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AN ANALYTICAL INTEGRATION OF THE
AVERAGED EQUATIONS OF VARIATION DUE TO

SUN-MOON PERTURBATIONS AND ITS
APPLICAT ION

C.C. Chao

The perturbed variations of the motion of earth
satellites due to the sun and the moon are derived
from a singly averaged disturbing function. A
first-order solution is obtained by analytically
irtegrating the equations of variation including J 2 ,
JZP J3 and J4" The literal expansions are car-
ried out by computer in terms of classical ele-
ments. The secular part of the first-order solu-
tion is included in the reference orbit. The orbits
of the sun and the moon are assumed circular,
and the motion of the moon is converted to the
earth equatorial system with certain approxima-
tions.

Results based on the GPS (Global Positioning Sys-
tem) satellites compare favorably with numerical
integration for time spans of up to three years.
An algorithm applying the first-order solution has
been developed to achieve the desired strategy of
orbit maintenance for the GPS Phase III system.
The analytical solutions provide insight into the
long-term (1O-yr) variations of the orbit elements
of GPS satellites.

INTRODUCTION

The need to rapidly predict the long-period and secular perturbations of
artificial satellite orbits increases as more high-altitude satellites with
long life spans, such as the GPS (Global Positioning System) satellites,
are launched into orbit. By the late 1980s, a total of 18 GPS satellites
will be orbiting around the earth for 12-hr periods. The ground tracks
covered by these satellites are required to repeat every 24 hr to insure
a continuous global coverage. Regular orbit maneuvers must be per-
formed to maintain the specified repeating coverage against long-term
perturbations due to the sun-moon attractions and the earth gravitational
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potential. The desiied strategy for orbit maintenance maneuvers, as
requested by the GPS program office, is to minimize the total number
of such maneuvers during the life span of these satellites. To achieve
this strategy, an analytical solution which predicts the long-term varia-
tions of the orbit parameters is highly desirable in determining the
proper AV at the time of each maneuver.

During the past two decades, efforts have been made by many research-
ers to develop general perturbation theories for the long-term varia-
tions of planetary and earth orbiters. To name a few, Kozai 1 , Kaula 2 ,
Musen3 , Murphy 4 , and Estes 5 have either developed or applied analy-
tical solutions to the problem of third-body perturbation for artificial
satellites. Kaufman 6 , Uphoff7 , and Cefola, et al. 8, have applied the
method of averaging, in a numerical approach, to the prediction of the
long-term variations of planetary and lunar orbiters. Their results
show a tremendous improvement in speed over that obtained from the
n-bod'r numerical integration, yet they do not give the analytical ex-
pressions which are preferred in this application.

The purpose of this analysis is to further expand the singly averaged
disturbing function of third-body perturbation arrived at by Kaufman in
terms of classical elements, and to apply the concept of the interme-
diate reference orbit for obtaining a first-order solution by analytical
integration. The averaged equations of variation for zonal harmonics
up to the fourth order are included. The literal expansions, partial
differentiations, and integrations are carried out by a computerized
series expansion technique employed by the author in studying the mo-
tion of the Galilean satellites 9 . The package of series expansion soft-
ware used in this analysis is the latest version designed for the CDC
7600 computers by Broucke 10 . Although similar work has been done by
Estes, the author considers it necessary to carry out the expansion and
integration of this particular application for two reasons. With the help
of computerized expansion it would take less effort and be more con-
venient to start from the averaged disturbing function developed by
Kaufman than to use the analytical solutions published by Estes. Fur-
thermore, Estes uses Brown's lunar theory for the motion of the moon
which carries a great number of terms and is deemed to be unnecessary
for this application. In this study, an earth equatorial coordinate
system is used with orbit elements of the moon projected into this sys-
tem using spherical trigonometry. For time spans of less than three
years, a mean inclination and nodal rate interpolated from the true
variation have been found to be good approximations for the analytical
integration.

The rest of this paper is divided into two parts. Part I describes the
theoretical formulation of the first-order solution and compares the
long-term variations of the orbit elements of the GPS satellites pre-
dicted by the analytical solution with numerical integration. Part II
presents an application of the first-order theory for the desired stra-
tegy of the orbit maintenance of the GPS satellites. Results of the
investigation of long-term orbit perturbations of the GPS Phase III sys-
tem are discussed.
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PART I: THEORETICAL FORMULATION

Averaged Variational Equations

The disturbing function due to the third-body perturbation may be given
in the earth-centered coordinates as

-i r, [ ro ro (1)

with

ju = gravitational constant (k 2 m')

r' = distance to the third body (sun/moon)

r = distance to the satellite

S = angle between the two position vectors, -r and-T'

For the sun-moon perturbations of artificial earth satellites, we note
that r/r' << 1. Therefore, we may expand the square root term in the
above equation and neglect all terms of order (r/r') 3 and higher.
Kaufman 6 has carried out the expansion and applied the method of
averaging to eliminate the short-period terms. The resulting disturb-
ing function is considerably simpler.

-a 2n'2(I31[2 ]( 2)3 2 21R' 2(AZ + B  +) L-++ Z (A z  B)2 2 1(2)

with
A=P.u'

B =Q.'
--4 -. =

where a, e, P, and Q are orbit parameters of the perturbed body and
a', n', r', andS' are parameters associated with the perturbing (third)
body. The u' is the unit vector of the position of the third body.

Kaufman numerically integrated the variational equations of classical
elements derived from the above disturbing function in terms of A and
B; he then demonstrated that his method had a 500:1 increase of speed
over an n-body numerical integration scheme. Although his method is
fast and reasonably accurate, it does not give the analytical expres-
sions which are important for analyzing and identifying the long-period
terms of the perturbations.

The purpose of this paper is to further expand the disturbing function in
terms of classical elements; thus, the variational equations (or per-
turbed equations) can be obtained by partial differentiation. With the
assistance of a computerized series expansion technique, we can expand

-7-
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the paramieters (A2 + B?) and (A2 - B2 ) in the disturbing function of
Eq. (2). The unit vectors P, Q, and -u may be written in terms of the
classical elements (Fig. 11 as

cos .Q cos W - sin S2 sin tw cos i

f sin.Qcos c cos Q sin (icos i

sin i sin (d

sin wi cos Q - cos 0sin S2 cos i

j-sin w sinS2 + cos (a cos Dcos i (3)

and 
sin i cos Wj

co 'cos u - sin S2' sin u cos i

u 1sin.Q' cos u + cos S2' sin u cos i' (4)

Isin iV sin u

where u is the argument of latitude of the third body.

