AD=A083 209 BOEING AEROSPACE CO SEATTLE WA F/6 9/2
COMPUTER PROGRAM MAINTENANCE. ONE OF THE SOFTWARE ACQUISITION E--ETC(U)
DEC 77 O C WHITMORE» R D BIVANS, D L BOWIE F33657-76~C-0723

UNCLASSIFIED D180=-22812-1 ASD=TR~78-43 NL

o &
' 32

= .
‘k rX

s ="

| fie

i2s flig e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

4~ X

ADAOB3209

ASD-TR-78-43

COMPUTER PROGRAM MAINTENANCE
One of the Software Acquisition
Engineering Guidebook Series

DIRECTORATE OF EQUIPMENT ENGINEERING

DEPUTY FOR ENGINEERING
ELECTE
DECEMBER 1977 APR 1 7 1880
B

TECHNICAL REPORT ASD-TR-78-43
Final Report

Approved for public release; distribution unlimited.

AERONAUTICAL SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

80 4 17 080

R . S P P v . -

NOTICE

NVhen Government drawings, specification:, or other data are used for any pur-
pose other than in connection with a definitely ralated Government procurement
operation, the United States Government thereby incurs no responsibility nor any
obligation whatsoever; and the fact that the government may have formulated,
furnished, or in any way supplied the said drawings, specifications, or other
data, is not to be regarded by implication or otherwise as in any manner licen-
sing the holder or any other person or corporation, or conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

This report has been reviewed by the Information Office (0I) and is releasable
to the National Technical Information Service (NTIS). At NTIS, it will be avail-
able to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

YWl d Wt

RICHARD W. ITTELSON,
Technical Advisor
Directorate of Equipment Engineering

Deputy for Engineering
FOR THE COMMANDER

Yo%

OHN S. KUBIN, Colonel, USAF
Director, Equipment Engineering

"If your address has changed, if you wish to be removed from our mailing list,
or if the addressee is no longer employed by your organization please notify
N-PAFB, OH 45433 to help us maintain a current mailing list”.

Copies of this report should not be returned unless return is required by se-
curity considerations, contractual obligations, or notice on a specific document.

AR FORCE/36780/27 March 1980 — 400

—— i P gl il e
i w x PR Tles : R P E <
e - o . "

UNCLASSIFIED - @EA

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BEP AP NSTRUCTIONS _
'vk_é' / 2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
- V = ERED
LOMPUTER _PROGRAM #AINTENANCE}" One m‘ Fheel 9) Final e PT. 5
. Software Acquisi on_Engineer ing
' 4 §§1debook‘Ser1es. _ 0
/] S— D180-22812-1
g 7. AUTHOR(s) . R(s)
3 D. C.[Whitmore M. P.[Kress /
: \0 1 R 0./Bivans }5)F33657-76-c-gr23
5 N D. L. [Bowie |
| S RERFPORMING ORGANTZATION NAME AND AD?JS 10 T ROTRAW ELEWENT. FROJECY,
2 Boeing Aerospace Company i
¢ PO Box 3999 . pe6a740F (1o '
Seattle, Washington 98124 S Project (2238 ‘
F -« : 11. CONTROLLING OFFICE NAME AND ADDRESS g X
TR HQ ASD/ENE (111} Decammimin??
- : Wright-Patterson AFB, Oh 45433 ' 100
) . 4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Otfice) 1S. SECURITY CL ASS. (of this report)
: }. , UNCLASSIFIED
2 ¥ 1Se. DECL ASSIFICATION, DOWNGRADING
SCHEDULE
]

~

6. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release, Distribution Unlimited

7. DISTRIBUTION STATEMENT (of the adetract entered in Block 20, if different from Report)

8. SUPPLEMENTARY NOTES

i 19. KEY WORDS (Continue on teverse side if necessary and identify by block number)

Software Acquisition, Acquisition Engineering, Software Maintenance, Computer
Program Maintenance, Software Change Management, Software Change Control, \
Software Certification, Software Interim Contractor Support, Software Llfe
d Cycle Costs, Support Software

% ABSTRACT (Continue on reverse aide I necessery snd identity by block number)

; This report is one of a series of guidubooks whose purpose is to assist Air
. Force Program Office Personnel and ot:er USAF acquisition engineers in the
" acquisition engineering of software for Automatic Test Equipment and Training
- Simulators. This guidebook describes the software maintenance life cycle,
; including maintainability, maintenance tasks and required maintenance

i resources. E
K N a V\i\ ‘ -

DD 5305, W73 F1ED
o é SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

i U - e . I P me e e ———— o A E - - e 3 ———— ——
" . o - -

. S . . R
- - . o~ - A ‘e e e e el s . - . 4 -~

B

o Wﬁ wwlﬂc.i\-

POREWORD

This guidebook was prepared as part of the Software Acquisition Engineering

~-----Guidebooks contract, F33657-76-C-0723, _ It describes the software maintenance

life cycle; maintainability attributes; detailed planning and maintenance tasks;
and required resources. Responsibilities of the software acquisition engineer
and development contractor are identified. The ground systems under specific
consideration are training simulators and automatic test equipment.

This guidebook is one of a series intended to assist the Air Force Program
Office and engineering personnel in software acquisition engineering for
automatic test equipment and training simulators. Titles of other guidebooks in
the series are listed in the introduction. These guidebooks will be revised

periodically to reflect changes in software acquisition policies and feedback
from users.

This guidebook reflects an interpretation of DOD directives, regulations and
specifications which were current at the time of guidebook authorship. Since
subsequent changes to the command media may invalidate such interpretations, the
reader should also consult applicable government documents representing
authorized software acquisition engineering processes. This guidebook contains
alternative recommendations concerning methods for cost-effective software
acquisition. The intent is that the reader determine the degree of applicability
of any alternative based on specific requirements of the software acquisition
with which he is concerned. Hence, the guidebook should only be implemented as
advisory rather than as mandatory or directive in nature.

This guidebook was prepared by the Boeing Aerospace Company.

DTIC z =Y

UNANNOUNCED a

ELECTE JUSTIFICATION
APR 17 1980 & .
BISTRIBUTION/AVASLABRITY CRDES
B Dist. AVAIL. and/Or !PEE

A

111

This Software Acquisition Engineering Guidebook is one of a series
prepared for Aeronautical Systems Division, Air Force Systems Command,
Wright-Patterson AFB OH 45433. Inquiries regarding guidebook content
ghould be sent to ASD/ENE, Wright-Patterson AFB OH 45433. The following
list presents the technical report numbers and titles of the entire
Software Acquisition Engineering Guidebook Series., Additional copies of
this guidebook or any other in the series may be ordered from the Defense
Documentation Center, Cameron Station, Alexandria VA 22314.

ASD-TR-78-43, Computer Program Maintenance

ASD-TR-78-44, Software Cost Measuring and Reporting

ASD-TR-78-45, Requirements Specification

ASD-TR-78-46, Computer Program Documentation Requirements

ASD-TR-78-47, Software Quality Assurance

ASD-TR-78-48, Software Configuration Management

ASD-TR-78-49, Measuring and Reporting Software Status

ASD~TR-78-50, Contracting for Software Acquisition

ASD-TR-79-5042, Statements of Work (SOW) and Requests for
Proposal (RFP)

ASD-TR-79-5043, Reviews and Audits

ASD-TR~-79-5044, Verification, Validation and Certification

ASD-TR-79-5045, Microprocessors and Firmware

ASD-TR-79-5046, Software Development and Maintenance Facilities

ASD-TR-79-5047, Software Systems Engineering

ASD-TR-79-5048, Software Engineering (SAE) Guidebooks Application
and Use

SECTION
1.0

iy o e A R R A AT ORI

. 2.0
. 3.0

5.0

TABLE OF CONTENTS
TITLE Page
INTRODUCTION O.....I........l.....l................l..........l..... 1

1.1 Purpose *0 P OOOGSNOIOSISIOES T 8000080000000 0 0000000 0°CRRRCOCIOONRNORCPCEOCRECOTS

1.2 scope PP P00 0000000+ + 0000000000008 0000000000060000C00CROCREECEOOOCO0OC0FRTS

1
1
1.3 TS and ATE overView 000000000200 NORRNIOIOOBORNLECNOEDRLIOGEOIOBOOOS 2

1.3.1 TS System Characteristics @0 000 0CCEO0OGOOORPROIOIOIOPOIOEOSIONOIPOIOSTOEODN 2

1.3.2 ATE System Characteristics (A A B N RN NENNEN AN NN NN NN YNNI 2
1.4 GuidebOOk organization G000 0C00LSOOPEOLIIBNOENNCOPOPROOOIBSOIOSNOIONOROOOTIOTDN 5
APPLICABLE DOCUMENTS P00 0000000000000 000000000 ROCRRRROORNOOORORBRIOGEROOINOOOOON 7
SOFTHARE MAINTENANCE OVERVIEN S0 0 00O O OISO LSEGLIOCNCEILIOOSEONOOIOORPRIOOIOOOIOITDNES 9
1 Software Maintenance and Maintainability seeeeecesscsscceccccee 9
2 Maintenance Life Cyc’e OO 0P OPOOBOCEIBTOIOIVPONOECEIOOIOIOONOIOIOSIOEOSIOEDOIBOOES 14
.3 SOftware Maintenance TaSkS S0 0000000060 0060008000000000000COBOLBIEEDS 17
4

Unique Considerations for ATE ..ccececscccccoccsecccsccccscsss 23
3.5 1 Unique Considerations fOr TS ccecesescecssssecccescsscscscass 25

PLANNING FOR SOFT“ARE MAINTENANCE LA A R R R ENENNNNENENNNNE NS NNENNNNNNYENNNN) 27
4.1 Software Maintenance P1anning ProcCess eeeecescessccccsccscces 27
1.1 Maintenance Analysis and P1anning eeeececccessccceees 27
1.2 Life cyc]e Cost Trades [A XA N E NN NN NN NN R NN NN NN N NN NN NN NN 28
.1.3 Resource p]anning 00 0000000 OECOCOESOIEINOPOPOOSIONOIONOOIORPTOIOIONTIPDPTIEITS 30
1.4 Organization Responsibilities and Interfaces c¢ceceeee 32
1.5 Formal Reviews of Maintenance Plans ceceecesecccccsaces 32

aintenance Planning Documentation .eeceeccccccccscscccsscess 33
TE and TS Variants [AN A R AN ENENEENNEN N NN ENN NN NN NN NN NNNNNNN] 34

4.3;1 ATE Software S8 0000000000 C0C0P0RO0RR0CROIOSOIOIOIONOINONRITOGEDS 34
4.3'2 Ts software 0000 0000000005000 00060008000800000060COCROSGIDS 37

SOFT"ARE MAINTENANCE ACTIVITY 98 0000000000000 09°00PCFPR0CCGCEROININIONOONOROIOROPOPTSDS 39

5.1 TS Software Maintenance G000 CNOERLOOODNROIENCEOEOENIOIOOIOPOBSOIOOETNPTOS 39

5.1.1 IntrOduction 0000000 ORNDOEOIOOOOIDOOEDNDONOOISOBDLONGOIBOIOGOLES 39
5.1.2 Processing of Authorized Software Changes .ceceeccecee 42
5.1.3 Specific Software Maintenance Tasks ceccsscsvsocscces 42
5.1.4 Pitfalls to Avoid in TS Software Maintenance .ceceees 47

Wy B

L

SR —

SECTION

6.0

7.0
8.0
9.0
10.0
11.0

TABLE OF CONTENTS (Cont.)
TITLE Page

5.2 AT SOftware Maintenance IR NE NN BENENNNNNERENEENNNENNNENNENENNRENN RN) 49
IntrOduction I FE N NN NEERN SN ENEENNNENNBENNNNENNNNERENENNNNNN] 49
Major Areas Of ATE SOftware cceececccocscsccsssesceee 49
Attributes of Maintainable ATE Software .ccececececces 49
Examples and Sources of Changes to ATE Software 50
Development and Maintenance of ATE Test Software 51
DEbugging Test SOftware I RN R NN ERNENEENNERNENNNNNNNNENREN NN] 60
ContrO] Of ATE SOftware PSS COGEPOOLPPEISLPPOOIOIONOIIISTIPDIDOGEOES 61
Pitfalls to Avoid During ATE Software Maintenance ... 61

L L L] .
* L4 Ll

[
L

.
W NN N BN =

(SIS WS NS, RO NS, MO NS,
L

NN NNNNN m
o

5.3 Change Management 2P 00N PNPBP0OIDNEONONIPPIOBOEEROONEPNOEONIOBROEBOIEBODN 61

Change Management Definition ceeeseeesscscesescssscss 62
Baseline Management (AN ERNNENNENERENEEENNENRNENERNNNNENNNXNENX] 62
Support and Control Software ccceeeeccesscscensescces 63
Change Management Reports, DOCUMENtS secvecesscoscses 64
Change COntro] S 0B S BSOPPONR RN COOTROINSNSOROPORAONOSIIEYS 65
Configuration Accounting ceeecsececscscescscscsscassces 65
Software Change Control Board seesevececcccscscccsass 65
Responsibilities of USAF and Contractors eeeceeccceses 67
Maintainability of Source Program Code and

Documentation [X RN E N ENNNNENNENNEENENENNENNNNENENNNENNNNNENNZE) 67
Typical TS Change Management System ..ceeseeseeeceses 67

.
[
[}

[, (SRS NS IS NS NS NS NS, N,]
.

w € LD W W W W W W
L]

OO~ WN -

SPECIAL REQUIREMENTS FOR SOFTWARE MAINTENANCEeceeveevccscscse 69
6.1 Maintenance Support Environment ..eeeseecccscscesecescscscsses 69

6.1.1 Computer Aids to Software Maintenance sceeecevesesecss 69
6.1.2 Types of Computer AidS seececcscecscascsscssesscsccss 69

6.2 Program Management Transfer and System Turnover ...ceceesecesss 70
6.2.1 Major Elements of Transfer/Turnover Planning .ceeeee. 71
6.2.2 Transfer/Turnover Planning ProCessS .eceecccccscsssecse 71
6.2.3 Interim Contractor Support and Life Cycle Costs ceoes 73
6.3 Software Maintenance Training ceesecessscsseccccccsocscscssccse 73
BIBLIOGRAPHY cveeesecsesss sosccccccccccnsscacsonssscecoscssasasses 1/
MATRIX: GUIDEBOOK TOPICS VERSUS GOVERNMENT DOCUMENTS ccceevecccess 79
GLOSSARY OF TERMS covevessncscsssoocccsccscssssssssacassscsssscscse 83
ABBREVIATIONS AND ACRONYMS .cccccecccccccsscsoscansassssccssencncse 87

SUBJECT INDEX Q00000002000 000000 0080000600000 00000089 0000000680080 0000> 89

vi

A PSR~ T8 1A 07 gy e, o ey ey

Wroder, ior

P G

FIGURE
1.3-1
1.3-2
3.2-1
3.2-2
3.3-1
4.1-1
5.1-1
5.1-2
5.1-3
5.2-1
5.2-2
5.2-3
5.2-4
5.2-5
5.2-6
5.3-1
6.2-1
6.2-2

8.0'1

TITLE

LIST OF FIGURES

Page

Typical Crew Training Simulator .ceecccecscccccsccsccscscncccees 3

Typica] ATE configuration 9 0C 0O PRS0 RCRNCENRNOOIOIPPOITOEOSEISIRNIOORNIONONONEOTERNDYS 4

Software Maintenance Cost EScalation ceececesccoccscccanscseee 15

Software Maintenance Life CYCle ccevscececcscoscsccsccscscncess

Software Maintenance Process [EX NN NN NN NN E NN NN EE NN NN NN NN NN NN

Maintenance Resource Planning Considerations c.ceecesecocececess

Typical Software Change Request Flow Ceseesecssecssnsosnennnen

Static Verification Program Operational FIOW cecccececccccanss

0ff Line and Real
ATE Test Software
ATE Test Software
ATE Test Software
ATE Test Software
ATE Test Software
ATE Test Software

Time Processing FAacilities ceeecececsssoncss
Requirements .eccssceesccccascocscsnscsncess
Concept Definition = Part 1 .coeeecevccececses
Concept Definition - Part 2 ceevecescocecesns
Generation cceecvcececscsscssssscscrcccccnse
Integration/Validation cceesecscssccccscsens

System Organization e.eececessccssscsssccecs

Typical Class I Change ProcessSing FIOW .cecccescscsccsscsccass

Transfer/Turnover

Schematic [EEETEEEE N NN EEREENEENENENNNENRE NN ENNENNERJSH:]

Life Cycle Cost Comparison for ICS Policy Decision eceeeecccece

Guidebook Topics Versus Government Documentation ..ceesececess

vii

16
22
31
43
46
48
53
54
55
57
58
59
66
72
74
80

Ol A A MO AU o ittt

1K
) LIST OF TABLES
TABLE TITLE Page
3.1-1 Software Maintenance FActors cececececosccccscessccscncssccsss 11
1 3.1-2 Attributes of Maintainable Software cceeccccescecscsoscoccsses 12
. 3.1-3 Programmer Errors by SOUrCe cceeescescssccoccnccsccsccccssccss 14
! 3.2-1 Software Maintenance Checklist for Technical Reviews .ccceeces 18

4.1-1 TS comp]exity options [EE R E NN NN NNNENNNERENENNNNENNRENNNNNNNNENNNNNN] 29
4,2-1 Data Item Descriptions (DID) Applicable to Software

Maintenance [FEEEE NN EENFNNENNEEEENENENENEN RN NN N NNN N ENNNNNNNNNRNENJEN] 35

5.1-1 Typical TS Software Changes ecceececcscsscccccscsscsacaccsscsss 41

-
R T IS AR T T O TR i e S W T,

B,‘ ! $ f
s | 1
, ! 1

! 3

vifi [

Section 1.0

Maintenance of computer programs in-
volves any activity which alters pre-
viously developed software. Such changes
result from error removal, operating
improvements, and changes 1in system
requirements. The software maintenance
activity is often thought to begin pri-
marily after the computer program is
delivered to the ultimate user. However,
maintenance planning begins early in the
conceptual phase and maintenance pro-
cedures are activated early in software
development. Also, software maintenance
is not 1limited to modifying program
code; it encompasses all attendant docu-
mentation.

The cost of software maintenance is a
major consideration in system engineer-
ing and it 1is a 1large component of
weapon system life-cycle costs. Thus,
software maintenance is an important
factor in system cost-effectiveness de-
sign trades and careful attention must
be paid to both the scheme for software
maintenance and the acquisition of
maintainable software. The particular
systems with which this guidebook is
concerned are Automatic Test Equipment
(ATE) and Training Simulators (TS).

1.1 PURPOSE

The primary purpose of this guidebook is

to assist AF engineering personnel
directly responsible for TS and ATE
software acquisition to ensure the
capability for the lonj-term maintenance
activities for this software are success-
fully monitored and performed. The guide-
book should also be helpful to Air Force
managers responsible for the procurement
of the total TS or ATE systems.

1.2 SCOPE
This 1is one of a series of guidebooks

related to the Software Acquisition
Engineering (SAE) process for TS and

INTRODUCTION

ATE ground-based system. Other SAE
guidebook titles are listed below:

Software Cost Measuring and Reporting

Contracting for Software Acquisition

Statement of Work (SOW) and Requests
for Proposal (RFP)

Regulations, Specification and
Standards

Measuring and Reporting Software
Status

Computer Program Documentation
Requirements

Software Quality Assurance

Verification

Yalidation and Certification

Requirements Specification

Configuration Management

Reviews and Audits

Management Reporting by the Software
Director

Software Configuration Management

The subject of software maintenance
cannot be adequately treated without
reference to many of the topics listed
above e.g.; Computer Program Documenta-
tion and Configuration Management. Thus,
salient information from these other sub-
ject areas is included or referenced in
this guidebook. The principal emphasis
in this guidebook is on maintenance plan-
ning, maintenance activities and special
requirements (e.g.: facilities, mainten-
ance tools etc.).

Maintenance of ATE and TS software is
also treated in the other guidebooks.
For example, the cost of software main-
tenance is discussed in the Software
Cost Measuring and Reporting guidebook.
The scope of this gquidebook is conse-
quently limited to exclude redundant
detail covered in other guidebooks. This
guidebook, however, provides the basic
resource material on maintenance plan-
ning and maintenance process, with
particular regard to TS and ATE systems.

Al o ke

N

1.3 TS AND ATE OVERVIEW

The purpose of this section is to pro-
vide a brief sketch of TS and ATE system
characteristics, including the function
of the software associated with each.

1.3.1 TS System Characteristics

The TS system is a combination of spe-
cialized hardware, computing equipment,
and software designed to provide a syn-
thetic flight and/or tactics environment
in which aircrews 1learn, develop and
improve the skills associated with indi-
vidual and coordinated tasks in specific
mission situations. Visual, aural, and/or
motion systems may be included. Figure
1.3-1 depicts a typical TS which employs
digital processing capability.

The computer system, integral to the
crew training simulator, can consist of
one or more general purpose computers.
The computing hardware operates with
floating point arithmetic and sufficient
bit capacity to provide efficient use of
a simulator High Order Language (HOL).

When a multi-processor/multi-computer
system is used, it must be designed such
that computers can operate simulta-
neously and are controlled/synchronized
by a single program (supervisor/ execu-
tive). The executive directs program
execution and regulates priorities.

The simulator (1) accepts control inputs
from the trainee (via crew st:tion con-
trols) or from the instructor operation
station; (2) performs a real-time solu-
tion of the simulator mathematical model;
and (3) provides output responses neces-
sary to accurately represent the static
and dynamic behavior of the real world
system (within specified tolerance and
performance criteria).

Since TS simulators consist of in-
terdependent hardware and software, a
joint hardware/software development
effort is required. As the complexity of

TS increases, simulation software
continues to grow in complexity, size,
and cost. Software costs can and do
exceed computer hardware costs in many
cases. Therefore, it is imperative that
the simulation software acquisition
engineering process be subjected to
formal system engineering planning and
discipline to ensure cost-effective
procurement.

1.3.2 ATE System Characteristics

ATE is defined as that ground support
system which performs vigorous system
tests with minimum manual intervention.
ATE is used in place of manual devices
because it is more cost-effective, pro-
vides required repeatability, or repair
of the item being tested requires the
speed which only an automatic tester can
achieve (e.g., the complex initializa-
tion routine that is normally required
prior to testing a digital unit).

Figure 1.3-2 shows the typical compon-
ents of an ATE system. Note that there
are both hardware and software elements
involved. Most of the elements shown in
the figure will be found in the majority
of ATE systems, although the packaging
and interface design may vary between
specific systems.

