AD~A083 267

UNCLASSIFIED

VIRGINIA POLYTECHNIC INST AND STATE UNIV BLACKSBURG ==ETC F/g 9/2
DIALOG. A SIMULA CLASS FOR WRITING INTERACTIVE PROGRAMS.(U)

MAY 79 R J ORGASS AFOSR=79=0021
VPI=TM=79=3 AFOSR=TR=80~0299 NL

1.0 ke ks
= B RE "" 22
§i2e

"“ .

Il
2 flis nee

O

MICROCOPY RESOLUTON TEST CHART
NATIONA nlist b i ANG

AT Lot LTSN

IIEC”HR-]](- 80.0299 hlLJlijylwiglly : EXTENSION DIVISION
VIRGINIA POLYTECHNIC I STATE UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE P. 0. Box 17186
GRADUATE PROGRAM IN NORTHERN VIRGINIA Washingion, D. C. 20041
(703) 471-4600

DIALOG 2

A SIMULA* CLASS FOR WRITING INTERACTIVE PROGRAMStS

Richard J. Orgass
Technical Memorandum No. 79-3

May 4, 1979

S

ABSTRACT

A SIMULA class containing procedures for easily
writing programs that interact with a user by asking
questions at run time and which dynamically name and
open files at run time is described. The class uses
properties of IBM SIMULA that are not available in
other implementations. It also depends on the EBCDIC
character codes rather than ASCII but it is assumed
that a user's terminal is an ASCII terminal.

Keywords and Phrases: SIMULA, interactive programming

CR Categories: 4.22, 4.49, 4.39

* SIMULA is a registered trademark of the Norwegian Computing
Center, Oslo, Norway.

+ Research sponsored by the Air Force Office of Scientific
Research, Air Force Systems Command, under Grant No. AFOSR~79-
0021. The United States Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstand-
ing any copyright notation hereon.

§ The information in this document is subject to change without
notice. The author, Virginia Polytechnic Institute and State
University, the Commonwealth of Virginia and the United States
Government assume no responsibility for errors that may be
present in this document or in the program described here.

DTIC RO 4 21 Ui

2 I~ ‘ ’——‘ ’.’ '— /.
i R E ;; A
Avt 1 Rg

" Located at Dulles International Airport—400 West Service Road

Approveq ¢
or b
AIStringe . ??:*‘f?fvloan.,
Y Ty "d

Copyright, 1979

by
Richard J. Orgass

General permission to republish, but not for profit, all or part
of this report is granted, provided that the copyright notice is
given and that reference is made to the publication (Technical
Memorandum No. 79-3, Department of Computer Science, Graduate
Program in Northern Virginia, Virginia Polytechnic Institute and
State University), to its date of issue and to the fact that re-
printing privileges were granted by the author.

INDEX

AppendiX . . . ¢ 4 ¢ ¢ v 4 s e e o o« « 14
boolean request 4
Breakoutimage ¢ . . ¢ . . . 12
: CONC2 & & & « o o o o o o o o o o « « o 12
dd name o 0 0 e e e e 0. 9
first tokem11
find_infile ¢ ¢ ¢ o 0 .
find outfile ¢ 8
frontstrip ¢ ¢ 0 s e o11
integer request 5
initialize terminal 9
is_integer 0000212
Letter . . . « ¢« & ¢ ¢« o ¢ o o & o« + o o 11
nextfile ¢ . . 0 . .12
no blanks o .0 .. 1
TESE . « ¢ 4 4 e v e e e e e e e e 0. .11
restore_terminal o . . 9
text requesto 00 0.
UPCASE . « « o « o ¢ ¢ o o o o o o o o « 11

2

1

a: 2
V):

FON I
I'll ’ ‘-u\; ("',)).

cer aa s lcet‘

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When I'mg.Fnh-n-.l)

READ INSTRUCTIONS -

REPG A. OCUMENTAT'ON PAGE BEFORE COMPLETING FORM

1o covY ACCESSION NO| 3. RECIPIENT'S CATALOG NUMBER

\FOSR. —9299/pA098 241

A SIMULA CLASS FOR WRITING INTERACTIVE PROGRAMS
= = - Interim

L D E ’\, 6. PERFORMING OG. REPORT NUMBER

5. TYPE OF REPORT & PERIOD COVERED

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

\r"’ -

— (] AFc?sR-79 f{jn v

Richard J./Orgass

— e

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. pno;ecr TASK
AREA & wonx)u NUM

Virginia Polytechnic Inst. & State University
Department of Computer Science/ 7)\
61102F 23p44A2

Washington, DC 20041

11. CONTROLLING OFFICE NAME AND ADDRESS 1+ H--REPORT O*VG
. . . . Ma 79
Air Force Office of Scientific Research/NM @H; m‘{,‘g AGES

Bolling AFB, Washington, DC 20332 23
15. SECURITY CLASS. (of this report)

t4. MONITORING AGENCY NAME & ADDRESS(H different from Controlling Oftice)

“‘;) 2t m\) 4 FI—T/’?' N9-3 | UNCLASSIFIED
’/’ Kol _ 15a. DECLASilFlCATlON/DOWNGRlDING

— SCHE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for pubhc release; distribution unlimited.

