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Introduction

To our knowledge the results of the pioneering paper on
the boundary layer theory for plates by K. 0. Friedrichs and
R. F. Dressler {1) have not been extended to anisotropic plates.t
Yet the basic conclusion of the above paper, namely that the
equations of three dimensional isotropic elasticity can be split
into two independent systems seems to have been accepted by
some authors to include also the case of anisotropic elasticity
[71 [ ]. While this happens to be true it is by no means obvious
as the following presentation illustrates; hence, we believe our
providing a detailed anaiysis of the orthotropic plate will be
of interest to researchers in the field of composite materials
and laminates.

We point out that at the zeroth order of approximation of
the interior solution we obtain the expected thin, orthotropic

plate equation for the stress function, namely

(o) L2 (o)
a32 366 Wrxxxx t2 (2317 855 = 2a), - ay; agg) Wopnuy
(o) _ .3 2, (3
* 31 36 Wryyyy™ T3 %66 (211 232 T 21p) P (x0Y)

For the boundary layer approximation in the limit domain we find
at the hl-step that the stress function satisfies an equation
having a three-dimensional character in that the coefficients

depend on the Z-direction

+ From personal correspondence with Professor Friedrichs we
have learned that he also is unaware of anvgeneralizations
of this type.
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+ . . . .
Using typical values for a highly anisotropic material, namely

E, = 20 x 10° psi, E, = 1.6 x 10°

- 6 i
G12 = 0.6 x 10 psi, G

Vig = V33 = Vo3 = 0.3 we compute the above coefficients to be

psi, E5 = 1.3 x 10° psi,

— 6 . _ 6 .
13 = 0.6 x 10 psi, G23 = 0.5 x 10 psi.

1

o _ ~6
a: = E3 (1-v23v32) = 0.7 x 10

2
13 1 2 -6
2b: = (- —2 + -5 v..v..) = 1.6 x 10
E, G5 ~ E] ‘12723
1 -5
c: = E1 (1-v12v21) = 0.046 x 10

These coefficients show that the equation is elliptic as the

roots of the eguation au4+2bu2+c = 0 are seen to be My o3 =
’

+ i (0.73) and Vs s =+ i (1.66). In this case, a complex

solution may be sought in the form (31 (pp. 29-30)
F(x,y) = Fy(x+u1y) + Fy(xtu,y) + Fy (x +uy) + F,(x+u,y)

which may be rewriteen for real solutions as

F(x,y) = 2 Re {Fl(zl) + FZ(ZZ)}

+ Provided to us by Professor R. B. Pipes, Director of the
Composite Matcrials Center, University of Delaware.




where ZI: = x+u1y, Zz: = x+u2y. Consequently, it is not
technically difficult to find solutions for the boundary layer
solution using function theoretic methods.

Various studies on interlaminate stresses have been made
by various authors (2], [4-7]. Most of these essentially avoid
the anisometric nature of the different laminates. It would

be interesting to attempt a complete analysis of the laminate

problem bases on the results of the present work.
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We consider in this work the case of an orthotropic elastic
body, namely one which has three planes of elastic symmetry. Fur-
thermore, we shall assume that these planes are mutually perpen-
dicular and that they are orthogonal to the axes of a Cartesian
coordinate system. The generalized Hooke's law for such a body

may be written as [3 ] pg. 8.

€yiT Usy = @540, + a12°y + ay30, (la)
ey°= v,Y = a;,,0, + a220y + a,3%, (1b)
€53 Wiy = 8530, + 8530, + aj50, (1c)
Yyz'= Vig + Wey = 8447y, (1d)
Yxz?= Wry + Ury = 855742 (le)
yxy:= u,y tv,, = a66Txy (1f)
The elastié constants aij may be expressed in terms of the
engineering constants, Eij (i=1,2,3) (Young's moduli), Vij

(i,3=1,2,3) (Poisson's ratio), and the Gij (i,j=1,2,3) (shear

moduli) as follows:

1 V21 Va1
a ===, a = e a = -
11 E1 12 E2 ’ 13 E3 ,
1 V32
a ==, a = -=—=, a = =—, (2)
22 E2 23 E3 33 F3
a _ 1 a _ 1 a _ 1
= AT = /&= - a1
44 G23 55 G13 66 G12
Furthermore,
E

121 = Eavipr Epv3py = Eguygs Egvyg = Eyvy,y.

as

When there is a plane of isotropy then the elastic constants simplify,‘




F. v - E'
2(1+v) ! and G' = 2(1+v') °
The problem studied by Friedrichs and Dressler [ ] involved an
isotropic body, namely the case of complete symmetry where E=E'
and v=v', In what follows we shall show that their analysis for
the isotropic plate mav be generalized to the case of the ortho-

tropic plate.

