
the starving node will be the lowest of any requesting node. Any
REQUESTs received by the starving node will be deferred,
preventing any other node from entering its critical section. By
the previous assertion, deadlock cannot occur and some process
must be able to enter its critical section. Since it cannot be
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any other process, the starving process must be the one to enter

its critical section.

LL M ge Traffic

This algorithm requires one message to (REQUEST) and one message

from (REPLY) each other node for each entry to a critical section. If

the network consists of N nodes, 20(N-1) messages are exchanged. It

will be shown that this number is the minimum required when nodes act

independently and concurrently. Hence, the algorithm is optimal with

regard to the number of messages exchanged.

~cdn nrrant Zf g fr AA

For a symmetrical, fully distributed algorithm there must be at

least one message into and one message out of each node. If no message

enters/leaves some node, that node must not have been necessary to the

algorithm; then the algorithm is not symmetrical or is not fully

distributed. FurthermQre, to allow the algorithm to operate concurren-

tly at all nodes, the messages entering nodes must not wait for the

message generated at the conclusion of processing at other nodes. This

would indicate that two separate messages per node are required. The

requesting node does not need to send and receive messages to itself,

however, and so a total of 2C(N-1) messages are needed. This number

must be a minimum for any parallel, symmetric, distributed algorithm.
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If the nodes do not act independently of each other, it is possible

to reduce the number of messages by using serial node-by-node

processing. The first condition discussed earlier (one message into and

out of each node) still holds so a minimum of N messages are required.

No parallelism can exist in such a structure since a message out of a

node must double as the message into some other node.

If the algorithm presented here is modified so that messages are

sent from node to node sequentially, it achieves the theoretical minimum

number of messages in this case also. Parallel operation is necessarily

sacrificed. The modifications required are considered in section 6.3.

5, Dea LA Granting Crta Setin

The algorithm also grants mutual exclusion with minimum delay under

some general assumptions.

nflniln44.,we -l

The delay involved in granting the critical section resource is the

stretch of time beginning with the requesting node asking for the

critical section and ending when that node enters its critical section.

The execution time of the instructions in the algorithm are assumed to

be negligible compared to the message transmission times.

..... .... .
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i~Umptions

The following assumptions prevent the use of central control or

extra information derived from timing:

Assumption 1. No information is available bounding transmission
time delays or giving actual transit times. Because
of this assumption, it takes one round-trip time to
determine the state of another node. By adopting
this assumption, sending information through timing
channels becomes impossible.

Assumption 2. No node possesses the critical section resource when
it has not been requested. This assumption prevents
a node or series of nodes from acting as a central
control because it retained the critical section
resource.

Assumption 3. Nodes do not anticipate requests.

5,3, Rounda

Three conditions which put a lower bound on delay times are

developed and the mutual exclusion algorithm is shown to achieve these

bounds.

S. 1. k. m Boun _Lni= DeAXa fla Z=r Regus

Before a node enters its critical section, it must make sure that

no other node is entering. To do this it must determine the current

status of any other node that could take precedence if there is a time

overlap and both nodes are said to be requesting concurrently [10]. By

assumption 1 this Will take at least one round-trip transmission time.

By assumptions 2 and 3 this process cannot start before the request

arrives. Therefore, no request can be serviced in less than ome round-

trip time.



14I

i.~.kMun 2.L. Minji= Wnax Ilt X=h Conflict~

When two nodes are requesting concurrently, they cannot know which

of them made their request first because of the absence of timing

information. A tie-breaking scheme, representing a total ordering among

requesting nodes, Must be used. Since the tie-breaking rule cannot know

which node actually made the earlier request, half of the time a

critical section grant cannot be made until after the node making the

later request has received its round-trip replies. Conflict may also

occur with more than two nodes. One of them must be selected by the

tie-breaker to be granted access to its critical section first.

S- I~ -Bund _J Qy,9&M Throughput

Once a node has released the critical section resource, no other

node can enter its critical section in less than a one-way trip trans-

mission time. This is the minimum amount of time needed to notify other

nodes that critical section processing has been completed and to trans-

mit the new values of network-wide information.

The algorithm achieves these bounds.

Case A. If when a critical section is released at least one node
is eligible to enter its critical section based on Bounds
1 and 2 within a one-way trip time in the future, the
algorithm will achieve the more ambitious Bound 3.

