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A SCORE FOR CORRECT DATA ASSOCIATION IN MULTL-TARGET TRACKING

D. L. Alspach and R. N. Lobbia

ORINCON CORPORATION
La Jolla, California 92037

SUMMARY

In the real-world multi-target tracking problem, there exists the possi-
bility for many things to go wrong. Typical problems which arise
include: 100 few tracks are formed; too many tracks are formed (false
tracks); and inaccurate position, course, and speed estimates gre
reported. The above difficulties are ofien the result of incorrect alloca-
tion of data to individual tracks. Algorithms, while estimating the
motion of a given target, inadvericntly mix in clutter and/or measure-
ments from another target. In order for correct allocation of datato s
given track to be made, one must have an cffective scoring formula;
that is, some means of determining how likely a given assignment of
Jdatais. To be effective, a scoring formula must produce (on the sver
age) a becter score for correct assignments than for incotrect assign-
ments. Information useful in the scoring process includes a priori intel-
ligence data (such as initial target locations), models of target motion,
models of the transmission channel, and expected moments of clutter
for the sensor gain setting being used. Basically, the score is derived
from the residuals which come out of the processing of a batch of data
with the extended Kalman filter. This is used to evaluate the likelihood
of potential tracks. Although the “likelihood* has an intuitive mesning,
the term is used here to mean the probability density function p() of
the track A. The expected cost of a given assignment is derived with
the theory of extremals being used 10 obtain the expected cost of add-
ing a clutter point in a track. The resulting expected cost is then shown
t0 behave in a quantitative fashion and this can be visualized from a
geometric viewpoint.

1. INTRODUCTION

In the last few years s number of approaches to the problem of
tracking multiple targets in a ciuttered cnvironment have dbeen pub-
lished. Some aspects of the problem that have been considered in
some subsets of these publications include the problem of (alse alarms
or missing measurements, track initialization, multiple measurement
types (MSI) and target classification.

Many of the so-called multi-target trackers described in the open
literature really deal only with the problem of one tarpet in clutter.
This hypothesis of only one target can greatly restrict the viability of
2 multi-target tracker to sort out confuscd situations.

Of the trackers that have been proposed, and in some cases imple-
mented, one can see certain similaritics and differences which allow
the trackers to be grouped into certain classes. The grouping and
certain applications of these groups hus led to the following thoughts.

Perhaps the most fundamental aspect of a tracker is how it handles
and interacts with the data. The data is after all our handie on the real
world and al) the information we have about a specific tracking realiza-
tion is contained in the data. A second fundamental aspect of the
multi-target tracking in clutter problem is that of alternate hypotheses,
1t is pomsibie 10 derive the probability distribution of tracks and clutter
points if one casefully specifies the a priori probability base, i.c., the
probabilistic target models, probubilistic measurement models, etc.

In very simple cases where onc can get the optimal solution, one finds
this consists of al] possible configurations of the dats into the sets. In
each configuration each data sct represents 3 possible alternate track
or the set of clutter points. A probdability measure is assigned to each
possible total surveillance 5. cion picture. This globally optimal
approach is generally not reasonable for implementation and spproxi-
mate or suboptimal approaches must be considered.

Several spproaches focus cntirely on the construction of the sets of
data (the construction of feasible tracks). 1t is this latter philosophy
that is being addressed in this paper.

Conceptually, using maximum likelihood techniques, various com-
binations of dats are tricd and then “scurcd™ using log-likelihood
functions. The dest fit to thetarpei model gets the lowest score and
this is considered 10 be one of the tracks in the region if no other low

e e

score track competes for the same messurements. If two or more
targets compete for the same measurements, several situstions can
occur. These include the possibilities that the 1wo targets are lumped
together, one target is rejected, the targets get mixed with track points
asigned to clutter and two “bad™ tracks reported, or the case that il
points are sssigned to clutter. It is possible, though perhaps not nor-

" mal, to find situations where the choice of the best nonoverlapping

feasible track does not correspond 10 » best surveillance picture. This
is quite easy to do if the tracks overlap and compete for the same
messurements.

Many trackers consider alternate hypotheses as far as assigning mea-
surements to a track. However, once a decision has been made that a
messurement belongs with another group of measurements, this deci-
sion is not reexamined. Once the decision has been made to smign »
piece of data to 2 “track," that decision is final. This is done because
the system usually requires “an answer.” Also, there is always new
data coming into the tracker allowing new hypothesis tests. In addi-
tion, there is a limited amount of computer response. Onc could say
that the hypothesis testing is directed to make a decision on the
proper surveillance picture or that the tracker is “decision dirccted.”

In the next section, we will see how effective scoring algorithms are
developed—ones which can handle the alternate scenarios posed above.
Following this, in Section 3, a refinement to this scoring alporithm is
proposed and it is scen that the average cost incurred for assigning
measurements to tracks can be visualized from a geometrical view-
point. In particular, it will be shown quantitatively that there exists
& unique number of points (measurements) in a given track that yields
an average minimum cost. Incorrectly assigning clutter points to this
track and wrongly assigning points to clutter will, on the average,
increase the cost in a well-defined manner.

2. SCORING ALGORITHMS

In order for a correct assignment of measurement data to a given
track to be made, we must have an effective scoring formula, i.e.,
some means of determining how likely a given assignment of data is.
To be effective, a scoring formula must produce (on the average) 8
better score for correct assignments than for incorrect assignments.
Information useful in the scoring process includes a priori intelligence
data (such ss initial target locations), models of target motion, snd
expected amounts of clutter for the sensor gain setting being used.
Basically, the score is derived (rom the residuals which come out of
the processing of a batch of data with the extended Kalman filter. This
is used to evaluate the likelihood of potential tracks. Although “tikeli-
hood* has a useful intuitive meaning. we use the term to mean the
probability density function p(A) of the track A. The concepts we use
are well-known, since most of the work in estimation theory pertaing
10 situations where all the observations Z= (2.2, -+, 2,) are dueto
2 single target. An obvious example is the stochastic lincar system

Xpa) = ApXg ¢ Bypuy,  k=0,1,....m, ()
zy = Cuxptv, kel,....n, Q)

with states  {x)) C R, observations {2y} € RE, process nolse {uy)C R
and meauremcm noise (v ] CRY. Ay, By, Cy arc matrices of sppronei-
ate dimension that may vary with time. The initial state xg is » Gaussian
random vector with covariance Pg, independent of the processes {uy )
and {vg}, which are themacives 2er0 mean white Gaussian noise with
covariances {Q)) and {Ry) . Under these ansumptions, the well
known Kalman equations provide minimum variance unbiased mm
{&x) of the states bascd on all past data:
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When nonlinear measurements are involved, a simple linearization
process (the extended Kalman filter) is used. The equations remain
exactly the same, except that the term

Zge) - CrorAxtk m
e the first equation above is replaced by
2pep - hgep(Ariy). ®

where hy , | (-) denotes the nonlincar relabionship between the measure-
ments and state vector, and the Cp-matrix becomes

G = J'skﬂ ©)
T

It is natural to compute the likelihood function p(\ ) for the track
A C Z based an the Kalman filter state estimates. The innovations
sequence is an integral part of this computation, which is a sequence of
the measurement residuals:

5k"| ® 24l .ck"'lAkik , k=0,1,,n. (10)

The (negauve) log likelihood f\mcnon is given in terms of {8 k} by

2 vl +-L£ sk Vit ey (11)
k=1 k=l

c(2) = ndim(2)In 2r + <

The covariance matrix for the measurement residual, V), can be com-
puted directly:

X - CkﬂFkCLﬂ + Rk"l' k=1,2, «,n. 12)

Each feusible track is the result of a hypothesis test that uses the
track Jikelihood function p( \) (ur equivalently, the negative log likeli-
hood c(1)) determined from the Kalman filter. Since the density
function of the alternative hypothesis (that N is not a track) is unknown,
the decision rule is simply

<)) = inp\ | {R10a)) >a,~2€F, 13)

<(A) = InpA | (R }Pa)) <0y ~A¢F, ‘09)
Based on the log likelihood decision function, the leasible track set is

F = {2 Zminp(0) (S5} fap) > ep - s)

Primarily, the only random componcnt of c()) is
=8tvls | Q16)

which for real tracks is 3 chi-squared random variadle with n - dimension
(2) degrecs of freedom.® Therelore, error prohabilities can easily be com-
puted for the hy pothesis test 1o predict the accurscy of feasible track con-
struction. This has o critical impact on the ultimate accuracy of the track-
ing algorithm, since a real track mistakenly exclused from F cunnot be
used in the subsequent Bayesian decision process.

*Due to the random nature of the menunmnl atriva) time and of the semsor
whith swmws the nest ment,” the d of V) is sho random
in nature but it s hord to pare s z from one 10 1he Reat.

- . L~ . L. R

and, finally, the likelihood test. The coarse test checks the mapmitude of
the maximum component of the vector §y ¢ R agunst By, and is
included becausc it is computationslly cheaper 10 perform than the fine
test. The constants By and vy can bs chosen 80 that

- -

{z“&&\lk ‘k < Tk} {lk' “‘kn- < ‘k} ()

One difficulty with this approach is that becsuse of the “detcrministic™
terms in the likelihood function

n
ndm)in2x +1 3 in vyl (20)
" k=)

it is difficult to compare some of the tracks of different length. Itis
also difficult to assess the absolute poodness of a score. Therefore, an
alternate score with 2 more absolute meaning can be defined. This is
described in the next scction.

3. REFINED SCORING
For track i at stage k definc the stapewise chi-squared score
sf = a- T vl af-2 - @1

This has the features—if all measurements have been assigned to the
correct targets and all filter parameters choscen corfectly —that

E(S}] = E(s,) =2 2
E{(S-22) =4 (23)
o5, = 2 4)

S, US®0 S <O
fs) = eS2yes), )
®) = TS s)=1, 530 e

where E {-) indicates the expected value operator, 0§, is the standard
deviation of Sy, and f(S) is the appropriate density function for 3 two-

dimensional random variadbleS. Define the cumulative chisquared score
as

'lgsl, (20)

For easy evaluation on a single track an cvaluation cost that would be
quite meaningful would be

G ‘il,' si. 27)
For this cost function the statistical parameters are

E(C) = 2 (&)

E(G-2?) = am;  og = 2m? 9

fcty) 'rl(N,) y e uy). 30)

For display purposes the use of C; as a value measure of a single track
makes a great deal of intuitive sense.

Values of C; << 2 for reasonable kength tracks tend to imply that the
filter pamnelm are set too loose. Thus, hy reducing Q) and/or Ry, one
could obtain tighter tracks. Tracks for which € >> 2 J‘aﬂy reprosent
bad dats assignment which shoukt not be kept. Mm preciecly, if
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when o = 3 (for a 3sigma casc) indicates either that incorrect data has
been assigned (o the truck or that the filter parameters (Q,R) use too
small. While

G < 2-e2N5, Nj>3for o) 32)
indicaies that the filter parameters (Q,R) are set 100 large.

For 3 1012l surveillance region picture of M measurement points and
L tracks, one has:

Number of Points
Track No. Score in Track
[) [ N
2 C, Ny
L L N

The score for the total area should be made up of these scores and the
cost for assigning a point to clutter. The number of points in clutter is
NC- the number of points assigned to tarpets is Np, and the total number
of measurements are M. These are related by

L
Np = 2 N; . (33)
i=]

M= Nc¢N’

A meaningful score could be defined as:
L

s =3 NG+ NeSc 34)
i)
where Sc is a score defined for a clutter point. If all the measurements
are corsectly assigned 10 the track:

L
=]
= (M- Nc) + NCSC . (36) -

If we define the clutter score, Si, and a total surveillunce score as
.l ‘ 37
(o M s 37

where, if all the measurement points belong to the track,

E© = L ES) = 1 12M-Ng) + NeScl (8)
E(C) = 2 -"—SC + -’5& Sc 9)

30 that 2 plot of the score for a global surveillance region for & real case
of Np meusurements assigned to N* targets with all points assigned cor-
rectly and N, clutter points can be peomvtrically described by Figute 1.

The curve from N=0, that is, all points assigned to clutter, to N=Np,
the comrect number of points assigned to cluticr, is just a straight line
described by:

- AM-Ne) N
E(S) __M..C. ,_CM Sc. (40)
where

Nc varies from M to M-Np.

Beyond the point (N=Np), 8 clutter point must be assigned to the track
Gassuming just one track in clirtter). The cost 10 assign 2 singhe clutter
point 1o the trawk cun be caleulated in the foflowinm: manner: A given

R

track will peajeet 10 o poven Janl in measiement spdee. boe exampds
consider the iwo-dimenssonal measurement vector ( 7,@) descrihed
Figure 2.