THIRD BODY

SATELLITE ORBIT

EARTH EQUATORIAL PLANE

Fig. I Earth-Centered Geometry
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We can express A and B in terrnis of the angles as

A 7 . u' = cosw(cos u cos AQ i cos i' sin u sinAQi

- sinwcos i (cos u sin AQ- sin u cosAQ cos i')

+ sin i sin i' sin W sin u

B = Q . u' = -sin w(cos u cos AD + sin u sinAQcos i',

- cos W cos i (cos u sinAQ - sin u cosAQ cos it)

+ sin i sin i' cos w sin u (5)

whereA =Q -Q'.

In this first-order analysis, we assume that the third-body orbit is cir-
cular because of the small eccentricities of the orbits of the sun and
moon. The series expansions may start from A and B using the com-
puterized series expansion package. Each term of the series may be
expressed in a general form as

J 1 J 3 I1 12 3 14 sin

Term = C .14 (SI) (CI) (S13) (C13) (JIL + J 2 W + J 3 D
cosl (6)

whe re

1~ 3
C I  coefficient of each term

and

[SI sin i Lu

Polynomial CI = cos i Angular jW =W
Variables S13 = sin i' Variables D Q ADQ= _

C13 = cos i'

The two series (A + B 2 ) and (A - B 2 ) in the averaged disturbing func-
tion Eq. (2), and other intermediate series, are expanded in literal
form and printed out by a CDC 7600 computer at The Aerospace Corpo-
ration as shown in Appendix A, Table A-I. The variations of the classi-
cal elements of the perturbed body (an artificial satellite) may then be
expressed in terms of the intermediate results shown in Appendix A.
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d a
ct

de 15
t- -8- eys (IMW)

di 3 Ycsc i j7 32 5 1
+ e 2 ) IPO + e (IMO - cos i IMW)

dt -+ 3 e Coksin i IPS - IPC + 5e \ sn IMS - IMC

d__ 3 [3 2 2 5 _B2 d ldt- = gsV (A2 +B B)- 1 +-(A 2  - cos i-

3w2) 2 2 1 15 2o 2 2!

dM n - 2y 1 +.e 3 (A 2 + B) - 1 +-- e (A 2 
- B 2

3 2 -(A2 + B 2 )  1 + (A2 B 2 )  
(7)

where IMW, IMO, etc., are the intermediate series shown in Appen-
dix A, and

- n a- Rm

S - - e2

n - mean motion of the perturbed body

n'= mean motion of the perturbing body

Rm = mass. ratio, Rm = 1 for solar perturbation and
Rm = 1/81.3 for lunar perturbation

Those important terms which give long-period and secular variations
of classical elements due to third-body perturbations may be clearly
seen from the above equations. The averaged variational equations for
J 2 , J 3 , and J4 can be found in Ref. 5; they are included in Appendix B
for completeness.

Perturbations due to atmospheric drag and solar radiation pressure
are not considered herein because of their insignificant effects on very
long-period variations for higher-altitude satellites. The effect due to
tesseral harmonics (J 2 2 to J 4 4 , etc.) becomes important only when the
mean motion of the satellite and the earth rotation rate are
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commensurable. This effect will be included in Part II when this first-
order theory is applied to the prediction of the longitude of the ascend-
ing node of the nearly 12-hr orbit of GPS satellites.

Analytical Integration

Those equations of variation expanded in series shown in the previous
section may be integrated analytically to yield a first-order solution if
the proper rates of the angular variables are known. The concept of an
intermediate reference orbit or rotating ellipse allows us to have non-
zero rates for the Keplerian angular elements Q and w. The rates are
calculated from the secular terms in the equations of variation. They
may be summed up as

s sun moon J2 J4

S sun moon 2  4 (8)

The secular terms, by definition, are those terms containing only the
mean motion, eccentricity, and inclination which vary much more
slowly than the node and argument or perigee. Those terms can be
identified from the series, and they are

3 n 2 (I +-e2)
sun -- 1 - = cos i (3 si -I) (9)su n /l - e2

2 i 2.1
_ s" ( s i + 5 (10)

sun 4 n --e sin 1 (

When the third body is the moon, the above equations should be divided
by the earth-moon mass ratio (81. 3). The above expressions agree
with those derived by Kozai . The rates due to J? and J 4 are the
secular part (terms without the argument W) of Eqs. (B-l) and (B-3).

nC2 - 2n Cos i -2 9n 2- cos i [3_65sin i + + +-4sin 2. i 5 2 ]

bi2 =

tJ2 = "2 nz-- (2 sin 1 2 -3 sinZ i -1 - sin 12 C2 4 24

+---s 7 nsin 2i +5 sin

2 ne 4 cos i 2(7 cos 2  + e 2 (21 2.
43) COS s - (11
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, 2 "4 1 2 2.
W - 4 18-28 sin i +21 sin I -sin i (7 cos i - 1)

4 L
) (", _99 sIn 2  567 4in

832in' e -8 1sin +-+-ss 1)] (11)

The mean motions n' of the sun and moon are known, and the integration
is performed on the variations with secular terms removed. The inte-
g rated results for each perturbation ( 2 , sun, etc.) may be expressed
in a series form similar to Eq. (6).

I J

N C S1I CI 1 C13 4e5
II" I 5 [I sin

I J 1 n' + J 2 6s + J3 (Ps - cosjlL+J2w + J 3 D

J =0
I

sin
- JL0 + JW0 +J3D0 (12)

cos

where

L = n'(t-t 0 ) + L 0

W = (t-t 0 ) + W 0s0

D = - (t-to) + Do

a nd

L 0 = argument of latitude of the perturbing body at to

" 0  argument of perigee of the perturbing body at to

D o  the value of (S-S'2 ) at to

The values of inclination and eccentricity of the perturbed body or the
satellite at the epoch time to are substituted into the polynomial vari-
ables SI, CI.... in Eq. (12). The inclination of the sun, if, is nothing
but the inclination of the ecliptic plane.

The inclination i', argument of latitude L, right ascension of the node
S', and rate b' of the moon must be computed in a special way because
of the earth equatorial coordinate system. From Fig. 2 and the rela-
tions of spherical trigonometry, we have elements for the moon re-
ferred to the earth equatorial system as

-12-
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SC os1 cos C cos i- sin sin ie cos Q.

ST ~ si- sin i sinQS2

L u +Au
e e

Au = sin - [ sinQ sinE
e sin ] (13)

sin i [ cosQ sin 2  sin c sin ie e e e (14)sini' + __ -___ _i __'sin i' osQ I cos ST sin i' tan i e

where quantities with a subscript e are referred to the ecliptic system.
The equations of Q u and i are found in the American Ephemeris.*
If we limit the time span of interest to a couple of years, a mean in-
clination and nodal rate interpolated from the true variations shown by
Fig. 3 should give a good approximation for the integration. This ap-
proximation is particularly good during the interval from about 1984 to
1992, where the variations in inclination and nodal rate are relatively
small.