) _T 'u 3'"}) , m< m o,

Sy
17. DISTRIBUTION STATEMENT (of the abstract entered in Rlock 20, If difterent from Repor _A_C‘ e - o
[‘j
- - ~— / H
c NTLL oooul ‘ 7 "
| DIt TAB [l
| Unannoyaiced 17
18. SUPPLEMENTARY NOTES Justirictiien
e t———
i
By {
_PRistributio
jm TR tlon/
19. KEY WORDS (Continue on revarse slde if necessary and identify by block number) 7}__9 nl l‘.:" I r Frdpg T
SIMULA, interactive programming = : el o f
sint :

Q. ABSTRACT (Continue on reverae side Il neceasary and identify by block number)

‘A SIMULA class containing procedures for casily writing programs that interact
with a user by asking questions at run time and which dynamically name and open
files at run time is described. The class uses properties of IBM SIMULA that
are not available in other implementations. It also depends on the EBCDIC
character codes rather than ASCII but it is assumed that a user's terminal is

an ASCII term?nal.‘

\
R h11017

|
DD 52", 1473 eoiTion OF 1 NOV 63 15 oBSOLETE UNCLASSIFIED

&

l. Problem Statement

A continuing problem in the design of genuinely interactive
programs is that it is quite painful to write code for reliably
and meaningfully interacting with the user sitting at his ter-
minal. This is true in all time sharing systems and is a partic-
ularly severe problem in the CMS system because the terminal in-
terface provided by the operating system is quite crude.

The minimal sequence of events that must occur when a user is
asked to provide input may be described as follows:

(1) Prompt the user with a question.
(2) Read the answer.

{(3) Check the answer to make sure that it is an
acceptable answer.

(4) 1If the answer is unacceptable, provide a
corrective message and ask the question again.

There are two other properties of a question asking program
that are particularly helpful. PFirst, it is a good idea to pro-
vide a mechanism for a user to request an explanation of the
question. If the user doesn't understand the question, he should
be able to type "help"” or "?" to request an explanation of the
question in place of an answer. Second, it should be possible
to provide a default answer that is the most typical answer. A
user should be able to select this answer simply by hitting the
"return" key.

Many programs perform useful work by processing files and
writing other files. A very useful way of identifying these
files is to read the file specification at run time. One would
like to be able to prompt for a file name and then open the file
to read or write and then request additional file names. This
is, at best, difficult in CMS.

When processing text input, it is often useful to have a col-
lection of procedures for testing strings to find out if they
have specific properties or to extract substrings. A few simple
procedures provide the capabilities that are needed in many ap-
plications but more elabcrate applications are best served by
using an implementation of the SNOBOL scanner.

This memorandum describes a SIMULA class that contains proce-
dures for performing these operations. A SIMULA coded implemen-
tation of a coroutine SNOBOL scanner is available for applica-
tions that require extensive text processing capabilities.

Section 2 describes procedures for asking questions at a ter-
minal and for examining a user's response and Section 4 contains

a description of file management procedures. Some useful utility
g procedures are described in Section 5 and Section 6 gives detailed
‘ information about gaining access to these procedures and incor-
porating them into SIMULA programs.

The terminal transcripts exhibited in this memorandum adhere
to the following conventions. A running program prompts with an
asterisk (*) and CMS at monitor level prompts with a period (.).
All of the special characters (CHARDEL, LINEDEL, etc.) are non-
printable ASCII characters.

2. Query Procedures

All of the procedures described here have the following prop-
erties. When the procedure is called the parameters include the
question to be asked, a default answer, and a procedure to print
a further explanation of the question. When they are executed,
the question is printed on the terminal and the user's response
is the return value. If the user responds with a carriage return,
the return value is the default value and if the user responds
with a question mark (?) the procedure to explain the question is
invoked and then the question is asked again.

