AD=-AGB3 205 BOEING AEROSPACE CO SEATTLE WA F/6 972
SOFTWARE CONFIGURATION MANAGEMENT. ONE OF THE SOFTWARE ACQUISIT==ETC(U)
JAN 79 M P KRESS F33657=-76-C=0723

D180-24727=1 ASD=TR=78~48

UNCLASSIFIED

2
| =

"" 1.25

=Nz Nz
il £
w g =
™
e

—

= [

==

MIEROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

——

@S

SOFTWARE CONFIGURATION MANAGEMENT
One of the Software Acquisition
Engineering Guidebook Series

DIRECTORATE OF EQUIPMENT ENGINEERING

DEPUTY FOR ENGINEERING
DTIC |
ELECTE 4
APR 17 1980 i
JANUARY 1979
B
TECHNICAL REPORT ASD-TR-7848
Final Report
Approved for public release; distribution unlimited. 7

AERONAUTICAL SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

Chicae Iaitahd

i

A% e e L

-y

NOTICE

When Gownrnment dravwings, specifications, or other data are used for any pur-
pose other than in connection with a definitely related Government procurement
operation, the United States Government thereby incurs no responsibility nor any
obligation whatsoever; and the fact that the government may have formulated,
furnished, or in any way supplied the said drawings, specificatioms, or other
data, is not to be regarded by implication or otherwise as in any manner licen-
sing the holder or any other person or corporation, or conveying amny rights or
Permission to manufacture, use, or sell any patented invention that may in any
way be related thereto. :

This report has been reviewed by the Information Office (OI) and is releasable
to the National Technical Information Service (NTIS). At NTIS, it will be avail-
able to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

Hlod W il

RICHARD W. ITTELSON, RICHARD J.
Technical Advisor ASD Weapon Sphte
Directorate of Equipment Engineering Focal Poin

Deputy for Engineering

FOR THE COMMANDER

her

OHN S. KUBIN, Colonel, USAF
Director, Equipment Engineering

"If your address has changed, if you wish to be removed from our mailing list,
or if the addressee is no longer employed by your organization please notify
+W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by se~
curity considerations, contractual obligations, or notice on a specific document.
AIR FORCE/56780/17 March 1980 — 400

b

b - ~f Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

R EPORT DOCUMENTATION PAGE BEFOG OO T e ONS RN

@ BEE T / Z. GOVY ACCESSION NO,| 3. RECIPIENT'S CATALOG NUMBER

éOFTNARE CONFIGURATION MANAGEMENT ¢ & D“l the

oftware Acquisitlon Engineering i
Guidebook Seriess — (7))

N k2 Au'ruon(-) B - i / k
C/c.’ M. P fkress é, F33657-76-C-9723) i
9. PERFORMING ORGANIZATION NAME AND ADDW 10. :ROGR‘M'AOERLinE:IT PRO.IEECST TASK
. Boeing Aerospace Company PE64740F 76
P.0. Box 3999 Proiect /2538
Seattle, Washington 98124 rojec
_ %, 11. CONTROLLING OFFICE NAME AND ADDRESS é/‘ 12. REPORT DAT 7
:, ‘ ,a HQ ASD/ENE -l Janeery 1979 2 Janwery §879
! = Wright-Patterson AFB, OH 45433 72
¢ f; 14, MONITORING AGENCY N, & ADDRESS(" different from Controlling Office) 1S5. SECURITY CLASS. (of this report)]
_ b //aé éé/ Unclassified
F " 15a. DECL ASSIFICATION/ DOWNGRADING
3 . é’ SCHEDULE
Y ,i;‘ 16. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release, Distribution Unlimited

.

17. DISTRIBUTION STATEMENT (of the absteact entered in Block 20, if different feom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identily by block number)

Software Acquisition, Acquisition Engineering, Configuration Control,
Configuration Management, Configuration Accounting, Allocated Baseline,
Certification, Computer Program Configuration Item, Control Software,

\ Software, Validation, Verification

& ABSTRACT (Continue on reverse side if necessary and Identily by block number)

This report is one of a series of guidebooks whose purpose is to assist Afr
Force Program Office Personnel and other USAF acquisition engineers in the
acquisition engineering of software for Automatic Test Equipment and

. Training Simulators, This guidebook provides guidance in the preparation,

" imposition and enforcement of software configuration management requirements
and recommended procedures.

TN
{
L)
FORM
oD , (AN 73 1473 EDITION OF 1 NOV 6% 1S OBSOLETE Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

- g5 LY

R e SR LR TR DL T P BT

FOREWORD

This guidebook is one in a series prepared for the Aeronautical Systems Division
(ASD/EN) of the Air Force for Automatic Test Equipment (ATE) and trainer simulator
software acquisition. It provides guidance to Air Force system acquisition
personnel in the preparation, imposition, and enforcement .of software configuration
management requirements for ATE and Training simulator software through all phase
of system acquisition.

This guidebook is one of a series intended to assist the Air Force Program Office
and engineering personnel in software acquisition engineering for automatic test
equipment and training simulators. Titles of other guidebooks in the series are
listed in the introduction. These guidebooks will be revised periodically to
reflect changes in software acquisition policies and feedback from users.

This guidebook reflects an interpretation of DOD directives, regulations and
specifications which were current at the time of guidebook authorship. Since
subsequent changes to the command media may invalidate such interpretations the
reader should also consult applicable government documents representing authorized
software acquisition engineering processes.

This guidebook contains alternative recommendations concerning methods for
cost-effective software acquisition. The intent is that the reader determine the
degree of applicability of any alternative based on specific requirements of the
software acquisition with which he is concerned. Hence the guidebook should only be
implemented as advisory rather than as mandatory or directive in nature.

This guidebook was prepared by the Boeing Aerospace Company.

ACCESSION for

1114

This Software Acquisition Engineering Guidebook is one of a series
prepared for Aeronautical Systems Division, Air Force Systems Command,
Wright-Patterson AFB OH 45433. Inquiries regarding guidebook content
should be sent to ASD/ENE, Wright-Patterson AFB OH 45433. The following
list presents the technical report numbers and titles of the entire
Software Acquisition Engineering Guidebook Series. Additional copies of
this guidebook or any other in the series may be ordered from the Defensge
Documentation Center, Cameron Station, Alexandria VA 22314.

ASD-TR-78-43,
ASD-TR-78-44,
ASD~TR-78-45,
ASD-TR-78-46,
ASD-TR-78-47,
ASD~TR-78-48,
ASD-TR-78-49,
ASD-TR-78-50,
ASD-TR-79-5042,

ASD-TR-79-5043,
ASD-TR-79-5044
ASD-TR-79-5045,
ASD-TR-79-5046,
ASD-TR-79-5047,
ASD-TR-79-5048,

Computer Program Maintenance

Software Cost Measuring and Reporting
Requirements Specification

Computer Program Documentation Requirements
Software Quality Assurance

Software Configuration Management

Measuring and Reporting Software Status
Contracting for Software Acquisition

Statements of Work (SOW) and Requests for
Proposal (RFP)

Reviews and Audits

Verification, Validation and Certification
Microprocessors and Firmware

Software Development and Maintenance Facilities
Software Systems Engineering

Software Engineering (SAE) Guidebooks Application
and Use

iv.

_ : ' T
‘ ~ 2 e
e Rl M) e
g e : »

TABLE OF CONTENTS

Section Title Page

100 INTRODUCTION S0 0000808000000 0000000000000000I0RCORIGEIGOOROIOSIOIECETRIOTIOETIOEOTDNTTS l

1.1 Purpose 900 00000000000 00000 0000008000 0CRCCRCIENICIORIROIOGOIOROEEROCEOETOETDTTS

1.2 SCOPe 0000000000000 0000000000000 080000RCRECRCCECCIOEOIOIOROIORIOIREOENROIDNIDOEDNS

103 Ts and ATE overView 000NNV ONNOPPL 000000000 CONIORIOISEPRIOIOITETSE

1
1
2
1.3.1 TS System Characteristics ccecececcecsscescesevccene 2
1.3.2 ATE System characteristics P00 BSOS SOOI SOGIOEGEOILOIGREBNNOETBSDS 2
5
7
9
9

1.4 Guidebook OrganizZation ceeesceccecesescccocoscscscecscocacans
2.0 APPLICABLE DOCUMENTS .eevcecsoescconsnscscsaccscasccscosssansansnnse
3.0 PLANNING FOR SOFTWARE CONFIGURATION MANAGEMENTcecocesssvcscse
Definition of Software Entities ..cccceceeccccesccscccssacces
Specifying SCM Requirements ...eceececoccesccccssascnsensees 9

3.1
3.2
3.3 Organization and Responsibi}ities .ceeeereeccccsanccscscsss 14
3.4 Resources and FACTTitieS seececensssssccsssnscacsssccccacss 14

400 PRODUCT IDENTIFXCATION 0 0000000000000V CEO0CPEOER0CROSLSEORORGSEOTS 17

4.1 Systa“ Specificatiolls 't...A.QOCQCOOOOOOO‘....Q....l!l...... 17
4.2 Software Specifications and CPCI Selections .ceeeeesceceess 18
403 CPCI Coﬂlponents Identification S0 0 00O OO OB OOIPSPOOSOOSSPOOTN 22

5-0 BASELINE MANAGEMENT S0P 00 PSP EELREEN08000000000000000OCLIROIBRIGOIERTDNTDS 25

5.1 Types of Base]ines L B B BN BN B S BN BN BE B BC B BN BN B BY BN RE N BN B BK BN NN BN B B BN N N NN N N N N N N) 25
5.2 Baseline Control Variations = ATE vS TS cevecscaccccscscese 27

50201 INtermOdU]e Dependance R R RN NN NN NN N NN R NN NN 27
5.2.2 Distributed PrOCESSing Ses 0000000 ONIOIOSISLIINRSGIOOOEDROETRTES 27
5.2.3 Change VO]UNE PO P 0S8 20000000 000000000000 RRRISEERIRSIOLOEDS 29
503 Base]ine COntrol MeChanismS 2000006080000 000000C00BOCRIORIOGTITS 29

5.301 ATE SOftware 90000000000 00000006e0 0000000000000 OBOOOES 29
503.2 Ts SOftware 000000 0002000000000 08008c00000000s000O08TS 34

6.0 CHANGE MNAGEMENT @0 000 0B 0000 ODPOCESP SOOI BBOOOPNONSOGEONENSIOSIRNEOSEROIOSOEDOSSEDS 41

6.1 Change c]assification G0 GO0 OB BB OOBOPNEN SRR ROORIOISTEDIBPOESOETNSTDS 41
c]ass I Change Criteria G0 S0 8008008000 CISEESINOSOEPSIRPOORIRBSTSYS 41
Class II Change Criteria cseeesccecascessccssncssces 41

Change PFOCGSSing 880000000 200800000000000000000000s 41
SOftware Chaﬂge Initiation 28000000 CRISSBNERROSIORSDRE DS 42

010

.1
1

1.

[o Mo Mo, W)
W N -

T R R -

Section

Title

- a 4

7.0

8.0

9.0

10.0
11.0
12.0
13.0

6.2

6.3

TABLE OF CONTENTS - Continued
Page
Change Approval and Release eccecesscsscesscsssccscscssscss 42

6.2.1 Project Change Board sceececscocescscccccnsescccccs 45
6.2.2 SOftware Change Board [F A EE NN NENNEENNNNENENNNERENENDENN] 45

Change Accountability and Verification scceeececceccacccocses 45

COMPUTER PROGRAM LIBRARY 8 4000000000008 3000000000008000CCCCROISINOROTY 49

7.1
7.2
7.3

REVIEHS AND AUDITS l.o.o..noI..ooo..O?....Q....0...000.‘..000.... 53

8.1

8‘2

Source and Object Code CONtrol seeececcacancescecaccsacncas 49
Media and Documentation SECUrity cececscesscossccssccscsces 49
Submission of Software for TeSt ccececceccssscccscccacescss 49

DeSign REVieWS 90 0000000000500 0000000000C00OC0RCRRIIBNRITOIOIIGOTYS 53

.1 System Requirement Review (SRR) seecececccsccsesces 53
.2 System Design Reviews (SDR) ceceveecaccasssscasenecs 53
.3 Preliminary Design Review (PDR) ecceevececscccccasse 53
4 Critical Design Review (CDR) ceeeseovcosscsaccsceae 53

8.1
8.1
8.1
8.1

Configuration AUditS 0000000090 RPC00000000000800CORISIOIENNITPRY 54

8.2.1 Functional Configuration Audit (FCA) ceeeeecsccecse 54
8.2.2 Physical Configuration Audit (PCA) ccecevccanccnees 54

BIBLIOGRAPHY 08B CIN OO0 0P000C0PBOINRI0ICRNORNEIROSOOIOIISIBOESIOTIOITS 55

MATRIX: GUIDEBOOK TOPIC VS GOVERNMENT DOCUMENTATION .eceececcecees 57

GLOSSARY OF TERMS S0 0000000000 0006000000080000000000000R0RRRRGIOIIITSTTE 59

ABBREVIATIONS AND ACRONYMS ..'l.....';.'...ll..o'........l....... 61

SUBJECT INDEX 002 0000000000000 08000000000000008000000800C000CEIGIIGIOTITDS 63

vi

LIST OF FIGURES
Figure Title Page

1.3-1 Typical Crew Training Simulator .s.cecececessesccessscescesscensces 3

1.3-2 Typical ATE Configuration .c.ceeeceecesssssccssseccssssccscscoccsanes &
3.2-1 Software Development ProCesS seceseecssceesssceccsssonssssscssese 11
3.2-2 Typical CPDP Flow Plan = ATE ..ceeeessccsavcoscsancosesscnssssses 13
3.3-1 Organizational Responsibilities for SCM ..ceecsvecscsavscsccacess 15
4,2-1 ATE Software Specification Relationship cieecscececccccscaccconss 19
4,2-2 TS Software Specification RelationsShip ceeececcccsccsccccccsneaes 20
4.2-3 Example of Multiple ATE Configurations/Multiple User's ..eeeeeees 21
4.,3-1 Version Description DOCUMENt .ceeeescecccosscsssessssssrsssacseses 24
5.1-1 Baselines and CONtrols ccceecececcscecccscseccosssocosssnssoscccs 26
5.2-1 ATE vs TS: Configuration Control Variants .cceeececccecccscssscss 28
5.3-1 ATE Software Development Specification Outline ..ceeeeececessacees 31
5.3-2 TS Software Functional Elements .cceeeescecccccssccsccesccccccass 36
5.3-3 Configuration Control Phasing ccceeeesscecssccscessscscesccsancss 37
5.3-4 Block Change Approach to Change CONtrol .ecececcecssccssscssesces 39
6.1-1 Software Problem REpPOrt c.ceeesceccecscssssescocscssscsscsssscssss 43
6.1-2 Design Change RequUeSt ceceeecesrncscsrssscsccssssscssscscscneanss 44]
6.2-1 Internal Software Change Control .cceececcscccscccccsnscscscscacs 46
7.3-1 Integration of Media Management Responsibilities scescecescsceces 51

10.0-1 Matrix: Guidebook Topic Versus Government Documentation ..e¢eeeee 58 3

b

vit

PR e

- o . - N N

B ‘
4
4
¥
o
Ed
b
¥

&
p

z

R

Section 1.0

Software Configuration Management (SCM),
is a wunique and distinct discipline
essential to the development, delivery
and maintenance of contractually com-
pliant software products. Unlike soft-
ware in earlier systems, software today
is being acquired as a product, rather
than as data. This 1is being done in
recognition of poorly defined software
requirements, poorly planned resources,
missed schedules, poor documentation,
excessive cost and post delivery prob-
lems. In procuring software as a
product, provisions are made for documen-
tation, review and verification mile-
stones very similar to those which occur
in hardware development. When planned
early in the conceptual stage of system
acquisition, SCM provides for:

a. Establishment and maintenance of
documentation systems for product ident-
ification.

b. Efficient methods of defining,
handling and tracking changes to soft-
ware products.

