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SECTION I

INTRODUCTION

The work done under Contract No. N00014-77-C-0296 is

described in a number of different places which are drawn together

and summarized in this final report. First, the publications credited

to this contract which are available from the open literature are

listed below.

1. "A Score for Correct Data Association in Multi-Target Track-

ing," by D. L. Alspach and R. N. Lobbia, appears in the

December 1979 Proceedings of the Decision and Control Con-

ference held in Fort Lauderdale, Florida.

2. "Sound Speed Estimation as a Means of Improving Target

Tracking Performance," by D. L. Alspach, G. L. Mohnkern,"1 and R. N. Lobbia, appears in the Proceedings of the 13th

Asilomar Conference on Circuits, Systems, and Computers,
November 1979, Pacific Grove, California.

3. "Multiple Coherence," by R. D. Trueblood and D. L. Alspach,

was presented and appears in the Proceedings of the November

1978 Conference on Systems Science.

4. "A Cise Study in Adaptive Sound Speed Estimation," by R. N.

Lobbia and D. L. Alspach, was presented at and appears in

the Proceedings of the November 1978 Asilomar Conference on

Systems Science.

5. "Data Association Algorithms for Large Area Surveillance," by

C. M. Petersen and C. L. Morefleld, ORSA/TIMS Meeting,
May 1978.

6. "Application of 0-1 Integer Programs to Multi-Target Tracking

Problems," by C. L. Morefleld, IEEE Transactions on Automatic

Control, June 1977.
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Copies of the papers published during the second year of the

contract are included as Volume 11 of this report. Additional copies

of all the above have been transmitted to ONR.

The remainder of the work performed under this contract to

ONR is of two different types. A specific approach to reducing the

computational problem in implementing a certain class of multi-target

problems is contained in Section II. This section has been submitted

in essentially this form to Information Sciences for publication.

*The second part of the work is a general discussion of all

aspects of the overall ocean monitoring and control problem. This

essentially independent white paper is entitled "A Discussion of the

Ocean Tactical Targeting Problem" and is included as Section III of

this final report.
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SECTION II

AN EFFICIENT TRACK ASSOCIATION ALGORITHM FOR
THE MULTITARGET TRACKING PROBLEM

ABSTRACT

As the final contribution for this contract, a new and extremely

promising approach is presented for the solution of the multitarget

tracking problem for an important class of targets. For the class of

targets that can be described as a linear, time-invariant system, it

appears that this approach may be considerably more efficient, compu-

tationally, than existing procedures.

A survey of approaches to the solution of the multitarget

tracking problem has been presented in Reference 2. As indicated

there, most algorithms require the use of the Kalman filter to provide

state estimation for data association and track assignment. In this

report, the need for state estimation to identify feasible tracks is

'. eliminated. The use of simpler input-output models for track pre-

diction results in a very substantial reduction in computational

burden when compared with methods requiring state estimation.p

The utility of the method presented here depends, as do

Kalman filter-based methods, upon the definition of data windows

that permit the identification of feasible tracks and the elimination

* of infeasible tracks in a timely manner and according to statistically

meaningful criteria. After identifying feasible tracks, the Kalman

filter can be utilized to obtain the required state estimates and to

analyze and refine the information in the feasible track files.
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1.0 INTRODUCTION TO THE PROBLEM

The problem of tracking multiple targets using measurements

whose source is questionable seem to be intrinsic to surveillance

systems. Problems having this character have received considerable

attention since Sittler's paper [1] in 1964. A recent survey paper

[2] by Bar-shalo, has described the problem and has reviewed the

literature and principal results regarding the solution of the pro-

blem. Our discussion will assume familiarity with this body of

work to at least the depth provided by Reference 2.

The problem that is considered here has the following de-

scription. Measurements are obtained at discrete times; t , t2,

•. t, '. At each measurement time tk, a collection of meas-

urements

- - 2,.., Mk k-1, 2,

is obtained. Each measurement li(tk) is generated by a different

source. For this discussion, the set of measurements up to and in-

cludingxk is denoted as

zk = i l, 2, ,

0

No ordering of measurements is preserved, necessarily, from one

sampling time to another. For example, z1 (t 1 ) and Zl(t 2 ) may

emanate from entirely different sources with the result that they

are completely independent of each other. It is this lack of

ordering that produces that multitarget tracking problem that is

to be addressed here.

If there were no uncertainty regarding the source of each

measurement, the multitarget tracking problem would be solved by

a straightforward application of the methods developed for single-

target tracking (e.g., extended Kalman filter). As described in

VA.. 9.AA :.
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Reference 2, previous approaches to the problem have, generally,

been based on state-space models and recursive filtering methods.

The new aspects of the multitarget tracking problem stem from the

necessity for measurement-to-track assignment of data and for the

incorporation into the filtering algorithm of the possibility of

incorrect data assignment. It is to this track assignment problem

that attention is addressed in this report.

To provide a basis for the discussion consider the following

mathematical model for the problem. Suppose that Mk, fk-1, 2, ---1

measurement vectors zi(tk), =i 1, 2, .-. , k j are obtained at meass-

*urement time tk. These measurements are assumed to emanate from

different sources. Thus, there are Mk sources at tk . However, only

a subset of these sources have interest to the surveillance system

although the interest in a source is to be deduced from the analysis

of the data. Briefly, each measurement Ai(tk) may be either a sig-

nal xi(tk) plus noise AN(tk) or noise li(tk) , alone. The solution

of this detection problem is fundamental to the satisfactory perform-

ance of the surveillance system.

The detection is accomplished through the analysis of data

zk obtained over some interval [t 1 , tk]. Generally, sources of in-

terest (i.e., targets) exhibit motion during the observation interval.

The motion is characterized by defining a state-space model that is

based on a differential or a difference equation. For this analysis,

the j th target is assumed to be described by a state vector x, satis-

fying a linear difference equation

i (tk~i )  (t )  ru(t ) + w(tk . .Z

The vector u represents a control input to the system which is-j

unknown to the surveillance system but cannot be neglected (e.g.,

heading changes). The vector w represents random influences on
-j

the system motion and is assumed to be described as a white noise

i5
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sequence with zero mean and known covariance matrix Q. The matrices

*, r , and Q are assumed to be known and time-invariant. The time-

invariance of the system is a restriction on the generality of the

problem described by Bar-shalom [2] In his survey paper. Nonetheless,

it does describe an important class of problems that, based on [2),

has not been treated extensively.

The i measurement at tk is related to the target state in

the following manner

_i(tk)-Hxj (tk) + vi(tk) (1.2)

* The matrix H is known and time-invariant. The noise v is assumed
,~, to be zero mean, white noise with time-invariant covariance matrix

N R. Measurements zi(tk) that are not generated by a target shall be

assumed here to be independent and identically distributed random

variables drawn from a uniform distribution defined on the measure-

ment space.

In Equation (1.2), the ith measurement zi(tk) is indicated as

being related to the state of the j th target. If the specific tar-

get were known, the multitarget tracking problem would be readily

solved. The problem to be addressed here relates to the data asso-

ciation problem of establishing the specific target j to which the

ith measurement relates.

Several approaches have been taken to the solution of the

data association problem. Basic to most of these is the application

of Kalman filter for state estimation. The Kalman filter is used

to estimate the state at tk from the data .assigned to a candidate

track. Then, this estimate is used to predict the next measurement

Z(tk+l). Typically, some type of data window is defined to establish

the next measurement that is to be assigned to the track. When more

than one measurement could be assigned, various alternatives arise

ranging from accepting only a single "or best" measurement to

6
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"splitting" the track into several candidates. Since the possibil-

ity exists that a measurement might be mistakenly assigned to a

track, some researchers have suggested modifications to the Kalman

filter to reflect the possible misassignment. It is important to

recognize that several different Kalman filters may operate at each

time; several more than the number of actual target tracks. Thus,

computational burden can become an important concern. Several re-

searchers have explored methods for establishing "feasible" tracks

or "most likely" tracks as a screening mechanism to eliminate tracks

to reduce the computational burden.
4

In the next section, an approach to the problem of determin-

ing feasible tracks that seem to be extremely efficient for the

class of linear, time-invariant systems defined above. In brief,

the approach is based on the recognition that input-output models

can be defined that eliminates the need for state estimation to

accomplish the data association problem. If state estimation can

be deferred until after establishing feasible tracks, considerable

unnecessary filter computation can be eliminated.

/0 " I
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2.0 DATA ASSOCIATION USING INPUT-OUTPUT MODELS

Consider the dynamic and measurement model for a specific

*target. For convenience, the subscripts i and j appearing in Equa-

k tions (1.1) and (1.2) are omitted.

x(k+l) - 4x(k) + ru(k) + w(k) (2.1)

z(k) - Hx(k) + v(k) (2.2)

It is straightforward to eliminate the state variables and

to determine a difference equation model involving only the inputs

and outputs when the target is operating in steady-state. By

eliminating the state variables, the need for estimating them is

eliminated. The input-output model can be used directly to pre-

dict measurements at future times. The variance of the error in

the predictions can be determined and used to establish feasible

tracks.

To establish an input-output model, let q denote a forward

difference operator.

