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SYMBOLS

B rigid body located at point P in which the vectors 1, j, k
are fixed

C( cosine ( )

GJ beam torsional rigidity, N-m
2

H kinetic energy minus potential energy, N-m

i, J, k unit vectors fixed in body B that, for the initial position of
B, lie along the axes x,y,z and for the final position of
B, the de>ormed state, lie along the axes x3, Y3, z3

I, J, K unit vectors along the reference axes x,y,z (fig. 1)

L beam length, m

Lx, Ly, Lz  distributed applied loads in the x,y,z directions, respec-~tively, N/m

Mx, distributed applied moment about the x3 axis (i.e., an applied
pitching moment), N-m/m

* 0(E3) a quantity that has order of magnitude less than or equal to
third degree in the rotations

P a generic point on the beam elastic axis

r the distance along the deformed-beam elastic axis measured from
the beam root, m

s) sine()

[T] the transformation matrix of direction cosines relating the
axes x3, Y3. z3 to x, y, z

t time, sec

t 1 , t2  arbitrary times, sec

u deflection of point P in the x direction, referred to as
axial deflection, m

ue axial deflection of point P due to longitudinal strain of the
elastic axis, a spatial quasi-coordinate defined as

u + (1/2)f (v'2 + w'2)dx, m
0

v deflection of point P in the y direction, referred to as
lead-lag deflection, m

v
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w deflection of point P in the z direction, referred to as
flap deflection, m

x, y, z a set of Cartesian coordinates with origin at the beam root, the
x axis being along the undeformed beam, m (fig. 1)

x 3, Y 3. z 3  a set of Cartesian coordinates with origin at point P with x 3

remaining tangent to the elastic axis and Y 3 and z along
principal axes for the cross section in the deformed state, m

a rotation (flap) of the body B about the unit vector - J; the
exact axis about which the rotation occurs is dependent on
the sequence of angular rotations, rad

a0  angle with the x - y plane of the beam in the example
problem, rad

6 variational operator; also Dirac delta function

6W virtual work per unit length done by nonconservative applied
loads, N-m/m

a, vector of virtual rotations of the reference frame x 3, Y 3, z 3
fixed in the beam cross section, rad

a rotation (lead-lag) of the body B about the unit vector k;

the exact axis about which the rotation occurs is dependent
on the sequence of rotations, rad

a rotation (pitch) of the body B about the unit vector i; the
axis about which the rotation occurs is dependent on the
sequence of rotations, rad

e t  pretwist angle, rad

61 the third angle in the series lag-flap-pitch; it is the third
angle required to rotate body B to the final position after
first lag then flap rotations, rad

62 the third angle in the series flap-lag-pitch; it is the third
angle required to rotate body B to the final position after
first flap then lag rotations, rad

K0 the k component of curvature of the beam in the example prob-
lem, m-1

K rotation per-unit-length vector of the reference frame x 3, Y3 .
z3 ; the i component is the torsion (angle of twist per unit
length) and the j and k components are bending curvatures,
M-1
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*angle of twist due to torsional shear strain, a spatial quasi-
coordinate defined as 1 r Ki dr - 6t, rad

w angular velocity of the reference frame x3' Y3, z3, rad/sec

Subscripts and Superscripts

1 lag-flap-pitch sequence of rotations

2 flap-lag-pitch sequence of rotations

3 lag-pitch-flap sequence of rotations

4 flap-pitch-lag sequence of rotations

5 pitch-lag-flap sequence of rotations

6 pitch-flap-lag sequence of rotations

C) a/at( )
( + /r( )

( )' a/3x( )

S)i,j,k (vector) • i, J, k

( )I,J,K (vector) • I, J, K

0
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SUMMARY

Nonlinear expressions are developed to relate the orientation of the
deformed-beam cross section, torsion, local components of bending curvature,
angular velocity, and virtual rotation to deformation variables. These expres-
sions are developed in an exact manner in terms of a quasi-coordinate in the
space domain for the torsion variable. The entire formulation is independent
of the sequence of the three rotations used to describe the orientation of the
deformed-beam cross section. For more common cases in the literature in which
one of the three rotation angles is used as the torsion variable, the result-
ing equations depend on the choice of the three angles. Differences in the
equations, however, are demonstrated to be in form only. The present deformed-
beam kinematic quantities are proven to be equivalent to those derived from
various rotation sequences by identifying appropriate changes of variable
based on fundamental uniqueness properties of the deformed-beam geometry.
This development helps to clarify the issues raised in the literature concern-
ing the choice of the angles. The torsion variable used herein is also shown
to be mathematically analogous to an axial deflection variable that has been
commonly used in the literature. Both variables are quasi-coordinates in the
space domain and have been used in derivations based on Hamilton's principle,
despite lack of rigorous justification. Rigorous applicability of Hamilton's
principle to systems described by a class of quasi-coordinates that includes

* these variables is formally established.

1. INTRODUCTION

1.1 Background

To adequately model a helicopter blade, the deflectionis must be treated
* as moderately large and the equations of motion will be nonlinear. Such equa-

tions are required for properly analyzing the stability and forced response of
helicopter rotor blades in hover and in forward flight. To derive such equa-
tions, it is necessary to first specify the geometry of the beam both in its
undeformed state and in its deformed state at some particular instant in time.
For typical beam theories, this involves expressing the position of a generic
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point P on the elastic axis, the orientation of a frame consisting of the
axes normal to and along principal axes for the cross section at P, and any
further deformations, such as warp of the cross section out of its nominal
plane, to adequately specify the location of every material point in the beam
(ref. 1). In the discussion of kinematics that follows we will focus on the
variables used to describe the location of point P on the elastic axis and
the orientation of the reference axes attached to the beam cross section at P,
assuming that no deformation of the beam cross section occurs. This would, in
general, imply a total of six variables: three deflection variables for the
location of P and three angles1 for the orientation of the reference axes
with origin at P with respect to a suitable space-fixed reference frame.
For an Euler-Bernoulli beam, however, the cross section is assumed to remain
normal to the beam elastic axis during deformation. Thus, two of the three
angles can be eliminated by expressing them in terms of derivatives of the
deflection variables. It is then necessary to express all the kinematical
quantities in terms of the four remaining variables.

It is clear that a material point can only occupy one position at a time.
The beam geometry, by which we refer collectively to the position of the
material points along the elastic axis and the orientation of the cross sec-

* tions in terms of direction cosines for the reference axes at P, is then
unique at a specific time. When the beam geometry is specified, so is the
strain, the torsion (or angle of twist per unit length), and the components of
bending curvature along the principal axes of the cross section at P, since
these also are geometric quantities. Although the values of these quantities

* are unique at a particular instant in time, the mathematical variables used in
defining the geometry are not unique. In reference 2, Reissner shows, for
example, that it is possible to formulate a large-deflection beam theory com-
pletely independent of the choice of deformation variables. These equations
are an extension of the Kirchhof f-Love equations (ref. 1) and illustrate the
obvious fact that the geometric quantities describing the beam deformation
under a given load, although the expressions may look different for different
choices of variables, are determined by the loads alone. There are many possi-
bilities, for example, in the choice of angles used to relate the orientation
of the reference axes at P to a space-fixed Cartesian frame (fig. 1). In
general, any change in orientation can be described by three successive rota-
tions about three distinct, well-defined axes. These sequential rotations can

0 either occur about space-fixed axes, or about axes that are fixed in an updated
reference frame resulting from a previous rotation. The angles themselves are
not unique, but values of the resulting direction cosines that define the
orientation are unique.

l1t is possible to use variables other than angles to describe changes in
orientation such as Rodriguez parameters (ref. 2). In this paper, however,
we will restrict the discussion to the use of angles.

2
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Figure 1.- Undeformed, pretwisted beam and reference Cartesian axes x. ys Z.

1.2 Discussion of Previous Work

With the assumption that the beam cross section remains normal to the
elastic axis during deformation, the exact expressions describing the deformed
beam geometry have been developed and applied to a derivation of the equations
of motion for a helicopter blade (ref s. 3-5). In reference 3, the exact direc-

* tion cosines for the reference axes with origin at P were derived. These
direction cosines are invariant with the choice of angles used in describing
the orientation. The direction cosines constitute elements of a transformation
matrix [TI relating the reference axes with origin at P and a space-fixed
set of Cartesian axes, the x axis of which is along the undeformed beam
(fig. 1).

'15 In reference 4, the structural and inertial operators were derived,
through second-degree nonlinearity, for the rotating beam. The bending curva-
tures were developed in the appendix of reference 4. These expressions are
exact and independent of the choice of angles used to describe the orientation.
In reference 5, expressions for the aerodynamic loads are developed for the
rotating beam. To derive expressions for the aerodynamic loads one must make
use of components of each of the following vector quantities along the refer-
ence axes with origin at P: the relative velocity of point P with respect
to the fluid, the angular velocity of a rigid body B in which are fixed the
reference axes with origin at P, and the virtual rotation of B (fig. 2).
The first of these three items depends only on the [T] matrix, but the latter
two must be developed separately. Only approximate forms of these quantities
are given in reference 5 and the exact expressions, developed herein, have not

4 previously been published.

Torsion deformation in references 3-5 is described by use of a quasi-
coordinate in the space domain, the elastic component of the angle of twist.
The variable is referred to as a quasi-coordinate because it is related to
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Figure 2.- Deformed-beam geometry.

angles through integrals that cannot be evaluated in closed form. Hence, all
three angles, no matter how they are chosen, can be eliminated from the deri-
vation for an Euler-Bernoulli beam. Although the definition of the torsion
variable is mathematically explicit in references 3-5, it is never stated
therein that it is a quasi-coordinate. This may account for some of the dis-
cussions that have appeared in the literature (ref s. 6-8).

* To better understand these discussions it is helpful to consider a simple
approximation. Sometimes an elastic beam is approximated by a system of
spring-restrained rigid bodies, the simplest of which is a single rigid body,
hinged at a point corresponding to the beam root to provide three angular
degrees of freedom. Now, for a rigid-body system such as this, the arrangement
of hinges presents the analyst with a choice of infinitely many distinct physi-

* cal spring arrangements - each of which constitutes a distinct, well-defined
* physical system. For example, in reference 3 differences in stability between

. .. two of these systems are identified. They each have only two degrees of free-
dom: flap (out of the plane of rotation) and lead-lag (nominally in the plane
of rotation). The only difference between the two systems is the hinge

* arrangement. By definition, lag-flap means that the flap hinge leads or lags
with the blade; flap-lag means that the lead-lag binge flaps with the blade.
Thus, lead-lag motion is precisely inplane only for the lag-flap arrangeent;
hence, the word nominally is used in the above definition. For small angles,
the equations are linear and the two systems have identical equations of

,1..'
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motion. Any degree of nonlinearity produced by moderately large angles will,
however, produce differences in the blade pitch orientation for the two sys-
tems for given flap and lead-lag deflections. These differences, although not
large, produce different dynamic behavior and stability for the two systems.
It is clear, however, that an elastic beam with a particular set of end con-
straints is only one physical system and its kinematics, stability, and
dynamic behavior are not 'subject to the analyst's choice of angles used in theI
derivation of equations that describe the system. While this may seem clear,
there has been considerable discussion and some misunderstanding of this
issue in the literature (ref s. 6-8).