¢. Verification and accounting for as-
built product configuration and change
incorporation.

d. Periodic reviews and audits of
evolving product design.

e. Verification of ultimate physical
and functional configuration,

SCM complements software quality assur-
ance, and other engineering management
disciplines in providing for delivery of
quality software.

1.1 PURPOSE

It is the specific purpose of this guide-
book to present the general principles
of software configuration management
interpretive of government policy which
apply to Automatic Test Equipment (ATE)
and Training Simulator (TS) system
acquisitions. This guidebook is written

INTRODUCTION

to provide insight into some of the pit-
falls encountered in configuration man-
agement on these systems followed by
recommendations for circumventing those
pitfalls. It assists the AF project
office in developing and imposing cost
effective SCM requirements in Requests
for Proposal (RFP) and contracting
documentation. It also assists system
acquisition planners in source selection
activities, proposal evaluations, and
contractor surveys and audits. During
the validation and full scale develop-
ment phases, this guidebook provides
guidance for the review and approval of
contractor's Configuration Management
Plan (CMP) and Computer Program Devel-
opment Plan (CPDP). Finally the guide-
book provides an overview of the inter-
relationships of the Air Force, contrac-
tor and system vendor throughout the
acquisition process.

1.2 SCOPE

This is one of a series of guidebooks
related to the Software Acquisition
Engineering (SAE) process for TS and ATE
ground based systems. The SAE quidebook
titles are listed below:

Software Cost Measuring and Reporting

Requirements Specification

Contracting for Software Acquisition

Statement of Work (SOW) and Requests
for Proposal (RFP)

Regulations, Specification and
Standards

Measuring and Reporting Software
Status

Computer Program Documentation
Requirements

Software Quality Assurance

Verification

Validation and Certification

Computer Program Maintenance

Software Configuration Management

Reviews and Audits

Management Reporting by the Software
Director

G T AN A AR P a b e 5 o

This guidebook covers generalized con-
cepts and principles supplemented by con-
siderations unique to ATE and TS soft-
ware configuration management.

The prime areas to be covered are:
a. Planning and organizing for SCM

b. Software
item selection

specifications and end

¢. Baseline definition and change
control

d. Reviews and audits
The guidebook describes the interaction

of the Air Force, contractor and system
vendor throughout the acquisition pro-
cess. It further discusses the comple-
mentary nature of other contractor func-
tional organizations (i.e. QA, Engineer-
ing, Procurement) in the software devel-
opment process.

1.3 TS AND ATE OVERVIEW

This section provides a brief sketch of
TS and ATE system characteristics,
including the function of the software
associated with each,

1.3.1 TS SYSTEM CHARACTERISTICS

The TS system is a combination of a
specialized hardware, computing equip-
ment, and software designed to provide a
synthetic flight and/or tactics environ-
ment in which aircrews learn, develop
and improve the skills associated with

individual and coordinated tasks in
specific mission situations. Visual,
aural, and/or motion systems may be
included. Figure 1.3-1 depicts a typical
TS which employs digital processing
capability.

The computer system, integral to the

crew TS, can consist of one or more
general purpose computers. The computing
hardware operates with floating point

arithmetic and sufficient bit capacity
to provide efficient use of a simulator

Higher Order Language (HOL). When a
multi-processor/multi-computer system is
used, it must be designed such that com-
puters can operate simultaneously and
are controlled/synchronized by a single
program (supervisor/executive). The
executive directs program execution and
regulates priorities.

The simulator (1) accepts control inputs
from the trainee (via crew station con-
trols) or from the instructor operator
station; (2) performs a real-time solu-
tion of the simulator mathematical
model; and (3) provides output responses
necessary to accurately represent the
static and dynamic behavior of the real
world system (within specified tolerance
and performance criteria). Since TS con-
sist of interdependent hardware and soft-
ware, a joint hardware/software develop-
ment effort is required. As the com-
plexity of TS increases, simulation soft-
ware continues to grow in complexity,
size, and cost. Software costs can and
do exceed computer hardware costs in
many cases. Therefore, it is imperative
that the simulation software acquisition
engineering process be subjected to for-
mal system engineering planning and

discipline to ensure cost-effective
procurement.
1.3.2 ATE System Characteristics

ATE is defined as that ground support
system which performs vigorous system
tests with minimum manual intervention.
ATE 1is used in place of manual devices
because it is more cost effective, pro-
vides required repeatability, or repair
of the item being tested requires the
speed which only an automatic tester can
achieve.

Figure 1.3-2 shows the typical compo-
nents of an ATE system. Note that there
are both hardware and software elements
involved. Most of the elements shown in
the figure will be found in the majority
of ATE systems although the packaging
and 1interface design may vary between
specific systems.

—|

JYYMLI0S/IYVMAUVH
W3LSAS NOILVLNAWOD
350d¥nd IYY3IN3ID

JIVIUILINI

40SS3J30¥d TVYNIIS

Joreinwis Bururesy mas) jeardAy “1-g°) 8inbiy

Y Y t
NOILVYINID
$371A3Q IN1402S X NOILOW
IVYIHd 1 ¥3d /504023y
¥3LNdWOI IN3anLs Huvxnnﬂ
! 1145209 &
NOIL1VYINID
- IYNDIS
NHMNMWﬂu S1081N0D 3ISNOJSIY T0YLINOI
R
YOLINYLSNI
3 AVIdSIaQ ﬁ w
IVNSIA NOILV¥3INID
IUNDIS

NOIL1VINIWNYLISNI

3 WNSIA

- e gaer.

LY

uoneinbiyuo) 31y [eardAL Z-g°| ainbiy

AVNINY3L 31V

S301A3A
LNIWNIHNSYIW

H313HdHILNI

SWVYHDH0Ud
a3yols
ONV
H31NJWNOD

-
ONIHOLIMS
— = 1ndiNo
ﬁ] p— /1NdNI
wnn) [~ win | | —]
1s3alL Hildvav (&= --
H3IONN i} 1s31 T
LINN [*- 30ViH3IINI |
[]
- .
-]
[}
[
L
SHOLVHINID 1'
SNINWILS
00000
mo4
B e
IVNOIS/VivVa
moi4
I
TOULINOD

Cade e e

¢

SWYHOOUd 1531

JOVNONYT
324NOS SY11V NI
SWYHOO0Ud 1S31

HOLYISNYHL

SWYHOO0Ud
140ddNS
B TOULNOD

AVNOILVYHIdO \ HO ¥3NdW0D

H3IT8W3ISSVY

TVNOILYHIdO
——— (‘'0'1) 43gyo JOVNONY]
TVOINHI3L 30HNOS
b m|oa == - < HLIM HOLYH34O NI SNV HOOUd
180d4dNS
® T0H4LNOO

et

The controls and displays section con-
sists of the computer peripheral devices
such as control panels, magnetic tape
cassettes or disks, a cathode ray tube
(CRT), keyboard, and small printer. The
computer (normally a minicomputer), as
controlled by software, operates the
peripheral devices; switches test stim-
uli on and off; and measures responses
of the Unit Under Test (UUT) (comparing
to predetermined values). The operator
maintains supervisoty control of the
testing process through the peripherals.,
However, his interaction is usually mini-
mal since, by definition, the automatic
test feature was selected in preference
to an operator-controlled test system.
ATE 1is normally designed to accomodate
testing several different articles of
system equipment (normally one at a
time). The maintenance 1level being
supported by the ATE is determined by
logistics systems analysis. The impor-
tance of the software portion of the ATE
system should not be minimized since
both the application of the test stimuli
and the measurement of the result are
achieved via software. Arbitrary func-
tion generation and complicated wave
analysis can also be accomplished by
software and is becoming more prevalent
in ATE systems. The cost of ATE software

is a significan component of total ATE
costs and design trades can be performed
to minimize ATE life cycle costs.

1.4 GUIDEBOOK ORGANIZATION

The guidebook is organized as follows.
Section 1.0 is introductory. Section 2.0
identifies government documents applic-
able to ATE and TS software configura-
tion management. Section 3.0 discusses
planning for configuration management
including resources, facilities and
scheduling estimations. Section 4.0
addresses product identification, the
position of software components within
the system component hierarchy and the
sub-structure of software components.
Section 5.0 discusses baseline defini-
tion and management. Section 6.0
describes change management including
change classification, approval,
accounting and verification. Section 7.0
describes the functions and management
of a typical Computer Program Library
(CPL). Section 8.0 discusses formal de-
sign reviews and configuration audits of
the Computer Program Configuration Item
(CPCI). Sections 9.0 through 13.0 con-
tain a bibliography, topic vs government
specification cross-reference index,
glossary of terms, list of abbreviations
and acronyms and a subject index.

L

Section 2.0 APPLICABLE DOCUMENTS

The following are the major documents
which apply to the area of software con-
figuration management.

AFSCM375-7, Systems Management, Con-

Equipment, Munitions and Computer Pro-
grams

;
i
5
4
. ; figuration Management for Systems,
H

MIL-STD-480, Configuration Control-
Engineering Changes, Deviations and
Waivers

MIL-STD-482, Configuration Status
Accounting, Data Elements and Related
Features

MIL-STD-483, Configuration Management
Practices for Systems, Equipment,
Munitions and Computer Programs

MIL-STD-490, Specification Practices

. MIL-S-83490, Specifications, Types

and Forms

FED-STD-No. 5, Standard Guide for
Preparation of Proposed Item Logis-
tics Data Records and Proposed Item

} Identifications by Government
% Suppliers
i
|
. |
§
!
{
{
‘
i
|
' !
AT |
-
' | J

DOD Directive 5010.19, Configuration
Management

DOD Directive 5010.21, Configuration
Management Implementation Guidance

MIL-STD-499, Systems Engineering Man-
agement

AFM66-1, Maintenance Management
AFR65-3, Configuration Management
MIL-STD-1521A, Technical Reviews and

Audits for Systems, Equipments, and
Computer Programs

MIL-S-52779 (AD), Software Quality
Assurance Program Requirements

AFR 800-14, Management of Computer
Resources in Systems

DOD Directive 5000.29, Management of
Computer Resources in Major Defense
Systems

SSD-Exhibit 61-47B, Computer Program
Subsystem Development Milestones

A

Section 3.0

There are several key considerations
which USAF and contractor personnel
charged with Software Configuration Man-
agement (SCM) must consider early in sys-
tem acquisition planning. Although ATE
and TS software have inherent differ-
ences in structure and development
philosophy, certain SCM planning ele-
ments are common to both systems. Some
of these elements are:

a. definition of software entities
b. specification of SCM requirements
C. organizing for SCM

d. planning for required resources
and facilities

The following paragraphs describe how
provisions for SCM are established in
the early planning stages of software
development through discussion of these
elements.

3.1 DEFINITION OF SOFTWARE ENTITIES

DOD Directive 5000.29, Management of Com-
puter Resources for Major Defense Sys-
tems, in declaring that software pro-
ducts must be developed as configuration
items, provides a very definite approach
to SCM. In effect, all software entities
designated as computer program configura-
tion items (CPCI's) must be developed
with controls similar to hardware, A
CPCI is, in general terms, a program or
aggregate of related programs which
satisfy an end function and are specifi-
cally designated by the controlling
agency for configuration management.
This definition does not levy rigorous
restrictions on software entities
selected as CPCIs.

CPCI selection is an important activity
critical not only to successful configu-
ration management, but to technical
soundness and manageability. Considera-
tions affecting the choice of CPCI's are

PLANNING FOR SOFTWARE CONFIGURATION MANAGEMENT

discussed further in paragraph 4.1. How-
ever, it is important that planners for
SCM (both USAF and contractor) realize
that CPCI selection can create diffi-
culties if, for example, too many func-
tions are integrated into one CPCI. If
development schedules, language mixes,
facilities etc. are not compatible among
the components comprising the CPCI,
serious SCM problems are encountered.
Accordingly SCM planners should become
involved in early system design review
activities to insure the selection of
manageable CPCIs.

3.2 SPECIFYING SCM REQUIREMENTS

There are three major vehicles within
the RFP for specifying SCM requirements.

a. Data Item Descriptions (DIDs) for
software documentation

b. Configuration
(CMP)

Management Plan

¢c. Computer Program Deve]opment Plan
{CPDP)

Documentation requirements for ATE and
TS systems are thoroughly discussed in
the "Computer Program Documentation
Requirements" guidebook. They are
imposed on the contractor as DID's and
in most cases they are standard in con-
tent and format. In some cases they need
to be tailored to meet the requirements
and unique aspects of ATE and TS soft-
ware. For example, the existing DID for
preparation of Test Requirements Docu-
ments (TRD) (DI-T-3734), references
MIL-STD-1519 which is regarded as unsuit-
able in many cases for ATE software. At
a recent joint services conference on
ATE (See Bibliography ref. 3), it was
concluded that MIL-STD-1519 is too
stringent and expensive to comply with,
and hence has been watered down in many
contracts. (A sub-committee of this
conference recommended that a more prag-
matic specification common to the tri-
services be generated for ATE.) Planners

PRECRULIG FAGE BlabK-NOT F1,

- ———— b

for SCM should therefore examine all of
the documentation requirements for soft-
ware from system specifications through
Part Il specifications; since these
specifications form a population of docu-
mentation comprising software baselines
\ . against which configuration control must
l ’ be maintained.

The second major RFP element communi-

cating SCM requirements, 1is the CMP

written for the entire system (hardware

and software). This plan provides for

overall management of the system com-

ponents. SCM requirements in their funda-

mental form are usually specified herein

as an addendum to the basic plan.

' Details of SCM control policy are then
o expanded in the CPDP,

AF planners should insure that software
1 requirements levied within the CMP are
% appropriate for all software products
- ;. involved. For example, in some con-
, - tracts, a portion of the hardware and
software may be supplied as Government
. Furnished Property (GFP) with existent
drawings in a certain format. This for-
mat may not be compatible with new build
. drawings. For software, the integration
of two or more CPCI components of
differing configuration formats can pose
difficult control problems. Altered item
drawings are usually required to main-
tain adequate control. The CMP therefore

should address:

a. Basic product identification and
baseline definitions.

b. Drawing and documentation require-
ments.

i Y A L

c. Schedules for Design Reviews and
Audits.

d. Classes of Change Control and
Effectivity Points.

e. Change Accountability Methods.

l ' f. Unique software configuration man-
agement requirements.

10

The third major RFP element which levies
SCM requirements is the CPDP. The CPDP
is prepared in accordance with
AFR-800-14, Vol II, para. 3-9, by the
contractor and submitted with his pro-
posal. The CPDP is the detailed road map
for software development and is the
prime vehicle for guiding SCM throughout
the CPCI development process (see fig.
3.2-1). The CPDP should address the
following:

a. The organization, responsibili-
ties, and structure of the group(s) that
will be designing, producing, and
testing all computer programs.

b. The management and technical con-
trols that will be used during the devel-
opment, including controls for ensuring
that all performance and design require-
ments have been implemented.

c. The methodology for ensuring satis-
factory design and testing, including
quality assurance (QA).

