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A SCORE FOR CORRECT DATA ASSOCIATION IN MULTI-TARGET TRACKING

D. L Aispach and R. N. Lobbla
ORINCON CORPORAT ION

La Ja1e. California 92037

SUMMARY soe track competes for the s-m mauemnuL If two or mer

In the mal-wor multi-target tracking problem, there exists the Pael- targets compete for the same measurements, seal itutio can
bility for many tuings to go wrong. Typical problems which arise Octw. These include the possibilities that the two uargets ae lumped
include: too few tracks are formed; too many tracks an formed (faie together. on target is rejected, the targets et mixed with track points
tracks); and inaccurate position. caue, and speed estimates ae assigned to clutter and two bad" tracks reported. or the arn that al
reported. Th eabove difficulties ar often the result of incorrect alloca- points we asiptd to clutter. It Is possible, though perhapsna nor

tion of data to individual tracks. Algorithms. while estimating the mal. to find situations where the choice of the best nonoverlapping
motion of a given target, inadvertently mix in clutter and/or measure- feasible frack does not correspond to a best surveillance picture. This
men ts from another targt. In order for correct allocation of data to a is quite easy to do if the tracks overlap and compete for the ame
given track to be made. one must have an effective scoring formula; mesurements.
that is. some means of determining how likely a given assignment of Many trackers consider alternate hypotheses as farm asigning mea.
data is. To be effective, a soing formula must produce (on the ave surements to a track. However. once a decision has bo made that a
age) a better score for correct assignments than for incorrect asin- meosurement belongs with another group of measurements, this deci-
ments. Information useful In the scoring process includes a priori intel- sin is not reeaminad. Once the decision has been made to sipn a
lince data (such as initial target locations), models of target motion .  piece of data to a "track." that decision is final. This is done becae
models of the transmission channel, and expected moments of clutter the system usually requires "an answer." Also. there is always new
for the sensor pin setting being used. Basically. the score is derived data coming into the tuacker alowing new hypothesis tests. In addi-
from the residuals which come out of the processing of a batch of data tion, them is a limited amount of computer response. One could my
with the extended Kalnan filter. This is used to evaluate the likelihood that the hypothesis testing is directed to make a decision on the
of potential tracks. Although the "likelihood" has an intuitive meaning, proper surveillance picture or that the tracker is "decision dieeted."
the term is used here to mean the probability density function p( k) of In the next section, we will see how effective scoring algoithus are
the track X. The expected cost of a given assignment is derived with developed-ones which can handle the alternate scenarics posed aboe.
the theory of etremnals being used to obtain the expected cost of add- Following this. in Section 3, a refinement to this scoring porithm is
ig a clutter point in a trck. The resulting expected cost is then shown proposed and it is seen that the averge cost incurred for assilniag
to behave in a quantitative fashion and this can be visualized from a measurements to tracks can be visualized from a Geometrical view-
geometric viewpoint, point. In particular, it will be shown quantitatively that there exists

a u--iue number of points (measurements) in a given tack that yild
I. INTRODUCTION an average minimum cost. Incorrectly assigning clutter points to this

p! In the last few years a number of approaches to the problem of tack and wrongly assigning points to clutter will. on the average.

tracking multiple targets in a cluttered environment have been pub- increase the cot n a wedefined manner.
lished. Some aspects of the problem that have been considered in

4 some subsets of these publications include the problem of false alarms
or missing measurements, tack initialization, multiple measurement
types (MSI) and target classification. 2. SCORING ALGORITHMS

Many of the so-called multi-target trackers described in the open
literature really deal only with the problem of one target in clutter. In order for a correct assignment of measurement data to a given
This hypothesis of only one target can greatly restrict the viability of tack to be made, we must have an effective scoring formula. i.e,
a multi-target tracker to sort out confused situations. some means of determining how likely a given assignment of data is.

Of the trackers that have been proposed, and in some cases imple- To be effective, a scoring formula must produce (on the averae) a
metd, ame can see certain similaritie-s and differences which allow better se for correct assignment thn for incorrect asillsinents.

the trncke to be grouped into certain classes. The grouping and Information useful in the sowring proces includes a priori intelligence
certain applications of then groups has led to the following thoughts. data (such as initltstarget locations), models of target motion. and

Perhaps the most fundamental aspect of a tracker is how it handles expected amounts of clutter for the sensor gain setting being used.
and interacts with the data. Trhe data is after all our handle on the real Basically, the score is derived from the residuals which come out of
world and all the information we have about a specific tacking realiza- the processing of a batch of data with the extended Kalman filter. This
hon is contained in the data. A second fundamental aspect of the is used to evaluate the likelihood of potential tracks. Although "likei-
multi-target tracking in clutter problem is that of alternate hypotheses. hood" has a useful intuitive meaning, we use the term to mean the
It is possible to derive the probebility distribution of tracks and clutter probability density function p( ).) of the track X. The concepts we use
points if one carcfully specifies the a priori probability bera, I.e.. the are well-known, since most of the work in estimation theory Pention
probabilistic target models, probabilistic measurement models, etc. to situations where all the observations Z t a, 1a .. ", an) are due to
In very simple cases where one can get the optimal solution, one finds a single target. An obvious example is the stochastc linear system

* this consists of all possible configurations of the data into the sets. In
each configuration each data set represents a possible alternate track xk+l 0 Akx k * Bkuk, k a 0. I...., n, (I)
or the set of clutter points. A probability measure Is assigned to each
possible total surveillance r,ion picture. This globally optimal zk CkXk + vk  k a I,. ., n, (2)
approach is generally not reasonable for implementation and approxi-
mate or suboptimal approaches must be considered. with states (xk) C RX, observations Rak) C pa, p noe (Uk) C R

Several approaches focus entirely on the construction of the sets of and measurement noise tvk) C Rv. Ak. Ik, Ck are matrices of approli-
data (the construction of feasible tracks). It is this latter philosophy ate dimension that may vary with time. The initial state so is a Gaussian

i that is being addressed in this paper. random vector with covariance P0. independent of the processes jUk)
Conceptually, using maximum likelihood techniques, various com- and I vk) , which are themselves zero mean while Gaussian soise with

binations of dais are tried and then "scorcd" using Iog-likelihood covariances (00J and ( k) . Under thesw *sumptniw. the well
functions. The best fit to the-targef model gets the lowest score and known Kalman equations provide minimum varkinnm unbiased estimates
this is considered to be ofe of the tracks in the MOon if no other low (1 k) of the states based on all past data:

4,
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1 k+lI Aklk* Kktlkl4'klAklk). (3) Uisu amy new gmuin iftMidee I ia paii.0l haWk. o ieoi l st .@ut. s

Kk *Pk4,lI(Ck+IlPkCk-l + Rk~l~l" flII), ( ~171
Pk A~k~-Bk~81-(5) a fine test.

When nonlinear measurements arc involved. a simple lineardation
process (the extended Kalman filler) is used. The equations remain and. finally. the likelihood test. The cars test checks the smanituide of
exacly the same, except that tile term the maximum omponen 'Or the vectr Sit e RI agaoms Oir sondia

included beause it is computationafdly cheaper to perform than the fine
zk~.,Ck,, Ak~k (7) test. IU constants Dkt aid 71,kmbe C'_ 1 n that

wvthe frstequation aboveis repaedtby IVi k lj}{kI k 1  '(I)

lk+I -hk,, (Ak~k). 5
One difficulty with this approach i dhat because of the "deterministic"

where k+l(.11denotes the nonlinear relabsonship between the measiure- terms in the likelihood function
ments and state vector, and the Ck-ronatrix becomesn

l hk(x) n dm() In 2w +4 In I VkI V10)

Ck asx AkIl- 9 koI

it is diffcult to compare some or the tracks or diffrent lenigth. It is
9 It is natural to compute the likelihood function p(X)) rtr the track also difficult to assess the absolute soodiness at a %core. Therefore. an

~A C Z based an the Kalman filter state estimates. The innovations alternate score with a more absolute meaning can be defined. This is
sequence is an integral part of tis~ computation, which is a sequence of described in the next section.:1 the measurement residuals:

&k+I a Z+ -.Ck+l Ak~k. k t-0. 1.-.-. n. (10) 3. REFINED SCORING
For track i at stage k define the stagewise ehisquarcd score

The (negative) log likelihood function us given in terms of 16 k) by SL - (4 .!- )TV~r 4- L (21)
n Itn

111c(A) ndim(z)lIn 2n * E In I VkI + J- E V61 . (II This has the reatures-iran measurements have been asiorned to the

- k-I 2 kW correct targets and all filter parameters chosen corkectly-that
E [S) - (SO - 2(22)

he covanance matrix for the measurement residual, Vk, can be corn- E SC E(k
*puted directly:- E I(Sk -2) 2 ) 4 (23)

Vk - Ck+ IPkC+ I + Rk+ 1. k -12,-,n.(1)2 (24)

Each feasible track is the result at a hypothesis test that uses the U(S) - 0. S <0
track likelihood function p( (or .quivilently. the nega~tive log likeli- t(S) - e51/2U(S) U()25)*S
hood c().) determined trom the Kalmain filter. Since the density US ,S,
function of the alternative hypothesis (that X~ is not a track) is unknown, where E (3indicates the expected value Operator. 0 Sk is the standtard
the decision rule is simply deviation Of Sk, and fAS) is thle appropriate density function for a two-

dimensional random vrariablc S. Define thle cumulative Lbiasquared score
a-cOL) a In p~h I Ok) ) ;o , F. (13) as

-C Inp 011 (Ik ~) < On - V F . (14) S i 4.()

Baised on the log likelihood decision function, the feasible track set is For easy evaluation on a single track an evaluation cost that would Ibe

F XI, Z. I polI (1k 9-1 - On IS) quite meaningful would be

F.~~~~C 1)Innp7II)L,)e? (I)Si--* (27)

Primtarily, the only random component of c(i)) is N

16.tylj6 (16) For this cost function the statistical parameters are

*which for real tracks is a chi-stu.red random variable with n - dilmension E(Ci) a 2 (28)

(a) degrees of freedom.* Therefore. err or probabilities can easily be comn- E ((Ce- 2)2) -4/N C,-2/i (9
puted for the hypothesis test to Predict tile accut,acy at feasible track con-
struction. This has a critical impac-t on tile ultimate accuracy of the track- (MI y Ni)wt 2,).(0
ins algorithm, since a real track mistakenly cxclubed from F cannot be j yr e'Uy)-(0
used in the subsequent Bayesian decision process. 2Ni(N,)

For display purposes the use of C, as a valuse measure of a singIle track
* makes a great deal of intuitive sense.

Values of C1 << 2 for reasonable length tracks tend to imply that the

*De lot. andm nsa. ofile U~aiftm~i wiwl I OfInilter parameters are set too loose. Thuts, hy reducing Ok and/o Ilk O
*nhito ft.w ri ialdm10110O msae n155t, o snive uiitim nd of I the rando could obtain tighter tracks. Tracks rot which Ci ,,' 2 clearty reprsent
is mature btIt iM hard s0 o mprf Hs, mn4g tromam oatvealiti i the low ss, bad data aignment which shouldt not he kept. More pr ecisely. If

2



cA , '. INV, (3I) Itawk will Peijt* to a ow ,'i 141 jeo~t aI usowl flMig W c 1~.4"l VCsfikS..
I~~CMg conide the woidnnnl measurteet vector If.& descrbtd in

when 0 a 3 (for a 3.sm ease) indicates either that iq t dat ha Figure 2.
been assagned to the track or that tbe filter parameters (Q.R) ar too If dluttr point is aded to the track, the Increiae in scot a Ov h

ull. Wile track will be given by Eiquations C21) and (37). The datlerence is inia
I ~now the value at Ike score can be, written a

C - 2-4/0N . N>3 for se-3 032) 1.. ~ N c * cl +~ Ldl

indicates that the flilter parameters (Q.R) are set too large. M M U o
* For a total sur eillane eioan picture af M measueentl points and

L tracks, one has: ssealtrc
A.brdk~ p ools we P"elyr

lucek Net. - Same is55Truk

* I C2  N~ Here Cc, a the cost for assining one clutter point to the track.C'

2C 2  IN, is a random variable and its distribution dependis on the distribution
at thedcutter points. From Eiquation (21),

el Z-11kVk 't - k) 42)

L CL NL

_____________where k are the T, s points for the clutter point. Tat distribution ot
* this randomn variable depends on the random nature at t clutter.

