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Introduction

To our knowledge the results of the pioneering paper on

the boundary layer theory for plates by K. 0. Friedrichs and

R. F. Dressler Ell have not been extended to anisotropic plates.t

Yet the basic conclusion of the above paper, namely that the

equations of three dimensional isotropic elasticity can be split

into two independent systems seems to have been accepted by

some authors to include also the case of anisotropic elasticity

[7] E ]. While this happens to be true it is by no means obvious

as the following presentation illustrates; hence, we believe our

providing a detailed analysis of the orthotropic plate will be

of interest to researchers in the field of composite materials

and laminates.

We point out that at the zeroth order of approximation of

the interior solution we obtain the expected thin, orthotropic

plate equation for the stress function, namely

a22 a66 W, ( ) +2 (2a a - 2a2 ) W (o)

6 xxxx 11 22 12 12 2a 66  'xxyy

+ al a66 W (o) = 3 (a - a 2) (3 ) (xy)
,yyyy 2 66 a11  2 2  12

For the boundary layer approximation in the limit domain we find

at the h -step that the stress function satisfies an equation

having a three-dimensional character in that the coefficients

depend on the Z-direction

t From personal correspondence with Professor Friedrichs we
have learned that he also is unaware of anygeneralizations
of this type.
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1 2v13  1 2
E3 (l-v2 3v32 )e,§§§§ + f(-- + U E V1 2 V 2 3 ) (-§§§-
3- 1 G13 E1 22)8§§

1
+ E1 (l-V12 v2 1 8),§§§§ = 0.

Using typical values + for a highly anisotropic material, namely

E = 20 x 106 psi, E2 = 1.6 x 106 psi, E3 = 1.3 x 106 psi,

G12 = 0.6 x 106 psi, G13 = 0.6 x 106 psi, G2 3 = 0.5 x 106 psi.

V12 = V13 = V23 = 0.3 we compute the above coefficients to be

1
a: = E-- (l-V2 3v 3 2) = 0.7 x 106

2 v13 1 2
2b: = (- - G E v12v23 ) = 1.6 x 106

1 13 E1 123
1 -

c: = E1 (1-V 12v21 ) = 0.046 x 10

These coefficients show that the equation is elliptic as the

roots of the equation ap +2bji +c = 0 are seen to be 1 1,3 z

+ i (0.73) and v2, 4 = + i (1.66). In this case, a complex

solution may be sought in the form (31 (pp. 29-30)

F(x,y) = Fl(x+lly) + F2 (x+p2y) + F3 (x +ply) + F4 (x+p2y)

which may be rewriteen for real solutions as

F(x,y) = 2 Re {F(Z 1 ) +

t Provided to us by Professor R. B. Pipes, Director of the
Composite Matcrials Center, University of Delaware.
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where Z = X+ply, Z2: = x+W2y. Consequently, it is not

technically difficult to find solutions for the boundary layer

solution using function theoretic methods.

Various studies on interlaminate stresses have been made

by various authors [21, [4-7]. Most of these essentially avoid

the anisometric nature of the different laminates. It would

be interesting to attempt a complete analysis of the laminate

problem bases on the results of the present work.
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We consider in this work the case of an orthotropic elastic

body, namely one which has three planes of elastic symmetry. Fur-

thermore, we shall assume that these planes are mutually perpen-

dicular and that they are orthoqonal to the axes of a Cartesian

coordinate system. The generalized Hooke's law for such a body

may be written as [3 1 pg. 8.

Cx u x  a ll0 x + a1 2ay + a13' z  (la)

Cy V,y =12 ax + a22 ay + a23 az (lb)

£z w, z = a1 3'x + a23'y + a3 30 z  (1c)

Yyz:= v z + W,y = a44Tyz (Id)

Yx := W, x + u, z = a55TXZ (le)

Yxy:= Upy + V x = a66Txy (if)

The elastic constants a.. may be expressed in terms of the1)

engineering constants, E (i=1,2,3) (Young's moduli), v.j

(i,j=i,2,3) (Poisson's ratio), and the G (i,j=l,2,3) (shear

moduli) as follows:

1 V2 1  -V 3 1all 12 a 1 3 E
1 32 E1

2 2 3 3
a 1 a 1 (2)a22 E 2 a23 E3 ' 33 F3 '

23 13 12

Furthermore,

E1'21 = E2v1 2 , E 2v3 2 = E 3v 2 3, E3v1 3 = EIv 31 .