" x(k+l) q (k) (2.3)

Then, (2.1) can be written as

(qI-4b)x(k) - ru(k) + w(k)

Solving for x(k), one obtains

x(k) - (qI-O)-1 ( ru(k) + w(k) I

Using this result in (2.2), it follows* that

*The definition A - 1  adA is used.
det A

b - ORINCONSZ. 
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z(k) - H(qI--) [ru(k) + w(k)]

or

det(qI-ts)Z(k) - Hadj(ql-4b)[_ru(k) + w(k) ]

+ det(qI-4D)v(k) (2.4)

where adj(qI-0) denotes the adjoint of the matrix (qI-0) and

det(qI-() denotes the determinant of the matrix (qI-$).

In Equation (2.4), it is important to recognize that
* th

det(qI- 0) represents a polynomial of n order in terms of the
• th
forward operator q. Thus, the left-hand side of (2.4) is a n

order difference equation involving the output (or measurement)

vectors z. Furthermore, the elements of the adjoint matrix are

polynomials of no more than (n-1)s t order in q. Thus, the right-

hand side of (2.4) is a difference equation involving the input

vectors u and w.

Example: To illustrate the preceeding discussion, suppose

the dynamic model is based on planar motion at a nominally constant

velocity except for random forcing function. Suppose, also, that

- noisy measurements are available of the position of the target.

* IThe state space model has the form

xl (k+l) 1 At 0 0 xl(k) + l(k)

x2 (k+l) 0 1 0 0 x2 ( k )  (k)

x3 (k+l) 0 0 1 At x3 (k) w3(k)

x4 (k+l) 0 0 0 1 x4 (k) w4 (k)

or

x(k+l) = rx(k) + w(k) (2.5b)

9
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The measurement model is

F I 1 (k+ Iv~~
10 0 x (k) [v(k)

=o , + 1(2.6a)

0 0 1~ 0 x 1k o] (k)x 3 (k)

4 x (k)
4

or

z(k) = jx(k) + v(k) (2.6b)

From (2.5), the matrix (qI- 0) is given by

* q-1 -At 0 0

0 q-1 0 0
qI- -

0 0 q-1 -At

0 0 0 q-1

It follows that

det(qI-il) =(q-1l4

(q-1) 3  (q-1) 2At 0 0

0 (q-l)3  0 0
adj (qI-0) = 0 0 (q-l) 3  (q-l)2At

0 0 0 (q-1)3

I: 10
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and

1 At
q-1 (q-1) 0

1 0-1 q-1
(qI-~

1 At
o 0 q-1 (q-1) 2

0o 0 1
'p q-1

Using these results in (2.4), we have

4 /(q-1) 3 (q-1) At 0 0 w1 (k) (q-1) 1
(qv2 z(k) v 2\ + (k)\

w3 (k)

r3 * w4 (k)

Thus, a fourth-order difference equation for the outputs, a third-

order difference equation for the plant inputs, and fourth-order

- difference equation for the measurement errors are obtained.

From the definition of the system, there are actually two,

uncoupled, second-order systems being considered. This fact is

reflected by noting that (q-l) 2 can be eliminated from the model

to obtain

2
(q-l) z(k) - z(k+2) - 2z(k+l) + z(k)

w 1 ( k+l) - w 1 (k) +Atw 2 (k)

"I + v(k+2) - 2v(k+l) + v(k)

v3 (k+l) w 3 (k) +Atw4 (k) /

L - ORINCON
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z(k+2) - 2z(k+l) + z(k) - v(k+2) + [Bvw(k+l) - 2v(k+l)]

+ [Cw(k) + v(k)] (2.7)

I. A 1 0o0

where B -
0010

oroo o [ 0, A]

Equation (2.7) is a two-dimensional description of the behav-

ior of the measurements as a function of the random plant inputs and

the measurement noise. Again, it is important to note that there is

no dependence upon the state with the result that no state estimation

is required.

Using the input-output model (2.4), predictions of future meas-

urements can be obtained. Since the covariance of the random noise

is known, the variances of the prediction errors can be determined.

There are two major problems that must be solved to utilize (2.4) for

prediction.

(1) White noise estimation: From the data, estimates of the

noise variables appearing on the RHS of (2.4) can be made.

These estimated values are then used in predicting future

output values. This problem is discussed in Section 3.

(2) Initiatins the prediction: Special considerations are

required to initiate the predictions and the white noise

estimation. This problem is discussed in Section 4.

12
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3.0 WHITE NOISE ESTIMATION

The predictive model (2.4) can be rewritten as

z(k) + A(k-l) + -- " +A zA (k-n)

= B _(k-1) + - + B u(k-n)

+ C1 1(k-l) + - + C w(k-n)
iU-

+ v(k) + A1v(k-l) + -.- + A v(k-n) (3.1)

The matrices Ai, Bi, C. i Ii.1, 2, -- ', n are known and their

definitions follow by inspection of Equation (2.4). For the example,

it is apparent from (2.7) that n- 2 and

Al--21, A 2=I, CI =B, C 2"C, BI1 .B2"O0

I" As discussed in Appendix A, the model (3.1I) can be simplified

by modifying the noise sequence on the RHS [3). Further, the plant

control inputs u() shall be neglected for the remainder of this dis-

cussion since they are regarded as unknown but nonrandom. The noise

sequences w(i), X(_) can be replaced by a single noise sequence, say

n(i), having the same statistical properties and wi'th the property

that the model is invertible. The procedure for determining the modi-

fied model is given in Appendix A. Thus, the matrices Di, (i-l, 2,

*-., n) and the covariance matrix N are assumed to be known and (3.1)

becomes

z(k) + Alz(k-1) + .. + A z(k-n)

- n(k) + Dln(k-l) + ... + D n(k-n) (3.2)

7 13

'II ORINCON



where n(i) represents a zero mean, white noise sequence with co-

variance matrix N. The model (3.2) provides the basis for the

remainder of our discussion.

Consider the problem of predicting A(k), given measurements

~ z(k-l), A(k-2), **. It is veil known [4),that the estimator that
minimizes the mean-square error is the conditional expectation

E(k/k-1) A E[zE(k)/z(k-l), E(k-2), .. (3.3)

Using (3.2), the predictor is given by

E(k/k-1) - -Aiz(k-l) - - - -Az z(k-n) + IL(k/k-l)

+ D fl(k-l/k-l) + -- + D n-(k-nlk-l) (3.4)

As in (3.3), the notational convention

is used in (3.4). From (3.4), it is apparent that estimates of the

white noise variables are required to evaluate the predictor. The

white noise estimation problem is considered in the following para-

graphs.

* The noise n(i) is zero mean and white. Thus, one sees that

* a~(k/k-L) - E(R(k)l E(k-P.), z(k-Lt-l), .I

- E[n(k)]

* -0, Z~l

1~ 14
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It remains to consider f(k-i/k-l), i 1. Given a semi-infinite

span of data, the white noise variables can be determined precisely

since the noise model is invertible. To verify this statement, one

solves the difference equation in (3.2) for n(k) as a function of the

semi-infinite span of measurement values z(k), z(k-l), - Formally,

this can be done by defining the operator

D(q" 1 ) - I + q-l 1 + q-2D2 
+ " + q-nDn

Aq - ) - I + q IA, q -2 A + + qA-n

in terms of the operator q

q - n(k) A n(k-l).

Then, Equation (3.2) becomes

-1 -1 35

A(q )z(k) - D(q )n(k) (3.5)
1!

Since D(q- ) is invertible, the solution of (3.5) for n(k) is

n(k) [D(q - )] A(q-)z(k)

d q1 adj D(q1 )A(q- )z(k)det D(q-1)

But det D(q- ) is a polynomial of nth order in the delay operator
-1 -
q This implies that the inverse, 1/detD(q ), is an infinite series

in q-1. The invertibility of D(q ) ensures the convergence of the

4infinite series. Thus, n(k) has been expressed in terms of the semi-

*infinite collection of measurements. Obviously,

R(k/k) E(n(k)/z(k), z(k-l), ''- J

- n(k)

15- ORINCON
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It follows, jusediately, that

A(k-1/k) - nRk-1), X, Z 0

Assuming the availability of the data z(i), (iin k-1, k-2,

.),the predictor (3.4) can be expressed am

a (k/k-l) -A. 1z(k-l) - -Az (k-n)

+ Dla(k-l) + *-* + D n(k-n) (3.6)

Consider the error in this predictor

s(k/k-1) - z(k) - '%(k/k-l)

Comparing (3.6) and (3.2), it follows that

zK(k/k-l) - n(k) (3.7)

Note that (3.7) provides a convenient means for computing n(k) upon

receipt of the measurement z(k). The covariance of the error in the

estimate obtains immnediately.

E['i(k/k-l)zT(k/k-l)] - N -

Unfortunately, a semi-infinite number of measurements is

never available and. the noise sequence n(k) must be estimated by other

means. A reasonable estimator ii(k/k) can be postulated directly

from (3.2)

n n
gk/k) A_~k + FAz.(k-i) - D, E(k-i/k-i)(38

This estimator requires knowledge of S(k-i/k-i), (i1- 1, 2, ,n).