If the distance of the clutter point fraon the prected Pont asned

Trhe score for the total area should be made up of these scores and the to be Gaussian in Y and a with zero mean. the distance from the pwe-
cost for assigning a point to clutter. The number of points in clutter is dicted point will be Rayleigh distributed and the cost or score CTthe
N(. the number at points assigned to taryets is Nis. and the total number weighted square of the distance (42), will have: an exponential elnaity
of measurements are M. Thense are related by

= cN ~L N~fc,6c)/L a 2 u(e); u(c) a 0.c <0O43

A meaningful score could be defined as: where v2 is a measure of the dispersion of the clutter points with

L respect to the mid- or tracker-predicted point. The uncertainty. a.

S Ni NC +NC SC (34) takes into account the unequal variance in r and a and is riven by:

i- *2 .(range of.* in surface) (range of r in surface) (44)

* where SC is a score defined for a clutter point. If all the measurements
are correctly assigned to the track: The scome for the closest clutter point to a point predicted by ther

L tracker (closest in the sense of having the smallest sce defined by

E(S) 2 Ni + NCSC (3S) (42)) will be distributed as follows (x score of the closest point):

i1 F1(x) a probability that the closest clutter point out of

20 -(h NO) + NCk. (36). Nc having a score Ils titan or equal to x.

- If we define the clutter score. SC, and a total surveillance score as F,(x) a I -e eX/
2 02 (45)

C - I~S (37) From the theory of extremals, *it is obvious that this distribu-
Nt tion is identical to thve probability distribution of the event defined

Where. if all the measuremenlt points belong to the track, below,

Fx(x) w { probability that all ot the NC clu tter points have
E NC -'FS 12(M -NC) +NC SI 38 scores less than or equal to xi)

or

E(Ca)2 M-Ne + ! SC (39) Flt(x) a I - (probability that all NC cluittr points have
M NI stores greater than x)

so that a plot of the score for a global surveillance region tar a real case Frm(3,i olwththerbaltyhttesceofnynef
of Np metasurements assigned to N" targets with all points assigned cot- trm(3hieolosta h rbaiiyta tse fayoeo

recily and N c clutter points can be geometrically described by Figure 1. tcNclutter points being greater than x is given by:

* The curve from N=O, that is, all points assigned to clutter, to NoNp. X2
the correct number of points assigned to clutter, is just a straight line ( 22 46)

described by:V ____ NAssuming the clutter points are Independent of one another, the

E(S) al2!e +~ E**tsc. (40) probability that all of the NC clutter points have score greater than
At 161 la given by

whetre a NC11I0 2

NC vrie frm N o NNp.and the probability that all ot these clutter points have scorers less than

4 1 Byond the point (No Npt). a clutter point must be assigned to the track or equal to x is:
la..uenin. just ne track inw clutter). The com to assign a sinitle chutter I NCaI2 02

lauint lit the track can he calculatedl in the (fsthwingt mwanner: A given" (47)

3



2.2 the curve in Figure I is concave and monotonically increasing.
Note the two regions; of this rqpare. In one part fewer poants are

The expected value of the cost of assigning the closest clutter point to a amigted to tracks than actually are avaibblek. ie.. too many detections

*Cpitta lie ctosest- to a track of those uassiigned. The curve aso
The expected cost for aspn h etnaetpitt rc s asmsW l esrmnscretyasge stakpit r

thegne ton the correc track. Woong assignment of data a mild of9

(NC -l) 4. CONCLUSIONS

out~~xit oaN'o rc unique number or points in a track that results in tower average
2.2 cst thn anyother number. MAo. the sensitivity or tist score to varia-
NC - in nassigned number of track points can be otledbthcutr

scre C.Tis is readily apparent from Figure 1.
Thsscoring algorithm is therefore a very useful approach in extract-Note that in coptn h xetdvleo h oa otfunction Igclutter points out of a given target track.defined in (41). one must also account for the tinear decrease in cost The algorithm is currently being applied to an ocean surveillancecaused by the decreasing weighting coefficient (NC-k) on SC when k problem and the results of this are very encouraging. For a given datactutter points are incorrectly assigned to tracks. This amounts to a set having a false alarm rate of 10'4, i.e.. one clutter point in every10decrease of S&/F for eeycutrpitasgetoarckThefe, measurements, using the refined scoring algorithm defined in Section 3.

the net increase in teepcecotbasinnthkclssclte weavfudtatwe cneffectively decrease this false alarm rate to
points out of NC to tracks is given by: IDO7. This represents a threc-order-ofaniagnitudc decrease and. hence.

the deetincaailte of the tracking algorithm have been signirs.

:1'1
ITAC NOTET ASSIGNIN ASSIGNER TO~

HO TRACSN MENIASTNNSe~~THS POINTS CLA~ tIN(c-)MMOET
RESEMN SAE IS

I EEETDCS ~CO R EC ASSYG N M ENT

DS! S2 M-.ETM~ ~~ ~~1 POREC NWURO ONSCS O

ALL ~ ~ TH POINTS ASSANE ALGIN PONSISIGE
AN

N THNM E FPIT SNDT TRACK S

CORETL TOTETAK4OEASGIGCUTRPIT

0 OTAK EN SINN

THS POINTS .....--. , I
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SOUND SPEED ZSINATO AS A MEANS OF IDWROVINC

TARGET TRACKING PhERFORMANCE

D.L. Alepach G. Mobakern I. N. Lobbia

ORINCMO Corporation Naval Ocean Systems Center* ORINCON Corporation

La Jolla, California 92037 San Diego, California 92152 La Jolla, California 92037

Suimat Fro the simulation results It will be son that a

minmu number of sensors are needed and, in addition,
This paper addresses the Issue of target tracking two of the sound speed must be known correctly before

when confronted with a set of sound speed parameters accurate estimation of the target state can be achieved.

that are partially or completely unknown. It explores Finally, In Section 4, a sumary of the results and

the case where these parameters are augmented to the conclusions will be presented.

target state In an extended Walman filter. The filter
processes measurements of sound time-of-arrival differ-
ence and Doppler difference from a set of spatially 2. System Definition

displaced sensors.
For scenarios involving up to three sensore it has One area where the uncertain model parameter problem

* been found that blased target position estimates and could arise is depicted In Figure 1. It could equally

marginal system observability occurs. This is readily vell apply to tracking of vehicles on the Earth via

verified by propagating the aLgenvalues of the infor- geophones or any place that the signal does not travel

mation matrix in time. Using this as an analysis tool, with an infinite effective or known velocity. We have

* a number of geometrical sensor configurations are a aet of i spatially displaced sensors (distance to

analyzed. target - Ri). If the target generates or reflects sound

in general, it is found that with three sensors, the at time instant, t, because of the sound travel time to

system is, at best, marginally observable for any geos- each sensor (sound speed - cL), it will be sensed at

* atry. However, when using four and more sensors, sys- each sensor at tines tlt 2 ,...,t i . In addition, If the
ten observability and estimation performance are markedly target moves at a velocity, v, the Doppler sensed at

improved when two of the sound speed filter parameters each sensor will be different. To estimate the targetSare specified to within a close tolerance of their state, i.e., position, speed, and course, measurements
actual values. When attempting to estimate all of the of sound time-of-arrival difference and Doppler differ-

sound speeds (or for that matter (n-I) sound speeds, ence for a sensor pair i-j (L,j-1,2,3,...,Lvj) can be

n - number of sensors), it is again noted, as In the processed through a K~alman filter. Using spherical

three-sensor case, that system observabiLty and estia- geometry, these measurements can be related to the tar-

tion performance become degraded. get state by the following equations (i:

R I R

1. Introduction cij Ii-j c(

in a target tracking application, one reason for poor ' i
estimation performance can be a lack of knowledge con- f f -f (2)
cerning the parameters of the mathematical model that i i f(

- relates the target state to the measurements. Since a

mathematical model is a necessary ingredient to any tar- where

get tracker or state estimator, use of incorrect paranme- R os-l sinx sinx + coax (3c

ters could lead to estimates that diverge from "truth" - sc1l± 1Lc Os(x2-eL)l )

over a period of time. x3 [sinx coax cos(x2_6±) - cosxle@nl

It Is this problem that is dealt with In this paper. 3 1

wore specifically, it involves a target tracking prob- i sin R

len where measurements of time difference and Doppler

difference are collected from pairs of spatially dis- x4coaxIcoasIsn(x 2-91 )

placed sensors. The central issue is that the sound + sin()

speeds from the target to each of these sensors are
partially or completely unknown. These speed parameters
appear In the mathemtical model relating the target In the above equations, XL,i-Zo2,34 represents the
state to the measurements. To avoid biased target
tracks, some mechanism should be found to accomodate target latitude, longitude, latitude rate, and longtude

rate, respectively. The latitude and longitude ofthese parameter uncertainties. hydrophone i is XL and OL . An imnplicit asumption in

The material In this paper is basically an extension (4) is h a e sensos a re tA t ion a.

of an earlier work 11) and is more conclusive in ters (4) is that the sensors are stationary.

of the results that were obtained for a number of d~L- Throughout the paper we will take the target state
oft geometriscnat rios nobt in sorensr lens vector to be IT - txl,x2.x3,x4]. The reason for doing

arent geometric scaros involving sensor placements this is that target motion can be described by a linear

Wand target location. set of equations. In discrete-time form, the equationsW~e will start our discussion in Section 2 by describ- for the target dynamics are given by:

ing the mathematical model for the gi.ven process and fothtagtdnmcargieby

proceed to define an estimator that can accommodate 1 0 At 0 rw Mk
both unknown sound speeds and the target state vector. 1

lo All of the simulation results will be presented In 
0 1 0 at v w (k)

Section 3. In addition, we will also show how we can T(k+1) 0 + ((k)()
assess system observability via the information matrix. 0 0 1 w 3(k)

This will play a useful role in exploring system observ- 0 (k)

ability for a number of different target/sonsor geome- 0 1 w 4 (k)

tric scenarios. #(At) W(k)

LL

ME



where At * sampling interval; I.e.. the time between 3. Simulation Results
measurements of "lj.flj; w(k) Is a zero-mean, whit.
noise vector sequence that perturbs the target from To enamine the effects of estimating en m sed
otherwise constJnt courselspeed motion; and where speeds, we selected a number of different cases involv-in& different target motion scenarios and three-sensor

Z (1(k) VT(j)) *configurations as shown In Figure 2.
Qk "J The locations of the sensors are defined Is Table I

and the target motion scenarios (cases 1-24) are sun-

It is a siaple matter to display speed and course at any marised in Table 2.
time by using the equations below:

Table 1. Location of sensors.