If the next node to enter its Critical section is eligible
under Bounds 1 and 2 within a one-way trip time in the
future, then at least one one-way trip time has elapsed
already since that node made its request. Since it is
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next, only the node currently releasing the critical
section could be delaying a REPLY message and this REPLY
will be triggered by the release of the critical section.
This final reply will reach the next node in a one-way
trip time satisfying Bound 3.

Case B. Case A does not hold. The algorithm achieves Bound 1 or
Bound 2 depending upon interference. The node with lowest
sequence-number/node-number pair among requesting nodes
will have none of its requests queued by other nodes and,
hence, will enter its critical section in the minimum
amount of time given by Bounds 1 and 2.

In short, the algorithm achieves Bound 3 whenever it can do so

without violating Bounds 1 and 2. The algorithm therefore has minimal

delay times under Assumptions 1, 2, and 3.

The delay time envelope when plotted against arrival rate is

discussed further in [12].

When a particular network has closely bounded message delay times

and either synchronized clocks or knowledge of transit times, this

timing information can be used to reduce delay times still further £13].

Sdif1iationn

Several interesting modifications can be made to the algorithm to

take advantage of different environments.
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The REPLY message carries only a single bit of information. When

the message transmission time between nodes has an upper bound, the

sense of the response can be changed so that no reply within that time

period indicates an implicit reply. An explicit message, called "DEFER-

RED", is sent when REPLY would ordinarily not be sent.

The number of messages required by the implicit reply scheme varies

between 1'(N-1) and 20(N-1) depending on the number of DEFERRED messages

sent. When there is little contention for the critical section resour-

ce, the number of messages approaches 1(N-1).

Since a requesting node must usually wait for the maximum round-

trip time before entering its critical section, the usefulness of this

modification depends on an upper bound for transmission time which not

much larger than the average.

1L ZmadaAl ~menM*

When the communications structure between nodes permits broadcast

messages, the initial REQUEST message can be sent using that mechanism.

The message traffic is reduced to N messages, one broadcast REQUEST and

(N-i) REPLYs. If combined with the implicit reply modification

discussed above the message count can be as low as one.
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rnmi~O nijtins IU±M ~*UD±l

Broadcast REQUEST messages need not contain the usual sequence

number if their time Of sUCCessfUl transmission can be monitored. The

broadcast medium enforces serialization of the REQUESTs and a queueing

order equivalent to the sequence numbers may be obtained by observing

the order of REQUEST messages appearing on the broadcast medium.

The REPLY messages can also be broadcast, and only two Messages per

critical section invocation are required. REPLYs are only needed from

those other nodes which have themselves successfully broadcast a prior

REQUEST but received no corresponding REPLY.

6~.2.2-IQ.kCmuiain Had=i .S*An~na.

Even if the order of successful REQUEST broadcasts cannot be

monitored, it is useful to broadcast the REPLY messages following

critical section processing. The size of the audience depends on the

degree of contention. A broadcast REPLY Message must contain a list Of

intended recipients because it is not sufficient for nodes waiting for a

REPLY to assume it applies to them.

2Example: While Node I is performing critical section processing
related to its request with sequence number 1, Node 2 decides to issue
a REQUEST message with sequence number 2. Before it arrives at Node

'2 1, Node 1 completes its critical section processing and broadcasts a
REPLY it owes wsom other node(s). Without a list of intended
recipients, Node 2 might think that the REPLY applies to its REQUEST
message and continue. In faot Node 1 may make a new request with
sequence number 2 and be entitled to enter its critical section first
due to the tie-breaking rule.
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l3 ing Rtrlcttjre

The number of messages can be cut to N by processing the requests

serially through a logical circuit consisting of all nodes instead of

allowing processing to proceed concurrently. This is the minimum number

of messages required for any distributed symmetric algorithm when

broadcasting is not available and information is not sent via timing

channels3 .

The algorithm must be modified by replacing the REPLY message with

an echo of the REQUEST message. As it travels around the circuit of

nodes, it may be deferred at several stops. When the REQUEST message is

received at the initiating node, mutual exclusion has been achieved and

critical section processing may begin.

A further possible modification sends the REQUEST message from node

to node around the circuit without pause but the notation "DEFERRED by

node j" is added by each node j that is copying and deferring the

request. The Outstandng-_ReplyCount is then set according to the

notations when it arrives back at the initiating node. The nodes which

have marked the REQUEST as deferred generate individual REPLYs in the

usual way. With little contention this technique comes close to N

messages while eliminating the cumulative delays at each stop.

