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ABSTRACT

This paper discusses the design, construction and evalua-
tion of a transverse electromagnetic (TEM) transmission cell
for accurate generation of broad-band susceptibility test
fields within a shielded environment.

A 0.3x0.5x1.0m TEM cell, constructed at the Naval Post-
graduate School (NPGS), was designed to operate as a 50-ohm
impedance-matched system and was used for calibrating electro-
magnetic field probes. According to the basic design, uniform
and standard TEM fields can be generated inside the cell for
frequencies lower than the cutoff frequency of the device.

The high frequency multimode effects can be suppressed by
loading the cell with radio frequency (RF) absorbing material
thus iﬁcreasing the useful bandwidth. . Measurements of char-
acteristic impedance distributed along the cell, voltage
standing wave ratio (VSWR) and tests of field uniformity from
1-1000 MHz were taken and described for both empty and absorber
loaded cells. The method and the results of calibrating

two types of probes are also discussed.
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I. INTRODUCTION

For many years several technigues were used in generating
uniform and standard electromagnetic fields for performing
electromagnetic interference (EMI) and electromagnetic sus-
ceptibility (EMC) tests. For example standard gain horns,
parallel plate and parallel wire transmission lines have

been widely used.

All the above techniques have the disadvantage of radiating

energy into the surrounding space which may be hazardous to
the operator, interfere with the measurements, or interfere
with other experiments performed within the same transmission
range. Although shielded enclosures can be used, they may
introduce serious measurement pfoblems resulting in errors

as large as *40 4B {[3]. Becaﬁse of the high conductivity and
reflectivity)of the enclosure walls, standing waves are pro-
duced which interfere with the signal being measured.

In recent years TEM cells have been developed. An exten-
sive effort has been undertaken by the National Bureau of
Standards (NBS) in designing, constructign, testing and
improving these cells [l1] to [6].

The TEM cell is a two port device in the form of an
expanded rectangular coaxial transmission line (Figure 1)
with taperea ends. Standard coaxial connectors couple the
RF energy to the line from a transmitter connected to the

cell input port. The TEM cells of which.a typical deisgn is

atieionten




—

Figure 1. Rectangular Coaxial Transmission Line
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shown in Figure 2, are extremely broadband, having linear
phase and amplitude response from dc to the cell's cutoff
frequency. This characteristic allows continuous-wave (CW)

or swept frequency, as well as impulsive and modulated signal
testing [6]. They either simulate a free-space radiated field
for susceptibility testing of equipment under test (EUT),

or couple to the RF energy radiated from EUT for emission
testing [4]. The cell is especially useful for calibrating
electromagnetic radiation hazard monitors and for special
low-level sensor calibrations [2].

All the problems discussed above are not completely
eliminated by the use of a TEM cell. There is a significant
improvement in the whole situation; for example limited
success in solving these problems was achieved at frequencies
down to 200 MHz by using special hooded antennas and absorbing
material, but measurement techniques from 20 MHQ to 200 MHz
still suffer serious problems [3]. Using the TEM cell as
described in this paper, measurements from 1 MHz up to 1000
MHz have been obtained without significant errors. The pri-
mary limitation of the TEM cell is that the upper useful
frequency which can be achieved is a function of the dimensions
of the cell together with the shape of the transitions and
the tapered ends. At frequencies above the cell's waveguide
cutoff or resonant frequency, multimoding phenomena occur
within the cell resulting in distortion of the uniform

characteristics of the cell's TEM mode.

15

Crew T e e Y




1190 :oﬁmmﬁemcmua WAL xernbue3osy Jo ubrsag °z aanbrg

/1

Spoy
oTX09Ta1]

et

T

I0309UUCO  TETXRCO

Ji

MIIA ddIS

| (

MZL0 =4
MAIA 4OL

UI'T=M

———e Y

b o —

16




This paper describes the design of a2 0.3x0.5x1.0 m
TEM cell, the construction of the wvalls, plates and the
transition sections. Measurements were taken of the charac-
teristic impedance distributed along the cell by using the
Time Domain Reflectrometer (TDR). The VSWR for frequencies
from 100-1000 MHz was obtained by using a Vector vVoltmeter
and a Network Analyzer system, for the empty and for the
absorber loaded cell. The strength and the uniformity of
the field imside the cell vas measured and verified by testing
with calibrated probes. Finmally two uncalibrated probes
(one spherical H field and one pyramidal E field) were cali-
brated .

During the testing of the cell, construction of a differ-
ent form of a TFM cell was started. This ceil called an
Electromagnetic Enviromments Simulator (EMES) is actually a
1720*® scale (TWEMES) of the EMES facility (about 8 x 20 x 33 m)
designed and constructed in Sandia Laboratories. This TWEMES,
shown in Appendix A, Figure A-1l, is designed for frequencies
from 100 MEz to 10 GHz. The full size EMES was designed to
provide the capability of performing electromagmetic radiation
(BM), electromagnetic pulse (FMP) and lightning near stroke
testing of systems, subsystems and components in a single
facility [7]. The combination of the freguency ranges achiewved
with the TEM and TWEMES cell and careful testing techniques
provides the possibility of establishing standard and uniform
electromagnetic fields at fregquency ranges from 4c up %O
10 GHz.