The controls and displays section con-
sists of the computer peripheral devices
such as contreol panels, magnetic tape
cassettes or disks, a cathode ray tube
(CRT), keyboard, and small printer. The
computer {(normally a minicomputer), as
controlled by software, operates the pe-
ripheral devices; switches test stimuli
on and off; and measures responses of
the Unit Under Test (UUT) (comparing to
predetermined values). The operator main-
tains supervisory control of the testing
process through the peripherals. How-
ever, his interaction is usually minimal
since, by definition, the automatic test
feature was selected in preference to an
operator-controlled test system:

T e b at b ORATAS R AN A s il Ui, . SN AL D B A1 VIR SR G i il s W 8o ¢

J038[nuiys Butupes MaID 182IdAL “L-€'L 8anbly

JYVYMLI0S/IWVMQUVH
WILSAS NOILVLNJWO)
35043nd IVY3IN3D

JIVIYIANI
¥0SS3304d TVNIIS

A
Y H NO!lVY3IN3D

$321A3Q IN1¥0IS NO1LOW

V¥3Hd 1434 /564033y
¥31NdW0I AN3aNLS I%
11d%302 Y

NOILVYINID
TUYN2IS
3ISNOJS3Y¥ T0ULNOD

JIVAYILINI ST04INOD

40LVH340
(Illl\
YOLINYLSNI NOILVINIWNYLSNI

3 AVIdSIQ Y
IVASIA NO{LVYINID
IAVNDIES
NOILVINIWNYLSNI
% IVNSIA

uopeINbyuo) 31y 1dAL Z-€°Y aInbly

2 3IOVNONY
: 30HNOS SVILV NI
TVNIWH3L 34V SWVYHOOUd 1S31
$30IA3Q
ANIWIHNSYIW
1
p an b}
ONIHOLIMS
_l _ - 1ndino .
- -p /LNdNI Y3134dHILNI ;
{nn) (vin <
1S3l HILIVAY |~ - <
zw.mnn -] 300 1831 T SWYYOOHd [SWYHOOHd 1534 HOLVISNVHL _..
4431NI " Q3¥OLS IVYNOILVH34O0 HO HITIdWOD ;
|_ — i anv .
L ' 43LNdWOD
1 SWVYHO0Ud -
SHOLVHINID 5 Jh%%nz._mw Y318W3SSY
SNINWILS [VYNOLLYY3dO
00000
, MO14 Y
&= @ 888830
| IVNOIS/VLIVA
J AVdSIa '
: (‘0"L) ¥30HO
“ +704LNOD 39vVAONW
- Mo TVIINHOIL 304N0S b
e ® o e o
,« _, - I'.—OI.—.ZOO » H1IM HOLVYH3IHO NI SANVHOO U
1¥0ddNS i

, ﬂ B T0HLNOD

Vi T

N

ATE is normally designed to accommodate
testing several different articles of
system equipment (normally one at a
time). The maintenance level being sup-
ported by the ATE is determined by logis-
tics systems analysis.

The importance of the software portion
of the ATE system should not be mini-
mized since both the application of the
test stimuli and the measurement of the
result are achieved via software. Arbi-
trary function generation and compli-
cated wave analysis can also be accom-
plished by software and is becoming more
prevalent in the ATE systems. The cost
of ATE software is a significant compon-
ent of total ATE costs and design trades
can be performed to minimize ATE life-
cycle costs.

1.4 GUIDEBOOK ORGANIZATION

Section 1.0 of this guidebook contains
introductory material about the guide-
book, including guidebook purpose and
scope, and the guidebook's relationship
to the other SAE guidebooks. It provides
a brief description of typical ATE and
TS systems and describes the organiza-
tion and use of the guidebook.

Section 2,0 is a list of key government
documents that were referenced in the
preparation of this guidebook. Sections
3.0 through 6.0 contain acquisition
guidelines relative to computer program
maintenance; both those which are common
to most systems and those which are
unique to TS and ATE systems. Section
3.0 provides an overall perspective on
the subject of computer program main-

tenance, including identification of
specific maintenance activities. Major
elements in planning for software main-
tenance are also described in Section
3.0, as well as an introduction to the
unique considerations for ATE and TS
systems.

Section 4.0 expands on the topic of
planning for software maintenance -
especially those activities recommended
to occur early in system development.
Specific planning tasks and documenta-
tion are described, including major cost
trades. Section 5.0 concerns the actual
activity of software maintenance on. ATE
and TS systems, with particular emphasis
on change management. Section 6.0 con-
tains a series of discussions on various
special requirements for software main-
tenance; e.g., organization and facili-
ties, program turnover, and maintenance
training.

Section 7.0 is a bibliography of docu-
ments that are generally applicable to
the subject of computer program mainten-
ance. This section is an expansion of
Section 2.0, referenced documentation
and the 1listed documents augment the
material covered in this guidebook. Sec-
tion 8.0 provides a matrix tabulation
for the cross reference relationship be-
tween guidebook topics and corresponding
government documents. Sections 9.0 and
10.0 contain, respectively, a glossary
of selected terms used in the guidebook
and the expansion of all abbreviations
and acronyms used in the guidebook. Sec-
tion 11.0 is a detailed subject index
indicating which guidebook paragraphs ad-
dress the specific topics. '

T T T e

A T

L

R P NUNPIUNN

S e s

Section 2.0

The following documents bear directly on
the topic of computer program mainte-
nance for ATE and TS software:

pOD 5000.29, Management of Computer
Resources in Major Defense Systems,
26 April 1976

AFR 800-14 Vol. II, Acquisition and
Support Procedures for Computer Re-
sources in Systems, 26 September 1975

MIL-STD-483, Configuration Management

Practices for Systems, Equipment,
Munitions, and Computer Programs,
1 June 1971

MIL-STD-83468, Digital Computational

System for Real-Time Training Simula-
tors, 12 December 1975

AFLC Regulation 66-37, Management of

Automated Test Systems, 24 October
1975

AFM 50-2, Instructional System
Development

AFP 50-58, Handbook for Designers of
Instructional Systems, Vol. 1-5

AFP 66-14, Equipment Maintenance
Policies, Objectives, and Responsi-
bilities
AFR 57-4, Retrofit Configuration
Changes

APPLICABLE DOCUMENTS

AFR 800-19,
Turnover

System or Equipment

AFR 800-11, Life Cycle Costing

AFR 800-4, Transfer of
Management Responsibility

Program

MIL STD-470,
Requirements

Maintainability Program

MIL STD-1521A, Technical Reviews and
Audits for Systems, Equipment, and
Computer Programs

AFR 65-3, Configuration Management

AFR 800-8, Integrated Logistics
Support (ILS) Program for Systems and
Equipment

AFR 800-12,
Equipment

AFR 800-21, Interim Contractor Sup-
port for Systems and Equipment

Acquisition of Support

MIL STD-471, Maintainability Verifi-
cation/Demonstration/Evaluation

Applicable Data Item Descriptions (DID's)
are listed in Table 4.2-1.

- P — it

] § §
E Section 3.0 SOFTWARE MAINTENANCE OVERVIEW '
b This section constitutes an overview of until the software is finally deacti-
s b software maintenance considerations in vated from operational deployment.
3 ATE and TS system acquisition. The over- 1
i view includes: Although software maintenance 1{s often
. thought to begin primarily after the §
a. A discussion of what is meant by software has been delivered to the ulti- 1
software maintenance and how maintain- mate user, there are good reasons to
‘ able software can be developed (para- consider software maintenance starting
graph 3.1). very early in system development: i
b. A description of the software main- a. Once software development is ‘
tenance life cycle - from early planning placed under change control, software A
and analysis through system operational maintenance procedures must be fully
¢ deployment (paragraph 3.2). activated. 1
: ; c. An identification of the specific b. Software maintenance is a funda- :
: : tasks involved in various types of soft- mental factor in life cycle cost trade A
' ware maintenance (paragraph 3.3). analyses performed in early system con- 1
cept formulation. 3
}. d. An introduction to major differ- :
3 ences between ATE and TS that have c. Planning for software maintenance :
‘ unique 1impact on software maintenance (organization, facilities, tools, skills,
. (paragraphs 3.4 and 3.5). etc.) begins before the System Require- 1
g s ments Review (SRR). :
’ This overview provides a context and ¢
. working language for the descriptive d. Development of maintainable soft-]
sections that follow: Maintenance Plan- ware is an important consideration in
ning (Section 4.0); Maintenance Activity deriving software requirements and soft- i
(Section 5.0); and Special Requirements ware maintainability should be demonstra- 3
: (Section 6.0). ted during system development. ;
i ' Before proceeding with the overview, the 3.1 SOFTWARE MAINTENANCE AND MAINTAIN-
= i concept of ‘“software maintenance" is ABILITY
¢ defined. Software maintenance may mean
. : different things to different persons, The subject of software maintenance, as]
§ but a generally accepted idea is that it regards software acquisition engineer- _
: pertains to any activity that alters pre- ing, has two major aspects: 3
§ viously developed software (coding, docu- {
¥ mentation, data base). This simple a. Maintenance cf software i
4 definition avoids the complication of ;
g describing what kinds of software changes b. Development of maintainable soft-
l are included under "maintenance" or ware
i having to specify when software mainte-
‘ } nance occurs during the system 1life The first aspect concerns how software
; cycle. It encompasses all types of soft- is to be changed (corrected, updated,
L f ware changes, regardless of cause or etc., including plans for maintenance
L 3 scope, and it applies throughout the sys- facilities, equipment, personnel, etc.).
\ ‘ tem 1ife cycle; from the first time a The second aspect concerns how software
‘ set of established code is changed or can be designed and developed so that it i
corrected during dinitial development is easily maintained. Both aspects of l
WA T
. 9 A
p- FRECEDING FAGE Blabi=-NOT FLLED
N
T " ¥

software maintenance include all three
components of software: (1) computer pro-
gram code, (2) program documentation, and
(3) initialization data base. Program
firmware is also included under software
maintenance, as it does not belong gener-
ically to computer hardware in the main-
tenance sense (i.e., changes to program
code).

The distribution between "maintenance of
software” and "maintainable software" is
clarified in Table 3.1-1 by listing the
factors or considerations associated
with the two maintenance aspects. Mainte-
nance of software is described by a list
of planning elements and by the sequence
of tasks to accomplish a typical soft-
ware change. The activity of developing
maintainable software is described by a
list of major considerations/objectives.

Maintenance of software, the first as-
pect, is discussed at length in Sections
4,0 through 6.0. The development of
maintainable software, primarily the re-
sponsibility of the system contractor,
is discussed in the balance of this sec-
tion. Computer aids to software mainte-
nance (related to maintainability but
also a resource for software mainte-
nance) are discussed in paragraph 6.1.

Although the development contractor has
principal responsibility for developing
maintainable software, the Air Force has
an important role in defining maintain-
ability requirements, planning resources
for enhancing maintainability, and moni-
toring contractor-efforts to provide
software maintainability. Since the Air
Force will usually acquire organic soft-
ware maintenance capability, it has
substantial interest in assuring that
maintainable software is developed.

Maintainability is a somewhat relative
term, however, it is possible to differ-
entiate between good and poor software
maintainability. That is, the character-
jstics of software that enhance or
thwart easy maintenance have been iden-

tified by various studies and surveys.
For example, a 1971 study. (Reference 8,
Bibliography) contracted by the Elec-
tronic Systems Division, AFSC, included
an analysis of factors that inhibit the
effectiveness of maintenance program-
mers. One researcher concluded that soft-
ware 1is often not configured to har-
monize with human traits. For instance,
the programmer may have difficulty in
finding information in the code and docu-
mentation which is relevant to solution
of a specific maintenance problem. One
solution is to provide conceptual group-
ings in the code and in the documenta-

tion which are coherent with each other. -

The problem of software maintainability
is closely allied with sources of pro-
grammer errors. A study by Youngs,
reported in Reference 6, Bibliography,
produced an analysis of error sources. A
statistical breakdown is shown in Table
3.1-3. These error sources underline the
importance of good coding structure and
programming style. Reference 6 also has
an extensive compilation of language-
type errors for different languages.

The Air Force roles in acquiring main-
tainable software (identified earlier)
can be facilitated by use of a checklist
on "Attributes of Maintainable Soft-
ware." There is presently no industry
standard for such a list, however, the
checklist provided in Table 3.1-2 in-
cludes attributes that are frequently
mentioned in the 1literature. Improve-
ments to the list may become apparent
through consistent use.

Procurement of maintainable software
requires that system requirements be pre-
pared and then produced software be eval-
vated against those specific require-
ments. Otherwise, software maintain-
ability is left to the whim of the devel-
opment contractor. Improved methods for
specifying and measuring software main-
tainability are needed. Reference 1, Bib-
liography, discusses this problem and

- -
-y

P I
/"' B
- .
2
75" L

Table 3.1-1. Software Maintenance Factors

® Life cycle costs trades
® System design maintenance requirements
Planning
® Maintenance policy/procedures
MAINTENANCE @ Maintenance support environment
) (facilities, org, resources)
oF)
SOFTWARE ® Definition of required change; impact
assessment
Maintenance ® Change approval and control
Tasks ® Program structure analysis; modification
design
(Typical Update)
® Code and debug
® Verification, validation, and
certification
o Data base and documentation update
DEVELOPMENT ® Maintainability criteria and quantitative requirements
OF ® Specific design and documentation standards/guidelines
MAINTAINABLE @ Computer aids to software maintenance
SOFTWARE @ Maintainability assessment at PDR and CDR
® Maintainability demonstration; maintenance records analysis

11

O - .
e

Teble 3.1-2 Attributes of Maintsinable Softwere (Sheet 1 of 2)

z MODULARITY. Good modularity provides:

, (a)
(b)
(c)

N

Input/output separation from computation
Singular functions and limited size modules

Simple interfaces between modules

ORGANIZATION. The program design and documentation are

similarly organized and provide:

—_ (a)

— (b)

; S ()
R ()
(e)

Top down structure

Conceptual groupings

Straightforward, easy to understand design
Common data base

Common symbology and cross-referencing between
documentation and source code

LANGUAGE. The programming launguage and its use is matched to

(a)

(b)
(c)
- (d)

(e)

. user experience and provides:

Meaningful syntax with respect to intent of reverenced
entities

Use of HOL
Limited restrictions and exceptions
Compactness between references and referent

Transferability between computers

NOTATION. The notation style provides:

(a)

(b)
(c)

Frequent comments and brief identification of conceptual
groups '

t

Use of parentheses to clarify order of computation

Variable names that give mnemonic clues to meaning of
variable and avoid duplication or confusion

12

-

~—E e

T AT T T R g, N dogyY. g m g -

;Fr o e - o

it

{ Teble 3.1-2. Attributes of Maintsinable Software (Sheet 2 of 2)

EXPLANATION. The documentation provides:

« (a) Clear statement of top-level and derived requirements
] behind software design

(b) Concise discussion of purpose and strategy for a module
or interface organization

; (c) Good cross-referencing for all media

oA A T

Y D LT

s 13

MIL-STD-471 addresses to maintainability
verification, demonstration, and eval-
uation.

Table 3.1-5. Programmer Errors by Source

% of all Errors

“Assignment”, 27
accounting for

"Allocation", 15
accounting for

"Iteration", accounting for 9

"1/0 except formatting", 7

accounting for

"1/0 formatting", 6
accounting for

"Parameter/subscript list", 5
accounting for

"Conditional execution", 5
accounting for

"Vertical delimiter”, 4
accounting for

3.2 MAINTENANCE LIFE CYCLE

As mentioned in the previous section, it
is appropriate to consider software main-
tenance activity as starting early in
systems development. The point was made
that planning for software maintenance
begins even before the Systems Require-
ments Review (SRR). The importance of
early planning and the progression of
software maintenance activities over the
system life cycle are principal topics
covered in this section. A checklist of
software maintenance factors to be con-
sidered at formal reviews (SSR, System
Design Review (SDR), Preliminary Design
Review (PDR) and Critical Design Review

CDR) is also included in this section.

14

Early planning for software maintenance
has several objectives, for example:

a. Contribute to preliminary design
concepts, e.g., via life-cycle cost
trades. These trades, in turn, impact
software maintenance policies and pro-
cedures.

b. Establish design requirements,
e.g., for maintainable software.

¢c. Specify resources and policy/
procedures for software maintenance
throughout development and deployment
phases.

The importance of good planning (includ-
ing studies and analyses) can hardly be
overstressed because of the high lever-
age that such planning has on long-term
costs. Figure 3.2-1 illustrates, on a
relative basis, the exponential rise in
software maintenance costs over the
course of system development and opera-
tion. Software modification or error
correction becomes so costly in later
phases that high penalties are paid for
poor maintenance during early develop-
ment. One reason for the high cost of
late maintenance is the "domino effect"
of changes propagating through an inte-
grated software system. This “domino
effect" can cause software maintenance
programmers to contemplate a complete
redesign rather than attempting major
modifications. In other words, it is
sometimes less costly to start over than
it is to modify an old design.

Software maintenance planning and activi-
ties are not performed in a vacuum; they
are accomplished in concert with other
system development/operations activi-
ties. An illustration of the maintenance
life cycle is provided in Figure 3.2-2,
in which software maintenance activites
are shown as a function of system phase
and along with interrelated activities.
Also, identified in Figure 3.2-2 are
principal documents that can be impacted
by software maintenance considerations

L
:
i
2

!

RrERN

T RE

3
-l
A m
>
4
<] > 3
: b
o 73
3
@x
W

8J9A2) 8417 douBUIIUIEW BIEMIJOS

2-Z°€ anbly

%
NOS !
X3ANI NOILVHNDIINOD ' 23dS |1 LHYd TVNIY
1SITSNLVLS 3ONVHO dSIHD | IAVNNVI SHASN dsidd dsiyd
NOILAIHDS3A 3DV4HILNI 423! IVANVIN HIWAVHOOUd | STvSOdOYd HO3L 4as S1N3IWNJ0Q
aaa S1HO043Y 1531 | 18171 SNLVLS FONVHD SNV1d 1531 d44/MOs Aa31vi3y
IVNANVA SHISN | SIHNAIDOHd 1S3L X3ANI NOLLYHNODIINOD dWd J3dS SM -IONVNILNIVN
IVNNVIN HIWWNVHOONd NOS | dIHDS30 N9IS3A 30VIHILNI dadd doa
03dS I L¥vd QaA | 03dS Il L¥vd "14vHA 23dS | LHvd o04
vod vod Mﬂmuﬂu
201 Y04 Qo Had Has HYS HOIVIN
ONINIVHL
JONVNILNIVW e
NOILVYH1SNOW3Q
OBAAe B ONILSIL IDNVYNILNIVN © $34NA3004d
B AJIN0d
3lvadn 3Lvadn ANIWIOVNVYI ONINNV
3ISVEVivGe ONINNY 4 3ONVNILINIVI @ IN3IWdOT3A3Q o 328N0S3Y
JONVYNILNIVA ¢
31vadn NOILYATVAS ALITIBYNIVINIVA © NOILYNIVA3
NOILVLIN3INNDOA ® TVSOdOHd e |SLNIWIHINDIY S3ILIALLIV
ONINIVHL AIONVYNILINIVIA @ IN3IWAOT3A3Q FONVNILNIVA
SNOILLVYDI4Ia0n ONINNY1d W3LSAS e JYYMLH0S
Horvin e NOILVHVd3IHd STYANYIN @ ‘INIVWN Q3v13Q e AVdIONIHd
$3avHl 1S0D
SNOILO3YHO0D 31vQdN NOLLYLININNDO0A @ SNOLLVOI4103dS FTI0A2 341 @
JHVMLIO0S ¢ SLWODY N9IS3Q e
ORAA ‘SNOLLYII4IGONW HOTVIN e SISATVNY
SALNIWIAOHIWI $3avul ONIHIINIONI
32HNOS3Y IONVNILNIVIN ¢ SNOILOIYHOD IHVYMLE0S @ NDIS3A WILISAS e | 3ONVNILNIVA o
(3SVHJ)
SNOLLYH3IdO
/ INFWAO143Q IN3WE013A3A 3IVIS V1IN NOILVOIVA IVNL1J3DNOD ALIAILOV

WYHOO0Ud

16

r g o T

e

- -

or are closely allied with maintenance
planning and activities. This chart pro-
vides an overview of the software mainte-
nance role in the system acquisition pro-
cess and it 1lists specific activities
directly related to software mainte-
nance. The planning activities, espe-
cially during the conceptual and valida-
tion phases, are described in Section
4.0, The processes of TS and ATE soft-
ware maintenance, both during the follow-
ing fuil-scale development, are described
in Section 5.0,

Figure 3.2-2 also notes the major re-
views and audits associated with system
acquisition. The role of software mainte-
nance 1is further specified in Table
3.2-1 which is checklist designed to be
used at SRR, SDR, PDR, and CDR. This
checklist was derived from MIL-STD-1521A
and should prove useful in assuring that
software maintenance is given appropri-
ate and timely attention.

3.3 SOFTWARE MAINTENANCE TASKS

The process of performing software main-
tenance on TS and ATE systems is des-
cribed in Section 5.0. However, the
basic tasks involved in software main-
tenance are introduced in this section.

Software maintenance has been defined as
any activity that alters previously
developed software and software is said
to include program code, documentation,
and data bases. The specific procedures
followed in software maintenance depend
on both the nature of change to be incor-
porated and on the particular maintenance
environment (resources, organizational
responsibilities, phase of system devel-
opment/deployment, etc.). Aside from
specific variations in procedure, a gen-
eral sequence of tasks is as depicted in
Figure 3.3-1., This generalized process
involves the following:

a. Change requirement. The need for a
software modification 1s defined. Causes
for change include:

17

(1) Coding errors detected from

tests
(2) Module design problems

(3) New system requirements; e.g.,
capabj]ities; missions

(4) Operating
timing

improvements; e.g.,

(5) Interface problems between mod-
ules, components, CPCI's' and/or system
hardware.

b. Change analysis and impact assess-
ment. Alternative solutions for impTe-
menting the required change are identi-
fied and evaluated. Impact of change on
other software and hardware components
is assessed.

c. Change approval and planning. The
proposed change is approved by a change
control authority; e.g., change board.
Plans for the modification are specified
in terms of resources (equipment, person-
nel, etc.), schedules, and policy (e.q.,
selection of control procedures, re-
quired testing, etc.).

d. Change control procedures. The spe-
cific procedures and organizational re-
sponsibilities for controlling the modi-
fication are implemented.

e. Modification design. Design changes
based on program structure analysis, are
specified and documented.

f. Code and checkout. New or revised
modules/components are coded and then
tested in a stand-alone mode. Coding is
debugged as required.

g. Verification, validation, and cer-
tification (V,V&). The modified CPCI is
verified and then validated when integra-
ted with the full hardware/software sys-
tem. If the system had been previously
certified, then it would be recertified.
A1l documentation, data bases, etc.,

t
t
}
i
i
i
.f

e e

[T

* PTR e~

Table 3.2-1. Software Maintenance Checklist for Technical Reviews (Sheet 1 of 4)

SYSTEM REQUIREMENTS REVIEW (SRR)

Does the Integrated Logistics Support Analysis (LSA)
adequately reflect software maintenance requirements? Do the
LSA data provide sufficient input to define design
requirements?

