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Abstract.

Very recently a new method has been developed for finding lower

bounds on the maximum number of codewords possible in a code of minimum

distance d and length n . This method has led in turn to a number

of interesting questions in graph theory and additive number theory.

In this brief survey we summarize some of these developments.
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ON CONSTANT WEIGHT CODES AND HARMONIOUS GRA PHS

- by

R. L. Graham
N. J. A. Sloane

Bell Laboratories
Murray Hill , N . J .  O797~4

In troduct ion

Very recently a new metho d has been developed (see

[3] , [5] , [6]) for finding lower bounds on the maximum

number of co dewords poss ible in a code of minimum distance d

and length n. This method has led in turn to a number of

interesting questions in graph theory and additive number

theory . In this brief survey we summarize some of these

developments.

Back groun d

By a code C of length n over a finite field

F = GF( q ) we mean a subset of Fri
, i.e., a set of n—tuples

with entries in F. The most common choice for F is GF(2),

and we restrict ourselves to this case for the remainder of

the paper (alt hough t he same techn iques apply to all f inite

fields). In this case C is called a binary code .

The minimum distance of C Is defined to be
4

m m  d ( x ,y)
x#y

where i = (x 1,...,x~) and ~ = (y 1,.. ~~~~ range over all
pairs of codewords ( elements of C) and d(iE,~~

’ is the

Hamming distance between ~ and ~ given b~i

L~. .
: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
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6

d(~ ,~ ) = If k:x k#y k }I .
S

The we ight of a codeword ~~, denoted by w(i), is def ined to

be Its distance from 5 = (0,0,... ,O) (which may not be in C).
Two basic quantities studied extensively In coding

theory are:

A (n,d ) max{~ C~~: C is a binary code of length n and

minimum distance d}

an~d

A ( n ,d,w) max flC~~: C Is a binary co de of length n and

minimum distance d w ith all co dewor ds of

- 
‘ weight w}.

(For a fuller treatment of these topics the reader Is

referred to [ii].)

Many upper bounds and some lower bounds for both

A (n ,d ) and A (n ,d ,w) are available in the literature. For

a survey of these the reader is referred to [1] and [5]. In

Tables 1 and 2 we give some small values of these functions.

Since A(n—l,26—l) = A(n ,26) we only list values of A(n ,d)

for ci even.

We should point out that the function A(n,d ,w ) has

been studied under another guise in extremal set theory by

Erdös, Hanani, Kalbfleisch, Schörihelm , and others (see Pi])
in the following context. For given Integers t, k, v, let

D(t ,k,v) denote the maximum number of k—element subsets of

- . 
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I
n~ d ‘4 6 8 10

6 ‘4 2 1 1

7 8 2 1 1

6 16 2 2 1
9 20 14 2 1
10 140 6 2 2
11 72—79 12 2 2

12 i’41i~ i53 214 ‘4 2

A(n ,d)
Table 1

n~w 2 3 14 5 6 7

14 2 1 1 0 0 0
5 2 2 1 1 0 0

6 3 ‘4 3 1 1 0

7 3 7 7 3 1 1
8 Li 8 114 8 14 1

9 14 12 18 18 12 Li

10 5 13 30 36 30 13
11 5 17 35 66 66 35
12 6 20 51 714~ 8’4 132 73— 8)4

A ( n ,-Ll ,w)
Table 2

a v—element set S such that every t—element subset of S Is

- 
. contained In at most one of the k—element subsets. In fact ,

it is easy to see that

D (t ,k,v)  = A ( v ,2k—2 t+2 ,k ) .

We also note for future use that If w(~ ) = w(~~)

then d(x,y) must be even. Hence

_ _  ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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A (n,26—1,w) = A ( n ,26 ,w ) .

Bounds on A(n,d,w)

While our primary concern will be with lower

bounds on A(n,d,w) we mention here for purposes of comparison

one of the best upper bounds known (due to S. M. Johnson [9],

• [10]). It is

/ n ~~~I wA(n,26,w) <

Fron this it follows that , for fixed 6 and w ,

w—IS+1
(1) A(n,25 ,w) < (l+o(l)) as n -~~

Of parcicular interest Is the special case 6 = 2, when the

upper bound becomes -

(2 ) A (n,14,w ) < 

~~~~~~~~~~~~~~ 
(c).

The following three theorems were given in [5].

Theorem 1.

(3) A(n ,11,w) > 

~~~ 
(c) .

Proof: Let F~ denote the set of (~~~) 
binary codewords of

length n and weight w arid let Zn denote the Integers modulo

n. Consider the map T:P~ + Z~ given by

S

-
.
_ _ 

_ _  
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• (14 ) T(i)  = I (mod n)
x1 1

for ~ = (x 1,. ~x~
) c F~ . For 0 < I < n—i, let C~ be the

code T~~ (i). Of course all codewords of C1 have weight w.