16
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The estimator H(k/k) can be written as

D(q-)n(klk) - A(q' )!(k) (3.9)

Subtracting (3.9) from (3.5) yields

D(q -1 ) [n(k) - E(k/k) I - 0 (3.10)

Since D(q" ) is invertible (i.e., stable), it follows that the esti-

mation error n(k) -W(k/k), must vanish as k becomes large without

boumd. Thus, W(k/k), as given by (3.8), provides a reasonable esti-

mator of n(k).
I

The covariance of the error in the estimate (k/k) is easily
* calculated using (3.10). Initial conditions for the covariance of

the errors '(i/i), i- k-1, • , k-n, are required. For this develop-

ment, it shall be assumed that the errors in the estimates are un-

correlated. Since n(k) is white noise and since n(k/k) converges

to n(k), the errors must tend to be uncorrelated. From (3.10), the

error n(k/k) can be written as

_(k/k) - -D -(k-l/k-1) - -. - D ?(k-n/k-n)

If the initial conditions are chosen to be unbiased

E[!(k-i/k-i)] - 0, i-l, 2, -, n

then W(k/k) will be unbiased for all k. Thus, the eovariance of the

error is

Erynk/k)!_T(k/k)] - D DE[-_(k-i/k-i)_fiT(k-i/k-i)]

ili

SPn (k/k)

nT

D DP n(k-i/k-i)DiT  (3.11)

Remember that P n(k/k) -- 0 as k - 0.

17 # ORINCON
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Consider, now, the error in the predictor using LF in place

of n in (3.6)

n n
E(k) - (k/k-1) - EAz(k-i) + FD n(k-i)

n ni

+ A.k- D,7a(k-i/k-i)

-n(k) + 1 D (n[1(k-i) -i(k-i/k-i)I1 (3.12)

IFrom the assumptions, it is clear that K(k/k-l) is an unbiased esti-
mator. The covariance of the error is given by

E {(z(k) - (k/k-1)] [.(k) - (k/k-l)J m N +P (k/k) (3.13)

The definition of the predictor is now complete except for

the consideration of initial conditions for the predictor. This

aspect is considered in Section 4.

18
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4.0 TRACK INITIATION

Suppose that the process is initiated with the measurement

L But the predictor

A (k/k-l) - -:tAi(k-i) + FDiKi(k-i/k-i) (4.1)
A i-i i-i

requires n measurements for the one-stage prediction. It also re-

* quires n white noise estimates.

In the absence of the requisite data, the available inf or-

mation reduces to the a priori statistical description of the random

variables. By definition,

E 'I)I- o l

E[z(k)] - 0 for all k

The covariance of the noise is known to be N. The covariance of

the measurement z(k) is determined from the state space model (2.1)-

(2.2)

-AT T T
Z(k) -E~z(k)z (k)) -HE[x~(k)x (k)]H + R (4.2)

where

*E[x(k)x T(k)] O E[M(k-lW2 (k-1)]10 + Q

let

-E[]i(k)xT (k)]

Note that it satisfies the difference equation

': ~~ 19ORINCON



where an initial condition, say M1 must be specified

E[x(l) '(1)] To M

Consider the prediction of z(2) from z(l). Then, (4.1) re-

duces to

1(211) - -Aj.S(l) + D17R( 1I1) (4.3)

* This represents an unbiased estimate where the a priori expected

values of z(k-i), W(k-ilk-1), (1- 2, 3, -, 4) have been used.

The error in this predictor is
n n

Z(1)- -F (-)+ :Dn (2-i) + Al.E(1) - fl1)
i-l _ i.i i-

z F~.(2-i) + LDis(2-i) + D1 rn(1)- W(111)]
1-2 1 -2

The covariance is computed to be
n

E[A(2Il)zT (211)] To FA Z(2-i)Ai

n

D ND + D P (111)DT (4.4)

The noise n(l) sua* be estimated. Referring-to'(3.8), the

* estimate is

with covariance matrix

_ T iT+ T

This calculation completes the first computational cycle and the

second measurement can be processed when obtained.
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Suppose z(2) has been obtained and consider the prediction

of z(3). The noise sample n(2) is estimated, using (3.7) as

'9(212) R (2) - (211) (4.7)

with covariance matrix

P U(21 2) A i iZ(2-i)Ai T+D 1P n(it11)D T+n D in D T  (4.8)
1 -2 1-2

* The predictor is given by

Z^i(312) - -AAz(2) -A2A(l) +D17A(2 2) + D (l 11) (4.9)

The predictor has the covariance matrix

E~~~ A-(3-i/3)* ~( 12)TT(312)] i jJD i )Ani+L.Di -i)D i

n
* +FDiN T (4.10)

1-3

Equations (4.7) - (4.10) define the second computational cycle.

* The algorithm described for k-i1 and k -2 generalizes read-

ily for k < n. The general procedure is stated below. For

k-1, 2, --- n

*f ~(k/k) - (k) - ^(k/k-1) (4.11)

P kk-n n T
Pn (kk A iZ(k-i)A i T + D ND T

k-i
+ ED P (k-i/k T) (4.12)

k-i k-i
i (k/k-1) -- A zE(k-i) + FDj(k-i/k-i) (4.13)

i-
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E [(k/k-1) T(k/k- 1)J -I Z A Z(k-i)A i
lkT

k+g D iP n(k-i/k-i)DiT

+tD iNDiT  (4.14)

i-k

where 2(1I 0 ) _ 0.

The system (4.11)- (4.14) applies for k> n by following theD n k-1
convention that summations -()-0 for k>u and (') u H.

i-k i-1 i-i
Thus, the algorithm is completely defined by (4.11)- (4.14) for all

k. The covariance matrix Z(k) is given by (4.2).
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5.0 MULTITARGET TRACKING ALGORITHM

The prediction algorithm (4.11) - (4.14) provides the basis

for data association for the multitarget tracking algorithm. In

the following discussion, the data association algorithm is pre-

sented. The predictions utilized in the algorithm are assumed to

be obtained from the algorithm (4.11) - (4.14). The simplicity of

this algorithm provides a significant computational advantage rela-

tive to existing algorithms which utilize the Kalman filter algo-

rithm to accomplish the predictions. No filter calculations are

required here for track prediction. The track predictions are

carried out in terms of output variables which are generally of

lesser dimension than the state dimension. Having established

feasible tracks using the input-output model, the Kalman filter

can be used for state estimation for only the feasible tracks.

Only the data association problem is addressed in the following

paragraphs.

Consider a measurement time tk and suppose measurements

IZ1l(tk),z2(tk), --, Emk(tk)1 are obtained. At tkl suppose that

there are £ k- track files. A track file is regarded as a collec-

tion of dataand white noise estimates that are used to predict the

next measurement sample for the track. These track files shall be

d t a k -l n - (i-1, 2, "", Ik-l "Saeh track file

can be used to generate a measurement prediction j(k/k-1) with asso-

ciated covariance

P i(k/k-l) - E[_(k/k-l) iT(k/k-l)]

The corresponding error ellipsoid can be used to define a data win-

dow. Measurements __(tk) contained within the window are associated

with the track file. For each track prediction, one of three occur-

rences is possible.

23
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No measurements z(tk) are contained in the error ellip-

soid of the j track file.

In this case, one can continue the track file by predicting

to the next measurement time and repeating the test. Although only

* one-stage prediction has been discussed, the algorithm (4.11) - (4.14)

is adapted in a simple manner to accomplish N-stage predictions.

Alternatively, the absence of feasible measurements may indi-

cate the infeasibility of the track file with the result that the

file is dropped from memory. The logic for establishing conditions

for eliminating specific track files is dependent upon statistical

thresholds that are defined by the system designer. The objective

of data association is to reduce the number of potential target

tracks. Thus, it is imperative that track files are eliminated

whenever reasonable.

(2) One measurement z(tk) is contained in the error ellip-

soid of the j track file.

This circumstance provides clear indication of the need for

continuing the track file. The measurement is added to the file

and the track file is updated. Note that, generally, the data

z (tk_ ) is not needed for prediction. It may be necessary to

retain this measurement sample for input to the state estimator in

the event that this track file is identified as being feasible.

* It can happen that the measurement Ai(tk) lies in the data

window for more than one track file. From physical considerations,

a measurement must relate to a single target. However, additional

data may be required before a unique assignment of z (tk) can be
achieved. Alternatively, the measurement may be arbitrarily assign-

ed at tk to a specific track based on other considerations. For ex-

ample, it may be assigned to the track yielding the smallest predic-

tion error [(tk)-Z2(tk/tk-l)]. Alternatively, it may be assigned

to the track having the smallest error ellipsoid volume.
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(3) More than one measurement is contained in the data win-

dow for the j th track file.

At least two alternatives present themselves in this situation.

First, the measurement yielding the smallest prediction error (e.g.,

* smallest in the sense that the squared-residual [zi(tk) - _(tk/tkl)]T

[Ai(tk)- t(tk/tk-1)] is least for all .(tk) contained in the data

window) may be added to the track file and all other measurements re-

jected. Alternatively, a splitting of track files may be introduced.

The track file fk_lJ(., .) may be used to generate 'k additional track

files which differ only through the Ik measurements E(tk) which are

contained in the data window.

* Some measurements (tk) might not be contained in the data

window for any track file or might not be included in a track file

when track splitting is not permitted. It is important that every

measurement is considered as emanating from a potential track. Meas-

urements not added to a track file should be used to initiate a new

track file. As discussed in Section 4, the prediction for tracks con-

taining fewer measurements than the order of the model uses a priori

statistical information about the measurement and input noise covar-

* iances. Care must be taken in defining these covariances in order

to prevent the data windows for subsequent predictions from being

0 unreasonably large.

