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AN ANALYTICAL INTEGRATION OF THE
AVERAGED EQUATIONS OF VARIATION DUE TO
SUN-MOON PERTURBATIONS AND ITS
APPLICATION

C.C. Chao

The perturbed variations of the motion of earth
satellites due to the sun and the moon are derived
from a singly averaged disturbing function. A
first-order solution is obtained by analytically
irétegrating the equations of variation including J,,
J5, J4, and J,. The literal expansions are car-
ried out by computer in terms of classical ele-
ments, The secular part of the first-order solu-
tion is included in the reference orbit. The orbits
of the sun and the moon are assumed circular,
and the motion of the moon is converted to the
earth equatorial system with certain approxima-
tions.

Results based on the GPS (Global Positioning Sys-
tem) satellites compare favorably with numerical
integration for time spans of up to three years,.
An algorithm applying the first-order solution has
been developed to achieve the desired strategy of
orbit maintenance for the GPS Phase III system.
The analytical solutions provide insight into the
long-term (10-yr) variations of the orbit elements
of GPS satellites,

INTRODUCTION

The need to rapidly predict the long-period and secular perturbations of
artificial satellite orbits increases as more high-altitude satellites with
long life spans, such as the GPS (Global Positioning System) satellites,
are launched into orbit. By the late 1980s, a total of 18 GPS satellites
will be orbiting around the earth for 12-hr periods. The ground tracks
covered by these satellites are required to repeat every 24 hr to insure
a continuous global coverage. Regular orbit maneuvers must be per-
formed to maintain the specified repeating coverage against long-term
perturbations due to the sun-moon attractions and the earth gravitational




potential. The desired strategy for orbit maintenance maneuvers, as
requested by the GPS program office, is to minimize the total number
of such maneuvers during the life span of these satellites., To achieve
this strategy, an analytical solution which predicts the long-term varia-
tions of the orbit parameters is highly desirable in determining the
proper AV at the time of each maneuver.

During the past two decades, efforts have been made by many research-
ers to develop general perturbation theories for the long-term varia-
tions of planetary and earth orbiters. To name a few, Kozail, Kaulaz,
Musen?>, Murphy"’, and Estes” have either developed or applied analy-
tical solutions to the problem of third-body perturbation for artificial
satellites, Kaufmané’, Uphoff7, and Cefola, et al.8, have applied the
method of averaging, in a numerical approach, to the prediction of the
long-term variations of planetary and lunar orbiters, Their results
show a tremendous improvement in speed over that obtained from the
n-bodv numerical integration, yet they do not give the analytical ex-
pressions which are preferred in this application,

The purpose of this analysis is to further expand the singly averaged
disturbing function of third-body perturbation arrived at by Kaufman in
terms of classical elements, and to apply the concept of the interme-
diate reference orbit for obtaining a first-order solution by analytical
integration, The averaged equations of variation for zonal harmonics
up to the fourth order are included. The literal expansions, partial
differentiations, and integrations are carried out by a computerized
series expansion technique employed by the author in studying the mo-
tion of the Galilean satellites?, The package of series expansion soft-
ware used in this analysis is the latest version designed for the CDC
7600 computers by Brouckel0, Although similar work has been done by
Estes, the author considers it necessary to carry out the expansion and
integration of this particular application for two reasons, With the help
of computerized expansion it would take less effort and be more con-
venient to start from the averaged disturbing function developed by
Kaufman than to use the analytical solutions published by Estes., Fur-
thermore, Estes uses Brown's lunar theory for the motion of the moon
which carries a great number of terms and is deemed to be unnecessary
for this application. In this study, an earth equatorial coordinate
system is used with orbit elements of the moon projected into this sys-
tem using spherical trigonometry. For time spans of less than three
years, a mean inclination and nodal rate interpolated from the true
variation have been found to be good approximations for the analytical
integration,

The rest of this paper is divided into two parts, Part I describes the
theoretical formulation of the first-order solution and compares the
long-term variations of the orbit elements of the GPS satellites pre-
dicted by the analytical solution with numerical integration. Part II
presents an application of the first-order theory {or the desired stra-
tegy of the orbit maintenance of the GPS satellites., Results of the
investigation of long-term orbit perturbations of the GPS Phase III sys-
tem are discussed,

=




PART I: THEORETICAL FORMULATION

Averaged Variational Equations

The disturbing function due to the third-body perturbation may be given
in the earth-centered coordinates as

2 -1/2
R'=£,[<1+"—--2—.’coss) ’—C‘f—ssi] (1)
T 2 r r
r
with

U = gravitational constant (kzm')
r' = distance to the third body (sun/moon)
r = distance to the satellite
S = angle between the two position vectors, ¥ and T'

For the sun-moon perturbations of artificial earth satellites, we note
that r/r' « 1. Therefore, we may expand the square root term in the
above equation and neglect all terms of order (r/r')3 and higher.
Kaufman® has carried out the expansion and applied the method of
averaging to eliminate the short-period terms. The resulting disturb-
ing function is considerably simpler,

3
2 2 /., . 2 2
R =20 (%) [%(A& + BY) - 1] (1 v 3 > + 3(a% . BY) 2%
(2)
with
A=P.%
B=0Q.4u

where a, e, P and Q are orbit parameters of the perturbed body and
a', n', r', and U' are parameters associated with the perturbing (third)
body. The u' is the unit vector of the position of the third body.

Kaufman numerically integrated the variational equations of classical
elements derived from the above disturbing function in terms of A and
B; he then demonstrated that his method had a 500:1 increase of speed
over an n-body numerical integration schere, Although his method is
fast and reasonably accurate, it does not give the analytical expres-
sions which are important for analyzing and identifying the long-period
terms of the perturbations,

The purpose of this paper is to further expand the disturbing function in
terms of classical elements; thus, the variational equations (or per-
turbed equations) can be obtained by partial differentiation. With the
assistance of a computerized series expansion technique, we can expand




the parameters (AZ + BZ) a_n'd (_{XZ - B_%) in the disturbing function of
Eq. (2)., The unit vectors P, Q, and u' may be written in terms of the
classical elements (Fig. 1) as

cos 2 cos w - sin Psinwcos i
-
P ={sinRcosw +cos R sinw cos i

sin i sin W

-sinw cos 2 - cos Wsin P cos i

-
Q = {-sinw sin 2 + cos W cos L cos i (3)
sin i cos W
and
cos ' cos u - sinf"' sin u cos i’
— . . .
u' = {sin2' cos u + cos 2" sin u cos i’ (4)

sin i' sin u

where u is the argument of latitude of the third body.

THIRD BODY

$oe e e~

r N

SATELLITE ORBIT

‘

/— ~ /_. ~ ~ &

// // 0/’, P :

// // U |

Vs ( N () }
/ N .
/ —Q—’ '

Q7 i/

EARTH EQUATORIAL PLANE

Fig, 1 Earth-Centered Geometry
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We can express A and B in terms of the angles as

—e —e
A = P.u = coswi(cos ucos 82 + cos i' sin u sindQ)
- sinwcos i (cos u sin AR - sin u cos AR cos i')
+ sin i sin i' sin w sin u
-3 — . . . .
B =Q.u' = -sin w(cos u cos A + sinu sinAR cos i")

- coswcos i (cos usin88 - sin u cos AR cos i')

+ sini sini' cos wsinu (5)

where 42 =2 - Q'.