The role of hinge arrangement in determining coupled flap-lag stability
of a rotating, centrally hinged, rigid-beam model of a helicopter rotor blade
in hover and in forward flight is further addressed in reference 6 where both
lag-flap and flap-lag systems are studied. The arrangement of the hinges is
shown to influence the stability boundaries for both hover and forward flight.
In reference 7 two different sequences of rotations are used to describe the
orientation of the cross section of the deformed elastic beam and second-degree
nonlinear expressions are developed for torsion, the bending curvatures, and
the [T] matrix. These expressions are used in reference 8 to derive two sets
of equations of motion for a rotating, elastic-beam model of a helicopter blade
in hover and in forward flight. In the two sets of equations, the torsion
deformation is described by the appropriate angles of the two sets, which dif-
fer from each other and from the variable of references 3-5 as well. The
differences in the variables are not mentioned in references 7 and 8, and in
reference 8 the fact that the formulations must be equivalent is only conceded
to be an unproven possibility. The following conclusions are drawn in ref er-
ences 6-8: (1) the transformation sequence used in deriving-the equations
influences the stability and dynamic behavior of an elastic beam (ref s. 6, 8);
and (2) the work of references 3-5 is incorrect in some respects (refs. 7, 8).

Because of the importance of the fundamental geometric relationships of
slender beams to the nonlinear analysis of rotor blades, and because of the
apparent differences that exist between references 3-5 and references 6-8, a
detailed exposition of this subject has been undertaken in this report. The
influence of the choice of angles is thoroughly investigated in this report.
The fact that any of the hinged-beam approximations can be analyzed with any
choice of angles will be demonstrated. Although the hinge arrangement is cru-
cial to accurate analysis, the choice of angles used in modeling is immaterial
(ref. 9) as long as singularities, discussed in section 2, are avoided
(ref. 10). Since an elastic beam, unlike the rigid beam with its many possible
hinge arrangements, is a single physical system, we should not expect the
choice of angles to influence the outcome of the analysis at all. Otherwise
a completely intrinsic formulation like the Kirchhof f-Love equations (ref. 1)
or their recent extension by Reissner (ref. 2) would be impossible. Finally,
the work in references 3-5, while essentially correct, does suffer from lack
of clarity in some areas and it is hoped that this report will clarify the
earlier work as well as the ensuing discussions in references 6-8. Part of
the difficulty in reconciling the results of other investigations with ref er-
ences 3-5 stems from the nature of the torsion variable used therein. The

5



properties of this variable need to be clarified, especially with respect to
its use in conjunction with Hamilton's principle.

1.3 Procedure

In this report, the appropriate relations describing the geometry of the
deformed beam are rederived and expanded to include the components of angular
velocity and virtual rotation. The appropriate changes of variable are estab-
lished to prove that the two formulations in references 7 and 8 are equivalent
to each other and equivalent to the approximate form of the exact expressions
derived herein and in references 3-5. A thorough comparison with the results
of other work is undertaken along with a discussion of the geometric nature of
the different torsion variables in references 3-8. The consistent reductions
of the kinematical equations for infinite torsional rigidity and for the
hinged, rigid-beam approximations are also examined. Finally, the application
of Hamilton's principle to systems described by the torsion variable of refer-
ences 3-5 is rigorously established.

2. THE LARGE-DEFLECTION GEOMETRY OF AN EULER-BERNOULLI BEAM

In this section the large-deflection geometry of an Euler-Bernoulli beam
is derived. For the purpose of discussing the geometry, we will not consider
warp. Without warp, cross sections remain plane and normal to the deformed-
beam elastic axis in an Euler-Bernoulli beam. Thus, the geometry is completely
determined by three deflections u, v, w along the x, y, and z axes (fig. 2)
and some appropriate measure of the elastic twist. We must then express all
other geometric quantities in terms of these four deformation variables. The
orientation of the reference axes with origin at P with respect to thu:
space-fixed axes is given by elements of the [T] matrix. Also, expressions for
the torsion and components of bending curvature, angular velocity, and vir-
tual rotations are developed.

We consider an initially straight beam segment with the elastic axis
along the x axis, illustrated in figure 1. In its undeformed state the beam
is pretwisted so that the principal axes of the cross section, denoted by Y3
and z3, are at an angle et(x) with the y and z axes, respectively, and
et(O) is denoted by . The cantilever root boundary condition is considered
here for the purpose ofillustration. In principle, any set of boundary con-
ditions could be treated by slightly modifying the method that follows.

When the beam bends and twists to some deformed configuration, as in
figure 2, the geometry can be completely described by the deflections u, v,
w of the point P on the elastic axis and by the direction cosines of the
reference axes x3, Y3, and z3 where x3 is tangent to the elastic axis of
the deformed beam. The matrix of direction cosines of x3 73. z3 with
respect to x, y, z constitutes a coordinate transformation matrix denoted
by [T] between the unit vectors i, J, k associated with the local reference
axes x3' Y3, z3 of the deformed beam and the unit vectors I, J, K asso-
ciated with the space-fixed axes x, y, z. The relationship is given by

6
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In this section the large-deflection geometry of an Euler-Bernoulli beam
is derived. For the purpose of discussing the geometry, we will not consider
warp. Without warp, cross sections remain plane and normal to the deformed-
beam elastic axis in an Euler-Bernoulli beam. Thus, the geometry is completely
determined by three deflections u, v, w along the x, y, and z axes (fig. 2)
and some appropriate measure of the elastic twist. We must then express all
other geometric quantities in terms of these four deformation variables. The
orientation of the reference axes with origin at P with respect to the
space-fixed axes is given by elements of the (T] matrix. Also, expressions for
the torsion and components of bending curvature, angular velocity, and vir-
tual rotations are developed.

We consider an initially straight beam segment with the elastic axis
* along the x axis, illustrated in figure 1. In its undeformed state the beam

is pretwisted so that the principal axes of the cross section, denoted by Y3
and z 3, are at an angle et(x) with the y and z axes, respectively, and
et(O) is denoted by 6 The cantilever root boundary condition is considered
here for the purpose ofillustration. In principle, any set of boundary con-
ditions could be treated by slightly modifying the method that follows.

When the beam bends and twists to some deformed configuration, as in
figure 2, the geometry can be completely described by the deflections u, v,
w of the point P on the elastic axis and by the direction cosines of the
reference axes x 3, Y 3 , and z3 where x 3 is tangent to the elastic axis of
the deformed beam. The matrix of direction cosines of x3' Y3, z3 with
respect to x, y, z constitutes a coordinate transformation matrix denoted
by [T] between the unit vectors i, J, k associated with the local reference
axes x 3' Y3 1 z3 of the deformed beam and the unit vectors I, J, K asso-
ciated with the space-fixed axes x, y, z. The relationship is given by

6
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= [T] (1)

When any two of the axes about which rotations occur have the possibility of
being coincident within the primary range of interest of the rotations, singu-
larities result. This is the disadvantage in using what are commonly known as
classical Euler angles (ref. 10) since the first and third rotations are about
the same axis when the second angle is zero. The remedy is to have the rota-
tions about axes that do not approach one another for rotations in the neigh-
borhood of zero since small deformations are a special case of interest for the
present problem. These modified angles, as used in this development, are also
sometimes called Euler angles in the literature (e.g., ref. 11). We assume
that the unit vectors i, J, k are fixed in a rigid body B and are initially
coincident with axes x, y, z. Rotations t, 8, and 6 of B occur about
k, -J, and i, respectively, but not necessarily in that order, so that i, J,
k are finally aligned with the x3. Y3. z3 axes. Therefore, the angular
displacement 6 rotates the beam cross section about what is, for C = 8 = 0,
the elastic axis; the angular displacement 8 rotates the beam cross section

4out of what is, for C = e = 0, the horizontal (x-y) plane; the angular dis-
placement C rotates the beam cross section in what is, for 8 = 8 - 0, the
horizontal plane. The first rotation always occurs about either x, y, or z.
The orientation of the exact axis about which the second rotation occurs is
dependent on the axis and magnitude of the first rotation. The third rotation
always occurs about either x3, Y3. or z3. In the text of this report, only
two of the six possible sequences of angles will be considered: C1. 81' eI'
and 62 2' 82. The subscripts are added to eqnphasize the fact that, for a
given orientation of x 3, Y 3 , z 3 with respect to x, Y, Z, 2 * C1' 82 * 811
and 62 * 61. Since it is clear that the choice of angles will not change the
outcome of an analysis, it is natural to inquire at this stage why it is neces-
sary to consider two different sequences. It is one purpose of this report to
study the outcome of expressing the deformation kinematics in terms of the two
sequences and to address the issues listed in section 1.2.

The axes of rotation for the 1, 81, 61 sequence may be described by a
rotation Ci about the z axis resu±.ini in a new set of axes x, yl, z11
followed by a rotation 81 about the -yj axis resulting in a new set of
axes x y2, z1, finally followed by a rotation 61 about the x2 axis

resulting in the x3 ' Y3' z3 axes (see fig. 3). The axes of rotation for the
82, C2' 62 sequence may be described by a rotation 82 about the -y axis
resulting in a new set of axes x2, y , z , followed by a rotation 2 about
the zi axis resulting in a new set of axes x, y, z, finally followed by
rotation 62 about the x2 axis resulting in the x3, y3, z3 axes (see
fig. 4). The final set of axes must be the same regardless of the sequence
of rotations. The matrix [T] may be formulated in terms of any set of three
angles that will rotate the axes x, y, z to x3, Y3. z3" The discussion
here is limited to the sequences CIt 81 61 and 82. 2' 62' However, all
six possible sequences of the angles C, 8, and 6, as defined above, are used
to develop the geometry in the appendix of this report. The conclusions hold

7 .

r."



23 Z2 2. 21

81 
V3 j1

V

X3j

Figure 3.- The angles ;19~ 0 and respective axes of rotation.