17
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II. DESIGN AND CONSTRUCTION OF TEM CELL

A. DESIGN THEORY

The design of the TEM cell was based on NBS reports (1]
to [6]. Major design considerations were to:

1. maximize the usable test cross section area,

2. maximize the upper useful fregquency limit,

3. minimize cell impedance mismatch,

4. minimize the VSWR over the range of frequencies
from 100 MHz up to 1000 MHz,

5. maximize the uniformity of the.electromagnetic
field pattern characteristic of the cell.

The characteristic impedance of the cell was chosen to

be 50 ohms in order to match the 50 ohm nominal characteristic

impedance of available RF generators and detection equip-
ments. The approximate equation for the characteristic

impedance, zo, of shielded strip line (Figure 2) was used

——
AT pas Pan e

for determining the characteristic impedance of the cell

(x1, (21, (31.

v P €

94.15
oo Z, = & (1)

w £
e lgm=emy * 6.0885 €.

} : where:

€, = relative dielectric constant of the medium
P TR between the conductors (here, air)




w = the width of the center conductor called
the septum, in cm

b = the height of the cell in cm
t = the thickness of the septum in cm ‘ I
Cé = fringing capacitance in pF/cm.

The capacitance C! has already been determined, [1],

f
having a value of 0.053 pF/cm. This was done previously by 1
evaluating a small scale model of the cell, using a TDR. ‘
Cé was used in transforming the shielded strip line into a

'rectangular coaxial” line. The height of the cell was chosen 1
such that the length of the probe used for mapping the electric
(E) field inside the cell did not exceed 1/3 x b/2, in order

to meet the design considerations 1, 3, 4 and 5 [2], ([3]. The
factor of 1/3 assures minimum perturbation of the 50 ohm

characteristic impedance when the probe is inserted inside

the test area of the cell. The thickness t for the septum
was selected for mechanical rigidity. The width of the septum
was <alculated from equation (1) knowing the values for €.
(for the air e. = 1.0006), Cg, b, t and assuming a value for
z° equal to 51 ohms. The 51 ohm value was selected to com-
pensate for reduction of the characteristic impedance of the
cell which occurs when the probe or EUT is inserted into the
cell or when the cell is loaded with absorbing material.

The first order transverse electric mode (TEIO) cutoff

frequency is given by the following equation:

19




= = (2)

where:

¢ = velocity of propagation of light (3.0 x 108 m/s)

W = width of the cell as shown in figure 2

The cutoff frequency for any higher order mode in

general is given by:

(£) . cw’n’ + win?) /2 (3)
c‘m,n 2bW
where:
c, Was in (2)
b = the height of the cell as shown in figure 2
m, n = integers related to the half sine variations

of the cell in the vertical and transverse
directions.
Other useful expressions for characterizing the TEM

cells are given in [6].

B. CONSTRUCTION

The 0.3x0.5x1.0 m TEM cell was constructed at the
facilities of the Aeronautical Department of the NPGS. 1Its
dimensions are shown in Figure 3. This cell is identical to
the NBS one which was loaned to NPGS to obtain construction

details. The cell is fabricated from 0.080 inch (2.032 mm)

20
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aluminum sheet and is welded around the edges except for 1
the top wall, including the transition sections. The top is
connected to sides by screws. This construction forms a
continuous outer conductor and RF shield. The center plate,
or septum, is made of 0.185 inch (4.699 mm) aluminum sheet
and is supported by dielectric rods connected to both lower
and side walls. The rods are threaded so that the septum
can be straightened and aligned with the long axis of the
cell maintaining a parallel orientation with the four outer
walls. At each end of the septum one small aluminum bar

of dimensions 3/8 x 2% inch (9.525x53.975 mm) is connected

by screws, as shown in detail in figure 3. This type of
septum termination together with the transition of the outer
walls down to a lf%x lf% inch (30.162 x 30.162 mm) square
cross section was converted the strip line transmission line
(Figure 4) to square coaxial transmission line with type N
connectors. An access door of dimensions 4%><4% inch

(114.3x 114.3 mm) was cut into one side of the cell at the

S

t

Figure 4. Shielded Strip Line




middle of the space between the septum and the upper wall
for inserting the calibrating probes. Finally the crack at
the upper wall was sealed with conductive copper tape to
provide both uniform conductivity and RF shielding. Figure 5

shows a photograph of the constructed TEM cell.