SPMM _ 3 2 + x o
2 on2x1 (6) Array Latitude, X Longitude. e

1 S dog 0 deg

COURSE tn xCnX (7) 2 -2.5 deg ,.33 dog
Xt / 3 -2.5 deg -4.33 dg

Since the measurement model is nonlinear (eq. 1-4).
one can implement an extended Kalman filter to track or Table 2. Tergec motion scenarios.
obtain estimates of the target state vector. M(k). This
is easily done by linearizing the measurement equations Case Starting Position

about the most current state estimate. i(k). to obtain a Number Latitude Longitude Speed Course

linear measurement equation, H(i(k)). The equations for 1 .5 deg .5 deg 10 knots 0 deg
the filter are standard 12) and are summarized below: 2 90 deg

2(k+l/k) - *(At) 9(k/k) (8) 3 180 deg

P(k+l/k) - #(At) P(k/k) *T(At) + Qk (9) 4 270 deg

4 i(k+l/k+1) - i(k+l/k) + kk+liz(k+l) 5 2.5 deg 0 deg 0 dog

- h(2(k+I)/k))j (10) 6 90 deg

P(k+1/k+) - [ - kkH(g(k+I/k))] P(k+l/k) (11) 7 180 deg

Kk+l - P(k+l/k) H(g(k+1/k)) [(2(k+I/)) 8 270 dog
?(k+I/k) 1T(ri+l/k)) + \J -  

(12) 9 -1.3 dog 0 deg 0 deg10 9 0 do
where k1 

10 deg

zT(k) i(k) f.
(k )  11 180 dog

ii ii' 12 y270 dog

hT(i(k+I/k)) It Ii(k). fij(k)] 13 -1.3 dog -2.0 deg 0 deg

[i . A14 90 dog

- . f - (13) 15 180 deg
: j16 lideZ- c y 11 Y 270 dog

R k covariance matrix of additive white 17 0 deg 2 deg 0 dog
noise,that contaminates z(k) 18 1 90 deg

H(f(k+l/k)) - ah(x(k)) (14) 19 I 180 deg
3Y(k) 2

W(k) - 2(k+l/k) 20 Y 270 dog

From (1), (2), (13). and (14) it is easy to see how 2 0

sound speed. ci. enters into the measurement model. In 22 90 dog

(1, it was shown that when incorrect values of ci were 23 J 180 deg
used in the filter model (assuming one did not know the
tru cl). the resulting state estimates were found to be 24 270 dog
biased off from the true target state. In some cases
these biases were significant, and consequently the We made the following assumptions:
deviation from truth vs as significant.

To compensate for this problem, the sound speeds were (a) The covariance matrix of the discrete-time

treated as additional state variables and augmented to process dynamics was defined by:

the target state. Since the sound speeds were constant
over the estimation interval, the state dynamics were 2 At

3  
2 At

2

simply defined by 61 - 0. The extended Kalman filter q33 3 0 q33 0 0
was then implemented for this augmented state vector to 2 At

3  
2 At

generate estimates of both the target state and the 0 q44  - 0 q44  2

unknown sound speeds.
In the next section. we will summarize some of the Q(k) - 2 Ac

2  
2

earlier results that were obtained and then present more q33 -- 0 q44 At 0

exhaustive results that indicate a definite trend
occurring.

0 2 t 0 q 2 At

2
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Wher q33 q4 (.0091827) knots/sec is the power system was marginally observable for a three-sensor
spectral density of the random noise perturbing the configuration and unknown sound speeds.

velocity state equations of the continuous system. This As a means of enhancing system ObservabILty. it
randomness In the target velocity for the continuous was decided to introduce more than three sensors for
system tranlates both into a position and velocity target tracking.
uncertainty in the equivalent discrete-time model. The We firt started with four sensors usain different
values of q33 and q44 roughly correspond to a standard sensor/target motion geometries. Four cases were cen-
deviation of .34 nautical miles in position and .6 knot sidered and the g8one:ries are sumarised in Figures
In velocity over a time interval of one hour in the 7 to 10.

discrete-tine model. Using the sane philosophy as In the throeseasor case
earlier, we started out by estimating one. two, threu.

(b) The mesurement matrix covarlance matrix was and then four sound speeds. For all of these cases,
defined by: It was found that we could estim ce the target state

ol ad up to two sound speeds without obtaining biased
(k) - Iestimates, but as soon as we attempted to estimate

0k - 2 three or four sound speeds, biases in the estimates2 2 j again were noted. Marginal system observability again
was suspect. To substantiate this we looked at the

(c) ht-300 sec was the nominal time interval between eiSenvalues of the information matrix as a function of
measuremnts. tine. The functional variations of the eigenvalues were

(d) The filter processed measurements from the senor found to be relatively smooth and monotonically increas-
pairs In a sequential manner starting with sensor pair ing for estimation of one or two sound speeds. An exam-
1-2. 1-3. 2-3. 1-2, 1-3. ... , etc. ple of this is presented In Figure 11. It involved the

target/hydrophone geometry defined by Figure 10 where
(e) The sound speeds from the target to each of the we estimated the target state and two of the sound

sensors were chosen as (3]: speeds. However, as we began to estimate three and
€1 . 4857 ft/ec more sound speeds, the function variation of several of

S8the information matrix eigenvalues becomes progressively
c2 - 4850 ft/sec more ill-conditioned and lower in absolute magnitude-

4 4870 ft/sec an indication that the property of system observabilityC3 - has been ekened.

We started out by assuming that: first, only one of the To complete our analysis, we then explored the use
three sound speeds was unknown and consequently was esti- of five sensors. Two geometries were selected and are

mated along with the target state; second, tvo sound shown in Figures 12 and 13.

speeds were unknown and were estimated along with the Using the same approach a. before, we began by eai-

target state; and third, all three sound speeds were mating, first, one sound speed, then two sound speeds.

unknown and estimated along with the target state. In and so on. Interestingly enough, it was found that one
all of these cases, it was found that biased estimates could now estimate up to three sound speeds before
were generated by the tracker. A typical example of this biased estimates again occurred.

is shown In Figures 3. 4, and 3 where an attempt was made Far all of the above cases involving four and five
to estimate the unknown sound speeds and the target state, receiving sensors, the general observation was that one

The solid curves represent the truth model whereas the could estimate the target state and up to two sound

dashed curves represent the state estimates. Note the speeds for the four-sensor configuration, and the target

significant biases in latitude and longitude in two of state and up to three sound speeds for the five-sensor

the sound speeds. configurations.

Because of these biases, It vas decided to examine Of course, these conclusions are based upon a finite
the observability of the system for all of the cases set of examples, and to substantiate the above claim
defined In Table 2. This is easily done with the aid more rigorously, one would have to implement a more
of the inforatiaoh matrix 12]. For the case involving exhaustive aet of examples.
no process noise and state vector a priori information,
the information matrix is identical to the inverse of
the Kalman filter covarience matrix, P-I(k/k). This 4. Conclusions
matrix must be positive definite for stochastic observ-
ability and, provided the above conditions apply. is In summary, It was first noted that target tracking
given in recursive form by: via extended Kalman filtering tends to produce biased

-1 T estimates when the sound speeds were uncertain and
P (k/k) - OT(-At) P l(k-i/k-I) (-At) incorrectly specified in the filter. Attempts to addi-

tionally estimate the sound speeds were shown to be of
+ HT((k-1)) tk- l('x(k-1)); no avail in eliminating these biases--even when apply-

-1 ) Ing traditional filter parameter variations that in past
PI(0/0) - a (15) applications tended to make the filter more robust to

parameter uncertainties.

where #(At) is the state transition matrix defined in For this reason the observability of the system was
(5), m(r(k-1)) is the measurement matrix linearized explored in greater detail. With the aid of the Informa-
about the state vector i(k-1). tion matrix, It was found that the system was marginally

To assess the property of stochastic observability, observable over the geographical region defined by the
the normalized eigenvalues of this matrix were computed three receiving sensors.
(normalized to one) and plotted as a function of time. Because of this, we therefore took a look at using
Figure 6 shows the results that were obtained for case time-difference and Doppler difference measurements
11 in Table 2. One of the position eigenvalues becomes from more than three sensors. In particular we looked
Ill-conditioned and exhibits a smaller maximum magni- at configurations involving four and five receiving
tude than the other position sigenvalue by a couple sensors.

/ '- orders of magnitude. This analysis was repeated for all The results from a finite set of examples have shown
of the other 23 cases and the same general result was that target tracking performance is improved, i.e., very
obtained, i.e., ill-condltioned behavior of one of the small or nonexistent biases, but estimation of all sound
e/genvalus. Because of this and the fact that the speeds is not possible. Generally speaking, It seems
state estirmates were biased, we concluded that the that if we were given n3 receiving arrays, It would

/P
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MULTIPLE COHERENCE

Richard Tru l4od
AXIPA AcOlstic eeecb Center

Mofaitt Field. California

Daniel L. Alipach
ORINCON Corporation

3366 North Torrey Pines Court
I& Joll. California

Summeri

The concept of coherence as a measure of the _(t) a J f(V)U(t - 1W X (t). (a a I) (1,1)
linear relationship between two or more time serts@ - Note that because of physical causality require.
is discussed. The definition of coherence in terms of mInt g(r) to saen for all t lesst thanl zero. Isl feet. t
the complex aroas power spectral density matrix to will be zere for all j less than snte positive time

5 given and the relationship between pairwise and multi. which ti the time it takes a signal to travel from the
pie coherence and channel signal to noise ratios is
discussed. A *ample statistic for coherence toi iour o a sensor.

while the details describing the performance which The true value of the coherence between time
can be obtained from this statistic are contained in series is generally an unknown quantity. In fact. any
a separate report by these authors1

. measure of the relationship betweei two or mre slme

series generaUy must be based on tume tre.at of those
1 t tries. The functional relationship between the time

Iseries and the measure or estimate of coherence is a
A problem of interest in many different diec¢- sample statistic for coherence. The assumption that
An roble of' nteresin man difrfeentb any one infinite length sample of each seriee'will he

iplines is that of determining if there is a metaurable enough to allow us to estimate the coherence exactly
relationship (physical causality) between two or more is made implicitly, and all time series are assumed
time series. In addition, one would often like to oh-• to be stationary and ergodic. Unfortunately. in
tin a quantitative meaningful measure of the degree practice, one is given only a finite amount of data

of that relationship. This paper describes one possi. from each of the time series lInthis case the sample
bic measure of such a relationship, the coherence, statistic is a random variable distributed about the

'-true magnitude-squared coherence". The density
The most common measure of such a relation-latti in ts rprt is iven

ship is the pairwise or multiple correlation coefficient, for a number of specific values of dereeo of fredom

The nature of the correlation coefficient ts well docu-

mented and will not be discussed here other than to [N) and number of time series (M) in reference 1.

note that it is not a function of frequency and may be Based on these density function, receiver
I. Aecied by linear transformations of either of the operation characteristic (ROC) curves have been de-

= *.ime series, veloped. These curves define the protability of
The cohtlrvlnce function (magnitude -squared detection versus probability of false *arm for a
multiplr e cohernce function ) gnitudefred as signal of a given true coherence. Curves of probabil.

multiple or pairwioe coherence functionl is defined ity of detection versus true coherence for fixed levels
eo and one .dThis coherence function i Zero if of probability of false alarm have also teen developed

hero ond oe .d Thi orncefctione iseeeo i for many degrees of freedom and number of sensors
the two or more ergodic time series are independent pto0.Teeae&'rpredidtilbthmup to 10. Thers are a : reported in detail by these
tuncorrelated, i Gaussian) and equal to one at any authors in reference I. The fundamental question of
irequency where there ti a linear transformation the relationship between input signal to noise levels
between the one or more input time series and the and true coherence for the two channel and multi-
output or reference time series, channel cases of Figure I is discussed in this paper.