In this first-order analysis, we assume that the third-body orbit is cir-
cular because of the small eccentricities of the orbits of the sun and
moon, The series expansions may start from A and B using the com-
puterized series expansion package. Each term of the series may be
expressed in a general form as

J I I I I

13 1 2 3 4 sin
Term = C (SI) (CI) (SI3) (CI3) (J,L+J,W +J,D)
I,..1I 1 2 3
1" 4 cos (6)
where
Jl. .J3
C = coefficient of each term
I,..I
1 4
and
SI = sin i L =u
Polynomial ClL = cos i Angular W = w
Variables SI3 = sini' Variables D=42-9_9
CI3 = cosi'

The two series (A2 + BZ) and (A2 - BZ) in the averaged disturbing func-
tion Eq., (2), and other intermediate series, are expanded in literal
form and printed out by a CDC 7600 computer at The Aerospace Corpo-
ration as shown in Appendix A, Table A-1, The variations of the classi-
cal elements of the perturbed body (an artificial satellite) may then be
expressed in terms of the intermediate results shown in Appendix A,




da
a -0 t
15
g—f = - g ers (IMW) S
A
di 3 Yesci 3 2 5 2 . ‘
T C 3 S [<I+Ee)IPO +—2—e (IMO-c051IMW)] é
d _ 3 ¥ 3 2\[cos i 5 2fcosi 3
dw _ 3 13 A2, 82 . 14+2 A% . B2 . d&
a - z2°57|3 ) - B -cosig
dM _ 3 2 3 2 2 15 2 2 2
F—R-Z)’ (1+-2—e)[—2—(A +B)-1] +—~4—e (A~ - BY)
-%527[;— (A2+B2)-1+%(A2-B2):| (7)

where IMW, IMO, etc., are the intermediate series shown in Appen-
dix A, and

L2y
}' = ——\=7 Rm
n r

s =Vl—e2

n = mean motion of the perturbed body
n' = mean motion of the perturbing body
Rm = mass. ratio, Rm 1 for solar perturbation and

Rm 1/81,3 for lunar perturbation

Those important terms which give long-period and secular variations
of classical elements due to third-body perturbations may be clearly
seen from the above equations. The averaged variational equations for
JZ, J3, and J4 can be found in Ref, 5; they are included in Appendix B
for completeness,

Perturbations due to atmospheric drag and solar radiation pressure
are not considered herein because of their insignificant effects on very
long-period variations for higher-altitude satellites, The effect due to
tesseral harmonics (JZZ to J44, etc.) becomes important only when the
mean motion of the satellite and the earth rotation rate are

-10-




commensurable. This effect will be included in Part II when this first-
order theory is applied to the prediction of the longitude of the ascend-
ing node of the nearly 12-hr orbit of GPS satellites,.

Analytical Integration

Those equations of variation expanded in series shown in the previous
section may be integrated analytically to yield a first-order solution if
the proper rates of the angular variables are known, The concept of an
intermediate reference orbit or rotating ellipse allows us to have non-
zero rates for the Keplerian angular elements £ and w. The rates are
calculated from the secular terms in the equations of variation, They
may be summed up as

'Qs = 'qun +'Qmoon J +'Q.]’
2 4
ws = wsun + wmoon +wJ2 +wJ4 (8)

The secular terms, by definition, are those terms containing only the
mean motion, eccentricity, and inclination which vary much more
slowly than the node and argument or perigee. Those terms can be
identified from the series, and they are

3 2
;’2 _ Z’:n'2 (I+Ee>
—_g————————

. 2.
un cos i (3 cos™i' - 1) (9)

3 .2
. 2 (l - % sin i') 2
o =3m 2 2-2sin®i+ S (10)

sun

N|;

When the third body is the moon, the above equations should be divided
by the earth-moon mass ra‘io (81 3). The above expressions agree
with those derived by Kozai The rates due to J, and J4 are the
secular part (terms without the argument w) of Eqs. (B- T) and (B-3),

_ 3 . 9 2 .13 5 . 2. 1 5 2. 2
-QJ —-§n€2c051—Zn€2c051[7—gsm1+(%—+2—451n l)e]

‘:’J -%nez( -%sinzi)-

2
(7 - 2 smzl + 745 sin4 1)]

ne, cos i [2(7 cos’i - 3) + e(21 cosi - 9)] (11)
4 (cont,)

2 . . . .
nez [2 - %;- sm2 i +?—zsm4 i

o

0
"

-11-

e




e - p——— b r—

2

2 ) 3 9 . 2. . .
¢ o (%——}%—smzl+-5—;’2—7sm41)] (11)

) - ey |8 - 28 sin®i 421 sinti - 2 sin%i (7T cos?i - 1)

The miean motions n' of the sun and moon are known, and the integration
is performed on the variations with secular terms removed. The inte-
grated results for each perturbation (J,, sun, etc.) may be expressed
in a series form similar to Eq. (6),

s L L 1L
N ¢ s1 lcr%s13 3cs de °

e
i I....I
5 i} 1 5 .
z: Tin' + 1,0 +735(Q, -Q)

sin
I(JIL + JZW + J3D>

w - s cos
0 Ix—()
J.=0
i
sin
- \(J1L0-+J2Wb +J3DO) (12)
cos
where
- 1
L = n'(t-ty) + L
W= w (t-t) + W
- . - .I -
D = ( -2 (t-t;) + D,
and
I"O = argument of latitude of the perturbing body at tO
WO = argument of perigee of the perturbing body at to
D, = the value of (£2-8') at t)

The values of inclination and eccentricity of the perturbed body or the
satellite at the epoch time t; are substituted into the polynomial vari-
ables SI, CI.... in Eq. (12), The inclination of the sun, i', is nothing
but the inclination of the ecliptic plane.