Are the reliability and maintainability analyses adequate for
establishing software design requirements and software
maintenance planning?

Do the 1ife cycle cost analyses include system design/
maintenance trades?

Are configuration management plans sufficiently complete to
assure quality software development and maintenance?

Is software maintenance adequately considered in system
requirements trade-off analyses?

SYSTEM DESIGN REVIEW (SDR)

Is software maintainability considered for mitigating
technical program risk?

Is the contribution of software maintenance to program
concepts; unit costs, equipment and facility requirements;
skill requirements identified?

Do trade studies include:

(a)
(b}
(c)

(d)
(e)
(f)

Operation design vs maintenance design

Automated vs manual operation

Built In Test Equipment (BITE) vs separate support
equipment

Life cycle costs vs programming language
Life cycle costs vs system performance

Functional breakdown between hardware, computer programs,
firmware and personnel/procedures

Is the software maintenance support concept fully specified?

18

Y T AT ST A 1

ST W

357 PRI ST

LN IR

R N SR

Table 3.2-1. Software Maintenance Checklist for Technical Reviews (Sheet 2 of 4)

% Are requirements adequately defined for:

(a) System design to support software maintenance

1 3 ib) Design of maintenance equipment

. E; (c) Software maintenance facilities

' (d) Software maintenance personnel and training

Is particular attention given to:

(&) Corrective and preventive maintenance requirements

(b) Special equipment, tools, material requirements

. (c) Maintenance analysis compatibility with weapon deployment
. constraints
i (d) Maintenance procedures for different types of software

maintenance

Are all computer program Configuration Items (CI) identified?
(Compilers, simulators, etc.) Are software maintenance
requirements specified for each type?

. Is design and planning for software maintenance based on size
and operating characteristics of the computer programs?

Are all programming languages identified that will be used in
the system and is the impact on maintenance described for each
Tanguage?

= | PREL IMINARY DESIGN REVIEW (PDR)

If off-the-shelf software is included, are maintainability
requirements adequately considered?

s TR g

Has maintenance of the hierarchical structures of the computer
programs been given consideration?

I s

Are calibration requirements satisfactorily met in software
design?

:
¢
i
§

Have trade-offs made prior to SDR been updated and verified?

L Ul T

By - ’ -

[S PN U S e . a . . R J—. S

Table 3.2-1. Software Maintenance Checklist for Technical Reviews (Sheet 3 of 4)

Have all manuals and data been identified that are needed to
support software maintenance?

Is software design consistent with maintainability
requirements specified at SDR?

Has software designed maintainability been fully reviewed and
documented:

(a) Maintainability requirements in Computer Program
Configuration Item (CPCI) Part I spec?

(b) Provisions for diagnosing errors?

(c) Maintainability design principles?

. ' (d) Maintenance demonstration plans?

(e) Software change process?

} \ _____(f) Logistics supportability?

' | Do system maintenance plans reflect software design?

, Are software maintenance plans sufficiently detailed for
. organizational responsibilities, equipment requirements,

facilities, personnel, procedures, etc.

Are plans for software maintenance data collection and
analysis adequate?

; CRITICAL DESIGN REVIEW (CDR

Are maintainability characteristics of the detailed design
. adequate?

; Is the detailed design responsive to design vs logistics
: trade-offs?

Have 1ife cycle cost analyses been updated to reflect detailed
design?

What consideration is given to Government Furnished Equipment
(GFE) support equipment? What problems exist for logistic
p support of support equipment?

"’/7 20

ae A

Tt e e v e s . D .

MW B el e g e

PRSI e s

g s -

Table 3.2-1. Software Maintenance Checklist for Technical Reviews (Sheet 4 of 4)

Are calibration requirements adequate for detailed design?

What debugging and diagnostic routines (resident and
nonresident) are available for firmware?

Do diagnostic programs (for software maintenance) comply with
system maintenance concepts and specification requirements?

How do recent predictions of quantitative maintainability
compare with CPCI requirements?

Is the detailed maintainability demonstration plan compatible
with specified test requirements?

21

R Yl w . -

CHANGE CONTROL
™1 PROCEDURES
CHANGE
CHANGE MODIFICATION CODE AND
—1 APPROVAL —{ =

REQUIREMENT & PLANNING DESIGN CHECKOUT

CHANGE ANALYSIS

&
IMPACT ASSESSMENT

Figure 3.3-1. Software Maintenance Process

2

would be updated to satisfy Physical Con-
figuration Audit (PCA) requirements.
Documentation includes user guides, pro-
gram descriptions, . listings, data base
descriptions, traceability matrices,
test procedures, etc.

As mentioned above, there are specific
exceptions to and interpretations of the
general process shown in Figure 3.3-1.
For example, during initial coding and
checkout of a module (when system is
still under development), change
approval is not usually required unless
it impacts the Part I specification.
Change control procedures will also be
rudimentary in early development, how-
ever, will be formalized when a module
or component is brought under configura-
tion control. The development contractor
will institute "semiformal" procedures;
e.g., discrepancy reports (DR), to keep
software development under reasonable
control without overburdening program-
mers with paperwork or discouraging
needed changes. Multiple configuration
versions will be allowed to accommodate
dynamic modifications to still devel-
oping software. Program support
libraries will be set up to facilitate
controlled maintenance. The software
maintenance procedures instituted for
system development will evolve into stan-
dard procedures to be employed for main-
tenance of the deployed system. Some pro-
cedures utilized during ‘development
(e.g., program patches) will however,
not be applicable to post-delivery main-
tenance.

The process of software maintenance
introduced in this section is further
elaborated in Section 5.0 with particu-
lar reference to TS and ATE systems. Com-
puter aids to software maintenance are
discussed in paragraph 6.1.

3.4 UNIQUE CONSIDERATIONS FOR ATE

Maintenance of ATE software is planned
and conducted in basically the same fash-
ion as other software. However, there

23

are unique characteristics of ATE soft-
ware and special problems in ATE acquisi-
tion that impact software maintenance.
These unique considerations are summa-
rized in the following itemization.

a. Control and support software are
generally developed 1 to 2 years before
test software (because test software
must wait for UUT definition). When con-
trol, support, and test software are
finally tested together, there are fre-
quently incompatibilities which require
a modification of the control/support
software or a "workaround" in the Inter-
face Test Adapter (ITA) hardware/soft-
ware. The latter solution is often the
most expedient but results in a differ-
ent ITA for each UUT.

b. Control and support software are
usually procured off-the-shelf from the
ATE vendor but modified for the particu-
Tar weapon system application. This.fact
has several implications for mainte-
nance; including:

(1) If the specific software com-
ponents have been used in extensive and
varied applications, then most of the
"bugs" will have been discovered and cor-
rected. Modifications to that software
may cause an early surge of errors, but
these will likely dampen out quickly. If
the software components are relatively
new or have experienced limited applica-
tion, then the software can still con-
tain a number of undiscovered errors;
some of which could cause unexpected
delays and development costs.

(2) Documentation of off-the-shelf
software may not be adequate for organic
maintenance and also the ATE vendor may
not wish to release rights to "proprie-
tary" software. The procurement agency
should be cognizant of these potential
problems and clarify software delivery
requirements at contracting time.

(3) Control and support software
is seldom subject to major modification

LV

1 during the deployment phase. Major

: changes are usually accommodated by aug-
mentation or replacement with other off-
the-shelf software.

1 : ¢c. Test software must be changed vir-
3 ‘ tually everytime there 1is a design
change in a UUT. Thus, changes are fre-
quent and must be accomplished quickly.
Support software is provided to facili-
tate rapid updates (e.g., editing rou-
tines). Consequently, test software main-
tenance 1is wusually an organic system
capability (either off-line or on-line).
One pitfall is losing configuration con-
trol. For example, program listings and
documentation can become quickly obso-
3 lete if formal change procedures are not
implemented.

J d. Self-test software at ATE stations
‘ can locate faults in end-to-end tests,

j 3 but has 1limited diagnostic capability

L . (e.g., the ATE computer may not be

: : functioning properly to support self-

] . test diagnostics). Self-test may include
§ ‘ ATE station calibration.

. e. Separate components of support

software are provided for:

(1) Station self-test

(2) Test software updates

(3) ITA self-test

(4) Control/support software main-
- tenance.

. ; f. ATE- software maintenance is

| performed by Air Force Logistics Command
(AFLC) in facilities and resources asso-
ciated with UUT maintenance. LSA's and
| Support Equipment Recommendation Data
i (SERD) are applicable to ATE software
f maintenance.

g. Changes to ITA interface software
are infrequent, but there 1is usually
unique ITA software for each UUT.

h. A major ATE pitfall which impacts

\ i ATE software maintenance is premature
ATE station design before UUT Test

24

Requirements Document (TRD) data are
sufficiently detailed. Prematire design
results in numerous downstream changes.

i. It is common for ATE factory accep-
tance test procedures to be used for
station self-test.

j. The dissimilarity between the
factory tester and field (ATE station)
tester causes UUT maintenance discrep-
ancies. The trend is for the ATE station
to be used for factory acceptance test-
ing by the UUT vendor.

k. ATE growth potential, essential to
software maintenance, 1is often ill-
defined. A growth potential of, say 20%,
is sometimes interpreted as providing
20% excess rack space. The problem of
providing spare memory is being solved
by the rapid expansion in memory associ-
ated with modern minicomputers and
micro-processors.

1. There is a trade-off between doing
test software maintenance on a host com-
puter or at the ATE station. One problem
with the host computer can be slow turn
around on batch processing. One trend is
toward use of a "“program development
station” which is much 1like the ATE
station but without ITA and UUT hardware
and test stimulus/measurement devices.

m. One ATE acquisition problem im-
pacting software maintenance is the form
and content of requirements specifica-
tion and design documentation, including
test requirements. While the control/
support software are usually defined as
CPCI's (and developed/tested according-
ly), test software is often specified by
TRD's and Technical Orders (T.0.).

n. ATE software costs can increase
due to "noise" in ATE; instruments; ITA;
or noise-sensitive UUT, resulting in
testing errors. The software must then
be modified by trial-and-error until an
acceptable error rate is achieved. Usu-
ally active circuits must be installed

1 s L

O AR Y

P

R

e A

R . : -
WA >
in the adapter to isolate the UUT, then 52; Peripherals
software developed to test the adapter. 3) Visual System
(4) Motion System
o. Detection and isolation diagnos- (5) Interfaces
tics that are achievable is determined
by the design of the UUT. If the UUT d. The computing task allocation
were designed for testability, the ATE between firmware and software (i.e.,

and software would have a simple job.
However, usually testability is required
and, as a result, the ATE and software
costs are out-of-sight needlessly.

3.5 UNIQUE CONSIDERATIONS FOR TS

Planning and procedures for TS software
maintenance are very similar to that for
most real-time software and TS software
maintenance is less unique than, for
example, ATE software. Even so, there
are unique considerations for TS and
these are summarized below.

a. Software maintenance requirements
derive from, and are dependent on,” the
training program which the TS system
supports. For example, the TS maintain-
ability goal may be expressed quantita-
tively as "X" % mission success in
supporting training for "Y" days per
week and "Z" hours per day. This impacts
how maintenance is performed (e.g., on-
line or off-line) and how preventive and
corrective maintenance are scheduled.
High utilization of a TS makes on-line
maintenance difficult, especially if
extensive software modifications are to
be thoroughly verified.

b. TS are generally maintained by the
using command rather than AFLC.

c. Because of high wutilization, TS
calibration and preflight test must be
performed rapidly; e.g., under software
control. Software aids to TS maintenance
are also desirable. Utilities for pro-
gram modification include assembler, com-
piler link loader, source editor, file
manipulation, debug and dump routines.
Diagnostic programs can be provided for
checkout of the following:

(1) Central Processing Unit (CPU),
memory

B N R

25

. - . -
e « e

between special purpose processors and
programmable general purpose computers)
is a significant TS design trade having
Tong-term impact on Tife-cycle costs and
software maintenance.

e, Portions of vendor-supplied TS
software may be modified "off-the-shelf"
programs and this can cause maintenance
problems if such software is not fully
documented. (See remarks in paragraph
3.4, item 2.)

f. Different TS software components
may be maintained under different poli-
cies and procedures. For example, modifi-
cations to software modules interfacing
with the data base supporting computer-
generated imagery (CGl) may be contracted
to the CGl system vendor, while other
software modifications are implemented
within the TS using command.

g. The magnitude of TS software main-
tenance is directly proportional to the
number and complexity of special TS
features; for example, instructor inter-
active software (including capability
for malfunction insertion or deletion).
Representative design feature trades are
described in the Pequirements Specifica-
tion Guidebook.

h. TS system acquisition 1is often
prone to design requirements being added
or refined following Part I specifica-
tion. Thus, software modification during
TS development can be both frequent and
substantial. Aggregating a number of
changes under "block changes" can allevi-
ate at least the frequency of configura-
tion changes. TS software changes follow-
ing system acceptance by the using com-
mand tend to be infrequent.

AT T v e

j
E
|

7 a g T APET

RPN TS i

ATE and TS are normally procured as in-
tegrated hardware/software systems from
a single contractor. These ATE and TS
systems must then be integrated into Air
Force operations as a total system which
then must be efficiently maintained.
Paragraphs 4.1 thru 4.3 discuss the plan-
ning aspects to be considered in achiev-
ing this required maintainability. This
planning begins in the conceptual phase
as was indicated in Figure 3.2-2.

4.1 SOFTWARE MAINTENANCE PLANNING PRO-
CESS

The maintainability of ATE and TS sys-
tems is of prime importance as it has a
substantial effect on life cycle costs;
thus life cycle costs are a major evalua-
tion factor in selecting these systems.
The following paragraphs provide an over-
all description of the software main-
tenance analysis and planning process
specific to ATE and TS software, as well
as discussions of life-cycle cost trade
studies, resource planning, organization
responsibilities and interfaces and for-
mal reviews for software maintenance.

4.1.1 Maintenance Analysis and Plan-
ning

A maintenance engineering analysis of
ATE and TS software should begin very
early in the Conceptual Phase. Referring
to the Software Maintenance Checklist in
Table 3.2-1, the first item mentioned
under SRR pertains to adequacy of the
Integrated Logistics Support (ILS) analy-
sis. An ILS plan is prepared, per AFR
800-8, under the direction (usually) of
the supporting command, assisted by the
using and implementing commands. This
ILS plan, in turn, is based partly on
the maintenance concept prepared under
AFR 66-14. Development of the mainte-
nance concept s normally led by the
using command, assisted by the implement-
ing and supporting commands.

The Integrated Logistic Support Plan
(ILSP) 1s the Air Force blueprint for

Section 4.0 PLANNING FOR SOFTWARE MAINTENANCE

all detailed logistics planning, includ-
ing software maintenance. The elements
of the ILSP (AFR 800-8) are comprehen-
sive and include:

a. Maintainability and Reliability
Interface

b. Maintenance Planning

C. Support and Test Equipment

d. Supply Support

e. Transportation and Handling

f. Technical Data

g. Facilities

h. Personnel & Training

i. Logistic Support Resource Funds

J. Logistic Support Management Infor-
mation

Although “maintenance planning” is
singled out as only one element, it fis
affected by the other nine elements. The
system development contractor also pre-
pares a Development, Test and Engineer-
ing (DT&E) plan which is called Inte-
grated Support Plan (ISP).

Proceeding to further detailed planning
for software maintenance, a Computer Re-
sources Integrated Support Plan (CRISP)
is prepared by the Computer Resources
Working Group (CRWG) with representa-
tives from using, implementing and sup-
porting commands. As stated in AFR 800-
14, the "CRISP identifies organizational
relationships and responsibilities for
the management and technical support of
computer resources.” CRISP data, as
identified in DID US-3914-ASD, carries
software maintenance planning to a
rather specific level, 1including such
items as the following:

oy R

PRECEDING FAGE BlabiX-NOT F1.08D

27

© o —

a. Devices to facilitate computer pro-
gram changes

b. Assignment of configuration con-
trol responsibilities

c. Procedures for reviewing and pub-
1ishing changes

d. Responsibilities for change schedu-
1ing and system integration

e. Personnel resources and training
plans

f. Computer facilities

g. Predicted level of computer pro-
gram changes; to size and scope the sup-
port facilities (based on expected types
of software modifications, debug effort,
and deficiency corrections)

The first draft of the CRISP is prepared
in the conceptual phase but the CRWG is
responsible for wupdating the CRISP
throughout development so that it will
be a viable plan following system
delivery.

While the CRISP is especially applicable
to post-delivery software maintenance,
the development contractor will be the
first to conduct software maintenance
(as was discussed in Section 3.0). Thus,
the contractor is required to prepare a
Computer Program Development Plan (CPDP)
with particular emphasis on software
maintenance during DT&E. The CPDP, ac-
cording to DID UDI-S-3911-ASD, should
include, for example:

a. Procedures for reporting, monitor-
ing, and vresolving program errors and
deficiencies

b. The contractor's Spproach to con-
figuration management

¢. Plans for on-site program mainte-
nance during testing

28

d. Plan for insuring program growth,
modularity, and ease of modification

e. Training requirements and equip-
ment to support maintenance

The software maintenance planning pro-
cess is considerably more detailed than
described above, but major milestones
have been identified. The software ac-
quisition engineer and manager will find
AFR 800-14 an invaluable guide to the
process and how that process dovetails
with other planning activities.

Because the software maintenance impact
on life-cycle costs is so great, this
planning activity is given special atten-
tion in the next paragraph.

4.1.2 Life-Cycle Cost Trades

Almost all the trade studiés conducted
in connection with ATE system procure-
ment 1involve some maintainability con-
siderations. This section highlights
typical 1life-cycle cost trade studies
which might affect maintainability of
software. Three such studies for ATE sys-
tems are described, followed by two exam-
ples of TS studies. (Note: The reader is
also referred to paragraphs 3.1, 4.5 and
5.3 of the Cost Measuring and Reporting
Guidebook.)

4,1.2.1 Segmented Test Programs vs One
Long Continuous Program. In this study a
decision is made as to whether the UUT
test programs should be designed, devel-
oped and configured in small, task-
partitioned segments vs one continuous
program. Segmentation, for example, has
the advantages of adaptability to
multiple UUT configurations, ease of
change management, and ease of program

development/maintenance through test-
partitioning.
4,1.2.2 Manual Programs vs Automatic

Test Program Generation (ATPG). Use of
ATPG can be of significant value in
certain ATE applications provided:

LR e Ty AT

P

PRFLN

P U

Rg T T N L Rl

a. Fault models are clearly defined

b. Sufficient computer
exist and are cost effective

resources

¢c. ATPG run times are not prohibitive

Q
Some disadvantages of ATPG usage might
be:

a. Costly additional memory require-
ments to accommodate highly specialized
ATPG software

b. ATPG run times which adversely
affect throughput of the ATE system

c. Maintenance of
software

special purpose

d. Data in ATPG output format is less
readable/changeable

Each application should be studied indi-
vidually to determine if adoption of
ATPG adversely affects software mainte-
nance.

4,1,2.3 "Third Generation ATE" vs
"Second Generation ATE". This decision
is complex and requires special study.
Third generation ATE concepts utilize
software to transform a continuous
signal into a discrete time signal by
sampling at discrete time intervals.
This, in theory, replaces the need for
individual sampling at discrete time
intervals. This, in theory, replaces the
need for individual commercial instru-
ments for performing such functions as
pulse generation, wave form synthesis,
AC signal source, and arbitrary function
generation. Some advantages over the
second generation approach are simpli-
fied maintainability of a single tester-
replaceable unit rather than multiple
commercial instruments, 1less cabinetry
and improved self-test capability. Some
disadvantages are the possibilities of
sampled data acquisition errors, dis-
crete-continuous signal conversion
errors; processing speed limitations;

29

and requires complex “unproven® soft-
ware. From a software maintafnability
standpoint, therefore, this trade must
be examined since a third generation sys-
tem introduces another source of soft-
ware errors.

4,1.2.4 Life-Cycle Cost Considera-
tions. Typical 1life-cycle cost con-
sideration which affect software

maintainability for TS are:

a. System Complexity - This is prob-
ably the most significant system
attribute impacting TS software maintain-
ability. As system options are added,
the software development and maintenance
costs rise dramatically. For example,
Table 4.1-1 shows a minimal flight
simulator functional configuration vs a
more sophisticated capability.

Table 4.1-1. TS Complexity Options

Advdncéd Feature

Basic Features Options

Cockpit displays
Visual displays
Motion simulations
Audio simulations
Control loading

Cockpit displays
and controls
Weapon system
displays
Flight control
simulations
Communications
Flight instruments
Navigation
Audio simulations
Instructor console
control
Initialization
Malfunction
insertion
Procedure
monitoring
Results
recording
Flight
conditions
Trainee Control
Consoles
CRT displays, CGI

e ek . DA . .

Each option exercised in the trainer sys-
tem configuration selection will require
a new and separate set of algorithms/
control routines integrated into the
software set. Some features may require
additional memory or possibly an addi-
tional processor. For example, in going
to a CRT type display, a peripheral
minicomputer may be needed to refresh
the CRT image. Software to interface
between the simulator computer and the
minicomputer is therefore required,
hence additional potential maintenance.

b. Disc-Operating System (D0OS). Simu-
lators which employ only core memory/mag
tape systems have limited capability.
The selection of DOS features in simula-
tor design may add significant cost, but
will afford useful maintenance features
such as mass storage, file handlers, con-
figuration control and debug aids, media
conversion and memory dump/save routines
all of which aid the job of maintaining
controlled programs.

4.1.3 Resource Planning

Resource planning for software mainte-
nance is a prime concern registered in
numerous Department of Defense (DOD)
documents governing ATE and TS pro-
curements. The following DOD publica-
tions require that software maintain-
ability be considered early in the con-
ceptual phase of system acquisition:

DOD Directive 500,29
Computer Resources
Systems

- Management of
in Major Defense

AF Reg 800-14 - Management of Compu-
ter Resources in Systems

AFR 574 - Retrofit Configuration
Changes

AFR 65-3 - Configuration Management
These government regulations establish

policy on management of computer re-
sources (both hardware and software)

30

from early acquisition phases through
system development and deployment. In
planning resources for software mainte-
nance the procuring agency and the con-
tractor must be cognizant of these
regulations, the sub-specifications and
planning documentation requirements stem-
ming therefrom. Some of these plans are:

a. Program Management Plan (PMP)

b. Integrated Logistic Support Plan
(1ILSP)

c. Computer Resources Integrated
Support Plan (CRISP)

d. Computer Program Development Plan
(CPDP)
Plan

e. Configuration Management

(CMP)

Major resources for conducting software
maintenance are identified in para-
graph 6.1.