MOON
ORBIT
PLANE

e ECLIPTIC PLANE

N EARTH EQUATORIAL PLANE

Fig. 2 Geometry of Orbit Planes

American Ephemeris and Nautical Almanac, published by the U.S.
Naval Observatory.
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1985 1990 1995 2000

29 - 10
020 21-

; =0.1

-0.2

120 90 60 30 0 330 300 270 240 210 180 150 120
2 e(deg)

Fig. 3 Variations of Inclination and Node of the Moon in
Earth Equatorial Coordinates

Finally, the first-order solution is the linear combination of the inte-
grated variational equations due to each perturbation.{! i! {! /! i! 0
6j =6D +6'S2 + I +Ils + 6IIS2 +j s (t-to)

J2 J3 jJ4 sun moon €s (15)

Comparisons with Numerical Integration

Orbit variations in terms of Keplerian elements are calculated from the
first-order solution for a span of 800 days. The initial conditions at a
common epoch of I July 1985 at 0 hr are listed below.

5 deg

a = 14341.8 nmi, e = , 1 30 deg 40 deg,0. 7 63 deg

Cd = 60 deg, M = 0deg
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Results of these six different cases are compared with the results com-
puted by the program ELEMENT, developed by B. Baxter of The
Aerospace Corporationll, which numerically integrate the singly
averaged equations of variation shown above in "Analytical Integ- :tion."
The same perturbative model including J2 through J 4 , the sun, and the
moon is used in the numerical integration. The comparison indicates
that the variations in eccentricity and inclination predicted by the first-
order solution agree amazingly well with that generated by ELEMENT
for low-eccentricity orbits as shown by Figs. 4, 5, 7, 8, and 9. The
discontinuity in slope in the curves of numerical integration is simply
caused by the rather large step size in plotting. For high-eccentricity
orbits, the agreement is generally good up to 400 days as shown by
Figs. 6 through 9. After 400 days, the prediction by the analytical so-
lution is noticeably different from the true variation.

0.01002 I I 1

0.01000

0.00998 NUMERICAL INTEGRATION

0.00996 FIRST-ORDER SOLUTION-

0.00994
CD

0.00992 -

0.00990 -
711/1985

0.00988- a= 14341.80 nmi
e = 0.010000

0.00986- i= 5.00 deg
a= 40.00 deg

0.00984- w= 60.00 deg

0.00982 1 1 1
0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0

ELAPSED TIME (days)

Fig. 4 Eccentricity Time History for Low Inclination
Orbit (i 5 deg)
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0.01005 I I I I
11/119851

0.01004-a 14341.80 nig
e = 0.010000

001003 -i = 30.00 deg
= 40.00 deg

0.01002- = 60.00 deg

0.01001
Cu

0.01000

0.00999

0.00998-

0.00997

0.00996-j

0.009901 1 1 1 1 I
0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0

ELAPSED TIME (days)

Fig. 5 Eccentricity Time History for Moderate Inclination
Orbit (i =30 deg)

0.7200 1 1 1 1 1 I

0.7 180 -7/1/1985

0.710 - a = 14341.80 nii
0.16 = 0.700000

i= 63.00 deg
0.7140 L = 40.00 deg

W = 60.00 deg
0.7 120-

0.7100

0. 7080

0. 7060

0. 7040

0. 7020

0.70001
0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0

ELAPSED TIME (days)
Fig. 6 Eccentricity Time History for High Eccentricity

Orbit (i = 63 deg)
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5.500d0

3. = 1440.00 dege=0.

i 605.00 deg

0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0
ELAPSED TIME (days)

Fig. 7 Inclination Time History for Low Inclination
Orbit (i =5 deg)

30.0;

30.6-

e 30.0

0.

71111985
29.4 - a = 14341.80 nmi

e = 0.700000e0.
29.2 - i= 30.00 deg

D= 40.00 deg 0
29.0 - = 60.00 deg

0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0
ELAPSED TIME fdays)

Fig. 8 Inclination History for Moderate Inclination
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65.0 ' I I I I

645 71111985
a = 14341.80 nmi
e = 0.700000

64,0 i = 63.00 deg

63.5 = 60.00 deg

63.0

z62.5

61.5 -

61.0 -

60.5

6O .0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0

ELAPSED TIME (days)

Fig. 9 Inclination Time History for High Inclination
Orbit (i = 63 deg)

This is probably because of the relatively large variations in the mean
orbit elements due to the high eccentricity. Nevertheless, the general
trend of variation in the 800-day span has been predicted by the first-
order solution. Table 1 shows the comparison for other orbit elements
_Q and w that are not shown in Figs. 4 through 9. Table 2 shows the
comparison for a GPS satellite with a = 14341. 8, e = 0. 005, i = 45 deg,
9 = 265. 4553 deg, and w = 90 deg.

The accuracy of the first-order solution may be improved slightly by
including the eccentricity of the orbits of the sun and moon. The
series expansion for such an inclusion was made; it is found that even
to the first order in eccentricity e, the total number of terms in the
disturbing function as well as in the equations of variation has increased
nearly three times! The penalty in computing time and complexity
would be too great for a small improvement in accuracy. Therefore,
we did not make the comparison with numerical integration.
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Table 2

DIFFERENCE BETWEEN FIRST-ORDER THEORY AND
NUMERICAL INTEGRATION

e i W
Days x10- 4  (deg) (deg) (deg)
from
Epoch N.1. Ae N.I. Ai N.I. AD N.I. Aci

100 49.73 0.02 44.899 -0. 002 260.,08 -0.01 91.95 -0.027

200 49.04 0. 15 44.827 -0.002 255.55 -0.01 93.79 -0.027

300 48.43 0.35 44.780 -0.003 250.54 - J04 95.85 -0.022

400 47.66 0.59 44.678 -0.004 245,63 -0.003 97.55 0.033

500 46.77 0. 92 44.661 -0.004 240.65 0.03 99. 56 0. 109

600 45.90 1.31 44.567 -0.003 235.71 0.05 101.24 0.24

700 44.74 1.7 44.547 -0.004 230.78 00.08 103.05 0.45

800 43.77 2.3 44.480 -0.001 225.81 0.10 104.71 0.69

N. I. = numerical integration of the averaged equations

AeAi. . . = (first-order theory) - (numerical integration)

PART II: APPLICATION

Background

The particular application, presented in detail below, is for the de-
sired strategy of orbit maintenance. During the mission design of the
GPS orbits, a family of orbits was numerically integrated with the
averaged equations 8 to study the long-term characteristics. For each
orbit a series of impulses or orbit corrections must be simulated
during the integration so that the longitude of the ascending node cross-
ing remains within a specified tolerance (*1 deg) for repeating ground
track coverage. The GPS satellites have a nearly 12-hr period, and
are required to have repeating ground tracks every two revolutions at a
specified longitude of the ascending node crossing. The initial condi-
tions are determined in such a manner as to synchronize the -1,apeating
ground track in the presence of perturbations. However, as time goes
on, the perturbations due to the earth gravitational potential (J2 ....