The situation of interest is shown in Figure I For a general discussion of the concept of
where tI indicates the noise contaminating the signal coherence, the reader is directed to reference S.

u(i in the I channel. In general, each transmission For a detailed derivation of the distribution of the
charnel is composed of linear and nonlinear parts pairwice and multitle coherence statistic, the reader
(Figure 2). The sum of the output of the nonlinear is referred to reference 7. The densities and derived
system lusually a small part of tne total transmission), performance curves in reference I are particularly
%nc measurement noise, and the background noise is difficult to obtain for low coherence and high values of

..r uled into the effective noise term Vi(t) (Figure 3). N (number of samples of the time series), and based

on the authors' kr.owledge are not available elsewhere
We are interested in detecting the presence of in the literature.

a common signal u(t) in two or more channels. The
tp.t-output relationship indicated in Figure 1. 3 can

2e ritier. as

/ '
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Z. Cross-Power Spectral Density This if the mutual or pairwife coherence between
Matrix anti K4011lal Cnwhornnes chasnnels she anol two.

siultipie coherence C~n lilt mQst Oasily defined In the three-channel case It to easily sees
in terms of the cross spectral density matrix (writing S ij ) as 0 that

S 60.where the elements of this matrix are defined S~ ~

SiJlu)ftx is () aso t'(w)) I S 2 33I 2 I 3ZZISI1 Il2 O1 tZS311
Q i) J1IZ 1S 152ZS33-SI ~I SZ3 1Z(Z~

The crosepower spectral density matrix is of
course equivalent to the cromecorrelation matrix.1' ither of these together with the means of the M Using the fact that pairwise coherence is defined
jointly gaosian stationary processes. x ,(t).3 2I(t)... by equation 1. 5 we can wrte

x (t). completely specifies the joint dis~ibuties
f Mction of these processes.2 .e SSS /

7.1 12 23 (11.7)
Given M finite length time traces, there are V2~ S -, 31

I 9 well known techniques for obtaining Osamnple, estimate .
of the cross. and autopower spectral elements. These

4estimastes ar sed to obtain sample estimates for the U.1 2 .2
multiple 8cohrernce between the various time series. '1'. 21 +I)'1.31 .Z Rely 12 YZ3Y3 d]I

The sample estimate for the crossa-power [I.- l23 121,
spectral density matrix is a function of the basic data
x (t). x It)_. .. x (t) over some finite tune record. It riettifhecopwrsetaldntyf

L dos nt reuir~nowedg ofany f te chracer- channels two and three io zero IS23-0), the coherence
istics of the transmission channels or of the signal-to- btenhsewocaelisZr andtemlie
noise ratios of the received signals. The meaning of coerencte f chann one, giverto ad the mlie
multiple coherence will be discussed in terms of these coeneofhaeln.gintwadtreis

quantities in later sections in an attempt to illuminate
the subject. Here, however, we will define multiple 12 2 (.8
rLoherelice simply in terms of the crosepower spectra &I J~vltZ.31 '1*1. 1 +iV1 31 (.g
ctansity matrix and its elements.

The multiple coherence between x.1t? and
X (t).x Xt... Kt)., x~) . xt) isidefinedt by. 3. Pairwise Coherence and

1 2 j.- 1~ 3+1 Sianal-to.Noise Ratios
reference S)

.NI'.~~~ it.u~~'ii1 It) and x (t) are generated as indicated

.j~l~j~l.. 1-/(.3 I iue3. equation 1. 1 can be written in the
frequency domain by Fourier transform as

mere SItoi the jth diagonal element of the inverse
a- ;--.a S__ i~n. The multiple coherence of the jth X,)u(0-01 ("UtI(w+~V (s (3.1)

sensor with respect to the other sensors represenits X()G()()V() 32
the proportion of the variance (power) of sensor J that X2 W. 2 wUW. 2(u 32

5 can be explained by a linear combination of tt? remain.
tnt sensors in a minimum mean squaret sense .Again assuming the noite Iterms V Iand V are inde-

pendent. the cross. end .utopower
1 

spectril densities
by reducing this definition to the simple two- can be written as

channel case we can write 2

S 2w- 2(w) v

SI4 (l W I - s w S2 2 (W), 021W) zSIW),5 2 1W) (3.41

112 ili I 2 2 2-slw) 5' 1 t 1(f G(610) 0(W) 51W) (.5

so that

S 1 i..)s 221w1!t,,I W5 2 (W) - (2 W 1.4)

This gives ISlaal (W.

1

%it



Nefinin tha I l o~w e ind theWl St (4raeefetive oiste 0u6 ; the ~ tFONO Rcanl tMs

imlst~l oe setr tth ~eie In---.~- 16 n otpt 1164i Cno loder~ao thn fect iaveua
-. (44tw.WO?)S 1. lOnear"O Hnea Imi.~ chrnl lw.v nh"p~seji.

squaredprtain f h coherence antw cabewiens qtio n . 10tcrr

we (44! wrt eve to (tliol cohe (Wrence. 1

*~~ 2'2  .71 (3 tB) 4. Mul3pl Coerne

Pairwise ~ ~ ~ ~ ~ ~ ~ ~ Ti magnm-itude-squared coherence, isjs c- scsmia oteoei heIa eto w
hefinig e. sia l t-i owe nth t bemd.channelsu can ) be d rv smtd. Th e r the poeffsectral

as ldearitr ansmgiin ehwriten IN terms to thie inputi.~ ~ ~ ~ ~ ~ t 14 The coer c Is o poowee btenerad sign ptra de. thsierunnon thanne trnfer
(S/N) (3.7 funlin , tand he ffeti channel otise pya ls

Vf thertai ofs~t-ia powe goeeenc to inine asaycrre
woeenc canl grit toe er. Tito miultile oherencei~.)2 ~ Z.teeg

to ~ ~ ~ ~~ 0 on) 4owe de ltinpte otprtofnce and hanln

9 (1), In the)cas te o is pcaners spectratidnship ty in the
Aertineerin atd inomtiv itretation inu nalte-gnieratpoe sp te utra let cnc-

of thie mgiu*a ardcoherence. oeree thjutochnes "c be ao can l t e the ritten th tscto o w
herede. n e w blo e manne. Assnnems one oe thrved T uptpwrseta

chanel isnoie fee S~() =0).Thnschtye Scan agi US wrte itrm of this in(4ut
Then e co herenue isigonde eenc erad sga whe ecta est.teukoncanltase

-V on~~e' functions one and efwoiv isane noos gienb

0N a D71.Z 2 3. ) isa igl a tri wet elments (W)I41

eih ch nl h coherence il l g o e o. T isI W e) S1 N (.I 0 ( ) 12 . OMS,0).) 10 (4.2)

tho meo.An .the-squared cerenceisoter fratioIn o h nes eurdt aclt h utpechr

of the ouen tpteenthos wchames rom b tio a n from ea ti n 2cans o ee tdb
taeh hee sn h following mane.Asm n fteai ineT onlm a
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The structure of this inverse can be seen more Note that far M equal to two as In section 3 the
elesvy Iy notinx that coherence to liven by

sI T ) I)t7 - (4.. iii) (4.14)
S 4) [I + (SIN)? • (4)

Jul vj

However. i tI becomes very large, the coherence
This term is the sum of afl output signal-to-noise loss to
power ratios. Therefore. it. as in the two-clannel
case. we defms - SIN

J (SI~ l • ~i(W)2 SuWlv() (.) |l12 .... I1.1+1 .... M| rl + (4. N)

The formal requirement for this to be valid is for the
the inverse of the bracketed term in equation 4.6 cn lignal-to-noise ratio and number of channels to
be written as satisfy the following inequality:
r .SI M 1 (l- 1)b(Sa)e1d1 (4.16)

;LI+Su(G(w)O uiD"c) (. )'  1/LI (SN 49)
I However, baed on data from section 3. equatio

4. 15 is identical to the coherence of two chainnls
With this, the ith diagonal element of S;(W) is when One has an infinite Signal.to.noise ratio and he
given by other has a signal-to-noise ratio (at frequency 0) of

r h (S/N). In this sense,. a large enough number of
weak channels (signal-to-noise ratio of (SIN)) is

I + (S/N) - (S/N), equivalent to the sum of one noise-free channel and

ii S one weak channel.Sis() I - (4.10)

vi I The second special case for equation 4. 11 is
14 (SIN) when the ith channel has a very large signal-to-noise

I /l ratio. Letting (S/N)i become large in equation 4. 11J-1 and keeping all.other signal-to-noise ratios equal to
(SIN) we find that

Using this and substituting equation 4.10 into equation
2.2. we find

12 IV i-l. i+1.... M

[p ;1i/l. 2.... i-l. i+1.... M
Sa IM-)L Is (4.17)

S-I I/ S() Siifw ) (4 a I)

S 1  . 1 S~ ( Note that for low signal-to-noise ratios, i.e..(S/.Nl (S/N)l (SIN)i

= JJr 4.11) fM-1) (SIN ) 44 1 (4.18)

[1 ~ ~ J J5N1  i -(/) the coherence goes up linearly with the number of
= (Il channels each is considered to have the same

signal-to-noise ratio as all others. i.,. a (IS/I). As
Several special cases are of interest. M becomes larger o ;s

First consider the situation in which the M(S/ N) )2 I (4.19)
signal-to.noise ratios in all channels are the ame:

this coherence goes to one as it would in the case of
(SIN) i a (SIN) (S/N) (4. 12) two noise-free channels.

This gives the coherence of channel I with respect Next consider the case where one channel other
to the oter M-I channels as than the ith channel has a very high signal-to-noise

e2 ratio relative to the others:

,J 9 i 1,2 . . li+l .... M hi

21-(SIN) k I ' fS/N) t - IS/N) 1 - (SIN) . (4.20)(S'N
2 k

4



Under these conditions, equation 4. 11 to approxi. The coherence between the strong signal and the
1lp iaiy jItvn by weaker Doese loop lipinvarly willi lit numisor nf

| " (S/N).(S/NJk the M multiple coherence values will be the one in
I:l. z.... i-,. 41..... Mi

2  
( (4.3Z) which the largest signal-to-noise ratio channel i.

e[I+(SN) ] .1(S /14)k] used as the reference, which is as expected.

or

•yi . (..1 .w... 7~ 4. ZZ)? S. A Sample Statistic for

&a if all other channels were not used. If (SIN) is Multiple Coherence
approximately equal to IS/N), this means that all
weaker channels could be QNejected and only the t.- The true multiple coherence of a et of time
channel coherence between the two etronger channels series to a function of the underlying statistice of

could be sed. Also consider the cast when all these processes. The statistics are generally
channels including the ith have a much lower signal. unknown and must be estimated from sample reallsa
to-noise ratio than the kth channel. t.a., tines of the processes. The estimates of the basic

kstatistics can then be used to provide estimates of

(SIN)k (SIN), (SIN) all t j k (4. ZS) the multiple coherence of the M underlying stochastic
processes.

4 Then, while the coherence of the ith channel given the The method of obtaining estimates for true
others is provided by equation 4.21l. the coherence multiple coherence ij as~folows. Using well docu-of the it chaniel e n th others in mented techniques 1 4 . obtain sample estimatesfor each element of the crosespower spectral density

matrix. From those sample estimates

SIN - W M(S/N~k(S/N),. Ik~oZ.. *Ikv ... | [+I/Nk][1+IM.1)(S/NI]7l) S112
(w  

.. IM~
w

(4.24)

S2 1 (w) $ 22 (w) ... S W
Giving for this case

• ) k:l a Z... .. k , 1.... M I S __ ( .l

LM.J2i±+L!:/Ni i 2 ... l., l.... MI

~(4.2S1

For the case of weak signals in the other channels IM1 k ) M2( 
1  

) . "* MhE(a)I

(from equation 4. 221:

0 one calculates the sample estimate for multiple co-
2 2 herence in the following manner

1k:l. 2.... k,~~ .. M MJf +ILU l l±.!/. k1 1
4..: 1,2 ...... - ,i+( .... M 2M- 1/1

Further simplify equation 4.26 to the special case of where S (w) to the ith diagonal element of the inverse

of the M -by-M sample spectral density matrix Sx(o).