Since the degree of software maintenance
required after development will vary
with the nature of the system, the pro-
curing agency should carefully consider
anticipated needs so as not to over/
under specify maintenance resources and

documentation. For example, since ATE
systems require frequent software
changes to accommodate UUT changes,

careful planning for the -acquisition of
automated maintenance tools and related
documentation, facilities, and personnel
is important. On the other hand, over
specifying the need for listings and
flow diagrams which may seldom be used
in the deployment phase can be a costly
requirement. Tailoring a system's needs
is accomplished through these plans and
the DID's levied on the system con-
tractor/supplier., Figure 3.2-2 shows
when these maintenance planning docu-
ments are released/updated as a function
of program phase. Figure 4.1-1 presents
the resources required as a function of
program phase. Though simplified, Figure

TR

|5

L

suonesapisuo) buruueld 921nosay daueuduiey “i- | p ainbi4

SMSVL

S304NOS3y

{0°S NOLLD3S ONV £°E "d3dd IVNNVIW "LNIVW
HdVUOVYHVd 335) SIILIAILOV JONV 14300V SNV1d VO
JONVNILNIVIN 3YVMLIOS TTOHLNOD 'OI1INOD SNVId ‘W D
H3IAONYNL 8 HIJISNVHL NOILVGQITVA/4IHIA/LS3L SNV1d HNINIVHL
LN3W40T3A3A S3ILITIOVA $S3a TVNIZ/ON83A/3A00 | ONINNVId A31vL3a ["TvNY "ON3 "INIVW SHNSVL
NOILVLINIWITdWI SIHNA3O0Nd JHNLONYLS 'O0Hd | NOILI31IS 30UNOS {S3aVHL/SIIANLS DI a3aiviay
ONINIVHL MILD JONVNILNIVIN 3Sv8 V.iVAG/NOISIA W.13Hd | NOILINIS3O SLW,D3Y ONINNYId] 3ONVNILNIVIN
————————— — — \"W‘ ———————————————
"LNIVIN/T13H
SNVIOLLSILV1S SHOLONYLSNI "LNIVIA/I3Y |3DONVHNSSY ALITVND
1HO0ddNS HOLOVHLINOD 13Y/VO | 39NVHNSSY ALITVND LNOW 914NOD
HOAL IV "LWOW "DIINOD “LWOW DIINOD SHIINIONI 1S3L
SHOLONYISNI (9SSV) SHIWWVYOOHd ‘ON3 1S3l1 {Lnn) ST%S
SHINWWVYHOOHd {10H) SHIWNVHOOUd 'ON3 NOIS3a | SH3INIONI NOIS3a| 13INNOSH3d
TOYLNOD VIA3IW/S3iHvyan
MS LHOddNS
"ANIVIW 3V 'SA "HINOD SaIv Q3ilLvoLNYy SIILITIDVS Q3yvIND3NY
LIS 34ILINK SA FTONIS 3N NO/3NIT 440 aNVv STOOL $31L1710v4 HO SIHLITIOVS
*Ovd "ANIVIW 10d3d NOILVLS "A3Q ‘D0Yd NOILVYISNOW3A | S100L1 1viD3dS ON /51001
SAYO23Y 1S313W/1S31 s;74ad
S.LV1S ONILHOd3Y IJHNTIVS SQYOJ3Y NOISHIANOD VIQIW SWILSAS HVIINIS saia SQyYoo3y
‘SOW3Qa NOILY3SNI L1NV4 SQYO03Y LIV IONVHD NO 3ONIIH3dX3 d4y SNOIL
SY3IQYO HO3AL ‘Q3204d ‘LNOD VIg3Iw NOILVYINIWNOOAQ [¥HOM JO IN3W3LVLS| -VLIN3WNDO0Q
SIVANVIN ONILVYHILO ‘a3004d TOBLNOD IONVHD ® $S3IHNA3D0Nd $23dSSsS| $3WNA3ID0HJ
Salv IVNSIA-0IaNY NOILVNIQHO00) ONINNY1d
SIVIBILVN -ONI/NI/VO NOILVZIHVITIWYS
NOSS31 GNV 3SHNOD S3ISHYNOD NOILVZIYVITIWYS d3yd SLNIW3IHINDIY
SHOLVINWIS ONINIVHL | LNSWJOTIAIA ISHNOD ONINIVHL SNV1d ONINIVHL W31SAS ONINIVYL ONINIVHL
1N3IWAO1430 ANIWJOT13AIG 3TVISIINS NOILVAITVA AVNLIIINOGD
ISVHd WILSAS

M N ST L Sy LR

O

¥ dabe r. et RN G e AL I v i o W L

31

e

A

T e T

e AR A TN v e o e

4.1-1 implies that significant integra-
tion of facilities and documentation is
required during the full-scale develop-
ment phase. This is necessary to insure
that automated tools wused to control
changes to program code are properly
tracked, configured, retested and, if
applicable, introduced into the appro-
priate design requirements documents.
This integration is achieved through
configuration management and quality
assurance plans and procedures which
assure that as built-tested, and de-
livered software meets the as-designed
configuration.

4,1.4 Organization Responsibilities
and Interfaces

Organizational relationships between the
various implementing, supporting and
using commands are extremely important
to software maintenance. The CRWG, com-
posed of representatives from all three
commands, is vresponsible for insuring
that agreements reached in the CRISP are
reflected in Program Management Responsi-
bility Transfer {PMRT) agreements. This
group 1is concerned with organizing to
achieve the following functions:

a. Organizational Responsibility Def-
inition

b. Program Configuration Definition
¢. Change Processing

d. Change approval authority and clas-
sification

e. Change accountability

f. Version recompilation, program
patching

g. Library and Media Control

h. Program verification and accep-
tance
i. Change test and acceptance
{

32

‘. .
ra e e

j. Discrepancy documentation, track-

ing, corrective action

During the full-scale development phase,
these functions are managed internally
by the prime contractor and the selected
ATE or TS system supplier. The CRISP
should define the organizational trans-
fer of these responsibilities at the end
of the development phase. Following sys-
tem delivery, ATE is maintained by AFLC,
while TS 1is maintained by the using
command. The development contractor will
also usually support post-delivery main-
tenance at least initially.

4,1.5 Formal Reviews of Maintenance
Plans

To insure that maintenance planning is
properly documented, applicable organi-
zations within the procuring agency/
contractor should take a critical look
at all maintenance-related documentation
at the various formal design reviews.
Figure 3.2-2 illustrates the major main-
tenance related documents which should
be reviewed at SRR, SDR, PDR, CDR, Func-
tional Configuration Audit (FCA), Physi-
cal Configuration Audit (PCA) and
Initial Operational Capability (IOC) and
Table 3.2-1 provides a checklist for
major reviews. The organizational
disciplines which should be represented
at those reviews and typical concerns
#hich they should register are presented
below:

Maintainability

Adequate modularity of design

Efficient use of HOL's

Effective use of automated tools

Minimum program downtime

Adequate programmer skills

Software transportability

Adequate program development/
maintenance stations

Clarity of manuals

&

et

L]
B T et aa i IR

O MR R

Configuration Management

Maintenance requirements definition
clear

CMP Plan generation/approval

Change processing mechanics

Change classification/approvals

Automated program changes vs Version
Description Document (VDD)
updates

Baseline program control

Media definition/1.D. - tapes, discs,
file names

CPCI definition :

Programming Standards, Computer Pro-
gram Library (CPL) procedures

Quality Assurance

Verification of program baselines

Change verification

Retest of changes

Change accountability

Media control - storage/handling/
environmental

Labelling of Media

Acceptance stamping of Media

Test records

Correlation of flow diagrams listings
to versions

Patch control - octal/hex vs
recompilations

Discrepancy reporting/corrective
action

Calibration software

Software Design

Functional vs maintenance design

Life cycle costs vs programming
language

Hardware vs software, i.e., Read-
Only Memory (ROM),
floating point, firmware

Efficient modeling - fault detection

Test program verification

Use of analyzers

Diagnostics/debug routines efficient?

33

4.2 MAINTENANCE PLANNING DOCUMENTATION

Maintenance documentation can be divided
into two types - planning documents and
implementing documents. Maintenance-
related documents 1in these categories
are listed below.

Planning

CRISP - Computer Resources Integrated
Support Plan

PMP - Program Management Plan

ILSP - Integrated Logistics Support
Plan

CDRL - Contract Data Requirements
List

DID - Data Item Descriptions

CPDP - Computer Program Development
Plan

CMP - Configuration Management Plan

Implementing

Part 1 Specification

Part II Specification

Interface Control Document
Programmer's Manual

Operators Manual

Version Description Document (VDD)
Configuration Index

Specification Change Notice

The guidebook on documentation describes
how these documents are related, where
they are referenced and when they are
released in the acquisition cycle. Most
of the implementing documents are called
up as deliverable documents in the RFP.
The sequence of release 1is typically
specified in the CPDP. The preparation
of these documents should be a collec-
tive effort of all the concerned organi-
zations identified in paragraph 4.1.5.
Only after proposal evaluation and
source/system selection can detailed
maintenance requirements be defined and
planned for. For example, should the

R T ————— v S

decision be made to select a system with
an immature design or unproven computer
or operating system, extensive mainte-
nance should be anticipated. Similarly,
if a system requires extensive use of
specialty/proprietary software or unique
HOL's, organic maintenance capability
for the user command may be prohibitive
and such problems should therefore be
avoided. The detailed software mainte-
nance approach, therefore should begin
subsequent to source selection. DID's
applicable to software maintenance are
listed in Table 4.2-1. Selection of
DID's for a specific system development
is a primary responsibility of the soft-
ware acquisition engineer. DID's can
also be revised to tailor maintenance
documentation to specific system require-
ments.

4.3 ATE and TS VARIANTS
ATE and TS software are sufficiently
unique in many respects to warrant

special maintenance planning considera-
tions. Some of these special considera-
tions are as follows:
4,3.1 ATE Software

a. ATE software is typically a blend
of vendor and contractor developed soft-
ware. The ATE supplier generates the
control and support software, configured
in his own format, while the contractor
will develop the interface adapter soft-
ware unique for each UUT. In planning
for maintenance of the integrated pack-
age, the acquisition agent must con-
sider:

(1) Adequate training of USAF pro-
grammers to insure sufficient understand-
ing of the selected ATE vendor's operat-
ing system.

(2) Adequate facilities for soft-
ware development, i.e., enough stations
to accommodate software development
schedules.

34

(3) Organizational
the creation of some sort of vendor con-
tractor working group available to work
the program of integration of the two
software products.

relationships -

(4) Documentation - sufficient to
insure clear definition of baseline con-
figurations for both vendor and contrac-
tor's software.

(5) Change processing,
resolution and statusing methods.

problem

b. ATE software must accommodate mul-
tiple UUT configurations. The mainte-
nance planning implication here is con-
cerned with configuration control. As
pointed out earlier, vendor-provided
automatic configuration control aids
will most likely be available for accom-
plishing code and version updates. The
procuring agency should plan, therefore,
for publication and control of master
configuration 1logs, indices or cata-
logues which cross reference UUT numbers
vs test program numbers, vs test-
stations. Accounting is accomplished by
dash number and version number as ap-
propriate to define what UUT's may be
tested by what programs on what stations
using what adapters. These are the data
items a master log or index must pro-
vide. This 1is a functional responsi-
bility most appropriately assumed by a
software configuration management group.

C. ATE software will require design
inputs from a variety of sources. The
UUT test requirements will originate
with the UUT design organization. The
UUT test program will be designed in all
likelihood by a separate test group. The
operating system design will probably
remain the responsibility of the ATE
vendor, Calibration and test software
may be the responsibility of Quality
Assurance (QA). The point is that the
system must recognize the existence of
these multiple design contributing fac-
tions and plan for the efficient inte-

y 7 b

¥
-
.
)
L
.
’
.
-
7
3
. -
&
¥
:
3
\
»
ks
£
4,
i
H
AR ‘
/,:
'

Table 4.2-1. Data Item Descriptions (‘L’)ID) Applicable to Software Maintenance (Sheet 1 of 2)

AFSCM/AFLCM 310-1/S-137
DI-3119A

DI-A-3108

DI-A-5239

DI-E-129/M

DI-E-3106
DI-E-3120A/MI
DI-E-3121
DI-E-3122
DI-E-3123
DI-E-3127
DI-E-3128
DI-E-3134
DI-E-3277
DI-H-3277/M3
DI-H-5070
DI-M-3410
DI-M-3411
DI-M-5118
DI-R-3533
DI-R-3538
DI-R-3544

Calibration Requirement Summary

Computer Program Development Specification
Configuration Management Plan

Computer Program Development Plan

Computer Software/Computer Program/Computer Data
Base Configuration Item(s)

Specification Maintenance Document

Computer Program P;oduct Specification

Version Description Document

Configuration Index

Change Status Report (Computer Program)

Advance Change/Study Notice

Engineering Change Proposals

Specification Change Notice (Computer Program)
Training Equipment Computer Program Documentation
Training Equipment Computer Program Documentation
System Maintenance Programs (Software)

Computer Program User's Guide

Computer Programming Manual

Computer Software Maintenance Manual
Reliability/Maintainability Program Plan
Reliability/Maintainability Demonstration Plan

Reliability/Maintainability Assessment and
Demonstration Reports

35

et e .« e Ve W + -

e gy A -

TR AT L g ke o PRI TS T TN ot -

s AR

L et i N AL P o mes e e N s RS

JEROES

Table 4.2-1. Data Item Descriptions {DID) Applicable to Software Maintenance (Sheet 2 of 2)

DI-R-3545

DI-S-6176
DI-T-3703
DI-T-3717
N1-T-3734
UDI-E-695/EST
UDI-E-3120B-ASD
UDI-M-3410A-ASD
UDI-S3911/ASD
UL-81-AQ
US-3914-ASD

Reliability and Maintainability Allocations,
Assessments, and Analysis Report

Ground Support Equipment Recommendations Data
Category I Test Plan/Procedures (Computer Programs)
Category I Test Report (Computer Program)

Test Requirements Document

Computer Program Development Plan

Computer Program Protect Specification

User's Manual (Computer Program)

Computer Program Development Plan

Logistics Support Analysis Data

Computer Resources Integrated Support Data

36

i o

g o

s et AR, £ 3 v

e n T

LNt e

e]

gration of each organization's inputs.
This objective is most effectively met
by establishment of a software configura-
tion management group which coordinates
inputs, publishes formal configuration
definition documents processes changes,
tracks problems, manages source
materials, code, support software list-
ings flowdiagrams, etc. This group acts
as a focal point for controlling soft-
ware configuration. Its charter is to
assure test programs are controlled at
all times in accordance with approved
plans and specifications, thereby
freeing the programmer from this cumber-
some but vital control task.

d. ATE software is subject to poten-
tially frequent change during deployment
due to UUT changes. Changes after deploy-
ment are obviously costly because of
retrofit, retest, the potential for per-
formance regression, increased red tape
in the change processing cycle etc. ATE
system growth, both in hardware and soft-
ware, must therefore be provided for to
minimize impact on testing of these un-
desirable changes. For example, a UUT
change necessitating a new stimulus or
measurement capability may require sig-
nificant software redesign, additional
memory or mini processor. System growth
potential, should therefore be carefully
considered. Active vs passive ITA 1is a
design trade which will significantly
impact software maintainability resource
planning because adapters are a prime
candidate for accommodating UUT con-
figuration changes. It 1is much easier/
cheaper to add test capability to a
single UUT adapter than to program a
change to retrofit a population of ATE
stations in deployment across the
nation. Adapters, however, as they
become more complex, have the undesire-
able feature of destroying the common-
ality/interchangeability of the overall
test station. A trade must be carefully
studied.

37

e e L e mme

4.3.2 TS Software

TS software, unlike ATE software, is
less prone to standardization of design.
For example, the central core of an ATE
system can be designed and built indepen-
dent of the application. ATE vendors can
design this core to provide a standard
set of stimuli and measurement signals.

An ATE central core composed of a cen-
tral processor, memory, I/0 and stimulus/
measurement can be designed to provide
and measure AC, DC, pulse generation,
wave form generation over a somewhat
standard range of amplitudes and fre-

quencies, irrespective of application.
TS systems, however, and associated
operational software, must be designed

around a given training mission where
the unique software portion is a greater
percentage of the total trainer software
package than it is for an ATE software
package. Standardization of TS software
is therefore, more difficult. Some ease
of maintenance can be achieved by modu-
larity of design and maximum use of a
HOL.

In planning for TS software maintenance,
other considerations which programmers
maintaining this software recommend are:

a&. The languages used should be as
machine independent as possible. To
require operational (mission) program
development on a single special config-
uration processor restricts software
maintenance.

b. Standardization of arithmetic rou-
tines should be maximized. Sine, cosine,
square root, etc., should be developed
as separate standard routines, modular-
ized and identified. This saves the re-
doing of such ,routines for each trainer
mission scenario.

LA RS | eree

c. The support software should be
designed to operate on the TS system pro-
cessor, not some remote facility, such
as a large general purpose computer,
When programmers are required to resort
to a remote facility for compilation,
assembly, 1ink edit, and load module
generation, the efficiency of program
maintenance drops.

d. The selection of a disc-operating
system will aid in software maintenance
by providing rapid assess mass storage.
Program changes can be accomplished
faster. The disc system provides more
utility/maintenance routines useful in
troubleshooting and fault diagnosis,
configuration control and media
conversion.

R i

e F T

|3 e et A oo b

This section discusses how software is
maintained in ATE and TS systems. The
general process of software maintenance
was introduced in paragraph 3.3 and
unique considerations for ATE and TS
were identified in paragraphs 3.4 and
3.5, respectively. Within this context,
the particular "how to" maintenance
tasks for TS and ATE software are now
described. Alterations in software for
weapon systems must be implemented under
well defined controls and this aspect of
software maintenance is given special
attention in paragraph 5.3.

5.1 TS SOFTWARE MAINTENANCE

Maintenance of TS software has many simi-
larities to maintenance of any real-time
software. Also, much of the maintenance
activity follows essentially the same
process as development of new software,
e.g.: design, coding, debugging, verifi-
cation, and validation. Despite the simi-
larities, TS do present unique con-
straints to software maintenance. TS
uniqueness is described in paragraph
5.1.1 (Introduction). The sequence of
events which indicates a software change
is identified in paragraph 5.1.2 (Pro-
cessing of Authorized Software Changes).
Then, the TS software maintenance pro-
cess 1s explained in paragraph 5.1.3
(Specific Software Maintenance Tasks).
This process is described by a typical
sequence of events for a contractor-
implemented change authorized during sys-
tem development. Similar steps could be
followed by the using command in post-
delivery maintenance. The particular
type system chosen to exemplify a TS
software change is the flight simulator.
Potential problems in TS software mainte-
nance are summarized in paragraph 5.1.4
(Pitfalls To Avoid).

5.1.1 Introduction

TS uniqueness for software maintenance
is described in this section in terms of
TS software components; foreground/back-

Section 5.0 SOFTWARE MAINTENANCE ACTIVITY

ground maintenance capability; and repre-
sentative types of changes to TS software.

TS, more particularly flight simulators,
are seldom developed by adapting pre-
viously developed (off-the-shelf) com-
puting systems (hardware and software).
However, to satisfy the unique require-
ments of a real-time TS system, pre-
viously developed software can sometimes
be modified and used as CPCIs. TS sup-
port software generally includes:

a. Operating system (job control, cen-
tralized 1/0, data management, etc.)

b. Assemblers/compilers

c. Utilities/support programs

d. 1/0 and math libraries

e. Diagnostic maintenance programs

TS software is developed to satisfy the
requirements of a total simulator and
its subsystems but is itself a contract
end item. The software is part of the
delivered end item equipment which for
flight simulators supports the training
for USAF flight personnel in the follow-
ing mission tasks:

a. Take off

b. Maneuvering

c. Instrument approaches

d. Landing

e. Ground and emergency procedures

5.1.1.1 Major Areas of Flight Simula-
tor Software. The four major areas of
software for flight simulators are des-
cribed below. This software will be
delivered as a CPCI, with attendant
documentation as specified 1in DIDs
(C-133, H-110, etc.). A typical break-
down is as follows:

a. Flight Simulator Computer Programs
(FSCP)
(1) Executive

(2) Airplane and flight subsystem

math models

et s— e LAY Gt T .

(3) Motion base and visual system
drives

(4) Instructor-related control and
display programs

b. Simulator Data Support Programs
(SSP)

(1) Ground station data compiler
(2) Display page compiler

(3) Cycle time verification

(4) Math model verification

c. General Software Support

(1) Operating system, 1/0
libraries, math libraries

(2) Assembler, compilers

(3) Editor, utilities, debug

(4) Loaders

d. Simulator Maintenance and Test
Programs (SMTP) (computer, interface and
peripheral hardware diagnostics)

All TS software will be controlled
through a configuration management sys-
tem. Following CDR, control is main-
tained through use of the draft Part [I
specification, and a product configura-
tion baseline will be established at the
TS Formal Qualification Review (FQR)
(see Figure 3.2-2).

5.1.1.2 Foreground/Background Compu-
ting Capability. Current TS computer
technology often employs a foreground/
background computing capability which
permits certain utility type functions,
e.g.: software maintenance to be accom-
plished simultaneously with real-time
system training activities. High pri-
ority task processing is assigned to the
real-time system with the remaining time
assigned to background activities. A
dedicated (complete) TS system will be
required for portions of the checkout
activities, however, system design
should specify as many background func-
tions gwithin timing, memory con-

straints) as is practicable.

5.1.1.3 Attributes of Maintainable TS
Software. Attributes of maintainable TS
software are very similar to those speci-
fie? in paragraph 3.1 (see Table 3.1-
111).

5.1.1.4 Typical TS Software Modifica-
tions. Approved changes to the air
vehicles being simulated often necessi-
tate a change to simulation software and
this is the major source of TS software
modifications. Examples of typical
changes to a flight simulator which re-
quires both hardware and software modi-
fications are provided in Table 5.1-1.

Except for wurgently required changes
which may be expedited through the
formal change process, it is desirable
to accumulate changes and to make a
modification block update to the TS
system - both minor and major changes.
The change will entail a thorough review
by the appropriate engineering personnel
and a data document revision will be
made, if required, prior to any software
change. It may also be necessary to
obtain the assistance of the change
originator if the change is not fully
specified.

Modification block updates should be
scheduled about once or twice yearly,
except for urgent requirements.

5.1.1.5 Detailed Change Analysis. The
maintenance organization will perform a
detailed analysis of the approved change
and recommend alternative solutions. The
change may involve software only or a
hardware-software interface. It may be
advisable to process minor changes below
the level of a formal change board.