If a clutter point is sdded to the track, the increase in score on thy
track will be given by Equations (21) and (37). The diticrence is tha!
now the value of the score can br wnitten 23

L
c.&.#{z NiciﬂNc-l)scoq% . )
i1

assume sl track
pownts arc properly
asaigned

Here Cf is the cost for assigning one clutter point to the track. C']
is a random variable and its distribution depends on the distribution
of the clutter points. From Equation (21),

¢ = -t vil af -2 “2)

where zi are the 1, points for the clutter point. The distribution of
this random variable depends on the random nature of the clutter. !
If the distance of the clutier point from the predicted point & assumed i
to be Gaussian in v and o with zero mean, the distance from the pre-
dicted point will be Rayleigh distributed and the cost or score Cj . the
weighted square of the distance (42), will have an exponential density

2 = 0,c<0
fe,(© = :-:-,_7 €120 ye; :::: ) l.: o 3

where 02 is a measure of the dispersion of the clutter points with
respect 1o the mid- or tracker-predicted point. The uncertainty, 0,
takes into account the unequal variance in 7 and o and is given by:

7 _ (ranpe of o in surface) (range of ¥ in surface)
0 =
%%y

(44)

The score for the closest clutter point to a point predicted by the
tracker (closcst in the sense of having the smatlest score detined by 4
(42)) will be distributed as follows (x = score of the closest point):

Fy(x) = probability that the closcst clutter point out of
Nc having a score less than or equal to x.

;
Fy(x) = 1.¢%/207, «4s)

From the theory of extremals, it is obvious that this distribu-
tion is identica! to the probability distribution of the event defined
below,

Fy(x) = {probability that all of the N¢ clutter points have
scores less than or equal 1o x)

Fy(x) = 1. {probability that all Nc clutier points have
scores greater than x)

From (43), it follows that the probability that the score of any onc of
the Ne clutier points being greater than x is given by:

/20 2 . (46)

Assuming the clutter points are independent of one another, the
probability that all of the Nc clutter points have scorcs greater than
X is given by

.-ch/zaz

and the probability that all of these clutter points have scores fess than
or equal 1o x is:

“
-Ncx/20°
e cr/20

! “n
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. Nexl2 2 # decremsing lincar function.
f(x) . ¢ CMéoT (48) Since, on the average, 02 >>Sc, the shape of the right-hand side of
202 the curve in Figure | is concave and monotonically increasing:.

The expected value of the cost of assigning the closest clutter point to a
track is then given by:

Note the two regions of this figure. In one part fewer points are
assigned (0 tracks than actually are available, i.c., 100 many detections
were missed. In the other half of the figure, false alarms or clutter

- . points were assigned to tracks. In both parts of the curve the sssump-
E(x) = xf(x)dx =287 . (49) tion is made that the data association is done in an optimal manner on
- Ne the average. Thus, if a clutter point is added t0 a track, it is the clutier

The expected cost for assigning the next nearcst point 1o a track is

g2 (0
(Nc- D )
and, finally, the expected cost for adding the kP closest clutter point
out of Ne to a track is given by:

-
-1 L (1)
Ne+ 1k

Note that in computing the expected value of the total cost function
defined in (41), one must also account for the linear decrease in cost
caused by the decreasing weighting coeflicient (Nck) on S¢ when k
clutter points are incorrectly assigned to tracks. This amounts to a
decrease of S¢/M for every clutter point assigned to a truck. Therefore,
the net increase in the expected cost by assigning the k closest clutter
points out of N to tracks is given by:

point that lies “'closest™ to a track of those unassigned. The curve ahso
assumes that all measurements correctly assipned as track points are
assigned to the correct track. Wrong assignmenis of data would, of
course, Make for even worse scores “on the averape.™

4. CONCLUSIONS

In the last section, it was shown that the refined scoring algorithm
possesses appealing propertics from a geometric vicwpoint. There
exists 2 unique number of points in a track that results in lower awerage
cost than any other number. Also, the scnsitivity of the score 10 varia-
tions in assigned number of track points can be contsolled by the clutter
score, S¢. This is readily apparent from Figure 1.

This scoring algorithm is therefore a very useful approach in extract-
ing clutter points out of a given target track.

The algorithm is currently being applied to an ocean surveillance
problem and the results of this are very encouraging. For a piven data
set having a false alarm rate of 104, i.¢., one clutter point in every 104
measurements, using the refined scoring algorithm defined in Scction 3,
we have found that we can effectively decrease this false alarm rate to
10°7. This represents a threc-order-of-magnitude decnease and, hence,

) k . ) the detection capabilities of the tracking algorithm have been signifi-
. 1 z _2_q_-_ -kSg, - (52) cantly enhanced.
: M| o Ne*td { .
j=1
j .
f
EACH POINT WRONGLY ASSIGNED TO
- Se CLUTTER ADDS (Sc-2)/M MORE TO
B B THE SCORE THAN ASSIGNING IT
T TRACK.
CORRECTLY TO THE TRAC! NOTE ASSIGNING CLUTTER POINTS
b ) TO TRACKS MEANS ASSIGNING
¥ ! THOSE POINTS “CLOSEST™ {IN
b; MEASUREMENT SPACE) FIRST
i ‘ """ WITH SUCCESSIVELY WORSE
POINTS NEXT.
f c
M-N \ EXPECYED COSY DUE
2(——‘, \ TO RANDOMNESS OF
N\ CORRECT ASSIGNMENT
Nes,”
" CORRECT NUMBER OF POINTS COST FOR
\ ASSIGNED TO TRACKS CLUTTER
| 1/ -
/7 Np r
ALL POINTS ASSIGNED ALL POINTS ASSIGNED
TOCLUTTER TO TRACKS
N —
PR ’ ’
‘ N * NUMBER OF POINTS ASSIGNED TO TRACKS
7 Fgure 1. Geometrical description of refined scoring elgorithm.
.
3 ' Py
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Figure 2. Two-dimensional measurement spece.

This werk was partislly supperied by ONR Rescareh Conwract No. NOO14-17-C-0294.
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SOUND SPEED ESTIMATION AS A MEANS OF IMPROVINC
TARGET TRACKING PERFORMANCE

D. L. Alspach
ORINCON Corporation
La Jolla, Californis 92037

Summary

This psper addresses the issue of target tracking
vhen confronted with s set of sound speed paranmeters
that are partially or completely unknown. It explores
the case vhere these paraseters are sugmented to the
target etate in an extended Xalman filter. The filter
processes measureasnts of sound time-of-arrival differ-
ence and Doppler difference from a set of spatially
displaced sensors.

For scenarios involving up to three sensors it has
been found that biased target position estimates and
narginal system observability occurs. This is readily
verified by propagating the eigenvalues of the infor-
mation matrix in time. Using this as an analysis tool,
a number of geomatrical sensor configurations are
analyzed.

In genersl, it is found that with three sensors, the
systen is, at best, marginally observable for any geom-
etry. Hovever, when using four and more sensors, sys-
ten observability and estimation performance are wmarkedly
improved when two of the sound speed filter paranmeters
are specified to within a close tolerance of their
actual values, When attempting to estimate all of the
sound speeds (or for that matter (n-1) sound speeds,

n = numdber of sensars), it is again noted, as in the
three-sensor case, that system observability and estima-
tion performance become degraded.

1. 1Introduction

1o s target tracking spplication, one reason for poor
estimation performance can be a lack of knowledge con-
cerning the parameters of the mathematical model that
relates the target state to the measurements. Since 8
mathematical model is & necessary ingredient to any tar-
get tracker or state estimator, use of incorrect parame-~
ters could lead to estimates that diverge from "truth”
over a period of time.

1t is this problea thaz is dealt with in this paper.
More specifically, it involves s target tracking prob-
len vhere messurements of time difference and Doppler
difference are collectad from pairs of spatially dis-
placed sensors. The central issue is that the sound
speeds from the target to each of these sensors are
partially or completely unknown. These speed parameters
appesr in the mathemstical model relating the rarget
state to the measurements. To avoid biased target
tracks, some mechanism should be found to sccommodate
these paraceter uncertainties.

The materisl in this paper is basically an extension
of an earlier work [1) and is wmore conclusive in terms
of the results that were obtained for a number of dif-
ferent geonetric scenarios involving sensor placements
and target location.

We will start our discussion in Section 2 by descridb-
ing the mathematical model for the given process and
proceed to define an estimator that can sccormodate
doth unknown sound speeds and the target state vector.
All of the simulation results will de presented in
Section 3. 1n addition, we will also show how we can

assess system observability via the information matrix.
This will play a useful role in exploring system observe
abilicy for s number of different target/sensor geome-
tric scenarioe.

G. Mohnkern
Naval Ocesn Systems Center”
San Diego, California 92152

2. N. Lobdis
ORINCON Corporstion
Las Jolla, Californis 92037

From the simulation resulcs it will be seen that &
ajininus number of s are ded and, in sddition,
two of the sound speeds must be known correctly before
accurate estimation of the target state can be achieved.

Finally, in Section 4, a summary of the results and
conclusions will be presented.

2. System Definition

One area where the uncertain model parameter probles
could arise is depicted in Figure 1. It could equally
well apply to tracking of vehicles on the Earth via
geophones or any place that the signal does not travel
with an infinite effective or known velocity. We have
a set of i spatially displaced sensors (distance to
target = Ry). If the target generates or reflects sound
at time instant, t, b of the d travel time to
each sensor (sound speed = c4), it will be sensed at
each sensor at times tj,t2,...,tj. In addition, if the
target moves at a velocity, v, the Doppler sensed at
each gensor will be different. To astimate the target
state, 1.e., position, speed, and course, measurementa
of sound timerof~arrival difference and Doppler differ-
ence for a sensor pair i-j (4,j=1,2,3,...,1i=j) can be
processed through a Kalman filter. Using spherical
geometry, these measurements can be related to the tar-
get state by the following equations {l}:

Ri R
Tgy " tTR T DA m ]
R R
w-f-f n oS4
fij f1 fj ( °1+°J) £ (2)
where
R1 - cos'llsinxlsmk1 + conxlcoukicos(xz-ei)l (3)
i - xslsinxlcosltcos(xz-el) - coszllinl‘)
1 e ¥ sin R
1
. x‘colxlconlisin(xz-ei) @
sin R1

In the above equations, xg,1=1,2,3,4 represents the
target latitude, longitude, latitude rate, and longitude
rate, respectively. The latitude and longitude of
hydrophone 1 is A; and 4. An implicit assumption in
(4) is that the sensors are stationary.

Throughout the paper we will take the target state
vector to be * [x1,X2,X3:%X4). The reason for doing
this is that target motion can be descridbed by 8 lincar
set of equations. In discrete-time form, the equations
for the target dynanmics are given by:

1 0 a O v,
0 1 0 &t )
Thtl) = 1o o 1 o] FW* | ®
)
o 0 o0 1 v, ()
*(ot) 700
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wvhare At = sampling interval; i.e., the time butween
measurements of Tij.fg4; v(k) 1s a zero-mean, vhite
noise vector sequence that perturbs the target from
othervise constant course/spesd motion; and vhere

B30 T () =g, 6, .

1t 1s & simple matter to display speed and course at any
time by using the equations below:

SPEED = stf+ x‘z eolle (6)
x, CosX
course = un"(‘x ‘) M
3

Since the measurenent model is nonlinear (eq. 1-4),
one can implement an extended Kalman filter to track or
obtain estimates of the target state vector, X(k). This
is easily done by linearizing the measurement equations
sbout the most current state estimate, X(k), to obtain a
linear measurement equation, H(X(k)). The equations for
the filter are standard [2) and are summarized below:

AAkH/K) = (A) R(K/K) 8)
P(H/K) = 0(Bt) P(k/k) ¢T(AD) + Q ®
(A1 /1H1) = ROH/K) + K [20cH)

- RGEKH) KD)) Q0

P(k#1/41) = [T - KBEK$1/0)] POL/R) (1)
K,y = POSL/N) BE(+1/K) [HRO41/K))
Pert/i) B RERA1/00) + K17 (1)

where
2 = [1,,0, £,,0)

AT/ = (1,00, £ 001 -

~ -~ A A
R, R R, R

- [(—‘---1). f(-i-—l).’ (13)
A € & /J

kk = covariance matrix of additive white
noise, that contaminates z(k)

BEGH/K)) = ShER))

() (14)

®(k) = K(k+1/k)

From (1), (2), (13), and (14) 1t 1is easy to see how
sound spesd, c4, enters into the measurement model. In
{1], 1t was shown that when incorrect values of cy were
used in the filter model (assuming one did not know the
true c4), the resulting state estimates were found to be
biased off from the true target state. In some cases
these biases were significant, and consequently the
deviation from truth was as significant.