For example, suppose a program wishes to read an input file
name from the terminal into a text variable file_spec. This
can be accomplished by executing the following statement:

file_spec :- text_request("Input file:", NOTEXT, TRUE);

The first parameter is the question that is to be printed on the
terminal. The second parameter is the default answer and since
this parameter is NOTEXT, there is no default answer. The third
parameter is the constant TRUE to indicate that no help is avail-
able. Wwhen this statement is executed, the terminal transcript
will look like this:

Input file:

*2

No help available.
Input file:

*

? Default value may not be selected. Please try again.
Input file:
* letter simula

After this, the return value of text_request is the text " letter
simula”". In the first response, the user asked for an explanation
of the query by responding with a "?". Since the call to text_re-
quest did not include a help procedure, the appropriate message
was printed. Next, the response was an empty line indicating that
the default value was desired. Since no default value was speci-
fied in the procedure call, a corrective response was printed and

e snin STl e T U T T NS N RRESIPIRY - E T S S 'w

and then the question was asked again. Finally, the third re-
sponse was a character string and this string became the return
value of the procedure.

As a second example, suppose that the statement:
f :- text_request("Output file:", "letter data", TRUE);

is executed. In this case the terminal transcript would look
like this:

Output file:/letter data/:
*?

No help available.

Output file:/letter data/:
*

If the second response was simply a carriage return, then the re-
turn value of text_request would be the string "letter data". On
the other hand, if the response were some character string, then

this string would be the return value.

Suppose it is desirable to provide a help message in response
to the input "?". This might be accomplished by writing the fol-
lowing procedure:

PROCEDURE help;

BEGIN
Outtext ("This file will contain a list of addresses"):
Outimage;
Outtext ("after the program is executed.");
Outimage

END of help:
The call

f :- text request("Output file:","letter data", help):
might generate the following transcript:

Output file:/letter data/:

*?

This file will contain a list of addresses

after the program is executed.

Output file:/letter data/:

* mylib address

After this transcript, the return value of text_request is the
string " mylib address".

The heading of the declaration of text_request is:

TEXT PROCEDURE text request (prompt, default, no_help):;
NAME prompt, default, no_help;
TEXT prompt, default;
BOOLEAN, no_help:

The formal parameter prompt is the guestion to be printed on the
terminal. The parameter default is the value to be returned if
the user's response is a carriage return. The parameter no_help
is to be TRUE if there is no help available for this query. If
there is help available, it is printed by a boolean procedure
that returns the value FALSE.

The procedure boolean_request is used to ask yes or no ques-
tions in very much the same way. The heading of its declaration
is

BOOLEAN PROCEDURE boolean request (prompt, default,
- no_help);
NAME prompt, no_help;
VALUE default;
TEXT prompt;
BOOLEAN default, no_help;

The parameter prompt is the gquestion that is to be printed on
the terminal and the parameter default (which must be TRUE or
FALSE) is the return value if the user responds by entering "re-
turn". 1If the user enter responds with a "?" and if no_help is
TRUE then the message "No help available." is printed. On the
other hand, if no help is a boolean procedure that returns FALSE
and prints an explanation, this text is printed instead of "No
help available."

For example, if the procedure helpé is declared as:

PROCEDURE help6;

BEGIN
Outtext ("If tabs may be used at indentation");
Outimage;
Outtext ("answer ""yes"", otherwise answer ""no"".");
Outimage

END of help$6;
Then the execution of the statement

tabs := boolean_request("Tabs in indentation?:", FALSE,
help6):

might result in the following transcript:

Tabs in indentation?:/n/:

*?

If tabs may be used at indentation answer "yes",
otherwise answer "no".

Tabs in indentation?:/n/:

*why

? Please answer y or n.

Tabs in indentation?:/n/:

*

Y

After this transcript, the return value of boolean_request is
TRUE. If the last response was an empty line or "n", then the
return value would be false.

Note that the responses "y", "yes", "Y", "YEs" are all equiv-
alent as are "n", "no", "N", "nO". More precisely, lower case
letters are translated into upper case letters before the re-
sponse is examined.

The procedure integer request is used to prompt for an inte-
ger response and to check if the response is an integer. Fur-
ther, if the response is an integer, it is checked for being in
an acceptable range. The heading of this procedure is:

INTEGER PROCEDURE integer_request (prompt, default,
min, max, no_help);
NAME prompt, no_help;
VALUE default, min, max;
TEXT prompt;
INTEGER default, max, min;
BOOLEAN no_help;

The formal parameter prompt is the question to be printed on the
terminal and the formal parameter default is the value that is
returned if the user responds with a "return". After an integer
is read from the terminal, it is checked to confirm that it is
between min and max. If it fails this test, the user is asked
for a correct answer. (The default value is also checked against
the range if the user responds with "return"; this helps catch
programming errors.) The formal parameter no_help is used to
deal with the user response "?" as described above.