NOTE

The requirements of MIL-S-52779,
software QA Program Requirements are
gaining increasing prominence in new
weapon systems contracts for both
prime and support equipment. The
requirements of this specification
overlap to a large degree with the
objectives of the CPDP. Sometimes
the requirement for a software QA
plan is levied. In such cases, the
CPDP and the software QA plan should
be prepared in close coordination
because of the inherent similarity
of nbjectives.

d. The development schedule for each
computer program configuration item and
proposed program milestone review
points.

e. The procedure for monitoring and
reporting the status of computer program
development.

$S920.g JUSWAOIALT 348MIJOS °L-Z°E dJnbBly : .

F o . wawosna of - - e

3 ‘lo'.'nlo'n-c't‘

!
!
: NOILVUINID WILSAS i
. 3009 19300 :
) L 11 17 Jr T7Y1% woou uux:om _
- SUILSYW {
|
} 1 tr tr 11} ,
Sy : i — ;
o J 3un030 .
m.; Ty - Oud N \ v
o 1s31 .
L, dd ;
Po 'y .
i
Ve Ve -4 v .._
-
1SN1 u u w NV)
.{ w3do 1831 ;
- 3 J r p e k
4 & G
.
avol '
4103 3NN ¢
370W3ssY s3ovd py :
{ 34wod -U3LNI / ')
mumw “INI
..-E!#
vy NoIsaa ¢
HALNIWOD 180H ——t Jisvo
o le .|snois3a
Q/10+8) 4 Wuviag J34s
X vy SLND3Y
pers
SISATVYNY
AH3IAN3A NOILYHOIINI B 153L 1 LNONIIHD ® 3009 NDIS3a SIN3WIWINDIY
v3d/vid S.Hdl H¥QO Had yus
s B E3 S R st 2R e SR . - RN > - O w{ eI T e
R) | -
. -~ - - - N :

e e AT+ o e o

f. The resources required to support
the development and test of computer pro-
grams. Special simulation, data reduc-
tion, or utility tools that are planned
for use in the development of computer
programs should be identified.

g. The general procedures for report-
ing, monitoring, and resolving computer
program errors and deficiencies during
development and testing.

h. The methods and procedures for
collecting, analyzing, monitoring, and
reporting on the timing of time-critical
computer programs.

i. The management of computer program
development masters, data bases, and
associated documentation including its
relationship to the CMP,

j. Guidelines and checkpoints for
ensuring future computer program growth,
modularity, and ease of modification.

k. The approach for developing com-
puter program documentation.

1. Training requirements and asso~
ciated equipment for the deployment
phase.

m. Engineering practices to include:
standards, conventions, procedures, and
rules for program design; program struc-
tures and conventions; display and logic
standards; input/output signal stan-
dards; and other disciplines affecting
development.

n. Security controls and
ments.

require-

0. Simulation techniques and tasks.

A good CPDP should be prepared in the
following format:

I. Introductory description of policy
and objectives

II. Scope - definition of software
items under CPDP control

III. Description of general procedures
and techniques applicable to all
phases of development

IV. Narrative descriptions of opera-
tions, control methods, documenta-
tion products objectives and
review milestones by phase of soft-
ware development. Phases to be
addressed are

(1) Analysis

(2) Design

(3) Code and checkout

(4) Test and Integration
(5) Installation

(6) Operation and support

Each subsection should describe
clearly the milestones which
demarcate a change in development
phase, involvement of AF and man-
agement in status reviews, documen-
tation products released at the
completion of each phase and the
gpgrovals required. See Figure
.2-2.

V. Appendices for special procedures,
definitions, matrices etc.

A well written CPDP is difficult to pre-
pare because it requires a certain
insight into factors difficult to pre-
dict at the time it is written. In ATE,
for example, factors such as specifica-
tion completeness and accuracy, program
development station availability, human
resources, volume of changes, costs,
schedules, operating system capabili-
ties, etc. all affect the contractor's
ability to follow the CPDP as originally
written. If prepared with enough flexi-
bility of method to accomodate these
unknowns, while maintaining minimum
requirements for disciplined transition
from one phase to the next, the CPOP
will prove to be a valuable SCM tool.

- 12

3LV - veld MO/ JOdD 189IdAL Z-Z°E unbily

140ddns
_ % NOILV¥3dO NOILVTIVLSNI 31V¥93INI/1SIL 9ng30/3009 N91S30 SISATVNY
11 Lyvd
*WI13¥d
. SN9IS3a
93dS $1531 183
19na0yd ¥3LdVOV
TUNI4 SLYVH)
MO14
- - 11v130
¥3IWOLSND 01 = -~ - “
S1s31 SLUVH)
NOILYGITVA MOld
zu._.m>w ¥ IINAONYILN <wum TYNOILINNS
JYYMLI0S
{31000K JZATUNY
AYYNIWI13¥d
*d3yd
¥d/v4 402 ¥ad ¥as
*0Yd (*13yd)
VA 3¥YML40S NV1d 1S3l SWYYOVIQ MO
Qa1 VNI4 X3ONI “9I4NOD | SONILSIT "90¥d | "200 IIV4¥ILNI 200 IIV4YIINI
aaA YNI4 200 NOIL TVANVW S,¥3SN (14vya) *734d NV1d 1S3L
S1¥0d3¥ 1S3L | -dI1¥2S30 NOISY3IA | S3IYNAII0¥d 1S3l *23dS “A0¥d |")3dS "Aa0¥d "WI13Yd

3¥V 3ISVYHd SIHL 40 S1IN00¥d

13

-

- > g

~AL s

- -

—— .

i

Vs A ———n . v et mh e s

3.3 ORGANIZATION AND RESPONSIBILITIES

Another important SCM planning considera-
tion is that of organizing for SCM. SCM
usually requires the time-phased divi-
sion of responsbilities, in order to
achieve efficient control during early
development phases, without undue con-
straint, while insuring formal control
during official validation or acceptance
testing phases. Ideally a separate con-
tractor SCM function should be estab-
lished to oversee and manage software
configuration control throughout all
phases. However, SCM depends on other
organizations at various times to meet
specific SCM objectives. For example
during pre System Design Review (SDRS
phases, systems engineering organiza-
tions must maintain preliminary software
requirements documents; and test design
organizations must maintain Line Replace-
able Unit (LRU) acceptance test proce-
dures from which TRD's must be prepared
and maintained. During preliminary pro-
gram design, code and debug, software
engineering must maintain source pro-
grams, functional and detail flow charts
and narrative descriptions suitable for
eventual incorporation into CPCI Part 1l
or equivalent specifications. Finally,
during validation, QA is responsible for
assuring the software "as built and as
tested" configuration is documented in
an accurate, complete and contractually
compliant format.

Intertaced among all of these time-
phased SCM responsbilities, the SCM
organization itself must function as a
central focal point for release and main-
tenance of all forms of SCM matertials
used during all phases. Such materials
are discussed in paragraph 3.4,
"Resources and Facilities." Organization
for SCM therefore, is summarily depicted
in Figure 3.3-1. As part of contractor
project command media, these time shared
responsibilities should be documented
and committed to by the various func-
tional organizations.

3.4 RESOURCES AND FACILITIES

SCM organizations require adequate man-
power and physical facilities for stor-
age and management of large volumes of
documentation, <changes and computer
sensible media. Among the materials to
be managed for each software and {tem
are:

a. Source code lists

b. Symbolic decks

c. Flow diagrams

d. Performance specifications

e. Interface description documents

f. Compilers, assemblers, link
editors - loaders

g. Data base specifications

h. Load maps

i. Object code listings

je. Utility software

k. Changes and associated records

1. Media conversion/duplication faci-
lities and methods

m. Problem reports/status charges

n. Test Procedures, version descrip-
tion documents

0. Design review and audit schedules

Management of the above
accomplished by a Computer Program
Library (CPL) function and may be
staffed by SCM or QA (MIL-S-52779 &AD)
requires establishment of a CPL).
Improperly estimating required resources
will adversely impact SCM objectives.
Usually data does not exist from earlier
projects to accurately estimate SCM/CPL

is typically

WOS 10} saniiqisuodsay jeuoneziueBiQ "|-£°€ aInbyy

A1quasse ‘uoileLdwod ‘uoLS43ALUOI 3PO) @

bug (puey juodou we|qoud @ juswabeuey
uor3ouny (Aueaqt weuaboud 493ndwo)) 147 abeuey e uotieanbijuoy
w93SAS dsea|ad burmedp pue -53dS |@LILIS0 ULRIULRK @ 3Jem} J0S
sbutyst| (ewso] @
1043u02
eLpau J4a3seu y) @
1043U0d
Aduedaadsip oo o
1043u03 abueyd [euwuo{ @ 3sueanssy
QOA 30 @sed|au AjLuap @ 31043U0] WIS ILPNY @ SL043U0) WIS ILPTY @ A3Lend
sj40dad woqoud @
sMo|{ |euoL3jdung @
suo13diudsap ubLsap ajnpoy e Buraaautbul
sweaboud 824n0S |9ud uLRIULRY @ adem] J oS

S,QUl" |34d ulejuLey @
sJads
u, b3y shs uiejuLen e

ubLsag 3s9)
/buraaauibul
swd} SAS

aseyd uoi3epy |eA

aseyqd bnqag ‘apo) ‘ubircag aseyq siLsAeuy
~ sjuawdJ tnbay

15

R Y

Tt e e

resource requirements. Factors to
consider in estimating SCM requirements
are:

b.

Documentation requirements
Schedules

¢. Number of CPCI's or components

d. Quantity of anticipated changes

e. Quantity and of

media

type computer

f. Cost limitations

g. Configuration control aids/

utilities

h. Reporting requirements

L

16

Resource requirements should be reported
in manhours/manmonths and physical facil-
ity .requirements per CPCI. Procedures
should be written defining personnel
responsibilities within SCM, CPL organi-
zation and filing systems, CPL access
requirements, problem reporting and
statusing methods etc. If the SCM func-
tion is well planned and documented, it
will prove to be an indispensable
resource in the management of computer
programs.

Section 5.0 discusses how these func-

tional and physical software descrip-

tions are managed through a series of

gustomer and contractor controlled base-
ines.

e T e e

Section 4.0

DOD Directive 5000.29, Management of Com-
puter Resources in Major Defense Sys-
tems, in declaring that software shall
be treated as a configuration item, has
provided for hardware-like developmental
controls for software products. By
imposing configuration controls early in
the analysis phase of system acquisi-
tion, the customer assures himself not
only of adequate documentation of the
finished product, but of receiving a pro-
duct which will be more likely to fyl-
fill its functional requirements with
minimal maintenance due to errors or
design shortcomings. Product identifica-
tion therefore implies not only the CPCI
name and number, but the following physi-
cal and functional identifiers.

a. Performance requirements identifi-
cation.

b. Interface requirements definition.

c. Design definition - design repre-
sentations, source and object code list-
ings and flow diagrams.

d. Physical media identification,

e. Support software

identification.

requirements

f. Installation ard
maintenance instructions.

operating and

g. Test requirements and acceptance
criteria definition.

Unless all of the above are defined for
a given (CPCI, the product is incom-
pletely identified. Through the various
systems of software documentation avail-
able today (see the guidebook, "Computer
Program Documentation Requirements),"
provisions are made for documenting the
above product descriptors.

Although Air Force contracts normally
assign responsbility for ATE and TS sys-
tem acquisition to one contractor,
actual management and acceptance is done

17

PRODUCT IDENTIFICATION

at the configuration item (CI) level.
For software, the ordered set of instruc-
tions and coded data, in a form suitable
for insertion into a computer, designed
to accomplish a specific set of func-
tional requirements, is known as a Com-
puter Program Configuration Item (CPCI).
The selection of CPCI's for management
and control purposes is a task critical
to successful software development and
configuration management. AFSCM/AFLCM
375-7 provides basic guidance for CI
selection. Individual selections however
must be the end product of technical and
administrative systems engineering
analysis. The following section examines
factors affecting this selection for ATE
and TS CPCI's.

4.1 SYSTEM SPECIFICATIONS

System Specifications for ATE vs. TS are
as diverse in content and structure as
the functions they serve. Specifications
for ATE are written in terms of stimuli,
measurement, accuracy and thruput
requirements. TS requirements are
written in terms of real time simulation
requirements. These differences are
fully described in the "Requirements
Specifications" guidebook. They are dis-
cussed here only to provide a starting
point for a discussion of baselines and
CPCI selections. Although they are
diverse in functional objectives,
certain considerations common to both
affect the selection of CPCI's. Major
system level factors which should be
considered in CPCI selection are:

a. Processor - Programs designated to
operate in a given computer should be
separate CPCI's.

b. Schedule - Programs designated for
delivery at different times (i.e. operat-
ing system software is developed and

delivered prior to simulation or LRU
separate

test programs) should be

CPCI's.

i

)

TS VL ST P

c. Deployment - Programs designated
for supporting a limited intended usage
(i.e. LRU test programs designated to
support contractor factory acceptance
test should be separate from the same
program used for intermediate level main-
tenance) should be separate CPCI's.

d. Contractor - Program development
by separate contractors (i.e. LRU pro-
grams - vs. - control/support programs)
should be separate CPCI's.

CPCI selections are made to optimize
technical and administrative control.
The totality of CI's and CPCI's satisfy
the system specification or system seg~
ment specification for the applicable
ATE or TS system. It is important that
configuration management planners parti-
cipate in System Requirement Reviews
(SRR) and System Design Reviews (SDR) to
register their concerns on requirements
allocation to CI's and CPCI's from a con-
figuration manageability standpoint.
Some typical concerns to register are:

a. Can anticipated change processing
flow times support development schedules
for the CPCI?

b. Is the classification of change
control and its point of effectivity
clear and acceptable for each type of
CPCI?

CPCI's for

Cc. Are the sized

manageability?

d. Are resources available to control
configuration of special required sup-
port utilities? - (i.e. host computer
facilities needed to develop, assemble
compile, link edit etc.)

e. Will the distributed architecture
nature of modern ATE software present
any special configuration Mmaintenance
problems? (i.e. programs operating in
micro and mini computers remote from the
central processor.)

18

f. Are formal review and audit sched-
ules realistic for all CPCI's.

g. Is there clear distinction between
CPCI and non CPCI products.

In order to build manageable CPCI's, the
system specifications upon which CPCI

development specs are based must be
complete and accurate. System engi-
neering analysis and design trade

studies should form the bulk of justi-
fication for CPCI selections. The fore-
going has presented some system level
considerations common to ATE and TS soft-
ware and configuration management. The
following paragraph discusses some SCM
considerations wunique to ATE and TS
which affect CPCI selections, and soft-
ware specifications.

4,2 SOFTWARE SPECIFICATIONS AND CPCI
SELECTIONS

The evolution of software specifications
is shown typically in Figures 4.2-1 and
4,2-2 for ATE and TS respectively. In
reality the actual relationships among
requirements, development and product
specifications is as diverse as the sys-
tems themselves. It 1is noted in the
example of Figure 4.2-1 for instance,
that a software system specification
exists to govern the performance of four
CPCI's. This ensures a uniform approach
to development of programs is adhered
to, regardless of the originator of the
test requirements. The fact that this
relationship varies among contracts is
inconsequential to SCM. What is essen-
tial. however, is that program develop-
ment specifications are based on CPCI
selections which are manageable and on
system requirements which are complete
and unambiguous.

