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ON CONSTANT WEIGHT CODES AND HARMONIOUS GRAPHS

by

R. L. Graham
N. J. A. Sloane
Bell Laboratories
Murray Hi1l, N.J. 07974

Introduction

Very recently a new method has been developed (see
[3], [5], [6]) for finding lower bounds on the maximum
number of codewords possible in a code of minimum distance d
and length n. This method has led iﬁ turn to a number of
interesting questions in graph theory and additive number
theory. In this brief survey we summarize some of these
developments.
Background

By a code C of length n over a finite field
F = GF(q) we mean a subset of Fn, i.e., a set of n-tupies
with entries in F. The most common choice for F is GF(2),
and we restrict ourselves to this case for the remainder of
the paper (although the same techniques apply to all finite
fields). In this case C is called a binary code.

The minimum distance of C is defined to be

min d(X,Y)

X#y
where x = (x15+++5%,) and y = (ys+++5¥,) range over all
pairs of codewords (= elements of C) and d(x,y 1is the

Hamming distance between X and y given by
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a(x,y) = l{k:xk#yk}f.

The weight of a codeword X, denoted by w(x), is defined to
be its distance from 0 = (0,0,...,0) (which may not be in C).
Two basic quantities studied extensively in coding

theory are:

A(n,d) = max{|C|: ¢ is a binary code of length n and

minimum distance d}
and

A(n,d,w) = max{|C|: C is a binary code of length n and
minimum distance 4 with all codewords of

weight w}.

(For a fuller treatment of these topics the reader is
referred to [11].)

Many upper bounds and some lower bounds for both
A(n,d) and A(n,d,w) are available in the literature. For
a survey of these the reader is referred to [1] and [5]. In
Tables 1 and 2 we give some small values of these functions.
Since A(n-1,26-1) = A(n,28) we only list values of A(n,d)
for 4 even.

We should point out that the function A(n,d,w) has
been studied under another guise in extremal set theory by
Erddés, Hanani, Kalbfleisch, Schdnheim, and others (see [4])
in the following context. For given 1n€egers t, ky, v, let

D(t,k,v) denote the maximun number of k-element subsets of
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a v-element set S such that every t-element subset of S is
contained in at most one of the k-element subsets. In fact,

it is easy to see that

We also note for future use that if w(x) = w(y)

then d(x,y) must be even. Hence




A(n,28-1,w) = A(n,28,w).

Bounds on A(n,d,w)

While our primary concern will be with lower
bounds on A(n,d,w) we mention here for purposes of comparison
one of the best upper bounds known (due to S. M. Johnson {91,

F30})). It ‘i«
n w
Bimatal (w-5+1)/(w-5+1)'
From this it follows that, for fixed § and w,

§ W=0+1

(1) A(n,26,u) < (1+0(1)) {&=liin as n - =,

Of particular interest 1s the special case 8§ = 2, when the

upper bound becomes

2) An, b, < =L (7).

The following three theorems were given in [5].

Theorem 1. 3

(3) A(n,b4,w) > % (3).

—

Proof: Let Fﬁ denote the set of (3) binary codewords of

length n and weight w and let zn denote the integers modulo

n. Consider the map T:FS > Zn given by

i AW s S
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(4) T(x) = 2 i (mod n)

x1=1

for x = (X150005%) € Fﬁ. For 0 < 1 < n-1, let C, be the
code T'l(i). Of course all codewords of Ci have weight w.

We claim that the distance between any two distinct codewords
of Ci is at least 4. For suppose not, i.e., suppose

Xy 7 £ Cys X # ¥, with d4(X,¥) < 4. Thus d(x,y) = 2. This
implies that x and y agree in all but two components, say

the r-th and s-th components where x_ = 1, yr = 0 and

r
¥ = By f = i s B

Tlx) = T(y) = § 8o that
T(x) =a+r =1 (mod n),
T(y) = a + 8 £ 1 (mod n)

for some a € Zn. This is impossible since r and s are
distinct integers between 1 and n.

Since
ICOI $2 e ICn_ll = (3)
for at least one j we have
legl 2 & ()

and the theorem is proved.