Figure 5. Photograph of the Constructed TEM Cell

R RS

24




III. EVALUATION OF THE ELECTRICAL PERFORMANCE
CHARACTERISTICS OF THE EMPTY TEM CELL

The evaluation of the electrical performance of the
empty cell (no absorber) is discussed in this section. The
methods used and the results obtained for establishing a 50
ohm distributed characteristic impedance along the cell, a
low VSWR from 100 MHz to 1 GHz and a standard and uniform E
field inside the cell, are also shown. The initial evaluation
provided familiarization in working with such a complicated

and unknown device. The data obtained proved useful when

evaluating the absorber loaded cell and provided a basis for

* comparison for the final configurétion of the device.

| : A. THE CHARACTERISTIC IMPEDANCE OF THE CELL
The characteristic impedance distributed along the entire

length of the cell was measured using the TDR (a H.P.181A

oscilloscope and 1815A TDR/sampler). Since the magnitude of
the characteristic impedance is linearly related to the
magnitude of the reflection coefficient, p, the shape of the
curves obtained for p should be analogous to that of the
characteristic impedance. The TDR was used for measuring

the distribution of P along the cell when a matched 50 ohm

termination was connected to the cell's output port. The
l magnitude of the impedance was obtained from a special calcu-
lator provided by the manufacturer of the TDR. The reflection

PARCS coefficient along the cell as viewed from the input port is
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shown in Figure 6 (scale, p/cm = 0.1) and was obtained just

after the cell was constructed.

Figure 6. Reflection Coefficient Distribution Along
the Empty TEM Cell Before Adjusting the
50 Ohm Characteristic Impedance

Even though the characteristic impedance was about 50
ohms throughout most 6f the length of the cell, two large
spikes at the input and output ports (impedance variations
of 40 to 55 ohms and 40 to 60 ohms respectively) suggested
mismatch problems. An extensive effort was made to reduce
or eliminate the spikes without affecting the approximately
50 ohm impedance at the other portions of the cell. These
refinements were made by trimming the width of the septum

and by using conductive copper tape for changing the cross-section
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and the shape of the small aluminum bars at the ends of the
center conductor, until the proper characteristic impedance
was obtained.

The curves for the final reflection coefficient are shown

in Figures 7 and 8 for the input and output ports (since the
cell is symmetirc the words "INPUT" and "OUTPUT" are written
on the cell and are used here for descriptive purposes).
Although both ports, when they were used as inputs, were
tuned to about 50 ohms, they appeared to h§yg an impedance 4
variation between 43 and 60 ohms when used as outputs.
Additional efforts to improve this undesirable situation were
fruitless. Figure 9 shows the TDR trace of distributed
characteristic impedance obtained for the empty cell (the
distributed impedance due to the length of the circular

coaxial connectors is not shown in this figure).

B. VSWR MEASUREMENTS
The VSWR for the empty cell was obtained by using a
Vector Voltmeter. The set up for these measurements is
shown in Figure 10. It consists of the 8405A, H.P., Vector
Voltmeter, the 612A (for VHF) or 637-07171 (for VHF) signal
generator (set in CW mode), the 778D Dual Directional Coupler
.- and the cell with a matched 50 ohm load at the output port.
The obtained data were plotted on log-log scale paper and
F . the curve of VSWR versus frequency from 100 MHz up to 1 GHz
is shown in Figure 11. The abrupt changes of VSWR appearing

in this plot were due to the contribution of small resonance
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Figure 7. Final Curve for Reflection Coefficient as
Seen from the Input Port

Figure 8. Final Curve for Reflection Coefficient as
Seen from the Output Port
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VSWR of Empty Cell Measured at the
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phenomena occurring in the long cables used. The final VSWR
is shown in Figure 12, where the cables were replaced with
minimum length ones. The smoothness of the curve and the
lower average value of VSWR demonstrate the necessity for
short instrumentation cabling.

Due to the symmetry of the empty cell, the TElo mode is
not excited [l1]. However, as shown in figures 1l and 12,

the TEll and/or TMl1 mode can exist contributing to resonances
inside the cell's cavity as evidenced by the high VSWR spikes.

The VSWR for the empty cell was less than 1.12 for fre-
quencies from 100 MHz up to 535 MHz, giving an initial indi-
cation of "flat" performance for this range of frequencies.

It was anticipated that better results could be obtained
if the Dual Directional Coupler was connected directly (with-
out cables) between the signal generaior and the cell's input.
This was done without anyv significant improvement in VSWR.

Finally the VSWR of the empty cell was measured using the
Network Analyzer system. The curve for the reflection coeffi-

cient from 100 MHz to 1000 MHz is shown in Figure 13. These

results agree with previous measurements.

C. MAPPING THE FIELDS INSIDE THE EMPTY CELL

The measurement system of Figures 14 and 15 was used for
mapping the fields .inside the empty cell. The system con-
sists of the signal generator as in Section III(B) (or the
86908, H.P. sweep oscillator), the 778D Dual Directional

Coupler; the 432A, H.P. power meter with the 478A, H.P.,
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Figure 14. Picture of Set-Up for Mapping the
Fields Inside the Cell
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thermistor for measuring the incident power, the 435A, H.P.
power meter with the 848A, H.P. power sensor for measuring
the reflected power, the 610 BR electrometer for measuring
the probe output voltage, the TEM cell with a matched 50 ohm
load connected at the output port and the calibrated 976-~4-
034 short dipole for probing the E fields inside the cell.
The dipole probe was on loan from Sandia Labs.