Z 2" t J 4 4), the sun, and the moon drive the longitude of the node away
from the specified value.

The method of orbit maintenance developed in Ref. 12 makes use of the
scalloping motion depicted in Fig. 11. The perturbation in semi-
major axis provides the restoring acceleration for a longitude drift
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induced by a AV perturbation. The method functions open loop, how-
ever, by utilizing the induced drift rate for the first correction in all
subsequent corrections. This leads to difficulties if the perturbations
in argument of perigee and right ascension of ascending node begin to
dominate the perturbation in semimajor axis as happens for certain of
the GPS orbits. The open-loop technique also fails to complete'y fill
the dead band even though the perturbed state, together with the con-
ditions of repeatability, is used to calculate each AV. This arises
because the AV is not adjusted by observing the depth of the scallop.

SATELLITE
ORBIT

GO aA EQUATOR

EARTH

EQUATORIALcI +p A " OPLANE

t OI--0 +O

a.It O0 + Pl -

Fig. 10 Orbit Geometry for Repeating Ground Track
Coverage (Q = 1 orbit)

An algorithm which applies the first-order theory for longitude predic-
tion, which in turn provides the desired strategy for orbit maintenance,
has been developed and employed for simulating the orbit corrections
during the integration of the 24 orbits of the GPS Phase III system.
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tre 10 illustrates the )rbit i mi ut ry . l()r rt ling ground I ra k
(overages. we require thai the lngituddV .a rh - L .\tJd f lh1. ;I,.s( , n n
node crossing of the satellite, XANX, repeats evvry Q rev(,lutions,, or

2N7T

a (t NP) + X -Qu( NP)2 7
at ANX 0 Q

with

N 0, 1, 2 .......

to =epoch time when the ascending node crossing occurs at
longitude XANX

P = nodal period

aG = right ascension of Greenwich

S2 right ascension of the ascending node

UPPER m
BOUND

XANX ANX

LOWER axANX
BOUND

to  tI  t2  t4

Fig. 11 Schematic Drawing of the Time History of
Orbit Corrections
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Assuming a constant earth rotation rate and a constant nodal regression
rate deterrmined from the perturbations due to J2, etc., at t we can
rewrite the above equation as

a (t0 ) + NP G + ANX = S2(t 0 ) + (t0 ) NP + 27rN (17)

As time goes on, the nodal period P and the nodal regression rate
vary due to perturbations; consequently, XANX slowly drifts away from
the original value. By varying Eq. (17), we obtain the variation in
XANX as a function of the variations in P and_ 2as

6XANX = [(t 0 ) -aG] (NP) +6S NP (18)

Since 6S2 is not constant, the nodal variation should actually be

f t 0 +NP

69NP = [ Q(t) - S(t 0 )Idt (19)

to

The term (NP) is defined as the variation in time measured in accumu-
lated variations of nodal periods since the epoch to. It may be ex-
pressed as follows:

to+NP

6(NP) ft P dt (20)

to

where OP/P is the variation in period per one nodal period, which may
be related to the variations of the mean classical elements through the
following derivation.

Let

227r (21)

u

then

6P 6u (22)

u

where u is the mean angular rate of the argument of latitude in the per-
turbed orbit. It has two components

u = n + u (23)
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The first is the classical component which is the mean motion of the
orbit; the second component is the mean variation due to perturbations
(as denoted by \ following Herrickl 3 ). We know from Ref. 13 (Chapters
15 and 17) that

u -52\ cos i = -Qcos i (24)

where .Q or 2 is the mean (averaged over one period) nodal rate of the
perturbed orbit. By varying Eqs. (23) and (24), we obtain to the first
order that

6u = 6n - 6£2cos i (25)

Substituting Eqs. (23) through (25) into Eq. (22), we have

6P 6n -6.Qcosi (26)
P n -2 cos i

where 6b is simply 52(t) - b(t 0 ), and the variation in the mean motion 6n
derives from the variation in semimajor axis 6a as

3 6a
6n = -4na (27)

After combining Eqs. (26), (27), and (20), and substituting Eqs. (19)
and (20) into Eq. (18), we obtain the relation between the longitude
variation and the variations in the mean classical elements.

t0+NP t0+NP
NP 3 n 6dt

(ANX = G-#cos i)f[Q(t) -Q(t 0 )]dt - a f d

to to (28)

where
a G - S2(to5

n - 2(to) cos i

The averaged equations of variation of 2(t) are derived and listed in
Part I of this paper. For satellites with mean motion commensurable
with the earth's rotation rate, the effects due to tesseral harmonics
must be included. The variations in semimajor axis are induced pri-
marily by the tesseral harmonics. Therefore, terms with resonant
angles must be carefully examined and integrated. Kaula 1 4 provided a
set of integrated equations in a general form for perturbations due to
tesseral harmonics. For the 12-hr (Q=2) orbits, we include J [(2 2, 1,
1), (2,2,0, -1)1, J321(3,2, 1,0), (3, 2,2, 2), (3,2,0, -2)1, J42[ (4,.2, 1, -1),
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(4,2,2, 1)], and J 4 4 1(4,4, 1,0), (4, 4, 0, -2jj as

Aa .1a
n 2(1-2p+q) Fimp GIpq ciJ

n e O Imp\ (29)1/ ' si i44' 0 Gjpq (-Irmpq-

whe re

C2mpq 2 + cos [I-2p)w + (-2p+q)M + m(Q-aG)-X/m]
C m (1-2p)W + (1-2p+q)Ml + m(.6- a G )

m (-2p)w + (1-2p+q)M + m(Q- aG)

= tan-1 ( S i m ) = -tan-(_ C m

m Ctanm m Sim
1-m even 1-m odd

M = mean anomaly of the satellite

The functions F2 2 1 , G 2 1 ' etc., are the inclination and eccentricity
functions tabulate ! in Appendix C.

For orbits with periods of nearly 12 hr, the divisors in Eqs. (29) and
(30) may become very small.

(1-2p)L + M + 2(6- aG) f 0 (30)

Generally speaking, the first-order solutions [Eqs. (29)] usually break
down in the vicinity of a resonance. Fortunately, the orbit maintenance
corrections confine the value of 91 to within a small range for repeating
ground tracks. Consequently, this stabilizes the small divisors and
makes the first-order solution valid. In the event the divisor becomes
smaller than the known angular rates K4, 6I, and .0 of the orbit
(-2 X 10 - 5 rad/day), the following approximation should be adequate
for predicting the variations from about 200 to 400 days for orbit main-
tenance purposes.

da = constant , = constant (31)
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The right-hand side of the above equations can be obtained by differen-
tiating Eqs. (29). The additional nodal rates from Eq. (31) should be
added to the total nodal rate .s as shown in Eq. (8).