We claim that  the distance between any two distinct codewords

of C1 is at least 4. For suppose not, i.e., suppose

x , c C1, x # y, with d(x ,~ ) < 4. Thus d(~~,~~) = 2. This

implies that  i and y agree in all but two component s, say

the r—th and s—th components where X
r 

= 1, 
~r 

= 0 and

x5 3, 
~r

= 1. But

T ( x )  = T(~
’) = i so that

T ( x ) = a + r~~~ i (mod n),

T (y)  = a + s I (mod n) -

for some a c 
~~~~~~~

. This is impossible since r and s are

d i s t i nc t  integers between 1 and n.

Sinc e

iC 0 1 + ... + IC n_i I = 
(

~~~~)

for at least one j we have

IC j~ ~~~~~
and the theorem is proved .

Note that this theorem is not completely construc—

tive since we are unable to specify which j it is which has

6
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/

I ~~~ large. A computer search of small cases indicates that

~~ j Is probably sat i s fac to ry  asymptotica l ly ,  I . e . ,

Ic il/ ICil + 1

for all I, j as rm -
~

— The preceding proof is based on a method given by

- B. Bose and T. IL N. Rao In [3] In which they prove the

slightly weaker bound

- A (n,4,w) > 

~fr (c) .

The case of general 6 is considered in the next

result .

Theorem 2. Let q > n be a prime power . Then

- A (n,26,w) > 

q 6
~~

1

Proof: The proof has a similar s t ruc ture  to t hat of

Theorem 1. Let us label the elements of GF(q) by

Define a map

T:F~ G F ( q ) 6
~~

by

T(i) = (T 1(~~) , T 2 (~~) , . . . , T6 1 (~~) )

where

7

-

~

- -



_ _ _

~~~~~~~~~~~~~~~~ 

_ _ _ _  

- —

~ :=

- V.
T1(x )  = L ~i’

x1 1

- T 2 (i) =

i <j
X
1 X

j  
].

T
3
(i) =

i<j<k -

X
1

X
j  

Xk l

for i = ~~~~~~~~~~~ For each (6—1)—tuple

= (v 1,. . .,v6 1 ) c GF(q) 6
~~ let

C
~ 

= T~~~(~~) .

Thus , for some

— 

) C ~~ 
~ q 6

~~
1

We claim that C~ has distance 26. Suppose not, i.e., suppose

there exist 3~, ~ c C~ , ~ # ~~~~, with d(i,~7) = 2y < 26—2. Thus

there are 26 distInct coordinates r1,...,r
1
, s1,...,s,~, such

that

r = = ~ r = = . . . = y = 0

8 
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and x 1 = y 1 for all other I. Sinc e T(~~) = T(~~) ,  the f i rs t

S 6 elementary symmetric function 0 < J < 6— 1 , of

r1’” ” ~r~~ 
and {w 5 ~~~~~~~~~~~ agree . Thus the polynomial

x~ — o1x~~~ + ~2x~~
2 

— ... + (_ l )~~a~

has all the w and w as roots. This is Impossible sincer1
- - in any field a polynomial of degree m cannot have more than

m roots. This proves the theorem.

Another  Cons t ruc t i on

Let us call an n—element subset S C an

Se
_ set  of s ize  n and modulus m if all the sums

5 .  + 5  + . . . + S it

w i t h  i ]~ < 12 < ... < are d i s t inc t  modulo m. These set s

have been studied in the combinatorial literature (see [7])

and can also be used to obtain good lower bounds on

A ( n ,26,w ) .

Theorem 3. If there exists an S6 1—set of size n and modulus

m then

A(n,26,w) > 

~~~ 
( c ).