To compensate for this problem, the sound speeds were
treated as additional state varisdles and augmented to
the target state. Since the sound speeds were constant
over the estimation interval, the state dynamics wers
simply defined by &g = 0. The extended Xalman filter
was then implemented for this augmented state vector to
generate estimates of both the target state and the
unknown sound speeds.

In the next section, we will summarize some of the
earlier results that wers obtained and then present more
exhaustive results that indicate a definite trend
occurring.

St

3. Simulation Results

To exanine the effects of estimating unknown sound
speeds, we selected a nusber of different cases iavelve
ing different target motion scenarios and three-scnsor
configurations as shown in Figure 2.

The locations of the sensors are defined in Tablc |
and the target motion scenarios (cases 1-24) are sum-

marized in Table 2.

Table 1. Locstion of sensors.

Arcay Latitude, X Longitude, €
1 S deg 0 deg
2 -2.5 deg 4.33 deg
J 2.5 deg -4.3) deg

Table 2. Target motion scenarios.

Case Starting Position
Number Latitude Longitude Speed Course

1 .5 deg «5 deg 10 knots 0 deg

2 90 deg

3 180 deg

4 * 270 deg

5 2,5 deg 0 deg 0 deg

6 ] 90 deg

7 l 180 deg

8 ) Y Y 270 deg

9 =1.3 deg 0 deg 0 deg

10 | 90 deg

1 31 ' 180 deg

12 Y Y 270 deg
13 ~1.3 deg -2.0 deg O deg
14 I 90 deg

15 180 deg

16 Y # 270 deg

17 0 deg 2 deg 0 deg

18 90 deg

19 180 deg
20 . v 270 deg
21 0 deg =4 deg 0 deg
22 90 deg ‘
23 180 deg |
24 Y \{ 270 deg ;

We made the following assumptions:

(a) The covariance matrix of the discrete-time
process dynamics was defined bdy:

995 O

Q) = 2

-

0
A:z

T

2
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where qgg - qz‘ - (.0091017)z knots/sec is the power
spectral density of the random notise perturbing the
velocity state equations of the continuous system. This
randomness in the target velocity for the continuous
system translates both into a position and velocity
uncertainty in the equivalent discrete-time model. The
values of qyy and q44 roughly correspond to & standard
deviation o? +34 nauticsl miles in position and .6 knot
in velocity over a time interval of one hour in the
discrete-time wmodel.

(b) The measurement matrix covariance matrix was
defined by:

'fl 0
R{k) = 2
T22

(c) At=300 sec was the nominal time interval between
messurements.

{(d) The filter processed measurements froa the sensor
pairs in a sequential manner starting with sensor pair
1-2, 1-3, 2-3, 1-2, 1-3, ..., etc.

(e) The sound speeds from the target to each of the
s were ch as [3):

4857 ft/sec
4850 ft/sec
4870 ft/sec

Cl -
cz -
Cs -

We started out by assuming that: first, only one of the
three sound speeds was unknown and consequently was esti-
mated along with the target state; second, two sound
peeds were unk and were estimated along with the
target state; and third, all three sound speeds were
unknown and estimated along with the target state. In
all of these cases, it was found that biased estimstes
wvere generated by the tracker. A typical example of this
is shown in Figures 3, 4, and 5 where an attempt was made
to estimate the unknown sound speeds and the target state.
The solid curves represent the truth model whereas the
dashed curves represent the stste estimates. Note the
significant biases in latitude and longitude in two of
the sound speeds.
Because of these bilases, it was decided to examine

the observability of the syatem for all of the cases
defined in Table 2. This is easily done with the aid

of the informationh matrix [2). For the case involving

no process noise and state vector a priori information,
the information matrix is identical to the inverse of

the Xalman filter covarience matrix, P-1(k/k). This
matrix oust be positive definite for stochastic observ-
ability and, provided the above conditions apply, is
given in recursive form by:

P /) = 0T (eae) P l(k-1/Kk-1) (-¢)
+ WEE-1) R HER-1);
?"10/0) =~ 0

(15)

vhere #(At) is the state transition matrix defined in
(5), H(R(x-1)) s the messurement matrix linearized
about the state vector x(k-1).

To assess the property of stochastic obsarvability,
the normalized eigenvalues of this matrix were computed
(normalized to one) and plotted as a function of time.
Figure 6 shows the results that vere obtained for case
11 in Table 2. One of the position eigenvalues becomes
111-conditioned and exhibits s smaller maximum magni-
tude than the other position eigenvalue by a couple
orders of magnicude. This anslysis was repested for all
of the other 23 cases and the same general result vas
obtsined, i.e., 1ll-conditioned behavior of one of the
eigenvalues. DBecause of this and the fact that the
state cstimates vers biased, we concluded that the

Sreem” te o

system was msrginally observable for a three-sensor
configuration and unknown sound speods.

As a mesns of enhancing system observability, i1t
vas decided to introduce more than three sensors for
target tracking.

We first started with four sensors using different

sensor/target motion geometries. Four cases were con-
sidered and the geome:ries are sumasrized in Figures
7 to 10,

Using the same philosophy as in the threesensor case
earlier, ve started out by estimating one, two, threc,
snd then four sound speeds. For all of these cases,
it vas found that we could estimate the target state
and up to two sound speeds without obtaining biased
estimates, but as soon as we attempted to estimate
three or four sound speeds, biases in the estimates
again were noted. Marginal system observability again
was suspect. To substantiate this we looked at the
eigenvalues of the information matrix as a function of
time. The functional variations of the eigenvalues were
found to be relatively smooth and monotonically increas-
ing for estimation of one or two sound speeds. An exam-
ple of this is presented in Figure l1. It involved the
target/hydrophone geomerry defined by Figure 10 where
ve estimated the target state and two of the sound
speeds. However, as we began to estimate three and
more sound speeds, the function varistion of several of
the information matrix eigenvalues becomes progressively
more ill-conditioned and lower in sbsolute magnitude~~
an indication that the property of system observability
has been weakened.

To complete our analysis, we then explored the use
of five sensors. Two geometries were selected and are
shown in Figures 12 and 13.

Using the same approach as before, we began by esti-
mating, first, one sound speed, then two sound speeds,
and so on. Interestingly enough, it was found that one
could now estimate up to three sound speeds before
biased estimates again occurred.

For all of the above cases involving four and five
receiving sensors, the general observation was that omne
could estimate the target state and up to two sound
speeds for the four-sensor configuration, and the target
state and up to three sound speeds for the five-sensor
configurations.

Of course, these conclusions are based upon a finite
set of examples, and to substantiate the above claim
more rigorously, one would have to implement a more
exhaustive set of examples.

4, Conclusions

In summary, it was first noted that target tracking
via extended Kalman filtering tends to produce biased
estimates when the sound speeds were uncertain and
incorrectly specified in the filter. Atteapts to addi-
tionally estimate the sound speeds were shown to be of
no avail in eliminating thess biases--even vhen apply-
ing traditional filter parameter variations that in past
applications tended to moke the filter more robust to
parameter uncertainties.

For this reason the observability of the system vas
explored in greater detail., With the aid of the informa-
tion matrix, it was found that the systcm vas marginally
observable over the geographical region defined by the
three receiving sensors.

Because of this, we therefore took a look at using
time~difference and Doppler difference mcasurcments
from more than three sensors. In particular we looked
at configurations involving four and five recedving
sensors.

The results from a finite set of examples have shown
that target tracking performance is improved, i.e., very
small or nonexistent biases, but estimation of all sound
speads 1s not possidble. Generally speaking, it seems
that if we were given n>3 receiving arrays, it would
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; . be p;n!bh to estinste the target state snd, at most,
n=2 of the sound speeds to esch of these sensors. The
remaining two sound speeds have to be specificd a priord

1.
for the {ilter. .

) Acknovledgments
2.
The suthors wish to expreas their appreciation to
. J. Hellmer of ORINCON and J. McRoberts of the Naval
Ocean Systems Center for their assistance in completing 3.
the coumputer snalysis in this paper.
This vork was partially supported by the Office of
Cb Naval Research under Contract NOQO14-77-C-0296.
f
1 TIME, t
FREQ, f

4

4

4 'I-

f’ b
1

Figure 1.

] ’

; b

? CASES 21-24 dh

3 | E n

. ; VELOCITY,V “_\_

_ : TARGET
» i' G
!— ) Hvonomons i R nvonovuoue 2

_— CASESS8

References

R. N. Labbia and D. L. Alspsch, “A Case Study in
Adaptive Sound Spead Retimation,” Twelfth Asilomar
Confuronce on Cireuits, Systess, and Compononts,
Pacific Grove, Californis, November 1978,

Stochastic Processes and Filterin
Acadenic Press,

A. H. Jazwinski,
Theory. New York:

R. Urtck,

Principles of Undexvater Sound. MNew York:
McCraw-M1l1l, 1967,

HYDROPHONE 1
€y ‘-‘0;“ i
l, A "
Ry

tz, '2

CASES 14

P

o

T CASES 17-20

" i
| /

.” .
Ry
o
. .
0

] CASES 13-16 CASES 9-12
L
: ‘ Figure 2. Target motion scenarios for sound speed
' | estimation.
f 2 o
J .
4 ’ ht e " >
\ [ >
. il gt
g 5 N [ 2
d. + -®]
H LT "
A .
= (2% q . 3 -
0 20 ®w ®  ®© ® ) % ® ® © 08
TIME ITERATIONS TIME ITERATIONS
;-
o Pigure 3. Target state and sound speed estimation
o (latitude and longitude).
&
)
0"_ 3
- - L ~

Ca e L e e




SR B L e 5 s < an

g . ] n 1 -W:':""‘M ol

F T Wi =) ]

f ' I3 P

‘ N R % ° % w e 2 w @® ®
TIME ITERATIONS TIME ITERATIONS

Figure 4. Target stste and sound speed estimation
(lstitude rate and longitude rate).

Figure 5. Target state and sound speed estimation
(sound speeds).

* | o~

L 1]
i

[ 3] [ 1]
ry s

(1]
2

04
.

NORMALIZED EIGENVALUE
[ XY

1RGEND
o~ LATITUDE
¢ = LONGITUDE
s & LAT VLIOCITY
« » LONC VLLOCITY
*» = SOUND VELOCITY]

N
w
[ 2 L 2]

60 30 108 130 X8 238 300 300 8 30 W
) UPDATE

Figure 6. Information matrix efigenvalues--Case i1.

.- - . . - v -

. ,
. 2 T i .
' | e e RS S ; :
! ; : g : |
; g .: g ; 2 0en .-.-..[ - .
i a#_ T i . |
s P ¢ ] 23 5 :
) ; | !
. PR SO LT SO St YN ]
KNI s 2 ® ® ® o e ™ w ® ®» e
TIME ITERATIONS TIME ITERATIONS S




~“r-

. Y

-
1 !
i
. !
!
I
!
|
[
H
!
: i
: “
¢ :
.o
}
. |
ST :
b
-u.

y
4
- SOUNO SPEEDS:

NARGET] © = 4857 FI/SEC
- - x o = 4BSOFTISEC
©3 * 4070 FI/SEC
¢ = AMOFT/SEC

3 2

Pigure 7. GCeometry of four sensors--Case ).

— o
1
) 1 TARGET
y
2
4
3
Figure 9. Geometry of four sensors~-Case 3.

/

4

Figure 8. Geometry of four sensors—-Case 2.

—— . -
1
TARGET
y
/ 4 \
L 2
Figure 10. Geometry of four sensors~-Case &.

LEGEND
© = LATITUDE
© = LONGITUDE
s = LAT VELOCITY
+ = LONG VELOCITY
» = VSNDL

* = VSNL2

T AR
W08 a0 0D

Information metrix eigenvaluas--target

state and two sound apeeds.

9,
-3
gi
w
=12
£
8%
w
ad
]
334
3
53/
z
3-
a4
a. ,
6 S0 180 30 m0 2D M0 Mo
Figure 11.
e Uik T
, . .
SOUND SPEEDS:
. €y = 4857 FT/SEC
TARGET ¢g = 4850 FT/SEC
y . €3 = 4870 FT/SEC
€4 ® 4840 FT/SEC
/ tg = 4880 FT/SEC
4 . .

Figure 12, Ceonetry ;! five sensors--Case 1.

TARGET -

Figurs 13.