2 2
21. 2V

Z3 
V 2Z

-
2C2

Figure 4.- The 
angles 2 2,0 and -respective 

area of 'rotation.

.1B



for any set of angles, regardless of definition, as long as they will describe
the orientation of axes x3, Y3, z3"

The geometry of the deformed state is now developed. The position vector
describing any point on the deformed-beam elastic axis can be written as
(see fig. 2)

r = (x + u)I + vJ + wK (2)

The unit vector tangent to the elastic axis of the deformed beam is

---= (x + U) + I + v+J + w+K (3)r

where r is the curvilinear distance coordinate along the deformed-beam elas-
tic axis and ( )+ = a/Dr( ). Since the cross section remains normal to the
elastic axis during deformation

q

1r T i = T 11 + TI2J + TIK (4)

I

where Tij is the element on the ith row and in the Jth column of [T).
Thus

T = (x + U)
+

T12 = v+  (5)

T13 =w+I

no matter what angles have been used to express [T]. Since the [T] matrix is
orthonormal

T2 + T2 +T = 1 (6)
11 12 13

and a relationship between x and r is easily obtained from equations (5)
and (6)

(x + u) + =,1-v +2 -w+  (7) .

or

r= (1 + u')2 + v'2 + w'2  (8)

where ( )' - a/ax(). The preceding equations must be combined with explicit
expressions for the elements of [T] to completely specify the geometry of the
deformed beam.

9
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Explicit expressions for the [T] matrix, components of the angular veloc-
ity and virtual rotation vectors, the torsion and components of bending curva-
ture are now developed. The C, 81, e8 sequence is chosen arbitrarily for
this task. The [T] matrix can be determined from the successive transforma-
tions relating x3, Y3. z3 to x, y, z using figure 3:

c c c 5

[T] - s 61 - c6sC c ce - s 1 (9)

-CCS1 s 1 Sl +lsS 8  - ss 81C8 1 c81c8 1

where c( ) = cos( ), s( ) = sin(), and [T]1 = [T]T. The angular velocity
is taken from figure 3:

M=1 - 0 1 (c 1 j - s CIz) +4-~

W "i + Wj + wkk (10)

where ) = a/t( ). The components of w along i, J, k, determined from
equations (1), (9), and (10), are

* ' = e +rs
Wi -1C + 8 a1

1
= Ic~+ C8 5I(11

...... k = lc61cei + S 1

* The virtual rotation vector So can be expressed by replacement of () with
6( ) in equations (10) and (11) (ref. 10). Thus

6= 11 - 681(c J - S I) + 68Zt

- i + 6 j + 6 kk (12)

where

=6 + S8 SC

~~1

10
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The virtual rotations are needed to express the virtual work of applied exter-
nal moments (such as the aerodynamic pitching moment). The torsion (or angle

of twist per unit length) and the bending curvatures may be deduced with the
use of Kirchhoff's kinetic analog (ref. 1) by replacing () with ( )+ in
equation (10)

K 41K - 81(c 1J -s CI) +6+1

K Ki + KjJ + K kk (14)

where Ki, the torsion, is

K i  a+ + C (15)

and the components of bending curvature in the j and k directions are

K + +Kj + -C1 + 1 8+ s(16)

k 1 c l 1 6S 1

We now define an angle of elastic twist @ so that

( t + ) =K i  (17)

where 8+ - 6'x+ . We note that et and c can be considered together becausewhr t t
each occurs about the beam elastic axis. This angle of elastic twist is dis-
cussed in references 12-15 and used in references 3-5 as the torsion variable.
From equations (5) and (9) we find that

s*= w+ (18)

Then, we differentiate equation (5b) and make use of equations (5), (7), (9),
and (18) yielding

+ v vw+w (++
C,! + (19)

* 1 - v+ 2 _ w+ 2  ( w+2)/ - v+2 - w+ 2

Substitution of equations (18) and (19) into equations (15) and (17) yields an
expression for e in terms of variables v, w, and * which does not depend

4 on any of the angles 1' 819 61:
+ 6 + / - (v+ v+w+,w-+)+ + + + (20)

1 t + i v + 2  - w + 2  + 1 -(w+ 2 1

IiM



or

+w+ v+J + - 4+2 + dr (21)el~~~ 11 e+ - v+ 2 w 2  1-w2

if e1(O) 6 6t(O) 60 and *(O) 0.

The [T] matrix may now be expressed in terms of v, w, and 0 with no
dependence on C,, $I, and . We make use of equations (5), (7), and (9)
obtaining

1 -v+2  w-w+2  v+ w+

-V+C I-ws /i -v+2 - w+2 c6, /i-v+
2' -w+r - v+w+s 1

[T] = I- s e /1- 2
, i- W42  6

V+s6 l -w+c 11 - v+2  w+2  _s 6 -v+ 2 - w+ 2 - v+w+c 1

L /- w+2  /1 - 6w+

(22)

where 61 is given by equation (21). This result for [T] was first obtained
in reference 3 in a different manner. The components of the angular velocity
vector, the virtual rotation vector, and the rotation per-unit-length vector
can now be expressed in terms of v, w, and 0. In doing this we make use of
equations (5), (7), (9), (11), (13), (15), (16), and (17):

W+ I _____

+ v vw++
vi=  l + + = +

W6 v1 +v - w+2  (23)

S /1-w+2  Z-w+2 v+ 2J -

+s° 0 ( v++.+ c6 W 2

Wk I + + + V. ..k /I1-w+ 2 1-w+2/ / v+2 -- w47-

12
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6, -_ez +w +  v +  + WS
,/1 - V _+ 2 ( - w+2/

-c 18w+ agv 1 ~ ~w Sl1 -w+2

== - + 6 + -+ 8/ _ (24)

'_ 1 - _+2 1 (-v W+2 -+2 -+

s e 6w+  I + V+W+6W+\ Cal /1 - w+

+ SW~

iC= (et + )

-w++c s /l - w+ 2
q 1 /".,+.-4\ 0

KJ - + 4* + )1Vl) - v+ 2 - w+2 (25)

c w+ + s  / + +C /I -

k /1- w+2 +1 - +2/ /1 - v + 2 - ,,2

The variables 8 and 681 are obtained by differentiation and variation of
81 in equation 121). Equations (21) through (25) provide a complete and
exact description of the deformed-beam geometry. These equations are indepen-
dent of t1, 01, and 6I since 81 is expressed in terms of v, w, and *.

To illustrate the uniqueness of the geometry we present the development
again with a different sequence of rotations 82' 12' 82. We make use of

. equations (1) and (5), which do not depend on the sequence of rotations. The

[T] matrix can be determined from the successive transformation relating

x 3' Y3, z3  to x, y, z using figure 4.

c 2c 2  s 2  c 2s 2

[T] .- c C0 s c s c - s s (26)

.c 82c8s2 + s2s282 c82cC2 02 s2 22s2

* , The angular velocity vector is, from figure 4

I - -$2J + C2 (c,2K - s821) + 82L (27)

13
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the components of which are

"2 -A28c (28)

W c + A s 2k = 2 202 2 20 2 C2

The virtual rotation components are

6i = 662 - SC26a2

6t = -c c 682 + s62C (29)

6 k = c2 62 + se2c 2

4

The torsion is

K = + - + 2 (30)
i = 6 2

and the bending curvatures are

K B + -8c c2 + +2s2

+ + (31)
Sk c82 6 

+ 
82S 2C

Kk %~2 22

Substitution of equation (17) into equation (30) yields an expression for 6+

+= + + + 22 (32)

Equations (5) and (26) lead to

1 (33)

+ W+ +  + v+w+v + +

S / v+ 2 -W+2  (1 v+2)/l _ v+2 w+2

Substitution of equations (33) into equation (32) yields a relationship
between 62 and v, w, and

14
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+ V
2 6 ( + €) + ++ 1 V+2 (34)i-v2 _ w+2

or

f062 = t+ + /I- + 2 - w+2 ( -~- v+2-)(5

where 62(0) = Gt(O) = 00 and *(O) = 0. Equations (5), (26), and (28)
through (31) can be used to express the exact deformed-beam geometry in terms
of v, w, and . The [T] matrix is

/l -v+ 2 W wv +  W+

_V+Ce2v1 -V+2 -w+2 - W+S2 s2 y/1 -v + 2 -w + 2 - v+w+c2

v+s 2/1 - V+2 - W+2- /1 v+ 2 w+2 + v+w+se82 8+c2 _________v+________2

,i -v+v+2 2- v2
L_ _ 2

(36)

The components of the angular velocity vector, the virtual rotation vector,
and the rotation per-unit-length vector can now be expressed in terms of
v, w, and 0. In doing this we make use of equations (5), (7), (19), (26),

and (28) through (31):

v+ (+ + V+ _ .1
i2 /- 

2
- W+2 (+2

( '+ + +2+_+ +2 (37)
/1, 2 v _2  / w+ + 2/-

I,___+_ + 2
k v+2 w+ 2  I -v+ 2

15
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6 6 2 V+ V + v+w+sv+)
/ W +2  1 -V2

c !N v+ 2  dv+s1
- +-v+2 6V_ 2 - + 2 (38)

6V+2k ~ ~ = ( ++vw + /1 -v + 2  6v+%2

.= + - 2++
(+ v+2)++ - V2 --W- /I- -

L AA - v++s

Vj fi -1 '2 / - v -2 +" / I -- --T+ ( 3 9 )

K (= + 1V+2+) ______ 2~w /1- -v + -w2  4-+ 6

"W ( + -v'- 2** sV+2/1 - W+2  v+ 2

where ;2 and d66 may be obtained directly from equation (35). Equations (36)
through (39), written in terms of 62 defined in equation (35), appear to be

different from equations (22) through (25) written in terms of 61 defined in
equation (21). It is possible to demonstrate equivalence of the two sets of
equations by simply solving each of equations (21) and (35) for 4 and
equating the expressions for 4. The following first integral is obtained:

62 = 61 + tan-1 (+ 2) (40)• i -v+ 2  _ w+ 2

so that

S l/l V+2 w+2 + V+W+c1

S 61 61
5=

(41)

/i V+2 _,-_V+W+S 61

These relations were also obtained in reference 15. Equations (40) and (41)
can also be derived by equating the expressions for T2 3  in equations (22)
and (36). Now, by substitution of equations (41) into equations (36)

• ' 16
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through (39), the results can be shown to reduce identically to equations (22)
through (25). Thus, the sequence of rotations used in the derivation is
proven to be immaterial and the two sets of equations are seen to be related by
a simple change of variable. The fact is further illustrated in the appendix,
in which all six possible sequences are examined and shown to be equivalent.