If any integer is an acceptable response, the SIMULA defined
constant Maxint may be used in a call. For example, if the de-
fault answer to the prompt "Enter any integer:" is 0, one would
execute the statement:

result := integer request("Enter any integer:",0,
-Maxint, Maxint, TRUE);

As a more detailed example, consider the execution of the
statement

6.

result := integer_request("reserved words:', 1, 0,
3, TRUE):;

The terminal transcript might look like this:

Reserved words:/0/:

®)

No help available.

Reserved words:/0/:

*bye

? The input was not an integer. Please try again.
Reserved words:/0/:

*12

? The input integer was out of the acceptable range [0,3].
Please try again.

Reserved words:/0/:

*2

After this sequence of events, the return value of integer_request
is 2.

These three procedures provide most of the terminal prompting
activities that are needed. While it might be desirable to prompt
for floating point numbers, this writer has not felt the need and,
therefore, did not include it in this program.

An excerpt from a program that uses these procedures as well

as a sample terminal transcript from the execution of the program
appears in the Appendix.

3. File Management

Connecting files to a running program in CMS is, at best, a
rather taedious process. Three procedures to make this task eas-
ier have been written and are described in this section.

In SIMULA, a new Infile is created by executing the statement
£ :- NEW Infile("DDN"):

The parameter "DDN" must be the DD name of a file. That is, be-
fore this statement is executed, a CMS FILEDEF statement such as

FILEDEF DDN DISK MUMBLE FOO

must be executed. If this is not the case, then a SIMULA run
time error will occur. The procedure find_infile also returns
a REF(Infile) object after creating it. It is much easier to
use for two reasons: First, its parameter is a file specifica-
tion, not a DD name. Second, the FILEDEF is executed inside
find infile and if the parameter of the procedure is not the
specification of an existing file, the user is prompted for a
correct file specification.

The heading of the declaration of find_infile is:
REF (Infile) PROCEDURE find_infile(t);
NAME t; TEXT t;

The formal parameter t of find_infile is a text object whose
value is a file specification of the form

<fn> <ft> [<fm>]

MUY s rey 4R e 7 f

When the procedure is called, the following sequence of events
occurs:

s

(1) The actual parameter is checked to make sure that
it is the file specification of an existing file
such that the running program has read access to
the file.

(2) A unique DD name is composed; this name is of the
form DIALOGxx where xx is a two digit integer.

(3) A CMS FILEDEF command for this DD name and file
specification (on disk) is executed.

(4) A new object of type REF(Infile) is created using
the DD name and this object is the return value of
find_infile.

If the actual parameter of find_infile is not the file speci-
fication of an appropriate file, an error message indicating the
problem is printed on the terminal and the user is asked to pro-
vide another file specification. The procedure text request de-
scribed above is used for this dialog. The help response given
in response to "?" describes the syntax of file specifications
and gives a reference to the CMS manual.

Using find_infile, a file named MUMBLE DATA might be opened
to read by the following statements:

f :- find_infile ("MUMBLE DATA");
f.Open (Blanks (80));

In the best of all possible worlds, the procedure find_infile
would execute the Open before returning. Unfortunately, this
writer does not know how to determine the LRECL of a CMS file
from a running SIMULA program.

Here is an example of a terminal transcript that might occur
if find_infile is executed with an incorrect actual parameter.
Suppose the program contains the statement

£ :- find_infile("fumble simula");

8.

and that this file does not exist or that the program does not
have read access to the file. The terminal transcript might be:

find_infile: File FUMBLE SIMULA does not exist.
Enter file specification:

*dialog2 simula

find infile: File DIALOG2 SIMULA does not exist.
Enter file specification:

*gimed simula

Notice that the actual parameter or the response to a terminal
query may be in lower case but that an upper case file specifi-
cation is used in any event.

If the actual parameter of find infile or a response to a cor-
rective response is not a well formed file specification, a cor-
rective message is printed. It is important to note that find_
infile has the property that when it returns a value, it is pos-
sible to execute an Open and to read the file provided that the
record length is known without a run time error.

In SIMULA, an output file is created by executing the state-
ment

£ :- NEW Outfile ("DDN"):;

where "DDN" is a DD name as for a new Infile. The procedure
find outfile is very much the same as find_infile in that the
following steps are needed to create and open an Outfile:

f :- find_outfile ("MUMBLE DATA");
f.0pen(Blanks(132)):;

When a new file is opened, the LRECL of this file is taken from
the parameter of Open so it is not necessary to know the LRECL
of a file that is to be created.