We consider an elastic plate of uniform thickness 2h, lying
parallel to one plane Of elastic symmetry. The plate shall have
an edge which is defined by a continous curve B possessing a con-
tinuous tangent. The weight of the plate and other body forces
are to be neglected. As in [ 1] we consider the plate to be
deformed by an arbitrary system of normal stresses distributed
over the lateral forces, and an arbitrary distribution of normal
and shear stresses which vary along the generators and perimeter.
Adopting the notation of [ 1] we consider the following loads to

be applied to the plate

Ez(x,y,h) -a({x,y) top face

az(x,y,-h) -b(x,y) bottom face

Tz Xy, = T (x,v,Zh) = 0.

The stresses around the edge are given by En(s,z), ?ns(s,z),

Tz (S,2), where ?nz(s,ih)=0 for consistency.

The full three-dimensional system of equations which the

plate must satisfy are given by (ri.=1..

3




O%,x T Txy,y Y Tyz,z =0 (5a)
+ + =

“xy.x * %,y * Tyz,z = ° (5b)

Txz,x ¥ Tyz,y * 92,z = 0 (5¢)

and the equations (la-1f). The equations (la-1f) involving the

displacements may be replaced by six compatability equations

+2 +2a120x'zz+(2a23+a44)o +2a

T244%,xx“213%, vy y.yy “922%,z2

+2a,,0 +(2a

337 z,vyy 23+a44)°z,zz =0, (6a)

+2a

13%355) 0y wxt23119%, 22123230y xx"255%, yy 22120y, 22
*2a330, yxt(2313%agglo,, 5, = 0 (6b)
(2a12f366)°x,xx+2all°x,yy+2a22°y,xx+(2a12+a66)Gy,yy+2a23°z,xx
+2a =0, (6c)

13%z,yy 266z, zz2

[2a11°x+(2a12+366)°y+(2a13+a55)°z]’yz+a44Tyz,xx+a55Tyz,yy

+a = 0’ (Gd)

66'yz,z2

[(2a12+366)°x+2a22°y+(2a23+a44)°z]'xz+a44sz,xx+a55sz,yy

tageTxz, 22z = 0 (6e)

[(2a13+a55)°x+(2a23+a44)°y+2a33°z]'xy+a44Txy,xx+a551xy,yy

+a661xy,zz = 0. ' (6£)

The thickness of the plate is measured in the z-direction.
Following [1 ] we split the stresses applied around the edge into

even and odd parts with respect to the variable z, namely




En = En(e)+ 5;0), etc.; similarly the face conditions are rewritten

in terms of "even" and "odd" functions as

az(zo) (x,y,h) = ‘p“‘—““();'w = -3+ % ' (7a)

;éO)(XrYI—h) = E!x' ) = - b (7b)

a
2 2

;;e)(XrYIth) = —gi§LXl = -

b
-5 - (8)

)

The plate problem with applied boundary-forces Eéo)(s,z),

;ég)(er)r Téi)(s,Z) with face-forces (7a,b) will be called

Problem IIa after [ 1], whereas the plate problem with applied

_ (e) (e) (e)
boundary-forces On (s,2z), Ths (s,z), Thz (s,z) and plate

forces (8) will be called Problem IIb. The Problem IIa is a pure
bending problem, while the Problem IIb is a generalized plane
stress problem. The plate problem we consider may be uniquely

decomposed into the pair of problems (IIa,Ilb) as described above.

As in [ 1] the Problems IIa, and IIb also split; indeed we

may introduce Problems III, IV, V, and VI such that

solution III + solution IV = solution 1Ia,

and
solution V + solution VI = solution IIb.