Figure 4.2-3 is an example of an ATE sys-
tem configuration in which functional
capabilities have been assigned to vari-
ous ‘"stations" to accomodate a wide
range of UUT's destined for multiple
user locations. This figure graphically
represents all potential configurations
of all stations at any time.

o

13§
WYY¥90dd
1531

4

diysuopie|ay uoI1edl123ds a1eM0S I LY 4-Z Y ainbly
. SINIW3YINDIY
1531
LN3WNJ00 100
SONILSIT ° -
SMOTd ° onhumwwmwm 1N3WNI00
Y1VQ ¥3sn INIWIYINDIY
1531
]
WYY90Yd 1S3L | A
I Lyvd N
NOILYDI14103dS - 1831 4738
W d _
V4904d 1531 THoaans
NOILYII4193d§ - 04!
JOVAYILIN A NOI
o NOILVII4123d
I1 1¥vd °J3dS
Londond y3Ldvay
yiLdvay
) " sal Inomwn INOILYI14103d
W31SA
3409 JYYMLI0
¥0SS3II0¥d
TVYINID
- / INOILVDI4103d NOILYDI4103dS
. M b B
(1 1¥vd) °$23dS (LNIWd013A30) ID JUVNCHY W3LSAS
S M . PR . o e e KR S L A AN 9 b B 1e By i:vﬁl!.!./\a.ﬂlf.;‘! t.tl..v\‘t.’lt.).\z ;»,. .
a IW
[* - - ,,/.

19

»

“o;.

S

— -

diysuolIejeY UOIIBNHI20dS aRMIJOS SL TT ¥ %Inbly

AN3KWNJ04
NOILdI¥IS3Q [
NOISY3A
NOILVIId123dS
12N004d petm———
1342
SNOILYII4IJ3dS
ININd0T3A30
13d)
NOILlVII4IJ3dS
IVAYIUINI
SNOILVIIJII3dS
1IN3Wd013A30
I

NOILVII4IJ3dS
W31SAS
Si

20

Pt -

“.A

. $,485() 8113 npy/su0nRINGIU0Y 3.1V S/ANINKY 4O HIWRXT ‘€Z P aInbly

W3LSAS
ONILVY3IdO °
o/1 °
AYOW3W °
d3indwod *

dd

L1INN

. S3LIS/S,¥3SN SNOTHVA
.
_, a dno¥o MS | H NOILVLS
' 100 V1l JAVMOYUIIW
w;» _
¥ 2 dnoyy s | H NOILVLS
0n Vil 03QIA
M, ————
! g9 dno¥s ms | H NOILVLS
_W 100 Vil 90TYNV
* T
N ey
.“ v %wwm S | H NOILVLS
; | vt WL1I910

P

B0SS300ud
TVYINID

‘-

21

Seheest e e

Moacoalbiiinncintitlia,

Any given station configuration is com-
prised of a:

a. Central Processor Unit (CPU)
b. Functionally unique station
c. Interface Test Adapter (ITA)
d. UUT Test Program

Software architecture may be centralized
(residing and executing primarily in the
CPU) or distributed (executing in micro/
mini processors residing in the station
or adapter. Adapter circuitry may be
active or passive. LRU test programs may
or may not be transportable among sta-
tions and adapters. Users may be con-
tractors or AF maintenance personnel. It
is seen therefore that system configura-
tion control can become complex and
unmanageable if rigorous methods of base-
line definition and change management
are not instituted. To appreciate how
test requirements allocations to CPCI's
can affect SCM, consider the case shown
in Figure 4.2-3.

To preserve system configuration common-
ality among all users (a design goal for
most ATE), any change in test capability
required of any one user/site demands
that the same change be incorporated in
all stations of like configuration. As
the quantity of deployed stations of a
given configuration increases, the con-
figuration control problem increases.
Several possible ways of accomodating
such a change are:

a. Incorporate required change in CPU
or station hardware/firmware.

b. Incorporate required change into

the site unique adapter.
C. Modify the UUT software.
d. Any combination of the above.
Such change implementation is a complex

matter. Frequently design trade studies
and system engineerin; analysis are

22

O DAY - -

required to determine what capability
shall exist in the central processor vs.
the station vs. the adapter vs. the soft-
ware. The resultant decision will affect
software and maintainability signifi-
cantly. Therefore the clarity and com-
pleteness of all specifications - sys-
tem, CI and CPCI are mandatory to effec-
tive SCM,

4.3 CPCI/COMPONENTS IDENTIFICATION
Functional requirements of CPCI's should
be allocated to subcomponetry in accor-
dance with many of the same technical
and administrative ground rules as apply
to system functional allocations. The
principles of structured programming
about which much has been published (see
Bibliography references 4 and 5), apply
more directly to TS software than to
ATE. For ATE test programs, similar
principles of modular decomposition
apply. UUT test programs are generally a
sequentially executed collection of
individual tests with 1little inter-
module (or inter test) compatibility to
worry about. For TS software the devel-
opment spec (CPCI Part 1) governs the
structure of the CPCI design, while the
applicable programming standards and
naming conventions govern its format. As
the subfunctions of a given CPCI are
ascertained in some fashion according to
designated criteria for CPCI decomposi-
tion, these subfunctions are allocated
to modules (or test numbers in the case
of ATE). The following is an example of
a TS software module identification
scheme designed to achieve maximum infor-
mation from the module part number.

123-45678-42203
— “E- Module version number
Module number
Major system level
revision number

CPCI designator (i.e.
audio simulator)

System designator
(weapon system X)

The above 15 character part number fully
identifies a given CPCI module. The mod-
ule can be described from this part num-
ber as “"the 3rd version of module No.
22, part of the 4th major system
revision to CPCI 45678 for system 123.

Total traceability of the module to its
parent CPCI and system configurations
can be maintained with this identifica-
tion system. Each module can be designed
and changed independently of other mod-
ules while maintaining traceability to
the parent CPCI version. Such control is
necessary to distinguish modules during
concurrent development of different CPCI
versions. Each module part number then
appears on an indentured parts list for
the specific CPCI.

A version description document (VDD)
(Figure 4.3-1) is used to group such
modules for a given CPCI version. It is
seen from this figure that a given CPCI
version, (123-45678-401) is configured
as a collection of

a. Functional modules

b. Physical media

c. Support programs necessary to
assemble, compile etc.

d. Labelling instructions
e. Acceptance test requirements

f. Object program listings

g. Operating instructions

_' =Y .
ey - e
E g e S U OO SO OR.... -~ R :) _

Everything required to build, identify,
test, install and operate a given CPCI
version is called out on the VDD in
indentured parts list format. In the
example given, it is seen how the module
revisions are progressively updated for
the next version of the CPCI. Control is
maintained in this way by preserving the
configuration of previous versions upon
which later versions are built.

Safeguards are therefore provided
against the "what-did-we-build-last
time?" syndrome frequently encountered
in uncontrolled software development.
Several part number relationships are
logically evident in this scheme.

a. CPCI version -401 contains module
versions which are predominantly “-01"
(i.e. -42201).

b. Major CPCI revisions (i.e. =501
vs. -401) contain corresponding major
modular redesigns (5XXXX series modules)

c. Module or component specification
dash numbers correspond to the module
numbers (i.e. module -42201) is
described by design spec XXX-XXXXX-22)

As the discussion of baseline and change
control mechanisms evolve in subsequent
sections of this guidebook, the value of
these inter-relationships will become
more evident.,

e W s eevoewe Do -

B e el

uBWNI0(uoLIdIIoSa(] UOISIBA “L-E°p 34nbi4

G cana i

(938WNN 10d 95~ 1740 QILVND1S30 [NIHLIM
30 02 abed | 0L 318¥217ddV - » | QINIVINOD-L
8 £-XXXXX-XXX ‘WIS AV1dSIO WNSIA £0£0S 1
g Z=XXXXX-XXX “WIS NOILYOIAWN 20206 L
| L-XXXXX-XXX JALLND3X3 20105 L
q L-$59/8-€21 JYYMLI0S 1¥0ddNS L-dnS *
"ISNI
v L-g91ze-€2t "TIVASNI/NOILYY3dO | 1-DDD *
. - . *0¥d]
L-0l68.-€2t 1531 3oNVLd3gy | LTdLY *
- ONILSIT | 104007 *
L-NNN 138v1 AAA L
ZAX= QLS WI¥3LVW 3dVL JILINOVW | L-XXXX L
v 22-XXXXX-XXX ‘WIS 01aNY 1022t L
v P-XXXXX-XXX WIS NOILOW L0¥OY L
v £~XXXXX-XXX ‘WIS AV1dSIO TWRSIA LOEOY (
v 2=XXXXX=XXX WIS NOILVOIAWN 1020y L
v L=XXXXX=XXX IAILND3X3 LoLOY l
N tova| ov | zov | €ov | los | 20S
NOISIAZY | NOILYII4ID3dS LNINOJWOI hzuzoamuuouaaoz yaewnn Lavd | LOF T €Ob | Rt] 005y | oZhsy
ALD ALD ALD ALD Ald

24

LV 4 -

M el we s

v

Y AN

"“‘iﬁl '. . e .:.,.- o

Section 5.0

A baseline, in general, is a documented
technical description which becomes a
point within a development process
against which changes can be proposed,
evaluated and incorporated. Three config-
uration baselines for ATE and TS soft-
ware are described in this section as a
function of the development cycle. Base-
lines are employed throughout the soft-
ware life cycle to ensure an orderly
transition from one major commitment
point to the next. A configuration
identification document or a set of such
documents, formally designated and fixed
at a specific time during a CI/CPCI's
life cycle establishes a baseline. Base-
lines, plus approved changes from those
baselines, constitute the current config-
uration identification. This section
will discuss the three formal AF recog-
nized baselines for ATE and TS software,
as well as internal contractor con-
trolled baselines.

5.1 TYPES OF BASELINES

The three formally recognized baselines
applicable to all CI or CPCI items are:

a. Functional Configuration Baseline.
The current approved or conditionally
approved technical documentation for a
configuration item as set forth in speci-
fications and documents which pre-
scribes: all necessary functional charac-
teristics; the tests required to demon-
strate achievement of specified func-

tional characteristics; the necessary
interface characteristics; key func-
tional characteristics and key lower

level CPCI's; and design constraints.

b. Allocated Configquration Baseline.

The current approved performance-
oriented specifications governing the
development of CPCI's that are part of a
higher 1level configuration item, in
which each specification: defines the
functional characteristics that are

allocated from those of the higher level
configuration item; establishes the
tests required to demonstrate achieve-

o e

25

L

BASELINE MANAGEMENT

ment of its allocated functional charac-
teristics; delineates necessary inter-
face requirements with other associated
CI's/CPCI's; and establishes design con-
straints.

c. Product Configuration Baseline.
The current approved technical documen-
tation which: defines the configuration
of a CPCI during the production, opera-
tion, maintenance and logistic support
phases of its life cycle; defines all
necessary form, fit, and function char-
acteristics of a CPCI; defines the
selected functional characteristics
designated for acceptance testing; and
defines the acceptance tests.

These baselines are shown on Figure
5.1-1 as external baselines; i.e., con-
figuration control 1is external to the
contractor organization; changes are
subject to customer approval. Software
configuration control is normally
initiated with the allocated baseline,
which is established by USAF acceptance
and approval of the computer program
development specifications at SDR; that
baseline is used as the point of refer-
ence for formal configuration control
(see Paragraph 11.6) until the product
baseline is established upon customer
acceptance of the computer program pro-
duct specification at Functional Config-
uration Audit (FCA)/Physical Config-
uration Audit (PCA).

Internal baselines (not subject to USAF
control) should be used by the contrac-
tor to control the software design
during the development of the computer
program product specification. This
covers the period between the allocated
and product baselines as shown on Figure
5.1-1. Two such internal baselines
should be established for the software
design. The internal baseline of the
basic design for each computer program
should be established at the Preliminary
Design Review (PDR) by release of a
partial draft of the computer program
specifications. The internal baseline
for the detailed (module) design should
be established at the Critical Design

Fin ol ot

7 PRI S s

sjonuo) pue saulfaseg °|-4'G 8.nbly

-
<€ (Sdd3) NOILYI14123dS LIN10¥d WVYIO¥d YILNAHOD ONIATOAT e
SLINY 3 MIIAZY A _ ,ﬁ_ |
SINITISVE IWNUILNI 7 _ i
N9 1530
SINITISVE TVNUILX3 _ A J15ve =
N91530 | o
| 11v130 _ £
| igoga |
S“wue_ S g
mhmwh TVIINYE —
A INIWJON3A30 $dad
L3vid | 3
S1S3L aT1H00 g
NOILY314143A/ VD A |
aouN0s _
dios | 3909 garadV
—d N TOYINOI 3INVHD TVNYIIN| e |
NOILV¥340
/NOSLYYIVLSNI =
Y o)
]
- TOULNOD 3ONVHI TVWHO04 —>| =
[}
(2]
.A. $ 1LONAoYd a0 ﬂzH«mﬁ m
ﬂ - vad 1onaoud -1
m
I *348 INDLOTIAZG D uaw.a_ﬁ svag| ®
- STy
Jads WALSXS msmwo-mdﬂg

26

2
e

e G AT BT

Review (CDR) by release of the completed
draft of the computer program product
specifications. The internal baseline
for the detailed (module) design should
be established at CDR by release of the
completed draft of the computer program
product specification less 1listings.
Internal baselines for testing of the
computer program should be established
by release of a computer program config-
uration drawing, release of the source
code to a CPL, and release of the object
code to quality assurance for control
during test conduct.

The foregoing is a generalized descrip-
tion of baseline control for all con-
figuration items. It 1is intended to
demonstrate the three basic develop-
mental milestones for configuration con-
trol. Because of certain fundamental
differences between ATE and TS software,
each must be treated differently with
respect to baseline control.

5.2 BASELINE CONTROL VARIATIONS-
ATE VS TS

The following subparagraphs discuss some
of the variations in baseline control
required to accommodate some inherent
differences between ATE and TS software.
5.2.1 Intermodule Dependence

Perhaps the most significant difference
between ATE and TS software relative to
baseline control is that simulator soft-
ware is designed to simulate a real time
situation requiring modular interplay,
whereas ATE programs, (i.e. UUT pro-
grams) execute test commands sequen-
tially in a batch processing mode. TS
programs, therefore, require both
“inter-" and "intra-" module compati-
bility and control documentation.

Good design and configuration control of
inter-module interface signal processing
(timing and sizing of intermodule data
traffic) is an essential requirement for
TS software. On the other hand, ATE soft-
ware, although it too has interface soft-
ware compatibility requirements (among

27

control, support and test components) is
comprised mostly of test programs which

are independent, sequentially executed
test statements. This difference is
shown diagramatically in Figure 5.2-1.
It is seen here that during deployment,
intermodule compatibility control is not
as much a factor for ATE software while,
it is a significant factor for TS soft-
ware.

Interface control, therefore, must be
established by interface control docu-
mentation which defines detailed inter-
face requirements. This becomes a
portion of the allocated and product
baseline documentation in appropriate
CPCI specifications. Interface control
documentation establishes specific func-
tional or physical relationships that
must exist between computer programs and
computers, other system equipment and
other CPCI's; and between computer pro-
gram components of CPCI's to achieve
integration and compatibility. The
development and verification of inter-
face documentation and its inclusion in
the appropriate specifications are essen-
tial prerequisites to the completion of
baseline definitions.