From the preceding discussion, one notes that at tk there

will be at least Mk track files. Generally, there will be many more

track files than M. Potentially, there could be as many as (Ik mi)

track files. As this could be an enormous number, it is im-

perative that infeasible tracks be eliminated as early as possible.

This elimination occurs when no measurements are contained in a track

data window for one or more sampling times.

A feasible track is identified when the number of measurements

in a track file becomes sufficiently large (i.e., k > n). When a
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track is identified, the file is retained as long as relevant data

is obtained. But, also, the data can be provided to a state estima-

tor. In addition to obtaining estimates of the state of the track,

the feasibility of the track can be confirmed or refined by analysis

of the resulting innovations sequence. This possibility shall only

be noted here but shall not be pursued further.

A general algorithm has been defined for accomplishing data

association and feasible track identification for the multitarget

tracking problem. For the class of linear, time-invariant systems

that have been considered, it appears that this procedure may be

considerably more computationally efficient than procedures reviewed

in Reference 2 which are based upon the use of the Kalman filter.

The utility of the procedure depends, as for the KF-based methods,

upon the definition of data windows that permit the elimination of

infeasible tracks in a statistically satisfactory manner. The need

for state estimation to achieve data association has been eliminated

and a simpler prediction using equivalent input-output models has

been proposed.

Because of the inherent complexity of the multitarget track-

*ing problem, further analysis of this algorithm must be accomplished

using numerical experiments. The detailed computations required for

this type of analysis could not be performed due to a lack of funds

remaining in this contract. The approach that has beed defined

* appears to be extremely promising. Additional contractual support

to investigate this approach in greater depth seems warranted.
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APPENDIX A: SIMPLIFYING THE NOISE MODEL

The noise terms in the RHS of (3.1) involves two white noise

sequences. To simplify the development of the predictor, it is de-

sirable to introduce a separate noise sequence, say n(i), that yields

*I the same noise characteristics as w(i) and v(i). That is, we want

to determine coefficient matrices Di such that

n(k) + D1n(k-l) + --- + Dn (k-n) - v(k) + A1v(k-1)

+ - + A v(k-n) + C1 (k-l) + + C w(k-n)

or C (k) j,(k) + j2 (k) (A.1)
~T

TT

E [j, k)., ( - E)[ Aiv(k-i][ Aiy(k-i-J)]T

nA T
i Ai i A ,-i

i--

E[R2 (k).j 2 (k-j)] E C_ k i~ wki

dependent, that

E[j(k)j;T (k-J)] - E(j(k) j1_T (k-n)] + E11 2 (k) 2 (k.-)]

! n

A RAT + X1  C QCT

i- i i-j .J+l -j

- 0 for all J> n (A.2)
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But we want

T TE: E[J(k) T(k-J) D = D iI j

i-i

* = 0 for J>n (A.3)

Equating coefficients in (A.2) and (A.3), one obtains (n+ l) matrix

unknowns D1, D2, ..., D, N.

DN-ARn n

DaN -i A * n- RQ

Dn-lN + DND A _IR + CnQCIT  (A.4)

n n

E DND T - AiRA. T + ~~1-0= 01 -

bl tAll of the terms on the RHS of (A.4) are known. It is possi-

ble to solve for the Di, i1, 2, -. , n and for N. More than one

solution is possible, generally. Then, the solution is chosen to in-
sure that the system is invertible in the sense that the zeros of

* {the determinant of

* D(q) q + qn- 1 + --- + Dn

* are all contained within the unit circle. With the satisfarction of

this condition, the difference equation

D(q)n(k) - 0

.9 is stable and n(k)-O as k-.
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EXAMPLE

As derived earlier, consider the noise model given by

51 (k) + r2(k) - v(k) - 2v(k-l) + v(k-2) + Bv(k-l) + Cv(k-2)

where n - 2 and

" 2I
v, Q-o oI

Q Qa c 2 0 0 0

0 2 0 0, 022

0 0 112 0

0 0 0 022

Consider (A.4). This system is given below.

D2N - A2R- R - 2 122 v

DN+ND R+C T 2DIN + D2ND, - AIR + _2acI -221
1 2 1 1 2Ql -

N + D NDIT + D2ND2T . R + ATRAn T + A2RA2T + C QCT + C2Qc2T

31 2 2 2+1 A 2 211 2 2

- a 2I1 +  4a 2 1  +  a 2v . +  a12 1 +  At22 CY
V v v 112-

. 6 r2a2 'A2 a21
- 11~~l + 22J

Substituting D2N into the second and third equations, we

obtain

D DN + a02 DI - 2 1
'2 2

1 vl1 v

N+D ND T + 60 2
S+0 2  v +11 2At2 o22]
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D N+ 21) - -2a 2I

D1 = 202 [,2 I+N

D w a2 N
- 1

2 v

N+4a v [ I+N] N a I+N]+ a (6a +o,+ At a)I

v ()v , V- .- (, ) 1 .
N 2 I+N + 4a) I+N N+ (o4 I+2v N+N2)v v v v

- 2a~ I2N+ 2 IN -a +

N 2 I+N + N4a N+ 4 -I NF 2 N a I

v 4 v v v

32 222

N N2  4 I+N a I+N
N.Uv +N+v + v v

m a 0v

4 232 N2  2 2 4 N2+2 8 N 8

N4+ 2o2 N + 0 4 N+ 4a 2 + a N +vaN~

- aN 3 + 2acy2 N 2+ ao 4 N
v v

or N 4+(22 a ) N3+ ( a2 +4a2 + 2 _2aa2)N 2

(c8 --a 4 )N 8Im2a aGo_. N + o.l 1.0
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This equation can be satisfied by assuming N to have the

form

N - n

* Then, a scalar, quartic equation muast be solved to complete the

definition of the modified system.

in 4+ (2.32_a) r3+ (a-2a C7r 2 I2 (2cr _a) a 4 TI+ a 8O

The value of N is used to determine D1andD2

~2
D-2

D1 2 I

* 2

2 T
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SECTION III

A DISCUSSION OF THE OCEAN
TACTICAL TARGETING PROBLEM

1.0 INTRODUCTION

Any realistic approach to the ocean targeting problem requires

the interaction of many diverse sensor and computational systems;

analytical and computational techniques; and many political empires.

The fusion of these elements is fundamental to any solution to the

OT 2 problem. This white paper is an attempt to describe the problem

from a systems scientific point of view and to highlight problem areas.

Consider a large ocean surveillance area with well defined

boundaries. This surveillance area contains surface and subsurface

ships as well as aircraft and other signal sources. These may be

threats, potential threats, friendlys or neutrals. Each of these

categories could be broken down into finer divisions--such as

combatant, merchant, fishing--ending in hull number or specific

Identification of all sources.

Resources including sensors, computational resources,

communication resources and weapon resources are available to help

0 monitor and control the ocean surveillance area. There are numerous

sensors and sensor systems that gather data containing information

" about targets in the surveillance area or about passages into or out

of the area. There are communication links that allow transmission
0of raw and processed sensor data; information about potential

target tracks and identification; and information used to control or

allocate sensors, computational, personnel and weapon resources.

I There are computers used to perform the computational

tasks of signal processing, data association, detection, tracking,

classification and resource allocation. There are weapons to be allo-

cated to threat targets and, last but not least, personnel to be

allocated to various aspects of the problem requiring human interaction.
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Thus the ocean targeting problem is the problem of utilizing

these available resources to first obtain an accurate picture of the

surveillance area and secondly to allow adequate weapon allocation

to be made. This can be visualized as a classical control system

with two feedback loops as shown in Figure 1. The feed-forward

loop consists of the surveillance area and all that it contains: the

sensors, sensor system processing and fusion processing required to

do classical ocean surveillance.

* The first or inner loop is the sensor control loop which

allows control of the sensor resources. This allows the focusing

of the sensor resources on a particular region of interest or a par-

ticular target of interest. Thus sensors can be focused on a particu-

a lar geographical or frequency region or on events of interest because

of a priori information, or information obtained from completely differ-

ent sensor systems. The utilization of this inner loop in an intelligent

manner is vital to the success of an ocean targeting system but it

also implies great problems of a theoretical, computational and political

nature. This is one of the major unsolved problems in development

of a real ocean targeting system.

The second feedback in Figure 1 is the weapon allocation/fire

control loop. This is the major role of command, control and commu-

nication systems. It should be clear that any design of a weapon

allocation system will have great impact on the sensor allocation

loop and the processing done in the feed-forward ocean surveillance

path. In order to reduce the complexity of this discussion, we will

first focus on the feed-forward path of the ocean tactical targeting

problem without considering the feedback paths. The effects and

problems introduced by the inner and outer feedback loops will be

considered later.

The difficulties inherent in the feed-forward path or in the

surveillance problem can be broken down into several areas. These

include the standard multi-target, multi-sensor detection, tracking,
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and classification problem in clutter; the data communication problem;

the distributed processing problem; the data base problem; the man/

machine interface problem; and the political problem.

A somewhat more complex view of the OT 2 problem is shown

in Figure 2. Here many possible levels of sensor system signal

processing are shown. Also, both the inner and outer feedback

possibilities from Figure 1 are indicated. Note that the inner

sensor control feedback path is really a distributed feedback loop.

Thus at least the possibility exists for sensor level control at each

sensor, each sensor system level and at the overall fusion center.C3

Sensor control could conceptually be exercised from the C function

in order to improve fire control or targeting functions.