3 To involve all nodes at least one message must be received and one
sent per node. The minimum number of messages which meets this
requirement is N.
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The sequence numbers in the agorithm increase at each critical

section invocation and are theoretically unbounded. The ticket numbers

of the "bakery algorithm" [9] suffer from the same problem.

A technique for limiting the amount of storage necessary to hold

these unbounded numbers can be borrowed from computer communications

protocols. Although the numbers themselves are unbounded, their range

is bounded. The sequence numbers increase by no more than one each time

a node requests entry to its critical section. That request cannot be

granted as long as a lower sequence number request is outstanding.

Therefore the numbers must fall within the range from x to x+N-1.

The sequence numbers can be stored modulo M where M >_ 2N-1. When

making a comparison, the smaller number should be increased by M if the

difference is N or more. Thus only LOG2 (2N-1) bits of storage are

needed regardless of the number of times the critical section is

entered.

fLL g~~g J~h Tneramaintat ion

Aside from this method for limiting the storage required to hold

sequence numbers, there is no reason for incrementing sequence numbers

in unit steps.

Two situations make larger increments attractive:

1. The algorithm tends to favor lower numbered nodes slightly due
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to the tie-breaking rule. This favoritism can be reduced by

incrementing the sequence number by a random integer. The tie-

breaking node number is still required in case the random

integers used were equal.

2. Deliberate priority can be introduced by instructing high

priority nodes to use small increments and low priority nodes

to Use large increments. In addition, high priority nodes may

be allowed to monopolize critical section processing until

forced to increment their sequence numbers past the one chosen

by a lower priority node. In doing so, the process at a high

priority node which receives and handles messages may choose to

delay acting on those received from low priority nodes in order

to keep the Highest..Sequenee_Number from being prematurely

incremented past the one chosen by the low priority node.

Re aders A=~ Writers

The algorithm is easily modified to solve the Readers and Writers

problem [1] where writers are given priority.

The modification is simply that "readers" never defer a REQUEST for

another "reader"; instead they always REPLY immnediately. "Writers"

follow the original algorithm.
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2.Considerat ions fr fRzac~ical tworks

fi~ Numbers

It is more convenient to draw node numbers from a larger range than

1..N. The algorithm may be changed to map the integers 1..N into the

actual node numbers by indexing a table NAMES[ 1..N). The comparison of

node numbers should then be performed by comparing the values contained

in NAMES.

2 I t of It& Nodes

New nodes may be added to the group participating in the mutual

exclusion algorithm. They must be assigned unique node numbers, obtain

a list of participating nodes, be placed on every other node's list of

participants, and acquire an appropriate value for their

HighestSequence_Number variable.

7.2.1. Rsart Interval

If the node could have been operational in the group previously

(e.g. it failed and is now restarting), it should first notify other

nodes that it failed and then wait long enough to be sure its old

messages were delivered and the network processed its removal. Usually

the network will already be aware of its failure, but this cannot be

assumed. If this step were not followed, its failure may be detected at

approximately the same time as it rejoins the group. This would result

in conflicting bookkeeping at different nodes.
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7.2.2- Reole Part±±antil List

A new node must obtain a list of other participating nodes and also

have itself added to the others' lists. A new node should contact a

"sponsor" node which is already participating in the group. The

"sponsor" should then invoke mutual exclusion, initialize the new node's

participant list from its own, and broadcast the new node's identify

before releasing mutual exclusion. Each node receiving this notifica-

tion adds the new node number to its NAMES array and increments N, the

number of active nodes.

An alternative is possible if the communications network can

deliver a message to all other nodes without the sender naming all the

other nodes in the network. In this case a new node obtains a list of

participants from a nearby node and then sends a broadcast message

asking all other nodes to include it on their list of participating

nodes.

-- Ut Highest Sequence Number

The HighestSequence._Number variable of a new node must not be set

to any value lower than the sequence number of any REQUEST message which

would already have been received had the new node been continuously

active. While getting an appropriate value of Highest-SequenceNumber,

mutual exclusion cannot be requested and incoming REQUEST messages are

processed normally.

A new node can determine that its HighestSequenceNumber is high

enough by several methods.
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a. Ask all other nodes for their Highest.equencej-umber and use
the largest.

b. Wait until one REQUEST message has been received from each
other node.

c. Wait until the sequence numbers on REQUEST messages have
increased by N-1.

d. Wait until all (N-i) nodes would have time to enter and leave
their critical sections even if they all had outstanding
requests. This requires the ability to bound message transmis-
sion times and critical section times. If no REQUEST message
is received during this time, the value of
HighestSequence_Number from any nearby node can be used.

e. Wait until the fourth REQUEST message is received from a single
node. This method requires that messages are sent and
delivered in the same order. See Appendix.