5.2.2 Distributed Processing

Another significant difference between
ATE and TS software which affects base-
line control is the distributed architec-
ture nature of ATE software. The prolif-
eration of the mini and micro computer
has' changed the structure of ATE system
software from one characterized by cen-
tral processing to one of distributed
processing (i.e. more functions being
performed by the remote station rather
than by the central computer.) Control
of firmware (programmable read only
memories) (PROM), is becoming a config-
uratidn control ingredient essential to
overall ATE, software configuration con-
trol. Control of software configuration
is now more hardware dependent. Mini-
functions such as signal generation and
analysis are being done by the micro-
processor while limit information (pulse
amplitude, width, rep rate) is supplied

SIUBILIA (023U0D UORRINGIUOY (S| SPSIIA FLY “1-Z'G 34nbly

ﬁ NOILOW

orany
(°Q3¥INDIY ALINISILYIWOI)
IINAOWYIINI) “INIWAOTAI0 W0SIA
ONIYNG IINYNILNIVW/T0HLINOD
NOILVINIIANOD ONIYIND3Y SWYY90Ud

ONIY33LS %
NOILYOIAWN

JYVYMLIO0S SL

SWY¥903d Sl

28

(1avoraay 1on [[oNe-tmn 1534
8 ALIISILVAWO0D 31NQON 473§ §S3004d-N1 @ =
M -¥3INI) LNIWAOT4IC Z-1mn NOILV¥8ITY) ® Wilsas ‘uido ® | ..
| ONIUNG JONVNIINIVM . i L4/v0 o 041N S
i :oxw.%uh_ucﬂﬁ%ﬂ 3YYMLI0S ¥Ildvay e S¥311dN0J W201/310W38 * [2
- IAILIYIYILNI-NON o e I3
ONTYIND3Y SKY¥9O0Yd | SHvigoyd 1s3L 413s SaTV - INIVH o Mot s |7
, 153L 100 NOILVLS | *SGV *INOD "DI4NOJ ® SYIATNG
" 5 Sa1y ‘A0 "90ud e WHIHITYId ®
- SUOLVISNVYL "INV e *23X3 1531 ®

153l L30ddns T0Y1NOD

B BNt o e o A A v it o AP At om0 - - -
s m s i e amms eme o emmamem e ol o v

.
®

s

by the UUT test program. The software
configuration controller, therefore nmust
know what programs exists in PROMS as
well as in the UUT source program to
fully configure the UUT test software.
5.2.3 Change Volume

Another significant factor affecting
baseline control differences between ATE
and TS programs is the volume of
changes. During developmental phases,
change volume is variable for both sys-
tems, however, during deployment changes
to system LRU's affect ATE software
differently than TS software. Once
deployed, an avionics LRU change would
have to be functionally significant
before it would affect a simulator pro-
gram. It would have to alter functional
capability of the system before it would
require a corresponding change to the
simulator program. For ATE software, on
the other hand, many of the "“as-built"
changes require UUT program changes to
insure functionality has been restored
or to accommodate signal parameter limit
changes.

These variants for ATE and TS software
impact the methodology developed for
baseline control. The resources, skills,
problem reporting methods, and change
incorporation and verification methods
are different as a result of these
variants. In the following subsections,
we will examine some typical baseline
control mechanisms for both types of
software in which impact of these
variants will become evident.

5.3 BASELINE CONTROL MECHANISM
There are two distinct elements or sub-
tasks involved in maintaining baseline
control:

a. configuration definition

b. configuration accountability
Configuration definition is a software

engineering responsibility and is com-
prised of baseline definition plus

29

change definition. Configuration defini-
tion is maintained by releasing engi-
neering documents such as Part I, Part

IT specifications and
approved changes thereto.

vDD's, plus

Configuration accountability is the pro-
cess of verifying that the applicable
computer sensible media reflects the
approved baseline and that changes to
that media are incorporated only in
authorized versions or at other
committed effectivity points.

Since ATE and TS software are so diverse
structurally the following subsections
address baseline control separately.
5.3.1 ATE Software

ATE software baseline control begins
with the system functional baseline. The
functional baseline is established by
the system specification for the ATE and
SDR. At this point, top level system

(hardware and software) functional
requirements are defined. The system
specification defines required capa-

bility in terms of:

a. Number and type of UUT's requiring
test.

b. Computational capacity as a design
goal.

c. Stimuli/measurement
accuracies. :

parameters,

d. Reliability, maintainability goals
e. Diagnostic vs. end-to-end test
capabilities.

These are functional requirements for
the ATE as a system, irrespective of the
selected ATE design.

The functional baseline, in effect,
defines the job to be done by the.ATE
for a specified range of products under
test. The population of UUT's categoriza-

tion, and various logistics support
requirements determine the system
requirements.

e e < m————A st A s A

These system requirements are then
“allocated” to CI and CPCI's. For
example, a given ATE configuration may
be allocated into CI's and CPCI's as
follows.

a. CPU
b. Digital station
c. Video station
d. Microwave station
e. Servo station
f. System software
(1) Control
(2) Support
(3) Test
g. Communication/navigation
h. Program development station

Each of the above is designated as a CI
{or CPCI for software), the requirements
for which are defined in a series of
development specifications to form an
"allocated"” baseline for that CPCI/CI.
An outline for an ATE system software
CPCI development spec is shown in Fig.
5.3-1. The software allocated baseline
is herein defined. It is prepared by the
ATE contractor during the analysis phase
of the ATE computer program development
cycle and approved by the Air Force at
the CPCI PDR.

The purpose of a development specifica-
tion needs to be reviewed at this point.
A development specification is prepared
primarily as a two-way agreement between
the Air Force and the development con-
tractor. It is prepared independent of
the design approach. It specifies what
the software shall do (function), how
well it shall do it (performance) and
under what conditions (design con-
straints). In addition, it provides vali-
dation vrequirements that define the
scope of the validation program. The

30

specification is used as the functional
and performance baseline for the contrac-
tor in developing computer programs and
is also used as the baseline on which
Air Force acceptance or rejection of the
computer program is based.

A statement of computer program require-
ments, that have been approved by the
contractor and the Air Force, is a
necessary instrument for a clear under-
standing of what the contractor will pro-
duce and what the Air Force expects. The
three basic categories of ATE computer
programs present different problems in
the need and generation of development
specifications. The form and substance
of a development specification may vary
for each CPCI depending on the category
and the degree to which it must be
developed. Since ATE software categories
are different, they are often designed
as separate CPCIs. That implies separate
specifications, separate development
schedules, separate review schedules and
separate validation of requirements that
must all be coordinated and eventually
"sold" as a unit. This raises the possi-
bility of an ATE software system speci-
fication covering all CPCIs, as well as
the individual CPCI specifications.
Since the CPCIs can and do have separate
development schedules, each CPCI would
have its own PDR and CDR schedule; e.qg.,
normally the control and support soft-
ware development precedes that of the
test software.

Most of the time, control software and
support software are purchased from an
ATE vendor as part of a test set or
separately from the computer manufac-
turer. Control software and support
software are usually identified as
separate CPCIs. When these computer pro-
grams are purchased "off-the-shelf,"
development specifications are not
required. Computer vendor documentation
is required for computer program main-
tenance and for the possibility of
making changes to the purchased computer
programs. The equivalent of a product
specification (Part 11, MIL-STD-483)

L wkes W
& " v

S B A . NS o B MR e o o L e dd LY O

ATE SOFTWARE DEVELOPMENT SPEC OUTLINE
(ALLOCATED BASELINE)

Sect. 3.0 (Part I per MIL-STD-483)

Requirement

3.0 Requirements

3. Definitions

3.1.1 Station Test Software

3.1.2 Station Control Software

3.1.3 Station Support Software

3.2.1 Station Test Software

3.2.1. UUT Test Software

3.2.1.2 Confidence Test Software

3.2.1.3 Operational Assurance/Fault Isolation
3.2.1.4 In Process Self Test

3.2.1.5 Maintenance Software

3.3.1 Station Control Software

3.3.1.1 Test Control Software

3.3.1.2 Remote Mode Test Control Software
3.3.1.3 Program Development Control Software
3.4.1 Station Support Software

3.4.1.1 Maintainability

3.4.1.2 Operating System

3.4.1.3 File System

3.4.1.4 Loader

3.4.1.5 Operator Interface

3.4.1.6 Batch Processing

3.4.1.7 Language Processors

3.4.1.8 Program Development Aids

3.4.1.9 Interactive Editor

3.4.1.10 Automatic Test Program Generator
3.4.1.1 Configuration Control Aids
3.4.1.12 File System Cataloguing

3.4.1.13 Configuration Verification
3.4.1.14 Media Conversion

3.4.1.15 Maintenance Software

Figure 5.3-1. ATE Software Development Specification Outline

31

o ot v . e =

-

annans - —e

should be obtained from the vendor. Pro-
gram listings and source code are almost
indispensable., When significant addi-
tions or changes must be made to the pur-
chased control or support software, a
development specification should be
written covering the changes to be made,
and the interfaces required with the pur-
chased computer programs and the test
equipment. The existing computer program
(obtained from the vendor) is identified
as an interface and the additional soft-
ware, treated as a CPCI, will be
designed, tested, reviewed and con-
trolled accordingly. When control and
support software are to be totally
developed by the contractor, a complete
development specification is required.

There is considerable controversy within
the Air Force and contractors as to
whether a development specification is
applicable for test software. One point
of view is that test software is a com-
puter program and must be developed as a
CPCI. Therefore, a development specifica-
tion is required for proper control of
the development process. The other point
of view is that test software is derived
from a TRD, which can be most effi-
ciently written directly in the Abbre-
viated Test Language for All Systems
(ATLAS) 1language by a UUT design engi-
neer, thereby bypassing the need for a

development specification or at Tleast
regarding the TRD as the development
specification.

The point to remember is that test soft-
ware is dependent not only on the TRD,
but on the ATE test set, the ITA and the
station resident software as well. It is
clear, therefore that the TRD itself
written independent of the ATE, ATE soft-
ware and ITA, is not an adequate sub-
stitute for a development specification
and cannot provide the design definition
and control,

The allocated baseline therefore must be
defined by a development specification
which addresses.

32

e i b e i A

a. Control software requirements
b. Support software requirements
c. Test software requirements
(1) UUT test software
(2) Self test and calibration

d. Design (ATLAS

version(s)

requirements

e. Quality Assurance
(1) Configuration Requirements

{2) Functional and
verification requirements

performance

When approved at PDR, the allocated base-
line is authority to proceed into the
design phase of ATE software develop-
ment. TRD's are prepared in accordance
with the development specification and
the appropriate contractual specifica-
tions, such as MIL-STD-1519. However, it
was recently concluded by the Joint Ser-

vices and Industry (see Bibliography
ref. 3) that MIL-STD-1519 is too
stringent and expensive. In practice

each branch of the service has had its
own interpretation and the current con-
sensus is that more pragmatic specifica-
tion is required for TRD's,

From the TRD/development specification,
work can begin building a "product" base-
line. The product baseline is defined-by
the product specification and defines
the as-built design. The product speci-
fication consists of three essential
parts.

a. Logic flow diagrams

b. Support narrative descriptions

¢. Source program listings
Preliminary drafts of the product speci-
fication are made available at PDR and
completed drafts available at CDR. This

specification is maintained under Class
II control from PDR wuntil it becomes

- A i ikt Wik oA Ml

2 R T -

e

T PaAS M Mo ¢ o a

REN S

deliverable or at PCA at which time it
is henceforth maintained under Class I
control.

When the control and support software
position of ATE software are purchased
off the shelf as is the case in most ATE
systems available today, the job of main-
taining baseline control of the software
boils down to maintaining control of the
UUT test programs themselves. The UUT
program is one element of what is called
a Test Program Set (TPS). A TPS,
theoretically is everything an operator
needs to run a UUT test given an ATE sys-
tem. A TPS consists of

a. A UUT object code test program
b. Adapter or interface device

c. Operator instructions consisting
of supporting data adequate to achieve
self maintenance

(1) Flow diagrams, schematics
(2) Source diagrams

(3) Interface diagrams

(4) Test loop diagrams

One of the primary purposes of ATE soft-
ware configuration control is to provide
at time of delivery, complete and accu-
rate software configuration and usage
documentation to the user. Too fre-
quently, developers of UUT programs are
under pressure to "debug" and deliver
with the result that the related docu-
mentation suffers. Care must therefore
be taken to the SCM group to insure pro-
gram version updates are accompanied by
updates to all affected documentations
required by the product specification.
This includes

a. New versions of compilers/
interpreters

b. Firmware changes to hardware
design

c. Interface descriptions
d. VDD
e. Flow diagram + narratives

f. Part 1 specification (if appli-
cable)

g. Adapter changes
Fortunately, for ATE software, the lan-

guage and operating system accomplish
much of the configuration control job

through automated documentation tech-
niques.
For example, consider a UUT program

coded in ATLAS. Most ATE systems avail-
able today include a complete repertoire
of compilation, file management, text
editing and configuration control utili-
ties. The system compiler accepts ASCII
coded source Tlanguage statements and
uses configuration information output by
the ATE and adapter/interface (A/l) pro-
cessors to generate an object code pro-
gram. The ATE configuration processor
accepts a description of the instrumenta-
tion, switching and method of the pro-
gramming, then outputs files used by the
A/l processor and the compiler. The A/I
processor accepts a description of
signal routing through the A/l between
the UUT and the ATE, and data files out-
put by the ATE configuration processor,
then outputs files used by the compiler.
If the instrumentation, switching, pro-
gramming method, adapter or interface
changes, file changes must be made to
the ATE and A/l configuration files so
that accurate and up-to-date system con-
figuration information is used by the
compiler (see Bibliography ref. 6).

Other ATE system capabilities, normally
supplied as part of the vendors operat-
ing system, greatly aid the job of main-
taining ATE software baseline control.
SCM personnel should become familiar

with the capabilities of the selected
ATE system to effectively utilize the
systems capabilities for configuration

control objectives. Additional automated
aids to configuration control are (see
Bibliography ref. 7):

a. Automatic prevention of unautho-
rized updates to configuration con-
trolled tapes, e.g., by checking an
authorization number in the update
request with a corresponding change
approval code in the SCM Data Bank.

b. Automatic SCM Data Bank recording
of "was-is" data during controlled up-
dates, showing old and new memory
contents.

c. Automatic generation of flow
charts from the test program coding,
guranteeing that the flow charts are up
to dace with the code, a determination
so time-consuming and difficult by
visual comparison, that it seldom is per-
formed and then only on a limited
sampling basis.

d. Automatic comparison of the con-
figurations- of the pre- and post-
validated test program, resolution of
differences with SCM Data Bank records
of approved changes, and isolation of
unapproved changes.

e. Automatic generation of integrated
configuration lists and other types of
configuration status accounting reports.

f. Automatic generation of wire
lists.

g. Automatic documentation update and
change distribution.

h. Automated revision tracking of
source and object code files. The revi-
sion code is carried as a field in the
file name and automatically implemented
by the operating system when the file is
accessed for editing.

Utilization of these automated aids
together with disciplined manual change
processing methods will provide for com-
plete and accurate ATE configuration
control. Methods of change processing
are discussed in Section 6.0.