(M -I(S/.N) •• (4. 27) Details of how to form such estimates are discussed
M -1( a, length in the literature. Since these estinates are

random variables there has been considerable study of
Swe have their distribution. The distributions of these cross-and ajipopower spectra] estimates are known in closed

2 2 form'."lt 1 .... k1.... ~M1) (4. 28

/k'k
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* The clossd-form expresten for the multiple. *t(i-Lll..

i,. . vau of0 the multailscoherencs test 7
statistic and the relative probability af its being in a
particular band. All values are of course bounded by N i .)
zero and one. The density function to conditioned on p

2
,Tp , [.Ni.(Pl))j 2 s

tne total number of different time records. or dif. !:I I .(pv) .0
isa rent stochastic processes. available (p). It io also (1).9,1 ) (Pll3j
canditioned an the number of independent samples
available from each of the time records (N). Thus Other expressions for this density valid to large values
the density function of the sample estimate for coher. of N and specific ranges of true coherence I 2and y
ence given the true coherence is given by9  are described in reference 1. There curves of prob-

ability of detection versus probability of false alarm
2 are presented as are curves of probability of detec-

P (yN~p.'I)tion versus true coherence for fixed values of prob.
1y12  ability of false alarm.
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ASRACT r

This paper deals with the problem of sund speed estia 01-2 ' -j (2)
otie as an aid as improving our knowledge of the positions of a
diftung asobuoy. Thes is aceophihed by processing the out- In Equation 4(1). v I., represents the sound tine-of-ameva
puts of a spatially, displaced set of hydropsone mens in an difference for the hydfoilone &my Pair 1-2- N-2 isEqm
extended Kalman filter. Tbe filter's state vector miay be mg, lion (2) represents the normalized dappler difference. whereb
asented to provide coutiaes of the sonoibuoy's position,f

*velocity, and the sound speed from the ionobuoy to eacht of th is the baue frequency of the narrowband mource.
bydeapioes

* Using spherical geometry, the distances Rt, and tune rate-
It is shownm that with just time-of-arrival difference and of-change distances k, are related to the sonobuoy's location by

doppler difference rnieuresMa system observability is mar- the following equasona.
4 wnmal - directly resulting in biased estimates of the sonobuoy's

lomia. With the aidditionsal use of bearing mseasuremients. it is
4 Pthen shown how thenhan-es system observability and, cone- RI cos"t linft xain ki .mtA Iw on s 0s~2 -91Si (3 1

quenty. estimsationperformance. 13 IseK O AiCOSIAt -Oil- Dotal A l

I. INTRODUCIION i(4)

In this paper. we are concerned with the accurate location + 4 ctxt )I ok un tki -
o1 a sonohucy over a specified interval Of tume. It ns assumed to tin Rt,
be suojected to both randoin and deterministic forces over this

P wine lame Period. because of tis. our knowledge of the mono- where
buoy's location is uncertain and casn be in error mf we employ
conventional dead re,;soning methods. xi. 1,2, 3. 4 represents the tonobuoy latitude. longitudet.

Another approach mon: accurate than Sthe abv wol be latitude tole, and longitude rate, respectively.
to place a source emitting a continuous Pseudorandom pIntes
signal aboard the ionobuoy. A set of three or more pamurve Ai~. 6, represents the latitude and longitude of the At
hydropsones geographically separated from one another, can hydrophone.
then he used to pick up the sonobuoy's signal to provide mess-

- urementa of sound same-of-arrival difterence and doppler dif- In Equation 44 it was assumed that ech of the hydrophones was
ference. As an example, one configuration involving three stationary.

by~rpbots s sownbelw i Fiure1. ecause of the nonlinear feature of the above measurmenit
In this figure ft. 1- 1,2, 3 represents the distance from the equations. it is very difficult to solve explicitly for the mono-

solsobuoy to each of the hydrophones and ci. r 1, 2,3 represents buoy's state vector (it 1,'2. x3,.x4) In the neat section. it will he
the sound speed to each hydrophone. Note that we are using shown how this state vector maf be olanedl in a recursive
three distict sound speeds instead of a %&ngle one. This is manner using an extended Kalman litter.
because sound speed. int a thermally non-honmogeneous medium,
a related in a comsplex faihion to such variables as time-of-day. Following thes we will show that when the sounid speeds are

*distance between hydrophone and tonobuoy. bearingl of hydro imprecisely known, then esmanates of the soisoibuoy's position
Phone with respect 1o tonobMoy. ecW. and velocity become biased. Section 3 then preesents a method

for augmenting the sound speeds to the sonobuty, state emtaniate
Now if we consider any pair of hydrophones. pair 1-2 for and it as shown that the augmented state becomes marginally

Instance, then we can obtain, through crosi-correlatson methods, observable. This directly results in biased esmates for the sOo.
two measurmeants. timneif-amrval differences and doppler differ- buoy's state vector. We then show that the additional use of
ence. that are related to the tonobuoyis location by thes following besinng measurements are see to enhance system observability,
equations: to tse point where estimation of the aousobuoy sWatsco

bIne vnbud.
II R ,

C2 Finally, i Sweom 4, w will suimetuiet wMaILt
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2. ESTIMATION OF SONOSUOV STATE VECTORl represents the nonlsiear dependence of ak on Ik) defined by
Equations (1)I through (4) 

1ki a theC .w0waince itn& of an
It is apparent from. Equations (1) to (4) that it would be additive white-noise meawurement sequence. H lx(kslI k)) is the

difficult to solve for the sonobuopy slawe vector an ans of the measurement equation that is linearized about the mast Ismu
measurement T,- aijl. A recursive Approach may be sought that saeetmt n sdfni y
avoidli this difficly. The approach we mute hene anvolves appli-
cation of an extended Kalman fiter.H(1 

*Ik)-8Mi))I tit.f kI1)Inodrto inmplement this filter, we need in addition tothc m emwnt Equjtsans I Itot(4). a iudel lt ste dynamics t *

= fthesysem.Thuis asiy o~amd wen e asum aconstant
Jpe and constant count drift and. in addition. a random per- This linearataon was found to accurately describe t1e fume-

turbation t0 account for nmodeling unertlainties. environmental tional chara%;wvtstcs ot that nonlinear measurement model Is
foire, i etc. In duiscrte-tinme form, the equations for tOe system HO-) was relatively insensitive to variauion in 1(k).
dynamics ame given by:

These equations were Implemented in the case where us
1 a at C -0 knew the sound speedls to each hydrophone. LUnde, thae strains-F 1 F l stances, the uuhng estimation performance was see to be

0 I 0 At 0 excellent.
Io 010 I w(k))+ However. for the case involvin unknown sound speeds, the0 0 j 3 k estimation performance degrades rapidly when we uae Incorrect

*0 0 I_ w4 (k) values for the sound speeds in the Kalnman filter. An example ofL I this is shown in Figures 2 and 3 for a case involving an average
V(at) ak unoubuoy drill vclocity of I kiot and cotirsc of 45 dgei n~ IL) Figure 2, the solid curves represent motion of the truith model

and the dotted curves represent estimates of the tonobuoy statewheat as provided by a Kalman filter. The measuremens were assumed
noiy wth a standard deviation in 7 and aoof. I aecond andx, (k) T 0:1051. respectively . The estimation error and a pnorsla paw

a, fk) tenior standard deviations ar ew aned in Figure 3. A stl ofI I dust hydrophonet were configured essentially as vertices of an
I 1k) * [ j is the sonobuoy state vector elasilateral triangle with the tonobuoy starting near the center ofx3 (knonhisa vrales rmU l. The fil mdl ondqtdwere se a : ce Ialu

4857 ftt/ec2 , 4957 ft/sec. and C3 - 4757 ft/set' around

of 5000 ft/ae for all three speed$ and no attempt to estimateAt - sampling interval them was made, It is clear from Figure 2 that significant biases

w3 (k). w4 (k) are Zero mean, random, white noise i siae oiinadseddvlp
sequences In the nest section. we will tee hos the use of bearing

Q., i theKronker lta.measurements enhances system obaervabtlity and allows unbiased
E I W(k)WTUj) I 6 kj; 6 ki steKojkrDla estimiation of the sonobuoy state vector.

If we lineasie the measurement equation about our most recent 3. SOUND SPEED ESTIMATION
- estaunate of the ste ilk), to obtain a linar measurement

matrix, HOW8(). we can then implement the extended Kalman Becaute of the biases that develop when we use incorrect
filter in real time. In veeloe-matsit fonm, thet equations are sound speeds in the Kalman filter, it was felt that estimation of
iecusively given by 131; thes ound speeds in addition to the sonolbuoy states woul

eliminate the biases. This is done imply by augmenting the
fi(ktl/k) - *(At) 10/k) (6) sound speeds to the orignal four element tonobucy state vscat.

The assumption was made that the sound speed was corstant and
lllil/11,1 - *WA) Ptk/t) #T 4A0 + QL (7) unknown ove a sufficiently long time interval. Its state equaion

is then give by:
2 3k41/k+I) - lkl/kI KL k1 -h~l(ktl/k))l (a) 4, o ; i - 1, 2.3 (It)

Plk+l/ktl) - 11 - b ItklIjk)II P(k41/k) (9) Implementation of the extended Kalman fier for the aug-
mented state vector as therefore rather simple and strasglhtfof.

Lk - P~k*I/kI H(k~l/k)) IH(I(kel/k)I Pfk'l/k) 1) ward and will not be presented here.

HT~ik~lk)) I, Upon implementing the augmented state riter. it was foundH(ikIl)+ k that biases; still developed in the ionobuoy states and round
speeds for a number of scenanos involving different tarting

Equations 41 and (7) represent predictions of the state positions, speeds. counats. etc. For this risson. the observability
estunate and covassance to tune Wk 1), whereas Eqtuations (8) of the linearied, augmented state system was explored ussing the
though (11 update the stale estimate andi covananee: to account infornation matrix 121. In the situation involving no procesm

14)r a new measurement. In thejalttet of equations, tMe noxse and stale vector a pnct' infomation. the infonatuon,
measured veclt a given by ak1 7 HIkl, nij~k)I. where hI') matrix a equal to the invente of the Kalman rllter covanane
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mitnk P'k/ki Thu mama almust bit postve defnie (fo 4. CONCLUSIONS
Uuchsatac obselsabdity and. provided lhe hboe ioadin
apply. is gaves a ftacamjve form by: To summnaner the above resuilts, we mwi that to estimate Use

sonobstoy posation and velocity accuarately we need to also fats-
F1 fk*IAl .# aal the sound speeds so each hydrolo.. when thy are_&tk) * I l YualVA)unnan ih the aid of the anfonnation matis we found thatl

(12) theImeruci sytemwas arginally obervable when attemptsg
* " Fflitk-)) Rk' H(!fk-lIl); rl (mO/OlIf to esttmate both the sonobuyusaisda dapeed.

Becauase the linied meaniremeal model accuautely rafare-
*here *1 All is the state Iraiwlion nitnx defined in (S), sentesl its nonlinear couanterpart. we concluded tial die noassuaer
Ka is Ill a the meaasaremsent matfix laeaized about the State system was abo maskinaly, eheervablet. This was ado reflected

lik-Iby the ianed estimates of aonsobtuy postic. when ain lftve~,tr ilkl I.the Kalman fitter.