3. COMPARISON WITH OTHER WORK

The results of the development in section 2, except for slight differences
in notation, are identical to the results in references 3-5. Several discus-
sions of the material in references 3-5 appear in the literature and it is the
purpose of this section to examine these discussions.

In references 6-8, the [TI matrix, the torsion, and the components of
bending curvature are obtained for both the C1, 81, 61 sequence and the
a 2, C2 ' 6)2 sequence of rotations. The expressions therein are approximated
to second-degree accuracy in the deflections u, v, w and 61 or 62. The
authors denote e1 and 62 by the same symbol even though 61 and 62 are
different angles. After recognizing this slight inconsistency in notation,
however, it is quite easy to verify that the geometric quantities expressed
therein are equivalent to the two formulations in the preceding section.
Indeed, the development in the preceding section shows that the sequence of
rotations used in describing the orientation of the local principal axes of
the beam cross section is arbitrary. Thus the sequence of transformations
cannot influence the outcome of a stability or response analysis. The equa-
tions appear to be different but a change of variable can always be found that
will transform the equations derived based on one sequence to that of any
other. The application of this fundamental idea to the rigid-beam approxima-
tion of an elastic beam will be discussed in section 6.

Let us now examine the question of whether the sequence of transformations
used in an elastic-beam analysis can affect the results of the analysis as
discussed in reference 6. This involves demonstrating that the two develop-
ments in references 6-8 are actually equivalent to each other and to that of

0 references 3-5 and that the [T] matrix and kinematic quantities developed in
references 3-5, despite the apparent differences with the results of ref er-
ences 6-8, are nonetheless correct. It is convenient for comparison with
references 6-8 to approximate the geometric quantities obtained in section 2
to second order in bending and torsion deflections.

Let us consider the case with Ot= 0 and v+, w+, 0,, e2 and of
0(c) so that E2 << 1. Equation (8) shows that

r, (1 + u')2 + v'2 + w,2 = 1 + 2e (42)

where e is the component of longitudinal strain of the elastic axis from
Green's strain tensor. In engineering beam theory, e is neglected with
respect to unity. Here we assume e = 0(c2) so that r' _ I + 0(C2) and

=, 0CW); thus, derivatives with respect to r may be replaced by

17



derivatives with respect to x. For comparison we write only the T2 3 and T32
elements of the [T] matrix, the torsion, and the bending curvatures of the
i 81, e1  formulation:

T23 = e 1 + O(e 3 )

T32 -1 v'w' + O(C 3 )

Ki = ej + v"w' + O(E3) (43)

K i = w" + aIv" + o(e 3)

Kk = v" + 1w" + O(E3 )

where equations (21), (22), and (25) have been used. For the C2' 2' e2
formulation these quantities are

T2 3 = - v'w' + 0(E 3 )

T 3 2 = -82 + 0(63 )

K. = 02 - v'w" + 0(E3 ) (44)

K = -w" + e2v" + O( 3 )

Kk = V" + o2 w" + 0(E 3 )

where equations (35), (36), and (39) have been used. These quantities are
identical to the corresponding expressions obtained in references 7 and 8.
Equation (40) yields, to second order, the following relationship between
• and 02:

62 = 61 + v'w' + 0(E 3 ) (45)

which, upon substitution into equations (44), produces equations (43) identi-
cally. These expressions, which form the basis for deriving the equations of
motion, are thus equivalent. Equation (45) can be thought of as a change of
variable. If it is applied to the equations of motion based on the 82, C2' e2
sequence (flap-lag-pitch) derived in reference 8, the result will be identi-
cally the other set of equations of motion in reference 8 that are based on
the 41, 81, e sequence (lag-flap-pitch).

Equations (43) and (44) both reduce to the same expressions when the
elastic angle of twist is introduced, from equations (20) and (21)

18
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' 1+ v"w' + 0(E3) = 6, - v'w" + 0(E 3)1

fx x (46)
= 8 + f v"w'dx + 0(C 3 ) 82 - f v'w"dx + 0(E0)

0 o

or

01 fX v"w'dx + O( 3 )

(47)

2 ffi + v'w"dx + 0( 3)

82= + J
0

Now equations (43) and (44) become x
T = 4) - J v"w'dx + O( 3 )

0

T 32 = - - v'w"dx + O(E
3)

0

1K. = , + 0(c 3 ) (48)

K. = -w" + ov" + 0(C 3 )3

Kk = V" + 4w" + 0(E 3 )

Equations (47) relate ), el, and 82 and may also be regarded as changes of
- variable relating the angles 8 and 82 to the elastic twist angle 4. When

these changes of variable are applied to the development in reference 8, the
* two sets of equations derived therein based on C1, 81, 81 and based on

82' 2' 82 (when specialized to hovering flight) are found to be equivalent to
the set of equations found in references 3-5 (which considered only the hover-
ing flight case). Because of the nature of €, this change of variable is
most easily applied to the energy and virtual work expressions, however, not
directly to the partial differential equations, as shown in section 5. The
outcome of the analysis does not depend on the sequence of rotations and the
work of references 3-5 stands as correct.

Other authors (refs. 16 and 17) have had difficulty reconciling their 1
work with references 3-5. In reference 16 it is stated that the results of
references 3-5 are in error because of an incorrect expression for torsion, a
comment similar to the conclusions of references 6-8. The [T] matrix in
references 3-5 is stated to be incorrect in references 16 and 17 because the
pretwist angle is grouped with the torsion variable rather than being imposed
before the elastic deformation. Furthermore, it is stated in reference 16

" 19
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that the quantity 8t must appear in [T]. The pretwist et can be grouped
with e1, e2 , and 4 in the present formulation because all of these rotations
occur about the same axis. 2 The development in section 2 of this report is
exact for an Euler-Bernoulli beam, and 0' terms do not (and cannot, because
of dimensional reasons) appear in [T]. In contrast to references 16 and 17,
there is no difference in the final form of the [T] matrix that results from
interchanging the order of pretwist and elastic deformations (see eq. (17)).
In both references 16 and 17, the two sets of axes that the [T] matrix relates
are not the same two sets of axes that the [T] matrix in this report (and in
refs. 3-5) relates. In references 16 and 17, the [T] matrix relates the local
beam cross-section principal axes after deformation to the local beam cross-
section principal axes before deformation and not to the x, y, z axes used
here. Thus, for 6t # 0 a direct comparison of the [T] matrix and other
geometric quantities in references 16 and 17 with those of references 3-5 and
the present report is not possible.

In reference 12, two of the present authors established that the lateral
buckling load for uniform, slender cantilever beams was identical for two sets
of equations - one in terms of 61 and the other in terms of p. These
equations were different in appearance, yet they were equivalent and yielded
the identical buckling load. The development in reference 12 in terms of
proceeds from the Kirchhoff-Love equations (ref. 1) which in no way depend on
the sequence of rotations used to describe the cross-section orientation.
Careful examination of the different approaches noted in reference 12 illus-
trates that it is important to understand that the two geometric angles,
denoted by e1 and 02 in this report, and the elastic angle of twist 4 are,
in fact, different quantities. Some of the confusion about the influence of
different sequences of rotations evident in references 6-8 apparently stems
from their use of the same symbol for the three different quantities e1, e2,
and 4.

In reference 18, nonlinear equations of motion for an Euler-Bernoulli
beam are derived for the purpose of investigating stability of the beam with
applied loading. Classical Euler angles are used to describe the cross-
section orientation. The three axes about which rotations occur for infini-

tesimal angles are not mutually orthogonal for classical Euler angles, for
which two rotations occur about the axis that lies along what is nominally the

* beam elastic axis. Thus, the torsion variable T is defined in reference 18
as the sum of the first and third Euler angles. The torsion Ki and the I
component of the virtual rotation vector 6p1  = 6# - I are given to second

order in reference 18 as

= T' + 1 (v"w' v'w") + 0WKi  2 3

0(c3)I(49)
6 , = 6 - (6v'w' v'6w') + O )(9

2This is not true of the other four sequences treated in the appendix,
however. There, angular displacements 03, 04, 65 and 66 do not rotate the
beam cross section about the deformed-beam elastic axis.
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These quantities, in terms of 61 and 62, are, from equations (12), (25),
and (40)

K i = @I + v"w' + 0(e 3) = 02 - v'w" + O(c3)iJ
(50)

6 I = 601 + v'6w' + O(e3) = SoO2 - w'6v1 + O(c3)

Equations (49) and (50) can be shown to be equivalent to second order by use
of the following changes of variable:

VIW1
T I +  3) vw +2 -3 (51--

+ v2 + 0( (51)

Thus, the equations of motion derived with the aid of classical Euler angles
in reference 18 can be shown to be equivalent to those derived with the rota-

* tions defined in this report. To formulate the complete, exact geometry using
classical Euler angles and the elastic angle of twist, 4 is quite difficult,

* however, and may not even be possible because singularities appear in the
integrals when deformations are small instead of large as in the present for-
mulation. Also, the angles used in this report, unlike classical Euler angles,
bear a strong resemblance to the geometric change in orientation during
moderate deformations.

The results of this section show that the expressions for deformed-beam
geometry developed in section 2 and in references 3-5 are equivalent to a
variety of formulations found in the literature. The results of references 3-5
are also confirmed. The nature of the torsion variable 4 and how a formula-
tion in terms of 4 differs from one in terms of 01 or 02 has not been
treated in the literature and will be addressed below.

4. NATURE OF THE TORSION VARIABLES 01, 02, AND

In this section we will examine the nature of the torsion variables
01, 62, and 4. The kinematical relationships that define these variables are
used to establish differences among them. An example problem is introduced to
aid in illustrating these differences. The geometric relationship between
01 and 02 is examined by projecting the local cross-section principal axes on
the yz plane. Finally, the elastic twist 4 is shown to be a quasi-
coordinate (ref. 10) in the space domain because it is related to physical
angles through integrals, and its mathematical analogy with the axial deflec-
tion of a beam due to longitudinal strain is established.

4.1 Kinematical Differences

The elastic angle of twist 4 is defined to be the elastic component of
the integral of the torsion Ki. Thus, from equation (17)
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r

= - i dr -9 t  (52)
0

The elastic torsion moment is then simply GJ + (ref. 4).