There are many difficulties inherent in the feed-forward path

or in the surveillance problem. Some of these, which ORINCON

* feels are key research areas, are discussed in the sections to

follow.

Section 2 is a discussion of the overall ocean tactical targeting

problem with particular consideration of various data partitions.

In Section 3 the problems and potential solutions to data

communication will be addressed. Two approaches appear viable;

namely, data compression and sensor level preprocessing.

Section 4 presents the key features pertaining to distributed

information processing as it relates to ocean tactical targeting.

It discusses a host of scenarios that could be implemented.

A number of problems in data base management will be

illustrated in Section 5. It then goes on to describe certain tech-

niques that could be applied to attack these problems.

In Section 6, a general discussion of the measurement fusion

problem is presented. Following this, in Section 7, the multi-sensor/

multi-target tracking, detection, and classification problem is treated.
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One of a number of possible approaches is discussed in some detail

to illustrate the complexity of the measurement fusion problem.

Finally, in Sections 8 and 9, the issues of force and weapon

allocation and final targeting will be addressed.
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2.0 THE OCEAN SURVEILLANCE PROBLEM

The ocean surveillance problem as defined in the last section

is to take and process data from all available sensors which contain

information about the ocean surveillance area or passages through its

boundary, and produce the best possible picture of the surveillance

area. This requires the detection, tracking and classification of all

possible targets and the allocation of the computational, communica-

tion and personnel resources available. This is summarized in an

extremely simple manner in Figure 2, which shows the possible sensors

arranged vertically. Any spatial factors such as beams, time delay

and Doppler resolution cells, range and range rate cells or positional

cells (of a particular sensor) are indicated by the horizontal "spatial

sector" direction. The time flow of data for a given sensor and

spatial sector (perhaps a beam) is indicated by the axes into the

paper. Thus this figure simply indicates that the overall "open loop"

surveillance problem consists of taking all the data from a suite of

* psensor systems over a time interval and drawing an accurate picture

of the surveillance area. This accurate picture of the surveillance

area must show the time evolution of the states of all potential targets.

It requires that the functions of target detection, target tracking and

- Itarget identification be done, as well as possible, from the sensor data

available. The target state will include position and velocity information

as well as any other information required to specify the future state of

the target based on the current state and assumed dynamics. This

* could include frequency information, local sound speed information, and

turns-per-knot information, as well as parameters of the system

dynamics.

In actual practice it is impossible to take all of the information

from the sensors and process it simultaneously to obtain an overall

picture of the surveillance area or--as in Figure 2--an "all sensors

master track file." However, It is clear that if this were possible,

the maximum information could be extracted from the raw sensor informa-

tion, and the best possible system performance could be obtained.
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*1

In any realistic attempt to solve this problem, intermediate

processing steps must be performed. This is required to break the

problem down into easily handled segments and is intended to reduce

* the overall amount of processing required, to reduce the amount of

data transmitted, and to allow the staff working at a given sensor

level to monitor the progress of the system. This will generally

lead to performing operations at a local level when possible.

Thus, a realistic approach to the problem might be as indicated

in Figure 3. Here data from each sensor system is processed

repeatedly to form a master track file for that sensor system. This
q

overall track information could then be merged in a fusion facility at

the track level to form an all-sensor master track file. It should be

noted that information could be lost in such a system. If two pieces

of information from two different sensor systems were sufficient to

form a good track when put together but not sufficient to give tracks

in the separate sensor track files, then the track would be lost. None-

theless, some loss of information will probably have to be tolerated

in order to allow the global problem to be handled in even a sub-

optimal manner.

In actual practice the current system looks more like Figure 4,

- |where tracking is done on the output of each individual sensor (per-

haps in sensor coordinates), and then all of the tracks in sensor

coordinates were put together to form a sensor system master track

file. The last step of combining the tracks from numerous sensor

systems is done in a very crude manual fashion.

Note that the possibility for all of these levels of processing

was contained in the more complex view of the OT 2 problem shown

* in Figure 2. There many of the possible levels of sensor system

processing are shown as in Figure 4.
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IP
3.0 DATA COMMUNICATION PROBLEMS

The data communications problem is of paramount importance

in a large, distributed surveillance network. The raw information

rates produced by sensor systems in the network will easily overwhelm

the relatively low capacity transmission links that connect the network

nodes. Thus the network structure, and particularly the distribution

of processing resources, will be fundamentally constrained by the

data communication resources available. The two principal qualities

of these resources are capacity and vulnerability.

Network link capacity is purchased at a premium price in ocean

surveillance. Dedicated, long-haul channel bandwidth is very expen-

sive, whether it be a land-based or satellite link. There are two

approaches to minimizing the capacity requirements: data compression

and sensor-level preprocessing. The data compression alternative

1' involves spatial and/or temporal encoding of the outputs of a given

sensor system, so that they may be transmitted at a substantially

* reduced rate, and reconstructed with acceptable fidelity at the

receiving node. The advantage of this method is that full data pro-

cessing flexibility is preserved at the receiving node, and therefore

the maximum amount of information may be extracted from the sensor

system, particularly in the case of multi-sensor processing.

" The sensor-level preprocessing alternative involves a more

extensive, and basically irreversible, reduction in the information

rate of the sensor through the extraction of certain parameters or

features of the output (e.g., detections, classifications, track infor-

mation). Only this information is transmitted over the link, at

extremely low rates relative to the raw data rate. The latter advan-

, |tage is offset by the reduced flexibility of the received data, i.e.,

further processing options are restricted by the much-reduced amount

of information available. Also, the individual sensor systems will

tend to be more complex due to their processing capabilities, and

* therefore more costly. It is likely that both of the alternatives that
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have been discussed would be incorporated into various portions of

the ocean surveillance network.

Network vulnerability includes considerations of data encryption,

link jamming resistance, and error correction capabilities. Data

* encryption of both sensor outputs, as well as command and control

information, is important to the security and effectiveness of the

surveillance network. Depending on the political situation in some

cases, covert transmission using spread-spectrum techniques may

* be required. These techniques may also be necessary to ensure reliable

transmission from deployed sensor systems that are susceptible to jam-

ming tactics by the enemy. Finally, the noisy characteristics of
certain links, such as telephone lines, may dictate the use of error

* correction and control methods, so that data "drop-outs" can be

* avoided.

In addition to considering the technology available for network

links, several issues regarding the data communications network as

a whole must be considered. The design of a sensor and control data

1. network is very sensitive to the particular solution used for the

general OT 2 problem. For instance, if the solution approach to dealing

Vi with sensor data involves primarily gathering data into a centralized

fusion site for processing, then the network topology would be a

centralized topology--a larger version of what is used for gathering

data for the ARC.

* However, if issues of survivability enter in--as they should--

then other network topologies would be more appropriate. If a satellite

network was to be used for the network backbone, then a more
desirable topology class would be the star polygon, These topologies

4, have several advantages. Most importantly, enemy action cannot take

out a central node--thus destroying the network. Furthermore, this
i approach is convenient when a worldwide distribution of sources and

sinks is required. An economic aspect is that many satellites with

identical hardware may be used--and if the satellites are mission-
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reconfigurable by uplinked software, then the network may be quickly

(even automatically) adapted to new satellites or satellites taken out

of service.

Any network that supports a global distribution of sources and

sinks would provide the cross-linking of sensor data and control

messages necessary to fully utilize concepts of distributed processing

and distributed data bases. However, any network of that scope

would clearly have to support multiple missions and a wide range of

message traffic with different bandwidths, burst characteristics,

and destination distribution (one sink versus many sinks). Several

of the more common network management schemes are dedicated circuit.

circuit switching, packet switching, and message switching. Each of

these methods has advantages for certain classes of message traffic.

There are several areas of investigation appropriate to the

network issue. One area is determining the utility of various data

network topologies applied specifically to OT 2 . Associated with this

area is the question of what mix of management technologies (packet

switching, circuit switching, etc.) is appropriate for OT 2 communica-

tion requirements. If multiple users are involved, how do many users

access a common system given the need for security and anti-jamming

methods? Since different communications technologies are involved

(satellite, land line, microwave, etc.), what effects will data lateness

over various links of the network have on a specific user such as a

fusion center? This is especially important since, if adaptive routing

of messages is used to accommodate traffic jams or link failures (like

in the ARPANET), data might have random arrival times as opposed

to predictable arrivals. Finally, the performance of the network under

attack and crisis scenarios should be studied. A mix of analytic and

*simulative techniques will probably be necessary to identify network

problems due to missing or degraded components.

46 '  ORINCON

0%,-



4.0 DISTRIBUTED INFORMATION PROCESSING

Any solution to the Ocean Tactical Targeting problem will

require digital and analog processing techniques at all levels.

Examples of digital processing tasks at the lower levels are prefilter-

ing and calibration of data at the sensor level, data compression or

encoding of data, and sensor level data analysis. At the higher levels,

some tasks are management of data bases at the tactical and fleet

level, sensor data integration or fusion, target detection and tracking,

threat type/target association, threat prioritization at the tactical

level (e.g., incoming missiles, approaching aircraft), and fleet level

force/threat evaluation and assignment (e.g., assignment of specific

ASW components to an identified submarine threat). One possiblei fapproach to the system design is to ship data from all sensor sites
to a central evaluation center where all of the processing mentioned

above is carried out. Fleet components could be commanded based on

evaluation of the input data. There are several reasons why this

approach is impractical in general.