When there is a plane of isotropy then the elastic constants simplify,

as
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1 a 1a2 2 = , a2 3 = --r a33 = (3)

1 11

a4 4 = , a55 =--, a6 6  G,

where
E E'

2(l+v) ' and (' = 2(l+v')

The problem studied by Friedrichs and Dressler [ ] involved an

isotropic body, namely the case of complete symmetry where E=E '

and v=v'. In what follows we shall show that their analysis for

the isotropic plate may be generalized to the case of the ortho-

tropic plate.

We consider an elastic plate of uniform thickness 2h, lying

parallel to one plane of elastic symmetry. The plate shall have

an edge which is defined by a continous curve B possessing a con-

tinuous tangent. The weight of the plate and other body forces

are to be neglected. As in [ 1) we consider the plate to be

deformed by an arbitrary system of normal stresses distributed

over the lateral forces, and an arbitrary distribution of normal

and shear stresses which vary along the generators and perimeter.

Adopting the notation of [ 1 1 we consider the following loads to

be applied to the plate

z (x,y,h) = -a(x,y) top face

(4)

(x,y,-h)= -b(x,y) bottom face

Txz (x,v,±h) = Tyz(x,v,th) = 0.

The stresses around the edge are given by F (sz), T (s,z),n ns

Snz(s,z), where Tnz(s,±h)=0 for consistency.

The full three-dimensional system of equations which the

plate must satisfy are given by (Tij=Ti),
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a ~ yy+ Tx~ = 0 (5a)

T yx aYy + yz z =0(b

T xx+ T YZ + ao = 0 (5c)

and the equations (la-if). The equations (la-if) involving the

displacements may be replaced by six compatability equations

-a440 a ' +2a 1 3 a x YY +2a 12o ax,zz +(2a23 +a 44)0 y,yy +2a 22 ay"zz

+2a 33 azyy +(2 a 23+a 44 )az,zz = 0, (6a)

(2 a 13+a 55)axxx +2a llax,zz +2a 230y,xx 550y,yy +2 al12oyjzz

+2a 3 3 zx +( 2 a13 +aSS)az~ZZ = 0, (6b)

(2a2+a66)ax +2 alla y+ 2a22a x+ (2al2+a 6)ay y+
2a23 ax

+2a 13a zy- a 6 6 ao = 0, (6c)

[2a 1 1 aIX+(2a1 2 +a 66 )oY Y+(2a13 +a 5 5 )0] 'yz +a44 Tyz ,xx +a 55T yz,yy

+a= 0, (6d)

(aa 6 6  x +2azzo

Ma12+a6 )a x+2 a 220y +2 23 +a44 xz +a 44 T X21 X+a55T XZ,yy

+a6 X Z= 0, (6e)

Ma13 +a55ax (a23a 44a y +a33 z lxy+a 44 TXY,XXa 55 TXY,yy

+a6 XY,zz = 0. (6f)

The thickness of the plate is measured in the z-direction.

Following [I I we split the stresses applied around the edge into

even and odd parts with respect to the variable z, namely
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- - () + (0)n n (e}+ n etc.; similarly the face conditions are rewritten

in terms of "even" and "odd" functions as

-(0) (x,y,h) p(xv) -a + bz "' 2 2 (7a)

-(0) _ p(x,y) = a - baz 2 - ' (7b)

a(e) (x,y,+h) _q(x,Y) = a b (8)

The plate problem with applied boundary-forces a n (s,z),n

-(0) -C(e)ns (sz), Tnz (sz) with face-forces (7a,b) will be called

Problem IIa after [ 11, whereas the plate problem with applied

-Ce) -C(e) -(e)
boundary-forces a (sz), ens (sz), Tnz (s,z) and plate

forces (8) will be called Problem lIb. The Problem IIa is a pure

bending problem, while the Problem IIb is a generalized plane

stress problem. The plate problem we consider may be uniquely

decomposed into the pair of problems (IIa,IIb) as described above.

As in [ 1] the Problems IIa, and 1ib also split; indeed we

may introduce Problems III, IV, V, and VI such that

solution III + solution IV = solution lIa,

and

solution V + solution VI = solution IIb.