The heading of the declaration of find outfile is:

REF (Outfile) PROCEDURE find_outfile(t);
NAME t; TEXT t;

When this procedure is executed, the actual parameter should be
a file specification as for find_infile. When this procedure
is called, the following occurs:

(1) The actual parameter is checked to confirm that
it obeys the syntactical rules for file specifi-
cations.

(2) A unique DD name is composed; this name is of the
form DIALOGxx where xx is a two digit integer.

(3) A CMS FILEDEF command for this DD name and file
specification (on disk) is executed.

(4) A new object of type REF(Outfile) is created
using the DD name and this object is the return
value of find outfile.

Notice that only a syntactical check of the actual parameter to
find outfile is performed; there is a remote chance that the
open may fail.

Both of these procedures use an auxiliary procedure, dd_name
which may be useful in some applications. The heading of the
declaration of the procedure is:

TEXT PROCEDURE dd _name(t); NAME t; TEXT t;
When this procedure is executed, the following things happen:

(1) A unique DD name of the form DIALOGxx where
xx is a two digit integer is created.

(2) The actual parameter of dd_name is appended
to the string "FILEDEF DIALOGxx DISK" and a
CMS FILEDEF command is executed.

(3) The return value of dd_name is the string
"DIALOGxx".

Note that no error checking is performed and, therefore, it is

possible to have run time errors if this procedure is used with-
out appropriate checking.

4. Utility Procedures

A number of procedures that make it much easier to write in-
teractive applications are described in this section. Some of
the procedures were written specifically for the IBM SIMULA en-
vironment; some are adaptations of procedures that are in the
DEC-10 SIMULA library and others are taken directly from the
DEC-10 SIMULA manual.

When constructing modules from SIMULA programs, it is very
much more convenient and economical to be able to directly ex-
ecute the module without embedding it in an EXEC procedure. The
SIMULA procedures initialize_terminal and restore_terminal are
designed to make this possible.

These procedures were designed under the following assumptions:

(1) Terminal input is in upper and lower case and
all of these letters are different. [The CMS

10.

default is that lower case letters are mapped
into upper case letters.]

(2) At monitor level, CMS prompts with a period (.)
and a running program prompts with an asterisk
(*).

(3) At monitor level, LINEND is escape or alt mode
(ASCII 27, EBCDIC 39) but in a running program
the escape character may be used as a normal
character. (For example, it might be used to
escape from a long sequence of questions by
selecting the default answer to the remaining
questions.]

(4) All messages {(from other users and from the
operator) are unwelcome during program execution.

When the procedure initialize_terminal is executed, the follow-
ing happens:

(1) The terminal prompt character is set to *.

(2) LINEND is set off.

(3) WNG is set off.

(4) MSG is set off.

(5) SYSIN is closed and then opened again with the
same record length. The only difference is that
the FILEDEF now includes the option LOWCASE so
that upper and lower case letters are transmitted
to the program without modification.

When the procedure restore_terminal is executed, the following
happens:

(1) The terminal prompt character is set to period.
‘ (2) LINEND is set to escape.
] (3) WNG is set on.

(4) MSG is set on.

The intended application of this procedure is that initialize_ter-
minal is to be the first executable statement of the program and
that restore_terminal is the last statement executed in a program.

4
L
1
|

f

;._
:

1l1.

The remaining utility procedures are described by exhibiting
the heading cof their declaration and following this with a brief
description of the procedure.

BOOLEAN PROCEDURE Letter(x); VALUE x; CHARACTER Xx;

The library procedure Letter in IBM SIMULA returns the value
TRUE only if its actual parameter is an upper case letter. This
version returns TRUE if its actual parameter is an upper case or
lower case letter. Note that it returns FALSE for the national
letters in the ISO code (the international version of ASCII).

TEXT PROCEDURE frontstrip(t); TEXT t:

This procedure returns a subtext of t that has all leading blanks
removed. The value of the expression

frontstrip(x.strip)
is the text x with both leading and trailing blanks removed.
TEXT PROCEDURE upcase(t); TEXT t;

The return value of this procedure is a new text object that is
the same as its actual parameter except that all lower case let-
ters are changed to the corresponding upper case letters. It
does not map lower case national letters in the ISO standard in-
to upper case national letters.