The variations of E field versus position were measured
by moving the probe in the longitudinal, transverse and
vertical directions within the upper half area of the cell.
The test area was determined as the volume of an imaginary
4% in><4% in><§ parallelepiped centered along the vertical

axis of the cell at the space between the septum and the

upper wall. This was done because the E field is essentially

vertically polarized in the region near the center of the
cell and gradually becomes horizontally polarized as one
moves in the horizontal direction toward the gap at the side
[1]. The measurements were taken at three equidistant hori-

zontal levels at distances from the upper wall of % ’ %b,

and %b for the lower, middle and upper level respectively

as shown in Figure 16. The probe was mounted on a dielectric
bar of polystyrene foam material (dielectric constant 1.05).

A supporting platform was constructed and used outside of

the door (see figure 14), to establish the three different
levels. The probe output voltage was measured at the posi-
tions determined by a 4%>¢4% inch matrix, as shown in Figure 17,

which had been sketched on the bar's supporting platform.




%b (upper level)
%b (middle level)

3 (lower level)

Figure 16. Cross Sectional Cut Through Upper
Half at Center of Cell
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Figure 17. Probe Locations for Mapping the Fields
Inside the Cell for One Level (Some
for the Other Two levels)
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Data were obtained for 25 points of the matrix at each level
and for each frequency, maintaining the same incident power
throughout.

Although the test volume as determined above is of inter-
est for field strength and field uniformity measurements,
data were also obtained at each level in the space extending
beyond the 4%><4% inch area in the transverse direction up
to 0.2 W (10 cm) and 0.8 W (40 cm) from the door opening.
This was done in order to get a better feel for the fringing
of the fields, especially at the areas near the gaps between
the septum and the side walls. 1In the longitudinal direction
the available space is bounded by the door's dimensions so
measurements toward the ports of the cell were not taken.
During the measurements the small dipole probe was maintained
in a vertical position, but its output voltage was always
checked in the horizontal orientation. The leads of the probe
were always maintained perpendicular to E field, the position
for minimum lead interaction with the test field (1], [2].

Only the vertical component of the E field was measured
at each point since the horizontal component was found to be
insignificant, contributing less than 0.1 V/m to the total
E field in all cases. If both the vertical and the horizontal
components of the E field are measured, the total electric

field is given by the equation [1], (2],

2,1/2

2
E = (Ev + EH)
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when the vertical component EV and the horizontal component
E, are in phase. The probe calibration curve, provided by

Sandia Labs, is shown in Figure 18 as a function of

Vprobe/qén versus frequency from 10 MHz to 10 GHz. The
coupling variation in dB with frequency in GHz for the Dual
Directional Coupler are shown in Figure 19.

The procedure for measuring the electric field strength
inside the cell from 1 MHz to 1 GHz was as follows: The
generator output was adjusted until a desired probe output

voltage was obtained. The test field was then calculated

from the equation given by [11, [2], [3]1, I[5].

(Pch)l/z
3 Ecal = d (5)
where:

‘ Pn = net power flowing through the cell

B R, = measured characteristic impedance of the cell

at the test location (here ~50 ohm from
¢ figure 9)
d = geparation distance between the upper wall

and the septum (d = 0.1425 m).

Substituting in equation (5) the known values for Rc and 4
and also setting the net power in milliwatts, the following

+ . equation for the calculated E field is obtained.

Egyy = 1.569 (2 ()2 [v/m) (6)
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Pn was determined from the power meter readings on the
sidearms of the Dual Directional Coupler using the following

equation.

P = CRg * Pine ™ CRg * Prgg (7

where, CRf and CR_, are the forward and reverse coupling ratios

R

of the bi-directional coupler and Pin and P ¢ are the indi-

c
cated incident and reflected coupler sidearm power meter
readings. Pn is invariant with position along the length of
the cell since the cell is essentially lossles [l]. The probe
output voltage was measured at each of the three levels inside
the cell at all positions marked with circles in figure 17

for several frequencies between 1 MHz and 1 GHz. The measured
E field was then calculated by using the value of the ratio
(Vprobe/Eznc) = K from figure 18, corresponding to the fre-

quency where the probe output voltage was obtained. The

measured E field inside the cell is given by the equation,

v
= probe, 1/2

Ereas ( K ) (8)
For frequencies below 10 MHz, where the K factor can not be

obtained from figure 18, it was claculated by the formula,

\'4

R = Erobe (9)

Ecal




and then was averaged over all measured points of three
levels. The variation of the E field inside the cell was
plotted separately for each level as relative electric field
strength versus the distance of the probe from the door open-
ing. This was done by averaging the 5 values of E field along
each row from A to I as indicated in figure 17. The relative
electric field strength was calculated by forming the ratio
Emeas/Ecal'

Results obtained from mapping the fields inside the empty
cell are shown in Figures 20 through 25. The same plbts
together with several others for different frequencies, but
for the actual measured (not relative) electric field strength
are shown in Appendix B. An example of how the E field was
determined inside the cell is given in Appendix C.