This is done by seeking solutions in terms of even and odd parts,

namely u=ue+u 0, Ox=O+a , etc. Upon substituting these into

the system (5a-5c) and (la-lf) the resulting equations separate

into two independent systems, namely we obtain



Problem III

0 0 0 0 0 0
unknowns 0 0 30 'eT 0 , 0 0 I V odd in z

T e Tyz, We even in z

(0) -(0) -(e)
boundary a n (sz), T(0) (sz), TnZ (s,z)
conditions 

nz

z (x,y,h) = - . z (x, ,-h) = .p.

Problem IV

unknowns aY a , ez Txy, ve  even in z

I T yz 0, W0 odd in zxy'Y-e ' -ne0 ' -n 0
boundary 3e=O, -e =0 To =

conditions n n nz

ae (x,y,±h) = 0.
z

Problem V
unknowns Y ex eO ayo T e , e e Ve even in z

Tx0 Tyz, w0 odd in z

boundary a ne(s,z), -e (s,z), - (s,z)

conditions n

Ce (x,y,2h) =
z 2

#Problem IV represents a rigid-body motion.



Problem VI

0 0 0 0 0 0unknowns 0 ix Oy, 0z, Txy , u , v odd in z

Ty 1yz' even in zxy yz

boundary -- -0 ,e
conditions OnOf' rns

= 0  nz

o z (x ,y , +h )  = 0.

Analysis of Problem III

Since we wish to obtain asymptotic results as h.0 we introduce

a new thickness variable c.=z/h, rc[-i,l1. Likewise, in order

that stresses and displacements will not vanish or become

unbounded we set as in [1 1

-~0 -(1)O = 0 (n (s,<)h
n odd in t, (9a)

-0 -(i) ( , )
Tns T ns (sr)h

nz --(2) h2 even in , T(2)n z (s,±l)=0. (9b)

On the top and bottom of the plate we require as Friedrichs and

Dressler [I] that

7 xz(x,y,+l,h] = xyz(X,y,+l,h) = 0, (10a)

0 z p(V)(x,y)h, (10b)

- 1 (3) 3
0 z 2V (x,y)h (10c)
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In terms of the x,y,C coordinates our system (5a-5c), (la-lf),

(6a-6f) become

ha +hy +T 0, (Ila)
X,X xy,y XZaC

h r +hao~ +-r =ZC 0, (11b)
hxy,x y,y tyz,i

+hT y = 0, (llc)

hTxz,x +hTyz,y +z,; 0, (11c)

Ux aliI +ai2 ai 3 az' (12a)

V,y = a12ax+a2 2 ay+a 230z ,  (12b)

w, = ha 1 3ax+ha 2 3ay+ha 3 3az' (12c)

ha 4 4 Ty = V, +hw, y, (12d)

hah55Txy hW,x+U, (12e)

a 6 6Txy U, y +V, x, (12f)

-a 4 4h 2 a x+2a 1 3h a X'Y+2a •2 oC +(2a 2 3 +a 4 4 ) h 2a x~x ,y+2a~a x  (oY,yy

+ah2 =0 (13a)

+2a 2 2 ay,+2a 3 3 h a zyy+(2a2 3+a 4 4 )0 = 0, (13a

(2a 1 3 +a 5 5 )h 2  +2 2 h~ y a

ax,xx+2allax, +xx-a55 h 2 y,yy
(13b)

+2a12 yo +2a3 3h
2o z,xx+( 2 a13+a5 5 )0 Z, = 0,

(2a1 2+a 66 )h
2 a +2alh a +2a h a

a ,2 y h2a h a +2a h2 a+(2a 1 2+a6 6) hoy' +2ay 3  z,xx 13 zOyy (13c)

-a66 z =0,

2a lhax+(2a 12+a 6 6 )hoy+(2a13+a5 5 )ho z
] , +a4 4 h T

+a 5 5h2 T Yz,YY+a 6 6TVZ, (13d)

Ty z .= 0
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(2a+a)ho+2a22hoY+ (2a 23+a 44)ho z xt + 44h 2 T[ 1266) hcx22 34' x 4 xz,xx

v+ h2 T +a 6 6 rTxz,rr = 0, 
(13e)