The inclinatign i', argument of latitude L, right ascension of the node
Q', and rate ' of the moon must be computed in a special way because
of the earth equatorial coordinate system. From Fig, 2 and the rela-
tions of spherical trigonometry, we have elements for the moon re-
ferred to the earth equatorial system as

-12-
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. -1 . . .
i' = cos [cos € cos i - sine€ sini_ cos 2 ]
e e e
] sin i‘2 sin 'Qe
[ e T
2 sin sin i’
L =u +d4u
e e
1 sin.Qe sin €
Aue = sin T (13)
.. . 2 . ..
. sini_ | cos .Qe sin .Qe sin € sin i
Q' = - + — - 14
sin i' cos Q7 cos ' sin i' tan i' (14)

where quantities with a subscript e are referred to the ecliptic system,
The equations of Q,, u,, and i, are found in the American Ephemeris.*
If we limit the time span of interest to a couple of years, a mean in-
clination and nodal rate interpolated from the true variations shown by
Fig. 3 should give a good approximation for the integration. This ap-
proximation is particularly good during the interval from about 1984 to

1992, where the variations in inclination and nodal rate are relatively
small,

MOON
ORBIT
PLANE

ECLIPTIC PLANE

EARTH EQUATORIAL PLANE

Fig. 2 Geometry of Orbit Planes

*American Ephemeris and Nautical Almanac, published by the U,S,
Naval Observatory.
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1 ] | |
19990 60 30 0 330 300 270 240 710 180 150 120
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Fig., 3 Variations of Inclination and Node of the Moon in
Earth Equatorial Coordinates

Finally, the first-order solution is the linear combination of the inte-
grated variational equations due to each perturbation.

e e e e e e 0

i i i i i i 0
=0t +0er tHot *t9Ho + 6o + S?S (t-t )

w w I, w Js w J4 W Jsun @ Jmoon “:’s (15)

Comparisons with Numerical Integration

Orbit variations in terms of Keplerian elements are calculated from the
first-order solution for a span of 860 days. The initial conditions at a
common epoch of 1 July 1985 at 0 hr are listed below,

5 deg
0.01
a = 14341.8 nmi, e = L 1= 130de8 1 o 40 deg,
0.7 63 deg
W = 60deg, M = 0deg
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Results of these six different cases are compared with the results com-
puted by the program ELEMENT, developed by B, Baxter of The
Aerospace Corporation“, which numerically integrate the singly
averaged equations of variation shown above in "Analytical Integ- :tion,
The same perturbative model including J, through J4, the sun, and the
moon is used in the numerical integration. The comparison indicates
that the variations in eccentricity and inclination predicted by the first-
order solution agree amazingly well with that generated by ELEMENT
for low-eccentricity orbits as shown by Figs. 4, 5, 7, 8, and 9. The
discontinuity in slope in the curves of numerical integration is simply
caused by the rather large step size in plotting. For high-eccentricity
orbits, the agreement is generally good up to 400 days as shown by
Figs. 6 through 9. After 400 days, the prediction by the analytical so-
lution is noticeably different from the true variation.

[

0.01002

[ I

0.01000

..{

0.00998 /NUMERICAL INTEGRATION -

0.00996 FIRST-ORDER SOLUTION—
0.00994 —
0.00992 —

0.00990

71111985
0.00988— 5= 14341.60 nmi
e=  0.010000
000986~ = 500 deg

Q= 40.00 deg

0.00982 | | R B | ] ]
0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0
ELAPSED TIME (days!

Fig. 4 Eccentricity Time History for Low Inclination
Orbit (i = 5 deg)
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001005
K\ | I I i el 711111985]
001004} 3 = 1434180 nmi —
e =  0.010000
0.01003} i = 3000 deg
Q= 40.00 deg
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This is probably because of the relatively large variations in the mean
orbit elements due to the high eccentricity. Nevertheless, the general
trend of variation in the 800-day span has been predicted by the first-
order solution, Table 1 shows the comparison for other orbit elements
Q and w that are not shown in Figs. 4 through 9, Table 2 shows the
comparison for a GPS satellite with a = 14341,8, e = 0,005, i = 45 deg,
2 = 265.4553 deg, and w = 90 deg.

The accuracy of the first-order solution may be improved slightly by
including the eccentricity of the orbits of the sun and moon. The

series expansion for such an inclusion was made; it is found that even
to the first order in eccentricity e', the total number of terms in the
disturbing function as well as in the equations of variation has increased
nearly three times! The penalty in computing time and complexity
would be too great for a small improvement in accuracy, Therefore,
we did not make the comparison with numerical integration.
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Table 2

DIFFERENCE BETWEEN FIRST-ORDER THEORY AND
NUMERICAL INTEGRATION

e i Q w

Days x10-4 (deg) (deg) (deg)

from .

Epoch N. L Ae N.I. 4ai N. 1. a2 N.I. Aw
100 49,73 0,02 | 44,899 -0,002 260,48 -0.01 91.95 -0,027
200 49,04 0.15 | 44,827 -0,002 255,55 -0.01 93,79 -0,027
300 48,43 0.35 | 44.780 -0,003 250, 54 -1 J04 95,85 -0,022
400 47.66 0.59 | 44.678 -0,004 245,63 -0,003 97.55 0,033
500 46,77 0.92 | 44.661 -0.004 240,65 0.03 99. 56 0,109
600 45, 90 1.31 | 44.567 -0.003 235,71 0,05 101,24 0.24
700 44,74 1.7 44,547 -0,004 230,78 00.08 103,05 0.45
800 43,77 2.3 44,480 -0,001 225,81 0.10 104,71 0.69

“N.I. = numerical integration of the averaged equations

"“Ae,Bi... = (first-order theory) - (numerical integration)

PART II: APPLICATION

Backg round

The particular application, presented in detail below, is for the de-
sired strategy of orbit maintenance. During the mission design of the
GPS orbits, a family of orbits was numerically integrated with the
averaged equations8 to study the long-term characteristics. For each
orbit a series of impulses or orbit corrections must be simulated
during the integration so that the longitude of the ascending node cross-
ing remains within a specified tolerance (%1 deg) for repeating ground
track coverage., The GPS satellites have a nearly 12-hr period, and
are required to have repeating ground tracks every two revolutions at a
specified longitude of the ascending node crossing, The initial condi-
tions are determined in such a manner as to synchronize the »=peating
ground track in the presence of perturbations, However, as time goes
on, the perturbations due to the earth gravitational potential (Jp,...Jy4,
J2 2.3, 4), the sun, and the moon drive the longitude of the node away
from the specified value.

The method of orbit maintenance developed in Ref, 12 makes use of the
scalloping motion depicted in Fig. 11. The perturbation in semi-
major axis provides the restoring acceleration for a longitude drift

-20-
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induced by a AV perturbation, The method functions open loop, how-
ever, by utilizing the induced drift rate for the first correction in all
subsequent corrections, This leads to difficulties if the perturbations
in argument of perigee and right ascension of ascending node begin to
dominate the perturbation in semimajor axis as happens for certain of
the GPS orbits, The open-loop technique also fails to completely fill
the dead band even though the perturbed state, together with the con-
ditions of repeatability, is used to calculate each AV. This arises
because the AV is not adjusted by observing the depth of the scallop.

SATELLITE
ORBIT

EARTH
EQUATOR

EARTH
EQUATORIAL
PLANE

Fig. 10 Orbit Geometry for Repeating Ground Track
Coverage (Q =1 orbit)

An algorithm which applies the first-order theory for longitude predic-
tion, which in turn provides the desired strategy for orbit maintenance,
has been developed and employed for simulating the orbit corrections

during the integration of the 24 orbits of the GPS Phase III system,
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Analy sis

Let us begin with the earth cquator:ial svsten o nertial space, Fig-
ure 10 illustrates the orbit geometry,  For repeating ground track
coverages, we require that the longitude warth-tised) of the ascending
node crossing of the satelhite, )‘/\,\'X' repeats every Q revolutions, or

L N

N N K R Ko 8 LY T+ P+ T

a,lty C NP A Gy T o " NP1 =5= (16
with
N =0,1, 2......
ty = epoch time when the ascending node croussing occurs at
longitude Ap \x
P = nodal period ‘
a. = right ascension of Greenwich ::
2 = right ascension of the ascending node

UPPER :
BOUND !