5.3.2 TS Software

Baseline control for TS software origi-
nates (similar to ATE software) with the
functional configuration baseline for
the simulator system. As shown in Figure
5.3-1, the TS system specification
defines the functions to be performed by
the TS without regard to implementation,
(hardware or software). When approved by
the System Program Office (SP0) and
released in the RFP, the contractor pre-
pares a technical proposal describing
how each functional requirement will be
met. Hardware/software trade studies
determine the number of tasks "allo-
cated" to software.

Unlike ATE software the system functions

allocated to TS software are not as
clear cut. (Refer to the guidebook on
"Requirements Specifications," for a dis-
cussion of hardware/software trades.)
The functions allocated to software are
usually undetermined at the time of RFP
release. The contractor's proposal
identifies the software modules, their
interfaces, and functions to be per-
formed by each module. In accordance
with DOD Directive 5000.29 and AF Reg.
800-14, software programs must be
managed as a CPCI's and consequently a
CPCI development spec, (Part 1) should
be prepared to form an "allocated" soft-
ware baseline. Some of the problems asso-
ciated with TS software requirements
baseline control are

a. Untimely requirements changes

b. Excessive MIL-spec design/construc-
tion constraints

c. Excessively high fidelity require-
ments

d. Excessive instructor displays and
controls

e. Inexact verification requirements

f. Ambiguity in requirements

34

e AL OAREN

. s,

C

Unlike ATE software, a requirement over-
looked, misinterpreted or changed with-
out good reason causes significant cost,
schedule and configuration control diffi-
culties. Most test software changes can
be accommodated relatively easy. A pro-
cess which is predictable - "apply stimu-
lus - measure - output” can be easily
modified to accomodate additional para-
meters or changes to their limits. TS
software changes on the other hand, fre-
quently require complex algorithm devel-
opment, module, intermodule and system
level checkout. Program regression is a
very real danger. Every effort, there-
fore should be made to develop a clear,
complete and practical allocated base-
line for a TS system software.

Once the allocated baseline is released
and approved at PDR, work can begin
building a product baseline. Figure
5.3-2 depicts a typical simulator soft-
ware program architecture broken down
into functional elements.,

This figure identifies functionally
separate software elements without con-
sideration of interface relationships or
intermodule dependencies. These dependen-
cies exist, however, and must be fully
defined in the Interface Design Descrip-
tion (IDD) which must be made available
at PDR and maintained under Class II con-
trol until FCA/PCA. These functions may
be managed as one large CPCI or as
several (four or more in the example of
Figure 5.3-2). Regardless of level of
CrCl designation, each major functional

element or module design should be
governed by individual -

a. Design requirements

b. Design description

c. External and internal interface

descriptions
d. Flow diagrams
e. Narrative description

f. Test requirements

35

y X A . .
&y B . .
———— ettty i el T T

The CPDP should describe the type of
documentation required to define the
above information for each module. The
foregoing design definition effort con-
tinues until CDR, at which time coding
and debug begins. At this point the mod-
ule designs, defined in released engi-
neering documentation, are submitted to
SCM for contractor internal control
within the CPL. No changes can be made
to these designs without authorization
from the software design manager. This
proviso insures that an approved design
will not be altered by programmers sub-
sequently coding to that design. Figure
5.3-3 depicts the levels of configura-
tion control required from PDR (allo-
cated baseline) through FCA/PCA (product
baseline). It is seen that both the modu-
lar designs and the code evolve through
increasingly tighter levels of configura-
tion control. Concurrent with code and
debug, the programmer conducts module
tests until he is satisfied that his
code functions in accordance with the
module performance requirements. He then
submits his code to the CPL where it is
"formally configured" for the first
time. It is given a configuration number
(see paragraph 4.3) and stored for
integration with other modules to form
the next higher module or CPCI version.
When all functional modules are avail-
able for a given CPCI version, they are
integrated (assembled, compiled, and
linked under support software control)
to form the first CPCI "version". This
"version" 1is then subjected to inter-
module compatibility tests, modified as
required under SCM controlled conditions
(further discussed in paragraph 7.3),
and then turned over for formal QA
acceptance testing. At this time no
changes can be made to the source code
of any module without a contractor
committed Class Il change. This proviso
insures all design subgroups potentially
impacted by the change have an oppor-
tunity to evaluate impact. Finally after
QA acceptance (to approved contractor
internal validation procedures), FCA/PCA
is held to approve the product baseline
at which time Class I (customer approv-
al) control prevails.

o P TR BRI BN T TR s winen g an e

T .‘

_ SAVIdSIQ

% ST0Y1INOD

TYNSIA

9NIGY01 TOYLNOD

SIUBWS|F RUONIIUNS I8MIOS S| Z-EG 84nbId

orany

NOILVINWIS
TVANIWNOYIAN]

NOILISIADIV
viva
¥31NdWOD YILINILTV
IISSIN VOV
SNOdY3M
9INI¥0IS ALTAVED ¥3X3INdILIN
TYNOILNIANOD "19313
NOIL¥3SNI NOdY3IM
NOILONN TvW ALTAYY9 V319NN INDIVL X1d
*OW30 LINN NOILYDIAWN
J1LVKWOLNY 31907 NOILVLS 431dd00
LIND
NOILYZITVILINI W3LSASENS INIWIYNSYIN
402363 YLLYIN]
1041N02 A¥3AI130
¥OLINYLSNI SNOJVIM NOILYDIAVN
JUYML0S
YOLVINNIS XXX
WILSAS NOdY3M
: o 3 M
r ®- i‘r hd ~ .

36

Tew o

Jovatp

Busseyy jonu0) uonesnByuo) ‘g-g'G anbly .

R zo~h<NHhummw
11 SSYT) 3009
<=1 SSV1) 0311 1mi0) —>t*+— N9ISIQ —>fe——— 104INOD YIHWYHIOU —_—
YOLIVYLINGD 3YYMLI0S
NOILYZ INYOYO .
N JONVHD I SSY1) | N91S30 N9IS30 >
<+ 1 SSY1) > 03LLINWOD HOLIVYLINOD *T* JYYMLI0S — :
.
(V0 ¥0LIVYLINOT ©
A8 3INV1d320V) o4
S1s3lL (LOWI) s1s31 -
ALIT1911VdWOD ~)
.zowmmmmwmw | JI00OWNIINT 4 SIS3L NOLLYOI4INIA 3TNGON | =)
I I | .
91930/3002
*23dS
INITISVE INIWd013A30
N91530 INII3SYE
A 11v130 43LvI011V
INIIISYE
15n0a0¥d .
V¥2d/¥23 ‘ N91S30 TIVL30 \
AYVYE11 |
WYY¥90Yd
¥31NdW0D A A
¥0) ¥0d
o 7
—— ' d - DIA
’ v oo ede - .

:
i
?
i
!
5
i

5.3.2.1 "Block Change" Approach. Fre-
quently changes originating from the
various design subgroups are so volumi-
nous that configuration control becomes
difficult and unwieldy. Literally hun-
dreds of "make work" type code modifi-
cations may be accumulated over several
months against a given CPCI version.
Such changes can be incorporated in two
ways.

a. Handload or “"patch" the object pro-
gram

b. Recompile the modified source code

There are undesirable aspects of using

either method exclusively. "Patching"
the object program with hundreds of
changes causes . program performance
regression. Recompiling a new total
program to incorporate every minor
change and then running a complete

retest, is costly and inefficient.
A compromise is achieved by wusing the
"Block change" approach. In this method
changes are packaged together or
"blocked" in accordance with some ground
rule for manageability. Factors deter-
mining block size might be

a. Quality of changes

b. Schedule - critical project mile-
stones

c. Major redesign

d. Merge of two or more CPCIs into

one
e. Other technical/management reasons
Under this system, all changes accumu-

lated under "Block 1" are identified,
tracked and controlled by SCM. At a con-

38

" -
[C L e ae

venient point,
CPCI versions is terminated, the source

patching of the Block 1

program 1is updated to incorporate the
intent of all Block 1 changes, and a new
"Block 2" version is compiled and com-
pletely retested. Each successively
developed "Block" may require several
CPCI versions to accommodate a ‘“test-
debug-patch reconfigure-retest" cycle.
This block approach is depicted schemati-
cally in Figure 5.3-4. \Under this
approach the first version of new
"block" is a new recompilation of the
original or updated source program. It
is retested in total - to verify all per-
formance requirements are met. As the
design matures, changes are required to
accommodate performance improvements or
to fix errors. Each individual change or
error is evaluated and a ‘"patch" is
designed to the object program. The code
is changed and that portion of the test
requirements affected by the patch is
retested. The patch is logged and even-
tually a corresponding source code
change is made and "rolled in" at the
next "Block".

Under this approach, software perfor-
mance is evaluated on a system 1level
early in the development cycle to
uncover major system level design
incompatibilites. Each version performs
slightly better than the previous. Each
"Block" performs better than the pre-
vious Block, until all Part 1 require-
ments are met or exceeded.

5.3.2.2 Baseline Control Mechanisms -
Summary. The preceding discussion
describes the “concepts" of baseline con-
trol and the variants in control con-
cepts required to accommodate inherent
differences in ATE and TS software. The
following section discusses methods of
managing the mechanizing change control.

108u0) abuey) 03 yreoddy abueyd ¥20|g “p-£'G aInbly -

ﬁ N\
2 NOIS¥3AY SINIOd
NOILVYHOJHOINI IONVHD
H31Vd INTINIANOD |
A i 40 SINOLSITIN f 4
EJ 193004d]
L NOISUIA IIILIY)]
r) \
2 NOISHIAY HILvd W
111 %2078 131 o
MLV b _
O _ O sy € NOIS¥IA} o
¢ NOISY3A L NOISY3A L NOISY3A HaLvd J .
£ %2018 £ %2078 h 153134y m., <)
: .\
2 NOISYIAY o
! I1 %2018 v
1531 ©
| O O vorsh
| 2 NOISY3A L NOISY3A Isy]
. 2 %2018 Z %2018
|
w ‘ .
L 1 %2078
_ 1

| O—O—0
i € NOISY3A 2 NOIS¥3IA L NOIS¥3A
1 %3018 1 %2018 1 %2019

e . ailaes A gyt T B el Vg O g exiaen, Y

- B A

!
3
¥
:
¥
:

Section 6.0 CHANGE MANAGEMENT

The subject of software change manage-
ment embodies the preparation, evalua-
tion, approval, incorporation, account-
ing, and test of all customer and con-
tractor initiated changes to CPCI's.
Change management encompasses changes in
requirements, hardware and software
interfaces, problem and errors, enhance-
ments, etc. It includes change board
activities, change reporting and sta-
tusing, problem reporting, tracking and
corrective action. Some of the unique
problems of change management for ATE
and TS software are discussed in this
section.

Change management embodies the following
elements

a. Change classification
b. Change approval and release

c. Change accountability and verifi-
cation

The following subsections discuss each
of these elements as they apply to ATE
and TS software.

6.1 CHANGE CLASSIFICATION

Formal changes to CPCI's are classified
as Class I (design) or Class II (discrep-
ancy) 1in accordance with MIL-STD-483,
Appendix XIV. An engineering change is
classified as Class I when it affects
the contractually specified form, fit,
function, cost or delivery schedule of a
CPCI. An engineering change is classi-
fied as Class II when it does not fall
within the criteria for Class I. Once an
external baseline 1is established (see
Figure 5.1-1), all changes are processed
as Class I. Every request for change is
evaluated by configuration management to
determine classification and type. The

6.1.1 Class I Change Criteria

A1l proposed engineering changes to
CPCI's are designated as Class I changes
if one or more of the following are
affected:

a. Contractual specifications (func-
tional, allocated and product baselines)

b. Contractual plans
c. Cost, fees, incentives

d. Key milestone schedules, deliv-
eries

e. Statement of work (SOW) and/or the
contract terms and conditions

f. Government furnished equipment
(GFE), safety, delivered manuals

6.1.2 Class II Change Criteria

A1l changes not considered to be Class I
are designated as Class II when they are
encountered during a period designated
as "contractor committed Class Il change
control."

6.1.3 Change Processing

Formal change processing requires that
the problem be identified, and pro-
cessing initiated on the appropriate
change paper. The proposed change
request is classified as Class I or
Class II and is coordinated with
affected organizations to determine its
scope and impact. It is then presented
to the program change board for evalua-
tion of the impact on cost, schedule,
design, etc., and for approval or
disapproval. The change paper and method
of processing formal changes is depen-
dent upon the classification of the

,‘ criteria fer classification s as change. This is described as follows:
follows:
6.1.3.1 Class I Changes. Class I
) changes are processed as either engi-
I N neering change proposals (ECP's) or con-

41

L e e

PRECEDING FAGE BLalX-NOT FIGD |

s TP S -

tract change proposals (CCP's). They
must be approved by the customer prior
to implementation.

a. An ECP is used to propose an engi-
neering change to a contractual specifi-
cation or an approved configuration
identification/baseline. The ECP is a
comprehensive document which contains
provisions for supplying all the infor-
mation necessary to make a thorough eval-
uation of the change and its impact on
the entire system.

b. A CCP is used to propose a non-
engineering change to the contract
requirements; e.g., changes to the SOW,
contractual schedules, contractual
plans, equipment quantities, costs, etc.

6.1.3.2 Class II Changes. Class 1II
changes are processed as either a
committed or noncommitted change. Class
Il committed changes are identified as
committed changes and Class II non-
committed changes are as noncommitted
changes, or liaison changes. Class II
committed changes may be implemented
after the program change board approval
and commitment is established, without
prior customer "approval; however, they
must be submitted to the customer for
concurrence with the classification.
Class II noncommitted changes do not
require change board action or commit-
ment.

a. A committed change is any Class Il
change requiring interorganization coor-
dination through the program change
board for scheduling and release commit-
ment. Committed changes are serially
numbered.

b. Liaison (noncommitted Class 1II):
This type of Class Il change is made to
permit software conformance to the
intended design. It is fully coordinated
by the design engineer with the liaison
engineering, quality assurance and manu-
facturing planning organizations.

42

6.1.4 Software Change Initiation

During the software development process,
design deficiencies or coding errors may
be discovered and a change to the soft-
ware (design documentation or code) may
be required. These deficiencies or
errors must be documented and reported
on appropriate forms so that the problem
may be analyzed and appropriate action
taken.

The type of form used to report these
problems and the type of change control
required depends on the stage of soft-
ware development, whether an external or
internal baseline is affected and
whether the deficiency or error is a
design error or coding error.

Irrespective of the phase of develop-
ment, all changes precipitated by soft-
ware errors should be reported on a soft-
ware problem report (SPR), (see Figure
6.1-1). This form provides for orderly
definition, solution and tracking of all
software errors. It is also the prime
vehicle for analyzing trends in software
discrepancies.

Design changes not due to errors (perfor-
mance improvements, requirements
changes) are described and authorized on
a Design Change Request (DCR) or equiva-
lent - (Figure 6.1-2). These forms are
internally controlled by the Software
Design and SCM organization. During for-
mal change control periods (Figure
5.3-3), they do not in themselves autho-
rize software drawing changes, but
rather define the reason for and descrip-
tion of an actual software change. The
engineering drawing or document s
changed only by committed change.
Changes originating from either errors
or design change are evaluated and autho-
rized by change board activity to be dis-
cussed next.