Examples of minor changes are:

a. Coding errors (incorrect use of
language)

b. Subroutine program errors (incor-
rect flow chart implementation)

R

SR A e i

Table 5.1-1. Typical TS Software Changes

Reason for Change

Software Change Description

Provide Dual Angle of
Attack System

Revise software to drive angle of attack instrument f
as follows: i

(a) To drive two instruments

(b) To modify compensation curve for meter
movement

Change to Bleed Air
Subsystem

Revise software Bleed Air Subsystem model to
reflect operational changes:

(a) Provide new variable(s) for display; scaling,
variable change for new meters/display

APU Installation
Revision

Revise software APU model to simulate new interval
times and new delay sequences:

(a) Constants in timer comparison

(b) Generate pressure parameters and output valves

(c) Load through circuit breakers in electrical F
program
Autopilot Engage Revise software Autopilot model to simulate new
Interlock Modification time delay gate test

41

treta T - P R e L7

il e e e e

*

c. Subroutine redesign (flow chart
incorrect, new flow chart required)

Major modifications should always be
submitted to and processed by a formal
change board.
processed through software verification
and system validation testing.

Examples of major changes are:

a. Efficiency or capability improve-
ments

b. New major functions or new require-
ments

c. Restructuring software for timing
or storage constraints

d. Major design errors

e. Database modifications (real-time
programs usually reference a common data-
base and thus, formal testing is re-
quired for any data base change)

An example of how a software change
request would be administratively pro-
cessed by a contractor during system
development is contained in Figure
5.1-1. Change management is discussed in
paragraph 5.3.

5.1.2 Processing of Authorized Soft-
ware Changes.

If the software change requires implemen-
tation by a contractor, the AF shall pre-
pare an Advance Change Study Notice
(ACSN) and forward to the appropriate
contractoi \s). Similarly, if the contrac-
tor requires the services of a subcon-
tractor, the change requirements will be
submitted to the subcontractor and that
subcontractor required to submit a Sup-
plier Change Proposal (SCP) to the prime
contractor., Following successful nego-
tiations with the subcontractor, the
prime contractor will submit an Engi-

These changes will be -

LY

neering Change Proposal (ECP) to the AF
in response to the ACSN. All cost, sched-
ule and engineering data fully address-
ing requirements in the ACSN will be
contained in the ECP, A typical serfies
of events describing the flow from re-
ceipt of the ACSN to contract authoriza-
tion is presented below:
a. Receipt of fully coordinated ACSN

b. Input from Engineering, Manufactur-
ing, Materiel

c. Composite ECP available
d. Coordination meeting
e. Present to Change Board

f. Inputs to Finance - Engineering,
Manufacturing, Materiel

g. Finance package to Contracts

h. Engineering package to Contracts
i. Management review

J. Submit to government

k. Final technical agreement

1. Government review complete

m. Start negotiation

n. Complete negotiation

o. Contract authorization

5.1.3 Specific Software Maintenance

Tasks.

This description of the TS software main-
tenance process employs the example of a
contractor’'s modification to a flight
simulator during the development phase.

CHANGE REQUEST

4 DCM v

© ASSIGNS SCR NUMBERS
1 OENTERS INTO SCR SYSTEM

DEV SUP ‘

.] o DECIDES APPROVAL
‘i ® ASSIGNS COORDINATOR
; ® OBTAINS CHANGE
! DESCRIPTION
g‘ég%lzgg, ® ASSIGNS WORK, SCHEDULE

| |
l SCRB REQUIRED
4 DMC
® DISTRIBUTES COPIES
| i e ADDS TO SCRB AGENDA
B o e FILES THE ORIGINAL

B ’ 2
. i SCRB ‘

] ‘ ® ASSIGNS SCR8 DECIDES APPROVAL
‘} . (COORDINATOR INFORMS AND CHECKOUT TARGET DATE

DMC OF SCR APPROVAL) @ DECIDES WHETHER CHANGE
WILL BE PATCH OR SOURCE CODE

, DMC ¥ -

@ RECORDS IN SCRB MINUTES

e

COORDINATOR COORDINATOR v

® FORWARDS UPDATE CARDS ® FORWARDS UPDATE CARDS
AND SCR ORIGINAL TO DMC & COPY OF SCR TO DMC

CHANGE REQUEST INTEGRATION + DEV. SUPR.

® |SSUES CHECKOUT COMPLETED
MEMO AFTER TESTING

. ;‘ DMC v

® UPDATES SCR SYSTEM
TO SHOW CHECKOUT COMPLETE

Bn e c—— e W T

i
¢ DMC v VERIFICATION v
1
: ® WHEN UPDATE IS COMPLETE ® ISSUES VERIFICATION
SIGNS SCR MEMO AFTER TESTING
T
DMC II
DMC = DATA MANAGEMENT CONTROLLER ® UPDATE SCR SYSTEM RECORDS
SCR = SOFTWARE CHANGE REQUEST TO SHOW VERIFICATION COMPLETE
' . SCRB = SOFTWARE CHANGE REVIEW BOARD
! : COORDINATOR = SOFTWARE DEVELOPMENT ‘
GROUP COORDINATOR ® SYSTEM TEST
* SOFTWARE IS IN DEVELOPMENT AND IS ® SYSTEM VALIDATED
NOT VERIFIED AT THIS TIME
P LA Figure 5.1-1. Typical Software Change Request Flow
L./ 43

5.1.3.1 Software Modification Design
Task. The software modification design
task (see Figure 3.3-1) is the first
task in software modification. The ini-
tial activity in program design is a
review of the Part I specification or
change thereto to ensure that the modi-
fication meets the requirements. Task
oriented flow charts are prepared or
modified and data base descriptions are
prepared. Interface discussions are held
to define interface definitions and to
ook at the total interface picture.
Coding specification contains calling
sequences, input, output and processing
requirements.

During program development, software
management should maintain strict con-
trol of timing and sizing requirements
throughout the TS project cycle. Evalua-
tion of time and size parameters should
be performed by specialist engineers who
are skilled and experienced in simula-
tion systems. Timing and sizing esti-
mates are related to previous TS experi-
ences and on analysis of relevant data
provided by other engineering organiza-
tions.

Throughout the development phase the ac-
tual parameters are evaluated against
the predicted values and displayed in a
formal report published periodically
(biweekly or monthly). This manner of
providing visibility to management/
technical personnel will show trends
which can then be monitored and con-
trolled.

5.1.3.2 Software Coding. New or re-
vised coding must be accomplished using
the programming language approved for
that set of software modules. Many com-
puting systems consist of both assembly
language and HOL programs selected on
the basis of real-time system timing con-
straints, core storage constraints, ease
of checkout, and ease of maintenance con-
siderations. Language selection should
always be approved at the group leader
level or higher level to ensure a cor-
rect selection. Programming personnel
will review the language specifications
with language consultants and lead engi-

neer personnel to promote a thorough
understanding. In addition, programming
personnel should use standard routine
interfaces. To facilitate this, set/use
tables should be provided which identi-
fy, for each data item the routine which
sets (computes) it and the routines
which use it.

5.1.3.3 Software Subroutine Checkout.
Computer program subroutine or module
checkout is the first step of a series
of tests which results in verified soft-
ware and validated TS system. This may
be accomplished by examining the subrou-
tine trees of each computer program com-
ponent and identifying the lowest level
routines. The lowest level is checked
out first, and successive levels are
scheduled for checkout in ascending
order. Checkout of higher level routines
is considered incomplete until the rou-
tines interface correctly with Tlower
level routines. Scheduling control is
achieved by monitoring subroutine comple-
tion dates (which provides incremental
integration status assessment) and by
verifying checkout of each routine
through reviewing test results.

5.1.3.3.1 Module Checkout. Given the
modularity of program design, the stage
is reached where stand alone module
check-outs can begin. Testing procedures
are often developed so that programs can
be extensively debugged and modified in
on-1ine fashion, by making computer time
available to maintenance programmers
within a real time test facility (desir-
able but not required) specially suited
to simulation requirements.

This facility provides sufficient indica-
tors, controls etc., such that any of
the simulation programs can be fully
tested in a real time environment. Exten-
sive use is made of continuous core read
out and print out facilities such that
the program inputs and outputs are accur-
ately monitored independently of the
input/output simulation hardware. In
this way, module program testing is car-
ried out independently of the simulator
computer configuration.

RTHEINCWPL. SRR

g o

IS

-] o 1 #n o RS Y

¢ RN TR, 0

5.1.3.3.2 Software Component Checkout.
tEach computing program component will

consist of a number of modules, e.q.,
engines can be broken down into:

a. Starter sections

b. Fuel control sections

c. 1st and 2nd Stage Turbine

d. Intake

e. Thrust Reversers

f. Instrumentation
In general, component checkout is the

checkout of the highest level module in
the component module tree. As with all
modules, checks are made to verify each
internal logic trail and the ability of
the module to interface with lower level
routines. Interfaces with other compon-
ents are verified to the extent possible.
Because components normally provide a
functional capability or portion there-
of, additional component tests are de-
fined which thoroughly exercise the full
functional capability of the component.

Component test plans are prepared by
development personnel and reviewed by
basic program design and integration per-
sonnel and management. Because of the
complex test drivers that are often
needed to drive functional tests, every
effort is made to phase the integration
of previously checked out components to
allow their use as test drivers for down-
stream component checkout tests.

5.1.3.3.3 Software Static (non-real
time) Verification. Verification pro-
grams shall be developed to provide a
means of confirming the accuracy and
fidelity of the programmed mathematical
models. They operate in non-real time.

The verification - programs generate
pseudo inputs to the models whose output
data is used to verify the accuracy of
the mathematical model to the approved
data within specified tolerances. The

~ programs

and procedures developed to
accomplish this mathematical model veri-
fication are to be delivered as part of
the software requirements. All data
generated by the verification programs
should be delivered also.

Descriptions should be provided prior to
testing; identifying the procedure, the
extent of model exercise for each soft-
ware module, the input variables and the
expected results in data output. Outputs
shall be demonstrated to be within speci-
fied tolerances of the approved perfor-
mance data to be provided. Test results
and analysis (if any) shall be submitted
in the form of test reports.

As an example, the following systems
should undergo verification testing:

a. Aircraft systems

b. Navigation systems

c. Propulsion systems

d. Auxiliary Power Unit
e. Flight simulation

f. Environmental Systems
g. Radio Aids Facility

See Figure 5.1-2 for static verification
program operational flow.

5.1.3.3.4 Software Component Integra-
tion. Component integration is the phase
of computer program development when
checked out components are integrated
together to form a checked out computer
program. Whereas ideally it is conven-
jent to think of all components as being
tested completely prior to integration,
in practice, some component testing is
done as part of the integration process
in the step-by-step layout of the inte-
gration process. This Tayout is reviewed
by program development personnel and
iterated as necessary to arrive at a
viable integration sequence. Following
agreement on a layout sequence, integra-
tion personnel review CPCI Part I and II

e TG

JEFY VP

e

SR, i o ¥t

MO| jeuonsesdsdQ uesboid uonedxyLap nes T-1°G wnbly

§
MOTd TOHLINOD S3ITdNI INIT QIT0S <=
MO13 Viva SIITdNI INIT GIHSVD @ — — — — —
s31evi
P T0H.LNOO
s N
s ~
7’ S /I
\\ // S
-, A 3svaviva < Y ONLLSI
s 7 S N
’ P <! . 1NdNI
e -~ ~ N

7 e # ._7/ ~ [
s 4 | | I N A Y "
s s, 1 1 ~ I 1
x \ 2 * N N !

NOILVY3IN3D 34D — WvH90ud P Y3avay

14043y T0HLNOD LndNt

NOLLVZITVILINI
asvaviva
SNOILVDI41034S
1nd1no
[3

»

A

46

-t L

Lrag » .

R i L T2

specifications and develop detailed test
plans. These test plans are reviewed by
basic program and development personnel
and software program management. Follow-
ing approval, test drivers and test data
where required are prepared and placed
under control. Tests are run as compo-
nents become available.

Component integration is complete when
all the components have been integrated,
all defined tests have been completed,
and the program has been released for
verification testing.

5.1.3.4 Total System Integration/Test.
Once the hardware has been commissioned,
using software calibration programs as
necessary, development of the complete
simulation program will proceed using
the cockpit and instructors hardware to
exercise all the systems in a totally
integrated manner. See Figure 5.1-3
which depicts off-line and real time
processing facilities.

5.1.3.5 System Validation Test Plan-
Demonstration-Report. The TS system
validation test plan is a deliverable
product to *the USAF and establishes
detailed qualifications requirements,
criteria, general methods and overall
planning for system validation. The test
plan and reports are written to confirm,
in accordance with Section 4 of the Part
I specification that the requirements of
Section 3 of the Part I specification
are satisfied. Test personnel develop
the test plan and software requirements
and development personnel are requested
to review the plan for consistency and
adherence to the quality assurance and
performance/design requirements of the
Part I specification. Following USAF
approval of the test plan, test proce-
dures and support data are developed.
The validation test is conducted with
contractor test, software engineering,
Quality Assurance and USAF Quality Assur-
ance, TS and other USAF personnel as
appropriate. Following completion of the
test, a test report is written for deliv-
ery to the USAF. Following test report
approval a new configuration baseline is
established and the change (sometimes

47

AR

referred to as a modification block) is
closed out.

5.1.3.6 Integration of Sub-Contract
Software. A TS contractor may elect to
subcontract a subsystem; e.g., the
graphic display unit to provide a cost
effective, reliable and maintainable TS
system. Often the prime contractor will
develop the display routines to meet the
specific real time requirements, using
supplier standard subroutines for charac-
ter generation and standard mathematical
subroutines. Software will undergo check-
out and tests following equipment deliv-
ery and during the course of the graphics
software development. Graphics display
routines may be developed and verified
independently of the main configuration
and will be integrated with the TS real
time system for in-house testing.

Following in-house testing, the graphics
system will be integrated with the simu-
lator hardware for final development and
qualification. The graphics software
will be subjected to the same integra-
tion and qualification testing as other
areas of the TS real-time system.

5.1.4 Pitfalls to Avoid in TS Software
Maintenance.

TS software integration-verification and
system validation activities must be
very carefully planned and monitored. If
the change is confined to software only,
the system need only be restored to the
approved software configuration baseline
and training resumed. However, hardware
component modification poses a possible
preblem area as TS formal training ac-
tivities must be continued and thus the
hardware component baseline must be re-
turned to that configuration when the
software modification session is ended
and training is to begin. It is advis-
able to schedule a short but comprehen-
sive test to ensure that both hardware
and software baselines are fully re-
stored following a software modification
session. There may well be a circum
stance when a hardware modification can-
not be removed and thus an intermediate
baselfne must be established. The appro-

e

i s A

W3LSAS
MWNSIA

HOLYINKIS

S0/ po0 3 Buysse30ig swil ey pue 8ur] 4O T4 andry

SN
W34S

f SW3LSAS

_
|
_
_
_ T _
_
_
_
!
_
_
_
_

H2OIW3Y | NOWWOO

V1VG | 378ViHvA

UILNGOO

¥3avOl
Vvivo

ox | oxz¥ sLn
yy [¥E |82 | ¥t |D3s
¥3ONINDAS ILvH
IAILNDIXD

SINLLNOY
FOYLNCD TVHINdIHId k

NOWViS
aNnous

AVSIO
SIIHAVHD

HOLVINWIS

I9WANT

YILNIYd
EL ik}

vigval
10380 H

dvy1$1008 510
4WNa avoY

vivo 1534
NOILVLS
GNNOED

[}
|
1
|
|
1
!

|
Agveen
INLLNOWBNS

SINLLNOY
140ddNS

ANONIIHD

AvHOOoud ¢
QILVEDINI

10O XDIHD
30N

NOULYDi314IA

I0VAIVe
1531 INI1L V3

avol

avol

VIH3ILIED
NOIL
|- y21311vno

ALTTIOVS DIWWNAC 3WIL TvIy

3000 10380
3MNOON

JOVNIVd
vivag
|

INAON
123r80
ILYHINID

3LVHINID

3INQoN

103r80 JOVUIV
JIwH3INID ISOHOH N
EIL L ELE D)
WYYDOud WyyoOud
ATANISSY 34vQen 30WNCS

ONISSII0Nd YIVO ININ I30

48

Q‘o

La

! " Y
- * R U 4 kLN Wt - e« .. D e s D8 N e Same e

of USAF approval must be
obtained for an intermediate hardware/
software baseline and special (tempo-
rary) documentation must be distributed
to all affected personnel (Contractor
and USAF). It is very important to
create backup systems (cards, tapes,
discs). Control of an intermediate base-
line is sometimes more difficuit chan
control of a formal baseline. Reconstruc-
tion can be costly.

priate level

During the planning for TS hardware/
software modifications, it would be im-
portant (if possible) to make provision
to minimize the degradation of software
maintenance capability when the T35 sys-
tem is being transitioned for incorpora-
tion of enhancements or deficiencies.
Provision for a dual capability during
the transition from one configuration to
a subsequent configuration may be re-
quired. Another area of concern is the
development of documentation (Part II
Specification, User Manuals, Computer
Programmers Manuals, etc.) in accordance
with the CDRL and DID (C-133, H-110,
H-111, etc.). Constant monitoring of con-
tractors and subcontractors performance
is required, especially with contractors
who have not previously worked with a
CDRL and DIDs. This monitorinyg will pro-
vide assurance that documentation will
meet contract requirements.

5.2 ATE SOFTWARE MAINTENANCE

5.2.1 [ntroduction

ATE software is developed for (1) ATE
station control, (2) language transla-
tion, (3) test programs to provide ATE
diagnosis/fault isolation and (4) sup-
sort software. An ATE complex in conjunc-
tion with adapters, test programs and
procedures will be used for functional
testing and fault isolation of printed
circuit boards and other electrical/
electronic systems (UUTs).

~ . T aw T

Maintenance of ATE software is consid-
ered and specified as a requirement in
the conceptual phase. The long term posi-
tive effect of procuring well designed
complete maintenance software and main-
tainable software will normally offset
any additional costs which accrue in the
procurement of such software and the ATE
system. The following sections will
address major areas of ATE software,
attributes of maintainable ATE software,
sources and examples of software modifi-
cations, and a typical process to main-
tain test software. Pitfalls in ATE soft-
ware maintenance are also noted.

5.2.2 Major Areas of ATE Software

The three general categories of ATE soft-
ware are described in paragraph 4.1 of
the Requirements Specifications Guide-
book. These categories are control, sup-
port and test software and are defined
in that section. Documentation of those
three categories of software will be
developed in accordance with standard
data item descriptions (Table 4.2-1) or
in accordance with good commercial prac-
tices. A complete and accurate USAF
requirements specification and constant
monitoring by the USAF during program
reviews (PDR, CDR, etc.) will ensure the
development of adequate documentation to
maintain all elements of ATE software.

of Maintainable ATE

5.2.3 Attributes

Software

The attributes of maintainable ATE soft-
ware listed below are limited to those
unique to ATE software. The general at-
tributes of maintainable software listed
in Table 3.1-2 apply to ATE software.

a. Configuration control of all deliv-
erable software (CPCIs) to include con-
trol, support and certified test soft-
ware must be established and maintained
through the life cycle. This includes

changes to the operating system, indus-
try proposed changes to Abbreviated Test
Language for A1l Systems (ATLAS), subpro-
gram libraries, all of which are subject
to the USAF change management system.

b. ATE test software must be written
:sing) a HOL, e.g., ATLAS (ARINC report
16-8).

c. Detection and isolation require-
ments for diagnostic maintenance pro-
grams must be specified in the require-
ments specifications and demonstrated
during acceptance testing in accordance
with acceptance test procedures.

5.2.4 Examples and Sources of Changes
to ATE Software

This section identifies the specific
components of ATE software that con-
tribute the greatest workload to soft-
ware maintenance. Workload in this case
is an integration of the frequency and
difficulty in making software changes.
Areas of ATE code are rated from great-
est contributors to least contributors
of maintenance workload for each of the
major sections of ATE software: test,
control, and support. Examples of
changes are also provided. Overall, the
test software maintenance effort is usu-
ally an order of magnitude greater than
for control and support software com-
bined.

5.2.4.1 Changes to Control Software.
As noted in paragraph 3.4, major changes
to control software are usually accom-
modated by augmentation or replacement
with other off-the-shelf software. Limi-
tations in control software, e.g., to
accommodate improved versions of ATLAS
for digital UUT's, are generally over-
come by "work-arounds." These mean, for
example, writing test programs that
switch back and forth between ATLAS and
FORTRAN, then merging separately com-
piled code. If such work-arounds become
too frequent or cumbersome, then a modi-
fication or update of the control soft-
ware would be required.

50

At ~gic s

[RRC I Lo e B ————

Debugging of control software was dis-
cussed in paragraph 3.4. In addition to
newly discovered program bugs, opera-
tional experience with modified control
software (to a particular application)
will likely reveal capability con-
straints. For example, the control soft-
ware documentation may state that the
software can handle up to five nested
loops, but fail to mention a quantita-
tive limit on instruction storage. Dis-
covery of the constraint will Tlikely
cause a software update - at least a
change in documentation (which must be
controlled, published, circulated, etc.).

The principal elements of ATE control
software are listed below in order of
decreasing maintenance work (the first
listed element is the greatest contribu-
tor to maintenance workload):

a. Test Manager

b. Operating System

c. Test Equipment Drivers
d. Peripheral Drivers

Program components within these major
elements are listed and described in
paragraph 4.1.1 of the Requirements Spe-
cification Guidebook. A typical software
maintenance problem with the Test Mana-
ger is reconcilling data handling mis-
matches between interrupt processors and
remote operating modes.

5.2.4.2 Changes to Support Software.
ATE support software usually consists of
several language processors (ATLAS, FOR-
TRAN 1V, Assembler, etc.) development
aids (loader, editor, etc.) and test sta-
tion aids (linkage editor, maintenance
software, etc.) as depicted in Figure
4.1-2 of the Requirements Specification
guidebook.

Support software, like control software,
is usually developed 1 - 2 years before
test software (paragraph 3.4) and inte-
gration of the three major program areas
can reveal design incompatibilities.
Also, relatively new or untested support

AT A TN

B2 o DR

3 e v e e, wEe N S

software may still contain design or
coding errors. The principal elements of
ATE support software are listed below in
order of decreasing maintenance work:

a. Language Translators
b. Test Station Aids
c. Program Development Aids

Although ranked last, the Program Devel-
opment Aids can become the number one
contributor to maintenance workload if
numerous problems are encountered with
the ATPG or ATLAS flow chart processor
(see paragraph 4.1.2 of Requirements
Specification Guidebook). A typical
maintenance problem for ATE support
software is that caused by conversion
problems between host-computer outputs
and ATE station operations. (When a host
is utilized for support tasks.)