The new node may request access to its critical section after any

of the above methods has been used to verify that its

HighestSequencejumber variable is sufficiently high.

I3. Rmoval al NodaA

A node wishing to leave the group may do so by notifying all other

nodes of its intention. The other nodes should acknowledge this

message. While waiting for acknowledgement, the departing node may not

request mutual exclusion and must continue to send REPLY messages to any

REQUEST messages it receives. Each node checks to see if the departing

node is listed in its NAMES array, and if so, removes it and decrements

the value of N, the number of active nodes, by one. If messages may be

delivered out of order, a node awaiting a REPLY message from a departing

node should pretend the REPLY was received.
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In practice some nodes will fail and not respond to messages

directed at them. To prevent this situation from stopping the proposed

mutual exclusion algorithm, a timeout-recovery mechanism may be added.

The timeout detection of a failed node relies on knowledge of an

upper bound on the time which may elapse before a working node responds

to a message and an estimate of the maximum processing time within a

critical section. The only message in the original algorithm which

demands a response is the REQUEST message.

A requesting node should start a timer when the REQUEST messages

are sent. The timer should be restarted when a REPLY is received and

cancelled when the critical section processing begins.

A bit map, AwaitingReply[1..N], can be used to identify which

nodes have not yet sent a REPLY message. The Awaiting-Reply array is

set to all TRUE values before a REQUEST message is issued. Individual

bits are turned off when REPLY messages are received.

If the timer expires 4 , all nodes for which Awaiting-Reply is TRUE

are suspected of having failed. A probing message, AREYOUTHERE(me),

should be sent to each suspect node. If no answer is received during a

second timeout period 5 , the suspect node has failed.

The appropriate value is worst-case round-trip message transmission
time plus worst-case processing time at the distant node plus a
reasonable estimate of maximum critical section time.

In this case just round-trip message time plus worst-cae processing
time at the distant node.
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When an AREYOU_THERE(J) message is received, Reply.Deferred[j]

should be examined. If it is FALSE, it must be that the REQUEST was not

received, or the REPLY was lost, or the node has restarted; the correct

response is REPLY(me). If ReplyDeferred[j] is TRUE, a YESI_AMHERE

message should be sent to confirm that the node is alive.

The timeout does not impose an upper limit on the duration of a

critical section. If critical section processing exceeds the timeout,

all nodes will respond with YES_I_AHERE messages, and a new timeout

period may begin.

When it has been determined that node j has failed, this can be

broadcast by the node detecting the failure. Any node which is awaiting

a REPLY message from the failed node should pretend that a REPLY was

received. In addition the node should be erased from the NAMES array if

present and N, the number of active nodes, decremented by one.

If the failed node recognizes that it has failed and has been

restarted, it may return to the group through the mechanism for adding a

new node. If it does not know that it has failed and issues new REQUEST

messages, any node which receives the REQUEST message and does not find

the node's name in its NAMES array may return a special message

notifying the node that it should restart itself and use the insertion

protocol.
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An algorithm is presented implementing mutual exclusion in a

computer network. It is optimal in the sense that no algorithm can use

fewer messages or operate faster and exhibit concurrent, symmetric, and

distributed control.

The algorithm is safe and live, and mechanisms exist to handle node

insertion, removal, and failure.

Modifications may be made to reduce the number of messages by

taking advantage of serial processing, broadcast messages, and trans-

mitting information through omitted responses.

The sequence numbers can be stored in limited memory by keeping

them as residues of a modulus which is at least twice as large as the

number of nodes.

The readers and writers problem is solved by the same algorithm

with a simple modification.

Anknow1edgempnt. The authors wish to thank R. Stockton Gaines for

his detailed and helpful comments on the presentation of this material.
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APPENDIX

Jha ZiffW& DI Mesaage Ordering

The algorithm presented in this paper does not depend on messages

being delivered or acted upon in the order in which they were sent. If

such a condition does exist there is a stronger limit to the number of

times other nodes can enter their critical sections before a requesting

node (A) can.

Without delivery in order of transmission the worst case analysis

shows that N(N I)/2-1 nodes can enter their critical section before Node

A may.