6.2 CHANGE APPROVAL AND RELEASE
In organizing for management of complex

software controlled acquisition systems,
a contractor may establish two change

SOFTWARE PROBLEM REPORT
Problem Report No.
Project Name Computer/Lab Utilized Program
% Problem Discovery Rame of finder Date
3 i{ Fethod of deteccion: DDevelopment test Tools used to detoct: :
> QOUsage Olntegration test O None OO0ump (terminal) D Simulation
1 {” Dlnspection/Analysis OAcceptance Test ODesign review ODump {dynamic) ([Assertion
- OPeer review O HOL Debug .OProof
O Analyzer OO0ther
Description of symptoms
] 4
' ’ i Configuration level
* S Correction importance/need date
! Authorizing Signature Orgn. Date

: Problem Analysis Name of analyst

Start date End date

. Findings
. Resources expended: person computer
Estimated resources to correct: person computer
1

Problen Correction Name of programmer

Start date End date

- ! Description of Correction

!
*

3 ; Components changed and configuration level
. Resourtes expended: Person computer
. Problem category -
i D Job control language Q0Oesign error - omitted logic ODocumentation
4 O Operational Interface DDesiagn error - faulty logic O0ther
¢ 0 Coding error - data declaration DTesting
h! D Coding error - executable instruction oConfiguration management

cqom

, v Final Authorizing Siguature Orgn. Date

Figure 6.1-1. Software Problem Report

43

DESIGN CHANGE REQUEST (DCR)

Report No.

Originator

Organization

Date

Reason for Change

Proposed Solution

N | CI's/CPCI's Impacted
3 ‘_ CI No. Rev. Version

Documents Affected

e 10D /
® Part I Spec /
® Part II Spec /
® VDD /
® Operating & Inst./
® Test Procedures /

i : Change Description

Programmer

Approvals
® Software Design

v T AT
®

® Quality ASsurance

® Systems Eng.

® Hardware Design

® Test and Evaluation

-~
v ——

Figure 6. 1-2. Design Change Request

W 44

board functions. One is the regular
change board which process and commits
all system changes, hardware and soft-
ware. In addition, in order to manage
the large volume of software development
changes which determine the evolution of
the ultimate operational program, a soft-
ware change board may be established.
Its function is to coordinate proposed
changes in software design among pro-
grammers, hardware designers, interface
specification managers and systems engi-
neers to insure the compatibility,
correctness and documentation of all pro-
gram changes. This board is chaired by
the SCM group which insures the coor-
dinated approval, documentation, incor-
poration and test of all changes are con-
trolled and recorded. Module level
changes to CPCI's not yet committed to
formal release are normally excluded,
however, once released CPCI's should
require this level of coordination.

6.2.1 Project Change Board

The project change board meets periodi-
cally to act on proposed Class 1 and
Class 1II changes. This board ensures
that changes are properly classified;
that their effect on interfacing engi-
neering disciplines, cost and schedules
are properly assessed; and approves the
implementation of Class II changes and
the transmittal of proposed Class I
changes to the customer for approval or
disapproval. SCM 1is a member of this
change board. SCM will support this
change board to control proposed soft-
ware changes, assure completeness, and
assess impact on documentation.

6.2.2 Software Change Board

A software change board or software con-
figuration control board is established
and chaired by the software manager or
his designee to provide a means of con-
trolling and processing internal soft-
ware changes. This board reviews all
software group originated changes and
approves or disapproves the change
before it reaches the project change
poard (or during periods of internal

45

control members are

only). Board
appointed by the software manager and
normally include software design, test,

quality assurance and systems engi-
neering representatives. The software
change board working in conjunction with
the SCM organization is responsible for
change approval and release. A typical
flow for internal software changes is
shown in Figure 6.2-1.

When change control progresses into
formal Class II control phases (CDR for
design; completion of Intermodule Com-
patibility Tests (IMCT) for coding, see
Figure 5.3-3) the software change board
(SCB) functions continue unchanged. How-
ever, the SCB approved change must then
be committed and scheduled in the pro-
ject change board. The project change
board assures the necessary drawings and
documents are changed and appropriate
retesting are accomplished to implement
the SCB submitted change. Once all
changes are initiated, authorized and
scheduled by the applicable change board
they are incorporated as changes to the
source and object documentation and
media (decks, tapes, 1listings). This
change incorporation and verification is
called configuration accountability and
is discussed in the following section.

6.3 CHANGE ACCOUNTABILITY AND
VERIFICATION

Change accountability is one of the most
essential tasks in achieving configura-
tion integrity of a deliverable CPCI.
Unless properly managed during develop-
ment and validation testing, configura-
tion control can be easily lost. This
danger arises primarily because the pro-
gram submitted for the start of the vali-
dation (or acceptance) testing is fre-
quently significantly different from the
program which completes testing. For
example, in TS software, the version sub-
mitted for wvalidation (system level
tests) is normally the version com-
pleting verification (single thread,

T ST AT RN £ R ey Sy g, e

jonu0) abuey) asemiyos feussiu “1-Z'9 ainbly

YOLVNIDIN0 OL
Ad0D N¥ALIY °€
113 2
501 °1 INIWIOYNVH
NOILV¥N914NOD -
R L5 FYRLI0S 4
IA0¥AAYSIC 0L Ad0D QM4 °9 ’
o N9IS30 0L QM4 °S)
JYYML40S JINVHD MS 1403 uwm“ .m .]
OINI 3I9NVHD | 404 39VNOYd e MIIA3Y 2 b
INIWITdNI udmzuwwm‘.m “ON NOISSV °1 ;
7 | . ;
R G M)
JONTHININOD -
HOLYNIDINO :
NIVL80 °2 -
907 1 "
V -
Q3LVILINI
ouy3 JONVHD
m »
¥ ‘ 1 LON 40 Y g
JYYMLA0S
INVHD J8YMLIOS .
NVHD ZMLIOS - LOVAWI $S3ISSY
JYYMLI0S N91530 !
JYYMLIOS
. e . e T

oz R N e ot |
B A CE S b A4 R R S

IMCT).
cuted in a system environment.
standably numerous problems arise. As

It has never been formally exe-
Under-

those problems increase in number
throughout the validation test period
(which may be several weeks or months)
tremendous tracking and control problems
can arise. For example:

a. Test conductors may change with
shift change. ’

b. QA personnel/technicians change.

c. At what point in the test proce-
dure was the problem encountered?

d. What was the fix? - patch?
recompiled tape?

e. What locations and data were modi-
fied?

f. What controls insure only autho-
rized memory locations were modified
after initial Toad?

g. What retest was done --

(1) - for the portion of the pro-
gram failing?

(2) - for possible regression of
the program in other areas?

h. At what point in the procedure was
official testing resumed?

i. Who authorized the fix and test
restart?

j. Has the impacted released engi-
neering been changed?

Unless rigorous control is exercised by
QA personnel, any of the above factors
can create a configuration 1loss. It
would be ideal to run all validation
tests so that official "sell-off" would
be a smooth formality for QA and the
customer. Unfortunately schedules don't
always allow this. The result, if uncon-
trolled testing prevails, is software
which is inadequately tested or ques-

47

—— i e Ot e s =
tionably configured. We shall examine
methods of achieving the required
accountability.

Configuration accountability during the
pre-formal test phases is accomplished
by the programmer through his notes and
engineering master tapes and listings.
When modules are functionally complete
(module verification test (MVT) com-
plete), the source. program listing (or
symbolic deck) is submitted to the CPL
for control by SCM personnel. This deck
is the source program for that module;
together with the narrative description
and flow diagram its configuration
definition is complete up to that point.
Between the completion of MVT and start
of software validation tests (SVT), CPL
personnel must account for the configura-
tion of that module and all like mod-
ules. Upon completion of Intermodule Com~
patibility Tests (IMCT), the primary
source of further changes is SVT. This
is the formal acceptance test of the
software for contractor QA personnel.
(See "Software Quality Assurance" guide-
book, section 6 for a discussion of for-
mal tests.) Incorporation of "hand
patched" code changes are physically
verified by QA via one of the following
techniques.

a. Use of card reader

b. Use of key board with CRT

c. Use of interactive text editor
d. Use of data cassettes

In each of the above mechanisms, QA can
verify configuration by observing data
changes entering memory at designated
addresses. Upon completion of testing
the final configuration of the program
is the original program tape plus a veri-
fied card deck representing drawing
authorized handpatches. Alternately, the
original load tape, modified by patches
and resident in memory, may be dumped on
to another blank tape to configure the
accepted program.

o

,‘
I ————

e N A

Under this mode of configuration
accountability, a previously validated
(acceptance tested) version of a CPCI
could be “patched" and only require
verification of the changed addresses
and interfaces. When a newly recompiled
version is submitted for validation, how-
ever, it will most likely entail a com-
plete retest since the effect of
recompilation, assembly edit, etc. on
the revised source code demands a com-
plete re-evaluation of the new object
program. New machine code is no longer
physically comparable to previously vali-
dated code, and QA must regard the new
program as an unvalidated baseline or
starting point for controlling a new set
of handpatches.

For ATE programs, many of the automated
configuration control aids described in
paragraph 5.3.1 handle the task of
accounting for program code and in some
cases flow diagram changes. When used in
conjunction with authorized procedures,
their use simplifies and streamlines pro-
gram configuration accountability.

Configuration accountability however,
encompasses more than just code
accountability. Configuration status
accounting documentation 1is the means
through which actions affecting CPCI's
are recorded and reported to program and
functional managers. It principally
records the "approved configuration base-
line" and the implementation status of
changes to the baseline. In this way, it
provides managers with confirmation that
change decisions are being implemented
as directed. Configuration status
accounting is the recording and

48

information that is

reporting of the
needed to manage configuration effec-
tively. It includes listing the approved
configuration identification, the status
of proposed changes to configurations,

and the implementation status of
approved changes. It involves main-
taining and reporting the status of CPCI
specifications, associated documents and
proposed changes. The system utilizes
two primary reports; the Configuration
Index and the Change Status Report.

The computer program configuration index
provides the official 1listing of the
CPCI specifications, drawings and other
significant support documents. It identi-
fies all approved changes and shows the
current status of all CPCI documentation
such as the computer program development
and product specifications, test plans/
procedures/reports, handbooks, manuals
and the VDD. The change status report
Tists all proposed changes to the CPCI
documentation Tlisted in the configura-
tion index. It provides information on
the current status of the CPCI and
changes throughout its development. QA
uses the configuration index and change
status report for change accountability
to assure that all Class I changes incor-
perated into the software have been
approved by the customer and that no
unapproved Class I changes are incor-
porated.

The guidebook on "Software Quality Assur-
ance," Section 6.0, describes some of
the contractor internal procedures used
to achieve software =~ configuration
accountability through the manufacturing
record system,

P

AR

Ay

Section 7.0

The Computer Program Library (CPL) func-
tion is a specific requirement of
MIL-S-52779, Software Quality Assurance
Program Requirements and is treated in
depth in the guideboock on Software
Quality Assurance. However, since it is
a vital tool in maintaining software
configuration control, its function is
briefly summarized herein.

7.1 SOURCE AND OBJECT CODE CONTROL

A1l source materials used to configure a
CPCI should be placed under internal con-
trol after MVT. This 1is the point at
which the programmer has declared his
module to be satisfactory for integra-
tion with other modules. It should be
submitted along with appropriate decks,
listings, flow diagrams, descriptions,
notes, in a standard format for integra-
tion with other like modules. Submission
of code to the CPL is accompanied by the
assignment of formal software component
part numbers - module or program segment
numbers which can be called up on an
engineering configuration drawing such
as the VDD. It is ready now for the
first phase of formal control. Unless
changed for authorized reasons, it is
ready for compilation and assembly into
an object program.

7.2 MEDIA AND DOCUMENTATION SECURITY

The CPL must be a secure repository
which protects configured media and docu-
mentation from unauthorized modifica-
tion, loss or damage. Just as released
engineering drawing masters are pro-
tected in a secure vault, programming
records require similar security. It is
costly to reproduce an object code pro-
gram if during formal testing the test
copy tape, disk etc. is accidentally
damaged or lost. If the source materials
used to build the program master tape,
disk, etc., are lost, results could be
catastrophic.

49

COMPUTER PROGRAM LIBRARY

Equipment and facilities specifically
designed for organized and secure stor-
age of computer media and documentation
are available commercially. These faci-
lities include:

a. Storage cabinets for tapes, disks,
cassettes

b. Environmentally designed vaults

c. Mobile cabinetry for
operating manuals, etc.

licstings,

d. Coler coded tape seal rings for
tape categorization

e. Tape disk labels

f. Cypher 1locked cabinets for top
security items

g. Certified magnetic media

This available equipment can be pur-
chased by modular components and
arranged by simple remove and replace
operations to reconfigure storage faci-
lities to meet changing needs. A good
CPL should utilize equipment of this
sort and be adequately documented to
describe location and access require-
ments for users.

7.3 SUBMISSION OF SOFTWARE FOR TEST

As the programmers submit completed mod-
ules to the CPL for integration into a
CPCI, they will 1likely be in various
degrees of legibility, completeness, con-
formance to prescribed standards and con-
ventions for programming and flow
charting. It is the responsibility of
SCM to assure either within the library
function or prior to submission, that
these components meet prescribed format
requirements, The library then s
responsible for tracking and assuring
incorporation of all approved changes to
these modules or components and corre-
lating them to requirements for the
various phases of testing. For example,
it is probable that various programs,

representing progressively maturing ver-
sions of the same CPCI, may be developed
in parallel. In other words, Version 2

of CPCI X may be Jjust beginning test
while Version 1 of the same CPC] is com-
pleting test. Changes applicable to each
version must be distinguished if changes
have different version effectivities.

It is a CPL responsibility to assure
that all materials needed to assemble
the deliverable media are properly
stored and maintained. It is an SCM
responsibility to assure that those
materials are properly configured by
released engineering. The integration of
responsibilities for defining, building
and verifying deliverable media is shown
in Figure 7.3-1.

Lomett

SHUNQIsUOTssY JuswaBeusy eipay jo uoneibayuy -4 aunbly

elpaw
9| quJaAL |3p 3daddY @

S[043U0D 14D ILPNY @

UOLIRILSLUBN @

suor3draosaqg
uotieunbyjuo) asealdy e

3JURUIJULCY @
abes03s o
uotjedsLjLusp] e

s|erJajeu
pa4Lnbad JuLwA313] @

sbutysty 323(q0 @
eLpauw (eILshyd e
saseq eieQ @
SBLILLLIN ISOH @
0C e

S403RA3UIY 3p0) @
s43peo] e
S403Lp3 quL1 @
SJ3 |QUBSSY @

sS4 1dwo) o

$}33p L |oquhs o
sbur3si) adanos o

V0

143 WS

313t {1qLsuodsay

94eM3J0S 3| qRUAAAL (3]
404 S{eiad3ey Buipiing

51

e R

s

oA L R R

MR- SRASEN - 171 Hni IP R

VRN e

Section 8.0

Formal reviews and audits are the pro-
ject milestones which formally demarcate
changes in development phases and pro-
vide a basis for product acceptance by
the customer. These reviews and audits
are essential to the efficient develop-
ment of quality software. Design reviews
assess the completeness and evaluate the
results of major development phases
before proceeding with the next phase,
Formal audits are conducted after the
sofcware system testing has been com-
pleted to determine whether the software
and supporting documentation meet con-
tract and project requirements prior to
system acceptance. The guidebook on
"Reviews and Audit" discusses this
subject in depth. It is discussed
synoptically here since it is an
integral part of configuration manage-
ment.