First and foremost is that the data rate of some sensor systems

is much too high to be rooted from a sensor site to an evaluation

center. Some processing is necessary to select a data subset, encode

or compress the data to reduce the required transmission bandwidth,

or to perform pre-analysis of the data to extract a desired component

of the information available in the data--again a bandwidth reducing

function. At least at the lowest level, then, certain digital and

analog processing tasks must be 'distributed' because of communication

bandwidth limitations.

Another reason for distribution of processing functions is sur-

, |vivability and flexibility. As with the data communications problem,

a level of redundancy is necessary so that if part of the system fails,

the remaining resources will (perhaps at some degraded level) still

perform the ocean targeting function. An issue which is closely

* related to system survivability is that of flexibility. Since many
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elements of an ocean targeting system would be mobile (weapons

systems and sensors in both airborne and ocean-based platforms), a

fleet commander might wish to allocate a larger portion of all resources

to a particular "hot spot." Physically placing the computational

resources in or near the activity site could yield benefits such as

improved coverage, finer targeting rsolution and shortened system

response time. Thus a commander could 'zoom in' to a particular area

of interest for special action.

A third reason for distributing computational resources is

* the concept of task sharing. Some system tasks may be designed so

that they can be processed at several different processing nodes.

If processing nodes in one part of the system become overloaded,

tasks could be shifted to make use of underutilized processing

Iresources at other nodes. For example, destroyers in support of

a carrier could process radar data locally while linking sonar data

to the carrier where, presumably, a larger processing resource

would reside. There are, of course, problems with doing this in

' )general. The first problem is that some processing resources in

the system have unique structures and have permanent specializations
(e.g., beam forming hardware for acoustic data sources--this

equipment can be 'retasked' only in the sense of sensor allocation

- D to specific geographic targets).

* 1A second problem associated with task sharing is the volume

of internode communication traffic required to completely shift the

processing may be impractical. A tactical data base could not be

transferred from one ship to another with surplus processing capa-

bility because the lateness associated with the arrival of the complete

data base might be comparable to the flight time of an incoming

4 0 missile.

However, there are many areas in which this could be a valuable

concept. One (admittedly crude) example is to partition a surveillance

area into cells and assign a data integration center to each cell. In

a manner similar to the way aviation traffic is handled by air traffic
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control centers, sensor data for one geographic cell is handled

by one processing center. As targets leave a cell, they are "handed

off" to another center. This "cellular" approach has the advantage

that surveillance data flow and data processing is more evenly distri-

buted. This approach also has advantages in flexibility. Threat

prioritization and resolution can be handled automatically or 'hands-on'

as suits the command for a region and the resources available to it.

In addition, if it were possible that all centers could, at their option,

tap into data sources for other cells (by fan-out within the sensor

data network), then multiple centers could focus on one cell for higher, I
system performance in that cell.

The accessibility of a wide range of sensor data to a large
) number of integration centers has certain implications about the

I sensor data network associated with an oce,'n targeting system. An

information hierarchy is certainly implied in that there is a wide

mismatch of data rates, accuracy, and coverage amongst sensors.

I) Existing operational sensor systems are handled for the most part

by individual baronies: an IR satellite, for example, downlinks to its

own earth station and its own specialized signal processing hardware.

Therefore, a hierarchy is necessary to accommodate existing resources.

- IOne way to provide additional crosslinking between sensors and com-

* Iputational resources could be via communication satellites with multiple

spot beam antennas for both ground (or air) based sensors and

users. Intermediate processing for, say, an IR sensor could be

* accomplished on the sensor platform or at a ground based station.

Whatever results of the processing that the command of the individual

* barony wished to disseminate could be crosslinked to other sensor
I net nodes.

As will be discussed in Section 8, there is a need for

data bases and processing at the force element level as well as at

the fleet level. Many sources of information may be fused to

form a fleet level picture. Some information, such as from

/'-*
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wide coverage sensors (satellite based staring mosaics, OTH radar,

etc.) can also be used within a particular tactical region (or 'cell')

for sensor system calibration. An aircraft dropping sonobuoys

can maintain sonobuoy position relative to the aircraft by local

processing, but needs at least inertia] navigation input to maintain

position relative to other units and, in particular, weapons systems.

The aircraft knowledge of position could be improved if its local

processor could tap a satellite downlink for its own position. A

ground based acoustic sensor system could calibrate its own coordinate

system with the fleet coordinate system if it could tap the location

' t of some target viewed by some other sensor system (OTH radar, etc.)

as well as its own. Exchange of data and data processing results by

cross-linked satellites (involving, for example, FLTSATCOM) and by a

network such as AUTODIN II could open up a host of distributed

data base and distributed processing possibilities for an ocean tactical

targeting system.

There are several difficult areas that must be addressed to

solve the processing problem:

a How are the processing problems or functions to be parti-

tioned into tasks so as to take advantage of multiple

processing nodes?

e How can task elements be automatically identified and

assigned, and how are task results coordinated?

o If the allocation of tasks is to be distributed, how do

various processing resources negotiate for task assignment?

* What intermediate representation of sensor data allows

effective utilization by a wider range of processing functions

within the targeting system?

* In what ways can existing sensor baronies be interfaced to

a network in such a way that their output is more generally

* useable and at the same time will not interfere with the primary

mission of the sensor?

5o ORINCON

.. . . . . . . . . . . .V ..- v



* How can computer hardware and software systems be

designed to support a primary function specialization as

well as a wide range of temporary specializations?

9 If it is the case that it is not practical for all processing

I systems to have access to all data (e.g., all sensors track

file from section 2.0), which is the probable case, which

sensor systems should have crosslinks in order to minimize

duplicated processing?

9 What new computer technology could be developed to handle

q the extreme response time requirements for threat assessment/

threat prioritization /weapon allocation problem in the tactical

theatre? An example is STARAN type associative array
processors with appropriately configured data bases.

p

I.
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5.0 DATA BASE PROBLEMS

When considering the data base management systems to be

used in an OT 2 environment with many sensors, it is essential to

approach the problem at the same conceptual level as one approaches
2

the rest of the OT problem. An overall system design should be

developed that will integrate the various data types that will be used

as input. The design should take into account the relative priorities

of different data bases and the similarities and differences in their

content -and structure. The content and format of data bases are

subject to change, and if the management system were too closely

tied to specific data base configurations, any change in configuration

would require extensive revisions to the data base management system

as well.

T 2

In the lower levels of the OT hierarchy, there are several

requirements for the handling of data in its raw and near-raw state.

TARF data must be filed in its raw form upon receipt, but error

correcting and field validation processing might also imply a parallel

TARF data base with 'corrected' entries. Time series data weather

satellite data, and OTH radar data all require data bases designed

for the particular data rate characteristics, burstiness, and access

methods needed for the data involved. Because the data bandwidth

of sensor data is larger near the sensor, more attention must be paid

to sensor data base performance.

Since a data base maps data flow from a source process to a

sink process (as well as acting as a repository), the access pattern

or 'key' used to store the data is often different from the retrieval

pattern. For this reason, access to a given data base should not be

by a single key or by a hierarchically-ordered set of keys. Such an

access plan assumes that requests to the file for information will

always be of the same kind (i.e., by STAR target number), and is

incapable of efficient retrieval by lower-ordered keys. A number of

data access methods exist which handle multiple keys efficiently.
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* These methods can be tuned to give optimal retrieval time for the

most commonly used keys without sacrificing general efficiency no

matter what key or combination of keys is specified.

One such access method is partial match retrieval using hash-

ing and trie algorithms. This is an associative retrieval method with

proven upper bounds on the number of disk accesses required to

retrieve information specified with varying numbers of keys.

In all hashing algorithms, a function is applied to the original

5 set of key values to create a new value which is the address in the

file where the item will be stored. To retrieve the item, the key is

hashed with the same function to produce the item's address. The

unique aspect of partial match algorithms is that they can retrieve

P data items which have specific values for some keys and unspecified

or wild card values for other keys.

A system of this kind has very desirable properties for a par-
2

ticular application like an OT test bed. Insertion of new data is very

fast. The system permits access to data bases on an assortment of

keys and facilitates retrieval of groups of data items. For example,

in dealing with input data, an operator might wish to confine atten-

tion to peaks above a stated coherence level whose time of receiptS
was within a certain time slot, or peaks from a given pair of sensors,

or peaks from a given geographical part of the ocean that satisfy

various fequency and water time constraints. If thir data is organized

by a single key or by a hierarchically-ordered set of keys, few queries

of this kind can be handled efficiently, it at all. A multiple-key,

partial-match hashing algorithm handles queries of this nature easily.

When the software receives a retrieval request, specified key values

are left intact and values for unspecified keys are treated as wild

cards.

Another multiple key access method employs a Normal Multi-

plication Table as an index to the data base. This method is well-

suited to data bases where the number of data items is large relative

to the number of distinct key values.
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As was the case with trie algorithms, system performance can

* be tuned by ranking the keys according to expected fequency of

use, singly or in combination. Perhaps the greatest difference

between the two methods is that the Normal Multiplication Table is

constructed from the contents of a specific data base while the trie

algorithm is designed to handle any data set that contains items that

can be described by the current set of keys. This difference has

important implications for an OT 2 test bed. The Normal Multiplication

Table method would work well for artificial input data or for input data

that arrived in discrete blocks, as is the case with the "epochs" cur-

* rently being used in experiments at the ARC. The algorithms that

* build the table are relatively simple and fast, and once the table is

built, it would provide extremely fast information retrieval.