This is done by seeking solutions in terms of even and odd parts,

namely u=ue+u0, ox=oi+og, etc. Upon substituting these into

the system (5a~5c¢) and (la-1f) the resulting eguations separate

into two independent systems, namely we obtain

$enm T g o

R T e,

-

e

AT




Problem IIT

unknowns 0 u ., v odd in 2z

x' 'y z xy'’
€ e w€ even in z
xyl TYZ'
boundary Eéo)(s,z), ?ég)(s,Z), ?éi)(s,z)
conditions
~{0 -(0
519 ey = -3, 510 eev,-m) = 3e.
#
Problem IV
unknowns oi, 05, Ui, Tiy’ ue, ve even in z
0 0 0 .
xy' Tyz' w odd in z
- = -0
boundary s€=0, € =0, 7. _=0
conditions n ns nz

Problem V

unknowns oi, 05, oi, Tiy’ ue, ve even in z
Tgy, ng' w0 odd in z
boundary o8(s,2), TS _(s,2), ¥0 (s,2)
conditions n ns nz
Gi(x,y,fh) = J%

¢Prob1em IV represents a rigid-body motion.




Problem VI

0 0 0 0 0 0 .
unknowns Ot oy, Ot Txy* u ., v odd in z
23
© - w® even in 2z
xy' ‘yz'
boundary -0_ -0 _ -e _
conditions 0n=0. ns—o' Tnz—o'

Gg(x,y,th) = 0.

Analysis of Problem III

Since we wish to obtain asymptotic results as h3*0 we introduce

a new thickness variable r=z/h, rtre¢([-1,1]. Likewise, in order

that stresses and displacements will not vanish or become

unbounded we set as in [1 ]

30 =5 s, 0n

n
odd in ¢, (9a)
;gs = ;A;)(S'C)h
- (o . -
Tﬁz = Té;)(S,C)hz even in ¢, Tég)(s,il)=0. {(9b)

On the top and bottom of the plate we require as Friedrichs and

Dressler [l] that

= + I + _

sz(x,y,_l,h) = Tyz(x.y,_l,h) 0, {10a)
- 3 3

5, = -3 x,yin3, (10b)
- _ 1 (3) 3

o, = 5P (x,y)h~, {(10c)




In terms of the x,y,t coordinates our system (5a-5c¢),

(6a-6f) become

hox'x'f'h'txy’y""rxz’c =0, (11la)
+ + = 11b
thy'x hoy,y Tyz,e 0, ( )
ht oz, xMTyz,yt92,. = O (11c)
Ury = a@190,+a 50,487 30,0 (12a)
Vig = a12°x+a22°y+323°z’ (12b)
w,c = hal3ox+ha23oy+ha33az, (12c)
ha44Tyz = v,c+hw,y, (124)
haSSTxy = hw,x+u,c, (12e)
-aGSTXY = u,y+v,x, (12f)
~a, h? +2a..h2 +2 " +(2a,.+a,,)h?
447 %%, xx" <2137 9%,yy  “12%, ¢ 2372440 9y vy
2 (13a)
+2a220y'§;+za33h oz'yy+(2a23+ad4)oz'cz =0,
(2a, ;+acc) h2 +2a +2a..h%s. __-a..h%s
1379557 Ty, xx" “911%x, ¢ ¢ 23" % ,xx °55° %y,yy
(13b)
2 -
+2a120y’cc+2a33h oz,xx+(zal3+a55)°z,cc =0,
(2a,.+a. )h26. __+2a..h%_ _ +2a,.h%s
12766 X, XX 11 X,YY 22 Y, XX
+(2a,.+a.)h%. . +2a,.h%s_ __+2a..h%s
12 66 Y.YY 23 Z, XX 13 z,YY (13c)
“866%z,cr 0,
2
{ 2a11h°x+(2a12+a66)h°y+(2al3+aSS)h°z]'v;+a44h Tyz, xx
(13d)

2
*agsh ., yytaeeT

VZ,5¢ -




"l!lll!'F’““'“"“"""“"""""""""'-"-'-"'-"'ﬂﬂwiﬂ-'—-—-c~ . . |

1l
2
[(2612+366)hﬂx+2622huy+(2a23+a44)h02|,XL+a44h sz,xx
2 (13e)
tageh s ywt@66Txz,r - 00

2 2 2 2
[(Zal3+a55)h ox+(2a23+a44)h oy+2a33h oz]'xy+a44h TRy XX

(13f)