An Algorithm for Orbit Maintenance

The desired strategy of orbit maintenance is to keep to a minimum the
number of corrections, i.e., impulses, within a given time span. In
other words, the AV should be correctly determined so that the time
interval between two adjacent corrections is a maximum without getting
outside the specified range as shown by Fig. 10. For GPS satellites.
the time interval between corrections varies from 200 to 400 days; it is
too costly to numerically integrate the orbit from ti to t 2 (Fig. 11) in an
iterative manner for the determination of AV at t 1 . Thus, the first-
order solution which predicts the longitude variation due to the effects
of the sun, moon, and earth gravitational potential as shown by Eq. (28)
is employed to determine the AV at each orbit correction.

After the integrations in Eq. (28) are performed, the longitude varia-
tion may be expressed in series form

XANX = N_ Bil [i (t-t) + gi] - (gi) (32)

i [ Cos cos J
where 6 AANX is the variation of longitude of ascending node from the
epoch value at time ti when an orbit correction is made, and Bi, 'i, and
gi are constants computed from mean orbit elements i, e, n, and
initial conditions.

As shown by Fig. 10, the first orbit correction should be made at t 1
when the value of XAN X reaches the lower bound. The desired strategy
requires that the maximum variation of XANX occurs at tm (the re-
storing force is the tesseral harmonics) with its magnitude nearly equal
to the specified tolerance, say2 deg. Let tj be the time of an orbit
correction and tm at some time between tj and tj+,, which is the
time of the next correction. We have

6 XANX(tm) = Zdeg = N B i  [ (tm-t ) + g i n ) (gi)

Cos Cos

+ AXi(tM (33)

26mt-')g
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With the slope equal to zero at tin, we require

Nco
6

XANX(tm) = Bi)'.i )[i (t m-t.) + i . = 0 (34)

i=l (-sin/

The second term on the right-hand side of the above equations is intro-
duced when an orbit correction is made at tj. The introduced constant
rate AX - at t. is an unknown parameter to be determined. With the
above.etuati~ns we should be able to determine the two unknowns t
and AX. An interative formula derived from Newton's iteration m
method is constructed to compute tm -

t- (35)M m 0  F'(m0

where

N [Isn 1 ijCos 1
F(tm) =Z-__Bi I i - gi (tmtj) i -Xdbound

i=1 cos cosJ sin J

N sin
F'(tm ) = B iy'i(tm -t J t i  (6

i=l cosi

with

0. =" Y" (tm -t) +g.

6 ,bound = specified bound, 2 deg

The parameter X is a factor which is slightly smaller than 1, so that
the true variation will not exceed the specified bound 6 bound. Once
t is obtained after iteration, A is determined from Eq. (34). By
dflferentiating Eq. (28), we can d termine the correction for semi-
major axis from the value of AXj as

-- 
(37)
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or a corresponding correction to the period of

(A (38)

The initial guess of tm may be determined from an aproximation that
the small divisors in O Eqs. (29) or (30) vanish and 6b is zero. Then

= constant = E (39)

a

or

a

By satisfying the same conditions, Eqs. (33) and (34), we can solve for
t asm 

0

4 X 6 Ab (04f 6bound

t t. + 3:nd (40)

Usually, the longitude of the ascending node crossing is sustained to the
initial value within a dead band of * 1 deg. The sustenance strategy
functions by applying impulses at perigee when the longitude XANX
violates a boundary of the dead band. The impulse is performedto
adjust the period in order to give a repeating ground track at the time of
the correction; that is, the synchronous period is redetermined to
include the effect of perturbations in the elements and the predicted
variation, using the new algorithm described above. The new semi-
major axis is determined by the following relation:

2 7r + APi + AP2 + AP 3 = Prequired (41)

where

a = new semimajor axis

AP, = period variation predicted for optimum orbit sustenance
(the new algorithm)

Prequired = 27ra G- .4)
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and

aG = rate of the right ascension of Greenwich,
7.292115431XI0 - 5 rad/sec

= mean rate of the right ascension of the ascending node

The period variation due to J2 effect, AP 2, is obtained from Claus and
Lubowe 5.

. (2.AP 2 3 e!z_3_1 4-5 sin2(%)[a)3 1 (42)___
P a r) (1+e cosw) 21(2

with a - earth equatorial radius, r = a(I-e 2 )/(1+e cosw), and P =
2v7eT/a . The period variation due to the sun-moon perturbation is
similarly derived as

P3 3 /n\ 2 /a'\ 3  2 9/2
- 3 3 (n ri (1-e 2 ) Rm cot i (xy' Ul + yy' U2)i nZr ) Oi)(43)

whe re

1:solar perturbation
Rm = mass ratio = 1/81. 3: lunar perturbation

2i'

x = cos (L-4Q) 2 sin 2 i sin L sin ADQ

y = (1 2 sin2 -)[sin(LAP -2 sin2  sin L cosAQ

+ sin i sin i sin L

y' = Oy/i = cos i sin i' sin L - 2 sin i sin (L-Aa
* i'

+ 4 sin i sin 2 - sin L' cos AQ

2fr

Ul = sin u cos u du/[l+e cos(u-4)] 6

0

* 21ffre sin2W(l + e2 /2)/[4(1 - e2)11/2

2f
2 6U2= sin u du/[l+e cos(u-c)]

0
=[Ir/(l-e L/ + (5-7-cosW)e ! (5-7cos2w)e
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For GPS satellites, the orbits are nearly circular (e : 0), and Eq. (43)

can be simplified to the following form:

P n Rm cot i (yy') (44)

This algorithm has been incorporated into the computer program
ELEMENT for an analysis of the orbit perturbations for the Phase III
GPS satellites.

Figure 12 gives an example of orbit maintenance with this algorithm.
This example is one of the 12 cases at 55-deg inclination of the Phase III
system1 6 . For this particular satellite, each correction requires
0.6 ft/sec or less in AV, and the total AV used in the 10-yr period is
about 7. 5 ft/sec. The first and third corrections are caused by a slight
overshoot at the upper bound (271 deg). This occasional overprediction
seems to reveal a limitation of the first-order theory assumed in the
new algorithm. To minimize the number of over- and under-predic-
tions, a self-adjusting mechanism is incorporated. After an overshoot
correction, as shown by t 3 in Fig. 12, the predicted maximum value of
the variation in XANY in the next interval is scaled down by 10%. If the
previous maximum -6ANX is more than 10% undershoot, the next maxi-
mum 6 XkANX is scaled up proportionally. This self-adjusting scheme is
believed to be more efficient in computation than actual inclusion of
those second-order terms of the perturbations which would significantly
slow down the computation.