TEXT PROCEDURE rest(t); TEXT t;

The return value of this procedure is a subtext of t that begins
at t.Pos and ends at t.Length.

BOOLEAN PROCEDURE no_blanks(t); TEXT t;

The return of this procedure is TRUE if the character blank
(ASCII 32, EBCDIC 64) does not occur in the text t and otherwise
returns FALSE.

TEXT PROCEDURE first_token(t); TEXT t;

This procedure returns a new text object whose value is an ini-
tial string of t. This returned string is terminated by the

last character of t before the first blank in t or by the 8th
character of t, whichever comes first. It is useful when parsing
CMS command strings and other similar applications.

BOOLEAN PROCEDURE is_integer(t); NAME t; TEST t;

This procedure returns the value TRUE if the text object t is an

integer and the value FALSE otherwise. A text object is an inte-~
ger if the first character is '+', '=' or a digit and if the re-

maining characters in t are digits.

12'

TEXT PROCEDURE conc2(tl, t2); VALUE tl, t2;
TEXT tl, t2;

The return value of this procedure is a new text object that is
the concatenation of its two text parameters in the order first
parameter, second parameter.

PROCEDURE nextfile(f); REF (Infile) £;

This procedure closes file f and then opens it again with the
same record length as it had before the close. This procedure
is useful when writing programs that accept an empty line as
selecting the default answer. In CMS, this empty line is treat-
ed as an end-of-file and an attempt to read another record re-
sults in an error termination. By executing nextfile after the
read, the error termination can be bypassed. Here is an example
of code to do this:

IF Sysin.Image.sub(l,2) = "/**
THEN nextfile(sysin);

PROCEDURE Breakoutimage (f); REF (Outfile) £;

One of the traditional problems with SIMULA input/output to a
terminal is the following. If the sequence of statements

Outtext ("Input file:");
Outimage;
Inimage;

is executed, input to satisfy the call to Inimage will be expect-
ed before the output line forced by the previous Outimage is sent
to the terminal.

The SIMULA Standards Group is currently considering a number of
proposals for extending the language to include another output
procedure that will avoid this problem and make it possible to
receive an answer to a gquestion on the same line. The most prob-
able choice for this procedure will have the above heading in its
declaration.

The current version simulates this new Breakoutimage by execut-
ing two calls on Outimage. This means that a blank line will ap-
pear after the response but this is a great deal better than hav-
ing the response requested before the question is printed.

5. Directions

All of the procedures described above are included in a class
dialog. The design of this class was motivated by the implemen-
tation of a class SAFEIO by Mats Ohlin of the Swedish Research

13.

Institute of National Defense in DEC-10 SIMULA. The present de-
sign was tailored to meet the needs of IBM SIMULA users and,
therefore, differs in many details from SAFEIO.

To incorporate these procedures in a program, the program
structure should be as follows:

BEGIN
EXTERNAL CLASS DIALOG:
DIALOG BEGIN
<text of program using dialog>
END of dialog block;
END of program.

If this program is contained in a file named TEST SIMULA, it is
compiled with the CMS command

SIMULA TEST (CLASS DIALOG LINECNT 60 <other options>

Before compiling a program that uses dialog, you should either
copy the appropriate files onto your disk or link to the author's
disk. To copy the source and simclass files onto your disk, ex-
ecute the following commands:

LINK ORGASS 191 333 VPI

ACCESS 333 G

COPY DIALOG SIMULA G DIALOG SIMULA A
COPY DIALOG SIMCLASS G DIALOG SIMCLASS A
DETACH 333

If you prefer to use the author's copy of these files, simply
execute the commands:

LINK ORGASS 191 333 VPI
ACCESS 333 G/A

Using the author's copy has the advantage that you will be using
the most current copy of DIALOG. If corrections are made, they
will be incorpcrated in your program when you next compile.
There are also two disadvantages: If the author changes DIALOG
between the time you compile a program and when you execute the
program your program may not work correctly. [It is necessary
to recompile SIMULA programs that use external classes when the
external class is recompiled. The CMS implementation of SIMULA
does not check this at load time.] When you execute the command

LIST * * *

you will have a long list of files from the author's disk printed
on your terminal.

14.

APPENDIX

EXAMPLE OF USE OF DIALOG

This appendix contains a fragment of a program that edits the
text of SIMULA programs. This program can completly reformat the
text of an input file and change all of the properties of the
text that influence its appearance. In addition, it is capable
of inserting tab characters to reduce the disk space required to
store the text.

The program interacts with the user by asking a long sequence
of questions that define the behavior of the program. Each of
these questions has a default answer and it is possible to select
the default answer by terminating the first response with the
character escape or altmode.