\ __LS* ANX
ANX

LOWER O\ AN
BOUND

% Y

Fig. 11 Schematic Drawing of the Time History of
Orbit Corrections
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Assuming a constant earth rotation rate and a constant nodal regression
rate determined from the perturbations due to J,, etc., at ty, we can
rewrite the above equation as

= Q) +f)(t0) Np 4+ 2N (17)

t )+ NPa,_ + ) 5

a:' Gt hanx
As time goes on, the nodal period P and the nodal regression rate
vary due to perturbations; consequently, )‘ANX slowly drifts away from

the original value. By varying Eq, (17), we obtain the variation in
Aanx 2 a function of the variations in P and £ as

SAy gy = [Qct) - a) 6(NP) + QNP (18)

Since 88 is not constant, the nodal variation should actually be

totNP
s QNP =/ () - Q(t)]dt (19)

to

The term 8(NP) is defined as the variation in time measured in accumu-
lated variations of nodal periods since the epoch t;. It may be ex-
pressed as follows:

t0+NP

4(NP) =/ - dt (20)

to

where 0P/P is the variation in period per one nodal period, which may
be related to the variations of the mean classical elements through the
following derivation.

Let
p = 27 (21)
u
then
P _  u
B = - — (22)
u

where u is the mean angular rate of the argument of latitude in the per-
turbed orbit., It has two components

Il N\
U =n+u (23

-23-
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Li The first is the classical component which is the miean motion of the
orbit; the second component is the mean variation due to perturbations
{as denoted by \ following Herrickl3), We know from Ref. 13 (Chapters
15 and 17) that

G\: —.Q\ cos i = -f)cosi (24)

\ .
where £ or  is the mean (averaged over one period) nodal rate of the
perturbed orbit, By varying Eqs. (23) and (24), we obtain to the first
order that

84 = én - §Qcos i (25)
Substituting Eqs. (23) through (25) into Eq. (22), we have

0P _ 6n-65.2 cos i

| n- Qcosi

(26)

where 89 is simply Q(t) - Q(t;), and the variation in the mean motion §n
derives from the variation in semimajor axis da as

én = - 3nl2 27)

After combining Eqs. (26), (27), and (20), and substituting Egs. (19)
and (20) into Eq. (18), we obtain the relation between the longitude
variation and the variations in the mean classical elements,

£y NP t, NP
SAnx = (1-Beos i) f [2®) - Qe y)lat - %nﬁf 8a 4
‘o Yo (28)
where
ag - Dity)

B:

n -S}(to) cos i

The averaged equations of variation of £(t) are derived and listed in
Part I of this paper. For satellites with mean motion commensurable
with the earth's rotation rate, the effects due to tesseral harmonics
must be included. The variations in semimajor axis are induced pri-
marily by the tesseral harmonics, Therefore, terms with resonant
angles must be carefully examined and integrated. Kaulal4 provided a
set of integrated equations in a general form for perturbations due to
tesseral harmonics, For the 12-hr (Q=2) orbits, we includeJ 2[(2, 2,1,
l)' (21 20 0’ 'l)]l ‘]32[(3v 21 l' 0)! (31 Zr 29 Z)r (3; 2’ 0, '2)]) J42[ (4v%) lo - 1)!
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(4,2,2,1)], and J44(4,4,1,0), (4,4,0,-2)] as

4s . “Z[(iag)l 2 -2p+9) gy, G (;lmp‘*J

42 - x Z (a_e ——BaFlm Gy C (29)
V1-e® sini a oi £pq “Lmpq
where
C[ - Ci N SZ cos [[-ZP)U + (l-2p+q)M + m(Q- aG)-Alm]
mpq m fm (l-Zp)u.) + (t-2p+q)M + m(.é- &G)
el _ CZ 2 sin[(l—Zp)w + (l—2p+q)M + m(f2- aG)-Alm]
lm - l + slm
Pa m

d-2p)w + (L-2p+q)M + m(Q- &G)

S C
Alm = tan'1 <-ClTr—n> Alm = t:an-1 (— %—3)
l—m even [-m odd

M = mean anomaly of the satellite

The functions Fsa1s G 21’ etc., are the inclination and eccentricity
functions tabulatec} in A&ppendix C.

For orbits with periods of nearly 12 hr, the divisors in Eqs. (29) and
(30) may become very small,

d-2p)w + M + 2(Q- ag) = 0 (30)

Generally speaking, the first-order solutions [Eqs. (29)] usually break
down in the vicinity of a resonance. Fortunately, the orbit maintenance
corrections confine the value of M to within a small range for repeating
ground tracks, Consequently, this stabilizes the small divisors and
makes the first-order solution valid, In the event the divisor becomes
smaller than the known angular rates M, w, and £ of the orbit

(=2 X 10-5 rad/day), the following approximation should be adequate
for predicting the variations from about 200 to 400 days for orbit main-
tenance purposes,

da = constant | _c_lg = constant (31)
dt dt
J J
m m
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The right-hand side of the above equations can be obtained by differen-
tiating Eqs. (29). The additignal nodal rates from Eq. (31) should be
added to the total nodal rate £ as shown in Eq. (8).

An Algorithm for Orbit Maintenance

The desired strategy of orbit maintenance is to keep to a minimum the
number of corrections, i.e., impulses, within a given time span. In
other words, the AV should be correctly determined so that the time
interval between two adjacent corrections is a maximum without getting
outside the specified range as shown by Fig. 10. For GPS satellites,
the time interval between corrections varies from 200 to 400 days; it is
too costly to numerically integrate the orbit from t; to t, (Fig. 11) in an
iterative manner for the determination of 4V at t).” Thus, the first-
order solution which predicts the longitude variation due to the effects
of the sun, moon, and earth gravitational potential as shown by Eq. (28)
is employed to determine the AV at each orbit correction,

After the integrations in Eq, (28) are performed, the longitude varia-
tion may be expressed in series form

N s
OMynx C Z B,
i=l c

where 6}‘ANX is the variation of longitude of ascending node from the
epoch value at time t; when an orbit correction is made, and B;, 7;, and
g; are constants computed from mean orbit elements i, e, n, and

initial conditions,

in sin
cOSs

oS

As shown by Fig. 10, the first orbit correction should be made at t
when the value of ANk reaches the lower bound, The desired strategy
requires that the maximum variation of A, Ny occurs at t, (the re-
storing force is the tesseral harmonics) witll-:] its magnitude nearly equal
to the specified tolerance, say 2 deg. Let t; be the time of an orbit
correction and t, at some time between tj and tj+1, which is the

time of the next correction. We have

N sin sin
Aanxtm) = 2 deg .=Z B, [)’i(tm-tj) tg;l - (g;)
i=1 cos cos
. -t. 33
+ AAJ t tJ) (33)
-26-