Because they are attribute-based, both of these methods adapt

easily to changes in file format or content. They require far less
core space than the standard inverted indices or multiist directories.

If proper data definition is done at the outset, these methods can be

used across files and therefore can link together data from different

input data bases.

Information dealt with at higher levels in an OT 2 system has

been extracted from data at the sensor by various processing tech-

niques. Higher level OT 2 data bases will contain such information as

target identification, position, course, and speed. Target identification

may include hull type, known weaponry, intent, and severity of

threat if an enemy. In addition to representing the current state of

the surveillance area, a high level data base may contain a target

history of past movements and events, and maintain a list of sensors

contributing to a piece of high level information.

A commander may need to relate the positions of certain fleet

elements to the sea condition for that particular area. However, the

location of a data base containing weather may be physically separated
* from the command center data base. Therefore, issues concerning

01-0
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distributed data bases need to be addressed. Various fusion centers

will maintain data bases relevant to their own sensor suite. However,

decisions made at a central location require that all these data bases

be accessible in a uniform manner. In addition, procedures will be

required for the event of the failure of a remote data base.

The wide range of types and formats of data required at the

fleet level may argue for a relational data base design. Ultimately,

one would wish to automate fairly complex queries of the data base

to identify particularly important situations without human intervention.

The structure of a relational data base is well suited to the associative

searches that are required to handle queries of this kind. Because

the information is organized by its attributes and does not have a

i "structure imposed on it, it can be efficiently searched for records

which match a combination of key values that characterize a particular

threat or other tactical situation. In instances where speed is critical,

special hardware, such as fast array processors, can be used.

For the highest levels in an OT 2 system, relational/distributed

data base technologies exist that can handle the sorts of information

required by a commander at the fleet level. Some appropriate work

with human interface technology and relational data bases has been

-"accomplished through the ACCAT project. However, serious issues

* of system performance have to be addressed. Also, it is likely that

several data base access techniques, some of which owere discussed

above, would be more suited for data at the local tactical level

because of response time constraints. The nature of the data being

dealt with at levels closer to the sensor is also quite different. The

point is that though the interfaces to different data base systems

should be similar, the interfaces should be independent of the access

methods used. The access methods should depend on the type of

data handled, types of access, and response time requirements. A

uniform interface, on the other hand, will lend itself to uniform

representation of sensor information and thus more flexible utilization

of data throughout the targeting system.
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Thus, several problem areas that must be addressed to properly
use data base technology in an OT 2 system are:

* Identification of what types of data bases are actually

required for the OT 2 problem. Examples range from

acoustic data bases at an acoustic data processing center

to data bases containing hull number and ship captain

for a particular ship at the fleet level.

e What data base access techniques are optimal for data at

* various levels in the hierarchy?

* Can specialized hardware be applied to certain time-critical

* applications? Cellular-logic devices, head-per-track rela-

tional data base machines, associative array processors, and

mass storage devices utilizing content addressable blocks

are examples.

9 At what level in the system are distributed data bases

appropriate? What types of information should he distri-

buted and what types tend to be centralized? How can

consistency between such data bases be maintained? How

is the problem of failure of remote sections of the data base

D handled (fail soft)?

For time-dependent data, what techniques may be used to

identify and delete unimportant data from the data base

in order to avoid data base overflow?
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6.0 MEASUREMENT FUSION

In considering the fusion problem embedded in the OT2 problem.

one must give paramount importance to the data available and its utility.

* In concept formulation one should not be tied too closely to any given

set of sensors or sensor system but rather to concepts and potential

suites of sensors. There are a large number of possible sensors

whose data could be potentially useful in the fusion center. Types

of sensors that could be considered are:

e Acoustic;

Is Electro-magnetic;

Is Optical;

t Infra-red;

j Thermal; and

e Human sources.

In most cases both passive and active sensors could be con-

sidered as well as both fixed and mobile locations and many possible

sensor placements (satellite, land, air or sea).

With this plethora of possible data and data types many ques-

tions and problems arise. In the simple case of detecting one signal

in noise or of tracking a given target (with data for that target)

the addition of more data either helps or does not hCiri the processor.

This is not true of the data association problem, particularly with

limited communication, computational or human resources. It is possible

in the multi-target/sensor arena to turn a situation, where one could

detect, track and classify a number of targets, into one where this

* ,is impossible. This could be made to occur for any given system by

the addition of more clutter, more real targets, or even more good

data from existing targets. This could occur because of the clogging

of limited communication channels, the creation of too many possible
or feasible combinations of data in a multi-target tracker or saturation
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Iof computational resources. In this somewhat novel situation it

* becomes very important to define the quality measure that one will

I use to evaluate the eventual system output. It must be noted that

there could be multiple (possibly conflicting) requirements on this

system requiring a multi-dimensional quality measure.

Since one must finally operate the data association, detection,

classification, localization and tracking systems on a set of data from

a set of sensor types, one can think of each possible selection of data

as one set of possible or available data. In evaluating a given set of

*some allowable communication/computer resource suites, one could

choose a number of quality measures. One could perhaps, from a

technical point of view, define the information content of a set of

" measurements--some kind of entropy measure on an absolute basis.

A measure of a set's ability to give high resolution target tracks

(most precise tracks) could be one such quality measure. Another

would be a measure of the ability of a set to allow separation of

different targets or different classes of targets. In this case one

could look at the features that one wanted to separate, define a

distance measure and use pattern recognition techniques. One might

opt for the set that would allow the largest number of targets

- !(possibly of a single class) to be detected while minimizing the

probability of false alarm.

It should be clear that if a system used its resources to track,

detect or classify loud targets it might not have the resources required

to track quieter or other particularly important targets. The measure-

ment sets allowing best detection might not even be observable sets

for track reconstruction or target classification or separation (data

association).

Other means of measurement quality could include time late-

ness, independence of oth~er measurements in the set, and correlatability

with the measurements from different systems. Even if some measure

of goodness data from one sensor system is judged to be the best,
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additional data from that system on a given target would not be

independent. Thus, it might be better to include data (even of a

lower quality) for a different sensor system to confirm the existence

of a given target.

Major research problems exist in the data fusion area. Some

* of these are data independent but many others depend on the details

of the sensor system, the statistical characteristic of the measure-

ment systems and even cost of data transmission, computation and

other factors, allowing a reasonable comparison of resources on a cost

or uniform basis.

9
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7.0 MULTI-SENSOR/MULTI-TARGET TRACKING, DETECTION
AND CLASSIFICATION PROBLEMS

t The multi-sensor/multi-target tracking / detection/classification
problem area is a formidable one. For a given surveillance area, there
may be a large number of surface/subsurface ships, aircraft, and other

* acoustical signal sources in close proximity to one another such that

one is confronted with -a dense multi-target environment.

To illustrate the complexity of the problem, one could first
consider the case where there is one sensor system that is receiving
signals from several targets as illustrated in Figure 6 below, where
each of the targets could potentially represent aircraft, surface/

* subsurface ships, etc. The sensed signal might even be caused by

sea-induced noise.

jD

K P

, I T

Figure 6. The multi-target problem.
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This problem is defined as the single-sensor. multi-target

problem. When the set of targets (AB,C,D) are operating in close
quarters and/or when the sensed signals have a low signal-to-noise

ratio, a fundamental problem is that of data association (return-to-

track). That is, for each incoming measurement, how do we attach

0 it to the correct target that produced this measurement, or is the

measurement caused solely by noise (false alarm or clutter) as in

box E in the above diagram. This is fundamentally a target
detection problem. There have been a number of approaches used

in the past in solving this problem, and they have met with varying

degrees of success. They range in scope from very simple procedures

such as manual selection of data by a human operator to more compu-

tationally sophisticated methods that can automatically handle the data
association problem without operator intervention.

The manual procedures involve careful preprocessing of the
data by the operator, and although laborious and time-consuming,

have met with some success on real data. They work well when

the targets are widely separated and the signals have a high signal-

to-noise ratio, but in a "dense" environment and/or low signal-to-

noise ratios, these approaches are not very suitable. It is the latter
- iset of automated algorithms that fare better under this type of scenario,

and lately have been shown to exhibit quite good tracking performance

on both real and simulated data. Graphic examples of this were found
during the SASE experiment.

For the most part, all of the automated methods employ extended
Kalman filtering of one form or another to perform data association.

This is done using statistics generated by the filter and subsequently

comparing them to a set of specified thresholds. In addition to the data
association task, the filter is structured to do the target tracking in

parallel so as to provide target estimates in a preferred coordinate

system (for instance, position, speed and course).
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In addition to the problems already noted in the above dis-
cussion, one must now face the issue of correlating the measurements

from different sensor systems for the same given target. This is a

multi-sensor measurement fusion problem and a few solution approaches

to it have already been suggested; namely, independent multi-target

tracking for each sensor system, and then the combination of the

individual sensor tracks into a resultant set of target tracks.