The angle 0 may be thought of as the beam twisting caused by a distrib-
uted, externally applied torsion moment acting about the local x3  axis. The
angle 0 does not completely define the orientation of the reference axes at
point P even when CI and 8 (or v+ and w+) are known at P. In addition, e1
(or 62) must be calculated to obtain the complete description of the geometry
of a deformed beam. This requires knowledge of j and 8 for all x inboard
of P. Both 6I and 62 occur as rotations about x 3, the deformed-beam elas-
tic axis (i.e., the i unit vector). By definition, 61 and 62 are the third
angles in the two different sequences C1, 8, 61, and 82, 2' 62, respec-
tively, as described in section 2. Since the final orientation is fixed, the
angles 61 and 62 must differ. The fact that the elastic twist is not, in
general, equal to either of the angles 61 and 62 is simply because of the
kinematic effects of combined bending of the beam in two directions, v and w.
If the bending deflections and elastic twist angle are known, 6I and e2 can
be written according to equations (21) and (35).

r W+ (v++ + dr@I 
= 

@t 
+  ,1- _ v+2 _W2I - W+2

f 1- w+ 2

(53)
r

v+ fw V+W+v+ )
/12 v - w+2 ( + v+ 2 dr

0

They can be approximated quite well by the simpler expressions:

e6 = et + - v"w'dx + O(E3)

(54)

62 = 6 t + + f v'w"dx + O( 3 )

Thus, rotations about the beam elastic axis (geometrically like elastic tor-
sion rotations) may be produced by combined bending deflections alone, even
without elastic twist 0 or pretwist 6t .

4.2 Example Problem

The following example problem is included to further confirm and illus-
trate the differences between 6 and 62 as well as to demonstrate the use of
the geometric relations developeA in section 2. Consider a beam that is first

22

e W.



inclined by an angle 00 from the x-y plane and then bent into a circular
arc, without torsion or elongation, in the plane of its elastic axis and major
principal axis as shown in figures 5 and 6. Thus

Ki= 0

Kj - 0 (55)

Kk = -K = constant

The equations for the space curve of the beam elastic axis are, from the geom-
etry of figures 5 and 6,

cos a 0 sin(K 0r) 1- COS(K 0 r) sin a0 sin(K 0r)
u K - r; v - K w K (56)

K 0 ---------

q

II

•K iK

k k

i iP

Figure 5.- Deformed beam for example problem.
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PROJECTION OF I

// DEFORMED-SEAM

1/Ko

Figure 6.- View of deformed-beam elastic axis in the plane determined by
i and J (view AA from fig. 5).

The matrix of direction cosines at any location is quite easily obtained from
figures 5 and 6

1 COs(K 0r)cos 0 0co si(K 0r) sn( 0r)sin 8 (57)

{ i -sin 8 r cos 8 ] 0 57)
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We wish to show that given u, v, w and * for a beam, the equations of
section 2 will provide an exact description for the deformed-beam geometry.
Since Ki is zero then - 0. The geometric angle e1 can be calculated
directly from substitution of equations (56) into equation (21) yielding

61 = tan-l[sin(K 0r)tan a0] (58)

Substitution of equations (58) and (56) into equation (22) for [T] yields

COS(K0r)cos a0 -sin(K 0r) cos(K 0r)sin 6

[T] = sin(K0r)cos 80 cos(K 0 r) sin(K 0r)sin 0 0 (59)

o-sin c0  0 Cos B0

which is identical to the matrix of direction cosines defining the example
deformed beam in equation (57). It can be verified by substitution of equa-
tions (56) and (58) into the bending curvature formulas, equations (25), that
the exact relations defining the problem in equations (55) are recovered.
Thus the formulas of section 2 provide means of exactly determining the orien-
tation of the deformed-beam cross section when the elastic bending and elastic
torsion deflections are specified.

The same results for the transformation matrix and bending curvatures are
obtained if one uses the expressions derived from the 82, 2, e2 rotation
sequence, equations (35), (36), and (39). Proceeding as above but starting
with equation (35) we find

o2 = 0 (60)

and from equation (36)

S[Cos(K 0 r) cos 0 -sin(K 0 r) cOs(K 0r)sin 8

* [T] = sin(K 0r)cos B0 cos(K 0r) sin(K 0r)sin BJ (61)

L -sin B0  0 cos B0

The transformation matrix is the same as obtained in equation (59) and thus
again duplicates the example problem transformation matrix given in equa-
tion (57). The fact that 8 8 e2 should clearly indicate that the differ-
ences between 01 and e2 cannot be ignored. If 0, and 0 were treated as

the same angle it would not be possible to correctly describe the geometry of
the example problem in terms of both e1 and 62."

4.3 Geometric Relationship Between 8, and 82

It is helpful to visualize 81 and 8 for the general case of coupled
bending deflections. This may be accomplished by considering the local
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cross-section principal axes pro-

jected on the y-z plane. In fig-
z,K ure 7 the projection of the Y 3 and

z 3 axes (the unit vectors J and k)

jp are shown in the y-z plane (the
plane containing unit vectors J and

a2- 02  K). The beam cross section appears
skewed because it is not in the plane
of the J and K unit vectors. The

projections of J and k, denoted by

Jpand kp, are given by

j T J+ T
____ ___ ___ _22 23K}

(62)
kp __T32J + T33K

y, J
By inspection from figure 8

Figure 7.- Projection of the local T2 3
cross-section principal axes on the sin (6 3~y-z plane. €/T22 + T23

i " T33 K(63)
I ' - 32

kpI sin o2 = 2 33T32 33

Expressions for the matrix components

T23K / p T2 3 and T 32  in terms of 01 or 02
can be found in equations (22)
or (36), respectively

TJT
23 =se/ -T32J T 2 2 J 1 (64)

Figure 8.- The projection of unit vec- T32  -s 02/1-

tors J and k on the y-z plane.

Combining equations (63) and (64) and dropping higher-order terms, we find

that

' a Ml 6f 1 + O(E3) I  (65)

a - + O( 3 )J

and, according to equation (45)

02 - 61 = v'w' + 0(c3) (66)
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These results show that for small angles, 01 and 02 are essentially the kine-
matic rotations of the J and k axes, respectively, about the i axis. The
fact that they are not, in general, equal is because the J-k plane does not
remain parallel to the J-K plane.

Returning to figure 5, the view of the beam in the direction of the I
axis provides a clear illustration of the kinematic rotation of the beam. The
orientation of the projections of the J and k axes in figure 5 is consistent
with the geometric interpretation of 01 and 02 in equations (65) and (66) and
with the example calculations showing that 01 - -v'w' and 02 = 0. These
kinematic rotations, devoid of elastic twist, were previously identified in
reference 3 where their effect on the blade pitch angle was noted. Hence, the
term "kinematic pitch rotation" was used to describe these effects.

4.4 Mathematical Analogy of the Quasi-Coordinates and ue

It is well known that even in the absence of longitudinal strain of the
elastic axis, there may be significant nonzero axial deflection of a beam in
bending. The above calculations show that even in the absence of torsional
(shear) strain, there may be some nonzero pitch rotation of the cross section
of a bent beam. To examine this analogy in detail we must first develop the
appropriate relations concerning axial deflection. The longitudinal strain of
the elastic axis may be explicitly determined from the relationship of x and
r given in equation (42). Thus

u'2  vt 2  w, 2

e = u' +-R-- +-v- +- (67)

We now let u = ue + ub where ub  is a kinematic axial deflection due to
bending only and ue is the axial deflection due to longitudinal strain of
the elastic axis. The strain becomes

(ul + ut) 2  v,2 W,2ffi e=u' + e + + +- (68)
e2u 2 2-

The strain must vanish when u' =0. Thus

2 , v'2  W'2

+ - 0 (69)

or

, /j1 '2  - 1 (70)

*The kinematic axial deflection, sometimes called foreshortening (refs. 19-21),
is then given by
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Ub vr /1 -' 2 
-' w 2 dx -x

0

=-1(V,2 + W12) + 0(e4) (71)

Thus

Ue =u + x - fX!- v12 - w'2 dx
0

Wu + 1 f>'I2 + W' 2)dx + OWE) (2
0

Comparison of equations (72) and (46) reveals that ue and 4)are mathematical
analgs. The deflection ue is devoid of kinematic shortening due to bending.

The elastic twist 4) is devoid of kinematic pitch rotation due to bending. In
the time domain, quasi-coordinates (ref. 10) are usually based on integrals of
either components of velocity or angular velocity. By Kirchhoff's kinetic
analog (ref. 1) the angular velocity components carry over to bending curva-
ture and torsion relations while the velocity component along the elastic axis
can be shown to correspond to a longitudinal strain approximately equal to e.
To obtain the latter correspondence, the velocity of point P must be written
subject to the constraint that the velocity vector is tangent to the beam
elastic axis. The component of strain from the analog is the difference of
the velocities, for C) = ( +, with and without elongation of the elastic
axis. Hence, both ue and 4) are denoted as quasi-coordinates in the space
domain because they are related to the physical displacement u and angles
6and e2 through integrals and because their derivatives have velocity and

angular velocity components as kinetic analogs.

5. QUASI-COORDINATES IN THE SPACE DOMAIN AND
HAMILTON'S PRINCIPLE

The angle of elastic twist 4) has been shown in section 4 to be a quasi-
coordinate in the space domain similar to the elastic component of axial
deflection ue- Although several derivations appear in the literature, making
use of at least one of these variables (refs. 4-6, 8 and 19-21), it is well
known that the standard form of Lagrange's equations (and thus Hamilton's
principle) is not adequate when quasi-coordinates in the time domain are used
(e.g., see ref. 10). It is natural to ask if there are similar obstacles when
the above quasi-coordinates are used in the standard form of Hamilton's
principle. To answer this question we will consider both a general development
and a simple example derivation.
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5.1 General Development

We will first write symbolically the standard extended form of Hamilton's
principle for nonconservative systems using u, v, w, and e1. For simplicity,
we will consider only a linearized stability analysis so that time dependence
is factored out of every term. We then will rigorously take the variation.
The change of variable will be made to variables ue, v, w, and € after the
variation. The resulting expression, if there are no obstacles, should corre-
spond identically to the expression obtained by starting the formulation in
terms of Ue, v, w, and 0 and then taking the variation.