With the slope equal to zero at t, we require

N cos

aA anx® Z [yi(tm'tj) + gi] +4}\j =0 (34)

sin

The second term on the right-hand side of the above equations is intro-
duced when an orbit correction is made at t;. The introduced constant
rate AA; at t. is an unknown parameter to bé determined. With the
above eﬁuah%ms we should be able to determine the two unknowns t
and AA;. An interative formula derived from Newton's iteration
methocf is constructed to compute t_|

e (35)

tm = tmo B ol t
0
where
cos
Fty) =EBi 6; - g F¥;tnty) 63| -X0Ap0und
i sin
N
_ 2
F'(t_) -ZBi)’i (t —t) (36)
i=1
with

0; = %t -t +g

oA = specified bound, 2 deg

bound
The parameter X is a factor which is slightly smaller than 1, so that
the true variation will not exceed the specified bound ‘”‘bound Once

is obtained after iteration, A\, is determined from Eq. (34). By
dn}ferentlatmg Eq. (28), we can ditermine the correction for semi-
major axis from the value of A)\ as

da) _2 8\
( )tj 3 ng (37)
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or a corresponding correction to the period of

_A_P = A._Xl 8
GRE

The initial guess of t,, may be determined from an approximation that
the small divisors in CEqs. (29) or (30) v2nish and 8Q is zero. Then

g = constant = € (39)

or
da _
ol € (t-tj)

By satisfying the same conditions, Eqs. (33) and (34), we can solve for
t as
m

0
4 XA
t =t o+ bound (40)
m h| ?ne

Usually, the longitude of the ascending node crossing is sustained to the
initial value within a dead band of #1 deg. The sustenance strategy
functions by applying impulses at perigee when the longitude AA X
violates a boundary of the dead band. The impulse is performeyto
adjust the period in order to give a repeating ground track at the time of
the correction; that is, the synchronous period is redetermined to
include the effect of perturbations in the elements and the predicted
variation, using the new algorithm described above. The new semi-
major axis is determined by the following relation:

2m__ +4P, + AP, + 4P, = P equired (41)
IR
3
a
where
a = new Semimajor axis
AP, = period variation predicted for optimum orbit sustenance

l (the new algorithm)

prequired = 2"/(“6 "Q)
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and

&G = rate of the right ascension of Greenwich,
7.292115431X10-5 rad/sec
£ = mean rate of the right ascension of the ascending node

The period variation due to J, effect, APZ, is obtained from Claus and
Lubowel5,

2
ap, 5 (3, a\> 1 1 4-.5in?i
T = -zh\T)I\F t2 : z | “2)
‘/ 1_eZ (l1+e cosw)

with aa = earth equatorial radius, r = a(l-ez)/(1+e cosw), and P =
2nw/\/ u/a’ . The period variation due to the sun-moon perturbation is
similarly derived as

AP '\2 /. 1\ 3 9/2
_P_3 = -2“‘.% (%) (%T) (l-ez) Rm cot i (xy' Ul + yy' U2) (43)

where
l:solar perturbation
Rm = mass ratio = 1/81, 3: lunar perturbation
]
x = cos (L-49Q) -2 sin® % sin L sin 4Q
21 . 21!,
y = (1-2 sin” 5)[sin(L-8Q)-2 sin > sin L cos AQ]

+ sin i sini' sin L

y' =0y/0i = cosi sini' sin L - 2 sin i sin (L-A49

3!
+4s8ini sinz 1?: sin L' cos AQ
2n

Ul = f sin u cos u du/[1l+e <:os(u-(d)]6
0

= 21me? sin2a1 + e2/2)f[401 - 3112

27
U2 = f sinZu du/[1l+e cos(u~w)]6
0

=frra-e5) 0 4 (5-2 cos2w)e? +3 (5-7cos2w)e?)
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For GPS satellites, the orbits are nearly circular (e = 0), and Eq. (43)
can be simplified to the following form:

AP ' 2 ' 3
-—-I—)}- =(—;—)(%) (%) Rm cot i (yy') (44)

This algorithm has been incorporated into the computer program
ELEMENT for an analysis of the orbit perturbations for the Phase III
GPS satellites,

Figure 12 gives an example of orbit maintenance with this algorithm,
This example is one of the 12 cases at 55-deg inclination of the Phase III
systemlé. For this particular satellite, each correction requires

0.6 ft/sec or less in AV, and the total AV used in the 10-yr period is
about 7.5 ft/sec. The first and third corrections are caused by a slight
overshoot at the upper bound (271 deg). This occasional overprediction
seems to reveal a limitation of the first-order theory assumed in the
new algorithm. To minimize the number of over- and under-predic-
tions, a self-adjusting mechanism is incorporated. After an overshoot
correction, as shown by t3 in Fig., 12, the predicted maximum value of
the variation in Ay in the next interval is scaled down by 10%. If the
previous maximum §Ap nx is more than 10% undershoot, the next maxi-
mum ‘”‘ANX is scaled up proportionally, This self-adjusting scheme is
believed to be more efficient in computation than actual inclusion of
those second-order terms of the perturbations which would significantly
slow down the computation,

The long-term (10-yr) variations of the classical elements of the 12
GPS satellites and the orbit maintenance history may be found in Ref. 16.
Results of those variations revealed the interesting fact that the value
of inclination increases when the node 2 is between 0 and 180 deg, and
the inclination decreases when the node is between 180 and 360 deg.
The drift rate of inclination vanishes when the node is around 0 and

180 deg. With the analytical expansions derived in Part I, we are able
to see that for this type of orbit (e = 0) the perturbations on inclination
are mainly due to the sun and the moon, Neglecting terms of e or
higher, we obtain the averaged variational equation in inclination due to
third-body perturbations from Eq. (7) as

2 3
. n a
3_; = % -n—3(%> [%cos isin 2 i3 sin(.Q-.Q3)
+2 sin i sin” i, sin 2(2- 93)] (45)

Those parameters with a subscript 3 are of the third body. The node

of the sun is zero and the node of the moon is confined to within %15 deg
on the earth equatorial plane where Eq. (45) is derived, With this
equation, one can explain why the variation of inclination is a function of
the right ascension of the ascending node 2.
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Fig. 12 Variations of )‘ANX under Orbit Sustenance

The above example clearly indicates that the analytical solution has
provided insight into the long-term variations of the orbit elements of
the GPS satellites, This is particularly important for mission design-
ers to understand the long-period characteristics of the orbit, Figure 13
shows how closely the first-order solution predicts the inclination
variations of three GPS satellites in three different orbit planes. Even
after 10 years, the error is only slightly over 10%, The computer time
rzquired to generate the 30 points of prediction is about 15 sec (CDC
7600),
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Fig. 13 Inclination Variation of the Phase III GPS Satellites

CONCLUSIONS

The equations of variation perturbed by the sun-moon attractions are
expanded by computer in terms of the familiar classical elements, The
motions of the sun and the moon are represented by circular orbits with
the nodal rate of the moon approximated by the projected mean value in
the earth equatorial system. Results indicate that the first-order solu-
tion, analytically integrated with the secular part included in the refer-
ence orbit, can successfully handle the coupling between the sun-moon
attraction and the oblateness effect. Good accuracy in predicting the
variations of orbit elements up to 800 days has been demonstrated with
examples of the GPS satellites, However, such accuracy of orbit pre-
diction is limited to 100 days for high eccentricity orbits (e = 0, 7).