5.2.4.3 Changes to Test Software. As
mentioned earlier, test software is by
far the largest contributor to ATE soft-
ware maintenance workload. Paragraph 3.4
points out the major cause as being fre-
quent changes to UUT's. The principal
elements of ATE test software are listed
below in order of decreasing maintenance
work:

a. UUT Test Software
b. ITA Test Software
c. ATE Station Test Software

Components of these are identified and
described in paragraph 4.1.3 of the
Requirements Specification Guidebook.

UUT test software, the category of
greatest concern to the ATE maintenance
programmers, is composed of four compon-
ents: (1) ITA/UUT Identification; (2)
Safe-To=Turn-On; (3) End-To-End Perfor-
mance; and (4) Diagnostic Fault Isola-
tion. The last element, diagnostic soft-
ware, is responsible for about 90% of
all UUT test software maintenance. End-
to-end test software accounts for most
of the remaining maintenance.

51

A typical task 1in diagnostic software
modification is the result of ATE fail-
ure to locate a UUT fault. The UUT may
checkout OK by the tester even though it
contains a faulty subassembly or circuit
board component.

5.2.5 Development and Maintenance of
ATE Test Software

The activities of software development
and software maintenance have many paral-
lels and this is especially true of ATE
test software for a digital circuit card
(using ATPG and guided probe methods).
When the UUT is a digital circuit card
and a change is made to that UUT, then
the process of developing and modifying
diagnostic software 1is virtually the
same. This process is described in the
next section and then a second example
of ATE test software modification for a
different type UUT is described in para-
graph 5.2.5.2. These two examples of ATE
software mcintenance provide representa-
tive scenarios of modification activi-
ties.

5.2.5.1 Test Software Modification For
Digital Circuit Boards. A typical over-
all method to develop and maintain veri-
fied test software for the testing of a
digital circuit board on an automatic
tester is described. This method is the
planned and systematic pattern of all
actions necessary to provide adequate
confidence that the ATE test software
will perform satisfactorily. This method
involves: An orderly, systematic control-

led process; periodic reviews to assure

quality and conformity to standards; the
documentation of concepts and decisions;
a permanent file for each UUT; and the
verification of the quality of the final
product. This process consists of four
major elements:)

a. Requirements

b. Design

c. Generation

d. Integration and Validation

LA

[R e

a. Requirements for test software
development (Figure 5.2-1) are deter-
mined from the Secondary Replaceable

Unit (SRU) characteristic sheets for
various UUTs and. from an ATE Test Soft-
ware Guide. These requirements will

assist in formulating standard operating
procedures and standard ATE interface
adapters.

The SRYU characteristic data is obtained
from the Primary Replaceable Unit (PRU)/
SRU source data file by an engineer
using manual means (i.e., visual
analysis). The source data file for each
UUT consists of a logic diagram and a
hardware drawing, providing electrical
and mechanical data respectively. This
data informs the user of the UUT design
constraints and helps to shape standard
constraints for all vendors. The SRU
characteristic data consists of: UUT
identification, electrical type (digi-
tal, analog, hybrid, power, Radio Fre-
quency (RF), and memory), complexity
(number of Integrated Circuits (IC),
transistors, etc.), component types
linear, memory, etc.), mechanical data

board type, coating types, etc.), con-
nector data, test point access, power
input and clock signals, signal inputs
and outputs, board failure recommenda-
tions, required adjustments, references,
functional description, and notes. The
note section may advise of additional
testing requirements and unique signals
for a UUT. Additional circuitry is
usually required for a UUT, such as a
personality board or frequency dependent
parts.

b. Design - Part 1 (Figure 5.2-2) is
defined by the Basic Test Plan and Qut-
line and is under constant review by a
quality-assessing-committee. The Basic
Test Plan and Outline for each UUT may
contain the following items: the SRU
Characteristic Data Sheet, the ATE Adap-
ter Interface Specification, the Test
Flow Diagram, the Decision and Concept
Report, the fault detection and isola-
tion quantities, and the Test Program

52

e T+

Estimating and Status sheet. The Deci-
sion and Concept Report is derived from
the SRU Characteristic Sheet and the
Test Flow Diagram. The ATE Adapter Inter-
face specification is also derived from
the same two items; however, a limited
number of adapter types will be used
which will affect the specification. The
Test Flow Diagram will be affected by
the UUT design constraints, the pattern
generation constraints, and the fault
detection and isolation constraints, as
determined by a Technical/Management Com-
mittee to be a standard for all UUTs.

The user, after reviewing the material
in the PRU/SRU source data file for the
UUT design constraint information will
identify: redundant paths, wired logic,
jumpers, direct input to output circuit
paths, circuits not normally used (por-
tions of multi-circuit IC packages, in-
stalled spare components), any circuits

or components (shunt diodes, bypass
capacitors, Electro-magnetic Inter-
ference/Pulse (EMI/EMP) filters) which

if failed or degraded in certain modes
will not adversely affect the circuit
performance, any physical constraints
(mainly dip clearance and test point
accessibility), the reliability of com-
ponents (a component with a high failure
rate should be detectable, whereas one
with a low failure rate, if undetect-
able, can be ignored), and special or
unique test prcblems (Random-Access
Memory (RAMS), ROMs, workarounds, and
illegals). Finally, the user should
identify fault detection and fault isola-
tion quantities that are believed attain-
able after considering the aforemen-
tioned data. A Test Program Estimating
and Status sheet will contain the above
data and, if applicable, include reasons
why the estimated quantities are less
than the set standard.

Design Part 2 (Figure 5.2-3) is defined
as the phase of coding a circuit moded-
deck from a circuit schematic, or proces-
sing the vendor supplied tape or list-
ing, and automatically deriving stimulus

o e~ r———

sJuswesnbey 1m0 13901 IV "L-Z'S anbly

Y3LdvaY
ABA SLINS3N ONLLS3L IYVYMLIO0S
01 i 1531 [¥7] nouwveon [¢ v 1531
1
% \\7) "
, 30IN9 . |
. ‘'0'L JUVYMLIOS
<
« %008 is3L a3ud :
. e ETA ATLNINVWYHId .
i F viva 308N0S
-)
m ONIMVHO JUVMOYYH w
HH WVHOVIQ 21901 B
0oL AWJ (E
133HS
J11SIHILOVEVHD NS '
t ONIMYNQ WYUOOUd NOLLYHINIO WYHOVIQ wz_\wﬁm SLNIVHISNOD T4 viva
ONUSIY @ 30WN0S e oo [21907 e e NOISIG |&4 308n0S ,m
308N08 isa 3000 1nn NuUS/NY4 ,
“ o1Sv8e '
eSSt - - - - el N SIS SR M8 S S S s e e .- 2
o \ . - r
‘ o v v oy N * ' ' - h ﬂ

T T L L o O S 1 | A - T e LG Bt o v i gt w LN

} Hgd - U] 3092U0D 38M3J0S 359 FLY Z-Z'G aInbl4

¥3Ldvav
ABA sLNs3y ONIiS3L , JHUVYMLIOS
0L ¢ 1531 [@ NOLLVHOIINI [] ® wmo 1534
ﬁ a3
© ATLNIWH3d
v1va 328N0S
‘0L
008 331 LINWOD MIIA3Y
1439N0O FHVMLAOS 1S3L
ALIVND \
S3SSISSV j) \ SLNIVHLSNOD
i 4 NOILVIOSI %
INMLNO 035 39V 4HILNI NOILD313d LNV
/NVd
NOILINI3Q 1s3L 180434 1d3ONOO
1d3ONOD JISva /NOISID3a
JUVMLIOS 1S3L nYd/NYs SLNIVHISNGD
MO 1S3L - NOILVH3IN3D
NH311vd

a3yIND3Y 31
‘NOVa033d
ONIMVYQ WYHOOud NOLLYHINIS AVYOVIa mz_\.__‘ﬁm SLNIVHISNGO 34 Viva
ONILSI 30N05 |- "0 ol va [21907 |- toas [+ NOISI |4~ 30uNOS
30UN0S 1531 3000 100 Nus/Nid
2ISve
[} L] -

»

s

54

N e -

feiaw e L

Z LBq - UojuYaQq 309NI0D AIBMYOS 1591 F LV ‘£-Z'G 4nbl4

.
B S

. ABA
) ‘01

B

s1INs3y

1831

ALITVND
$3SS3SSV

ONILSIL
NOILVHOILNI

H3ildvav

1' L-FTaly]

v

ALINHO4NOD

555~

FILLINNOD M3IATY
143ONOO IHVMLIOS 1531

S$3SS3SSVY

W NOLLINIZ3Q ._M.Mwn
, 1430N0OD
ONILSIT 1INDHID
JUVYMLLO0S 1831
S,NINWILS
a3diNoay 41
, AdvEa3ld
1
INITLNO
ONIMYYHA WVYHOOUd NOILVH3INIO WYHOvIa INV SINIVHISNOD
w] “onusn e 3ounos fe NHILIVd J1907 ¢+ 1531 [
, 30HNOS 1531 3000 21SV8e

IHVYMLI0S

1s3t

— |

INNLNO
/NVd
1s3at
Jisve
NYd/NYS

i viva
30HNOS
NYS/Nidd

RAED 17 S, o i 7P . Aas it (e S AW

e R m e aaar R

e T T

55

. - .
S - .

and response patterns using ATPG (UUT is
digital). After reviewing the Basic Test
Plan and Outline material and the in-
struction manual for correct procedures
on labeling, input modeling, and soft-
ware options, the circuit can then be
modeled from the logic diagram. If the
circuit model data 1is available from
another source, then a vendor to ATPG
interface software program will be used
to generate an ATPG usable input model
(may require some modifications). The
ATE-UUT interface adapter requirement
for each vendor will determine whether a
test point connector will be used as
additional outputs (primary connectors
will provide UUT inputs and outputs).

The ATPG system uses the circuit model,
under user direction, to develop stimu-
lus and response patterns, node state
data, and usable fault isolation data
(the guide probe isolation method may
use a fault dictionary for some UUTSs).
If the stimulus and response data is
also supplied by a vendor, then other
vendor to ATPG interface methods (soft-
ware or manual interpretation) can be
used to obtain the required data.

The technical/management review commit-
tee will assess the conformity between
the test plan guidelines and the ATPG
generated data for a particular UUT.

c. Test Software Generation (Figure
5.2-4) involves the writing of an ATLAS
program that tests the UUT and the trans-
fer of information on the ATPG data tape
containing the circuit description, the
stimulus and response patterns, the node
state data, and the fault dictionary,
into an ATLAS compatible format for the
ATE. An ATPG to ATLAS interface program,
would be required as a data translator.
A review of the Basic Test Plan and Out-
line will help determine voltage applica-
tion and required statements for ‘proper
testing. This ATLAS data is stored on a
new tape which will be duplicated for
checkout purposes and later stored
permanently.

A source listing and drawing will be
permanently filed as a document. A tech-
nical/management committee will assess
the conformity of the Basic Test Plan
and Outline against the product.

The subject of debugging the test soft-
ware is addressed in paragraph 5.2.6.

d. The Integration and Validation
(Figure 5.2- phase involves running
the test tape on the tester with the
associated UUT connected. The tester
will apply the stimulus patterns to the
UUT, measure the UUTs responses, compare
those responses with the ATPG generated
responses, and exacute appropriate proce-
dures to identify the failure if any
responses are not what they should be.
The guided probe, in conjunction with
the fault isolation tables, if provided,
will attempt to isolate an inserted
fault on a UUT down to one component.

The Basic Test Plan and Qutline will pro-
vide 1information relating to problems
foreseen under this concept. If fault
isolation is below standard, then the
problem is analyzed, reported, and in-
vestigated by the appropriate group
(digital, analog, etc.) for a solution.
That solution is implemented for new
data, verified on the tester as a cor-
rect fix and documented.

Finally, a problem close out report is
filed. The ATE User's Guide (tester
manual) will instruct the user on tester
operations and on how to apply the probe
for different component configurations
on the UUT. The technical/management
committee will assess the quality of the
Test Report (permanently filed) and ana-
lyze the results for conformity with the
expected results outlined in the Basic
Test Plan and Qutiine.

5.2,5.2 Typical Test Software Update
on Real-Time Disc Operations System. A
typical real-time disc operations system
consists of four major software compo-
nents (see Figure 5.2-6).

uogeseuen) aRmij0S 1991 LY ¥Z'S anbly

- ylidvayvy

b ABA mS:»mz ONuUS3IL

b oL -— 1 nouvuoaN [® 10N 3
v

| *

-) ALINYO4INOD

o oL <4~ $3SS3SSV 3an9

| — 008 m¢<3_.n.8

; |

. 33LLINNOD MIIA3Y m»(

W 13
£x ALIVNO LINVA OL

¥ NYUOONd .

E SYLY 3000 .

§7

AN3INGONIAIQ

WYMLIOS @ V\i\
INTILNO
NV
a4 isal

a3yiNno3y Al
MWveaaad

w ATLNINYNY34 J1sve
viva 308N0S Nud/NYS
m \
T ONIMYYQ wvusodd | |.onvuanas WYHOVIQ INILNO SLNIVUASNGD 34 viva
| onusn fe— 30uncs (+{NO'LTINIO e 01901 e /NvId is3L e NOISIG [* 32uncs
u 308N08 1531 3000 oiIsve 1nn USMUd
e SO P - - T — . . 4.
i {
— ' - < L

- @ - -‘r

P L ——

NOILVAITVA
/NOILVHEO3LNI
IYVMLL0S 1S3L

£l]
v&“..“r /

<

. 0 ol sl b e
UORSDISA/UORRIBRIU| BIBMIOS 380L FLY 'GZ'G MNBLY
Y3LdvaV
ABA $11NsS3y ONILS3L
‘oL ¢ 152 ¢ NOILYHOILNI [awmo
3114
- AN3INYWH3d LNONJ3HD
ol
—_— oot 302 HO4 a3$N
\.J o m&mg 34VONndna
339

(3dvd ‘NSI0) VIO3IN 1531

. -~
- - -

wz:%m
ALAVND Evmmv) ﬂ
a3uiN03Y JI @ B} ALINHYOSNOD \Sve
¥Ov80334 S3SSISSV 9
Dct..im
1
ONIMYYHO WYHOOUJ WVHOVIQ INnLno SANIVYLISNOD
NOILYY3N3D Fid viva
| NS |~ W0S a4 Nu3iivg] 21901 fe— NV NOIS3C |e—{ 30uNOS
304N0S is31 3000 omw“ 1nn nYS/NYd

-5 T
‘ Lo O e
!’ - PP - - . ——ce kil I
’E -
r; .
| 1
| TEXT REAL-TIME DISC OPERATING SYSTEM |
| EDITOR
]
>
F -
& ATLAS ATLAS
E TEST mace TRANSLATOR
_ STATEMENTS
: , COMPILED PROGRAM
‘ . e INTERMEDIATE CODE (IC)
B 3 FILE
3 . |
b [- S
i | LAS . TASK
' AT
' }' ~ INTERPRETER | momTOR : |
INIT 10 ARITH DEV CONTROL
|
) § : sTimuLus ——>
£ y
| t | MEASUREMENTS “I—'
| , 3
ii TEST EXECUTIVE SYSTEM t
i Figure 5.2.6. ATE Test Software System Orgenization

/Nt A

59

—- S s e e wtacw crwme T

4

a. A text editor used to create and
modify source programs (Test software
source statements) written in the ATLAS
language.

b. An ATLAS compiler/translator which
accepts as its input, ATLAS source state-
ments and generates object code as its
output.

c. A test executive system which takes
the code generated by the compiler and
controls and executes the test sequence
based upon these instructions.

d. An operating system, under which -

all of these programs execute.

The text editor typically performs the
following operations to operate, modify
or update ATLAS source statements.

a. Cursor control (e.g., move cursor
right one character, move cursor to end
of line, move cursor to end of text on
screen, etc.)

b. Text insertion, deletion and trans-
portation

c. Input and Output
d. Context Editing

The ATLAS compiler/translator accepts
ATLAS source statements (as defined by
ARINC Specification 416) and generates
object code which is executed by the
text executor system. The ATLAS compiler
consists of a main segment which dis-
patches control to separate processors
for each ATLAS verb type and a set of
supporting routines. These routines per-
form basic compiler functions: lexical
analysis, arithmetic expression analy-
sis; symbol table manipulations and mem-
ory arrangement.

The ATLAS test executive system provides
all run-time functions needed to run
test programs in both an interactive

mode for debugging and validation and
also in a non-interactive mode for final
programs.

The real-time disc operating system han-
dles all dinput/output providing file/
device independence at run time. It man-
ages the disc memory, maintains program
directories, and provides the scheduling
and resource allocations in multitask
environments.

Other successful ATE systems have been
based on other architectures using inter-
preters (ATLAS or BASIC), conventional
on-line compilers wusing a linking
loader, or off-line compilers using an
interpretive run-time system (VITAL).

5.2.6 Debugging Test Software

Regardless of the techniques used to gen-
erate the input stimuli and obtain the
expected output responses, the test pro-
gram must be debugged by testing with
the UUT. Most new test programs have
"bugs” and will cause "spurious" test
results.

A common debugging problem for circuit
board UUTs is obtaining a “known good"
board. Boards that have been tested at
the product level often still contains
undetected faults because of the incom-
pleteness of the product level tests. In
addition, there may be designer errors
that result in different responses be-
tween several good boards. Another prob-
lem results from the use of incorrect
schematic diagrams.

The objective of the debugging procedure
is to determine why actual test results
differ from expected results and then
changing the test software to obtain the
desired results. The techniques used to
generate the input stimuli will affect
the debugging procedure.

Computer-aided stimuli generation and
simulated output vresponses facilitate
the test software checkout.

R i

M m ¢ - e ot B P

[RV

Simulated output responses will have
known indeterminate conditions which can
be surpressed prior to debugging. The
simulation data aids the programmer in
analyzing discrepancies between expected
test results and actual results. Simu-
lator diagnostics will rapidly isolate
board faults if the problem's not a
coding error.

Using two debugging methods, e.g. manual
analysis and simulation techniques pro-
vides independent responses, so the phys-
ical boards do not have to be completely
"known good." Other techniques use com-
parison tests with a "known" good board,
but these tests must be verified using
several good boards.

Debugging time can be reduced if program
changes and test executions are conduc-
ted interactively. This provides imme-
diate feedback on results of test soft-
ware modifications.

5.2.7 Control of ATE Software

ATE control and support software will be
controlled in much the same manner as
changes to TS software discussed in para-
graph 5.1, However, if the documentation
of ATE control and support software con-
sists of commercially developed docu-
ments, particular care should be taken
to investigate contractor proprietary
rights, guarantee clauses, etc., before
modifications to this software are
approved. All facets of the USAF change
management system (see paragraph 5.3)
will apply to the modification control
and support software.

Test software will also be subject to
the USAF change management system. In
addition, when validated test software
must be changed, adequate source list-
ings, drawings, technical orders, etc.,
must themselves be verified and vali-
dated before the change is approved for
implementation.

5.2.8 Pitfalls to Avoid During ATE
Software Maintenance

ATE control and support software al-
though developed in accordance with good
commercial practices may still contain
errors or deficiencies which will impact
ATE software development. It will be im-
portant to develop a formal problem re-
porting system with the contractor which
will address problems encountered and
which will specify a timely response
time for those causing severe impact.
The contractor should also be respons-
ible to test modified software for
regression problems.

ATE test software, characteristically
different from control and support soft-
ware, will require very stringent test
procedures to ensure that a software
change achieves the intended purpose and
does not create regression problems.
Should a UUT successfully pass a formal
test and be returned to the field as a
fully tested replaceable unit and then
fail as a result of an incorrect soft-
ware change, serious problems may occur.

5.3 CHANGE MANAGEMENT

Configuration control of changes to ATE
and TS software 1is essential and, in
fact, can be a matter of life and death.
Evidence exists of cases where uncontrol-
led modifications to ATE software have
resulted in loss of life. In any event,
poor management of software changes can
pe costly and have negative impact on
system reliability and availability.

The subject of change management is
given detailed coverage in the Config-
uration Management Guidebook. Basic con-
cepts are introduced in this section
with particular emphasis on the software
maintenance activity during system acqui-
sition. Before addressing that subject,
however, the concept of a Central Mainte-
nance Facility is discussed.

Software maintenance aids, i.e.: support
programs and computers, can be provided
such that program modifications can be
made at virtually every installation of
an ATE or TS system. Whether such decen-
tralized software maintenance is advis-
able can be challenged on the basis of
both cost-effectiveness and change man-
agement. It 1is recommended that LSA
studies include detailed trades analyses
if decentralized software maintenance is
being contemplated. The alternative to
decentralized maintenance is the Central
Maintenance Facility in which all
skills, techniques, resources, proce-
dures, etc. are available to conduct
efficient, systematic software modifica-
tions under close control. Once a change
is fully implemented (coded, verified,
validated, documented) then the change
can be properly communicated to all ATE/
TS installations. Close control is more
difficult wunder decentralized mainte-
nance and also there is either (1) a
duplication of skills, resources, etc.,
between locations, or (2) deficiencies
in skills, resources at distributed loca-
tions. Thus, the Central Maintenance
Facility ;s an attractive alternative.

5.3.1 Change Management Definition

Change management is the discipline

which applies technical and administra-

tive direction and surveillance to (1)
properly identify, (2) control changes
to, and (3) record and report change im-
plementation status of the total config-
uration of the TS and ATE systems.

The essence of configuration identifica-
tion is that every system/equipment or
component thereof, will be identified by
technical documentation as set forth in
specifications, drawings and associated
1ists, and documents referenced therein.
The recognition of this technical docu-
mentation, at a specific time, results
Jdn the establishment of a baseline. Once
a bageline is established, this baseline
plus approved changes thereto constitute
the current configuration identifica-
tion.

62

Change control provides the systematic

evaluation, coordination, approval or
disapproval, and implementation of all
approved changes to the approved config-
uration identification.

Configuration accounting provides the
recording and reporting of the configura-
tion identification and change informa-
tion that is needed to manage the config-
uration effectively.

The principal specifications for CPCI
configuration identification are the
Part 1 specification which establishes
the computer program design require-
ments; the Part II specification which
documents the complete and final design;
and the interface specification which
defines the requirements for interfaces
external to the CPCI. As indicated in
Section 4.0 of the Requirements Specifi-
cations guidebook, software for ATE UUTs
depends on ATE/ ITA design and on the
performance and diagnostic test
requirements, which are often documented
in the TRD. Further, this ATE test soft-
ware is often controlled through the use
of T.0.s. Formal change control is estab-
lished for CPCI specifications when they
are approved. Software change control is
established for the other CPCI elements
such as drawings and documents, up to
the point when they are incorporated in
a specification.