Shle v L w

Ceometry of five sensors-~Case 2.




i B T SRR T

DOCUMENT 3

MULTIPLE COHERENCE




7 SN
)
MULTIPLE COHERENCE
. Richard Trueblood
ARYFA Acousiic Messarch Center
Moffett Field, Californis
Dantel L. Alepsch
ORINCON Corporation
3366 North Torrey Pines Court
1a Jolle, California
]
Summary -
The concept of coherence as a measure of the x(t) = / gir)uit - pde ¢ vit). (nxml) ny
linear relationship between two or more time series -e

is discussed. The definition of coherence in terms of
the complex cross powear spectral density matrix is
given and the relationship betwesn pairwise and multi.
ple coherence and channel signal to noise ratios is
discussed. A sample statistic for coherence {s given
while the details describing the performance which
can be obtained from this statistic are contained in

a separate report by these authore®,

1. Introduction

A problem of interest in many different disc.
iplinea is that of detarmining if there ts a messurable
relationship (physical causality) between two or more
time series, lIn addition, one would often like to ob-
tain a quentitative meaningful measure of the degree
of that relationship. This paper describes one possi-
bie measure of such a relationship, the coherence.

The most common measure of such a relation-
ship is the pairwise or multiple correlation coefficient,
The nature of the correlation coefficient is well docu-
mented and will not be discussed here other than to
note that 1t is not & function of frequency and may be
affected by linear transformations of either of the
e series.

The coherence function (magnitude-squared
multiple or pairwise coherence function) is defined as
a (requency-genndom quantity that ranges between
zero and one” This coherence function is zero if -
the two or more ergodic time searies are independent
tuncorrelated, if Gaussian) and equal to one at any
irequency where there {8 a linear transformation
between the one or more input time series and the
output or reference time series,

The situstion of interest is shown in Figure }
whare , indicates the noise contaminating the signal
u{i) in the i*" channel. In general, each transmiasion
cherne! 15 composed of linear and nonlinear parts
(Figure 2). The eum of the output of the nonlinear
system {usually a small part of the total transmission),
the measurement noise, and the background noise e
. rouped into the effective noise term wi(t) (Figure 3).

We are interested in detecting the presence of
s common signal u(t) in two or more channels. The
.nput-output relationship indicated in Figure 1. 3 can

Note that because of physical causality require-
ments g(r) is sero for all ¢ less than sero. Ia fact, {t
will be zero for all ¢ less than some positive time
which is the time it takes a signal to travel from the
source 1o & sensor,

The tzue value of the cohsrence between time
series is generally an unknown quantity. In fact, any
measure of the relationahip between two or mors time
series generally must be based on t:me traces of those
series. The functional relstionship betwesn the time
series and the measure or satimate of coherence is &
sampie statistic for coherence. The assumption that
any one infinite length sample of sach series will be
enough to allow ue to estimate the coherence exactly
is made implicitly, and all time series are aspumed
to be stationary and ergodic. Unforiunately, in
practice, one is given only 4 finite amount of data
from each of the timne series, Inthis case the sample
statistic is a random variable distributed about the
“'true magnitude-aquared coherence”. The density
function for the sampie statiotic in this report is given
for a number of epecific values of degrees of freedom
(N) and number of time series (M) in reference 1.

Based on these density functionas, receiver
operation charecteristic (ROC) curves have been de-
veloped. These curves define the propability of
detection versus probability of false alarm for a
signal of a given true coherence. Curves of probabil.
ity of detection versus true coherence fcr fixed levels
of probability of falee alarm have also been developed
for many degrees of {reedom and number of sensore
up to 10, These are ai! reported in detail by these
suthors in reference 1. The fundamental question of
the relationahip between input signal to noise levels
and true coherence for the twc channel and multi-
channel cases of Figure | is discussed in thie paper.

For a general discussion of the concept of
coherence, the reader is directed to reference S,
For a detailed derivation of the distribution of the
pairwise and multiple coherence statistic, the reader
is referred to reference 7, The densities and derived
periormance curves in reference 1 are particularly
difficult to obtain for low coherence and high values of
N (number of samples of the tirne series), and based
on the authors’ krnowledge are not aveiladle elsewhare
in the literature.
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2. Cross-Power Spectral Density

Mairix and Muliinie Coharance

Multiple Coberence Cen be Most sasily defined
in terms of the cross spectral density matrix
sﬁ(..-,. where the elements of this metrix are defined

by

»
s, ] s.‘,j(u) . Syt (2.1

The crosspowsr spectral density matrix is of
course squivalent to the crosscorrelation matrix.
Either of these together with the means of the M
jointly gaussian stationary pr o X (), %508 ..
xm(t’. completely specifies the joint distribution
function of these processes,

Civen M finite length time traces, there are
well known techniques for obtaining '‘sample setimates"
of the cross- and autopower spectral elements. These
estimates are used to obtain sample estimates for the
multiple coherence between the various time series,

The sample estimate for the cross-power
spectral density matrix is s function of the basic data
x, (), % (t),,..x_, (t) over some finite time record, It
dbes ngt uquir&nowledu of any of the character-
istics of the transmiasion channels or of the signal-to-
noise ratios of the received signals. The meaning of
multiple coherence will be discussed in terms of these
quantities in later sections in an attempt to illuminate
the subject, Here, however, we will define multiple
ctoherence simply in terme of the crosspower spectral
censity matrix and ite elements,

The maltiple coherence between xj {t) and
. ined
» (';).x th... xj_l(t). x’.ﬂ(t). v .xM(t) is dehne‘ by.
(referenca 5)

M:l.Z...)-l.)d....NIZ-x-l/[Sjj(w)S’j(w)]. (2.2)

wnere Si'iu.') is the jth diagona) element of the inverse
ai we Sntm. The multiple coherence of the jth

sensor with respect to the other sensors represents
the proportion of the variance (power) of sensor j that
can be explained by a linear combination of trg remain.
1Nt sensoOre in & Minimum mean square sense .

By reducing this definition to the simple two-
channel cage we can write

5,5 (08, @)
-1 1
2.3
S S0 I’n“‘f . @
-s‘z(ms“(u)

so that

2
st hiwes,,wirls, wis, e - S pte 7). e

This gives 2
12 ”)’z oy k. §)p'w) 12.9)
NIRRT LW 1,2l 2§ (WS, (@)
. 111995,
2

This s the mutual or pairwise coherence between
channale one and twa,

In the three~-channel cage it 16 sasily seen
{writing s“( w) as sl!’ that

2 2
2, 533l%21] *SaalSu -2Ra1512508)

3
5,1522533°5)1 | Sasl

|7llzo ’I ‘z. "

Using the fact that pairwise coherence is defined
by squation 2. § we can write

2 "1,z]z’lﬁ.)r'”e‘slzszsssx"‘suszzsss'
Pz, sl I of &
z"

2 2
sy ol 4y sl -2 Ry, mgm))
; F3
“ - lr_z.s I J

Ndte ‘that if the crosspower spectral density of
channels two and three ip zere (S, ,.=0), the coherence
between these two channels i zef6 and the multiple
coherence of channel one, given two and thres ie,

‘2 . 2 2 :
%2, sl =, 2] #n, sl 2.8

3, .Pairwise Coherence and
Signal.to-Noise Ratios
If x (t) and x_(t) are generated as indicated

in Figure J, equation 1. ] can be written in the
{requency domain by Fourier transform as

x‘(w)-Gl(MU(U,‘on(w (3.1
= ‘4
xz(u) Gz(w)U(u)o\z(u). (3. 2)
Agsin assuming the noise terms V., and V_ are inde-

pendent, the crose- and autopower npoctril densitins
can be written as

2
5, (W= Gy(w) 7S (wiss , (W) 3.3
2
55001+ Gylw) 7S (WS (@) 3.6
2 2 2 2
ISXZMI 2 G, (W Gytw) °s (W), (3.9
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Noung that 1G,w)!? s (w) and 16, tw)!? S, (W@ are

the sutpit etenel power spectra at the receiver in
slwuusle wue and twe, we wilte the thisgiiituldes

squared coherence as
1o, m!? oyw?s w?

2
! [l':;l(«»lzs“u-»osvl «-»] [Iozm # s“(ﬂos,zu]
(.6

Defining the signal-to-noise power in the jth channel
as

s lo P S (@
( . 5.7
f] 5,
we can write
(S/N) (S/N)
2 L N

T

pairwise magnitude-squared coherence, or just "co-
herence, " can now be mads.

The coherencs is bounded between zero and
one:

2

08 ly 1% et 3.9)

If the noise-to-signal powar goes to infinity in
either channel, the coherence will go to zero. This
will happen if the signal powsr in that channe! fades
to zero. Alea, the noise-to-signal power ratio in
both channels must go to zero for the coberence to go
to one.

An interesting and informative interpretation
of the coherence between these two channels can be
made in the following manner. Assume one of the
channels is noise free (sz(w) = 0). This channel

then becomes the input signal. The coherence be.
tweer crannels one and two is now given by
lc,mlzs“w) 1S/N), s,

' ¢ *T+S/N], "5, + N
HS/N) S 4Ny

vVsz

=
2
!
16wl S W1+S (W
(3.10).

This magnitude-squared coherence is the fraction of
the power of the output :l(!) which comes from the
signal input passed through a linear system,

Since the transmitted signal is generally not
available, it is useful to look at this physical inter-
pretation of coherence from a different point of view.
Let us simply take signal x,(t} as our basic eignal and
calculate the coherence between x,(t) and our given
s:gnal x,(t). From equation 2.7, our definition, this
will be the same result as if we took signal x, (t) ae

our “given” signal. Thus U(W) in eguation 3.2 is re-
placed by lew):
(3.1

XJ(U\ = H‘Z(U)Xz(ﬂ) + V.lz(ﬂ) .

H, ,iw) is the effective linear transfer function be-
tween output 2,(1) and output xlm. V.u(t) is the

It must
ha noted that 11, (W) ts no Yongar nacassarily a causal
syotery, Neow the rahevence hotween chonnete ane
and two can be writien as 1a equation 3,10

s,

effective noise on the tranemission channel.

lr,.zcu)lz . [ 13.12)

Hy tw ¢ 5221 'sv.u“"]

This two-channel magnitude-squared coherence is
the ratio of the power 3t output x_(t), which is caneed
by the “input x,(t), " transmitted over the effective
linear transmiseion channe) [H (W)} to the tot)
power in output x, . Comldcn&oa of thie effective
linear tmnmlul‘n channel allows this physical in-
terpretation of the coherence to be easily carried
over to multiple coherence.

4. Multiple Coherence and

Signal-to-Noise Ratioe
In the case of M ¢k le, a P the
input signal-to-noise ratios and the multiple coher~
ence, similar to the one in the last section for two
channels, can be derived. The output power spectral
density can sgain be written in terms of this input
aignal epectral density, the unk channel tr
functions, and the effective channel noise as

(7YY hin haty

5,00 s lof 5w +5 (@ (..

' 2 2 2
I8, o1 = loywl o w1 s i’ id5 (a2

1t should be noted that b,(w)lz S,(w) is the signa)
power denesity in the output of the ith channel and
S_.(w) is the noise power spectral density in the
channel. The general power spectral density func-
tion can then be written as

L T
Sn(U)IS“(Q)G (W) G (w) + D(w), 4.3

where
D{w) is a diagonal matrix with elements Svi(w).
and

6T(0) = [6,(8) Gy(@)... G @], (.4

The inverse required to calculate the multiple coher-
ence fromn equation 2.2 can now be calculated by
using the following matrix inversion lemma:

-1
TA~1x' xTA-l

(4.5)

Using this lamma, the inverse of the spectral
deneity rnatrix can be written (assuming all required
inverses exiat) as

s;(u) » 0 M)

-1 - -
[mx‘x"] ea oA )" 10x

r - -
-5, (wb" (@) 6"t guacTwp™ i W)™

.cTw) o Hw) . (e
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The structure of this inverse can be seen more
clearly by noting that

al 2
G ()" 8 (W)
T -l Ld u
$,(w)G (W)D" (WG “""2 5 (4.7
. jg’

This term is the sum of all output signal«to-noise
power ratios. Therefore, if, as in the two.channel
case, we define

s, = ol s w/s e e

the inverse of the bracketed term in squation 4.6 can
be written as

M
r .1
tus “(u)cT(u)D"w)a‘(u)] .1/ uz(sm)’ (4.9
J=1
With this, the ith diagonal slement of s:(u) i
given by -
M
1+ Z_(sm)J - 5/N),
i 1 fol
shw) =5 v 4.10)
vi
1+ z(sm)j
j=1

Using this and substituting equation 4.10 into equation
2.2, we find

17, r?
Ti.e,..04-1,041,000M

211/ s st

]
(S/N)i\’ 2‘5"“1 - 5y

. T 7 14.11)
[x s ll + Z LN
=1 J

Several special cases are of interest.