The long-term (10-yr) variations of the classical elements of the 12
GPS satellites and the orbit maintenance history may be found in Ref. 16.
Results of those variations revealed the interesting fact that the value
of inclination increases when the node S2 is between 0 and 180 deg, and
the inclination decreases when the node is between 180 and 360 deg.
The drift rate of inclination vanishes when the node is around 0 and
180 deg. With the analytical expansions derived in Part I, we are able
to see that for this type of orbit (e = 0) the perturbations on inclination
are mainly due to the sun and the moon. Neglecting terms of e 2 or
higher, we obtain the averaged variational equation in inclination due to
third-body perturbations from Eq. (7) as

2 3
di 3 n3 (a3
- = 4 n cos i sin 2 i 3 sin(S- S 3 )

+2 sin i sin i3 sin 2(SO-A?3 )j (45)

Those parameters with a subscript 3 are of the third body. The node
of the sun is zero and the node of the moon is confined to within * 15 deg
on the earth equatorial plane where Eq. (45) is derived. With this
equation, one can explain why the variation of inclination is a function of
the right ascension of the ascending node S2.
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Fig. 12 Variations of )ANX under Orbit Sustenance

The above example clearly indicates that the analytical solution has
provided insight into the long-term variations of the orbit elements of
the GPS satellites. This is particularly important for mission design-
ers to understand the long-period characteristics of the orbit. Figure 13
shows how closely the first-order solution predicts the inclination
variations of three GPS satellites in three different orbit planes. Even
after 10 years, the error is only slightly over 10%. The computer time
required to generate the 30 points of prediction is about 15 sec (CDC
7600).
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Fig. 13 Inclination Variation of the Phase III GPS Satellites

CONCLUSIONS

The equations of variation perturbed by the sun-moon attractions are
expanded by computer in terms of the familiar classical elements. The
motions of the sun and the moon are represented by circular orbits with
the nodal rate of the moon approximated by the projected mean value in
the earth equatorial system. Results indicate that the first-order solu-
tion, analytically integrated with the secular part included in the refer-
ence orbit, can successfully handle the coupling between the sun-moon
attraction and the oblateness effect. Good accuracy in predicting the
variations of orbit elements up to 800 days has been demonstrated with
examples of the GPS satellites. However, such accuracy of orbit pre-
diction is limited to 100 days for high eccentricity orbits (e = 0. 7).
This is primarily because of the relatively large perturbations due to
J2 at high eccentricity which make the second-order terms important.
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An algorithm applying the first-order solution has been developed to
achieve the desired strategy of orbit maintenance for the GPS Phase III
system. The result of a 10-yr simulation shows that the total AV re-
quired to maintain the longitude within * I deg is around 7. 5 ft/sec with
each correction of about 0. 5 ft/sec. This algorithm will be useful in
determining the time and magnitude of the orbit correction maneuvers
for the GPS satellites. The analytical solution has helped to clarify the
long-term variations of the GPS satellite orbits.
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APPENDIX A

The package of series expansions used in this analysis is the latest
version of the computerized series expansion package developed by
R. Broucke of the University of Texas. After the terms are properly
combined by hand, the two series may be rewritten as shown in Table
A-2. This compact series may be useful for other types of analysis
such as deriving the equations of variation from the averaged disturbing
function [Eq. (2)] in the Delaunay variables. However, the results of
Table A-i will be used for continued series manipulation by computer
to avoid any possible human error. We can then derive those partial
derivatives of (A2 + B 2 ) and (A 2 - B?) with respect to the classical ele-
ments. Again, the operations were performed by the computer; results
are shown in Tables A-3 through A-5. The nonzero series are denoted
by the following symbols:

IMW = @ a w z  IPO = .09z IMB )  O - 8 A

IPS = Q(A + B2 ) IPC = A 2 + B2 )

43sin i ' 9cos i

IMS =(A 2 - B 2 ) IMC = B (A- )=T sin i Mcos i

Aerospace internal correspondence. Not available for external
distribution.
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Table A -i

COMPUTER -GENERATED SERIES FOR (AZ + B ) AND (A - B 2 )

*4* 1* S I*C[*S I39L13)*COS( W)

*(-1I4*5I***S$13*Z*SjOC(*SI0I)CSZL

*(..II40S*,I342i,4*S1*9Z* I-1*Si*Z*S13**2I*CSZ*L-*Di

*E*1I2*SL*CI*$CL3-i*Sl*k*SL13C3 *COS (Z*L-I

*(*1U2*SL3**2-34*SI**i*5i3**2l*C~OS(2*L I
*I-lhIZ*1*Cl3-11i'SL*C L*SL3*CI13*COS(S*L'D)

3+1L1-JSe*SL*el3SZ3**ZU~e2OLI20L.Z*D0

*4*1/4*St3*114*CL*SL3CJ*llf#I*Sl*ClOS13*L/*$ISCI*SI0C31CottL-*wD

+*1-11SI4*C13-1112-elSif#*CI 3ICOS*Ci*W.lO 1 210*l*~ioSozC

*I16*I3*Z13eC*S1s**ZC1I*L*+*DI1*Z*OS2wl

*4*1I411i4*CL3-1LI6*SL3**2*1I4*CILI*C*CL31IeCI*S&3**2-1/eeSlee2-lig'*Sleoz0CI

3*l116*SIS*Z*S13*02I*COS~i.eL-2*b-Z*D)

*(.3I6*Sl*S'2.51*S).C1s (Z1-*#0IC*100#SOIJ1*l)CSZL2W

*(*3/S*SI**SI3**Z)*Cu5 I2*L*Z*WI

3.11b*SIOea*SI3..aI0COS EZ*L*ZeW.Z&DI

A2Z+B2=A 
2 + B

A2 - B2 = A 2 
- B 2

T PIA 0 -17? i ~CIAB~.



Table A-Z

SERIES OF (A 2+ B 2) AND (A 2 B

2 2 1 2 2 1. .2
A+B ~(I+Cos i)(1+cos i 2 +~sinl 21sin 2'

+~sinZ i sin2 i 3 cos AD + sinl 1 sn 2~ co2

si4* 3s 3

+123sn i 2 1CS

+ sin? i [(1 + cos i)? cos 2(u - AD)
82

+ (1- Cosi)z Cos 2(u +AD)]

+ sin 2 i sin i3 (1-cos Y3 coB (2 u + AD)

-1+ Cos i 3 ) coB (2u - AQ)I

2 2 Z sin i (l -- fsin 13 ) Cos 2w

A -B

- (I + cos i) cos (2w+A.Q)]

+!. sin2 2Co c-AD
8 i 3 [1-cos i)co2(i-Q

+ (1 + Cos i) 2cos 2 (c(i+AQ)]

8~i 13 [cos 2(u-c) + cos 2 (u+(4)

+ 1 sn4'3 sin 4 i cos 2 (u-(&i+A.Q) + cos 4icos 2(u+wa+AQ)]
4 T j~i 2

+ _IsC0843sin 4 icos 2 (u+cj-A.Q) + cosB Cos 2(U- w J-4Q)]