The principal drawings and documentation
which pertain to configuration manage-
ment of CPCIs include the following:
jnterface control drawing, CPCI 1index,
change status report, VDD manuals, and
handbooks. The physical media are
comprised of the tapes, decks, etc.,
which contain the computer programs and
data.

5.3.2 Baseline Management

Under the baseline management concept,
technical control points, or "base-
lines", or configuration central points,
are established for computer program
development and systematic evaluation,

saiais achen d M s ais

il

coordination, and disposition of all pro-
posed changes to these baselines is es-
tablished and maintained. The CPCI parts
I and I1 specifications shall be used to
document the baselines for computer pro-
grams. This section discusses the base-
lines which are formally established for
the development of computer programs:
The allocated baseline and the product
baseline. These baselines are documented
in the part 1 specification and part II
specification, respectively.

5.3.2.1 The Allocated Baseline. The al-
located baseline is established by USAF
approval of the part [specification
which contains the performance, design
and qualification requirements. The part
I specification of the two part CPCI
specification requirement is wused to
identify the design and testing activi-
ties of the project. Any change or addi-
tion to it must be submitted as a design
requirements change and must be formally
approved before th2 change can be imple-
mented. The allocated baseline is con-
trolled throughout the design develop-
ment test and integration of the CPCI.

5.3.2.2 The Product Baseline. The part
11 specification becomes the documented
product baseline. The part II specifica-
tion shall be audited to determine that
it adequately describes the fully assem-~
bled CPCI. .

5.3.2.3 Baseline Control Documenta-
tion. The design requirements to be fol-
lowed during CPCI development and the
requirements for qualification shall be
documented in the part 1 specification.
After approval, this specification is
designated as the allocated baseline. It
shall govern the design, development,
and testing of computer programs and
serve as the baseline against which the
impact of proposed performance and de-
sign changes are to be assessed.

The part 1 specification shall be placed
under formal change control and config-
uration accounting upon USAF approval.

E PO .
. AR e —————— e

After the computer program components
have been assembled to form the CPCI and
subjected to preliminary qualification
tests, the completed technical descrip-
tions shall be documented by the part II
specification. This specification shall
contain the description of the overall
design, the programming specifications,
flow charts, and 1listings. After ap-
proval, this specification shall be
established as the product baseline and
shall serve as an instrument for use in
diagnosing troubles, adapting the com-
puter program to environmental and oper-
ating requirements of specific site loca-
tions, and for establishing minor or
major changes to the computer program
system.

The sections of the part Il specifica-
tion submitted for formal review shall
be committed to software change control,
as a minimum, at the time of those
reviews.

Change control and accounting for both
the allocated (part I) and product (part
II) baseline specification shall be
maintained throughout, and subsequent
to, hardware/software integration.

5.3.3 Support and Control Software

Each support software program which in
anyway affects development of the CPCI
shall be placed under change control at
the earliest appropriate point in the
CPCI development. These include programs
used to compile, assemble, update, or
generate test inputs, etc.

Normally, the compiler/assembler (ATLAS,
FORTRAN 1V, Assembler) is the first sup-
port software used during CPCI develop-
ment. [t shall be placed under software
change control no later than the start
of TS computer program component (CPC)
testing. In addition, testing and simu~
lation programs used to support design
and development testing and integrated
system testing shall be designated for
formal change control at the appropriate
point.

VLA

I 4

”

5.3.4
ments.

Change Management Reports, Docu-

5.3.4.1 CPCI Index and Change Status
Report. The computer program configura-
tion item index 1is issued initially
after completion of the preliminary de-
sign review and is updated and released
following each major CPCI review and
audit. The initial release of the CPCI

index, plus the subsequent issues of
change status reports, provide a pro-
gressive status of major events and

schedules associated with the overall
development of the CPCI.

5.3.4.2 Version Description Document.
At the time of software/hardware inte-
gration testing, a VDD shall be prepared
for each CPTl tape disk or other appli-
cable media. After initial release of
the CPCI tapes/disks, to either the
customer or to integration testing, the
VDD shall be used to control CPCI tape
disk/revisions.

5.3.4.3 Manuals and Handbooks. Certain
manuals and handbooks which are devel-
oped for CPCI projects shall be placed
under software change control. The compu-
ter programmer's manual, which defines
the rules and use of the compiler/
assembler language, shall undergo soft-
ware change control at the start of the
coding effort. Also, the contents of the
following documents shall be placed
under software change control after com-
pletion of the PCA: The positional hand-
book, which defines the man/machine
interface requirements, and the opera-
tor's or user manual, which is is used
in running the programs and in operation
of the computer system.

5.3.4.4 Interface Control. Interface
control requires coordination of activi-
ties needed to assure that the CPCI and

64

system characteristics are compatible.
Interface control is established over
the interfaces of the total computing
system, of which the CPCI is an element.
Certain of these system hardware, soft-
ware, and inter-organizational design
interfaces affect the CPCI design. The
software group shall identify all such
interfaces and establish administrative
controls cr liaison with them throughout
the CPCI development process. Interface
control for CPCIs shall be over the
characteristics of the common boundaries
between two or more CPCls, between a
CPCI and a hardware element, or for the
design interfaces between a contractor
and another contractor or agency.

Interface requirements shall be estab-
lished concurrently with the development
of the part I specification and shall be
documented and released in an interface

control specification (ICS). An ICS
shall be developed for each interface
which exists with the CPCI and both

parties to the interface shall approve
the specification. After USAF approval
of the interface specification, all
changes shall be controlled under formal
change control procedures.

Concurrently with the CPCI design,
detailed interface design drawings shall
be developed for each of the interfaces
identified. The detailed interface de-
sign shall be governed by the control-
ling interface specification. Each inter-
face design shall be documented by an
interface control drawing (ICD). After
approval by both parties to the inter-
face, the ICD shall undergo formal
change control. Formal change control
over the detailed irterfaces shall occur
no later than the CDR and shall continue
throughout the duration of the CPCI
project.

R

PR

e T A et

5.3.5

Change Control

The change control function provides the
disciplined environment and administra-
tive framework to control changes to the
configuration baselines.

5.3.5.1 Change Classification. Changes
to an established baseline are consid-
ered to be either of two types, class [
or class 1I.

5.3.5.2 (Class I Changes.
changes are those which, because of
their criticality, require formal cus-
tomer approval before the contractor can
implement them. Changes shall be desig-
nated as Class I whenever one or more of
the following is affected:

Class 1

a. Operational capability, as speci-
fied in the baselined part I CPCl speci-
fication,

b. Contract price or schedule.

c. Systems equipment, computer pro-
grams, or facilities produced by another
contractor, to the extent that the con-
tractor must accomplish a change to main-
tain compatibility at the interface.

The ECP is wused for the definition,
explanation and coordination of all
Class 1 changes. ECP content and prepara-
tion will be discussed in the Configura-
tion Management Guidebook. Typical Class
[change processing flow is depicted in
Figure 5.3-1.

5.3.5.3 Class Il Changes. Class 11
changes are those which the contractor
may implement without prior approval by
the USAF and at no additional cost to

the USAF. Such changes may include the
following:

a. Changes to correct editorial
errors.

b. Changes to correct computer

program errors.

65

¢c. Other changes of a minor nature,
within categories specifically defined
by the USAF.
5.3.6 Configuration Accounting
Configuration accounting is the report-
ing and documenting activities required
for keeping track of the stauts of con-
figurations at all times during the life
of a system. For computer program items,
configuration accounting 1is principally
a matter of maintaining and reporting
the status of the specification, asso-
ciated documents and proposed changes.
This function requires the data outputs
delineated in the following paragraph.

5.3.6.1 Specification Change Notice
(SCN). The SCN is the document which
establishes corrections to and updating
of the CPCl specifications. It is used
to propose, transmit and record specifi-
cation changes. A pre-determined number
of SCNs which may be accumulated against
a specification is wusually established
as a criteria for initiating a revision
and reissuance of the specification.
Other accounting records, indexes, VDD
preparation, etc., will be discussed in
the Configuration Management quidebook.
5.3.7 Software Change Control Board

The purpose of the Software Change
Control Board is to evaluate software
change requests for cost, schedule, de-
sign and other areas of impact, to ap-
prove or disapprove the change, and to
issue a statement of commitment on the
change. The Software Change Control
Board conclusions are then summarized
and distributed. Change processing pro-
cedures are established early in the
project planning for identifying and
implementing chamges against the CPCI
specificationg and drawings. Change
processing requires that the problem be
identified and processing initiated on
the appropriate change paper. An example
of the flow of a software change request
is presented in Figure 5.1-1. A change

*r el el N e R g o s Saan . " e MR e e e . i ey . L
" il ; : . M a4 N e - .
 ———— . S ¢ ' B it o ‘

MO Buissadoiq abueyD | ssefD (BIdAL [-£°G bl

(NOILVZINVOUHO S.HOLOVHINOD NIHLlIM)

ONIYIINIONI $31NA3IHIS INIWILVIS JONVHD 3IZIHOHLNY H3IWOLSND Of
3SV3134 B 3HVdIHd® WHI4 HSITBVISIe MHOM WHIJ Jyvdidde B JAOHddV e LINSNVHL B JAOYLIV @
04INOD
SNOILVZINVOUO ayvos NOILVHASININGY
— e—] NOILYHNDIINOD [4vsn — J
ONIY33NIONI JONVHO
ONIHIINIONT | - LOVHLINOD
3ONVNI4
OL LNdNI 3QIAOHd e $31NQ3IHIS
$31NQ3HIS B S1S0D ONIGNTONI
‘dYOONI 3INIWH3L3G @ JOVNOVA dI3 JHVIIYd ®
10H1NOD
ayvos
— » NOILLYHNDIANOD
FONVHO $37NA3HIS ONI43INIONT
SNLVLS MOHS
% ANV IONVHD HOV3 HO4
SINOLSIUW ALILNICGIe
m WooY
a S1SOO INIWYHILIA o 1HVHD
I0HLNOD
‘9IINOD 'ON3
IVAOUddY LNIWIOVYNVIN
ONIYIINIONT NIVLIEO @
NOILdI¥IS3Q NSOV
S1SOD ONIH3IINIONT JONVHD AHVNINII3Yd JONVHD 1S3N03Y
INIWILVIS NHOM m B INIWILVYLS 3YVvdIYd B A4ISSVID © IONVHO JLVILINI o 4vSN HO/AGNV)
3131dW0OD 311dWOD © Al »dom ivi3a 3aIAOHd © ON FONVHO NOISSV e 3IVNTIVAI ¢ W3180Hd AJILN3QI e
JOMLNOD SNOILVZINVOHO TOULNOD nmmmw v
NOLLVHNDIINGD (g ONINIINIONI |gq—| NOUVHNOIINGD Lo NIEZINI] 13iu3lvi
ONI¥33NIONT | LINIWILVIS 0310344V ONIYIINIONI ONIYIINIONT ONIENLOVINNYN
NHOM 318ISNOJSIY ONIYIINION]

66

Bt

RRRPINPE g

b W .

P BRI, Ve, e B

e

request may be initiated by the software
organizations, the USAF, or through a
change in the interface with another
software or hardware design organiza-
tion. The change request is coordinated
with affected organizations to determine
the scope and extent of impact. Follow-
ing this coordination effort the re-
sponses are compiled, documented and sub-
mitted to the Software Change Control
Board.

5.3.8
tractors

Responsibility of USAF and Con-

Large, complex TS or ATE software sys-
tems may well involve several USAF Com-
mands, e.g., AFLC and Tactical Air Com-
mand (TAC), a prime contractor and one
or more subcontractors. Because of the
contractual aspects, both during the
development and the maintenance phase,
it is very important that changes be
defined, developed and processed in
accordance with documented change
management procedures. It may well be
that all of the above organizations have
change boards to evaluate a particular
change. Visibility should be provided to
the USAF to define the purpose and
methods employed by the other organiza-
tions.

5.3.9 Maintainability of Source Pro-
gram Code and Documentation

TS and ATE software controls should
require the timely mainte-
nance of computer program source language
code and the appropriate documentation
(Part I, Part Il, User Manual, T.0.'s,
etc.) when software changes are imple-
mented. Some software organizations per-
mit the use of patches to object or
executable programs during the checkout
or debug phase. Although the use of
patches may accelerate the debug phase,
it is recommended that all patches be
removed, source language corrections be
recompiled and the newly generated ob-
ject program be used in the acceptance
test. Documentation should be prepared
in draft form during the development of

the change. A1l documentation should be
finalized and distrubuted to the appro-

67

priate organization for vreview
approval before the change is closed.

and

5.3.10
System

Typical TS Change Management

The change management system of a sub-
contractor will often be implemented at
the stage in the real time software
development when the tested software is
integrated with the simulator hardware
or earlier for individual software units
on which testing is finalized.

The change management system will ensure
that changes to software will result in
the following:

a. Assessment of program timescale
and cost penalties;

b. Approval by the designated authori-
ties;

c. Production of the timescale plan
for implementing the change, and moni-
toring of this timescale;

d. Identification of all documents
affected by the change and monitoring of
the resultant alterations;

e. Identification of verification
software affected by the change and
monitoring of the resultant alterations;

f. Records of all
changes.

configuration

In addition, for changes requiring con-
tractor approval, a change order will be

submitted to the contractor. Such
changes are defined in general as
follows:

a. Changes to documents forming the

agreed Design Requirements Baseline,
Contract Specifications, or Approved
Acceptance Test Schedule.

b. Changes affecting financial
1iability.

c. Changes affecting major milestones
in the program.

Cn e ——ta R

Section 6.0 SPECIAL REQUIREMENTS FOR SOFTWARE MAINTENANCE

The planning and conduct of software
maintenance were discussed in Sections
4.0 and 5.0 but there are several topics
relevant to software acquisition that
warrant special consideration. These are
(1) maintenance support environment; (2)
program transfer and system turnover;
and (3) software maintenance training.
The significance of these topices to ef-
fective software maintenance is some-
times overlooked and consequently is
highlighted in this section.

6.1 MAINTENANCE SUPPORT ENVIRONMENT
The support environment in which soft-
ware maintenance is conducted can make
the difference between responsive, low
cost maintenance and difficult, costly
maintenance attended by serious degrada-
tion in system reliability and avail-
ability. Elements of the software mainte-
nance environment are:

a. Software maintenance budget

b. Skilled and trained personnel

c. Facilities (physical plant and
furnishings)

d. Computing equipment and periph-
erals

e. Maintenance Organization structure
and assignment of responsibilities

f. Contractor or vendor support
g. Computer program documentation
h. Technical data base

i. Special test equipment

j. Computer aids to software mainte-
nance

k. Maintenance information analysis
and dissemination

1. Equipment and supply support
m. Maintenance policy and procedures

n. Computer program design, re: main-
tainability (see Table 3.1-2 for attri-
butes of maintainable software)

A1l elements are important and deficien-
cies in any element can result in poor
maintenance capability. For example,
availability of computers and necessary
interface equipment to conduct software
maintenance can be critical. Computer
availability options are (1) dedicated
computers; (2) dedicated time on compu-
ters; and (3) computer time sharing. The
choice of option and degree of avail-
ability both impact software maintenance
capability.

6.1.1 Computer Aids to Software Mainte-
nance

Another critical element 1is computer
aids to software maintenance. These range
from simple utility programs, (ref: for
taking memory dumps) to sophisticated
automatic program restructuring and diag-
nostic routines. A wide variety of soft-
ware aids to software maintenance is
available and an important acquisition
decision is to select appropriate aids
to be procured with the software system.
Software maintenance tools employed by
the development contractor should also
be a concern. Contractor propriatory
methods and the availability of GFE
software aids should also be considered.

© e AT AW S LU TROPRE TR § ORI - o - s,

6.1.2 Types of Computer Aids

Software tools for software maintenance
can be classified under three general
types: (1) utility modification aids;
(Zg static analysis aids; and (3) auto-
matic program analyzers and aids.

Utility modification aids are general
utilities that facilitate the process of
error analysis and program modifica-
tions. These include:

69 ‘
PRECELING FAG BlLai&eNOT FI1.UGD ‘

. — . oer

Mmoo

TR

e AT T TR MING NEATSS W e et

I e s

a. Compilers

b. Assemblers

c. Linkage Editor

d. Loader

e. Media Converters
f. Text editor

g. File routines

h. Dump routines

i. Simulators

Jj. Recording routines

k. Configuration status routines (for
Program Support Library)

1. Test Drivers
m. Program patch routine

n. Memory access and alteration
routines

Static analysis aids provide tabulations
for tracking data flow/use and module
relationships. Such aids include:

a. Set/Use Matrix (cross reference
analysis)

b. Common Data Pool (COMPOOL) Tist-
ings

c. Data base analyzer (set/use/output)

d. Consistency analyzer (module inter-
faces)

e. Trace routines (machine and program
status)

Automatic program analyzers and aids pro-
vide an array of tools to the mainte-
nance programmers for error detection,

70

i U e A N WA . 4 AN b < = B T —

program structure analysis, operating
dynamics analysis, and other assists.
These tools include:

a. Automatic Test Case Generators
b. Automatic Flow Charters

c. Automatic Program Execution
Analysis

d. Coding Standards Auditor

/
e. Prgf%ompiler Instrumented Programs
f. Aﬁtomatic Program Structuring

Numerous such tools are in use (some of
which are proprietary) and several com-
parative studies have been made
(References 2 and 5 Bibliography).

This brief introduction to computer aids
for software maintenance indicates the
depth of resources available to mainte-
nance programmers. All resource ele-
ments, as listed at the beginning of
paragraph 6.1, are to be specified in
software maintenance plans, such as the
CRISP and CPDP. Specification of these
resources is of major interest to the
software acquisition engineer.

6.2 PROGRAM MANAGEMENT TRANSFER AND
SYSTEM TURNOVER

Perhaps the most difficult and vulner-
able time period for software develop-
ment and maintenance is that critical
interval when systems are turned over,
and management responsibility is trans-
ferred from the implementing command to
the supporting command and/or wusing
command. Usually this period is charac-
terized by a still-fluid software
configuration as error corrections and
performance improvements are being incor-
porated. Computer program discrepancies
are still being discovered during this
period and previously known discrepan-
cies are still in the process of being
corrected. Thus the change environment,

[y

software maintenance workload, is
much Tike that during full scale develop-
ment. One major difference, however, is
that an experienced contractor program-
ming team is being phased out by an inex-
perienced Air Force programming team.

e.g.:

Consequently, the planning and conduct
of software maintenance during the
transfer/turnover period is extremely

critical.

The objective of rational planning for
software maintenance in the transfer/
turn-over period is to provide for an
orderly and cost effective transition.
Such planning can be accomplished, as
will be evidenced in the sections which
follow. Whether such planning succeeds
depends on the diligence and vigilance
of the software acquisition engineer.

6.2.1 Major Elements of Transfer/Turn-
over Plai..ing

Principal planning for a smooth transi-
tion in software maintenance during the
transfer/turnover period is contained in
three documents:

a. PMRT Agreement

b. System/Equipment Turnover
ment

Agree-

¢. Turnover Certificate

Planning documents having major input to
the above three documents are the PMP,
ILSP, CRISP, and CMP. These four plan-
ning documents are described in the
guidebook on Computer Program Documenta-
tion Requirements.

The PMRT is prepared and updated by a
Transfer Working Group (TWG) represented
by the implementing, supporting, and
using command. Development of the PMRT
plans begins early in full-scale develop-
ment phase and is effective until all
residual tasks are completed (action
items remaining at PMRT date).

n

The System/Equipment Turnover Agreement
is prepared under policy established by

AFR800-15 and provides, among other
planning guidance, the special change
procedures to be implemented between

system turnover and program transfer.

The Turnover Certificate augments the
System/Equipment Turnover Agreement by
specifying responsibilities for software
corrections, forecasted correction dates,
etc.

Contents of these documents and their
relationship to other planning documents
are described in the next section.

6.2.2
cess

Transfer/Turnover Planning Pro-

Criteria for program transfer and system
turnover are established by the Program
Management Plan (PMP), based primarily
on:

a. Logistics support planning
b. Organic support policy
c. Interim contractor support policy

This relationship is shown in Figure
6.2-1 which presents a schematic of the
transfer/turnover process. The schematic
also shows (1) how the CRISP and CPM
relate to the PMRT; (2) what regulations
govern the process; and (3) principal
contents of the PMRT Agreement, System/
Equipment Turnover Agreement, and Turn-
over Certificate.

The PMRT accomplishes a number of pur-
poses, but one paramount objective with
respect to software maintenance is to
establish special change procedures and
phasing requirements during the critical
interval between full contractor mainte-
nance responsibility and full Air Force
maintenance. This planning is influenced,
of course, by the CRISP and CMP. The Com-
puting Resources Working Group (CRWG) is
responsible for assuring that provisions
of the CRISP are adequately included in
the PMRT.

Ss3aiva

NOILD3HHOO 1SVI3HO0d
SNOILOIHYOD

HO3 S3ILIMNIGISNOJSIY

HIAONHNL LY
SNOILJIIXI/SIIONIIDI43a
3OHNOS3Y H3ILNIWOD

SNOISIAOYd
AININIOVNVI TVIO3dS
YIJ4SNVUL B HIAONYNL
N33M138 S3HNA

-3004d IONVHI TVII3dS
SNOLL

- d30X3 B SIIONV4IHIS3A
$30HNOS3H HILNIWOD
$30HNOS3Y

H3ILNdWOD I18VIINddY
dWND ‘dSIHD 4O SNOISIAOHd

31vQ LUNd

1V S3IDNVd43HIS3Ia
JHVMLIOS HOrvw
ONINIVHL

40 NOLLITIWOD
SNiLvis

NOILITIWOO IUVMLIO0S
31vQa 1YNd

EEIRR]L:

<ISNOJS34 4O LNIWNOISSY
3INA3HIS INOLSITIN
B SHSVL IvNAIS3IY
$31NA3IHOS

AH3IAIT3A IHVYMLAOS

i AV i e oA DML 2 b, s B gy

dnewayds Jarouinj/iajsuel] °4-z-9 ainbry

31vOI4iLY3D
H3IAONYHNL

AN3W3IY OV
HIAONHNL

@ LINIWNJINDI/WILSAS

dWO

ONINNVYd
INIWIOVNVYIN
NOILYHNODIINOD

ANIW3IIHOV
{L4nd)
H34SNVHL
ALNIGISNOdJSIY

SLN3LNOD

TR SN A . o Ml (e A - -

IN3IWIOVNVYIN
WVHD0ud

ONINNVd
S$30UNOS3Y
43LNdWNOO

dSI4d

TI

11008 Hd4v
1430NOD
100
61008 44V
F10AD
34N
AJINod
H3IAONUNL
12008 Hdv
AdNOd
140d4dNS
HOLOVHINOD
WIH3LNI
H3IAONHNL
wos viaLwo @ | \nd) wvia
ANIWIOVYNVYIN
1H40ddNS HOLOVHLNOD WVYHDO0Hd
WIH3LNI B JINVOHO
NO NOISID3a (1) 4
ONINNV1d LHOddNS
O1LSI1907 J3LVHDIALNI AJMod
1H0ddNS
a1 JINVOHO
A3IN0d
v008 HdiV

s i aran

ey

e

72

L " X ',

PR

N e < o i e i TR

o i RS

T

AR TN, . o e A NGO 5> S8 S IR 0T

A key decision recorded in the PMRT is
the scope and nature of contractor sup-
port of software maintenance to be pro-
vided in the interim period. (See Figure
6.2-1). The PMRT date is the official
cut-off of all ECP's and the PMRT in-
cludes agreements for each and e\ .ry
transfer of system update or change modi-
fication. The decision on interim con-
tractor support - and influenced by life
cycle cost trends (Figure 6.2-1) - is
discussed in the next section.