2 _
*assh Ty, vy 266 Txy, cc - O

Using the ecuations (11,12,13) we seek an interior expansion
for the three displacements and six stresses. We assume each of

these unknowns have asymptotic expansions of the form

u(leIClh) = Z u(k)(X:Y,C)hk, etc. (14)
k=0

0

As in [ ] we obtain for the h~ step auite directly that

(0) _ _(0o) _ _(0) _ _(0) _  _(0). _{0) _ (0) ._
xz = Tyz ° 9 z v = u P Tgy = 0, and that w :=W(x,y)
is independent of . The equations for o;O) and ~0;0) become
(0) (0) _
a119%  t 319y, = O
(0) (0) _
a1,0, + a22°y = 0,
which lead to UiO) z O;O) = 0 providing that

= 1 -
112822712221 < £FE, (YV12v20) # 0.
The analysis for the hl-step is similar to that in [ ) so we
list the results

(1Y _ (LY _ (1) .
Tz ° Tyz z o0, =0

w(l) 1= w(l)(x,y), v(l) t= V(l)(x,y)c, u(l):=U(1)(x.y)c.

T(1)
Xy Xy
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Furthermore, providing that condition (15) holds we have that

(1) (1) (1)

(1) _ =
o = Xx(x,y)c, o, Zy(x,v)c.

E The hz-step leads as usual to

042) = 0, rii):=T£§)(x,y)C, réi):=T;§)(x,y)(l-c2)

N

T)((g) = T)((i) (x,y) (l‘cz)r V(z) ==V(2) (x,v)c,

u(z):=U(2)(x,y)C:

and providing conditions (15) is met, we have also

(2) (2) (2)

(2) _ =
O zx(x.y)c, oy Xy(x,yn.

plus a new result, namely

(1) (1)
(2) 1 2
w = 5la;, Zx(x,y) + ay, Zy(x,y))t .

(1)

(0 it is possible to represent )
x

In terms of the function W

and {2) as

y
(1)
e 1 (0) (0)
Zy(x,y) = allazzjggs ('azzw'xx + alzw,yy ’ (15a)
and
(1)
=1 (. (0) (0)
zy(x’Y) = a .a _az ( allw'yy + a12w’xx) (15b)
11722 "12
. 1 2 2
respectively. Expressions for T;Y)' Tiz)' and T;z) may also

be found in terms of w(o)(x,y); these are
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Ly _ __ 2 (0)
Txy = P w‘xy ’ (15¢)

1 o (0)

(%22a66 ! XXX

1{2) (x,y) =
Xz 2a__(a..a —a2 )
662112227212

(154)
a2 _ (9)
+(2ay,a,,-2a), a12a66)w'yyx>
(2) 1 (0)
T (x,y) = - (a a, W,
Yz _.2 119667 'yyy
2agg(ayy25773),)
o2 (0)
+(2alla22 2aj, a12a66)w'xxy> . (15e)

Using these in (llc) leads to the following differential equation
(0)
s

for w
(0) .2 (0)
292266" xxxxt2(231133572a] 3815366 Wop oy
(15f)
(0) = 3 a2 (3)
*a11266" yyyy = "7 266 (2113227215) P T (xu¥) .

We observe that equation (15f) is the equation of a thin,
orthotropic plate as presented in the book of Lekhnitskii [3].
It is interesting to note that this reduces to the result of

Friedrichs and Dressler for the isotropic plate.

The Boundary Layer Problem

We first expand the edge stresses in powers of the arc length

variable s about s=0, and then replace s by th

(Y—‘(]l) (SrC)h = a[(]l)(o'C)h + .(;r(‘]")s(o'c)t_hz + ... (16a)
(s, 0n = 0, 0n ?;;ls(o,c)thz ‘... (16b)

?éi)(s.c)hz = 72 0,00n? + ?(:)éo,c)th3 . ... (16c)

n
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and the face stresses as

- _ = + - =.(3) 3
o, = oz(x,y,-l,h) +p(0’0)h S (17a)

t..=1._=0 for ¢ = 1. . (17b)

If the boundary curve B is parametrized by x=x(s), y=y(s) then
under the transformation E=x/h, n=y/h we obtain a new boundary
curve B* with arc length t=s/h, where the parametrization is
now given by ¢=g*(t,h), n=n*(t,h). The unit tangent and normal
vectors are given by [Xs(t,h),Ys], [xn'Yn] respectively. 1In
this notation the edge conditions may be rewritten (see

Lekhnitskii, pg. 2), as

5;1)(0,c)h + Eé%L(O,c)thz + ...