+ sini sin (2u sin+AQ)] co u w AQ

2

+ sin isin i cosa2 13 fcos2 cos 2u -2.,j-4.)

s in ~cos (2u + 2taP- .Q)]
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Table A-3

SERIES OF IPO 2= (A + B 2)A6, IMO =O(A 2 B 2/O

AND IMS = aA - BZ)/8 sin

#4-1*S1*Cl*Sl3*CA3J*Sti( I)

*1-kiZ*SI.CI.S13-1/l*SL*C!*SL3*CI3 J*SLN£Z*L-O I

*4-112*SI*CI*SL3'112*S1*Cl*$13*C13 b*SIN(Z*L.OI

.I-1i2.SZ*2lS**ZL*C L3,1I4*SIO**SL3**ZI*SLI2*L*DI

+112S3*212 ISs~-1*So2S3 *SIN(Z*u-Z*DI

.I,11,*SL3/2*S*!3I*SLSL40CI3I* LNIZ*W-D

,I1IZ1*SI*SI3*C31/2*I!*S3C3)SIN(*WO)

*g-1/2*SK3**Z-IZ*Cl*$3 4**Z114*SL**Z*S130**2*SIN(2*W*LODI

.LI61*SI*SISI3*0$*I* LIJ#.*L-Z IS3+/*S*IW-Z03)SNZ*-*W

#(£,L/4.SI.S13.U4.SI.SIL3.IL*.J4*SIC*SI3LI4*S*CI*SI3*CI3I*S1NI"eL-2*W-DI

*ILISISICL3+I4ISLS*i~l3,*l4S 1*CL*C13-1/I*SI3C1*S*1C0I**2-11*SI 2$

3-1I18*SI**i'SL)*'21*S LriZ*L-2*W'2*I

*£.1I2,1IZ*CL3-1,4*S13*.L-1IZ*C1-liZ*C1CIC3.1I4eCl*S3**2-1I4*St**2-1i4*SIee2*CI

3.1I6*S!**i*SI3**210I* Lh*L.Z*W-Z*l)

,(-1/4*SLeSI3-1I4eSI*Slj.L13.1/4eS1*CL*SI3.1I4eSIeCL*SI3CI3sSI4I2*L.2*U-DI

t*1I4*SI*S[3-1I4*5[*SI3*Cj3,jI4*S1SCI*SI3-1I4eSI*CI*S13*CIJl*StN(2*L.?*W.D)

*4-112*1IZ*C13*114*SI3**2-l/2*Cl.l/Z*ClOC13*114*Cl*$130*2*1/40p~t**2-lf4*Sl**z*CI

,(.Jl2*S13*C13-1I2*CL*SI 3*C1*COS (2*$-DI

*I-L*Sl*S13**Z)*CLjSIZ~f)

,I-112*S13*C13-1ZCL*SL 3CL3I.COS(ZWD(I

#(,l12*Sl#St3**2J*C0SIU*L-2*W)

,(*1l*Ij-lS, 3 *SI3C3,LL4S3114CIS3CI3ICO;S2LZWO)1

*.,1i2e*S3*e2)*CUi42*L*Z*W)

,£-114*513*11I**S130C13-L I*CIOS13*114*ClSS 30CI314COS( Z*L.2eV. 0

"f ASI ETQjL~ UTCM



Table A-4

SERIJES OF IPS O (A 2+ B 2)/I')sin i, IPC -O(A + B )1aOCos i
AND IMW - &(A? - B?)/,Ot

+tI$C[*SI30CI31*CO4(O)

*I-112*CI*S I3-1IZ*Ci.slhs.I3I.COSIZ.L-UI

*4-*S*IS 1**UCO I i*L)*LD

I PCe

*I#i*CI-1/Z*CI*S13o$Z)

#t**,I$St3$CI3 3*C0S D)

*I-IfZ*CI#SI3**Z)*COS U.DI)

*I-lI2*Cl-II2$Cl*CI3.JJ4*CI'S13**COSI2*L-2*O)

*I-1IZ*SL*S !3-1IZ*SI.SL3.CI35.COSI Z*L-0)

+f*L1Z#C(*SI3*#Zf*CQUS (Z~t

*I*11Z*SZ'SI3-1IZ*51*SldeCi3)*COSIZ*L.O)

*I-hiZ*CI.1IZ*CI.CL3.a4.#Cl.SI3..Z I'COSIZ*L.2*D)

lake.

*(-IIZSSI3**1 Iz*C ISLi O*l1 4'SI**Z*513*z *SINI2*io-20UI

*C-I*SI*S13*C13.I*SI*Cl4SZ3*C131*S ANIZ*ht-O)

*I-1*SI**2*3d2*SI*0*sSI3*2 I*SINIZ*a)

*(.1*SI*S13*CI3.1eS1eCL*SL3*C!3)*SINIZ*wO)

*I-1f20SJ3*eZ-I2e2CI*SI3 **11*Sl00z*S13**~Szw(Z$w.2*05

*4.11Z*1dZ*CI3-IM4*S13*' Z.1I2*CL.JI2*CL*CI3-114*CI*S13**2-1"'Ste*?-1'.*SI**2*C I

3.LII.SIO*Z*S1IP*U)*S INIZ*L-Z*W-2*DI

#*1*klSl*S K*Il*SI*Sll*I1L*SI*CI'S13.LI2*SI*Cl*S13*C131* SIN(2*L-2*h-Dh
#I #31f#SI*Z*S IS* $2 lelt4 I 2'L-2*w I

*I*I1Z-1I2eC[3-1i4eS13evz.1/2eC1,~l/2*Cl*CI l4CO100-/6100143*2C
3*1IU*SI$**SL3..Z).S INZ*L-2*hZbO)

3-LIOSK*.ZeS 13**2 I*S 1N120*.*W-2eD)

*4*112*S1*S13+112*Sl*S13CI3-12*SLO£CI*Sl3-112*SI$CI*S I3SCI3)e SINI 2*L*Z*V-1)I
01-3d'.*S10020S130*2)0$104I2*L+*mIu

3-LIS*sisi2*eZSIOlDS £h(Z+1*LZ*2OS I *lCIS3C3*1m2LZW0
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Table A-5

SERIES OF IMC =& (A - B2 )/ cos i

INCe
e|-11405I 13**1* 1 If# *1* 0*2 )*CO 05Z *W*01O

• |-jjz.S I*3 I3*C 13)*C05|Z *w-0)

*(41I14*C13-&ISOS130*2+114*CL+Li4$CL*CI3-L/O*CI*SI300210#;S(*t-2*01O

Itl*L*StS3Lii4*S1*Sk3*CI3eCGS2L-2w.oI

64-114*CIS1* 300210COSUOeL-206)

• (2*L-2*W.23*O) b g2w

*E-L14S IeC3&/4 *S1*53** C1*C5(OL.2.SLD-

*4*U14SII*SI3#oC *18oSI302L14*C•*COSI 2 C*l.Z*3-LIO CI*SI3*02)*CG5(2*L-2

*4(1140$10*5 13+140,,t343*CS ,*L)*C. 52*L*-0

*0-1I4*SI*$S3+114451*S13*C13J*CUS(Z*L-Z*w+.D

**1I4-1/4*C13-LdS*SI3**Z*1I4*CL-I4*CL*CL3-1/d*C1*13e* 2).COS(2*L-ZOW9ZeoD

Note that the designed package cannot take partial differentiation direct-
ly with respect to the inclination i, which is treated as a polynomial
variable. Thus, the intermediate parameters sin i and Cos i are used
with the following relations to Complete the differentiation.