The following paragraphs describe the statements in the pro-
gram. The reader is encouraged to examine the program text that
follows the explanation as the text provides a clear example of
the use of DIALOG procedures. A sample terminal transcript fol-
lows the program text.

The variable fastflag is set to TRUE if the user indicates
that he wishes to select the default answers to all questions.
At the beginning of the dialog, this variable is set to FALSE.

The first question asks the user to provide the name of the
file that contains the program. This is done with a call to
text_request. Since there is no default file name, the second
parameter cf text request is NOTEXT. There is a help procedure
for this query called helpl elsewhere in the program.

The specifications of this program state that if the input
file name is terminated with the character escape or altmode then
the default answer to all of the remaining questions are
selected. After the file name is read, leading blanks are
removed with a call to the procedure frontstrip. Next the last
character of the user's response is examined to find out if it is
escape (EBCDIC code 39).

If this character is present, fastflag is set to TRUE and an
instance of Outfile for the output is created. The specifica-
tions indicate that the default file specification of the output
file has the same file name as the input file and file type
SIMED. In the next statements, the escape character is removed
from the file specification and then the variable outf is set to
the appropriate instance of Outfile wusing the procedure
find_outfile.

15.

The specifications for this program also state that if the
file type of the input file specification is omitted, then the
file type of the input file will be set to SIMULA. The complete
file name is composed in the next statement using the procedure
conc2 to compose the complete file specification and find infile
is used to set the variable prog to the instance of Infile that
will read the input file. .

At this point, the input file has been initialized and if
fastflag is true, the output file has also been initialized. If
fastflag is FALSE, it is necessary to read the name of the output
file from the terminal. The specifications of this program also
state that if the name of the output file is terminated by the
character escape, then the default answers to the remaining ques-
tions will be assumed. This processing as well as assigning the
variable outf the appropriate value is done in the IF statement
that begins IF NOT fastflag.

These are the only two questions that permit the use of the
escape character to select the default answers to the remaining
guestions. Therefore, the next statement sets these default
values if fastflag is true and then skips the remaining ques-
tions.

The next question asks the user to specify the number of char-
acters in each indentation step. A negative answer means that
leading blanks in the program text will be retained and, there-
fore, the allowable range of this answer is from a negative num-
ber to a positive number.

The next question asks the user to provide the rightmost posi-
tion on a line where an indented line of text may begin. The
smallest possible value is indent and the largest possible value
is outlength.

A user is permitted to ask to have tabs used when writing the
output file. The next question, using boolean_request, asks for
directions. In CMS, tabs are rather difficult to work with and
the most convenient answer is "no" so the default value is false.

The remaining questions ask the user to select conversion
modes for different syntactical objects in a SIMULA program. A
correspondence between integers and the conversion modes is
printed on the terminal. After these modes are described, the
user is asked to specify a conversion mode for reserved words,
standard identifiers, user identifiers, comments and options and,
lastly, for text constants. The appropriate program variables
are set to the response to these questions.

The label fast appears at the end of these questions. The
remainder of the program text consists of the code to perform the
conversion.

The program text follows.

S

16'

fastflag := false;
progname :- text_request("Enter program file name:",
NOTEXT,
heipl);
progname :- frontstrip(progname):
IF progname.Sub(progname.Length,l).Getchar = Char(39)
THEN BEGIN
fastflag := TRUE;
progname :- progname.Sub(l,progname.Length-1);
progname :- progname.Strip;
outf :- find outfile(conc2(first_token(progname),
" SIMED"));
END;

prog :- IF no_blanks(progname)
THEN find_infile(conc2(progname, " SIMULA"))
ELSE find_infile(progname);

IF NOT fastflag
THEN BEGIN
outname :- text_request("Enter output file name:",
conc2(first_token(progname),
" SIMED"),
help2);

outname :- frontstrip(outname):;

IF outname.Sub(progname.Length,l) .Getchar
= Char (39)

THEN BEGIN
fastflag := TRUE;
outname :-
outname.Sub(1l,Length-1).Strip

END;
outf :- find outfile(outname);
END;
IF fastflag
THEN BEGIN

outlength := 72;
indent := @;
leftskip := FALSE;
maxindent := 52;
tabs := FALSE;

convert(2) := 1;
convert(3) := 3;
& convert(4) := 2;
‘ convert(5) := @;
convert(6) := @;
GO TO fast
END;

indent := integer request("Enter indentation step:",
?, (-outlength//2), outlength//2,helpd);

leftskip:= indent > 0; indent:= Abs(indent);