First consider the situation in which the
signaleto-noise ratios in all channels are the same:

(SIN)i . (S/N)’ = (§/N) . (4.12)
This gives the coherence of channel { with respect
to the other M«1 channels as

1 12
Vi1, 2., 000,040,000 MY

[H] 'N)z (M.1)

*TT+ /M) 1+ (M B/N)) 4.1

Note that for M equal to two 89 in section 3 the
coharence is given hy

&
7y 2l= Iyl = —MJT . 4. 14)
[1 ¢ /N

However, if M becomes very largs, the coherence
goes to

R _SIN

Wm . (4.15)

The formal requirement for this to be valid is for the
signal-to-noise ratio and number of channels to
satisfy the following inequality:

M-1)(/MN>>1 ., (4.16)

2 et

However, based on data from section 3, equation
4.15 is identical to the coherence of two channels
when one has an infinite signal-to-noise ratio and the
other has a signal-to-noise ratio (at frequency @) of
(S/N). ln this sense, a large enough number of
weak channels [signal-to-noise ratioc of (S/N)] is
squivalent to the sum of one noise-{ree channel and
one weak channel,

The second special case for equation 4.1} is
when the ith channel has s very large signal-to-noise
ratio. Letting (SIN)‘ become large in equation 4.11
and keeping all other signal-to-noise ratics equal to
(S/N) we find that

2
Wit et ien,. oM

{M-1) (S/N)

/N, == Tt + (M=1) 678)] (417
Note that for low signal-to-noise ratios, i.e.,
(M-1) [S/N} €< 1, (4.18)

the coherence goes up linearly with the number of
channels each ia considered to have the same

signal-to-noise ratio as all others, i.e., (S/N). As
M becomes larger orws

M(S/Ny>> 1, (4.19)

this coherence goes to one as it would in the case of
two noise-{ree channels.

Next consider the case whare one channel other
than the ith channel has a very high signal-to-noise
ratio relative to the others:

M
s/, >> S s s - s (4.20)

i
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Under these conditions, equation 4. 1] is approxi.
Mmately given by

(S/N) (S/N),

2
., cy s
1),2,0.018 l,u»l....M' l¢(S/N)| h(S/N)k (4.21)

or
2 2
LRI RRR RNy ~Pa I, 1. 22)

as if all other channels were not used. If (S/N) is
approximately equal to {(S/N), , this means that all
weaker chanaels could be no;’loelod and anly the two-
channe) coherence between the two stronger channels
could be used. Also consider the case when all
channels includiag the ith have a much lower signal.
to-noise ratio than the kth channel, i.s.,

(SIle [ (SIN)i = (S/N)alli¢k (4.23)
Then, while the coherence of the ith channsl given the

others is provided by equation 4, 21, the coherence
of the kth channel given the others is

” lZ (M-1 )(S/N)k(SIN)
Ptz ket kedee Ml = T IR
(4. 24)

Giving for this case

(%t 2en s ket kel M |2

2
IMIMI4rS/N] yy
3 - ys/m) | 1:1,2,...,1«1,141,. .. M] |

(4. 25)

For the case of weak signals in the other channels
{from equation 4, 22):

2 2
ly M-1M148/N3 |y ,
| k:l.Z,...k-l,kol,...M, ’[lo(M-l)(S/N)l (93
(4. 26)
Further simplify equation 4. 26 to the special case of

(M-1)(S/N) €<, 4.27)

we have

. 2 2
Motz dedkel, oM~y ] 28

L

The coherence between the strong signal and the
woaker onas gans up linearly with the pumber of
woahar rhmpunie, ‘Thia sisune that e loiguss sl
the M multiple coherence values will be the one in
which the largest signal-to-noise ratio channel {s
used as the reference, which is ae expected.

5. A Sample Statistic for
Multiple Coherence

The true multiple coherence of a set of time
series {0 & function of the underlying statistics of
these processes. The statistics are generally
unknown and must be £ d from ple realiss-
tions of the pr The ¢ of the basic
statistice can then be used to provide sstimates of
the multiple coherence of the M underlying stochastic
proceseses.

The method of obtaining astimates for true
multiple coherenci i}' :osfoglowo. Using well docu-
mented techniques ™™’ "’ "’ ", obtain sample estimates
for each element of the crosspower epectral deneity
matrix, From these sample sstimates

. . . -

S“(U) Slz(ld) eee S (W)

™M
sn(w) szztw) ces szu“"’
;n(“” = . . . (5.1)

LSMI“") M2!@) - S_MM(N)

"

one calculates the sample estimate for multiple co-
herence in the {ollowing manner
e e

|"i:1.z,....i-1,i+x,...u2-1.1/15“(..:)5“(1.:)}. (5.2)

where S‘“(w) is the ith diagonal element of the inverse
of the M .by-M sample spectral density matrix sxx(”)'

Details of how to form such estimates are discussed
at length in the literature, Since these estimates are
random variables there hae been considerable study of
their distribution, The distributions of these cross-
and aytopower spectral estimates are known in closed
form’,
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The closed.form exnpression for the muiltiples
chesen = atatierie (o avattahiet. A, 9. Thee repipevnte

the Tebigy wi values of the mulliple-coherence test
statistic and the relative probability of {ts being in a
particular baad. All values sre of course bounded by
zero and one. The density function is conditioned on
the total number of ditferent time records, or dif.
ierent stochastic processes, available (p). It is also
conditioned on the number of independ pl
available from sach of the time records {N). Thus
the density function of the sample estimate for coher-
ence given the true coherence is given by

P_ /Nl
NG

TN 2\N _p-2 N-p
b T(p-1)T(N-p+l) l'l7' y (1-y)

————

2F(N.N.p-1ry HZ)
Qeyal
P__ty/Nplrfiso y>10ry<o (5.3)
2
b

1n equation 5, 3, 2!‘1( ) is the hypergeometric
function.

This expression for the density function of
multiple coherence is both expensive to calculate and
genarally numerically ill conditioned, Thus to sval.
uate the density numerically, additional manipulations
are required. Great difficulty can bs encountered in
attemnpning to use computer library expressions for
the hypergeometric function,

For low values of N and p we use a transform-
ation given in reference 12:

b2
27 1N, N, pe 13 lyfz v}
-1-2N 2
s (1 -lrlzv)P . ZF,(p-l-N.P-hlr. y) (5.4)
For the cases of interest, (p-1-N) {s a negative
integer 8o that a finite series expansion for this latter

nypergecmetric function {s available:

-
2 a i petilyl Py

N
2, TN\(.
Pt id "T".(r-nrm il
4

P2y NP "'ﬁ“’[-uo(p.n)‘ 2

NIRRT CEDE T S
Other expressions for this density valid to large values
of N and specific ranges of true coherence |2 and y
are described in reference 1. There curves of prob-
ability of detection versus probability of false alarm
are presented as ares curves of probability of detec-

. tion versus true coherence for fixed values of prob-

abllity of false alarm,
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ABSTRACT

This paper deals with the problem of sound speed estuma-
LOS 85 an aid in umproving our knowiedpe of the position of a
drnifung sonobuoy. m [} umplubed by processing the out-
puls of a spatially d d set of hydroph sENSOrs in an
uunud thna mm The filier's state vector my be aug-

o p of the b
velocity, and the sound specd from the sonobuoy lo um of the
hydrophones.

It is shown that with just tme-of-amval difference and
dappler difference measurements, system observability 55 mar-

pnal - disectly Jting in biased of the buoy's
P With the additional use of beanng itis
then shown how this enh observability and, conse-

quently, esumauon perlormam:e

1. INTRODUCTION

In this paper, we are concerned with the accurate Jocation
of a sonobuoy over a speuified 1nterval of ume. It 1 assumed to
be subjected Lo both randoin and determinisuc forces over ths
same ume penod. Because of this, our knowledge of the sono-
buoy's i0cation 1 uncertain and can be iy error if we employ
conventional dead recxoning methods.

Anocther app h monr: -Ihann*lbovewwldbe

10 place a soutce emitting a dom paussian
ugml aboard the sonobuoy A set of three or more pasmve

ly sep. d from one her, can

lhen be used to pnck up the sonobuoy's signal to provide mes-
umnenls of sound ume-of-arnval difterence and doppler dif-

pie, one conf W g three
bydnopbous is shown below tn Figure |.

In this figure R;. i=1, 2, 3 represents the distance from the
20n0bucy 1o each of the hydrophones and c;, i=1, 2, 3 represents
the sound speed 1o sach hydrophone. Note that we are using
three distinct sound speeds instead of 3 nnlk one. This is

because sound speed, in 8 th lly non medium,
- relaled m [} compln lnhlon 10 such umbles as time-of-day,
and g of hydro-

phone with respect lo wnobuoy. et

Now il we consider any paw of hydmphones pair 1-2 fot
nstance, then we can obtan, th
two measurements, time-of-armval dlﬂennces and doppler duﬁer-

D, L. Alspech

kl kﬁ

120 o

o 9 @

In Equation (1), 7, - represents the sound time-of-amval
difference for the hydro array pair 1-2. v.9 in Equa-

tion (2) rep the lized doppler diff A[-,whcn
{ is the base frequency of the narrowband source.

Usm; sphencal grometry, the distances R, and tune rate-
of: 4 are related to the buoy s location by
lhe followm; equauions:

R; = cos'} Isinx) sn A, + cos a) cosk;cas(ag-6;)] (3)

h‘ l,lﬂnl'mli“(l:"oi'-tﬂllﬂnlil

w i,
“)
*2q 0082 COLA unrs-6)
sin R
where
xj. i=1,2, 3. 4 rep the b } de, longitud

4 de rate, and | de rate, rupeclmly

A;. 6, represents the latitude and longitude of the ith

hydrophone.
in Eq 4yt was d that each of the hydrophones was
stationary.

B of the nonli fi of the above measurement

equations, it 1s very difficult to soive explicitly for the sono-
buoy’s state vecior (1, X3, X3, x4). In the next section, it will be
shown how this state vector may be obtained in a recursive
manner using an extended Kalman filter.

Following this we will thow that when the sound speeds are
imprecisely Imovm then estimates of the umobuoy s poum

and vel biased. S Jthen p
for :ugmennn; the sound speeds lo the Mobuoy mte emnme
and it is shown that the augs d state b

observable. This directiy results in biased esumates for the m
bnoy s state vector. We then show that the additional use of

are seen 10 enhance sysiem observability
b of the buOy state vector

ence, that are related to the buoy's | by the [ ']
equations: to the { point where
becomes 1 nbiassd.
. ll li l
B o ==
RTE [LH]

Finally, in Section 4, we will summanae our results.
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2. ESTIMATION OF SONOBUOY STATE VECTOR

It is apparent from Equauons (1) 10 (4) that it would be
ditficult to solve Iu lhc lmohuoy state vector in terms of the
ive spp h may be soughs that
avoids this dntﬁcully 'I'hc approach we use here invoives appli-
cation of an extended Kalman filter.

In onter 1o implement thus filter, we need in addition to
the measurenent Equatons (1) 10 (4), a model 107 the dynainics
of the system. This is casily obtained when we assunie a constant
speed and constant course drift and, in addiuon, a random per-
turbation 10 account for modeling uncertainues, envaronmental
fosces, etc. In discrete-time form, the equations for the system
dynanucs are pven by:

1 041 O 0
01 0at 0
T(kel) = Xik)+ 5
0010 wy (k)
0 0 01} wy (k)
g ——
oA W (k)
where
ll‘k)
xa (k)
k) = is the sonobuoy state vector
x3 (k)
xgq k)

Ay = sampling interval

w3 (k), wy (k) are 2¢ro0 mean, random, white noise
sequences

E {%WTGa} = Q 8;: 8;is the Kroncker Delua.

Ifwel ize the m about our most recent
estumate of the state, i(k), to obtain a linear measurement
matrix, H(%(k)), we can then implement the extended Kalman
filter an real time. In vector-matrix form, these equations are
recurnvely given by [3};

fk+1/k) = &A1 X(k/k) (6)
Pk+1/k) = ean Pik/k) T an+Qy M
Rke1/ke)) = Kikel/k) + Ky 2, - MR(K+1/K))) (8)
Pkel/ke]) = {1 Ky HeRrkel/x))) Piket/x) ()]
Ky = Pk+1/k) H(R(ke1 /X)) (H(R(k+1/K)) Nk+1/k) 0
)
-l
HT (Rks1/kp + Ry
Equations (6) and (7) represent predictions of the state
estumate and covanance to tume (k+1), whereas kquations (8)
through (10) update the state esti and to
for a new measurement. In the_ Jatter set of equations, the
measured vecior s pvendy 2, ' = |7 H(k), ai_,(k)l. where h(-)

e . e

I T Tl S 5 A PP S

P the ) g J of 2y on x(h) dcfined by
Equations (1) through (4) Ilg 5 the covanance matna of an
additive white-noise mmurmenl sequence. Hix(k+1/K)) s the

ion that is | d about the most current
state estimate and is defined by:

dntR(k))
H{R(k¢+}/k)) = 117

itk) = fik+l/k)

This hincanzation was found to accurately describe the fumc-
tional charac of the ! mode! as
H(+) was rei by i itive 10 in X(k).