To asume the property of stochastic olosesvablility. the
n unnialsed eagenvalues of this matrix were compouted inot- Finally, by incorporating and additional independent nit-
nielized to one) and platted asla function of tame. Fagure 4 shows isrmcni (bearing) the system observablalty, was enhanced con-.
the resaults that were obtained for the case involving eas siderabty and we were then able to track the sonolausy's motson
unknown and constant sound speed. One of the smiobuoy, pot quite accurately.
bon ciftenvalues beconmes tll-conditsoned and exhibits a smatler
maximumn magnitude than the other position eagenvalue by a few Althought not reported in the last section. we also looked
orders of magnitude. Tis analysis was repealed for a number at ste use of Isnardelay, and doppler difference measurements
of different sousobucy starting positions and headings. and the of more than three hydrophorn tas opposed to time delay.
sine senera) result as obtained, i.e.. sllvcoditumctd behavior doppler difference, and beianng measurements of just threef -'of one of the eteenstivas. Because of this and the fact that th hydropliones) as a mnens of improving system obsenvabtity. In
smate vimnime were biased, we concluded that the system was general. it was found that if one had n hydrophones. with n

margnall obervale.unknown sound speeds from the sonabuoy to each hydeophone,
* asseanlty resethen we could at most estimate the soynobaoy, sltei vector and

As a means of improving the property of system observa- (n-l I ysound speeds; one of these sound speeds had so he known
bility) we introduced an additional measurement of hearing to exactly when implementing the Kalnian filter.
use in the Kalman filler. We assumed that it was constiad by
edaivne white noise with a standard deviation of. 1 degree. These At the present time, we are continuing research in thus area

mneasurements defined the beig of t sonobasoy, with respect of smanobsaoy state and sound spend estimation to mnore fully
to etah hydrophone. and are normally available as outputs from explor the sensitivity of the estimation process so geometrical
the same set of hydrophones without introducing additional placement of the hydrophones. tame between measurements. etc..
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Figure 1. Hydrophone/sonobuoy geometry.
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S

1.0 OVERVIEW OF INTERSENSOR CORRELATION FOR
OCEAN SURVEILLANCE

In a typical large-area ocean surveillance situation, data is

generated by many different sensors due to the presence of various

surface ships, aircraft, etc. If the data collected by the sensors is

overlaid in a common coordinate system, then a picture such as that

shown in Figure 1-1 below results. The underlying assumption of the

picture is that each individual sensor has formed a picture of the sur-

veillance area based only on its own data. In some cases, this may

require the solution of a multitarget tracking problem [ I] at the

sensor level. In Figure 1-1, for example, sensor $2 must discrim-

inate and track the two closely spaced targets Ti and TZ.

When the multitarget tracking problem is solved separately

for each individual sensor, a somewhat redundant view of the sur-

* veillance area may result. The different data collection systems

SI, S2, ... , may report on the same target. Whenthis situation

arises, the final step in the process of forming a complete picture

of the surveillance area is to perform intersensor correlation.

Referring again to Figure 1-1, we see that target Ti is seen by

sensors Si and SZ. The tracks of Ti produced by the two sensor

systems will not overlay exactly- -thus the requirement for some

sort of decision process (automatic or manual) to accomplish inter-

sensor correlation.

This paper is devoted exclusively to automatic (i. e., com-

4 *puter) algorithms for carrying out the tasks associated with inter-

sensor correlation. One particular algorithm (the "k-track cluster-

* Iing" algorithm) is discussed in some detail in order to highlight the

fundamental combinatorial structure of large area surveillance.

/.-
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The working definition of Multisource Interaction (MSI)

adopted in this paper is one which is effectively decoupled from the

problems of sensor allocation and sensor-level multitarget tracking.

By that we mean that the sensors' fields of view are controlled by

a separate process, and that the multitarget tracking problem is

solved on a sensor-by-sensor basis. The responsibility of MSI

data processing is then to carry out intersensor correlation for

various track file data bases. The MSI issues addressed herein

arise due to the partitioning of a large surveillance data base iito

* smaller, more manageable segments. As Figure 1-2 indicates, data

* is generated by many sensors due to objects present in several spa-

tial sectors during some specified time interval. If the multitarget

tracking problem is solved separately for each individual sensor (see

[1]), then track estimates for objects in the surveillance area become

consolidated first.at the level of individual sensors. This is indicated

* schematically in Figure 1-2 as the consolidation of the raw sensor

measurements (data bases A, B, C) into a "sensor-level" data base

D that consists of a complete track file for that specific sensor.

The final step in the process of forming a complete picture

of the objects present in the surveillance area is the solution to the

intersensor correlation problem. At this level of the MSI data pro-

cessing hierarchy, the track files D, E, F belonging to the different

sensor systems are compared to determine the correlation between

tracks in separate data bases. As indicated in Figure 1-2, the out-

put of an intersensor correlation algorithm is an entry (or entries)

into a master data base G that consists of track files on an object-

by-object basis for the entire surveillance volume. If the intersensor

correlation problem is solved correctly, the master data base will

cortain a cornDlete list of object tracks, without duplication, and in

/* 3~3
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I

a single, common coordinate system. (The coordinate system utilized

in the algorithm described in Section 2. is latitude, latitude rate,

longitude, longitude rate.)

1. 1 Description of the Intersensor Correlation Problem
I

The multitarget tracking data processing done at the sensor

level, using algorithms such as those discussed in [1], produces

track files consisting of object state vectors and (sometimes) estima-

tion error covariance at specific points in time.

Typically, the sensor level track files will contain information

such as that shown below in Table I-1.

Table 1- 1. Typical information content
of an MSI Data Base.

Data Sensor

State Vector Error Object I.D.
Trac State Vector Covariance Name Number

4 3A1 3A 1 3 1 31x (t), x (t P (t), P (t QUEEN 3
1 21 2 MARY

8A2
x (t 3 )  Unknown Unknown 8

63 6A3 6 3 6 3* 3 x (t 4 ), x (t 5 ), P (t 4 ), P (t5 ), Unknown 6

6A3 6 3t6x (t 6 ) 6P3 (t 6 )

5
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.i
The notation used in Table 1-1 is defined as follows:

jai (tk) - sensor level track file estimate of the state

at time tk of a target seen by sensor j. The

individual tracks are denoted by the index i.

J (tP ) I the sensor level track file error covariance

matrix of the measurement xi (tk)

It is often the case that the (x,P) data recorded in the data

* •base is itself generated by a tracking filter of some kind. Referring

again to Figure 1-2, recall that the (A, P) records are associated

with sensor level track files (D, E, F). Thus, (0, P) records are

created by processing the raw sensor data for one sensor with a

filter to produce a chain of target track points.

Because of the diversity of sensors that are operating in a large

area surveillance system, the time points tk at which the object states

(latitude, longitude, etc. ) are estimated may not coincide. Further-

more, the number of time points per object and even the state vector

coordinate system where the sensor-level multitarget tracking

problem is resolved will differ for the various sensors' track files.

k *The diverse nature of the sensor-level track files introduces an

added degree of complexity into the intersensor correlation problem.

Based on these last comments, a more accurate definition

of intersensor correlation might be as follows: to cluster together

those tracks corresponding to the same object, and to produce a

composite estimate of each object's motion in a single coordinate

system common to all sensors.

I- 6
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I
1.2 Algorithms for Intersensor Correlation

There are two basic components of any intersensor correla-

tion process: a similarity measure to quantify the "distance"

between tracks, and a clustering criterion to carry out the actual

correlation of tracks. Since the tracks to be clustered together

are in fact samples from a stochastic process, similarity measures

can be based theoretically upon the distance between stochastic pro-

cesses. In essence, we simply process the data from different

track files with a single Kalman filter; the residuals from the filter

are then used to measure the "distance" between the tracks.

The clustering criteria used to determine the intersensor

correlations can range from various forms of pairwise correlators

to the more sophisticated k-wise correlation to be discussed below.

As an example of a simple pairwise clustering criterion, consider

* the following:

Step 1. Compute the similarity S.. between all pairs

of tracks

I Step 2. If Sij is greater than a preset threshold 6, then

Track i and Track j are declared to be the same

object (i - j)

Step 3. If i - j, and j - k, then i-- k (i.e., all three

tracks are the same ship).

A little reflection upon the algorithm presented above will indicate

to the reader that an iterative application of Step 3 will produce a

complete picture of the correlations in any particular data base. It

is also clear that the algorithm is vulnerable to at least one type of

cascading error. This is shown below in Figure 1-3, which contains

four targets (TI, TZ, T3, T4) on parallel courses. If S 1 2 , S23' S34

are all greater than 6, then the pairwise algorithm outlined above will

declare all four sensor-level track files to be the same ship.

7
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The object of these last remarks is to illustrate that simple

automatic algorithms for intersensor correlation may have hidden

difficulties, and that there is some merit in working with the more

complex decision processes discussed in the following sections.

1. 2. 1 Track File Similarity Measure

This section will describe a simple technique for measuring

the similarity between different tracks in an MSI data base. For

example, in Table I-I above, a fundamental question that the analyst

might wish to ask is the following: how similar is track #1 (QUEEN

MARY) to track #3? The basic technique we employ is illustrated in

Figure 1-4 below. First, the points tl, t2 , t3 , t4 , t 5 , t6 are ordered

'Ai in terms of increasing time. Following this, the sensor-level state

vectors are input to a Kalman filter, and the residual sequence is

monitored.

3A1 341 6 03
xI xl(t 1 ). x (t2 ), x (t 4 ), Kalman Residual

6 A3
' 

6 A3  Filter Sequence
x (t 5 ) 1 x (t 6 )

*Figure 1-4. Measuring the similarity of
different track files.

When testing the similarity of two tracks i and j, it is neces-

* |sary that the test be carried out in a coordinate system common to

both tracks. Since the tracks i and j come from different sensor-

level track files, it is possible that they are represented as vectors
Ax of different form. As a simple example, the state of track i might

be represented as latitude/longitude only, while track j might be

represented as latitude, longitude, course, and speed.

'/
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In the algorithm described in this paper, sensor-to-sensor

*track correlation is carried out for all tracks in a single, common

coordinate system. We assume that target motion is adequately modeled

by a stochastic difference equation of the form

*1

y(k+l) = p(k+l,k) y(k) + v(k), k = 0, 1, ., (1)

where

I y(k) - vector describing object state at time tk (latitude,

latitude rate, longitude, longitude rate)

(.', • ) state transition matrix model (for "straight-line"

motion)

v(k) - noise model compensating for inaccuracies in mod-

'eled track motion (e.g., small random course changes)

The state vectors A from the track files are treated as ifI.
they are "measurements" of actual target motion; the error covar-

- iance matrices P of the state vectors are treated as though they
,|

are "noise" in the measurements. Using this pseudo-measurement,

we have:

Jxi(k) = cJ(y(k),k)+Jwi(k) (2)

where

" y(k) - actual target state at time tk

cJ(.,.) - observation equation for jth sensor

Jw i(k) - "measurement" noise with covariance Pi(tk)

'10
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Using the A as inputs, a Kalman filter can be used to esti-

mate the true ship motion y(k) under the assumption that the inputs
AX from the various sensor-level track files are due to the same ship.

As the Kalman filter operates, residuals r(k) are produced whose

magnitude can be predicted, using the covariances P from the track

files and the covariances of v(k) in Equation (1) above. In particular,

the covariance matrix A(k) of the residuals can be computed.

If the observed variance of the residuals r(k) compares

favorably with their predicted value 6(k), then the sensor-levelI
tracks whose state vectors were used to compute the residual

sequence {r(k)) are said to be "similar."