17.

maxindent := 1nteger request ("Enter max. indentation position:"
52, indent, outlength,help5);

IF maxindent < 1 THEN maxindent:=]1;

tabs := boolean_request("Tabs in indentation?:"
FALSE ’ he1p6) H

Outtext("Conversion modes:"); Outimage;
Outtext ("No change 8"); Outimage;

Outtext("Change to upper case , 1) Outimage;
Outtext(“"Change to lower case 2"):; Outimage;
Outtext ("Change to edit case 3%);

Outimage; Eject(Line+l);

Outtext("Enter conversion modes for:"); Outxmage;

convert(2) := integer_request("Reserved words:"
1,0,3,TRUE);

convert(3) := 1nteger _request("Standard identifiers:",
3,8,3,TRUE);

convert(4) := integer_request(“User identifiers:"
2,0,3,TRUE) ;

convert(5) := 1nteger _tequest("Comment and options:"
@,0,2,TRUE) ;

convert(6) := integer_request('Text constants:",

9,0,2,TRUE) ;
fast:

A terminal transcript of the execution of this program fol-
lows. The first line is a CMS command to load and execute the
program SIMED. The message "EXECUTION BEGINS..." is emitted by
CMS when the loader finishes its work.

The next line of output introduces the program. Instructions
to print this message precede the text considered above.

After this, the prompt for the program file name appears and
the user answered "dialog2". Since the name was not followed by
escape, the next question concerned the output file name. The
default name "dialog2 SIMED" is provided. The user selected this
answer by entering “return".

Next, the indentation step was requested. The user found the
default value unacceptable and provided 4 as his response. A
value other than the default value was also selected for the
question concerning the maximum indentation position,

The user accepted the default of no tabs in the output file
and then the program printed the conversion modes.

The user's responses to the questions concerning conversion
modes appear in the transcript.

18.

After all the questions were answered, the program text was
converted and the program printed a message summarizing its work.
The next line is the CMS ready message and the period on the next
line indicates that CMS is expecting another command.

The help procedures were not exhibited in this example because
the text is of 1little interest here. The code of these help
procedures is very similar to the example given in Section 2.

.go simed
EXECUTION BEGINS...

SIMED - SIMULA EDITOR AND INDENTATION PROGRAM. IBM VERSION 1l.4.

Enter program file name:
*dialog2

Enter output file name:/dialog2 SIMED/:
*

Enter indentation step:/0/:
*4

Enter max. indentation position:/52/:
*48

Tabs in indentation?:/n/:
*

Conversion modes:

No change

Change to upper case
Change to lower case
Change to edit case

WS

Enter conversion modes for:
Reserved words:/1l/:
*]

Standard identifiers:/3/:
*]

User identifiers:/2/:
*1

Comment and options:/6/:
Text constants:/0/:
*

[SIMED - Number of BEGIN's (END's) found: 43]
R;

DIALOG EXTENSIONS
July 18, 1979

Two procedures have been added to DIALOG. The first,
cms_subset, makes it possible to execute a sequence of CMS com-
mands from the terminal while a SIMULA program is in execution.
The second, get_infile, opens files with any RECPFM and LRECL to
' be read by SIMULA programs.

|
{ CMS Subset Commands‘
|

When the procedure cms_subset is executed, the following hap-
pens:

(1) The terminal prompt character is set to sharp (#).

(2) Each input line typed by the user is transmitted to CMS for
execution. After the command is executed, CMS output is typed on
the terminal and the usual ready message is printed.

(3) When the input 1line return is encountered, the terminal

prompt is set back to asterisk (*) and control is returned to the
calling program.

Opening Input Files

The procedure get_infile accepts a text object that is a file
specification as its parameter. If a file with this name is
accessable for reading, the file is opened. The return value is
an opened object of type Infile. The length of the Image attri-
bute of this object is the LRECL of the file. An appropriate
filedef for RECFM F or V and for the correct LRECL is, of course,

' issued.

If there is an error in the parameter file specification, an
' error message is printed on the terminal and the user is given
two options:

(1) Enter a correct file specification.
(2) Enter CMS subset mode to query his directory, etc. He may

return to the running program by entering return. After this, he
is again asked for the correct file specification.

This procedure preserves the following property of
find_infile: 1It is not possible to execute a return without suc-
cessfully opening a file.

This procedure finally makes it possible to read any CMS file
without knowing anything about the file before the program begins
execution!

The heading of the declaration of the procedure is:

REF (Infile) PROCEDURE get_infile(file_name);
TEXT file_name;