The standard extended form of Hamilton's principle for an unpretwisted,
nonwarping Euler-Bernoulli beam with variables u, v, w, and e is given by

t2  L
6 f H(u, u', , v, v', v" , w, w', w", , el, el,' 81)dx dt

+ 6W dx dt = 0 (73)
ti 0

where H is the kinetic energy minus the potential energy and 6W is the
virtual work of the nonconservative aerodynamic forces. To simplify the fol-
lowing development, equation (73) is written for a linearized stability analy-
sis, with time dependence factored out of every term or a static analysis
without time dependence. The variation of H when expanded yields

LIM[3 6u+ H 6u +_H 6v+ _H 6v,+ H 6v,, + H 6w+ _H 6w, +,,

f V3uu au, av a, u'  w aw w

+9H 6 + 3H 68' + Lx6u + Ly6v + Lz6W + Mx 6 dx = 0 (74)
381 1 y + z1 30

where the virtual work has been expressed in terms of the generalized applied
loads and 6* = 681 + w'6v' to second order. The forces are resolved along
the x, y, z axes, respectively, and the pitching moment acts about the x 3
axis. We now make the change of variable that transforms equation (74) to a
different expression which involves ue and *. The relationships between
u, e1 , and ue, are, to second order, from equations (46) and (72)

u ue -2. (v'2 + w'2 )dx
0 (75)

f x it61= 4,- v"w'dx
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Differentiation of equations (75) yields
u' t v2 w '2

=l Ue' 2 2 (76)

e I = - v1w'

We now consider H H(ues ue , v, v', v", w, w', w", 'and note that

3H 6u = 3E Du e  M G9H 6 H 9 Ue =H
Du aup _ J aT- Uue eu' u' e'

1H 681 = _L L 68 1 + H 6v1 _2 60 H2' =v' H
1- 3I 361 1 - a'

3H 6 - aui - eu
- dv' =, +3v' 6-v' + H u- Sv,

5 VT aV, aue av, aueav,

x

6H + v'6vadx + _L_ v,6v

aw a. fDue

0

6- v,' -- 6 v,' + _L a- 6v1 + _ H jw' 6w - w'V w

aH IH vil w v"vw
f -x x

au - au,

uW' + - w'6w'dx + - w'6w' + v"6w'dx + -- "6w'

It should be noted that the above variation in terms of (or ue) could not

have been made if *' (or u ) were also an explicit function of 81 (or u),
as might occur for general quasi-coordinates. Substitution of equation (76)
into equation (74) yields
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~u 6u' + v + 65V' + 3%J v'6v'dx + -- v6'+3o v

+ -ag l~~dx+ H w v+ H 6w+aH_ w + DRl W'w x+_L 'w
f ' v dx~ v aw wly W' aue Due

x
+- v"6w'dx + ~v6w' + -L+a +L~ +L

ao_____ f w" Do yo

4+ Lz6w + Mx 3C(se 1 + wv x= 0 (78)

Up to now the change of variables in Hamilton's principle is equivalent to a
direct substitution for ue and 4 into the partial differential equations

I' corresponding to equation (74). The single underlined terms appear in the
v and w equations from Ue, and the double underlined terms are from ct. Not
all of these terms are necessarily visible at this step, however, depending on
the order of terms that are retained. The example given below should clarify
the nature of these terms. We now substitute for 601, 661, 6u, and 6u' in

* equation (78) fx
61 = 6o~ f (w'6v" + v"6w')dx

0

661 = 6o, w'6v" - v116w'

6u = Sue - fxvv + w'Sw')dx
0

6u, = 6u - v'Sv' - wlaw'
e

All of the underlined terms cancel out leaving

2 6ju e + t 6e 3v v av " 3w aw' a-, wl

+- -LH 6o + -D - 6o' + L e- fxv6'+ w'6')d + L 6v + L6w

+ M 3[6o + f x(w"6SvI v"6w')dx]} dx 0 (80)
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This is precisely the same expression that would have resulted from starting
with the quasi-coordinates and taking the variation directly. Since the vir-
tual work term involves only a straightforward change of variable, Hamilton's
principle is valid when written in terms of quasi-coordinates ue and *. Thus
the application of Hamilton's principle with variables ue and 4 reduces to

L LL
6 dx + (Lx6ue + Ly6v + Lz6w + Mx 6 )dx - v'( Lx dx1

w" M~ix d) +(fL dx vl f x)6w']dx (81)

~where the following identity was used:
L x L L

f(x)J g(xl)dxl dx = g(x f(xl)dxl dx (82)

00 X

It is observed that the use of the quasi-coordinates ue and has the effect
of replacing the terms underlined in equation (78) with integrals of the
applied loads from both the u and e1 equations.

5.2 Example Derivation

An actual derivation of equations will be helpful in understanding the
results from the general development above. Consider a rotating cantilever
beam that undergoes coupled axial deflection and flap (out-of-plane) bending
only. For simplicity we consider only the static equilibrium equations (no
time dependence) for a beam with a vertical distributed load proportional to
x + u and an axial distributed load P. The beam is allowed to be extensional
in that elongation of the elastic axis is allowed. The important special
case where the elastic axis is inextensional is also considered. The position
vector for a point at a distance & from the elastic axis is

r = (x + u)I +wK+ k (83)

and the axial strain, neglecting elongations with respect to unity (ref. 22),
is

is. e + u w' 2 W"
e e+ j -2- 2 / '

-a ' +H2 ~w"l 2w2)u' + - I + W (84)
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Application of Hamilton's principle yields

L
2%

fSIEAU + H 2 )(6u' + w'6w') + EIw"[(l + w'2)t6w" + w,,w'dw']
0

P6u - mf 2 (x + u)6u - K(x + u)6wjdx o (85)

where K is a given constant, A = ffdA and I =ff E2dA. The Euler-Lagrange
equations and boundary conditions follow immediately:

-[Au' + - mn 2 (x + u) = P (86a)

[EA u + i)w]' + [EIw"(1 + w' 2 )] ' - (EIw" 2 w')' = K(x + u) (86b)

u = 0 EA ('+-)-- o

w = 0 x = 0 Ew" 0 x = L (86c)

W' = 0 (EIw")' 0

Let us consider for the moment the case of an inextensional beam. To special-
ize the equations we must do two things: (1) solve equation (86a) for
EA[u' + (w'2/2)] and substitute the result in equation (86b); and then
(2) solve for u in terms of w and substitute into equation (86b). Although
u' + (w'2/2) = 0 for inextensibility, EA + for this case and the product
EA[u' + (w'2/2)] is finite, and nonzero in general. For step (1)

L

EA(u' + H-- J [mnQ2(xl + U) + Pldxl T (87)

* x

Step (2) yields

U' =  - - + (88)

or, for EA

u fX w' 2 dx (89)
0

33

* ..



Thus, the single w equation for an inextensional beam becomes

j L[ 2 f X 5 w'2dx + ldxjl + [EIw"(l + w' 2 )] - (Elw" 2w')'

K f w'2dx (90)

0

with boundary conditions as above.

We now return to the extensional case and make use of the quasi-coordinate
ue so that

x
u e  w' 2dx

w'2

U u-- (91)-e Ue

EA(u + L)= EAu

Substitution into Hamilton's principle, equation (85), yields

fLEAUe(Su ' + w'6w') + Elw"[(1 + w' 2 ) 6w' + wwwP] u

21 W t w2x\ ~ W -W W' ] xi

m W d + ue - K - + u- f w2dx 6 dx 0 (92)

The Euler-Lagrange equations are

-(EAut)' - m2 + ue - "f w'2dx1  = P (93a)
0/

-(EAuew')' + [EIw"(1 + w'2 )1" - (EIw" 2w')' = K(x + ue - f XJ w'2dx) (93b)

with boundary conditions as above. The underlined term in equations (92)
and (93b) corresponds to (iH/3u')w'6w' in the Hamiltonian (see equation (78)).
Equations (93a) and (93b) are identical to the result of substituting equa-
tions (91) into equations (86a) and (86b). For the case of inextensibility,
we still must follow two steps: (1) solve equation (93a) for EAue  and sub-
stitute into equation (93b); and (2) substitute ue 0 into equation (93b).
The result is equation (90).
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To express Hamilton's principle in terms of ue and w alone requires

substitution of

6u = Sue - f w'Sw'dx
0 (94)

u 6u - w'6w'

yielding

LEAU6Ue + EIw"[(1 + w'2)6w" + w'w"6w'] - P + mS22 + ue

-- - xw'w'dx K + ue  x6wdx 0 (95)

w'2dXi)(Ue u- J 2d /

00 0

The Euler-Lagrange equations are

- (EAu)' - mQ2 + ue - f w'2dx 1 =P (96a)

0 /0

_wo L [m2( + U e - 2fx w?2dx2) + P]dxIJ + [Elw"(l + w'2)]''

- (EIw"2w')' = K + ue - f w 2dx (96b)

-For the case of inextensibility, we simply set ue = 0 in equation (96b) and
obtain equation (90) directly.

Although no EA terms appear in equation (96b), it is still suitable for
use, along with equation (96a), when EA is finite. The reason for this is
now clear: when the analysis is formulated in terms of the quasi-coordinate
ue at the outset, the substitution for the tension EAue is automatically
taken care of. The rest of equation (96a) is, in effect, integrated and sub-
stituted automatically. This example explains why no EAu' terms appear in
the v and w equations of references 19-21. They do appear in the v and w
equations of reference 8 because the case of the tension axis being offset from
the elastic axis is considered.

At this point, it seems appropriate to comment on the advantages of using
the quasi-coordinates ue and 0. Both variables tend in some cases to simplify
the derivations of actual equations of motion (refs. 3-5, 8, and 19-21). It
is also evident that taking the limit for infinite axial or torsional rigidity
may be somewhat simpler.
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6. IN THE LIMIT OF INFINITE TORSIONAL RIGIDITY

Another way of looking at the question of the equivalence of the equations
in references 3-5 and the two sets of equations in reference 8, demonstrated in
section 3, is to consider the special limiting case of infinite torsional
rigidity. It is clear that no matter what variables are used in the analysis
for torsion there is a unique set of equations governing bending deflections
v and w when GJ tends to infinity. For that case, all GJ terms must
vanish from the v and w equations in order to preserve the proper mathemati-
cal structure of the equations. This is similar to the result of the last
section in which all EA terms vanished for the special case of infinite EA.

For equations written in terms of 0, such as those of references 3-5,
there are no GJO' terms in the v and w equations just as there are no
EAue terms in the v and w equations of references 19-21. With the order-

ing scheme of references 3-5, all of the terms from the 0 equation that are
integrated and substituted into the v and w equations automatically, through
the process of using the quasi-coordinate 0, turn out to be negligible (i.e.,
as stated in reference 3, the torsion moment is one order of c smaller than
the bending moments). For infinite GJ, the angle of twist per unit length is
simply the pretwist component 6'; the elastic twist 0 and its variation 60
are simply set equal to zero because elastic twist about the elastic axis
cannot occur.