= xﬁu;(g*,n*,;,h)+zxnyntxy+Y§o;, (18a)
e 0,0n + T 0, 0m?e + L.

= xnys§z+[ans+stn]¥xy+Ynys3y, (18b)
72 (0,00n? + ;;its(o,;)thz Yoo

-xt s Yntyz' (18¢c)

Here we have used the notation of [ ] to indicate that

$(t,n,z,h) := o(he,hn,z,h), etc.

In what follows we match interior and exterior expansions to obtain
the asymptotic behavior of the various terms in the plus super-

script function expansions as t+-=; for details of the

procedure the reader should consult [1].




The limit domain in the ¢,n,r space is given by D*:={(f{,n,z):
£<0, |n|<m, -l<z<1}. We illustrate this by showing its cross-
section in the ¢-r plane as

The segment AB corresponds to the boundary edge, whereas BC and

G

AD correspond to the top and bottom faces respectively.

The ho step

In the limit domain in the ¢£,n,;-space we obtain the

following boundary conditions at the two faces and the edge

g;O) - R(fg) = ;*)({g) =0 on ¢ = *1 (19a)
+(0) _ +(0) _ +(0) _ =
x = xy  Txz 0 on £=0 (19b)

At f=-o 3‘0’(5,n,;)=o‘°’(o,o,g). Furthermore, since for the

(0)__(0)__(0)

interior problem z
proble O “Txy "Txz

=0 we obtain the boundary

conditions

'&';0) = ‘;(0) = H(0) _ 0 at ¢ = ~= , (20)

xy Txz

As in [ ] one has the conditions
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YA 0 228 0 atgln-l) 0 (21)
3N = ’ _—“_7- = r ceey n = r e
an an

which leads to a splitting of the stress system into a plane

strain problem involving six equations in the four unknowns

3;0), 350)' 3;0), #;g) and into a torsion problem having three

equations in the two unknowns t;g), t;g). Obtaining the asymp-
totic conditions for gio), 350), 3;0) from the interior solu-

tions and integrating the zeroth under system yields

+{(0) _ -1 +(0) +(0)

oy = 5;;(a12°x tasq0, ).

Since all applied stresses are zero on the boundary of the

limit domain, we conclude as in [1] that §£0). 3;0), ;ig), are

identically zero. This implies that 3;0)50 also. The torsion

problem has vanishing boundary conditions and therefore it follows

+(0) _+(0) _
that Txy *Tyg =0.

The h1 Step

We consider next the plane strain problem for 3;1),¥ii),

3;1),3;1). Since all n derivatives vanish we are led to the
following six equations (Here we have suppressed the +(1) super

scripts in our notation.):

g

X, E + sz'c 0, : (22a)

"xz,6 * %z,c = O (22b)

-a44°x.££+2a12°xocc+2a22°Yocc+(2a23+a44)°2:cc=o' (22c)




V7

(2a +2a

13%355) 9%, £ *23119%, 1 *2223% 5+ 2%12%, 001 %233% 2, £k
+(2a13+""55)°z,cr; =0, (22d)
(2a)y+ageloy 423,50y *+28530, (36605, (=0 (22e)
[(2a12+a66)ox+2a220y+(2a23+a44)021,Ec+a44rxz,55 (22f)
= 0.

tag6Txz,cc

Equations (22a,b) imply the existence of a stress function

0:=0(£,z) such that 0= o_= T From

0rppr 927 0pgr Tyxam Oy
this eauations (22c-22f) may be rewritten as

'a44e’ccse+2al2o’cccc+2a22°v.cc+(za23+a44)G’EECC=0’ (23c)

(23) 34255000 423107 10 H2223% 56 2012% 1 (23a)
23

(2a12+a56)®'CCEE+2a220YrEE+2323O'EEEE-a66@'£Ecc =0, (23e)

[(2a12+a66)O'c;+2a22°y+(2a23+a44)0'E€]'EC

~0rprer?44266% coe = 07 (23£)

Integration of (23f) leads to

a22°y = -alzo,cc-a23o,€5+¢l(E)+¢2(c)

-alzox-az3oz+¢l(5)+¢2(6).