Finally, it was observed that when measurements of E were -
taken inside the empty cell at frequencies near resonance
(i.e., at the points where large VSWR spike occurred), there
was a considerable effect due to the open door. Similar
results occurred when the copper tape was removed from the
joints of the upper wall (i.e., with open door and copper
tape removed V

probeo

tape in place V
probeOUT

frequencies removed from resonance. Also with the door

= 2.5 mV, with door closed and copper
uT
= 10 mV). This did not happen for

closed and the copper tape in place, at frequencies near

resonance, the reflected power decreased by 3 dBm,
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IV. EXTENDING THE UPPER USEFUL FREQUENCY RANGE
OF THE TEM CELL BY ABSORBER LOADING

The cell can be used at frequencies as low as desired
since the TEM mode has no low frequency cut-off, limited only
by the cell's magnetic shielding effectiveness, which is
determined by the material from which it is made [5]. As
mentioned earlier the upper useful frequency of the cell is
limited by the distortion of the signal caused by resonances
and multimodes that occur within the cell at frequencies
related to the cell's dimensions.

The technique of loading the cell with RF absorbing
material for suppressing the multimoding effects at high
frequencies are discussed in this section and the results for
the characteristic impedance obtained, the VSWR measured
and the evaluation of the electrical performance character-

istics of the absorber loaded cell shown.

A. VSWR IMPROVEMENT BY SELECTING ABSORBER LOCATION

The same set-up as for the empty cell shown in figure 10,
was used to measure the VSWR for the absorber loaded cell
from 100 MHz up to 1 GHz.

The objective was to determine experimentally the optimum
amount and location of the absorber to minimize VSWR. Three
types of absorbing material, as shown in Figure 26 were tested
together with several combinations of them. The first type

was the "Rontec" FL-2250 (thickness 2.250 inches) which is a
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broadband graded dielectric, flat laminate absorber with
three electrically different layers having uniform thickness.
The other two types were the "Rontec" EHP-3 (Extra High
Performance) and EHP-5 absorber, which is a broadband material
fabricated from low density flexible polyrethane foam and is
cut into a pyramidal confiquration. The EHP-3 has an overall
height of 3 inches and the EHP-5 5 inches.

The flat absorber was first tested and was placed according
to the configuration of Figure 27. No significant improvement
was obtained in the VSWR. The same situation was encountered
when many other abosrber locations were tried using this
absorbing material. It was observed that the best results
were obtained in cases where some pieces were oriented vertically
to the long axis of the cell with the larger dimension facing
the input and output ports. This was believed due to wave
impedance matching characteristics of the absorber and its
alignment in the cell relative to the fields traveling through
the cell (i.e., ma#imum absorption occurs at normal incidence
of the field to the absorber) [4]. By using the EHP-3 and
EHP-5 absorbing material better results were obtained and the

VSWR spikes at frequencies 500 MHz to 1 GHz were reduced

significantly to values of less than 2:1. The best VSWR

was achieved by using the EHP-3 absorber. The VSWR curve for
100 MHz to 1 GHz is shown in Figure 28 corresponding to the
absorber location shown in Figure 29. Figure 30 shows the

VSWR trace for the same absorber location, but when the short
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Figure 28. VSWR of Absorber Loaded Cell Measured
at Input Port (Short Circuit Measurement
at Input of Cell)
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Measured at Input Port (Short
Circuit Measurements at Output
of Cell)
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circuit measurements are made at the output of the cell and
not at the cable connecting to the input of the cell (see
measurements procedure in the Vector Voltmeter manual).
From figure 28 it was observed that the VSWR has a value lower
than 1.3 for all frequencies of interest. Comparing with the
empty cell (figure 12), there is a VSWR increase from 200
to 350 MHz. This was proven to be an unavoidable consequence
of obtaining low VSWR for frequencies of 500 MHz to 1 GHz.
The distribution of the reflection coefficient along the
absorber loaded cell is shown in Figure 31 for p/cm = 0.1
and p/cm = 0.02.

Finally seven other complete representations involving
absorber locations, VSWR curves and pictures of the reflection

coefficient distributions are shown in Appendix D.

B. MAPPING THE FIELDS INSIDE THE ABSORBER LOADED CELL

The measurement system described in Section IIXI(C) and
shown in figure 15 was used for mapping the fields inside the
absorber loaded cell. The procedure was the same as in the
empty cell case. The only differences were in the values of
the characteristic impedance and the net power substituted
in equation (5). The measured value of Rc was found to bhe
48 ohms in the test area of the cell as shown in figure 31.
The power flowing through the same area was calculated by

the formula

in out (10) _

Pcenter




>~

Figure 31.

(a)

(b)

TDR Trace of DistributedAReflection Coefficient
for Absorber Loaded Cell (a) p/cm = 0.1, |
(b) p/cm = 0.02
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since the cell is not lossless due to the effect of the
absorbing material.

Data are plotted and shown in Figures 32 through 35 as
a function of the relative electric field strength versus
distance of the probe from the access door, for frequencies
of 1 MHz, 400 MHz and 895 MHz.

The above plots together with many others obtained for
different frequencies are shown in Appendix E as a function
of the measured electric field strength versus probe distance

from the door.
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V. CALIBRATION OF OMNIDIRECTIONAL FIELD PROBES
USING THE ABSORBER LOADED TEM CELL

The completed cell was used to calibrate two isotropic
probes. An H field spherical shaped and a pyramidal shaped
E field probe were constructed at NPGS and provided by Dr.
Richard W. Adler of the BDM corporation for calibration.