Note that thls theorem 1s not completely construc-

tive since we are unable to specify which j it is which has




ICJI large. A computer search of small cases indicates that

any J 1s probably satisfactory asymptotically, i.e.,
[eslale [+ 3

for all i, j as n + =,
The preceding proof is based on a method given by
B. Bose and T. R. N. Rao in [3] in which they prove the

slightly weaker bound

A4 2 527 (3)-

The case of general § is considered in the next
result.

Theorem 2. Let q > n be a prime power. Then

A(n,28,w) > Gil (n).

Proof: The proof has a similar structure to that of
Theorem 1. Let us label the elements of GF(q) by

wO’“l""’“q-l' Define a map
T:Fz > GF(q)G-_l
by

T(;) = (Tl(;) ’T2(;) 300 ’TG-l(I))

where




X,=x,=1

[l
€
e
€

T3(x) =
i1<j<k

x1=xJ=xk=1

for X = (xl,...,xn). For each (8-1)-tuple

VoE (VyseeasVs 1) € 6F(q) %1 1et
= -l-
e n T oln).

Thus, for some V,

1e5l 2 qsil (w)-

We claim that CV has distance 26. Suppose not, i.e., supnose

there exist x, ¥ ¢ €5y X # ¥y, with d(X,y) = 2y < 26-2. Thus

there are 2§ distinét coordinates rl,...,rY, sl,...,sY

that
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and x; =y, for all other 1. Since T(x) = T(y), the first

§ elementary symmetric function °J’ 0.8 < 8«), oF

{w_ 5.e.5w_ } and {w_ ,...,w_ } agree. Thus the polynomial
ry r. s, s,

Y
1 0 X AR e O GY

has all the W, and wg as roots. This is impossible since
i

in any field a polynomial of degree m cannot have more than

m roots. This proves the theorem.

Another Construction

Let us call an n-element subset S CZ an

St-set of size n and modulus m if all the sums

with il < 12 e e RIS it are distinct modulo m. These sets

have been studied in the combinatorial literature (see [7])

and can also be used to obtain good lower bounds on

A(n,28,w).
Theorem 3. If there exists an Sa_l-set of size n and modulus
m then
A(n,28,w) > l'(n)
AR ~m\w/°
The proof is similar to that of Theorem 2 but using
the map




T:F" - 2

given by

T(x) = 25 sy (mod m),

i
As before, the codes are Ci = T-l(i), one of which must have
ly/n
as many codewords as the average 7 (w).

From known results for St-sets it follows that if

Q@ > n-1 1s a prime power and § > 3 then

-1l /n
(5) A(n,28,w) > ;%:I ()

Harmonious Graphs

Note that if S is an St-set of size n and modulus

m then

(6) m > (:).

For the remainder of the paper, we restrict ourselves to the

case t = 2. Equation (6) then becones

{6F) mi(g).

Equality can be achieved in (6') for small n by the

following examples.

e A e

e ekl il 3w




S = {0,1} for n=2, m= 1,

85 =

= {0,1,2} forns=3, m= 3,

wn
]

{0,1,2,4) for n' = 4, m = B,

However these are the only values of n for which equality
can occur.

We can translate this situation into the following
equivalent form. S is an Sz—set of size n and modulus (2)
iff it 1s possible to label the vertices of Kn’ the complete
graph on n vertices, with the elements of S so that if each
edge of Kn is assigned the sum modulo (;) of the two values
assigned to its endpoints, then all edge values are distinct
(and so represent a complete residue system modulo (2)).

In Figure 1 we show the labelled complete graphs correspond-

ing to the three extremal sets S given above.

Flgure 1

This interpretation prompts the following definition (see
[6] for further information):

Definition. A graph G with e edges is called harrmonious

if it is possible to label the vertices,of G with distinct




values from ze so that every element of ze occurs uniquely
as an edge sum of G.

For example, we show in Figure 2 a harmonious
graph with 7 vertices and 17 edges. It turns out (see [6])
that this 1s the maximum number of edges a harmonious graph

on 7 vertices can have.