This is primarily because of the relatively large perturbations due to
J2 at high eccentricity which make the second-order terms important.
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An algorithm applying the first-order solution has been developed to
achieve the desired strategy of orbit maintenance for the GPS Phase III
system. The result of a 10-yr simulation shows that the total 4V re-
quired to maintain the longitude within %1 deg is around 7.5 ft/sec with
each correction of about 0.5 ft/sec. This algorithm will be useful in
determining the time and magnitude of the orbit correction maneuvers
for the GPS satellites. The analytical solution has helped to clarify the
long -term variations of the GPS satellite orbits,
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APPENDIX A

The package of series expansions used in this analysis is the latest
version of the computerized series expansion package developed by

R. Broucke of the University of Texas. After the terms are properly
combined by hand, the two series may be rewritten as shown in Table
A-2, This compact series may be useful for other types of analysis
such as deriving the equations of variation from the averaged disturbing
function [Eq. (2)] in the Delaunay variables, However, the results of
Table A-1 will be used for continued series manipulation by computer
to avoid any possible human error. We can then derive those partial
derivatives of (A2 + BZ) and (A2 - BZ) with respect to the classical ele-
ments, Again, the operations were performed by the computer; results
are shown in Tables A-3 through A-5. The nonzero series are denoted
by the following symbols:

2 .2 2 2 2 .2
_O0(A" - BY) _OA~ +B") . O0(A” - BY)
mw = 28 =B) . po SR ER) | o - 98B
ps o QA%+ BY) e - 9’ +B?)
- sin 1 ’ - Ocos i ’
IMS = ow? - 8% IMC = o(a’ - B%) (A-1)
sin i ’ cos i

3
Aerospace internal correspondence. Not available for external
distribution,
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Table A-1

COMPUTER-GENERATED SERIES FOR (A% + B%) AND (A% - B?)

G

Al +B2e
*lel-1/2951300,-1/205]002+3/405]00285]3882)
eteloSLeCIeS3%(13)8COSLL)

*lel/4sS5[es2e5]3802)6(C(5 (240)

eloi/es3 00201 /08510020, [3-L/08S5]0e225138¢2)0C0S(2%L-2¢D)
*4=2729516CLe513=,/2%519C1*513C13)+C0S(25L-0)

C00 /2951308237495 09,85 ]3882)9C05(24L)

ele f20STeC eSS 3 /205 0C105130C13)0CASLLeLD)

CUe /S [802-L/405 0820, | 3=1/805]00205]13062)0(0>5(2¢L+2%D)

I A e

A2-B2+
C(O1/746%513002-1/40(C05(3092-]1/805)9e205]13002)¢C0S(2%W=240)
*(eL/7205165130C13-1/729510C195132C13)#COS(2%u~D)
$(01/2851002-3/405 00585 13002)8C(S(2¢W)
*(=1/20S1e313%C13-1/2¢5,%CLeS13¢C[3)*COS(2%ueD)
*U0L/6051380241/740C (0513 942-1/8%5[00285](30¢2)0C05(204+2¢0)
$UOL/001/4%C13-17805]1300¢el/00C 0] /00CIoCI3-1/0%CLe5)3002-1/805%e2-]1/080510s20eC]

341/716951e028513¢82)0C0S(20L=200-240D)
0e1/405105 (341 /405185136C1301/40S1eC @S 1301/4¢510C12S130C[3)0COS{20L ~204=D)
4003/0805 00205]13992)0(C0S (2°L~20N)
$EOL/AOS10SI3L/ 0855050300 E)=1 /405 0CIo013¢1/40510CI05 136 [3)0COS(20L~20ueD)
$0e2/4=2/4%CLI=1 /4851390 2-1/49CI+1/49C10Ci3¢1/80CI0S130062=1/80S]002e]1/0805 0s20C]
300/16951+92¢5]13602)8((S(28L=204¢20D)
SUOL/001/40CTI3=2/08503002-1/60C =1/4%CL*CL3+1/68CL0S[3082-1/00ST002-1/08S 0020C]
3¢1/16451+029513042)6C0S (2¢L+20y-24D)
l=1/405105%3-1/405105130C53¢,/40S1eCIoSI301r00SI0CInS130C13)0COSI26L 0200=0)
$(43/78%51402513%82)8Cus (2%Le20W)
$U=i/A0STI0S 1301 /405165139C13-1/40S[0CI0SI34L/40S10CI0S130CI3)0COS(26L020Ke0)
0(Ozlﬁ'llb‘Cli'llo‘)!30‘201I5‘CI'1I6‘CI.CK3°lll‘Cl‘$l3“2-1’0‘Sl“l’ll"Sl“l‘Cl
342/7160519029513992)0C0S (200 020ye200)

2 2

A2+B2 =A"+B

a2 . g2

A2 - B2
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Table A-2
SERIES OF (A2 + B%) AND (A% - B?) ;

A% + B® = %u + cos® i) (1 + cos® ig) +-;—sin2 i sin® iy

+ }f [sin2 i sin2 i, cos AQ + sin® i sin® iy cosz 4Q]

1 3 .2 2.
+—2—(l - 3 sin 1)51n iy cosZ2 u

ST g e

+ % sin2 i[(l + cos i)Z cos 2(u - A9Q)

+ (1 - cos i)2 cos 2 (u +49)]

+3 sin 2 1 sin iy [(1 - cos i;) cos (2u +4R)
- (1 + cos i,) cos (2u - 4RQ)] .

A% . g =%sinzi(l-%sinzi3)cos 2w

+ % sin2 iy sin if(l - cos i) cos(2w - 4R)

- (l +cos i) cos 2w+A4R)]
+%sin2 iy [(1 - cos i)2 cos 2(w-49) .
+ (1 + cos i) cos 2 (w+AQ)] ;

+ % siﬂ2 i sinz i3 [cos 2(u-w) + cos 2 (u+tw)]

1 .43 4 A 4i .,
sin” > [sin 5 cos 2 (u-w+4Q) + cos 5 cos 2(utw+4 )] :

i . .
cos4 -—2?1 [sin4zicos 2 (utw-49) + cos4-% cos2(u- w-42)]

s i .
+ sin i sin i, sin® 73- [sinz-?% cos (2u - 2W+49)

3
1
2

- coszii cos (2u+2w+42)]

e 213 2i
+ 8in i sin i, cos” 5= [cos” 5 cos (2u-2w-49)

. sinz-zi- cos (2u +2w-A9Q)]
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Table A-3