Note that in the two-track case, if the vectors for the two

tracks i and j being tested for correlation are in the same coordi-

nate system and at the same time point, then we could alternatively

use euclidean distance as a similarity measure, for example

pz Z2

distance (i,j) k (t)

- S.. exp (-distance (i, j)) (4)

However, the tracks we deal with from the various MSI files are

often not in the same coordinate system and not at the same time

point. Therefore, we resort to the Kalman filtering technique

described above to compute distance between tracks.

Each potential correlation w is the result of a hypothesis

| Itest that uses a likelihood function p(w) determined from the motion

model Equation (1). For example, if Track #1 and Track #3 from

Table 1-I are to be tested to determine their similarity, then

= 3 A1I 3 A 1 6 A3  6A3 6XA31
S, (t) x (t 2 ), x (t 4 ), x (t 5 ), 6 (t6 )

1:" 11
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is a 2-track correlation and the likelihood function is found by comn-

puting a sequence of estimates y (t.i) of ship position using Equation.

(1) and (2) and w~. The rule that decides that tracks ilf iz# 1i .

* are correlated is then

I~i 12 ..3 -np wif(tk)) ~ 5

Based on the log likelihood decision function, the set of potential

correlations is

D =jlIn p (WICtk1 . (6)

As noted above, the actual computation of S. is car-
i1i2i3 ...

ried out by a Kalmnan filter, using the innovations sequence

r (k) x '~(k) - c (q) (k, k -1(k- 1), k) (7)

The negative log-likelihood function is given in this case by

n ni

p~co = z dim xi(t ))fn 2-v + 2>rIn I A (k)I

k=l k=l

n

+ r (k) tA(k)- r (k), (8)
2

k= 1

where A(k) is the covariance of r(k) computed by the Kalman filter

and dim ( 1 (t k) is the dimension of x (t k).

12
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t -The summation Zr(k) A(k)' r(k) is a chi-squared random

variable, as are its individual terms r(k) tA (k)" 1 r(k). The remain-

ing terms in Equation (8) are deterministic. As a result, the similar-

ity test Equation (5) can be written in the form of the following cumu-

lative chi-square test:

n
I r(k)tA(k)lr(k) _ 2

k=l

Note that X is a function of the number of individual measurementsc
in the correlation.

The actual construction of the complete set of potential corre-

0 -lations D is accomplished through the use of a depth first back-

tracking algorithm. By this we mean that as many tracks as possible

are added to a potential correlation before backtracking occurs.

When backtracking occurs, all points associated with the track

being stripped out of the correlation are removed.

S1. 2.2 Discriminating Between Correct and Incorrect

Correlations

Because of the statistical nature of the decision process (9)

used to construct the potential correlation file D, some tracks may

I be included in more than one correlation. It may be difficult to

decide which correlation is correct (if any) based only on the sim-

ilarity measure. The Bayesian decision process is structured to

alleviate this difficulty by evaluating only complete pictures of the sur-

veillance area. The potential correlations in D are matched together

in every way possible until the best possible "global" picture of the

area is found. The basic constraint operable at each stage in this

combinatorial decision problem is that a track can be used in at

13



most one correlation. The actual optimization problem is the

D following:

maximizeA, m i i E Sili2i3 ...

subject to the constraint (10)

that tracks are only used

once

The mathematical form of the problem is as follows:

tmax d v (11)

isubject to

v binary (13)

where d is a vector of similarity measures Sili2i3 ..., v is a binary

* vector oenoting which elements of D were selected, B is a matrix of

- zeros and ones chosen to enforce the constraint mentioned in (10), and

1 is a vector of ones.

1. 2. 3 Integer Programming Methods

Problem (11) - (13) is a 0-1 integer program that can be

solved using implicit enumeration techniques. The basic idea of

these techniques is to minimize through the use of appropriate tests

the extent to which the Bayesian decision tree must be examined

before a solution of (11)- (13) is found. The actual techniqu,,e

employed in the algorithm is discus sed in some detail in [ I ]. Since the

combinatorial structure of the Bayesian decision process is the same

for both k-track correlation and the multitarget tracker discussed in

[11, the algorithm can be used without modification.

14



2.0 NUMERICAL RESULTS

This chapter will discuss some of the characteristics of the

4k-track correlation process as it is actually applied to data. Table

2-1 below summarizes a set of two test cases that were analyzed.

Runs #1 and 2 were synthetic data cases in which intermittent, noisy

track reports were made on six ships. The synthetic data test cases

will be discussed in some detail to illustrate the basic structure of

the MSI correlation problem.

Table 2-1. Summary of numerical results
using k-track correlation algorithm.

Time Required Time Required Number of
Number of for Potential Number of by Integer Individual Number

Pun Data Parameter Potrntial Correlations Correlations Program Track Reports of Data
:o. File File Correlations is.c. I Selected (sec.) in Data Base Points

I OPTIA PARIA II 5.7 3 .l 10 30

Z ORT I B PARIB 26 7.4 3 .3 10 30

2. 1 Description of Simulated Data Bases

The truth model for Runs #1 and 2 is contained in Figure 2-1

and Tables 2-2 and 2-3 below. The actual data basles'(OR TIA and

ORTIB) used in Runs #1 and 2 are contained in Tables 2-4 and 2-5.

The situation modeled in data bases ORTlA and ORT1B is

one in which six simulated ships are seen and reported by a fictitious

suite of MSI sensors on different occasions within a 60-hour time

period. The ships are assumed to hold constant latitude rate/

longitude rate courses for the entire 60 hours. The sensors that

are brought to bear on the situation are of two types, as indicated

in Table 2-6. Type i sensors measure latitude, longitude, and their

t-In-e derivatives. Type 2 sensors measure latitude and longitude

only.

15
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.

Table 2-2. Summary of 6-ship simulation.

Number
of Sensors

Initial Initial Detecting Ship
N. Lat. E. Long. Course Speed and Forming

Ship (deg.) (deg.) (deg.) (knots) Track Report

1 4 155 280 10 2

2 4 151 75 15 3

3 2 155 270 7 1

4 6 158 0 6 2

5 1 153 350 13 1

6 9 154 160 17 1

- . I
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Table 2-4. Synthetic MSI data base for Run #1

(data base ORTlA).

X ------------------ MOVEMENT INFORMATION------------------X

NORTH LATITUDE EAST LONGITUDE
TIME LAT RATE LONG RATE

1 43200.0 4.1492 0.9206E-05 152.9049 -0.4658E-04
2 129600.0 5.0456 0.8344E-05 149.2870 -0.4341E-04
3 43200.0 4.2937 0.5911E-05 152,9590 -0.4638E-04
4 86400.0 4,.8076 0.8067E-05 151.0732 -0,4574E-04
5 172800.0 5.5932 0.9221E-05 146.9504 -0.4462E-04
6 216000.0 5.8718 0.5875E-05 145.1482 -0.4542E-04
7 86400.0 5.5847 0.O000E+00 156.9793 O.OOOOE+00
8 129600.0 6.5455 O.OOOOE+00 159.5486 O.OOOOE+00
9 172800.0 6.9731 O.OOOOE+00 162.6776 O.OOOOE+00

10 0.0 3.8903 0.1803E-04 150.9037 046873E-04
11 86400.0 5.4676 0.1771E-04 156.6906 0.6771E-04
12 129600.0 6.1707 0.1763E-04 159.5567 0.6677E-04
13 172800.0 7.2429 0.1972E-04 162.5593 0.6782E-04
14 86400.0 5.3501 0.1733E-04 156.6992 0.6804E-04
15 129600.0 6.2073 0.1607'E-04 159.6627 0.6680E-04
16 172800.0 6.9876 0.1758E-04 162.7621 0#6848E-04
]7 216000.0 7.7721 0.1728E-04 165. 123 0.6816E-04
18 43200.0 1.8336 O.OOOOE+00 153.6828 O.OOOOE+00
1? 172800.0 1.8522 O.OOOOE+00 1494227 0.O000E+00
20 0.0 6.1539 0.2936E-04 158.1071 -0.6317E-06

* 21 172800.0 10.6991 0.2757E-04 157.9753 0.1652E-05
S22 0.0. 6.0474 0.2727E-04 158.0660 -0.4371E-06

43200.0 7.2062 0.2697E-04 158.1080 -0.3568E-05
* '4 86400.0 8.3819 0.2803E-04 158.1236 0.6289E-06

172800.0 10.8695 0.2667E-04 158.06Z3" -0.9170E-06
86400.0 5.5'70 0.5672E-04 151.9055 -0.1170E-04

2, 216000.0 13.7665 0.6102E-04 150.7840 -0.1249E-04
26 43200.0 5.8855 -0.7186E-04 155.1613 0.2583E-04
' . 129600.0 -0.6172 -0.7366E-04 157.4634 0.2694E-04

" 216000.0 - -D9036 -0. , 88E-04 159.7972 0.2731E-04

I
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p Table 2-5. Synthetic data base for Run #2
(data base ORTiB).

SX ------------------ MOVEMENT INFORMATION ------------------X

NORTH LATITUDE EAST LONGITUDE
TIME LAT RATE LONG RATE

1 43200.0 2,3662 0.1931E-04 151.8230 -0.5395E-04
2 129600.0 5.0791 0o1099E-04 151.2165 -0.2292E-04
3 4320060 3.8109 -0.1254E-04 152.3634 -0.5202E-04
4 86400.0 5.8242 0.8303E-05 151.2872 -0.4569E-04
5 172800.0 7.4293 0,1946E-04 145.6509 -0.3447E-04

* 6 216000.0 7,0897 -0.1288E-04 145.4386 -0.4188E-04
7 86400.0 5.8711 O.OOOOE+00 158.4497 0.OOOOE+00

* 8 129600.0 8.4906 0.OOOOE+00 157.9215 OOOOOE+00
9 172800.0 5.7781 O.OOOOE+00 162.9507 0.OOOOE+00

10 0.0 2.9031 0*1850E-04 150.0369 0.8164E-04
11 86400.0 4.6994 0,1543E-04 155.5623 0.7047E-04
12 129600.0 4,7428 0.1469E-04 158.0031 0.6056E-04
13 172800.0 8,4769 0.3482E-04 161.7687 0.6976E-04

. 14 86400.0 3.5248 0.1175E-04 155.64S5 0.7361E-04
15 129600.0 5.1084 -0.4343E-06 159.0629 0.6081E-04
16 172800.0 5.9240 0.1422E-04 163.7965 0.7615E-04
17 216000.0 6.7804 0.1130E-04 164.9938 0.7198E-04
is 43200.0 0.3364 OO000E+00 154,4359 0.OOOOE+00
19 172800.0 0.5223 0.OOOOE+00 149.6579 0.OOOOE+00

- 20 0.0 7.5385 0,4305E-04 159.0714 -0*6106E-05
21 172800.0 9.7906 0*2576E-04 157.7525 0.1597E-04

0,0 6.4738 0,2285E-04 158.6602 -0.4225E-05
23 43200.0 7.2620 0.2001E-04 159.0805 -0.3449E-04
-4 86400.0 8,2195 0.3025E-04 159.2360, 0.6079E-05

172800.0 11.4950 0.1706E-04 158,0335 -0.8S65E-05

26 86400.0 4.7811 0.3463E-04 150.2000 -0.2200E-04
27 216000,0 13.4423 0.7618E-04 151.3719 -0.2750E-04
28 43200.0 6.6095 -0.5367E-04 155.0578 0.1522E-04
-7 129600.0 -0.9081 -0,7107E-04 157.1149 0.2712E-04
7.0 216000.0 -6.2626 -0.9251E-04 159.4644 0.2897E-04

20
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The individual track files are contained in both synthetic data

bases. As Table 2-6 indicates, the only difference in data bases

ORTIA and ORTIB is the measurement accuracy of the sensors. The

simulated sensor accuracy in data base ORTlA is ten times greater

than that in OR T l B.