Each probe was inserted into the test area of the cell and
data obtained for output voltage readings. The E field was
calculated for several frequencies between 100 KHz and 1 GHz.
At the center of the cell E was determined from the power
flowing through this area by using the equation (10), cell
impedance Rc and plate separation d, using the following

equation,

1/2
(Pcentech) (11)

Ecal = d

Substituting the value of Rc = 48 ohms d = 0.1425 m and setting
the Pcenter in milliwatts, the equation (11) becomes:

E = 1.537 (P mw) /2 (12)

cal center

The directionality of the probes was also determined by
measuring the output voltage at different probe orientations

for every frequency and for all power levels,
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A. SPHERICAL H PROBE CALIBRATION
In the vertical plane the 4 inch sphere, Figure 36, was

rotated through 360°, with 4 points of measurement being

established at each octant. Orthogonal to the vertical

plane, the sphere was rotated through 360° again, establishing

y

1,8 3,6

2

Figure 36. Orientation Positions for H Probe
Inside the Cell

4 more octant points. (Note that only one point is com-
.- pletely "common," the other at the opposite side being
E reversed in direction.) A picture of the spherical probe

is shown in Figure 37.

The set-up of figure 15 minus the reflectometer was

used. The sweep oscillator was used for frequencies above

100 MHz and the "Wavetek" generator below.




The calibration procedure was as follows: The probe was
placed at the center of the testing area inside the cell on
a polystyrene foam base. The RF signal source was set in
CW mode and the desired frequency was selected. The highest
possible output power was obtained and measurements were made
using appropriate attenuators. The probe output voltage was
monitored for each one on the seven predetermined probe
orientations. The probe output voltage at each power level

was calculated using the relation

v +
probe
- MIN MAX (13)

v =
probeOUT 2

Figure 37. Spherical Omnidirectional H Field Probe




The generator output power was then reduced by 5 dBm and the
same procedure was repeated down to the minimum possible
generator output power coincident with probe output voltages
above the noise level of the electrometer. Finally the E
field at each power level was calculated by using the equation
(12).

Figure 38 shows the variations of the probe output
voltage versus calculated incident E field for frequencies
0.1, 1, 10, 100, 500 and 1000 MHz. Figure 39 shows the
variations of the probe output voltage versus frequency for
several values of calculated incident E field.

The directionality of the spherical probe was also
determined and the #5 orientation position was found to have
the closest values to the probe output voltages calculated

by the equation (12).

B. PYRAMIDAL E PROBE CALIBRATION

The set-up and the measurements procedure for calibrating
the 3% inch pyramidal E probe, shown in Figure 40, were
exactly the same as for the spherical one. The pyramid was
placed inside the cell on its polystyrene foam base. The
pyramid's orientation was determined by the axis coincident
with its leads. Measurements were obtained for 6 points as
it was rotated around the vertical axis and for 3 points when
the axis was oriented in a ﬁorizontal position.

The probe output voltage versus calculated incident E

field for frequencies 0.1, 1, 10, 100, 500, 1000 MHz are




~-re,

Probe Output Voltage (V]

Figure 38.

10 1.0 10

Electric Field Strength {V/m]

Spherical H Probe Calibration Curves
(Frequency as Parameter)
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Figure 39. Spherical H Probe Calibration Curves
{Incident E Field Strength As Parameter)




\ : Figure 40. Pyramidal E Field Probe
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shown in Figure 41. Also the probe output voltage versus
frequency, for several values of the calculated incident

E field, are shown in Figure 42.
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Probe Output Voltage [V]
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10 1.0 10 10
Electric Field Strength (V/m]

Figure 41. Pyramidal E Probe Calibration Curves

(Frequency as Parameter)
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o
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(=]

Frequency [MHz]

Figure 42. Pyramidal E Probe Calibration Curves
(Incident E Field Strength as Parameter)
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VI. SUMMARY AND CONCLUSIONS

The objective of the work described in this paper was ;
the application of a new technique involving the TEM cell
for calibrating field probes. Standard electromagnetic
environments were simulated inside the cell by generating
known RF fields for frequencies from 100 KHz up to 1 GHz.
The entire work was divided into four major parts.
1. The design of the cell
2. The construction of the cell
3. The evaluation of the electrical performance
characteristics of the empty and of the absorber
loaded cell '
4. The calibration of two field probes constructed
at NPGS.
The cell was designed after those made at NBS. It was
constructed at NPGS facilities using 0.08 and 0.185 inch
aluminum sheet for the side walls and the septum respectively.

Type N coaxial connectors were used at the input and output

ports with the tapered output port being terminated in a 50
ohm load. The cell was found to have a characteristic impe-
dance very close to 50 ohms, a VSWR of less than 1.3 and
improved E field uniformity via carefully located absorbing
material.