SERIES OF IPO = 9(A% + B%)/9Q IMO = 3(a% - B%)/8Q
AND IMS = (A2 - B2)/dsin i

1P0.
s(=10S1eCLeS136CLIIeSiNLU)
el-l/2¢S5]10%2¢5]3082)85]IN(290) w
$Ue1/205100201/20510920; [3-1/4e5]00285][3082)85N(2¢L~2¢D)
*(=17205FeCLe5]13-1/72%514C1eS13eCI3)eSINC20L-D)
*l-1720510C1eS130172051¢CLloS[3eCL3I8SIN(20L4D)
el=1/205180201/20510828( [341/405109,05[3902)85IN(2¢_+2¢D)

INC»
e1e)/26513802-1/20C sSs082-,/4051%0285]3682)05IN(20u~24D)
*(e1/720S oS [I0([3-1/295L 0 L*SL3¢CI3)*5iIN(2%W-D)
+lels20SIeSL3eC[3e1/28510CI0SI30C[3)*SINI2ZoWeD)
S(=l/720ST3802-1/720C 1651300241 /405[088265]3082)8SIN(2¢ue2¢0)
C(OeLI20L020CL3=,/ 4051308 20,/20CL 0L /27CI¥CL3=1/40CI05]3902-17405]002-]/485]0024(]
JeaspesIeszes1iee2 )e; IN(2%L 204 ~2%0)
FUealaoSIeST3e,/605005030C 30 /7405 10CLoSI3eL/40510CI0S[30CI3)eSIN(2¢L~204-D)
C(=a/eoS1oST301/7405105130C13¢1/40510CL0513-1/605[¢C1O0S[30CL3VOSINI(2SL=20WeD)
*oll200/729CL300 04051320201 /20C -1 020CE0CI2=-L/40C 05130024 /405]1002-]/405[002¢C]
3=1789S510e285 3002 )%5 [N(20L 20U +29D)
*(01/72¢172%CL3=1/605]13602-1/26C1~172%CI0CL301/00CLeSI3002-1/4051002-1/405[0020(C|
301/7895160205]3002 )05 1N(20L ¢+2%u~20D)
*(=1/49S[0513=1/495195130(13e1/405]10C[05[3¢2/405[0Cl0S 30 CI3)eSIN(2¢L¢20u-0)
ele1/40SI0503-1/495025)30C]3¢)/40SI0CIOSII=-1/005T0CIeSI6CLI)0SIN(2¢L¢20UsD)
00ol/7201729C1300/40513802-1/7206C141/728CI0C[300/740C]05]1300201/7405]1002-]/40S5]0020(]
3=1/80831%0285]3%%2 )05 IN(20L +2449250)

InSe=
*(¢1724S139C13-1/29C1*S138C13)#COS (2¢w-D)
s(=L1o5[e513802)0C S (2¢n)
o(=1/20S130C[3-1/20C1o5(30C13)4COS(2¢u+D)
0('1/6‘5!3011603130C1301IQ‘CIOSl!’llQ‘Cl‘SlS‘ClJ)‘COS(Z‘L-l‘U-Dl
e1e1/24510513002)0COS 20 L-2%N)
O(QIIb‘Sll-llﬁ‘SISOCli-LIh'tl‘SlS’IIQ‘CX‘Sll‘Cll)‘cUS(Z‘t-Z‘voDl
0(-1'#‘513-1/#‘813‘Cl301I§0C1‘5130116‘C105l3‘Cl3)‘CDS(Z‘L020U'D’
$(e1/20510513002)0CUN 20 L Y2%W)
0(-110‘5!301100513‘Cl3-1lﬁ‘Cl‘Sli’llﬁ‘Cl‘SXS‘CIS)‘COS(Z‘L’Z‘UODI
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Table A-4

SERIES OF IPS - &(A% + B%)/@ sin i, IPC - 9(A% + B%)/d cos i
AND IMW - (A2 - B2)/9w

IPSe
slelesie5(30e2)
*(e)oCLeS130CI3)9C0>(0)
*(=1/20C1eS13-1/29Cledis0(C]3)eCOS(20L~D)
el=le5leS[3082)eCOS(28L)
C(ed/20CI*SLa=L/eoCie5436CL3)eCUS(2%L D)

LPCe
s(eleCi~l/20Cl05]13002)
e(eley1eS(36C[3)eCOS(D)
*l=1726C105132¢2)eC0S(2*D)
*(=1720C1-1/20C10CL3¢1/4¢C[05]3962)eCOS(2¢L-29%D)
4(=1/728510513-1/7205195139C13)9C0OS{2¢L~D)
efel/20CieSL30e2)0CasS(2¢L)
*0oL/20S10ST3-1/7205105130C13)0COS(201+0)
*(=l/20CLeL/2%CLoCLA¢,/00(CL05[2062)0(C0S(2¢0L¢2¢D)

1.1 L]
*0=0/2051309201/20C (051300201 /40519820513892)8SIN(20u-200)
¢(=10518S130C 134105 0CI0S139CI3)95IN(2%U~D)
*(=105190203/2¢500205(3002 )¢S IN(2%)
*0e)eS1eSIICI34 105 0C [eS13¢CLI)eSIN(20uweD)
$(=2/7205]13002-1/20C1¢5S1396241/49519265]30462)85IN(2¢0+2¢D)
*001/7241/720C13=074051300241/20C[¢1/20C10CL3=1/40CI05]13062=1/40¢S[002-1/405]002¢C]

JeL/8eSI000513042)¢5 [N(20L=2¢U~-24D)
*(01/720S10S1301/7205105139C123¢1/20516C10513¢1/26SI0C16S130CI3IOSIN(2¢L~2¢u~D)
*(03/495100205]3602)05IN(20L-20%4)

80l /208105 12-1/2050050139C]3-1/20510CTeS 3¢)/20516CI0S 3¢CI3)OSIN(20L~20UeD)

OlOLIZ-IIZOCl3°llﬁ‘Sli"Z-lIZ‘CIOIIZ‘CI‘ClSOIIQ‘CIOS13"2-1140810020IIQOSIOOZOCl
3017005100265 ,3062)05 [N(20L-20W42¢D)

OC-lll-lIZ‘Cli’le‘S13"20112‘C101IZ‘Cl‘Cll-llb‘Cl‘SlJ“l'llQ‘S!‘.ZOllﬁ'Sl“l‘Cl
3=1/00510828513002)85 [N(2¢L420Y-20D)

0(’1[2‘81‘8[301IZ‘SI‘SII.CI3-[/2’5l‘Cl‘Sli'lIl’Sl‘Cl'Sl!‘CIS"SlN(Z‘lOIOI-D)

*(=3/40510020513002)0SIN (20 ¢20u)

0(011208105lJ-llZ‘Sl‘SlJ‘Cli'tlZ‘Sl‘ClOSli-lll‘sl‘Cl‘Sl!‘ClSl‘SlN(Z‘LOZ‘UOD'

$4=10201/20CH000/49513062-1/20C101/20C10C1201/00CI051300241/0081002-1/405]0020C]
3-17089519020S 13002 )05 [N(2¢L0201e290)
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Table A-5