These equations were impiemented in the case where we
knew the sound speeds 10 each hydrophone. Under these circum-
the V4 perfi was seen 10 be
excellent.

However, for the case involving unknown sound speeds, the
estimation performance degrades rapid!y when we use incorrect
values for the sound speeds in the Kalman filter. An exampie of
this is shown in Figures 2 and 3 for a case involving an average
wmbuoy dnlt velocity of t knot and coursc of 45 degrecs. In
Figure 2, the solid curves represent motion of the truth mode!
and the doucd curves represent estimates of the sonobuoy ﬂne

as provided by a3 Kalman filter. The were

noisy mthamndard devnnonm T and a of .1 second and

1 x 1073, P ly. The erroundl ioti/a pos-
teriori dard d ions are p mqua.Aulof

thm‘ droph were configured lly as vertices of an

i iangle with the buoy starting nesr the center of
this triangle. The truth model sound spc«b weresetat:cy =
4857 fi/sec, ¢ = 4957 fi/sec, and c3 = 4757 ftjsec around
nominal values from Urnick {1]. The filter used an incosrect value
of SO00 ft/sec for all three speeds and no attempt 1o estimate
them was made. It is clear from Figure 2 that significant biases
in estumated position and speed develop.

In the next section, we will see how the use of
measurements enhances system observability and allows unbiased
estimation of the sonobuoy state vecior.

3. SOUND SPEED ESTIMATION

Because of the biases that develop when we use incorrect
sound speeds in the Kalman filter, 1t was felt that estimation of
these sound speeds in addition to the sonobuoy states would
eliminate the biases. This is done simply by sugmenting the
sound speeds to the onginal four element sonobuoy state vector.
The assumption was made that the sound speed was constant and
unknown over a2 sufficiently long ume interval. Its state equation
is then given by:

=0 i=123 an

implementation of the extended Kalman filter for the aug-
mented state vector is therefore rather simple and strughtfor-

ward and will not be presented here.

Upon imp} tbe d state filter, it was found
that biases still developed in tbe y states and sound
specds for a ber of lving differcnt starting

potitions, speeds. councs, eic. For this reason, the observability
of the lincanzed, sugr d state sy was explored using the
information matnix [2). In the situation involving no p

noise and state vector a pnon wfor the i

matnx s equal to the inverse of the Kaiman (ilter covanance

ORINCON
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matna. P! (k/K) Thas mainx must be positive defimte for
stuchastic observabiity and. provided the above coaditions
apply . 1 gaven in frecuruve form by:

rlam « o canr! ki) si-an
ay
« KT @1 R Woxee-1; P! (0001 = 0

where @1 At) 1 the state 1ranmtion matrix defined an (5),
X)) the matna b d about the stale
vestor Kkl )

To assess the praperty of stochastic observability, the
nonmalized eigenvalues of this matrix were computed (nor-
malized 10 one) and plotted as a function of ume. Figure 4 shows
the results that were obtaned for the case involving one
unknown and eomunl wund weed One of the sonobuoy posr-
ton ) d and exhibits 3 smaller
mumum magnitude Ihan the othet position cigenvalue by 8 few

4. CONCLUSIONS

To summarize the above results, we saw that o estumate the
sonobuoy posilion and velocity accurately we need 10 also estr
mate the sound speeds 10 each hydrophone when they are
unknown. With the and of the informaton matna we found thet
the bneanzed system was manpnally obscrvable when sttempting

to both the b states and sound speeds.
B the linearized model accurately repre-
sented its nonli part, we fuded that the nonls
y was also inall; ohtnlllc This was also reflected
by the biased esti of Y position when implementing
the Kalman (filver.

Finally, by incorporating snd additional independent mes-
t{b g) the sy obscrvability was enhanced con-
siderably and we were then abie 10 track the sonobuoy's motion
quite accurately.

Although not reported in the last section, we also lcoked

orden of magnitude. Thus analyus was repeated for s aumber a1 the use of ime-delay and doppler diff
of hift o _"r z:, haad and the of more than three hydrophones (as opposed to time delay,
same general result uu " 3, te., dicond 4 beh Joppler diff; , and beanng measurements of just three

of ane of the eigenvalues. Because of thu and the fact that the
state ealimatey were biased, we concluded thai the sysiem was
marginally abservable.

As a means of i lmprovml the pmpeny of system observa-

hydrophones) as « means of improving system observability. In
general, it was found that if one had n hydrophones \vnh n
unknown sound speeds from the 10 each hydrop
then we couid st most estimate the sonobuoy state vector and
(n-1) sound speeds; one of thesc sound specds had 10 be known

bility. we duced an addi of beanng to exactly when implementing the Kaiman filter.

usc 1n the Kalman fiter. We d that 1t was ted by .

additive white noisc with a standard deviation of .1 degree. These At the present time, we arc conlinuing rescarch in Lhis area
defined the b g of the buoy with resp of oy state qnd sound speed estimation to more tuuy

0 each hyovoplwne and are nomnlly avnlable 1s outpuls tm 'fl"‘" the y of the p 10 gt

the same set of hy s P of the hydrophones, ime between mcasunmenu. elc.
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The Kalman filter was then rerun with these additional
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1.0 OVERVIEW OF INTERSENSOR CORRELATION FOR
OCEAN SURVEILLANCE

In a typical large-area ocean surveillance situation, data is
generated by many different sensors due to the presence of various
surface ships, aircraft, etc. If the data collected by the sensors is
overlaid in a common coordinate system, then a picture such as that
shown in Figure 1-1 below results. The underlying assumption of the
picture is that each individual sensor has formed a picture of the sur-
veillance area based only on its own data. In some cases, this may
require the solution of a multitarget tracking problem [1] at the
sensor level. In Figure 1-1, for example, sensor S2 must discrim-
inate and track the two closely spaced targets Tl and T2.

When the multitarget tracking problem is solved separately
for each individual sensor, a somewhat redundant view of the sur-
veillance area may result. The different data collection systems
S1, 82, ..., may report on the same target. When this situation
arises, the final step in the process of forming a complete picture

of the surveillance area is to perform intersensor correlation.

Referring again to Figure 1-1, we see that target Tl is seen by
sensors Sl and S2. The tracks of Tl produced by the two sensor
systems will not overlay exactly--thus the requirer;n.en't for some
sort of decision process (automatic or manual) to accomplish inter-
sensor correlation.

This paper is devoted exclusively to automatic (i.e., com-
puter) algorithms for carrying out the tasks associated with inter-
sensor correlation. One particular algorithm (the 'k-track cluster-
ing' algorithm) is discussed in some detail in order to highlight the

fundamental combinatorial structure of large area surveillance.
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The working definition of Multisource Interaction (MSI)
adopted in this paper is one which is effectively decoupled from the

problems of sensor allocation and sensor-level multitarget tracking.
By that we mean that the sensors' fields of view are controlled by
a separate process, and that the multitarget tracking problem is
solved on a sensor-by-sensor basis. The responsibility of MSI
data processing is then to carry out intersensor correlation for
various track file data bases. The MSI issues addressed herein
arise due to the partitioning of a large surveillance data base iuto
smaller, more manageable segments. As Figure 1-2 indicates, data
is generated by many sensors due to objects present in several spa-
tial sectors during some specified time interval. If the multitarget
tracking problemis solved separately for each individual sensor (see
[1]), then track estimates for objects in the surveillance area become
consolidated first.at the level of individual sensors. This is indicated
schematically in Figure 1-2 as the consolidation of the raw sensor
measurements (data bases A, B, C) into a '"'sensor-level' data base
D that consists of a complete track file for that specific sensor.

The final step in the process of forming a complete picture
of the objects present in the surveillance area is the solution to the
intersensor correlation problem. At this level o.:f the MSI data pro-
cessing hierarchy, the track files D, E, F belongi;xg ‘to the different
sensor systems are compared to determine the correlation between
tracks in separate data bases. As indicated in Figure 1-2, the out-
put of an intersensor correlation algorithm is an entry (or entries)
into a master data base G that consists of track files on an object-
by-object basis for the entire surveillance volume., If the intersensor
correlation problem is solved correctly, the master data base will

contzin a complete list of object tracks, without duplication, and in
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a single, common coordinate system. (The coordinate system utilized

in the algorithm described in Section 2. is latitude, latitude rate,
longitude, longitude rate.)

1.1 Description of the Intersensor Correlation Problem

The multitarget tracking data processing done at the sensor
level, using algorithms such as those discussed in [1], produces
track files consisting of object state vectors and (sometimes) estima-
tion error covariance at specific points in tim.e.

Typically, the sensor level track files will contain information

such as that shown below in Table 1-1.

Table 1-1., Typical information content
of an MSI Data Base.

Data Sensor
State Vector Error| Object I.D.
Trac State Vector Covariance Name Number
L Prlep, ey Pl %p'e, |QUEEN | 3
MARY
8.2
2 X (t3) Unknown Unknown 8
643 6.3 6.3 6.3
3 X (t4), x (ts), 13 (t4), r (ts), Unknown 6
63 6_3
X (t,) P (t,)
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The notation used in Table 1-1 is defined as follows:

H
¥
H

.

1 ! Jii (t,) ~ sensor level track file estimate of the state

. } . at time t of a target seen by sensor j. The J
- individual tracks are denoted by the index i.
jPi (tk) ~ the sensor level track file error covariance
matrix of the measurement jfci (tk)'
3
, : s : It is often the case that the (i.P) data ;ecorded in the data

base is itself generated by a tracking filter of some kind. Referring

again to Figure 1-2, recall that the (fc, P) records are associated

—
0?&
i’

4

with sensor level track files (D, E, F). Thus, (:‘:, P) records are
L ’ created by processing the raw sensor data for one sensor with a

Lf filter to produce a chain of target track points.

Because of the diversity of sensors that are operating in a large
area surveillance system, the time points tk at which the object states

(latitude, longitude, etc.) are estimated may not coincide. Further-

more, the number of time points per object and even the state vector
coordinate system where the sensor-level multitarget tracking

problem is resolved will differ for‘ the various sensors' track files.

The diverse nature of the sensor-level track files introduces an

added degree of complexity into the intersensor correlation problem.

Based on these last comments, a more accurate definition

of intersensor correlation might be as follows: to cluster together

those tracks corresponding to the same object, and to produce a

composite estimate of each object's motion in a single coordinate

) system common to all sensors.
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1.2 Algorithms for Intersensor Correlation

There are two basic components of any intersensor correla-

tion process: a similarity measure to quantify the '"distance"

between tracks, and a clustering criterion to carry out the actual

correlation of tracks. Since the tracks to be clustered together

are in fact samples from a stochastic process, similarity measures
can be based theoretically upon the distance between stochastic pro-
cesses. In essence, we simply process the data from different
track files with a single Kalman filter; the residuals from the filter
are then used to measure the ''distance' between the tracks.

The clustering criteria used to determine the intersensor
correlations can range from various forms of pairwise correlators
to the more sophisticated k-wise correlation to be discussed below.
As an example of a simple pairwise clustering criterion, consider

the following:

Step 1. Compute the similarity Sij between all pairs
of tracks
Step 2. If Sij is greater than a preset threshold 6, then
‘ Track i and Track j are declared to be the same
object (i +~ j)
Step 3. Ifi - j, andj - k, theni« k (i.e., all three

tracks are the same ship).

A little reflection upon the algorithm presented above will indicate
to the reader that an iterative application of Step 3 will produce a
complete picture of the correlations in any particular data base. It
is also clear that the algorithm is vulnerable to at least one type of
cascading error. This is shown below in Figure 1-3, which contains
four targets (T1, T2, T3, T4) on parallel courses. If SIZ' 523. 834
are all greater than §, then the pairwise algorithm outlined above will

declare all four sensor-level track files to be the same ship.
7
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The object of these last remarks is to illustrate that simple

’ automatic algorithms for intersensor correlation may have hidden
difficulties, and that there is some merit in working with the more
b T complex decision processes discussed in the following sections.
18

1.2.1 Track File Similarity Measure

This section will describe a simple technique for measuring
the similarity between different tracks in an MSI data base. For
example, in Table 1-1 above, a fundamental question that the analyst

might wish to ask is the following: how similar is track #1 (QUEEN

MARY) to track #3? The basic technique we employ is illustrated in
Figure 1-4 below. First, the points tl, tz, t3, t4, t5, t6 are ordered
in terms of increasing time. Following this, the sensor-level state
vectors are input to a Kalman filter, and the residual sequence is

monitored.