To determine this bound, assume that A has the highest node
number and therefore the least priority in breaking ties. A's
sequence number may be (N-i) higher than the lowest outstanding
sequence number. See section 6.4. It is possible, by judiciously
ordering the delivery of messages, for each other node to enter
its critical section with its sequence number taking on each value
between its current value and A's value. To get the worst case,
assume that all nodes have chosen a distinct sequence number with
A's number the highest. Therefore, one node can enter its
critical section N times before A may, another (N-i), another
(N-2) and so on down to the node whose REQUEST message caused A's
sequence number selection which takes two critical section entries
at the most. This sum, N+(N-)+(N-2)+...+3+2, is the number of
times other nodes may enter their critical section after A has
made a request in the worst case.

If delivery is guaranteed to be in the order of transmission, no

other node may enter its critical section more than twice between the

time that A selects a sequence number and A is permitted to enter its

critical section. No more than 20(N-1) critical sections are possible

before A may enter.

To get this bound observe that after Node A has done its
"Node Requests Critical Section" processing, it cannot receive
more than one REQUEST from another node (J) which contains a lower

.. . ....
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or equal sequence number. By the time it gets the REPLY from this
REQUEST it must also have received A's REQUEST; it cannot
thereafter select a lower or equal sequence number. Each other
node J can enter its critical section at most once because of an
already approved REQUEST and once with the one REQUEST which
contains a lower or equal sequence number. If every other node
follows this worst case pattern, at ost 2*(N-1) critical section
entries may preceed A's.

When delivery in order is used, a new node may assume that its

HighestSequenceNumber is synchronized when it has heard the fourth

REQUEST message from the same node.

Assume that a node j sent its REQUEST messages before the new
node came online. The new node is not synchronized until it holds
a higher number in HighestSequence..Number than the sequence
number used by J. The reference Node B (which is generating the
four requests) can enter its critical section at most twice before
node j enters its critical section. Therefore, by the time B
enters its critical section the third time, no nodes like j exist
which did not know about the new node when they made their re-
quests. Reference Node B may have issued three REQUEST messages
seen by the new node before entering its critical section for the
third time. The fourth REQUEST message guarantees that the
critical section was entered for the third time.



UNCLASSIFIEn
I SECURIT t CLASS.FICATION OF THIS PAG- (Il'b.',, F l a F#a'r.vd) 4

REP T OCUMENTATION PAGE READ INSTRUCTIONS-_ DO----T,- B0 EFORE COMP'LETING FORM

._ S . 3 3 "
.. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtilfe) S. TYPE OF REPORT I PERIOD COVERED

~N*GORITIM FOR MUTUAL FXCLUSION IN COMPUTER nem
NETWORKS v - S. PERFORMING O G. REPORT NUMBER

-.-- l44O84L..S~S. CONTRACT OR GRANT NUMBER(O)

Clen i i art

Ashok K Agrawala AFASR-78-3654 ,

9. PERFORMING ORGANIZATION NAME AND ADDRESS .tO PROGRAM ELEMENT. PROJECT, TASK
-- AREA & WORKU NUMBERS

University of Maryland
Dept. of Computer Science

/  /
College Park, MD 20742

10. CONTROLLING OFFICE NAME AND ADDRESSRPOTAT

Air Force Office of scientific itesearch/NM
Boiling AFB, Washington, D.C. 20332 -

33

14. MONITORING AGENCY NAME G ADDRESS(I dillere.t Iom Cnnlvolllng 0O#e) IS. SECURITY CLASS. (of this report)

1Ir T IxjI OUNCLASSIFIED
* ."-IS. DECLASSIFICATIO'OOWOGRAOING

p SCHEDULE

IS. DISTRIBUTION STATEUKU? rot thftr-epai)

Approved for public release; distribution unlimited.

I?. DISTRIBUTION STATEMENT (of the a etehar eed In Block 30. If different Item itsa")

I. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue an reverse aide II necesary and Identify by block numbeb,)

S0. ABSTRACT (Continue an revere side If riecee y and Identify by block number)

An algorithm is proposed which creates mutual exclusion in a computer network
whose nodes can communicate only by messages and do not share memory.
The algorithm sends or.ly 2*(N-l) Messages, wheze N is the number of nodes in th4
network, per critical section invocation. This number of messages is a minimum
if parallel, distribuLed, symmetric control is used; hence, the algorithm is
optimal in this minimal under some general assumptions.
Like Lamport's "bakery algorithm," unbounded sequence numbers are used to pro-
vide first-come first-served priority into the critical section. It is shown

DD JAN 7S 1473 EDITIONOF INOV S SIS OBSOLETE

- 0t. jL'-,±.