6.2.3 Interim Contractor Support and
Life Cycle Costs

Policy governing interim contractor sup-
port (ICS) is contained in AFR800-21
(Figure 6.2-1) and the purpose of such
policy is to:

a. Control and minimize capital in-
vestment in logistics support.

b. Allow time to
support requirements.

refine logistics

C. Assure resolution of technical
problems.
d. Defer full organic maintenance

until accpetable design stability is
ach:eved.

Interim Support is normally provided

during the period between first produc-
tion system delivery and when full opera- °

tional capability (FOC) is reached. The
period can be extended, however, if
justified through review, analysis, and

experience. The decision to commit tasks °

to ICS is made during the full-scale de-
velopment phase and specific planning is
documented in the ILSP. The chronolog-
ical sequence in the decision making pro-
cess is described in AFR800-21. Planning
for ICS is updated after test program
results are analyzed, i.e.: before FQR.

A major input to ICS planning are life
cycle cost trades, as shown in Figure
6.2-1. Life cycle cost concepts speci-

fied in AFR800-11 are applied to trades
of organic versus contractor support (or
mix of organic/contractor support). Cost
analyses include, among other factors:

a. Salaries for logistics personnel
b. Spares and repair parts

c. Support and test equipment

d. Software modifications

e. Training and training aids

f. Military and contractor facilities
g. Technical data

Delta costs are computed as a function
of fiscal year. Representative cost

ztudy results are depicted in Figure
02-20

6.3 SOFTWARE MAINTENANCE TRAINING

Skilled and trained personnel is one of
the major maintenance resource elements
listed at the beginning of paragraph
6.1. Frequent reference is also made to
training needs in planning and require-
ments documents. Yet, software mainte-
nance training, as with training in
general, tends to be an "also ran" when
it comes to budget, administrative pri-
ority, and provision of necessary re-
sources to develop and conduct a viable
training program. Thus, it is not uncom-
mon for the using and supporting com-
mands to be ill-prepared to perform ade-
quate maintenance until long after first
production delivery. In this context, it
is -vital that the software acquisition
engineer continue throughout system de-
velopment to stress good planning and
resources for software maintenance
training.

Software maintenance training can occur
by "osmosis" through the interface be-
tween contractor and Air Force program-
mers, or Air Force training can be sys-
tematically arranged through procurement
of comprehensive training services from
the development contractor. The latter
method is recommended.

73

i

DELTA COSTS (ORGANIC SUPPORT MINUS ICS)

{ I | 1 | 1 L

FISCAL YEARS

Figure 6.2-2. Life Cycle Cost Comparison for ICS Policy Decision

74

N © e e v S e s

!
!
?
;
|
|

Comprehensive services for software main-
tenance training can be designed and
implemented according to ISD concepts.
Such services could include:

a. Analysis and specification of soft-
ware maintenance training requirements

b. Planning for training system devel-
opment

c. Design of training courses
d. Development of training resources

(1) Lesson materials - instructor
and student

(2) Facilities, e.g.: system simu-
lator; training station

(3) Training data base
(4) Audio-visual aids

e. Delivery and installation of train-
ing system

f. Implementation of training program

g. Analysis of training program effec-
tiveness, program modifications/improve-
ments.

A well-conceived and implemented train-
ing program will reduce transition costs
and facilitate early organic capability.

75

,,,,,

' Section 7.0 BIBLIOGRAPHY
Gilb, T., "The Measurement of Soft- 7. Overton, R. K., "“Developments in
ware Reliability and Maintainabil- Computer Aided Software Mainte-
ity", Computers and People, Page nance", September 1974,
1 16, September 1977 ESD-TR-74-307
. Stucki, L. G., "A Methodology For 8. Cirad, "A Study of Fundamental
Producing Reliable Software", Vol- Factors Underlying Software Main-
¢ ume II, March 1976 tenance", December 1971, ESD-TR-72-
N 121-Vol-1, 2
3. Stucki, L. G., "An Experiment in
. the Use of New Language Features 9, Peters, L. J., et al "Systematic
% and Automated Tools to Improve Soft- Software Development and Mainte-
! ware Quality", Boeing Computer nance", Boeing Computer Services,
'g Services, Inc., 1977 Inc., August 1976
B , 4, Fries, M. J., "Software Error Data 10. ARINC 416-8 ARINC Specification
. Acquisition”, The Boeing Company, 416-8, Abbreviated Test Language .
. February 1977 for Avionics Systems (ATLAS), i
] Aeronautical Radio, Inc., June 1973 5
H 5. Brown, J. R., et al "Characteris- : I
f’ .k tics of Software Quality", TRW- 11. Omnicomp Handbook of Logic-Circuit §
- 4 National Bureau of Standards, Testing, Volume 1 "Techniques and
. December 28, 1973 Implementations” 1975 H
';' 6. Overton, R. K., et al "Research See also, References in Section 2.0.
. ; Toward Ways of Improving Software i
: Maintenance", January 1973, g
; ESD-TR-73-125 §
| E
° f E‘
|
]
}
i
|
. 1
\ “ !
P
¢j‘:., 77 Ra N

FRECED)\G FAGE Blal&-NOT FI.MBD 3

. . A - . P
-~ B - . . -
- - . . L~ . T T : v -

Section 8.0 MATRIX: GUIDEBOOK TOPICS VERSUS GOVERNMENT DOCUMENTS

Figure 8.0-1 is a cross reference matrix The elements in Figure 8.0-1 correspond

‘ showing the guidebook topics and govern- to the sections in the government
ment documents that address that topic. publication wherein the corresponding

. The government documents are identified topic is discussed to the Tlargest
as well as the sections, chapters, at- extent.

tachments, enclosures, appendicies, etc.
in which the topics are found.

b 79 T
' FRECEL1AG FAGE BluddK=NOT Flu&Dd

DU ————

bt 6 =Ptk

e e sin bt T SEMIRAIIY D L % ve . s 1S G

Vil ot

(Z 40 ¢ 198YS) UONRIUBWNIOQ JUBWILLIIAOL) SNSIAA $IIDO [¥0Oqaping “L-0'Q 31nbi4

09 8935 INIW3DVNVYIN NOILYHNOIINOD
£0L L°dns AIXddv | 9dvHo | oA
zoL £y
Loy ‘EVHVd| SOV 43S AL ONilS3L
no |veavaew| eoe | g L "dNS ze S dVHD
voy
Zvuvd| vioe
NINNVId 3ONVNILNIVI
Py [LHOVLLY| 90E £ 2
o9 o] goz g £dvHD | a'A
. S3aVH1 IONVYNILNIVIN
(s)oy € Loy 55 L
(nov ‘PT £0Z Ly v
vs 8¢€ $3DHNOS3H JONVNILNIVIN
v |6°'Lvuvd] LLOY £5 oLy'e Lt ‘TA
¢ |LHoviiv] g0z zs £ zt A
¢ | ‘twvuvd 1z @ JONVYNILNIVIA JINVOHO
@1 |t HOV1LV L dNs @)z
Loy
mmm S1509 319A2 3411
(5)op Pz £01 L€ DIA
2/ e/ /3 /7R /53/ & wréos
LY > ! d 2 ! ! RS O
% In\o I.wu <4 o In\é ~ & [
S S S s /& e /S8 /) §
Ay -3 ~ 4 < A ~ :
$ g /S & / & S8
R NOILYDIT8Nd
ANIWNYIA0D -
T
— ' .
¢ r @ o o A *

80

RS

{2 J0 Z 199yS) UORRUBWINIO(] JUBUILISADY) SNSIIA IO ¥00QapIng 4-0°'8 8inbl4

et SOl SAIv Y31NdWOD
zt A

8 vHvd ONINIVHL IONVNILNIVN
| HOVLLY

AJI70d JONVNILNIVA

AINIWIOVNVI INIT3SVE

1HOddNS JONVYNILNIVIA
0l dVHD

H3JISNVHL ANV HIAONHNL

WIA ddV
1A ddV NOILVANIWNDO0A 3ONVNILNIVIN

I ddv

NOLLYDIN8Nd
AN3WNH3A09

B T Tl Tl T U

Section 9.0 GLOSSARY OF TERMS

Acquisition Engineer - Military or civil-
jan member of a SPO or an AFSC division
who supports the activities of a SPO.

Allocated Baseline - The approved config-
uration item identification. It governs
the development of selected configura-
tion items that are part of a higher
level specification, e.g., System speci-
fication. It is usually defined by the
Computer Program Development Specifica-
tion,

Baseline - An. authorized
technical description specifying an end

item's functional and physical character-

istics. It serves as the basis for con-

figuration control and status account-.
ing. It establishes an approved well-

defined point of departure for control

of future changes to system or equip-

ment.,

Certification - The test and evaluation
of the complete computer program aimed
at ensuring operational effectiveness
and suitability with respect to mission
requirements under operating conditions.

Computer-Generated Imagery - Visual
scenes displayed in a TS in which the
shape, position, and orientation of all
displayed objects (lines, surfaces, vol-
umes) are computed to correspond to the
spatial relationship of observer to the
simulated objects, e.g., pilot viewing a
landing field. These computations are
updated in real time and displayed on a
CRT (or projection thereof) to simulate
a dynamically changing visual scene.

Computer Program Configuration Items - A
computer program or aggregate or related
computer programs designated for con-
figuration management. A CPCI may be a
punched deck of cards, paper or magnetic
tape or other media containing a se-
quence of instructions and data in a
form suitable for insertion in a digital
computer.

83

documented _

Mecimwt T . e wm

Configuration Control - A management
discipline applying technical and admin-
istrative direction and surveillance to:

a. Identify and document the func-
tional and physical characteristics of a
configuration item

b. Control changes to those character-
istics; and

c. Record and report change proces-
sing and implementation status

Control Software - Software used during
execution of a test program which con-
trols the nontesting operations of the
ATE. This software is used to execute a
test procedure but does not contain any
of the stimuli or measurement parameters
used in testing a UUT. Where test soft-
ware and control software are combined
in one inseparable program, that program
gilg7$e treated as test software (AFLC
6' .

Data Base - A collection of program
code, tables, constants, interface ele-
ments and other data essential to the
operation of a computer program or soft-
ware subsystem,

High Order Language - Problem or system
oriented code which can be automatically
translated to machine language either
directly or indirectly (through an
assembly language step).

Host Computer - An off-line, general
purpose, programmable computer which pre-
pares data or code for a (target) system
computer, e.g.: ATE station computer.

Interim Contractor Support - Contractor
support of system operations, training,
maintenance, capability improvements,
etc., following system delivery. This
support can be for all or part of a des-
ignated activity and is often contracted
independently of a system development
contract.

C T N .

FRECFULAG FAGR BLalKNOT F1.MED

o e e ecme—— e

Life Cycle Costs - The sum of all costs

to operate, maintain, and supply system
functions for the full life of a system.
This includes facilities, equipment, per-
sonnel, organic support services, system
improvements, training, contractor sup-
port, etc.

Maintainable Software - Software (pro~

gram code, documentation, data base)
which has all the attributes that facili~
tate software maintenance. Such attri~
butes include modularity, top down struc~
ture, conceptual groupings, etc.

Management Responsibility Transfer - The
formal and complete transfer of all man-
agement responsibility for a system. This
transfer occurs between the implementing
command (procurement agency) and the sup-
porting and/or using command.

Organic - A term used to designate a

task performed by the Air Force rather
than a contractor.

Product Baseline - The final approved
configuration identification. It identi-
fies the as designed and functionally
tested computer program configuration.

It is defined by the Computer Program
Product Specification.

Quality Assurance - A planned and sys-

tematic pattern of all software-related
actions necessary to provide adequate
confidence that computer program config-
uration items or products conform to
establish software technical require-
ments and that they achieve satisfactory
performance.

Software - A combination of computer pro-

grams, documentation and computer data
required to enable the computer equip-
ment to perform computational or control
functions and to enable program mainte-
nance.

Software Maintenance - Any change to pre-
viously established software. Sources.for
such change are coding errors, module de-

84

sign problems, system interface prob-
lems, revised system requirements, and
capability improvements.

Support Software - Auxiliary software

used to aid in preparing, analyzing and
maintaining other software. Support soft-
ware is never used during the execution
of a test program on a tester, although
it may be resident either on-line or
off-l1ine. Included are assemblies, com-
pilers, translators, 1loaders, design
aids, test aids, etc. (AFLC 66-37).

System Life Cycle - The system acquisi-
tion Tife cycle consists of the follow-
ing five major phases with major decision
points:

a. Conceptual phase

b. Validation phase

¢. Full-scale development phase

d. Production phase

e. Deployment phase
(AFR-800-14, Volume II)

Test Software - Programs which implement

documented test requirements. There is a
separate test program written for each
distigct configuration of UUT (AFLC
66-37).

Top Down Structured Programs - Structured

programs with the additional characteris-
tics of the source code being logically,
but not necessarily physically, segmen-
ted in a hierarchical manner and only
dependent on code already written. Con-
trol of execution between segments is
restricted to transfer between verti-
cally adjacent hierarchical segments.

Validation - System validation is the in-

tegration and test of all hardware and

software components to assure the com-
plete system fulfills all system require-
ments. Note: "Validation" is also .used
in two other respects: (1) Validation
Phase (between Conceptual Phase and Full
Scale Development Phase), and (2) Soft-
ware Validation - a component test check-
out preceding software verification.

N

Verification - Computer program verifica- each step of the computer program acqui-
sition process fulfills all requirements

tion is the iterative process of continu-
ously determining whether the product of levied by the previous step.

85

R T T —

38 .
..

B e i

TR T TR e TR e T A T TR T e T

ACSN
AFLC
ASD
ATE
ATLAS

ATPG

BITE
CDR
CDRL

CGI

- CI

CMpP
COMPOOL
cPC
CPCI

CPDP

CPL
CPU
CRISP

CRT
CRWG

DCP
DID

Section 10.0
Advanced Change Study Notice
Air Force Logistics Command
Aeronautical Systems Division
Automatic Test Equipment

Abbreviated Test Language for
A1l Systems

Automatic Test Program
Generator

Built-In Test Equipment
Critical Design Review

Contract Data Requirements
List

Computer Generated Imagery
Configuration Item
Configuration Management Plan
Common Data Pool (Base)
Computer Program Component

Computer Program Configuration
Item

Computer Program Developmer.
Plan

Computer Program Library
Central Processing Unit

Computer Resources Integrated
Support Plan

Cathode Ray Tube

Computer Resources Working
Group

Development Concept Paper

Data Item Description

ABBREVIATIONS AND ACRONYMS

DOD Department of Defense
DOS Disc Operating System
DR Discrepancy Report
DT&E Development, Test, and
Engineering
ECP Engineering Change Proposal
EMI/EMP Electro-magnetic Interference/
Pulse
FCA Functional Configuration Audit
FOC Full Operational Capability
FORTRAN Formula Translator
FQR Formal Qualification Review
FSCP Flight Simulator Computer
Programs
GFE Government Furnished Equipment
HOL Higher Order Language
IC Integrated Circuit
1CD Interface Control Drawing
. ICS Interface Control
Specification
I!S‘ Interim Contractor Support
ILS Integrated Laogistics Support
‘ ILSP Integrated Logistics Support
sy Plan
A
10C Initial Operational Capability
1SD Instructural Systems
Development
ISP Integrated Support Plan
ITA Interface Test Adapter
LcC Life Cycle Cost

h%

bW

{
i
]
{
|
!
i

LRU
LSA
PCA
PDR
PMP
PMRT

PRU
QA
SMTP

RAM
RF

RFP
ROC

ROM
SAE

SCN
SCP

Line Replaceable Unit SDR
Logistics Support Analysis SERD
Physical Configuration Audit

SOW
Preliminary Design Review

SPO
Program Management Plan

SRR
Program Management
Responsibility Transfer SRU
Primary Replaceable Unit SSp
Quatity Assurance TAC
Simulator Maintenance and Test T.0.
Programs

TRD
Random-Access Memory

TS
Radio Frequency

TWG
Request for Proposal

USAF
Required Operational
Capability T
Read-Only Memory VDD
Software Acquisition VV&C
Engineering
Specification Change Notice WBS
Supplier Change Proposal

88
Rl v come e SR “““‘“—m../’"'- — T -~

N
N s

System Design Review

Support Equipment
Recommendation Data

Statement of Work

System Program Office
System Requirements Review
Secondary Replaceable Unit
Simulator Data Support Program
Tactical Air Command
Technical Order

Test Requirements Document
Training Simulator

Transfer Working Group
United States Air Force

Unit Under Test

Version Description Document

Verification, Validation, and
Certification

Work Breakdown Structure

.. -

o P AR R R b

s ¥ . et i

fcas ks

e
AR A" T a7 oS e o | = R S5 5

Section 11,0

ATE Unique Consideration
Automatic Test Program Generation
Calibration '

Central Maintenance Facility
Change Approval

Change Board

Change Impact Assessment
Change Management, Control
Change Sources

Check List

Computer Aids

Conceptual Phase
Configuration Management

Data Base
Corrective Maintenance
Data Item Descriptions

Debugging

Deployment Phase

Diagnosis

Documents and Documentation

Facilities

Firmware

Full Scale Development Phase
Growth Potential

High Order Language

SUBJECT INDEX
PARAGRAPH

3.0, 3.4, 4.3.1, 5.2.3, 5.2.5
4.1,2

3.2, 3.4, 3.5, 4.1.5, 4,3.1

5.3

3.3, 5.1, 5.1.2, 5.3.7

3.3, 5.1.2, 5.3.7

3.2, 3.3

1.4, 3.0, 3.3, 3.5, 4.1.4, 5.3
3.1, 3.3, 5.1.1.4, 5.1.1.5, 5.2.4
3.2, 4.1.1, 4.1.5, 6.1, 6.3

3.1, 3.3, 3.5, 4.1.3, 4.1.5, 6.1,
6.1.1, 6.1.2

1.0, 3.2, 4.0, 4.1.1

3.2, 4.1.1, 4.1.4, 4.1.5, 4.3.1,
5.1.1.1, 5.2.3, 5.3

3.0, 3.2, 3.3, 6.1, 6.2.3

3.2, 3.5

2.0, 4.1.1, 4.1.3, 4.2, 5.1.1.1,
5.1.4

3.2, 3.3, 3.4, 4.1.5, 5.1, 5.2.6
3.2

3.2, 3.4, 3.5, 6.1.1

1.0, 2.0, 3.2, 3.3, 3.4, 4.1.1,
4.1.3, 4.1.5, 4.2, 4.3.1, 5.2.2,
5.3.4, 5.3.9

1.2, 1.4, 3.1, 3.2, 4.1.1, 4.1.3,
4.3.1, 6.1, 6.2.3

3.1, 3.2, 3.5

3.2, 4.1.4, 5.1,3.1

3.4, 4.1.1, 4,3.1

1.3, 3.2, 4.1.5, 4.2

89

G 7N T

R

T Y € R

,

17 S o & .
Life Cycle Costs 1.0, 3.2, 3.5, 4.1, 4.1.2, 4.1.5,
6.2.3
Logistics Support Analysis 1.3.2, 3.2 ;
Maintainability Attributes 3.1, 4.1.5, 5.1,1.3, 5.2.3, 6.1 i
Maintainable Software 1.0, 3.0, 3.1, 3.2, 3.5, 4.1.1, .
. 4.1.2, 4.1.5 ;
; Maintenance Activities 1.2, 1.4, 3.2, 3.3, 5.0, 5.1, 5.2.5
' Maintenance Data Collection 3.2
Maintenance Demonstration 3.0, 4.1.5
Maintenance Equipment 3.2, 4.1.3, 6.1
Maintenance Planning 1.0, 1.2, 1.4, 3.2, 3.4, 3.5, 4.0,
A 4,1, 4.3.2, 6.2.1, 6.2.2
‘: : Maintenance Programmers 3.1, 6.1
. Maintenance Resources 3.1, 3.2, 3.3, 4.1.1, 4.1.3, 6.1
: Maintenance Tools 1.2, 3.2, 6.1, 6.2.3 E
: }’ . Maintenance Training 1.4, 3.2, 4.1.1, 4.1.3, 4.3.1, 6.1, ‘
E 6.2.3, 6.3
. : Modification Design 3.3
' Modules, Modularity 3.2, 3.3, 4.1.1, 4.1.5, 4.3.2, 5.1.3
) Organic Software Maintenance 3.1, 3.4, 4.2, 6.2.2, 6.3
Organizations 4.1.4, 4.3.1, 6.1
Pitfalls 3.4, 5.1.4, 5.2.8
‘ Preventive Maintenance 3.2, 3.5
- 1 Programmer Skill 3.0, 3.2, 4.1.5, 6.1
. 5 Program Structure 3.2, 4.1,5
Program Support Library 3.3, 6.1.2
Program Transfer/System Turnover 6.0, 6.2
Proprietary Software 3.4, 4.2, 5.2.7
Reviews /Audits 3.2, 4.1.5, 5.2.2
Software Maintenance Costs 1.0, 1.2, 3.2, 6.1
‘ Software Maintenance Life Cycle 3.0, 3.2
‘ Software Maintenance Policy 3.2, 3.3, 6.1, 6.2
, Software Maintenance Procedures 3.0, 3.3, 4.1.1, 6.1, 6.2,2
! 1 Software Maintenance Tasks 3.0, 3.2, 5.1, 5.1.3
¥ " Special Requirements 1.4, 3.0, 6.0
_‘/“‘ L)
LT 90
o~ . - R N - . IS

———

. g e S S R

P TS

-
L —

. .

Testing
Trades, Trade-offs

TS Unique Considerations

Validation Phase
V, vV, &C

91

3.2, 3.3, 3.4, 4.1.1, 4.1.5, 5.1.3
3.0, 3.2, 3.4, 4.1, 4.1.2, 6.2.3
3.0, 3.5, 4.3.2, 5.1, 5.3.10

3.2

3.3, 4.1.5

@U,S.Government Printing Office: 1980 — 657-084/530

N TR)

;
b

B TR