Using the interior expansions and matching, one obtains the

asymptotic behavior as £+-=, from which follows




S
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a22°y = -a;,0, = 8530, *+ CyE + Cyr + Cgi (24)

however, as °y is odd in the r-variable we are forced to have
c; =C3 = 0. After some further manipulation with the eauations

(23c-e) it is found that 00 satisfies

2
(8523337223) 0t (335028, 3%a551 723753530 00 g

+(a =0, (25)

2
112227312097 r e

For the case of an isotropic material equation (25) reduces to
the biharmonic eauation as was shown in the paper of Friedricks
and Dressler. For a material with one plane of isotropy the

equation becomes

L
(1-Ervtdyo, + Ea~v?e,,,,,=0; (26)

+ 2(1-vv")o, rree

EEEE EELL

whereas for an orthotropic material (25) mav be expressed in

terms of the elastic coefficients as

2v
1 13, 1 _2
B, 1723932 Orgeee (Bt Ay T By Y1229 %eece

1 (27)
+ EI(I-v12v21)O'CCCC = 0.

Equations (26,27) show the three-dimensional nature of the equation
which 0 satisfies in that it contains elastic constants

associated with the z-direction.

Recalling that °x=:e’cz' 2

G'EE' “Tyz :0,Ec we obtain

the following boundary conditions for o, namely
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Olc; = ar(ll) (OIC)
on AB (28a)

O'EC =0
and

O'EE = O'Ec =0 on BC apd DA {28b)
On CD we obtain

(1)
Orpp = [.(o,O)c, and 0,., = 0,;, = 0. (29)

X

(1)
From (24), (29) and the fact that o= ] (0,0)z on CD the

X

expression for Oy becomes

(1) (1)
3220y T T31200;;"3230 g (3 [ (0,004ay, ] (0,00e.

This completes the hl-step for OprOyrT

2 Txz’ and oy’ modulo the

fact that our plane-strain problem is defined only in terms of
the "interior" stress problem evaluated at the edge of the plate.
For further details on how to determine the proper boundary con-

ditions for the interior problem in order to determine

(1) (1)
y (0,0), ¥ (0,0) the reader is referred to [ 1], pp. 21-22.
X X

We turn now to the torsion problem for ?i&’, #;;), as
above we shall omit the +(1) superscripts.
Equations (11b), (13d), (13f) reduce to
xy, £ ¥ Tyz,c " 0, (30a)
334%yz,cc * 366Tyz, 0z = O (30b)
=0, (30c)

a447xy'££ + a667xy,cc




Introducing

T =: ¢, y =T =3 ¢'E (31)

allows (30b,c) to be rewritten in the form

440 cre t 66t rpgp T & (32a)

+ a =0, (32b)

Q44% e 66% "¢t

which imply that

a44¢,EE + a66¢':c =90, (33a)

where &6 1is an arbitrary constant. This reduces to the
Friedricks-Dressler form, A¢=6§, when the material is isotropic.

When there is a plane of isotropy this becomes

E(1+v )¢:E + E (1+v)¢'CC =45 , (33b)

£

and for an orthogropic material equation (33a) in terms of its

elastic coefficients is

1
— = §.

1
Gz3¢'££ + 012¢’cc

The boundary conditions for (33a) are

dryp t= TL;)(O.n'C) = 7{100,) on aB (34)
and
6,0 := -t (g,n,21,n) = 0 on BC and AD. (35)
N&A
Since ?i;) > Tié)(0,0)c as t»-», we have
o, =7 0,006 on cp (36)
't Xy ! '

This boundary value problem may be solved by Fourier series as
suggested in [ L 1. The arbitrary cocefficient is determined to

LoD
beo "xy (010)-
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The hZ—Step

Here the boundary conditions are, as usual, the same as in
{ 1; the reader is referred to equations (51-55) of this work

for details. We treat next the case of plane-strain for the

£(2) +(2)  +(2)