1(2a 1 3+a5 5 )h 2a x+(2a 2 3+a 4 4)h 2oy+2a3 3h2Oz , xy+a44h2xyx x

+a 5 5h
2Ty +a6 6 Txy,Cr = 0. (13f)

Using the equations (11,12,13) we seek an interior expansion

for the three displacements and six stresses. We assume each of

these unknowns have asymptotic expansions of the form

u(x,y,c,h) = u(k) (x,y,)hk, etc. (14)
k=0

As in f I we obtain for the h0 step quite directly that

Tz(0) =-T (0) = a(0) = v(0) ( u(0)= T() 0, and that w( 0):=W(x"y)
xz yz z V xy 0 antht:Wx)

is independent of C. The equations for o( 0 ) and a(0) become
x y

* (0) + (0) = 0
llx 12 y

(0) + a () = 0,12"x a 2 2 y

which lead to o(0) = a(0) - 0 providing that
x y

a 1aa (I-V12V219' 0.
11 22 -a1 2a2 1  E1E 2  1 2 2 1

The analysis for the h1 -step is similar to that in [ I so we

list the results

T (1) ) a (1) = 0
xz yz z

w ( 1 )  : W (1) (x,y), v ( 1 )  := V(x,y)r, u (1):=U(1) (x,y)C,

() T() (x,")xy xv
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Furthermore, providing that condition (15) holds we have that

()(1) (1) )a I := (x, V) 1, (3 := (x,Y)r,.

The h-step leads as usual to

a(2) 0 (2) .-T (2) (Xy)C T (2) :T (2) ( i-c )
z xy xy yz yz

T(2) T ( 2 ) (x,y) (- 2) v (2) :=V (2) (xv)1
xz x

u (2) :=U ( 2 ) (x,y)C,

and providing conditions (15) is met, we have also

'2 (2) (2) (2)
a2) x (x,y), oy = (x,v)c,

plus a new result, namely

(2) = 1(a 1 3  () + a 2 3 2

In terms of the function W(0) it is possible to represent (i)Ix

(2)
and I as

(1) 1 /- w(0) + a ( )
(X,y) = aW() + a (15a)I ala2a 22 'xx 12 ,yy

and

(10)I (x,y) = 1 1 w (O) + a2(0) (15b)

Y a11 a22 -a 12 yy

respectively. Expressions for T , T(2 ) and T (2) m

be found in terms of W(O) (x,y); these are
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T (1) 2 2 W(0) (15)
xy a66  xy

T ( 2 ) (x, y) (a 1a W( 0 )
xz 2a(a a -a2 22a 6 6  xxx

a6 6 (a 1 1 a2 2 1 2  (15d)

2 (0)
+(2a 1 1 a2 2-2a 12-a 1 2a6 6 ) yyx)

T ( 2 ) (xy) = 1 2 a a W(0)
yz 2a6 6 (ala 2 2-a12 ) (a 1 6 6 'yyy

11a 221
+(2ala2-2- a12a6 6) wOxxy) (15e)

Using these in (llc) leads to the following differential equation

for W

a2 2 a 6 6 xxxx +2(2a 1 1a22 -2a2-a 1 2 a 6 6 )W xxyy

(15f)
+a a W'0 ) 3 a (alla 22 -a 2) p( 3) (xy)

11 66 yyyy -2 66 2 (

We observe that equation (15f) is the equation of a thin,

orthotropic plate as presented in the book of Lekhnitskii [ 3 1.

It is interesting to note that this reduces to the result of

Friedrichs and Dressler for the isotropic plate.

The Boundary Layer Problem

We first expand the edge stresses in powers of the arc length

variables about s=0, and then replace s by th

;(l) (s,)h = 5(I)(O,c)h + (I) (0,.) 2 + . . . (16a)
n n n,s

-(1)(s,C)h = T ()ns (O,r)h + ( , (O,)th2 + ... (16b)

-(2) 2 -(2) 2 + ;(2) 3

Tn (s,4)h = (O,C)h 2 + (O,c~th3 + .. (16c)Tnz ' =nz 'nz,s'
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and the face stresses as

- -=(3) 3G (x,y,±1,h) = -p( 0 0 h +..,(17a)z z 00

T=T 0 for c= ±1. (17b)