To illustrate the complexities involved in going to a more

elegant approach that would be an improvement to the above, it
might be helpful to pose a specific approach as an example. This

approach would have the tendency to increase the dimensionality

of the observation space in a sequential fashion thereby increasing

the information content of the data set. The key features can best
r be described with the aid of the block diagram in Figure 8. Essen-

tially it involves implementing a multi-target tracking filter to per-
form the detection, classification, and tracking functions for each

of the individual sensor systems A to Z, respectively. The tracks

generated by each of the filters are then combined into a composite

set of tracks. If a given target is being sensed by more than one

sensor system, the filter for one sensor system should generate a
, target track that is "reasonably close" to a target track generated

by the filter for another sensor system. The major objective here

is to correlate those target tracks of different sensor systems that

correspond to the same target. This is the function of the track

*t clustering block shown in Figure 8.

A variety of clustering approaches can be used to identify

tracks belonging to a common target. They range in complexity

from simple procedures such as a least squares fit to more complex

procedures that use the confidences associated with a set of target

tracks to "weight" the results of the clustering approach. This

latter approach can be implemented recursively using an extended

Kalman filter which has as input measurements the target track
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When using the filter for data association and target tracking,
care must be taken in selecting a filter model that accurately reflects

the physics of the actual target motion. The usual assumption is

constant rhumb line or great circle motion. This is normally adequate
unless the target starts maneuvering. When this occurs, the filter

could misinterpret measurements from a maneuvering target for clutter

when performing the data association task, and not use the measurement

at all in forming a target track. For abrupt maneuvers, solutions to

this problem can normally be achieved by artificially increasing the
* filter's process noise covariance matrix. However, for more subtle

maneuvers an obviously more sophisticated algorithm must be applied.

Several innovative approaches have been proposed recently to differentiate

between maneuvers of this sort and clutter. One of the more promis-

* ing of these appears to be the accumulation of frequency sensitive
measurement residuals as a test statistic for maneuver detection.

The above discussion has thus far only considered a single
sensor system. A much more complex problem is introduced by con-

sidering the multi-sensor system, multi-target problem depicted in

Figure ? below.

*

iA

." t' Figure 7. The multi-sensor/multi-target problem.
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estimates and covariance matrices generated by the filters for each

of the sensor systems A to Z, respectively. This comprises the

inner feedback loop of the track clustering algorithm shown in

Figure 8.

Having obtained a set of clustered tracks, they can then be

transformed back into a set of estimates in measurement coordinate

units for each of the sensor systems. Association of the actual

measurements with the measurement estimates above is obtained by

identifying those measurements lying "close" to the estimates for a

given target track from the cluster for each of the sensor systems.

The measurements for the given target track are then cor-

related, i.e., they are identified as having come from the same target,

and are combined into an increased dimension observation space having

more information content than the measurements for each of the sensor

systems by themselves. A filter can then be designed to process this

multi-sensor data to produce a more accurate target track. This

b procedure continues until all member tracks of the target track cluster

have been processed.

At this point, the outer feedback loop on the track clustering

algorithm can be closed to produce a refined set of target tracks.

This is done by repeating the track clustering, measurement data

association, and multi-sensor filtering. The only difference here

is that the track clustering is initiated on a set of composite tracks

that were generated by the multi-sensor filter. It is easy to see

how this can be put in an iterative mode, i.e., continue to feed back

the resultant target tracks into the track clustering algorithm, until

no further change in the resultant target tracks is noted.

Again, this approach has been intended as an example and

not as a specific solution to the multi-sensor measurement fusion

problem. The purpose here is to illustrate the intricacies associated

with any approach that would extract all of the information embedded

65 -. ORINCON
C|

-, - -I 1 .



in a set of measurements from different sensor systems, and use it

in an optimal fashion to enhance our knowledge in the areas of

detection, classification, localization and tracking of target threats

within the surveillance area.
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8.0 FORCE AND WEAPON ALLOCATION

The ultimate goal of an Ocean Tactical Targeting System is

to bring the proper weapons to bear on the targets in order to

neutralize them while minimizing the losses among our own forces.

There are three issues which need to be addressed in this area:

e Threat prioritization;

e Friendly force/target assignments; and

e Real-time battle management.

As part of the threat prioritization function, the data base

management system will provide the information to allow priorities to

be assigned to each of the threat. This prioritization will be

assigned based on:

e Threat type;

e Location; and

* Intent (e.g., direction of movement).

For example, a high priority will be given to an enemy ship carrying

cruise missiles near a friendly land mass, whereas a low priority

* might be assigned to an enemy ship carrying only surface-to-air

missiles located far from any friendly ships or land masses.

In the actual targeting /weapon allocation problem there are

hierarchical levels of command and control which must be considered

for effective use of the available weapon resources. The top level

of this structure (see Figure 9) will allocate groups of threats to

friendly forces based on the threat priorities. As time evolves, the

threats will move, their assigned priorities will change, and the

force/target allocations will be modified. These changes will take

place relatively slowly so that these assignments can be made in an

optimal manner.
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.4P Figure 9. Force and weapon allocation.
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The force level battle management function takes place at a
~lower level. This includes real-time ship or weapon assignment to

threats, and real-time reallocation of forces/weapons based on battle

assessment data. This level is further complicated by the need to

counter enemy attacks, as well as to destroy the assigned threats.

Because of the real-time requirement of this battle management

function, some degree of optimality in weapon allocation must be

sacrificed to achieve the real time capability.

Such a two-level command and control structure allows

optimality of force/threat allocations to be emphasized because of the

relatively slow dynamics at this upper level while delegating to a

lower level the real-time battle management function.

I This is a complicated i-esource allocation problem and there

are a.number of specific issues which need to be addressed:1. * What is the best division of functions 'between the

two levels?

e How detailed must the weapon allocation be, e.g., ship level

or weapon level?

e How are the offensive and defensive issues of battle man-

- Iagement optimally addressed?

e How can these approaches be automated, and can the

concepts of artificial intelligence be used?

This might allow real-time planning to improve battle management

at a lower level, freeing the major human decision-makers to make

*major policy decisions or system overrides.
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9.0 FINAL TARGETING

When the long range surveillance system has detected, tracked

and classified a target to the best of its ability, one generally will

still not know the target position well enough to launch a weapon

system against it. It may also be politically unacceptable to launch

an over-the-horizon weapon without a final classification system

that will confirm the target classification made at long range. There

are many unsolved research problems inherent in end point targeting

and classification. The first targeting could be done using a deploy-

able sensor (perhaps a sonobuoy field) in conjunction with one or

more aircraft and a weapon system.

A strike system designed to destroy a submarine must obtain

*positional information about the submarine relative to the strike air-

craft. In order to ascertain this information, a sonobuoy field may

be used. The field must contain enough buoys to obtain sufficient

observables for determination of the necessary position and velocity

* information. The optimum number is scenario dependent. The desig-

nation aircraft which accomplishes the target function must derive

the information from the observables and transfer this information

to the strike aircraft which must, in turn, establish an attack posi-:1 ' tion and launch its weapon. The type of weapon guidance used is

also scenario dependent. The weapon must enter the water near

enough to the submarine to allow the terminal sensor to find and

F lock onto it. A stealthy attack is required in order to negate the

target's ability to employ countermeasures or counterthreats and

to deny performance of its main function. Thus, a detailed analysis

of the scenarios, function and operational capability of such a sonobuoy

field target strike system must be performed. From earlier ORINCON

studies performed for NADC, it appears that there may be fundamental

observability problems which must be investigated. Problem areas

include the strike scenario, the prediction of target position and

velocity, the weapon guidance modes, transfer alignment and the

effect of the terminal sensor.
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The problem of utilization of a sonobuoy field to obtain target-

ing information and to perform a strike mission against a submarine

using guided weapons requires a detailed consideration of system

options and their accuracies. Targeting utilizes the sonobuoy refer-

ence system to obtain the position and velocity of the submarine

relative to the aircraft. This includes the aircraft Doppler and

inertial navigation systems, and an azimuthal measurement. The

interferometric angular determination requires an antenna pair base-

line on the aircraft and a transmitter on the sonobuoy. The targeting

* of the submarine has uncertainties involved due to the aircraft inertial

system and interferometer errors. These cause a degradation of the

submarine location and velocity relative to the designation aircraft.

It has been found that with the use of sonobuoys this designation

problem is highly sensitive to aircraft maneuvers.

When the designation aircraft is not the strike aircraft, further

problems occur. In particular, the strike aircraft position relative to

inertial space is in error due to its inertial navigation system errors.

Thus, since the designation aircraft position relative to inertial space

also contains uncertainties, the location of the strike aicraft relative

to the designation aircraft is in error. This implies an additional

* uncertainty in the location and velocity of the submarine relative to

the strike aircraft.

The performance of the strike system may be affected in various
ways. Of course, the basic intent and, thus, the ultimate performance

measure is that of destroying the submarine. In order to accomplish

this, the weapon must be placed within a certain volume about the

submarine in order to assure that the terminal sensor can activate

and lock onto the target. Failure to place the weapon within this

'boundary will result in an unsuccessful strike, and is due to the

' .system errors discussed. These errors are dependent upon strike

parameters such as launch range, type of guidance laws and systems,

number of sonobuoys in the field, proximity of strike aircraft to
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designation aircraft and ability of the designation aircraft to maneuver

* to obtain the proper observability.

Another performance measure is that of the ability of the

aircraft to survive any counterthreat. This may require a "launch

and run" scenario rather than an "on-station until destroy" scenario.

The ability of the strike system to fire at long range is certainly

important in the counterthreat environment. Other measures include

the ability to distinguish real from imaginary threats, to acquire,

designate and strike quickly and reliably.
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