- n "
so-called "excess" stresses, [1 ]( pg. 25, 9% ,n’ Ixz,n’ Tx,n, and

+(2)
gzln

r{e,z) such that

. As has been our custom we introduce a stress function

Prrgi=%%,n? Trgei=%,n¢ Trgg = Ixz,y" (37)
Then T 1is seen to satisfy
(a,,a -a2 )T +(a,,[2a,,+acc1=2a,,a2,,)T
22733 T23°  'EEEE 22 137955~ 127237 " 'gEze
*+(2338227312) Trpgg = 0
Furthermore, 9y, n is found to be
(4
azzgYIn = -a122X,n-a23gz,n+¢l(E)+¢2(C) (39)
From the fact that %9 ,n is odd in ¢ and all the stresses
AN
vanish at infinity we conclude $56,20.
We turn next to the "excess" torsion problem for iis)n and
—ARY
E;g)n and following our previous notational abreviation drop the
’

+(2) superscript. We have from (30a-c)

Txv,nE * Tvz,ng - 0, (40a)

244%yz,nee * 266Tyz,nzz = 07 (40b)

{(40c)

|
(=]

844 xy,nee t 266 xy,nzy "

et

Py =y
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Setting ¢,, := ¢'E:= -1 ' we obtain after integration

T ’
Xv,n yz,n

and considering the behavior as &+-«», that

+ a, ¢ = 0. (41)

A44% ¢ 66° ’¢C

Again the "excess" stress can be determined by solving (41) with
¢ prescribed over the boundary of our fundamental strip. We
must now consider the svstem of "excess" stresses themselves,

namely functions of the form

| a+

P teinin) = 52 (e0n + At (42)

The equations for the Ai(g,n) are obtained by direct substitution

into the nine elasticity equations in the ¢,n,z defining the
(+) 2 excess stresses. As before, the system splits into two
independent sets one which we refer to, after Friedrichs-Dressler,

as "quasi-plane-strain" and the other as "“quasi-torsion."

Quasi-plane~strain

From the equations (1lla), (1llec), (13a), (13b), (13¢), and

(13e) we obtain

+(2)
+ 2 - =3 -
B,e * Pxz, Txy,n $rpr (43a)
_ (2 _,
sz,g + Az,c Tyz,n - ¢'E' {(43b)
“a44Py, pet2312Ry, P2222Py, r P (2ap3ta ) A, o = 0, (43c)
+
(2a13 a55)AerE+2a11AX'cc+2a23AY,EE+2a12AV'CC
(434d)
+2a33AZ:E€+(2a13+a55)A2,;c =0,
(23y,%a66) Ay, £ *22220y, ££¥2323R2, £7 %6672, ;. = O (43e)




[(2a12+a66)Ax+2a

22Ay+(2a23+a44)Az]’Et+a44sz,CE

(43f)
+a66sz,cc = 0.
For an orthotropic material these simplify somewhat, namelv
equations (43c-f) become
(1+v)A,  +(1+nEi A, Bl A y-A. =0 (44c)
V%, - "x,c0 F VOx,ge veer’ Czann
(I+v ')A +(1+0) B A =(A_+A_+A ) la +A )
v, EE VIET MyLpe T TN T2 il TR Wik, ee Ty e
(444)
Aa,er = 0
(1+v DA +(1+v) e a Bl sa 4B A =0 (44¢)
Z,EE E z,rr, E ‘Ox Ov'EY Tz’ ,ef d
(A +A +E_ a1, +(ev B A +(1+v)A =0 (44F)
x 'y RY Tz gy "FV Txz,£¢ “xz,0q !

which in turn reduce to that of [1l] for the isotropic case. The
boundary conditions on the aquasi-plane-strain are the same as

those in Friedrichs-Dressler, pp. 28-29.

Quasi~-torsion

From eauations (1lb), (13d), (13f) we obtain

a a
- - - 12 _23
Axy,ﬂ * AVZ:C T T%,n T as, Pope t a,, Prgge (45a)
12
a44sz,5(+a66Ayz,cc=_[(zall—a (2a12+a66)"ccc
22 (45b)

a

23
+(2a13+a55-5~~-(2a1

+a »nr, 1.
22 2 766 Ere




a
_ 12
3448y, cet366Pxy, o = ~1(2a)3%ags 3;‘2323‘“344’”'“5
(45c)
+(2a -a—g—3—(2a + ))r
337a,, “%23 447 rppge
Eauations (45b,c) reduce to the Friedrichs?Dressler case for
isotropic materials, namely we have
= - (]
A!\yz = Al‘,c, (45b"')
and
AA = ~AT,,.. (45c"*)
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