If the boundary curve B is parametrized by x=x(s), y=y(s) then

under the transformation E=x/h, n=y/h we obtain a new boundary

curve B* with arc length t=s/h, where the parametrization is

now given by E=E*(t,h), n=n*(t,h). The unit tangent and normal

vectors are given by [X s(t,h),Y s], [Xn 'nnI respectively. In

this notation the edge conditions may be rewritten (see

Lekhnitskii, pg. 2), as

-(1),0h
0n (0,0)h + n~1 ,s )h +

- x (*n*4h)+2 xt+Y n a (18a)

T(1 (0, r) h + r (0, c)h t +
ns ns,s

-X nY sa z+[X nY s+X sY n1T x+Y nY s y (18b)

-(2) 2 -(2)2
T1 z (0, )h + T nz s (0,C)th2 +

~Xn Txz + Yn Tyz* (18c)

Here we have used the notation of IIto indicate that

,(r~n,,h) a(h~,hn,Cjh), etc.

in what follows we match interior and exterior expansions to obtain

the asymptotic behavior of the various terms in the plus super-

script function expansions as C4--m; for details of the

procedure the reader should consult [I 1



The limit domain in the E ~ space is given by D:{~,)

&<O, Ink-, -l<c<l}. We illustrate this by showing its cross-

section in the &-C plane as

C B

D A

The segment AB corresponds to the boundary edge, whereas BC and

AD correspond to the top and bottom faces respectively.

The h 0step

In the limit domain in the C,n,i;-space we obtain the

following boundary conditions at the two faces and the edge

+ (0) + (0) + +(0) =0on =l(1a
az Tyz Txz 0onC=t(1a

aI0 x Ti0 =y T0 - 0 on & = 0 (19b)

At C=-- G+O ( F,,,)a (00~(,O,c9. Furthermore, since for the

interior problem am TO (0=T 0= we obtain the boundaryx Txy - xz

conditions

aO -y z 0 at ~ w(20)

As in (Ione has the conditions
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+(0) 2+(i) n+(n-l)
__ n_ = , - , a.., = 0 O, ... (21)an n 2 n n

which leads to a splitting of the stress system into a plane

strain problem involving six equations in the four unknowns

+(O) +(0) +(O) +(O)
x 0) a +(Tx and into a torsion problem having three

equations in the two unknowns +(0) +(0) Obtaining the asymp-xy- , Tyz•

+(0) +(0) +(0)
totic conditions for a, y oz  from the interior solu-

tions and integrating the zeroth under system yields

+(0) _ -1 +(o) +(o)
y a 22 1a2 x +23 z  -

Since all applied stresses are zero on the boundary of the

+(0) +(0) +(0)
limit domain, we conclude as in [ 11 that ax z Txz , are

identically zero. This implies that +(0)-0 also. The torsion

problem has vanishing boundary conditions and therefore it follows

+(0) ,+(0)_0
that Txy =Ty z

1The h Step

We consider next the plane strain problem for +() T+(1)X xz+Mi +(J)
az  ,Ayp . Since all n derivatives vanish we are led to the
'z 'y

following six equations (Here we have suppressed the +(I) super

scripts in our notation.):

x, + T -- 0, (22a)

x + z ,  = 0, (22b)

-a44Gx,& +2a1 2Ox,C +2a22 y,;, +(2a2 3+a4 4)O , =0, (22c)
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(2a 1 3+a 500C +2a 1 G +2a 23  +2a 12vr +2a3 3  ,

+(2a 1 3+a 5 5 )Oz = 0 (22d)

(2a1 2+a 6 6 )OxC +2a 2 2 o 0E+2a 2 3 Oz,E&-a 6 6 '1z,C =0, (22e)

[(2a12+a 6 6)Ox+2a 2 2"y+(
2a2 3+a4 4 )Oz],& +a4 4 Txz,E (22f)

+a66TxzC T =0.