Finally the achievement of the overall objective was
confirmed from the calibration results of the spherical

and pyramidal omnidirectional field probes.
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The conclusions from this study can be summarized as
follows: The cost of the cell is reasonable and no unique
equipment is needed to make the measurements, especially for
field probe calibration. The operation and the data acquisi-
tion provide no significant difficulty except that careful
attention is required when data are obtained at low power
le?els.

The greatest advantage of using the cell for susceptibility
(or emission) measurements is that the background noise does
not interfere with the measurements. Problems encountered
with shielded or anechoic enclosers are not present when the
TEM cell technique is used. The available space for the simu-
lation of electromagnetic environments is completely bounded
by the cell's walls, so that uniform and standard fields can
be produced, while the operator is well protected. Also a
significant factor of repeatability is maintained.

Although the cell is considered to have a wide-band
frequency response, the main restriction of using the device

is due to multimoding phenomena starting with frequencies

higher than the cutoff frequency. An extension of the upper
useful frequency can be achieved by loading the cell with
absorbing material, with the main disadvantage of size limi-
tations. By using small cells, higher useful frequencies can
be obtained, but only small objects can be tested inside the
cell due to the design criterion that the EUT must not exceed

the %><% dimensions. On the other hand larger objects can
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be calibrated inside larger cells, but with lower upper useful

frequencies.
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VII. RECOMMENDATIONS

A few recommendations may be useful, especially for
future work.

Since the placement of absorbing material is considered
necessary and it is believed that better results for field
uniformity can be obtained in all cases, the characteristic
impedance of the empty cell must be set at about 52 ohms in
order to compensate for absorber loading and EUT effects.
This turns out to be practical if absorbing pyramids of 3
inches height are used, as in this experiment. Also the use
of thin flat absorber is helpful in fine tuning the impedance
by a TDR. Another point of interest is in solving the
impedance matching problem. The process of adjusting the
characteristic impedance of the empty cell and finding the
best absorber location, must be done simultaneously.

Further experimental and/or analytical work is needed
to eliminate the large transition mismatch of the distributed
characteristic impedance at the output port of the cell.
Constructing special connectors at this position is considered
worthwhile since the mismatch occurs exactly at this point.
It is believed that additional theoretical work is needed
for solving the size limiation problems, for analyzing the
transition sections and for determining the optimum amount

and placement of the absorbing material.
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As a final comment, a cell with removable and adjustable
side walls and septum, especially near the beginning of the

output transition, may be useful.

80




l
|
|
|

APPENDIX A

Design Diagram of the TWEMES Cell

Figure A-1 shows the top view and side views of the

design diagram for the TWEMES cell discussed in Section (I).
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APPENDIX B

Curves of Measured Electric Field
Distribution Inside Empty Cell

Figures B-1 through B-8 show the measured E field
distribution inside the empty cell versus probe distance from
the access door, for the lower level at %b, middle level
at %b and upper level at %b, for frequencies 1 MHz, 3 MHz,

10 MHz, 30 MHz, 100 MHz, 200 MHz, 400 MHz and 700 MHz, using

the Sandia 976-4-034 calibrated small dipole probe.
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APPENDIX C

Example of Measuring the E Field Inside the (Empty) TEM Cell

A copy of.the data sheet for the E field measurements
is shown in Figure C-1. This case is for the empty cell (same
procedure for loaded cell) at a frequency of 100 MHz using
the calibrated small dipole probe, 976-4-034. The column
"COL" corresponds to the columns, forward (F), middle (M) and
back (B) of the positioning matrix shown in figure 17. The
column "DISTAN." indicates the distance of the probe from

the door opening. The columns "LEVEL 1", "LEVEL 2", and

"LEVEL 3" are for the measurement planes %b. %b and % '

as shown in figure 16, respectively. The subscripts 1, 2
and 3 used for the E fields also have the same meaning.
Although the incident and reflected powers must be maintained
at the same values, at the three planes and for all measure-
ment positions, their values have been obtained to verify this
assumption. (The small deviations which were measured, were
due to instrument instability.)

Having obtained the probe output voltage for three levels
and for all measurement positions the calculated E field,
Ecal’ was computed as follows (i.e., assuming the data of the

fifth row of the table indicated by *):

Incident power meter reading -12.45 |

Dual Directional Coupler Attenuation +22.85 dB (figure 19

for £ = 100 MH2z)

92

T . P Lo .