The test cases involving simulated data were run on a DEC 10

computer.

2.2 Problem Structure for Simulated MSI Scenarios

The basic structure of the k-track correlator is that of an

integer program that operates on a set of potential correlations to

select the most accurate picture possible of the surveillance area.

The set of potential correlations for Run #1 selected by the

backtracking Kalman filter process described in Section 1. 2. 1 is

shown in Figures 2-2 through 2-12. Each figure indicates the track

file data points involved in that particular correlation. Although the
t

parameter file setup allowed as many as ten tracks to be correlated

simultaneously, the various tests employed during the backtracking
I

process selected only 2- and 3-track correlations.

Three basic types of errors can occur in the process of form-

ing potential k-track correlations:

Type 1 Error: the tracks included in the correlation are

correct (in that they correspond to the same ship), but not

all tracks from the same ship were included.

Type 2 Error: the correlation includes tracks from more

than one ship.

Type 3 Error: failure to detect a true correlation.
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Table 2-7 below summarizes the results of the backtracking Kalnan

filter on a correlation-by-correlation basis. Note that both Type I and

Type 2 errors are mixed in with the set of correct correlations. No

Type 3 errors were noted in either run.

Table 2-7. Summary of potential correlations
constructed during Run #1.

Correl Data Point
Number Time Number Comments

Correct. Correlates Tracks
1 * 00C0'+00 #7 and #8.

0 000. E + 00
*12000E+02 23
,24000E+02 24
,48000E+02
4q,)0 0E+02 21

2 *.,+ 20 Same as above. Note that data

tOOOOOE+00 22 points were reordered due to
120OOE02 3 coincidental time of report.

,24000E.;02 -4
.48000E+02 4

4L8D00 E'+ 02 12.5

- *OOOOE+'0 Incorrect (Type 2 error).

.460001-Z+02 "/

*4S000E+02I,. ; __,__
.

_ 
,

__ ___ '._ __ '__ __ _ _ __ _ _ __ _ _

- . ,. ;', ¢ )2, .,)'

-1 "-/,".0OE' ,2 Incorrect (Type 1 error). Cor-
": ;',",:'.C ,' ,( 7. relates Tracks #3 and #5, but
7.. leaves out Track #4.

.4SE)00E+02 9

0 Correct. Correlates Tracks

+2. " .:: #3, #4, and #5.

iL
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Table 2-7. (Continued)

Correl Data Point
Number Time Number Comments

*0 ?Incorrect (Type I error). Cor-
."•2'iO00E+O2 11..24000E402 11 relates Tracks #4 and #5, but.36OOE+02 1 2 leaves out Track #3.
.36000E+02 12

.48000E+02 13

.48000E+02 16
* 60000E+02 17'

7 .OOOE-+O0 1.. Same as Correlation 5. Note

* 24000E+02 : that data points were reordered
•24000E+02 due to coincidental time of
*24000E+02 1 4 report.
.36000E+02 ".2
.36000E+02
.36000E+02 15
*48000E+02 :1.3

.48000E+02 9
-48000E+02 .1

i ' | , ¢:,',)*O ' 0 Q E 4f C 02

E 0 0 ,0 O .i I:) Incorrect (Type 1 error). Cor-
20.0E--+02 : relates Tracks #3 and #4, but
S.40001:+02)7 leaves out Track #5.

I1 .660 0 () E + 02 f

* 4BOOOE+O'.48000E+02 :

*.1200E+02 % Correct. Correlates Tracks
120 0#1 and #2.• 2 0 0,: 011:'- .L 0 2. #1a d .

..,, 0 0 E' +LI 0 2.
•6 ,0 '9 E + 0 2"

Incorrect (Type 2 error).

l . . 0 (1) .. 402

.. ... .. ,Same as Correlation 9. Note
that data points were reordered

due to coincidental time of
" - v ' .,"' report.

"I
13

f F h , I I" ...... l ll , l . . = l ~ l . .. ., ,. . ; .. . . .. .. , , ..



Note that in Table 2-7 each individual correlation consists of

combinations of complete track files. For example, correlation 10 con-

sists of data points (1, 26, 2, 27), and we don't see correlations such as

(i, 26, 2). This particular problem structure is the defining character-

istic of the track-to-track correlation problem. It arises because it is

assumed that complete tracks (e.g., (1, 2] and (26, 27]) are constructed

properly at the sensor level. (By contrast, in a sensor-level multi-

target tracking problem, the key problem is to decide whether or not

data points 1 and 2 are the same ship [1].)

The structure of the 0-1 integer program for k-track correlation

o can be illustrated by converting the potential correlations for Run #1 into

the form of Equations (11) through (13), repeated here for convenience:

max dtv

subject 
to Bp:

Sv binary

For Run #1, this problem has the following form:

Potential Correlation Number. .

130. 0 0 0 0 0 0 0 0 1 1 1

130. 0 0 0 0 0 0 0 0 1 0 1

-1217. 0 0 1 1 1 0 1 1 0 0 0

96. 0 0 0 0 1 1 1 1 0 0 0

187. 0 0 0 1 1 1 1 0 0 1 0 0

d = 174. B = 0 0 0 0 0 0 0 0 0 0 0

187. 1 1 1 0 0 0 0 0 0 0 0

95. 1 1 0 0 0 0 0 0 0 0 0

126. 0 0 0 0 0 0 0 0 0 0 0

-678. 0 0 0 0 0 0 0 0 0 0 0

7126.

/: I

| .

.1---
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The vector d has elements which correspond to the log-

likelihood function (Equation (8)) for each potential correlation.

Thus the first element of d is the numerical value of Inp(W) evalu-

ated at the last data point in Correlation 1.

Note that B is a lOx 11 matrix (number of track files x

number of potential correlations). B is made up of columns of zeros

and ones, each column representing one particular correlation. For

example, Column 1 in B represents Correlation 1, which consists

of Tracks #7 and #8 (the 7th and 8th elements of the column are

set to 1).

Closer examination of B reveals that the problem can be
-0 decomposed into a set of independent subproblems. By appropri-

ately permuting columns of B., we have the equivalent matrix

1 1 1 0 0 0 0 0 0 0 0

Subproblem 1 1 0 0 0 0 0 0 0 0 0

o 0 0 1 1 1 1 1 0 0 0

0 0 0 1 0 1 1 0 1 0 0

0 0 1 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0

o o 0 0 1 0 0 -.0. 0 1 1

0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 Sub-

problem
Coupling p

* Dconstraint

Thus B' is a decomposition of the original intersensor correlation

0 problem into two subproblems, with one coupling constraint.

37
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The structure of the problem is further reduced by column

elimination. Let bi be the i-th column of B. Then the j-th column

of B can be eliminated if

bi

b = b

and

where d. is the i-th element of the cost vector d. Furthermore, the1
14 k-th column can be eliminated if d ' 0. Finally, any row of zeros

k
can be eliminated. Carrying out this process for B', we arrive at

aan integer program with maximum decoupling and minimum size

(note that the coupling constraint was eliminated, and that Subprob-

lem 1 was further decomposed):

Subproblem la

126. 1 0 0 0 0 0

95. 1 0 0 0 0 0

d 187. 0 1 1 1 0 0 Subproblem lb

* 96. 0 1 1 0 1 0

174. 0 0 1 1 1 0

130. 0 0 0 0 -.0, 1

0 0 0 0 0 1 Subproblem 2

Application of these methods markedly decreases run time,

which depends exponentially upon the size of B.

j38



|Il Z.! 3 Algorithm Characteristics
The truth models and results of integer program processing

for Runs #1 and 2 are shown graphically in Figures 2-13 through

2-16. As the figures indicate, in Run #1 the k-track correlation

I algorithm performed correctly. In Run #2, with sensors one order

of magnitude less accurate (ratio of standard deviation of noise), one

Type 1 error was made.

Note that the integer program is constrained to select from

among the elements of potential correlation set D during the process

of forming a complete picture of the surveillance area. Since Type 1,

Type 2, and Type 3 errors can occur during the formation of the set D,

the integer program is subject to errors of the same type.

*The total run time requirement of the k-track correlation

algorithm depends upon the run times of the two individual segments

of the code: (1) the construction of potential correlations, and (2) the

integer program. Of the two segments, the integer program is the

most sensitive to program size. As Figure 2-17 indicates, the

results for ten test cases indicate a reasonable growth in the back-

tracking Kalman filter run time as the problem size increases. As

- S Figure 2-18 indicates, the integer program exhibits a sustained

exponential increase in run time as problem size increases. The

underlying problem structure is such that the decoupling procedure

mentioned in Section 2. 2 above is critical for MSI problems where

Sextremely large numbers of potential correlations are found.

In several cases, a suboptimal solution was returned by the

integer program due to run time constraints placed on the code. In

4 I those cases where the maximum time limit resulted in a possibly sub-

optimal solution, good accuracy was obtained. Thus it appears that

good suboptimal solutions to the integer program can be obtained within

a reasonable period of time for the types of data bases discussed in

this paper.
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Number of Potential Correlations - -

Figure 2-17. Run times for construction of set
of potential correlations.
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S ESTIMATED LOWER
BOUND ON RUN
TIM(E FOR BRUTE
FORCE ENUMERATION

100
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z
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INJTEGER PROGRAM
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LNTEGER PROGRAM
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10 20 30O 40 5,0 60 to so

.,NiMEzR OF PorENTIALCORFELATONS

* Figure 2-18. Run times for solution of Bayesian
decision problem.
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3.0 CONCLUSIONS

This paper summarizes a study which consisted of essentially

two parts:

0 initial development of a sophisticated intersensor

(track-to-track) correlation algorithm

* preliminary analysis of the algorithm's characteristics

when applied to synthetic data.

The primary finding of the paper is that an accurate picture of a large

ocean surveillance area can be constructed automatically by the k-track

correlation algorithm. This finding is substantiated by the analysis of

synthetic data discussed in Section 2.

The structure of the algorithm is that of a Bayesian decision

process, which by its very nature may produce some errors in the

analysis of any particular data base. As noted above, these errors

were minimal for the analysis performed herein. There is a critical

need for parameter tuning against truth models before the algorithm

can be trusted in an operational situation. Thus it is clear that sub-

-stantial work remains before the promising results obtained during

* this short preliminary study can be broadly applied.

In the area of track-to-track correlation algorithm develop-

ment, there remains a number of important issues yet to be resolved.

SI[ A few of these are as follows:

* How large a problem can the integer program handle

in real time after the decoupling procedure mentioned

in Section 2.2 is implemented?

* Using the k-track correlation algorithm as a bench-

mark, how accurate are simpler suboptimal correla-

, tion algorithms (such as the pairwise algorithm men-

tioned in Section 1. 2)?
I4

, 46



{ What is the impact on algorithm accuracy of Kalman

filter mismatch (i.e., a mismatci between actual

and assumed sensor accuracy)?

* What is the feasible operating regime for track-to-

track correlation algorithms in terms of ship density?

0 How sensitive is algorithm accuracy to intersensor

bias? How accurately can inter sensor alignment be

carried out? Can we "bootstrap" the alignment as

track-to-track correlation is carried out?

* What is the proper balance between real-time track-

to-track correlation accuracy and the load on sur-

veillance network communication links (how much

data is enough for a given surveillance area)?

This partial list of important MSI issues yet to be resolved

can of course be substantially expanded. Hopefully, the results of

this short preliminary study of one specific correlation algorithm

b twill resolve some of the complex issues surrounding automatic,

accurate, real-time ocean surveillance.

'
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