Equations (22a,b) imply the existence of a stress function

e:=0(C,c) such that ox=:OI,, oz=:,, Tz:-,
• From

this eauations (22c-22f) may be rewritten as

-a 44 0, CC&" +2+2a 2 2o, +(2a 2 3+a44 )EOi =0, (23c)

(2a1 3+a 55 )O, &+2a 1 1 , +2a a +2a12y,(

(2 3d)

+2a 3 30, E +(2a 1 3+a 5 5) e, = 0,

(2a1 2+a 6 6 )0,+2a2 20,' +2a2 30, -a 6 60, E =0, (23e)

[(2a12+a 6 6 )o, +2a 2 2oy+(
2a2 3+a 4 4 )0, C],

-0, &a 44 -a6 6 , CC  = 0, (23f)

Integration of (23f) leads to

a 22 CV = -a120,,,-a 230,1W+l(M+Y2(

= -a12Gx-a 2 3Oz + 1()+i 2(0)

Using the interior expansions and matching, one obtains the

asymptotic behavior as - from which follows
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a2 2Cy = -al 2 ax a2 3Gz + cIC + c2C + c 3 ; (24)

however, as ay is odd in the C-variable we are forced to have

cI = C 3 = 0. After some further manipulation with the equations

(23c-e) it is found that 0 satisfies

(a 2 2 a 3 3 -a 2 3)0, (a 2 2 (2a,+a -2a a )0

2 0. (25)11 (al22-a12) cc, =

For the case of an isotropic material equation (25) reduces to

the biharmonic equation as was shown in the paper of Friedricks

and Dressler. For a material with one plane of isotropy the

equation becomes

(I--rv G' , + 2(1-vvl'), + F-(.- 2 ,C=0; (26)

whereas for an orthotropic material (25) may be expressed in

terms of the elastic coefficients as

2v1 3 +1 2

k__-23v32)FF+ +E E12 2
3  ' 1  3 1

+ -i(l-v 1 2 v2 1 ) 0 , 0. 
(27)

1

Equations (26,27) show the three-dimensional nature of the equation

which 0 satisfies in that it contains elastic constants

associated with the z-direction.

Recalling that ax=:8, , Gz=:, K , - :,, we obtain

the following boundary conditions for 0, namely
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= (l)( (, )
0, n on AB (28a)

=0 )

and
and 00 on BC and DA (28b)

On CD we obtain

(1)

0, = (0,0)C, and 0, = 0, = 0. (29)

(1)
From (24), (29) and the fact that cy= I (0,0) on CD the

x
expression for ay becomes

a22'y = -a1 20' -a2 3 0'+(a2 2  x (0,0)+a 12  x

This completes the h -step for 'r z'Txz and a y ,modulo the

fact that our plane-strain problem is defined only in terms of

the "interior" stress problem evaluated at the edge of the plate.

For further details on how to determine the proper boundary con-

ditions for the interior problem in order to determine

(1) (1)
(0,0), (0,0) the reader is referred to ( 1], pp. 21-22.

x x
We turn now to the torsion problem for +(l) +(l) a

TV ,v T yZ , as

above we shall omit the +(l) superscripts.

Equations (11b), (13d) , (13f) reduce to

Txy, + T = 0, (30a)

a44Tyz,E + a6 6Tyz, 0, (30b)

a44 TyW + a6 6 Txy, 0 , (30c)
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Introducing

Txy -Tyz (31)

allows (30b,c) to be rewritten in the form

a401U'& + a66 ,,, = C, (32a)

a440,C + a660,cc = 0, (32b)

which imply that

a440,U + a6 60, c = 0, (33a)

where 6 is an arbitrary constant. This reduces to the

Friedricks-Dressler form, Ao=&, when the material is isotropic.

When there is a plane of isotropy this becomes

E(l+v')O, + E'(l+v)o,c = 6 , (33b)

and for an orthogropic material equation (33a) in terms of its

elastic coefficients is

1 I?'230,& + = 6.

The boundary conditions for (33a) are

(0,n,C) = 7(i)(0, ) on AB (34)

' xy ns

and
+(1)

0 = -t (&,n,-+l,h) = 0 on BC and AD. (35)

+(1) ()Since T xy T ( I ) (O,0)C as -, we have

, T 1 (0,0)6 on CD. (36)

xy

This boundary value problem may be solved by Fourier series as

suqqsted in [ I I. The arbitrary coefficient is determined to

be 1(1) (0,0) .
xy
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The h 2-Step

Here the boundary conditions are, as usual, the same as in

[ ; the reader is referred to equations (51-55) of this work

for details. We treat next the case of plane-strain for the
+(2) +(2) +(2)

so-called "excess" stresses, [1], pg. 25, (2) T(2) (2 and
--~n xz n' Tx,n,an

+(2)
o .* As has been our custom we introduce a stress function

r( ,C) such that

rF = ,nIr, "- =C , r,,, TxZV (37)

Then r is seen to satisfy

(a 2 2 a 3 3 -a 2 3 ) +, +(a 2 2 [2a 1 3 +a 5 51-?a1 2 a 2 3 )r,

(38)

11 22 a 1 2 )r ' 0.