A Harmonious Graph with 7 Nodes and 17 Edges

Figure 2

In Figure 3 we give the connected graphs on at

most 5 vertices which are not harmonious.

OME DS A

Nonharmonious Graphs

Figure 3
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A curious geometrical interpretation can be given
to the condition that a graph G be harmonious. Let Pe
denote a fixed regular e-gon embedded in the plane. Then G
is harmonious iff the vertices of G can be embedded into the
vertices of Pe so_that no two edges of the embedded cony of
G are parallel. This follows from the observation that if
the vertices of Pe are labelled cyclically by 0,1,...,e-1,
then the direction of the chord joining i and j depends only

on i + j (mod e).

A related concept which has appeared frequently

in the graph theory literature is that of a graceful graph
(see [2]). A graph G with e edges is said to be graceful

if it is possible to assign distinct values from {0,1l,...,e}
to the vertices of G so that the absolute values of the edge

differences are all distinct (and therefore all values in

{1,2,...,e} occur uniquely). 1In Figure 4 we list the

connected graphs on 5 vertices which are not graceful.

>

Nongraceful Graphs

Figure 4

While it can be observed that Figures 3 and 4

contain two common graphs, in general the concepts of being




graceful and being harmonious are rather independent. For

example, cycles of length n have the following properties:

n (mod 4) harmonious graceful

0 no yes
1 yes no
2. no no
3 yes yes

Similarly, complete bipartite graphs, which are
known to be graceful, are never harmonious. This result has
a remarkably short proof.

Theoren 4. Kr,s is not harmonious.

Proof: Suppose a harmonious labelling of Kr 5 exists. This

is equivalent to a direct sum decomposition of er = A®B
where A and B are disjoint subsets of Z__ with |A] = pr,
|IB] = s. Since all a + b (modulo rs), a € A, B .€ B, are

distinct then so are all differences a - b (modulo rs). But
there are |A||B| = rs differences. Hence 0 = a - b must

occur exactly once and therefore A and B are not disjoint.[]

We extract an interesting corollary from the proof.

Corollary. IfZ_ = A ®B then |[AB| = 1.

In fact most graphs are neither harmonious nor
graceful. Ilore precisely, 1t can bé shown using the
probability method (see [6]) that the fraction of all graphs
on n vertices which are harmonious (or graceful) tends to
0 exponentially with n.

Let us define H(n) to be the maximum number of

edges a harnonious graph on n vertices dan have (with G(n)

i AL S A
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defined similarly for graceful graphs). In Table 3 we list

some of the known values.

n H(n) G(n)
2 It 1
3 3 3
4 6 6
5 9 9
6 13 13
7 17 17
8 24 23
9 30 29
10 36 36
Table 3

Asymptotically it can be shown [6] that

Tg n® < HIn) £ % n°,

It is especially annoying that we cannot prove that
Hnm) < % - e.n2 for some € > 0. The lower bound depends
on recent results of H&mmerer and Hofmeister [7] who showed

that it 1s possible to select n nonnegative integers

e
a; < 85 < ... < a, such that all integers up to g N can

be represented as ay + aJ.
Some Questions

(1) A well known conjecture of Ringel and Kotzig
asserts that all trees (= acyclic connected graphs) are
graceful. We make the corresponding conjecture that all trees
are harmonious, where we have to modify the definition
slightly so as to allow one vertex label to be repeated.

This is true for all trees with at most nine vertices.
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% " (2) Is there a polynomial-time algorithm to
? determine if G is harmonious? We conjecture that there is
not.

(3) Is H(n) ~ en?? Is c < 1/2? We think that
the answer to botﬁ questions is in the affirmative.

(4) How large must m be for an St-set of size n
and modulus m to exist? For t = 2, it is known that the
answer is (1+0(1))n°. We conjecture that m > (1+40(1))n°.

' (5) What is the value of A(n,d,w)? From our
results it follows that (1+o(1)) Eﬂ%::i < A(n,26,w) <
(6-1)!nw-6+l 3
(1+0(1)) ¥ . The upper bound is known to be
correct if w = 4 and § = 2 or 3. Is it always correct?
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