3al 3.l 6a3
X (t)) x (t)), x(ty), Kalman Residual

6;‘3 its)’ 6;‘3“6) Filter ‘ Sequence

Figure 1-4. Measuring the similarity of
different track files.

When testing the similarity of two tracks i and j, it is neces-
’ sary that the test be carried out in a coordinate systemn common to
both tracks. Since the tracks i and j come from different sensor-
' level track files, it is possible that they are represented as vectors
X of different form. As a simple example, the state of track i might
i e A be represented as latitude/longitude only, while track j might be

represented as latitude, longitude, course, and speed.

S
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In the algorithm described in this paper, sensor-to-sensor
track correlation is carried out for all tracks in a single, common

coordinate systemmn. We assume that target motion is adequately modeled

by a stochastic difference equation of the form

yk+l) = o(k+l,k) y(k) + v(k), k=0, 1, . .
where

y (k) ~ vector describing object state at time tk (latitude,

latitude rate, longitude, longitude rate)

¢(-,+) ~ state transition matrix model (for "straight-line"

motion)

v(k) ~ noise model compensating for inaccuracies in mod-

eled track motion (e.g., small random course changes)

The state vectors x from the track files are treated as if
they are ''measurements'’ of actual target motion; the error covar-
iance matrices P of the state vectors are treated as though they

are ''noise' in the measurements. Using this pseudo-measurement,

{
we have:

ey = diym), k) +w o) @)

where

y(k) ~ actual target state at time t,_
j : . .th
¢'(-,-) ~ observation equation for j sensor

Jwl(k) ~ "'measurement' noise with covariance J17’1(1:]()

10
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Using the x as inputs, a Kalman filter can be used to esti-
mate the true ship motion y(k) under the assumption that the inputs i
%X from the various sensor-level track files are due to the same ship. ﬁ
As the Kalman f{ilter operates, residuals r(k) are produced whose
magnitude can be predicted, using the covariances P irom the track
files and the covariances of v(k) in Equation (1) above. In particular,
the covariance matrix A(k) of the residuals can be computed.

1f the observed variance of the residuals r(k) compares
favorably with their predicted value 4(k), then the sensor-level
tracks whose state vectors were used to compute the residual
sequence {r(k)} are said to be ''similar."

Note that in the two-track case, if the vectors for the two

tracks i and j being tested for correlation are in the same coordi-

nate system and at the same time point, then we could alternatively

use euclidean distance as a similarity measure, for example

. . 2
distance (i, j) = Ilkil(t) - Bwm (3)
Sij = exp (—~distance (i, j)) (4)

However, the tracks we deal with from the various MSI files are
often not in the same coordinate system and not at the same time
point. Therefore, we resort to the Kalman filtering technique
described above to compute distance between tracks.

Each potential correlation w is the result of a hypothesis
test that uses a likelihood function p(w) determined from the motion
model Equation (1). For example, if Track #1 and Track #3 from

Table 1-1 are to be tested to determine their similarity, then

_ J3al 3al 6a3 643 6a3
w = { X '(tl)’ X (tz)o x (t4)o x (ts)o x (t6)}

11
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is a 2-track correlation and the likelihood function is found by com-

puting a sequence of estimates ;'(ti) of ship position using Equations
(1) and (2) and w. The rule that decides that tracks i, i, i3, cen
are correlated is then

Silizi3...=lnp(wl{)‘"tk)]) 2§, (5)

Based on the log likelihood decision function, the set of potential

correlations is

D = {wlln p(wl{f'(tk)}\ 26}. CY

As noted above, the actual computation of S, , 1s car-

ijipiz.
ried out by a Kalman filter, using the innovations sequence

rk) = %k - ek, k-1)§ (k-1), K) . (7)

The negative log-likelihood function is given in this case by

n n
- In plw) = % z dxm J“ ))!n 2r +
k=1 ' k=1

~| =

gn |A(k)].

n
t3 > rm'am r o), ®)
k=1

where A(k) is the covariance of r(k) computed by the Kalman filter

and dim (J:":‘(tk)) is the dimension of Ja‘:‘(tk).

12




The summation Zr(k)tA(k)-lr(k) is a chi-squared random

variable, as are its individual terms r(k)tA(k)-lr(k). The remain-
ing terms in Equation (8) are deterministic. As a result, the similar-
ity test Equation (5) can be written in the form of the following cumu-
lative chi-square test:

n

S rwtam e = 2, (9)

k=1

Note that xi is a function of the number of individual measurements
in the correlation.

The actual construction of the complete set of potential corre-
lations D is accomplished through the use of a depth first back-

tracking algorithm. By this we mean that as many tracks as possible

are added to a potential correlation before backtracking occurs.
When backtracking occurs, all points associated with the track

being stripped out of the correlation are removed.

1.2.2 Discriminating Between Correct and Incorrect
Correlations

Because of the statistical nature of the decision process (9)
used to construct the potential cor‘relation file D, some tracks may
be included in more than one correlation. It may be difficult to
decide which correlation is correct (if any) based only on the sim-
ilarity measure. The Bayesian decision process is structured to
alleviate this difficulty by evaluating only complete pictures of the sur-
veillance area. The potential correlations in D are matched together
in every way possible until the best possible ''global' picture of the
area is found. The basic constraint operable at each stage in this

combinatorial decision problem is that a track can be used in at

13
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most one correlation. The actual optimization problem is the

following:

maximize Z Silizi3 ce

subject to the constraint

(10)
that tracks are only used
once
The mathematical form of the problem is as follows:
t
max d v (11)
subject to
By = 1 (12)
v binary (13)

where d is a vector of similarity measures Sijiziz +++» Visa binary
vector aenoting which elements of D were selected, B is a matrix of
zeros and ones chosen to enforce the constraint mentioned in (10), and

1 is a vectar of ones.

1.2.3 Integer Programming Methods

Problem (11) ~ (13) is a 0-1 integer program that can be
solved using implicit enumeration techniques. The basic idea of
these techniques is to minimize through the use of appropriate tests
the extent to which the Bayesian decision tree must be examined

before a solution of (11) -~ (13) is found. The actual technique

employed in the algorithmisdiscussed in some detail in [1]. Since the
combinatorial structure of the Bayesian decision process is the same
for both k-track correlation and the multitarget tracker discussed in

{11, the algorithm can be used without modification.

14




2.0 NUMERICAL RESULTS

This chapter will discuss some of the characteristics of the
k-track correlation process as it is actually applied to data. Table
2-1 below summarizes a set of two test cases that were analyzed.
Runs #1 and 2 were synthetic data cases in which intermittent, noisy
track reports were made on six ships. The synthetic data test cases
will be discussed in some detail to illustrate the basic structure of

the MSI correlation problem.

Table 2-1. Summary of numerical results
using k-track correlation algorithm.

Time Regquired | Time Required Number of
Number of for Potential Number of by Integer Individual Number
Run Data | Paramcter Potential Corrclations Corrclations Program Track Reports of Data
o, File File Corrclations (see. ) Selected {sec.) in Data Base Points
1 |ORTIA PARIA 13 5.7 3 <.! 10 30
2 {ORTID PARIB 26 1.4 3 .3 10 30

2.1 Description of Simulated Data Bases

The truth model for Runs #1 and 2 is contained in Figure 2-1

and Tables 2-2 and 2-3 below. The actual data baé’es'(OR TlA and
ORTIB) used in Runs #1 and 2 are contained in Tables 2-4 and 2-5.
The situation modeled in data bases ORTI1A and ORTIB is

one in which six simulated ships are seen and reported by a fictitious

suite of MSI sensors on different occasions within a 60-hour time
period. The ships are assumed to hold constant latitude rate/
longitude rate courses for the entire 60 hours. The sensors that

are brought to bear on the situation are of two types, as indicated

in Table 2-6. Tvpe | sensors measure latitude, longitude, and their ‘
time derivatives. Type 2 sensors measure latitude and longitude

only.
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Table 2-2.

Summary of 6-ship simulation,

Number l
of Sensors

Initial Initial Detecting Ship
N. Lat. | E. Long. | Course| Speed and Forming
(deg.) (deg.) (deg.) | (knots) | Track Report
4 155 280 10 2
4 151 75 15 3
2 155 270 7 1 “
6 158 0 6 2 1
1 153 350 13 1
9 154 160 17 1
i
|
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Table 2-4.

TIME

43200.0
129600.0
43200.0
86400.0
172800.0
216000.0
86400.0
129600.0
172800.0
0.0
86400.0
12%4600.0
72800.0
86400.0
129600.0
172800.0
216000.0
43200.0
172800.0
0.0
172800.0

0.0,

43200.0
86400.0
172800.0
86400.0
216000.0
43200.0
129600.0
216000.0

NORTH
LAT

4.1492
95.0456
4,2937
4.8076
S5.5932
S5.8718
S5.5847
6.5455
6.9731
3.8903
S.44676
6.1707
7.2429
5.3501
6$.2073
6.9876
77721
1.,8336
1.8522
641539
10.69%1
6.0474
7.2062
8.381°%
10.85%95
5.9870
13,7665
5.8859
-0.6172

~6. G036

LATITUDE
RATE

0.9206E-05
0.8344E-05
0.5911E-05
0.80467E-05
0.9221E-05
0.5873E~0S
0.0000E400
0.0000E+00
0.0000E+00
0.1803E~-04
0.1771E~04
0.1763E-04
0.1972E-04
0.1733E-04
0.1607E-04
0.1758E-04
0.1728E-04
0.0000E+00
0.0000E+00
0.2936E-04
0.2757E-04
0.2727E-04

« 2697E-04
0.2803E-04
0.26467E-04
0.3672E-04
0.6102E-04
-0.7186E-04
~0.7366E-04
=0.7588E-04

19
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EAST
LONG

152.9049
149.2870
152.9590
151.0732
146.9504
145.1482
156.9793
159.5486
162.6776
150.9037
156.6906
159.5567
162.5593
156.6992
159.6627
162.7621
165.5123
153.,6828
149,4227
158.1071
157.9753
158.0640
158.1080
158.,1236
158.0033"
151.9055
150,7840
155.1613
157.4634
159.7972

Synthetic MSI data base for Run #1
(data base ORT1A).

LONGITUDE
RATE

-0.4658E-04
-0.4341E-04
-0.4638E-04
-0.4574E-04
-0.4462E-04
=-0.4542E-04
0.0000E+00
0.0000E+00
0.0000E4+00
0.6873E-04
0.6771E-04
0.6677E-04
0.6782E-04
0.68B04E-04
0.6680E-04
0.6848E-04
0.68146E-04
0.0000E4+00
0.0000E+400
-0.6317E-06
0.1652E-05
-0.4371E-06
-0.3568BE-05
0.6289E-06
~0.9170E-06
-0.1170E-04
-0.1249E-04
0.2583E-04
0.2694E-04
0.2731E-04
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Table 2-_5. Synthetic data base for Run #2
(data base ORTIB).
D e el Tl L MOVEMENT INFORMATION---===--c-=cceaew- X
NORTH LATITUDE EAST LONGITUDE
TIME LAT RATE LONG RATE
1 43200.0 2.3662 0.1931E-04 151.8230 -0.5395E-04
2 129600.0 5.0791 0.1099E~-04 151.2165 -0.2292E-04
3 43200.0 3.8109 -0.1254E-04 152,3634 -0.5202E-04
4 86400.0 5.8242 0.8303E-05 151.2872 -0.4569E-04
S 172800.0 7.4293 0.1946E-04 145.6509 -0.3447E-04
6 216000.0 7.0897 -0.1288E~04 145.4386 -0.4188E-04
7 86400.0 55,8711 0.0000E+00 158.4497 0.0000E+00
a 129600.0 8.4%06 0.0000E+00 157.9215 0.0000E+00
9 172800.0 S$.7781 0.0000E+00 162.9507 0.0000E+00
10 0.0 2,9031 0.1850E~04 150.036% 0.8164E-04
. 11 85400.0 4,46994 0.1543E-04 155.5623 0.7047E-04
12 139500.0 4,7428 0.1469E-04 158.0031 0.6056E~-04
13 172800.0 8.4769 0.3482E~04 161.7487 0.8976E-04
14 86400.0 3.5248 0.1175E-04 155.6485 0.7361E-04
135 129600.0 5.1084 -0.4343E-06 159.0629 0.6081E-04
; 146 172800.0 $5.9240 0.1422E-04 163.7965 0.7613E-04
; 7 216000.0 6.7804 0.1130E-04 164.9938 0.7198E-04
? 18 43200.0 0.3364 0.0000E400 154.4359 0.0000E+00
g 19 172800.0 0.5223 0.0000E+00 149.8579 0.0000E+00
. L 20 0.0 753895 0.4305E-04 159.0714 -0.61086E-05
: 21 172800.0 ?.79064 0.25746E-04 157.7525 0.1597E-04
22 0.0 6.4738 0.2285E-04 158.6602 -0.,4225E-05
23 43200.0 7.2620 0.2001E-04 159.0805 ~0.3449E-04
24 86400.0 8,2195 0.3025E-04 159.2360+ 0.6079E-0S5
25 172800.0 11.4950 0.1706E-04 158,0335 -0.BB865E-05
26 86400.0 4,7811 0.3463E-04 150.2000 -0.2200E-04
27 216000.0 13.4423 0.7618E-04 151.3719 -0.2750E-04
28 43200.0 6.6095 -0.5367E-04 155.0578 0.1522E-04
= 129600.0 -0,9081 -0.7107E-04 157.1149 0.2712E-04
REY 216000.0 ~6,2626 -0.9251E-04 159.44644 0.2897E-04
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The individual track files are contained in both synthetic data
bases. As Table 2-6 indicates, the only difference in data bases
ORTI1A and ORTIB is the measurement accuracy of the sensors. The
simulated sensor accuracy in data base ORTI1A is ten times greater
than that in ORTIB.