8.1 DESIGN REVIEWS
8.1.1 System Requirements Review (SRR)

The SRR will be conducted at the con-
clusion of the system analysis phase to
establish the adequacy of the definition
of the system technical requirements.
The entire system engineering response
to the SOW and specification require-
ments will be reviewed. The software/
hardware trade studies will be reviewed
to determine that they are sufficiently
comprehensive and complete for allo-
cating functions to software. The allo-
cated software functions will be uni-
quely defined and not be dependent on
other requirements. Performance limits
will be designated in units of measure
appropriate to software and will be veri-
fiable. This review will cover the exter-
nal hardware interfaces and dependen-
cies.

8.1.2 System Design Reviews (SDR)

SDR's will be held at the point when sys-
tem characteristics have been defined
and functions have been allocated to con-
figuration items, ‘both CI's and CPCI's.

REVIEWS AND AUDITS

These reviews will evaluate the optimiza-
tion, correlation, completeness, and
risks associated with the defined allo-
cation of requirements. In addition, the
engineering process that produced the
allocation will be reviewed.

Software requirements will be reviewed
for technical adequacy, completeness,
and clarity. Software verification
requirements will be reviewed for com-
pleteness, adequacy of methods, and
traceability and compatibility with
higher tier specification requirements.
A1l applicable software standards for
design and programming will be identi-
fied. The software test plan will be
reviewed to ensure that it satisfies the
test requirements of the development
specifications.

8.1.3 Preliminary Design Review (PDR)

The PDR will be conducted at the con-
clusion of the preliminary design phase
to evaluate progress and the technical
adequacy of the basis design approach
prior to the detail design effort. A PDR
will be conducted for each CPCI.

This review will confirm that the
initial portion of the computer program
product specification incorporates and
satisfies all requirements in the com-
puter program development specification.
The allocation of CPCI requirements to
individual modules, the allocation of
storage to computer programs, timing
estimates, sequencing requirements,
operational concepts, and data base
structure and organization will be
reviewed., A1l functional interfaces
between CPCI's and hardware CI's will be
reviewed for consistency and compati-
bility with interface control drawings
and basic design specification.

8.1.4 Critical Design Review (CDR)
The CDR will be conducted at the con-
clusion of the detail design phase for

each CPCI to ensure that the detail
design solutions satisfy the performance

e

it arr AN im0

FRECEULAG FAGE BladK-NOT FILMGD

. \ _ X v
MR g e TS - - . M - -

and engineering requirements of the com-
puter program development specifica-
tions. This review will establish the
integrity of the computer program logi-
cal design prior to coding and testing.
The review will establish the compati-
bility of the module design descriptions
with the basic design description and
the data base design description. All
external and internal interfaces will be
reviewed to establish system compati-
bility of design,

The software test plan will be reviewed
to ensure that it reflects the current
information developed during detail
design. All computer program test proce-
dures will be reviewed for compatibility
with the design and test requirements
and for adequacy. The status of all
changes will be reviewed to ensure that
all approved changes have been incor-
porated in affected documentation and
that proposed changes have been
initiated with appropriate change paper.

8.2 CONFIGURATION AUDITS
8.2.1

Functional Configuration Audit
(FCA)

The FCA is a formal examination of the
functional characteristics and test data
for each CPCI prior to acceptance. The
FCA will verify that the CPCI's actual
performance complies with the perfor-
mance requirements of the computer pro-
gram development specification. The test
plans and procedures and the test data
accumulated during software testing will
be reviewed to verify that the item has
performed as required. The results of
analyses or simulations for those
requirements that cannot be verified by
test will be reviewed to ensure their
validity. A11 ECP's and PDR/CDR

54

initiated changes will be reviewed to
ensure that they have been incorporated

and verified. A list of all documenta-
tion of the CPCI will be reviewed to
ensure adequate documentation of the
physical configuration for which test
data has been verified. All applicable
computer program manuals (user's, pro-
grammer's, and operator's) will be
reviewed. The current draft of the com-
puter program product specification will
be available for examination to provide
guidance for conduct of the PCA.

8.2.2 Physical Configuration Audit
(PCA)

The PCA is a formal examination of the
"as-built" configuration of each CPCI
prior to acceptance and delivery. It com-
prises an examination of the CPCI
against its technical documentation to
establish the CPCI's product configura-
tion identification. The PCA will eval-
uate the adequacy of the acceptance
testing requirements, audit the engi-
neering drawings, specifications, tech-
nical data, tests, technical descrip-
tions, flow charts, listings, and operat-
ing manuals. The VDD will be examined to
ensure completeness of descriptions and
records of change control.

The completion of FCA/PCA constitutes a
product baseline. A1l changes in design
or product configuration must be pro-
cessed as class I (customer approval).
In most cases FCA/PCA is prerequisite to
product acceptance by the customer. Ulti-
mate final acceptance is contingent upon
delivery installation and operational
certification by the customer.

1.

5.

Section 9.0

DOD Weapons System Software Manage-
ment Study, May 1975, John Hopkins
Univ., Applied Physics Lab.

DOD Directive 5010.21 Config.
Mgmt. Implementation Guidance,
August 1968.

Industry/Joint Services Confer-

ence/Workshop - ATE - 3-7 April 78
San Diego.

McGowan, Kelly - Top Down Struc-
tured Programming Petrocelli/
charter, lst edition 1975.

in a Pro-
Environment,

Structured Programming
duction Programming
F. Terry Baker, IEEE transactions
on Software Engineering, Volume
SE-1 No. 2 June 1975,

A - e R ke

BIBLIOGRAPHY
6. Ho P. Atlas compiler Operating

55

8.

R N Ly

n sk ST)

Manual 92100-93001 « Hewlett
Packard Co.,/Automatic Measurement
Division, Sunnyvale, CA 1976.

ATE software configuration manage-
ment, Dennis L. Wood, President
Software Enterprises Corporation,
Canoga Park, Calif. ASSC record

72, p. 110,
D180-19846-1 Software Quality
Assurance Guide Boeing Company

Rev. B, 23 December 1977.

MV e e - N o -

»";" M noR— B @ :’f‘; S S o ~A_ o
Section 10.0 MATRIX: GUIDEBOOK TOPICS VS. GOVERNMENT DOCUMENTATION
; The elements in the attached matrix, fig-
H ure 10.0-1 contain Government docu=ent
sections concerned with principal
{ @ guidebook topics.
g
3

-
i
*
1 1.
3
.
i
-
i
. E LS
)
t t
i
b

Yl

PRECEDING FAGE BlLaiEe0T FLUSD

s 57

T W Vg ey
--
..'L R ‘-ﬂ'\‘ N *\ . . -
o - - . . a— . - .~ P P R R o CALLV e - . L4 -~ - -
'

A At A,

58

T
3 ®
ToPICS y
: THHEANE g i ! t f
% wanPe wesnen ool Y = s
g aon 3.8.8 Ne ::
: owe coma, one|me
OvaE STATS LIST "
oe or =i
COP.PRS.0EV.WASES e -y
.. BV P 3 wrvijwrn
O PREG. DTEWACES e pra
COP PR UL e 11
COMP.PROG PRODUCT SPEC. -~ wevi|
COP.PROS.USERS SUTCE m _
TS, INIDENT 3.8 He| o |mev .)
. CONTRACTOR DUCTNENTS o |ony -
erer -V =t >
ow oy A
LIBRARY CONTROLS 3.2.8
WTONE STHOANTS .00
SOFTWVE DOCLPENTATION .27 o
= COFTRIMTION STATUS N
- - =
;; FCA e n’ scx: :c:
b i LIPE CYOLE PWASES N2 ﬁ ats| ons
| o ore |V o =
1 ; rOR e g:
wr oy
N M";l [
- R .
{i ' b d °
i S SYs SPEC. .
= - A R
. [
t
Figure 10.0-1. Guidebook Topics Versus Government Documentation
[
[
E
.
]
]
§
i

e wrars D Y

w

NN

b P

8 e R, B ey

© e atier

Section 11.0

Allocated Baseline - The approved con-

figuration 1tem identification. It
governs the development of selected con-
figuration items that are part of a
higher level specification, e.g., system
specification. It is usually defined by
the Computer Program Development Specifi-
cation.

Acquisition Engineer - Military or

civilian member of a SPO or an AFSC divi-
sion who supports the activities of a
SPO.

Baseline - An authorized documented tech-
nical description specifying an end
item's functional and physical charac-
teristics. It serves as the basis for
configuration control and status
accounting., It establishes an approved
well-defined point of departure for con-
trol of future changes to system or
equipment.

Certification - The test and evaluation

of the complete computer program aimed
at ensuring operational effectiveness
and suitability with respect to mission
requirements under operating conditions.

Computer Program Configuration Item - A

computer program or aggregate or related
computer programs designated for con-
figuration management. A CPCl may be a
punched deck of cards, paper or magnetic
tape or other media containing a
sequence of instructions and data in a
form suitable for insertion in a digital
computer.

Configuration Management - A discipline

applying technical and administrative
direction and surveillance to:

a. Identify and document the func-
tional and physical characteristics of a
configuration item

b. Control changes to those charac-
teristics; and

¢c. Record and report change pro-

cessing and implementation status

code, tables, constants,

GLOSSARY OF TERMS

Control Software - Software used during

execution of a test program which con-

trols the nontesting operations of the
ATE. This software is used to execute a
test procedure but does not contain any
of the stimuli or measurement parameters
used in testing a unit under test. Where
test software and control software are
combined 1in one inseparable program,
that program will be treated as test
software (AFLC 66-37).

Data Base - A collection of program
interface ele-
ments and other data essential to the
operation of a computer program or soft-
ware subsystem.

High Order Language - Problem or system

oriented code which can be automatically
translated to machine language either
directly or indirectly (through an
assembly language step).

Host Computer - An off-line, general pur-

pose, programmable computer which pre-
pares data or code for a (target) system
computer, e.g.: ATE central computer,

Product Baseline - The final approved

configuration identification. It identi-
fies the as designed and functionally
tested computer program configuration.
It is defined by the Computer Program
Product Specification at FCA/PCA.

Software Quality Assurance - A planned

and systematic pattern of all software -
related actions necessary to provide ade-
quate confidence that computer program
configuration items or products conform
to establish software technical require-
ments and that they achieve satisfactory
performance.

Software - A combination of computer pro-
grams, documentation and computer data
required to enable the computer equip-
ment to perform computational or control
functions and to enable program main-
tenance.

Software Maintenance - Any change to pre-
viously established software. Sources
for such change are coding errors,
module design problems, system interface
problems, revised system requirements,
and capability improvements.

A o amne o el

: Support Software - Auxiliary software
. . used to aid in preparing, analyzing and
' maintaining other software. Support soft-
ware is never used during the execution
of a test program on a tester, although
it may be resident either on-line or
off-line. Included are assemblies, com-
pilers, translators, loaders, design
aids, test aids, etc. (AFLC 66-37).

System Life Cycle - The system acquisi-
» tion life <cycle consists of the

: following five major phases with major
decision points:

a. Conceptual phase
3‘ - b. Validation phase
. c. Full-scale development phase
d. Production phase
e. Deployment phase
(AFR-800-14, Volume II)
Test Software - Programs which implement
documented test requirements. There is a
separate test program written for each

: distinct configuration of unit under
. ' test (AFLC 66-37).

Top Down Structured Programs - Struc-
tured programs with the additional char-
acteristics of the source code being
logically, but not necessarily physi-
cally, segmented in a hierarchial manner
and only dependent on code already
written. Control of execution between
segments s restricted to transfer
between vertically adjacent hierarchial
segments.

Validation - System/software validation

s the integration and test of all

hardware and software components to
assure the complete system fulfills all
system requirements. Validation is
generally regarded as the act of exer-
cising the software after verification
testing in a real or simulated operating
environment against a precisely defined
set of mission or test case requirements
deemed representative of the usage envi-
ronment for that product. Both verifica-
tion and validation are required for
software acceptance.

Verification - Computer Program Veri-
fication is the iterative process of con-
tinuously determining whether the pro-
duct of each step of the computer pro-
gram acquisition process fulfills all
the requirements levied by the previous
step.

 ./4\‘

IREWPUNRE IR S o oo i

3w 0 F

Section 12.0
A/l - Adapter/Interface
ATE - Automatic Test Equipment

ATLAS - Abbreviated Test Language for
A1l Systems

CCP - Contract Change Proposal

CDR - Critical Design Review

CI - Configuration Item

C™ - Configuration Management Plan

CPCI - Computer Program Configuration
Item

CPDP - Computer Program Development Plan
CPL - Computer Program Library
CPPS - Computer Program Product Spec.

CPU - Central Processor Unit

CRT - Cathode Ray Tube

DCR - Design Change Request

DID - Data Item Description

ECP - Engineering Change Proposal
FCA - Functional Configuration Audit
GFE - Government Furnished Equipment
GFP - Government Furnished Property
HOL - Higher Order Language

IDD - Interface Design Description

IMCT - Intermodule Compatibility Test
ITA - Interface Test Adapter

LRU - Line Replaceable Unit

MVT - Module Verification Test

PCA - Physical Configuration Audit

”
E N

61

ABBREVIATIONS AND ACRONYMS

PDR - Preliminary Design Review
PROM - Programmable Read Only Memory
QA - Quality Assurance

RFP

Request for Proposal

SAE - Software Acquisition Engineering
SCB - Software Change Board

SCM - Software Configuration Management
SDR - System Design Review

SOW - Statement of Work

SP0 - System Program Office

SPR - Software Problem Report

SRR - System Requirement Review

SVT - System Validation Test

TPS - Test Program Set

TRD - Test Requirements Document

TS - Training Simulator

UUT - Unit Under Test

VDD - Version Description Document

oy

e T]
4 F3

Section 13.0

Subject

Automatic Test Equipment
Accountability, change
Audits
Functional Configuration
Physical Configuration

Baseline
Control Mechanisms
Definitions
Variants ATE vs. TS

Change
Approval
Accountability
Boards
Classification
Control
Management

Computer
Program Library
Program Configuration Item
Program Development Plan

Configuration
Management

Design

Reviews

Phase responsibilities
Development Process
Development Spec
Documentation

Products

Requirements

Systems

Estimating
Resources and Facilities

Facilities

Government Documents
Identification, Product
Library

Computer Program
Controls

Paragraph
3, 4.2
.3, 5.3
2
2

11.0, 1.0, 1.1

-:-bw?omwoo
.
NN WN -

W
.
-

3.4
2.0, 10.0
4.1, 4.2, 4.3

7.0
7.1, 7.2, 7.3

63

SUBJECT INDEX

- ———
PRECRD1G FAGE BlabK-dOT FIMED

R S

LR U,

Subject

Media Controls
Modules, Software
Organization for SCM
Planning for SCM

Product

Identification systems

Specification
Quality Assurance
Reviews and Audits
Resources

Specification
System
Cl
Development
Product

Testing
Controls
Planning
Responsibilities
Phases

Training Simulators
Verification

Change
Testing

Paragraph

7.1
4.3
3.3
3.0, 3.1, 3.2
4.1, 4.2’ 4.3
5.3.1, 5.3.2

3.3, 6.3, 7.3
8.0, 8.1, 8.2

3.4, 3'3

64

ay,.S.Government Printing Office: 1930 — 657-084/528