Furthermore, a Y is found to be

a222-y,n = -a 12-x ,-a 23-z,n+l(E)+2 ( C)  (39)

= -12 ' -23 'EE ¢ ( &) + 0 2 ( ) "

From the fact that y is odd in C and all the stresses

vanish at infinity we conclude 1_-2-0.

+(2) an
We turn next to the "excess" torsion problem for xv,n  and

+(2) do h
+(2) and following our previous notational abreviation drop the

+(2) superscript. We have from (30a-c)

T 0, (40a)

a44 Ty, + a = 0, (40b)

a44Txv,nE+ a6 6rxv,n = 0. (40c)
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Setting , Tx, :=-Tvz,n we obtain after integration

and considering the behavior as - that

a44, + a6 6 ,C = 0. (41)

Again the "excess" stress can be determined by solving (41) with

0 prescribed over the boundary of our fundamental strip. We

must now consider the system of "excess" stresses themselves,

namely functions of the form

+ 2 ( ,n, ) := Z 2) (E, )n + Ai(F,n). (42)

The equations for the Ai (&,n) are obtained by direct substitution

into the nine elasticity equations in the E,n,t defining the

(+)2 excess stresses. As before, the system splits into two

independent sets one which we refer to, after Friedrichs-Dressler,

as "auasi-plane-strain" and the other as "quasi-torsion."

Quasi-plane-strain

From the equations (lla), (lc), (13a), (13b), (13c), and

(13e) we obtain

+(2)
A X&+ A x =-r T-x, , (43a)AX,F +XZ, xy,rn

+(2) (43b)AXZE + Az, = yz,(

-a4 4 AX+2a1 2A X +2a 2 2 Ay, +(2a2 +a 4 4 )AzC =0 (43c)
5544x, ,+2a 2A A .+2a ( 3+a Az,

(2a1 3+a 55)A x,& +2allAxc+2a23 Ay,C +2a12 AV
(43d)

+2a3 3Az +(2a 3 +a5 5 )Az, 0,

(2a12 +a6 6 )Ax,& +2a2 2A .,&+2a 2 3Az E-a 6 6Az r = 0, (43e)



23

M 1.2 +a 66 )A x+2a 22 A y+(2a 23+a 44)A z ] , F. + a 4 4 A x z ,

(43f)
+a6 6A xz, = 0.

For an orthotropic material these simplify somewhat, namely

equations (43c-f) become

E' E'

(-+v')A + A , (A +A )-A 0, (44c)

E' E'

(l+')A, +(l+v)E- A -(Ax+A +A ) (A +A
y~r Vf?,C xy z '?F x~rc ylci

(44d)
-A =0,

(+')A' 0 (44e)
U E A7 rr._i x A= 0, (44f)

[Ax+A + Az1,. +(+v','F A +-l+v)A 0, (44f)xyE z Fr V xz,'r ~ x z, r r

which in turn reduce to that of 1 1 for the isotropic case. The

boundary conditions on the nuasi-plane-strain are the same as

those in Friedrichs-Dressler, pp. 28-29.

Quasi-torsion

From eauations (lb), (13d), (13f) we obtain

a1 2  + a 2 3  (45a)
A xy, + Avzr. = -On -a a2 (45a)

.'n a 2222

a12a 44 Avz orrt+a 6 6 Ayz l u.r [(2a ,, a 22(2al2+a 6 6)QP, r 45b

a23
+(2a 1 +a 23---(2a 12 +a6 6)) , 1,

13+a55 a22
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a44 Axy , +a 6 6AX Y, = M-2a1 3+a 5 5-a- --22a2 3 +a4 4)) ,

(45c)+ (2a 3-3(2a^ )+a ,
33 a 22 23+a44 [

Ecuations (45b,c) reduce to the Friedrichs-Dressler case for

isotropic materials, namely we have

AAy z  -AF, , (45b')

and

AAxy = -Ar, . (45c')

xyI
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