The test cases involving simulated data were run on a DEC 10

computer.

2.2 Problem Structure for Simulated MSI Scenarios

The basic structure of the k-track correlator is that of an
integer programthat operates on a set of potential correlations to
select the most accurate picture possible of the surveillance area.

The set of potential correlations for Run #1 selected by the
backtracking Kalman filter process described in Section 1.2.1 is
shown in Figures 2-2 through 2-12. Each figure indicates the track
file data points involved in that particular correlation. Although the
parameter file setup allowed as many as ten tracks to be correlated
simultaneously, the various tests employed during the backtracking
process selected only 2- and 3-track correlations.

Three basic types of errors can occur in the process of form-
ing potential k-track correlations:

Type 1 Error: the tracks included in the correlation are

correct (in that they correspond to the same ship), but not
all tracks from the same ship were included.

Type 2 Error: the correlation includes tracks from more

than one ship.

Tvpe 3 Error: failure to detect a true correlation.

22
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filter on a correlation-by-correlation basis.

Table 2-7 below summarizes the results of the backtracking Kalman

Note that both Type 1 and

Type 2 errors are mixed in with the set of correct correlations. No

)
Type 3 errors were noted in either run.
Table 2-7. Summary of potential correlations
constructed during Run #1.
[ 3
Correl Data Point
Number Time Number Comments
_ |Correct. Correlates Tracks
OCGOOEHOQ 20 :
«12000E402 23
«24000E4+02 24
+48000E4+02 2%
c4BOOOE+02 71
LO000VE+00 20 Sa.fne as above. Note that data
L O0000E+00 ns  |points were reordered due to
c12000E402 23 Jcoincidental time of report.
24000E+02 24
+43000E+02 21
« A2000E402 25
R ilelelelelag ole) 20 |Incorrect (Type 2 error).
¢ 240002402 7
s 36000E402 &
SABOOUESROR 21
S HEEO00EH02 &
14 |Incorrect (Type 1 error). Cor-
+ Jrelates Tracks #3 and #5, but
s+ |leaves out Track #4.
D00E+02 9
17
;o [Correct. Correlates Tracks
#3, #4, and #5.
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Table 2-7. (Continued)
Data Point

Time Number Comments
L DODOOEHO0 19 lmcorrect (Type 1 error). Cor-
< 2:000E+02 11
. 23000E402 14 relates Tracks #4 and #5, but
VZL000E+0? 12 leaves out Track #3.
+386000E4+02 13
+48000E+02 13
+ARDO0E+QD 1é
LA0Q00E4OL 17

+ 0QQUOE+QC
+24000E+02
. 24000402
«24000E402
+ 36000E+02
+ 38000E402
« 35000E+02
+48000E+02
+48000E+02
+AB000E+02

¢ SUOOOEHQL

>

St -k
IR I 21 3 5 BB (SN QEEFR )

Same as Correlation 5. Note
that data points were reordered
due to coincidental time of
report,

L ODOOOEHDO
c2ACOOE+0D
L 2AQ00E402
« ZEOOQEFOD
THO0OEH02
L ABOOOELOR
LAROO0EHOD

-

Incorrect (Type 1 error). Cor-
relates Tracks #3 and #4, but
leaves out Track #5.

LIZQO0E4AQD
s 2A000F+02
LAHQ00E402
L AEQOCETOD
SAHQOQOEHOD

Correct. Correlates Tracks
#1 and #2.

Incorrect (Type 2 error).

Same as Correlation 9. Note
that data points were reordered
due to coincidental time of
report,

[ -~ o

— - \”‘.. £ e - . * ’




Note that in Table 2-7 each individual correlation consists of
combinations of complete track files. For example, correlation 10 con-
1 ! ' sists of data points {1, 26, 2, 27}, and we don't see correlations such as
} {1, 26, 2}. This particular problem structure is the defining character-
3 istic of the track-to-track correlation problem. It arises because it is
j 5 assumed that complete tracks (e.g., {1, 2} and {26, 27}) are constructed
b properly at the sensor level. (By contrast, in a sensor-level multi-
target tracking problem, the key problem is to decide whether or not
5 data points 1 and 2 are the same ship [1].)
k| b The structure of the 0-1 integer program for k-track correlation
. can be illustrated by converting the potential correlations for Run #1 into
' the form of Equations (11) through (13), repeated here for convenience:
" }' ’ max dty
T' subject to
Br <1
‘ » v binary .
’ For Run #1, this problem has the following form:
i Potential Correlation Number —— 3, -
- .8 " 130, -°°°°°°°°111~a
. 130. © 0o 0 0 0o 0o 0 0 1 o 1|8
-1217. © 0o 1 1 1 0 1 1 o o0 0|~
’ %. © o 0 0o 1 1 1 1 0 0 o0]|F&
187. o o o0 1 1 1 1 0 o0 1 o g
d = 174. B = 6 o o o0 o O O O ©O0 o0 O0}°¥F
187. 1 1 1 0 0o 0 0 0 o0 o0 of®
: ’ 95. 1 1 6o 0 o o o o0 o0 o0 O
\ 126. © 0 0 0 0 0 0 0 0 0 0 4
e -678. |0 0 0 0 0 0 0 0 0 0 0
/AML? ) L le._J |
st 3
,
l —_— e TN e e e




The vector d has elements which correspond to the log-
likelihood function (Equation (8)) for each potential correlation.
Thus the first element of d is the numerical value of fnp(w) evalu-
ated at the last data point in Correlation 1. |

Note that B is a 10x 11 matrix (number of track files x
number of potential correlations). B is made up of columns of zeros
and ones, each column representing one particular correlation. For
example, Column 1 in B represents Correlation 1, which consists
of Tracks #7 and #8 (the 7th and 8th elements of the column are
set to 1).

Closer examination of B reveals that the problem can be
decomposed into a set of independent subproblems. By appropri-

ately permuting columns of B, we have the equivalent matrix

—— ¢ ﬂ
1 1 1 0o 0 0 0 o0 o0o}lo o
Subproblem 1 &> 1 1 0 0o 0o o o0 o oo o
0 0 0 1 [@}q1 1 1 0|0 o
0o 0 0 1 O0f1 1 0 1}0 o
gr=|9 0 1 0 0j1 1 1.1/0 o0
‘ 0o 0 0 o0 O0O|o o o oo o
o 0o o o [AHo o -0-o0}1 1
o o 0 o olo o o o1 1
o o 0 o o|o o o o]o o
o o 0 o olo o o olo o
B Coupling
constraint

Thus B' is a decomposition of the original intersensor correlation

problem into two subproblems, with one coupling constraint,

37
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The structure of the problem is further reduced by column

elimination. Letb' be the i-th column of B. Then the j-th column

of B can be eliminated if

where di is the i-th element of the cost vector d. Furthermore, the
k-th column can be eliminated if dk £ 0. Finally, any row of zeros
can be eliminated. Carrying out this process for B', we arrive at
an integer program with maximum decoupling and minimum size
(note that the coupling constraint was eliminated, and that Subprob-
lem 1 was further decomposed):

Subproblem la

126. V 1 0 0 0 0 0
95. 1 0 0 0 0 0
o 187. B - 0 1 1 1 0 0 TSubproblem 1b
96. 0 1 1 0 1 0
174. 0 0 1 1 1 0
o 130'4- 0 0 0 o 9.1
0 0 0 0 0 1 TSubproblem 2

Application of these methods markedly decreases run time,

which depends exponentially upon the size of B.
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2.3 Algorithm Characteristics

The truth models and results of integer program processing
for Runs #1 and 2 are shown graphically in Figures 2-13 through
2-16. As the figures indicate, in Run #] the k-track correlation
algorithm performed correctly. In Run #2, with sensors one order
of magnitude less accurate (ratio of standard deviation of noise), one
Type 1 error was made.

Note that the integer program is constrained to select from
among the elements of potential correlation set D during the process
of forming a complete picture of the surveillance area. Since Type 1,
Type 2, and Type 3 errors can occur during the formation of the set D,
the integer program is subject to errors of the same type.

The total run time requirement of the k-track correlation
algorithm depends upon the run times of the two individual segments
of the code: (1) the construction of potential correlations, and (2) the
integer program. Of the two segments, the integer program is the
most sensitive to program size. As Figure 2-17 indicates, the
results for ten test cases indicate a reasonable growth in the back-
tracking Kalman filter run time as the problem size increases. As
Figure 2-18 indicates, the integer program exhibits a sustained
exponential increase in run time as problem size increases. The
underlying problem structure is such that the decoupling procedure
mentioned in Section 2.2 above is critical for MSI problems where
extremely large numbers of potential correlations are found.

In several cases, a suboptimal solution was returned by the
integer program due to run time constraints placed on the code. In
those cases where the maximum time limit resulted in a possibly sub-
optimal solution, good accuracy was obtained. Thus it appears that
good suboptimal solutions to the integer program can be obtained within
a reasonable period of time for the types of data bases discussed in

this paper.
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Figure 2-17. Run times for construction of set

of potential correlations.
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Figure 2-18. Run times for solution of Bayesian
decision problem., -
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3.0 CONC LUSIONS

This paper summarizes a study which consisted of essentially

two parts:

° initial development of a sophisticated intersensor

(track-to-track) correlation algorithm

° preliminary analysis of the algorithm's characteristics

when applied to synthetic data.

The primary finding of the paper is that an accurate picture of a large
ocean surveillance area can be constructed automatically by the k-track
correlation algorithm. This finding is substantiated by the analysis of

synthetic data discussed in Section 2.

The structure of the algorithm is that of a Bayesian decision
process, which by its very nature may produce some errors in the
analysis of any particular data base. As noted above, these errors
were minimal for the analysis performed herein, There is a critical
need for parameter tuning against truth models before the algorithm
can be trusted in an operational situation. Thus it is clear that sub-
stantial work remains before the promising results obtained during
this short preliminary study can be broadly applied,

In the area of track-to-track correlation algorithm develop-
ment, there remains a number of important issues yet to be resolved.

A few of these are as follows:

. How large a problem can the integer program handle
in real time after the decoupling procedure mentioned

in Section 2.2 is implemented?

Using the k-track correlation algorithm as a bench-
mark, how accurate are simpler suboptimal correla-
tion algorithms (such as the pairwise algorithm men-

tioned in Section 1. 2)?
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. What is the impact on algorithm accuracy of Kalman
filter mismatch (i.e., a mismatch between actual

and assumed sensor accuracy)?

. What is the feasible operating regime for track-to-

track correlation algorithms in terms of ship density?

° How sensitive is algorithm accuracy to intersensor
bias? How accurately can intersensor alignment be
carried out? Can we '""bootstrap' the alignment as

track-to-track correlation is carried out?

. What is the proper balance between real-time track-
to-track correlation accuracy and the load on sur-
veillance network communication links (how much

data is enough for a given surveillance area)?

This partial list of important MSI issues yet to be resolved
can of course be substantially expanded. Hopefully, the results of
this short preliminary study of one specific correlation algorithm
will resolve some of the complex issues surrounding automatic,

accurate, real-time ocean surveillance.
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