o t—— B st e

R é8) B, (i8~) P caey Y DATE: 27-Ave-iPTP
cot. [orsman |5 %JF- e T By (Wi \4‘:‘“‘" NGV e E, %] Bl B VA
F | 10cm )™ e b ™ [ 4 2.8 12] 1,463 0%} s.31 | 4.57]3.6¢6
T E 15 om llo | fw ] o] e | 1242 {2]1.7¢ {31145 |5.50 | 4.97 [4.55
U E (et Jorla ][] 1,86 (21470 [3]i.58 |55 [4.93 147s
- 1 £ [#3 el fola¥{~= | 27092 {4 4.80 {21075 {3{168 {S5.07 {§a0 |42
HL (85 wjwiw]eieis 444.8% 121438 }3)1.63 | s.13 So |48
I R T e o e Bt el el 112,04 12] 1.7% (31465 |S.¢0 | 422 | 4.55
F 141 o e[| 2= [l afeu- [ ] 11275 1217.3¢6 | [o0.90 [ 6.2 [44r (3.5r
Yk 224 4 4 2 4 0 A
M 1o;¢‘<~+FfL~“<- v 1128y [2]1.98 [3] €02 | 6.3¢ |4 €0 |3.83
. M 118 o et o loff fae 1] 022 (al17s [3leusl{sse | 50 14.55
I (i Etoetw o b 1 1 1.8812/47¢ Ri4.¢3|5./8 |S.00 | 493
™M [#13 b fe [ 270,97 (49476 [2]4:75 3{470 | §or |S.0 14.73
Y I3 T ) g Iy ey 100,84 1214.71 [3]4.63]5.43 4.7¢ (4 383
LM 35 en jloe|w = paor futiefoem 112,03 [21t.68 (3| 1451 s.37 |47 (45§
M 14 ca lio ] lielan i 11279 12| 7.35 13]0.931 6.2¢ | 4.37 13.6¢
) 0 Y A R e s A e
B {i0cm fio?lw [+ blathe®ly 712.2¢12] 4403|102 | €48 [4.47 |2.82
B 115 cm JJomfee | oo | 412,04 12) 413 131g. 48] 5,63 [4.96 | 497
L_B.r 25 21 e e | v | e | are 1148812473 |3{1.63 | 548 4,17 14,83
B (23 [le]e | | % 10.97 {11478 {2170 {3{A70 | S-0 493 14,23
8 ls2s N 110.8¢ 12147/ 1314.65]5.43 .28 | 4,85
B 135¢n WO BTSN VRN ) Y 412,02 1214.6F [3({1.%5 | §.37 4.91 14.55
8 4“,.4;;... ORI Y OV O 4122¢ {2 .30 [3]0.97{ 6.2¢ [4.3/ | 3.57
HIL 0 2 R 2 AT A
Qem || — .27 | 092 lo7¢ | 639 | 4.551377
1% em|| — /.72 {.07 9.72 5.8 4. 28 | & 5¢
“ a2y — 105 |40/ |0 1517 14.97 [4d.80
{43,353 — 102 | 401 | 40 8503 |«78 4n
#5,15,28| —» {o$ [ 1.0 978 453 4.9¢ 14.9¢
:-' S| el —> 1.0f | 40 Jo092 {537 | 4.93 14,55
é , Nl —= t2) | 088 (o33 s 4% [3.60
| e~ [\ g
‘ RELATIVE E fieled £ Lol mearned
/Enu.\\ !
v A ({14 /

PROBE Mo : 976-4-03¢

READINGS Fhen CALISMATING CURVES! Vouse -
Bl ”¥1°

Geow. Qutput Vol+s: 0,18
== SEY LBYBL - 411 4B

» Dectanad Grvpden: +21.93548
Ecoe = 5.20 (Via]

Figure C-1. Tabglated Data for Mapping the Fields
Inside thg Empty Cell at Frequency 100
‘ MHz by Using the 976-4-034 Dipole Probe

- WIS PAGE TS BEST QUALITY PRACTICABLE
FROM COFY FURNISHLD TO DOC




———

PRI

s

LAl >

. .
PRSP B s i, N O A s AR REINOE

Therefore,

-12.45 (®m) + 22.85 (dB) = 10.4 (d4Bm)

Pin
By using
dBm (power) = 10 log10 (mwW)
finally obtaining

Pinc = 10.97 mW.
The same procedure should be followed for calculating
the reflected power in mW and then subtract from the Pinc’
But since thg Pref was insignificantly small, its calculation
was omitted.

The calculated E field was found by applying equation (6)

= 172 _ 1/2
Ecal = 1.569 (Pn[mwl) = 1.569(10.97)
= 5.20 [V/m] .
The measured electric field, Emeas' was calculated from
the equation (8). The K factor was found from figure 18 at

a frequency 100 MHz to be equal to 7 x 10—5. Therefore for

a value of probe output voltage, i.e., 1.84 mV,
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APPENDIX D
Experimental Procedure for Determining the Best Type, Amount
and Location of Absorbing Material Inside e TEM Ce

Figures D-1 through D-7 show samples of the obtained

VSWR's and reflection coefficient distribution curves
[p/cm = 0.1]) along the cell, for the type, amount and loca-
tion of the absorbing material corresponding to the schematic

diagram shown at each figure.
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APPENDIX E

Curves of Measured Electric Field Distribution
Inside the Absorber Loaded TEM Cel

Figures E-1 through E-9 show the measured E field
distribution inside the absorber loaded TEM cell, versus
probe distance from the access door for the lower level at
%b, middle level at %b and upper level at %b for frequencies
1l MHz, 3 MHz, 260 MHz, 400 MHz, 500 MHz, 675 MHz, 675 MHz
for different power levels, 895 MHz with the access door
closed and 895 MHz with the access door open. Again the

Sandia 976-4-034 calibrated small dipole probe was used.
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