For equations written in terms of 01 or 829 the infinite torsional
rigidity constraint is more involved. If 81 or e2 were simply set to zero
nonzero GJ coefficients would remain and the equations would break down.

+Instead, the GJ coefficient, equal to Ki - , must be set equal to zero
and used to eliminate 81 or 82. The following kinematic relations hold to
second order (see eqs. (46)):

X
-lim 81 = -J v"w'dx + 0(c 3 )

GJ- 0
(97)

lim 82 v'w"dx + O( 3 )
GJ- - f I

Then, the elastic torsion moment GJ(KI - 8) which is finite and not neces-
sarily zero, must be determined from the torsion equation and substituted into

are eliminated from the v and w equations. Finally, if the aerodynamic
pitching moment is not neglected, the virtual rotation in terms of v and w
alone must be determined from equations (24) or (38) and (97):

lim S*= (w"6v' - v"6w')dx + O( 3 ) (98)
GJ-0
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for ,ehther 0, or 62. The total effect of pitching moment is then in the terms
-(w"Jx MX dxl)' in the v equation and (v" fL Mx d 'i h qain

3 Ix d3 ' i h qain
It may be shown that these operations will yield a single set of equations in
v and w regardless of which variable 61 or 62 is used. The only second-
order term is the integral term correction to the pitch angle, the "kinematic
pitch rotation" term, first identified in reference 3. The other places that
the integrals appear are in third- and higher-order terms and not particularly
significant. Therefore, it is not correct to simply set 61 or 02 equal to
zero for general nonlinear analysis of torsionally rigid beams. In fact, when
any physical displacement variable u, v, w, el, 62 that is part of nonlinear
Euler-Bernoulli beam equations must be eliminated because of infinite axial,
bending or torsion stiffness, it must be done by a process similar to the one
outlined above. We have shown that u 0 0 when EA - -, and 01 0 62 0 0
when GJ -~ -. It is just as easily shown that neither v nor w vanishes when
the bending stiffness in that direction tends to infinity. A single set of
equations, consistent to second order, for a torsionally rigid rotating beam

* can be obtained by simply setting = 0 in references 4 and 5 or by going
through the process outlined above for either set of the equations in refer-
ence 8.

Another result of equations (97) is that three angles are required to
describe the general orientation of a reference frame in space. Thus, even
for infinite torsional rigidity it is possible for beam bending deformations
to place beam elements in such a position that transformations based on only
two angles cannot describe the orientation of a beam element. This is seen in
the example problem of section 4, in which three nonzero angles may be required
to describe the orientation of a beam element, despite the fact that Ki = 0.
The required third angles are given to second order by equations (97).

7. RIGID BEAM APPROXIMATIONS

When cantilevered elastic beams are modeled by an approximate system
that substitutes a rigid, hinged, spring-restrained rod for the elastic beam,
three degrees of freedom are often considered: t, an angular deflection in
the x-y plane (when 0 6 =0) or lead-lag; 6, an angular deflection out
of the x-y plane (when C~ 6 -0) or flap; and 6, the pitch angle (when
S= S = 0). The nonlinear equations for this case are especially interesting

because six different hinge arrangements can be defined which will lead to six
different sets of nonlinear equations (the linear equations being the same).
Simpler models, assuming no pitch degree of freedom, have been used in pre-
liminary investigations of helicopter rotor blade stability (e.g., ref. 23).
For this case there are two possibilities: flap-lag, where the lead-lag hinge
flaps with the blade, and lag-flap, where the flap hinge lead-lags with the
blade. The two hinge arrangements define two different physical systems with
different dynamic properties although the differences are not large. Differ-
ences in the stability of these two systems were identified and discussed in
reference 3, and reference 6 added further numerical results and extensive
discussion. It was concluded in reference 6 that two different sets of
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equations for a single elastic beam would result from different rotation
sequences and that this could be expected to influence the stability of the
elastic-beam model. This incorrect expectation was based on the correct obser-
vation that rigid-beam models with two different hinge arrangements exhibited
differences in stability. In fact, however, a single set of equations for an
elastic beam can be used to develop the exact equations for a rigid-beam model
with any hinge arrangement. In so doing one must carefully consider the
dependence of the v and w displacements on the hinge arrangement. Further-
more it can be shown that the sequence of rotations used to develop the equa-
tions is arbitrary for any rigid-beam hinge arrangement as well. For simplic-
ity we will perform these operations for a second-order analysis.

Let us assume first a lag-flap hinge arrangement with the lead-lag hinge
at the root and the flap hinge offset from the root at axial distance c.
The limit must be taken as c - 0 to recover the correct hinge arrangement
even for the coincident hinge model used in reference 6. The following dis-
placement functions are assumed

9

v f x, v' = , v"fi =0 x a 0 (99a)

but, so that the flap hinge lead-lags with the beam,

w = lim I= x x 2 0
'-O 8(x- C) x >

wt = i 0 x 5C 0 x = 0 (99b)w' =lim j =jx
C-0 1B X > C) 1 x > 0

w" = lim 8W() = 806(0) x 2 0

where 6() and 6(0) refer to the Dirac delta function. For a flap-lag
arrangement, we need to reverse the expressions in equations (99) so that

w = 8x ; w' = 8 ; w" 0 x Z 0

v= -x x 0

. 0 X (100)

vt
C' "I x > 0 I0

v" O6() x z 0

To reduce the elastic-beam equations in references 4 and 5 to the torsionally
rigid case we simply set * - 0. The resulti , equations would then contain
the integrals in equations (97) that have different values for the two hinge
arrangements defined by equations (99) and (100). Evaluation of the integrals
for the lag-flap and flap-lag hinge arrangements yields
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fo x v1w'dx v0

f0
for lag-flap: (101)

v'w"dx fX 86(0) dx =a

fo

for flap-lag: (102)f v'w"dx 0

The differences between equations (101) and (102) result in two different sets
of equations for the two different hinge arrangements, and these equations
are, to second order, identical to the rigid-blade equations derived in" reference 6.

For two degrees of freedom 0 and C and a given hinge arrangement, any
sequence of rotations (e.g., c1 , 81, 01 or 62, 2, 02) can be used to formu-
late the equations although it would certainly be more natural to use the
angles associated with rotations about the hinges. The reconciliation of
three angles with only two degrees of freedom is made by use of a holonomic
constraint equation that relates 0 to 6 and (ref. 10, p. 55). For
example, consider writing equations for a flap-lag hinge arrangement in terms
of C, , , instead of in terms 62, 2 (0 is not needed because the
axes about wh ch B2 and 2 occur are along t e hinge axes). Thus 62 = 0
and equation (40) yields

fJT12T13\82 =0= 61+ tan-lk T11  (103)

or

61 = -tan-I(sin 61 tan Ci) = -a1r 1 + O(C 3) (104)

In fact, as long as the proper constraint is accounted for, any set of vari-
ables can be used to write the equations for any physical hinge arrangement.
When the constraints are properly accounted for, the equations of motion for a
given physical hinge arrangement are equivalent, although different in appear-
ance, for any sequence of rotations used to describe the beam orientation.
The dynamic behavior of the system is then independent of the transformation
sequence used in describing the orientation of the blade. The equations and
dynamic behavior do, however, depend on the physical arrangement of the hinges.
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8.CONCLUSIONS

In this report the large deformation geometry for an Euler-Bernoulli beam
has been developed. Some aspects of the beam kinematics discussed in refer-
ences 3-8, 12, 16, and 17 have been clarified. The following points summnarize
the results of this study:

1. The large-deformation kinematics for an Euler-Bernoulli beam are
developed, including the transformation matrix relating the local principal
axes in the deformed state to space-fixed Cartesian axes, the components of
angular velocity and virtual rotation vectors, the torsion, and the componentE
of bending curvature. The values of all the geometric quantities are unique
at a given instant in time, but the form of the expressions themselves may
depend on the variables used in describing the orientation of the cross sec-
tion during deformation.

2. The angles C, a~, 61 are not the same as the angles 82, C21 82,
both sets of which are discussed in the text. Although the geometry is unique,
the use of the different sequences of rotations may change the appearance of
the geometric expressions.

3. The exact expressions for the large-deformation geometry that are
* derived in this report do not depend on the sequence of rotations used in

defining the beam cross-section orientation. Some of these quantities were
also derived previously in references 3-5.

4. The stability and dynamic behavior of an elastic beam are not depen-
dent on the choice of angles used to describe the orientation of tho local
beam cross section during deformation. In fact, the two sets of equations
derived in reference 8, based on two different sets of angles, are shown to be
equivalent to each other and to the equations of references 4 and 5.

5. The exact relationship of the pitch rotation angles 0 iand 02 and
the elastic twist angle *, established in reference 3, is veririeu along with
the exact transformation matrix first derived therein. The integrals asso-
ciated with these quantities are correct as originally derived in reference 3,
and serve to show that there can be a kinematic pitch rotation of the beam
cross section that depends on bending alone, even when there is no pretwist
and no elastic twist.

6. The kinematic pitch rotation due to bending only that may occur even
in torsionally rigid beams is seen to be mathematically analogous to a kine-
matic shortening that may occur even in axially rigid beams due to bending
only. The torsion variable * used in this report is the elastic angle of
twist, which is devoid of kinematic pitch rotation due to bending alone. Its
mathematical analog is the axial deflection due to longitudinal strain of the
elastic axis ue, which is devoid of kinematic axial deflection (foreshorten-
ing) due to bending only.

7. Both the elastic twist angle *and the axial deflection due to
longitudinal strain of the elastic axis ue, because they are related to
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physical deflections through integrals and have integrals of angular velocity
and velocity components for kinetic analogs, belong to a certain class of
variables called quasi-coordinates. They have both been used in Hamilton's
principle without the rigorous justification provided in this report. Although
not previously established, their use in references 4, 5, 8, and 19-21 is
found to be valid.

8. Three angles are shown to be required in general to describe the local

cross-section orientation for an elastic beam, even if the torsion stiffness
is infinite. Only one set of equations exist for bending deflections v and
w of an inextensional, torsionally rigid Euler-Bernoulli beam, regardless of
the three angles used in the derivation.

9. When the proper mathematical limits for different hinge arrangements

in a hinged rigid-beam model are imposed on the elastic-beam equations with
rigid-body mode shapes, the correct hinged, rigid-beam equations, for each

* particular hinge arrangement, are obtained.