SERIES OF IMC = §(A% - B%)/d cos i

Ince
S(=1/49SI308201/40C1#503902)0C0S(20W=200)

¢(=1/2¢S10S13#C13)8C05(2 w-0)

$(=10CLe1/20CI0303092)05 U5 (2%4)

¢(=1/29S16S[30C13)9C0S(2oueD)

PUOL/00S[300201/49C 85(3042)0C05(20ue28D)
*00L/801/00C13-4/80513002¢1/48C 1oL /49C10C13-1/80CL0513002)0C05 (20L-20U-200)
P(O1/48S[eST3¢L/005105130C13)8COS(20L-20u=D)

$(=1/48CIoS13092)9COS (cPL=20)

$0=1/48510S (34, /49549513 ¢C13)oCOS(20L-20weD)
*(=1/401/49CI301/8951306241/48C1=1/42CLIoCL3-1/0¢CIoS[3002)8C0S (20L =20y +20D)
$U=l/0=1700CI301/8951300201/49C1¢1/40C10C13-1/84CI*S [3002)0C0S (26 +204~26D)
*(91/605105S13¢1/405165(3¢CI3)9COS(20L0204=D)

*U=1/08CLo5T3402)0C0S (26 Lo20%)

*(=1/68S[0ST3¢1/40515136C13)CUS(2%L+20u+D)
*(e1/4=1/49CL3=0/0051380 201 /49CL=4/40CICL3=1/30C1513062)0C0S (201 +20ue20D)

Note that the designed package cannot take partial differentiation direct-
ly with respect to the inclination i, which is treated as a polynomial
variable, Thus, the intermediate parameters sin i and cos i are used
with the following relations to complete the differentiation.

ST = Ser <00 1 - oy oin (A-2)

Note also that the printed series are in FORTRAN language; they can be
punched out and directly inserted into FORTRAN programs,

APPENDIX B

{ZL Perturbation
& = . Bnele-e?)sintisin zw(}—_ﬂ; - sinzi)
% = g%egnez sinZi(-%%- siu2 i) sin 2w
g—‘?rg-n €, cos i -%neg cos 1[% - 2—sinZ i +(é +?_5-)—4sin2 i)e2
+ (ILZ - %sinz i)ez cos Zw] (B-1)
(cont.)
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where
- 2,2
€, =17, (Re/p )
E = a(l-e2)
Re = equatorial radius of earth

J3 Perturbation

ge - ne, (1-e2) cosw sin i (1-5 cos’ i)

g—% = n€; e coswcos il5 ccos2 i-1)

%’ = ne; e sinwcot i (15 cos® i - 11)

g—:" = ne, (—lle“iz—’ sin w sin i (5 cos® i - 1) - %cos i (B-2)
where

€, = 3/8 (Re/p)3 I,

J4 Pe rturbation

g—: = -n€, e(l-ez) sin Zwsinz i(7 cos2 i-1)
4 - 3 ne, e sin 2wsin 21 (7 cosZ i - 1)
g'i:g= n€4cosi|2 (7coszi -3)+e2[7coszi- 1
+ 4 sinzu(7 cosz i-4)] l (B-3)
(cont. )
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a— = -2n64{8 - 28 sin%i + 21 sin?i - sin‘wsin® i (7 cos® i - 1)

+e [6 - 14 smZ i +é'—gsm4 i+ smbw(b - 35 sm i +6—3sm4 1)]

(B-3)

where

) 4

€, = 15/32 (R_/p)
APPENDIX C
Table C-1
THE Fy,  AND Gy FUNCTIONS

Fap1 = 38in° 1, Fppq = 7 (l+cos i)’
F3?“1 = lgf’-sin i(l-2cosi -3 cos2 i)
].7'322 = - l—assini (1+2 cos i - 3 cos2 i)
Fyyy = %Z sinZ i (143 cos i) - % (l+cos i)

1 .3
Fas0 = Ts (l+cos i)
F421 = Lgésmz icosi(l+cos i) - T (14+cos 1)
F440 = Egs- (14cos 1)

3 5 7 9

G,yy = 1.5€ + 1.6875¢” +2.0390625¢° + 2.3289388¢ ' + 2,587323e

+2.822341e’) +3.03933758e!3 + 3,2418959¢15 + 3,43255448¢!7

+3.6131875¢19 . ...,

3 5 -2 7

Gyg.y = -0.5e +0.0625¢° - 0.0130208e> - 0, 77582465 X 10

- 6.16930 x 10™3e? - 4.96735185 x 10" >e!}

- 4,0929341 X 10-3e!3 - 3.44089913 x 1073e1% + ... ..
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310

322

30-2

41-1

410

421

40-2

Table C-1

THE Flmp AND Glpq FUNCTIONS (Continued)

4 6 8

1 +2e2 +3.734375e* 4 5.769097222¢° + 8. 096605089

12 4

+ 10.6829796e10 + 13,50467544e "~ + 16, 54355294e1

+19,7851081e'® + 23.21740226e!8 + 26. 8303857420 +

2 6

1,375e" + 3.0625e4 +5.099283854e  + 7.427332899e8

0 2

+10,01418813e10 + 12, 83625022¢ 2 + 15. 87540617 2

6 8

+19.11717618e¢ 0 + 22.54963923e 18 + 26. 16275785¢2% + .. ...

0. 125e2 + 0, 0208333e4 + 0. 0179036e6 + 0, 01277l3e8

+0.009776e0 + 0.0077966e'% + 0. 006408514 +

0.5e + 2.0625e> + 4.794271e> + 7.048177e

+7.416341e” + 6.046672e ) + 3. 999685013
+2.208745e1° + 1.037865e17 + 0.420094e'? +

6 8

2

1 +e” +4.0625e +6.3125¢° + 6. 566406

+5.257813e10 + 3. 43847712 + 1. 913086e 1%

6 18 20

+0,143613e" " +.....
7

+0.923584e 1% + 0.389633¢

2.5e + 8.4375¢> + 18.65885¢e> + 26, 132813e

9 11 3

+20.032104e!! + 12.389781e!
7 19,

+ 26,069336e

+6.332082e1° +2.716932e} 7 + 0. 986036e

4 6 8

0.5e2 - 0.3333333e? . 0.125¢° + 0.338542¢

+0.314453¢10 4 0.093099¢!2 . 0.048706e %

16 8

- 0.02714561 " es e

- 0.062805e




VALUES OF LOW-ORDER (FOURTH) HARMONICS OF EARTH

Table C-2

GRAVITATION POTENTIAL (WGS 72 MODEL)

22

31

32

33

42

44

Zonal Harmonics

J, = 1082.61579 E-6"
J, = -2.53881 E-6
J, = -1.65597 E-6

Tesseral Harmonics

1.5765 E-6 S22 =
2.2181 E-6 S31 =
3.1196 E-7 S3Z =
9.8324 E-8 S33 =
7.6894 E-8 542 =
-4,0641 E-9 S44 =

-43.

-9.0602 E-7

2.8843 E-7

02,2055 E-7

1.9611 E-7

1,4562 E-7

6.7006 E-9