O Fos - Sin i (A -Z

Note also that the printed series are in FORTRAN language; they can be
punched out and directly inserted into FORTRAN programs.

APPENDIX B

J2 Perturbation

de 45 2eIe )sin 2  si 2w(-4 - sn

di 45 2 2 14 .z.
dt -4f 2 n e sin 2i (yi3_ sin 1) sin 2 c

d.2 3 . 9 2 5~s 23~ z + (2 2

dt nEcs-n 2  1 2 - n 24~~

(7 sn 2 coo 2(1D (B-i1)
4 i)(cont.)
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dej 3 52 9 aa .. 5~ 4

+2 7-2sin' i + ! sin~i+O ~ si(n 152. sinai

+ e (7+5 sin i - Tomin~) (B-i1)

whe re

£2 e2(~/a

p = a(I-e 2 )

R e= equatorial radius of earth

J3 Perturbation

de no (I-e 2 )cosW sin i (1-5 cs2

d t 3

diQ

d9 noE e sintjcot i (15 cos 2 i -11)

=w n (1 +4e 2) si sin i(5 cs2 ij- ) Csi (B-2)
dt 3 e CBdtCO

where

f 3 =3/8 (R ep

J4 Perturbation

de n4 e(l-e 2) sin Zwsin 2 (7 cos i -1

di. I E sin ZWsin 2 i (7 cos 2 i - 1

d.Q nf CoB i 2a (7 co 2 - 3) + e 2 (7 cooB2 i -I

4sin 2 1(7co2 i-4](B-3)

(cont.)
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. 4 2 2 2_a =d -znr 4 f8 - 28 sin i+Zl sin i - sin ¢wsin i (7 cos i- 1)

+er 6 - 14 sin' i +-1sin i + sin 6w (6 - 35 sin i+ sin 4

(B-3)

where

C4 = 15/32 (Re/p)4 J 4

APPENDIX' C

Table C-1

THE Fimp AND Gjpq FUNCTIONS

3 2 . 3 (l+cos i) 2
F 2 2 1 = 2sin i, F 2 2 0 = 4

152

F 3 2 1 = -- sin i (1-2 cos i - 3 cos 2 i)

F 3 2 2 = - -sin i (1+2 cos i - 3 cos 2 i)

F3 1  s15 s2 3 (1+3 cos i) - (l+cos i)F311 1 4 i 13csi

F3 3 0 = (l+cos i) 3

F42105 sin2 i cos i (1+cos i) - (l+cos i)z

F4 2 1 =0 2 1
1054

F4 4 0 = (l+cos i)

G211= 1. 5e + 1. 6875e 3 + 2. 03906 25e 5 + 2. 3289388e 7 + 2. 587323e 9

+ 2.822341e1 1 + 3.03933758e 13 + 3. 2418959e15 + 3.43255448e1 7

+ 3.6131875e19 .....

G 2 0 - I -0. 5e + 0. 0625e 3  0. 0130208e 5 _ 0. 77582465 X 10 2 e7

- 6. 16930 X 10- 3 e 9 - 4.96735185 X 103e I1

- 4.0929341 X 10"3e13 - 3.44089913 X 103 e15 +
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Table C-i

THE F&mp AND G jpq FUNCTIONS (Continued)

G 3 1 0  -1 + 2e 2 + 3. 734375e 4 + 5. 769097222e 6 + 8. 096605089e 8

+ 10.6829796e 10 + 13. 50467544e 12 + 16. 54355294e 14

+ 19.7851081e 16+23.21740226e 18+26.83038574e 20...

G 32 2  -1. 375e 2 + 3. 0625e4 + 5.099283854e6 + 7.427332899e8

+ 10. 01418813e 0 + 12. 83625022e 12+ 15. 87540617e 1

+ 19. 1171761 8 e 16+ 22. 54963923e 18+ 26. 16 275785e 20...

G3 -? 0. 125e 2 + 0. 0208333e 4 + 0. 0179036e 6 + 0.0127713e8

+ 0. 009776e 10+ 0. 0077966e 12+ 0. 0064085e 14+.

G 11= 0. 5e +2. 06 25e 3+ 4.794271e 5+ 7.048 177e7

+ 7.41634le 9 + 6.046672e 11 + 3.999685e 
13

+ 2.20 8745e 15+ 1.037865e 17+0.420094e 19..

G -10=1 + e2 +4.0625e 4 +6.3125e 6 +6.566406e 8

+ 5.2578 13e 10+ 3.438477e 12+ 1.913086e 1

+ 0.923584e 16+0.389633e 18+0.1436 13e +0..

G =2. 5e + 8. 4375e 3 + 18. 65885e 5 + 26. 132813e 7
421

+ 26. 069336e 9 + 20. 032104e 11+ 12. 389781e 13

+ 6. 332082e 15 + 2.716932e 17+ 0. 986036e 19 ....

G 40- 0. 5e 2 - 0. 3333333e 4 _ 0. 125e 6 + 0. 338542e 8

10 12 14
+ 0.314453e + 0.09309cfe - 0.048706e

-0.062805e 16- 0.027145e 1 ..
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Table C-2

VALUES OF LOW-ORDER (FOURTH) HARMONICS OF EARTH
GRAVITATION POTENTIAL (WGS 72 MODEL)

Zonal Harmonics

J2 = 1082.61579 E-6*

33 = -2. 53881 E-6

4 = - 1. 65597 E-6

Tesseral Harmonics

C2 2 = 1.5765 E-6 S22 = -9. 0602 E-7

C3 1 = Z.2181 E-6 $31 = 2.8843 E-7

C32 = 3. 1196 E-7 $32 = 02. 2055 E-7

C 3 3 = 9.8324 E-8 533 = 1.9611 E-7

SC4 2 = 7.6894 E-8 S42 = 1.4562 E-7

C4 4 = -4.0641 E-9 $44 = 6. 7006 E-9

*E-6 xl0 - 6
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