10. Any three angles can be used to describe the orientation of any
hinged, rigid body as long as the constraints that relate the rotations about
the hinges to the variables in the derivation are properly accounted for. Of
course, it may be more natural to use the physical angles as variables. It is,
therefore, not the transformation sequence that influences the dynamic
behavior - it is the physical arrangement of the hinges.

11. The bending curvatures, torsion, and [T] matrix are developed in the

appendix for six possible sequences of the angles ;, 8, and 9. Since values
of the torsion and elements of the [T] matrix are fixed at a given instant in
time, a change of variable may be found from either quantity to relate the
geometry from any one sequence to that of any other.

Ames Research Center
National Aeronautics and Space Administration

and

Aeromechanics Laboratory
AVRADCOM Research and Technology Laboratories

Moffett Field, Calif. 94035, Sept. 28, 1979

41

I

41



APPENDIX A

KINEMATICS FOR OTHER SEQUENCES

In the text, the development was restricted to only two of the six pos-
sible sequences of rotations C, 8, 6. In the appendix we will present expres-
sions for the [T] matrix, the bending curvatures, and the torsion for all six
possible sequences of rotations: (1) r1, Bi, 01; (2) 82, C2, e2; (3) C3, 03,
83; (4) 04, e4, C4; (5) 05, 5' $ ; and (6) 66, 86) C6. The necessary changes
of variable to demonstrate equivalence can be formulated from the torsion and
then the elements of [T] can be shown to be equivalent for all six sequences.
Alternatively, the change of variable can be formulated from the T2 3  elementof [T] and then the torsion and bending curvatures can be shown to be equiva-
lent for all six sequences. It is the second approach that is employed here.

We will make use of equations (5) extensively, which we repeat here for
convenience

(x+ u)+ =T 1 1

v+ = T12  (Al)

w+ =T1 3

These relationships hold for all possible sequences and types of rotations.
The [T] matrix, the bending curvatures, and the torsion are now presented for
each of the six sequences.

(1) i, 81, 0j.- The [T] matrix is

c c B~ s BBi B ~ 8

[T]= -c1 s -s c c c -6 C8 s6 c8 s (A2)

Icl s +56 5l se c8 s s c6  c6C1Sa1c i + SeiScI eSl Cl i i S 6S1@ ce,

The bending slopes are, from equation (Al)

v+ c8 si ; v' - Ci + 0(E3)(

w+ -s ; w' - a + 0W) (A3)

The rotation rate vector is

K~~~ = -8crJ-sI)+e i I + KJ + k (A4)

42
/7.

* s

. . . . . . . . . . . . . . . . - - - - - - -



'-

Thus

+ + C + ' + v"w' + 0(C3)

+ +C = -w" + 0 1 v" + o(C 3 ) (A)Ke + 181 1

K + = VI' + e1w" + O( 3 )Kk = 1s~ 1 c1l

(2) 82, 42, e2.- The [T] matrix is

c 2c8 2  s 2  c2sB2

[T] -c 2 -c2 s 82 se 2  c82 c2 se2cS2 - c2s 2s 82 (A6)

- s s~ -S , s +0 c
a s82 c 2  s 2 2 2  se2c 2  a2 s 2 C2 B2 ce2

The bending slopes are, from equations (Al)

v+  s v' C 2 + O(C 3)
= s¢2(A7)

2
W+ =c s ; W 82 + O(c 3 )

The rotation rate vector is

K -8tJ + +(c2K - s2I ) + +i = K 1 + K J + K k (A8)
2i k

Thus

Ki M 8+s2 - v'w" + 0( 3 )•Kff 2  2 =2 2

-j 8e +" + e 2 v + O(c3) (A9)

+ + + O 3
Kk - C2 C0 + 2 SC = VII + w + 0(C
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(3) 39 e3 0 3* The [T] matrix is

c 33 C 3 + s 03 so 3 s C3 c 63 s 3  s 03 s e3 c C3  c 3s 03 .

[T] - -c 83s  3  c 3Cc C3 83 (A0)

cS + c ss s3c s ccc, () CC I3

+ 6 SS - 6 S6 C - S6S~CC

The bending slopes are, from equation (Al)

= 3 - s ,3so 3
c 

3 ; v' fi - 83 3 + 0(E
3)

(All)

W+ = c0 3s l3  w 3 + O( )

The rotation rate vector is

K = 3" + 0+(c I + s J)- a+i = K i + K j + Kkk (A12)

Thus

K + + v"w' +( 3)
i = 3C 3 3 + 3

K. + + -w" + a3 V" + 0(c3) (A13)

K - 6+ = v" + 6 W" + o( 3)
k =3C 3 3S33 3

(4) 4, ,C4"- The [T] matrix is

c c - s 4ss s c c s + s s 6 4 6 4

[T] -s c - s c s c c -S s + c s c (A14)
CTI 4 4 4 44 4 C4 4 4 4 C 4 641

-c s^5 -S chC
64a 4 64 64

The bending slopes are, from (Al)

V -S 4 co04 V 4 + O )(A 5)

W+ f c s + s s.c_ ; Vt a4 1 4 + C4e4 + 0(c 3)

~4 64 4 u4I

--, 44
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The rotation rate vector is

' -B:J + 6+ C1 + S8 J) + < K Lci + K j + ,kk (A16)

Thus

+ +
Kt = 8c + -s ;c- - ' -v'w" + O(W3

+ -- +s = -w" + E4v" + 0(
3) (A17)

+" +S ~
+ 8+ vIt + 8 w" + O(E3)

4

(5) 05, 5' 8.- The [T] matrix is

Sc8 c c 8 5sC 0 - s 8 5s 5 c 8 SS + s c
85 05

[T]= -s c C 0  c (AI8)5 c c 5  5s05

-c 5 s8 5 -C 8 5s85- sas 5s5 5 c 5C 5 - 5 5 0 5

The bending slopes are, from equations (Al)

v+ = c5s5 sss - 8505 + °(E3)

(A19)
W+ + s 5 8 + 85 + C505 + O(E 3)

The rotation rate vector is

eK 5 + - s - 5 j Ki + + Kkk (A20)

Thus

+ +
i a5c 8 c5 + s8 5 =0+v"w + 0()

5 5 5

+ -+ II+3
-, -+ ^+ ' 0 (E (A21)

j 5 545

55K C+c 5 + uc 585 =vI + 6 SW + OW
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(6) 06, 869 6 6 The [T] matrix is

c 6 c8 6  s5;c06- c 6s8 S06  s6s6 +c 6s 6c0
[TI = - c c s s s cs - s s8 c_ (A22)

C;6 a6 C 606 6 86 6 6S 6 r'6s 6 06

-sa6 -C86 S 6  C 8c6 c6

The bending slopes are, from equation (Al)

-C CSS ; v' = 6- 8666 + 0(s3)'v+ = s( 6c06 cC6s6s06C

(A23)w+  =s s + c 6 + 606 + o( 3) !,,IC 6 06 C6S 6 86

, The rotation rate vector is

6 ~ 6 (cJ +es 6K 6 1 j k

Thus

K= a+c c - 8 + s v'w" + (63)
6i 6 a6 6

K -a - f6s C a -w" + 66v" + O(3) (A25)= -6 4 6 @6 6C6

K C6 - 6 v11 + 06w" + O(E3)

Demonstration of Equivalence

It can be shown that changes of variables constructed from equating three
elements of the [T] matrix for any two sequences will lead to identical expres-
sions for bending curvatures and the torsion. Only one example is presented
for illustration - the equivalence of (1) and (2). For convenience we choose
to obtain the change of variable from T2 3. From equations (Al), (A2),

* and (A6), the following relations hold:

,. ~~v+ .f C8  f
BISCI mSC2

W+ fi S cs (A26)
6  = C 2 82  -2

T23 al 6 8
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Differentiation of equations (A26) yields

+ + = +I 81C~ 81 s IS ~ = 2

+ +_ +

IC~ = 2C C82 2S S82(A27)c+ c c +sssS
1 2- 22 29

eC C8 - I s = 0)2 @2c 2+s@s~ ~) (ss2s,2s,2 2

+ 0 2 2 0 2 ) 2  2 2

Thus

c -- / - s = 1 - c 2  S21 27, C2 B2

s C2C

42 s - 2 2
-C2 S 2 

2

c S
2 2

C
T2 1 c2S (A28)

- C2 7 2 2

S = /1-s 2

- 2 62

C02 c2 +s2 S2S62

Ce1 - l71 - c 2 s 2

C2 02

SI

+.9



Substitution of equations (A28) into (A27) yields

+ 2 C2a2 - s2 s 2

1 - c 2 s 2

C2 a2

+ s sB s 2 2ca8 - C2 s S2s

+ + +55 -+2s 5

c+ 2 2C 2  2 *

1 = - 1-c 2 s 2

* C2 a2

* Substitution of equations (A27) through (A29) into equations (A5) yields for
K.1

+ + [ - +
+ s + . ... 2 6 2 c 2ss
2. - 2 2 a2 C2 +2 +2 sC2 + 2 2 a 2 2 2)]28 2 C 2 S2  2 SB2S2 i C2 S2

c
2  L2 k2 C 2 a2

0+ - s a+ (A29)
2 2 2

which is identical to the expression for Ki in equations (A9). The bending

curvatures also transform identically. Similarly, the other four

sequences (3)-(6) can be shown to be equivalent to (1). The changes of

variable to second order may be determined by inspection, which proves that

all six sequences are also equivalent to second order.
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cnabL-3Nonlinear expressions are developed to relate the orientation of the
deformed-beam cross section, torsion, local components of bending curvature,
angular velocity, and virtual rotation to deformation variables. These
expressions are developed in an exact manner in terms of a quas-coordinate
in the space domain for te common use he iTentire formulation is
independent of the inte patc e three rotations used to describe the ori-
entation of the deformed-beam cross section. F rore common cases in the
literature in which one of the three rotation angles is used as the torsion
variable, the resulting equations depend on the choice of the three angles.
Differences in the equations, however, are demonstrated to be in form only.
The present deformed-beam kinematic quantities are proven to be equivalent
to those derived from various rotation sequences by identifying appropriate

changes of variable based on fundamental uniqueness properties of the

deformed beam geometry. This development helps to clarify the issues raised
uyin the literature concerning the choice of the angles. The torsion variable

used herein is also shown to be mathematically analogous to an axial deflec-tion variable that has been commonly used in the literature. Both variables
are'quasi-coordinates in the space domain and have been used in derivations
based on Hamilton's principle, despite lack of rigorous justification.
Rigorous applicability of Hamilton's principle to systems described by a
class of quasi-coordinates that includes these variables is formally
established.I----_ _
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