The proof is similar to that of Theorem 2 but using

the map

_ _ _ _ _ _  

9



T:?
~~~~~~m

given by

- T(~~) = ( mod r n ) .

As before , the codes are C~ = T~~~( i ) ,  one of which must have
as many codewords as the average 

~ 
(c).

From known resu l t s  for St _ set s it fol lows that  if
q > n— i is a prime power and 6 > 3 then

(5) A(n ,26,w) > ~~~~~~~~~~~ 

( ri) .
q — l

Harmonio us Graphs

Note t hat if S is an St _ Set of size n and modulus
m t hen

(6)

For the remainder of the paper, we restrict ourselves to the

case t = 2. Equation  (6) then becomes

- in(b’) m > ~~~2

Equal i ty  can be achieved In (6’) for small n by the
following examples.

-1 . 
10 

•
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S = {O , l} for n = 2 , m = 1,

S = { O ,l,2} for n = 3, m = 3,

- S = (0,l,2,)4 }  for n = 14 , m = 6.

However these are- the only values of n for which equality

can occur .

We can translate this situation into the following

equivalent form. S is an S
2—set of size n and modulus (~

)
1ff it is poss ib le  to  label the  vert ices of Kn~ the comple te

graph on n ver t i ces , w i t h  the elements of S so that  if each

edge of K n Is assigned the  sum modulo (
~

) of the two values
assigned to i ts  endpoints , then  all edge values are d i s t inct

(and so represent a complete  res idue system modulo (~)) .
In Figure 1 we show the labelled complete graphs correspond-

ing to the th ree e~ tremal sets S given above.

2,Q~1

K 2 K 3 K 14

Figure 1

This interpretation prompts the fol lowing de f in i t ion (see

[6] for further information):

D e f i n i t i o n . A graph G w i t h  e edges Is called harmonious

‘S if it Is possible  to label the ver tIces~ of 0 w i t h  d i s t i nc t

~

--

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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t
values from Z e so that every element of Ze occurs uniquely

as an edge sum of 0.

For example , we show in Figure 2 a harmonious

graph with 7 vert ices and 17 edges . It turns out (see [6])

tha t th is is t he max imum number of edges a harmon ious graph

on 7 vertices can have. 0
13 

8 2 
1

1)4

15 9
- 

0 3

8 10 
- 2

11 16

12 6 5

14 3
A Harmonious Graph w i th  7 Nodes and 17 Edges

Figure 2 -

In Figure 3 we give the connected graphs on at

most 5 vertices which are not harmonious.

L1N~~~~~G~~~~~1~
‘I - Noriharmonious Graphs ,

FIgure 3

—- . _
_ _

~~ ---- -- - - - - - - ‘  
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A curious geometrical interpretation can be given

to the condition that a graph G be harmonious. Let

denote a fixed regular e—gon embedded in the plane . Then G

Is harmonious 1ff the vertices of G can be embedded into the

vertices of 
~e 

so that no two edges of the embedded copy of

G are parallel . This follows from the observation that if

the vertices of 
~e 

are labelled cyclically by 0,1,...
therm the direction of the chord Joining I and j  depends only

on i + J (mod e ) .

A related concept which  has appeared f requent ly

in the  graph theory literature is that of a graceful graph

(see [2]). A graph G with e edges is said to be graceful

if it is possible to assign d i s t inc t  values from {0 , l , . .  . ,e}

to the vertices of G so that the absolute values of the edge

differences are all distinct (and therefore all values in

(1,2,. ..,e} occur uniquely). In Figure 14 we list the

connected graphs on 5 vertices which are not graceful.

Nongraceful Graphs

FIgure 4

While It can be observed that Figures 3 and ~4

contain two common graphs, in general the concepts of being

13
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graceful and being harmonious are rather independent . For

examp le, cycles of length n have the following properties:

n (mod 14) harmonIous graceful

0 no yes
1 yes no
2 . no no
3 yes yes

Similarly, complete bipartite graphs, which are

known to be graceful, are never harmonious. This result has

a remarkably short proof. -

Theoren 14~ s is not harmonious .

Proof: Suppose a harmonious labell ing of Kr s  ex i s t s .  This

is equivalent to a direct sum decomposition of Z = A • Brs
where A and B are disjoint subsets of Zrs with !A I = r ,

I B I  = s. Since all a + b (modulo rs) , a c A , B c B , are

distinct then so are all differences a — b (modulo r s) .  But

there are J A I ~BI = rs differences. Hence 0 = a — b must

occur  exac t ly  once and therefore A and B are not disjoint . U
We extract an interesting corollary from the proof .

Corollary. If = A e B then IN~3 I = 1.

In fact most graphs are neither harmonious nor

graceful .  Ilore precisely,  it can be shown using the

probability method (see [6] ) that the fraction of all graphs
on n vertices which are harmonious (or graceful) tends to

0 exponent ia l ly  wi th  n .

Let us def ine  H ( n )  to be the maximum number of

edges a harmonious graph on n vertices dan have (with G(n)

114
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defined similarly for graceful graphs). In Table 3 we list

some of’ the known values.

n H(n) 0(n)
2 1 1
3 3 3
14 6 6
5 9 9
6 13 13
7 17 17
8 214 23
9 30 29

10 36 36

Table 3

Asymptotically It can be shown [6] that

5 ~2 < H(n) < ~~
- n2.

It is especially annoying that we cannot prove that

H(n) < (
~ 

— ~)~
2 for some c > 0. The lower bound depends

on recent results of H~mmerer and Ilofmeister [7] who showed

that it is possible to select n nonnegative integers

a1 < a 2 < ... < a~ such that all integers up to y
~

- n2 can
be represented as a1 + aj.

Some Questions

(1) A well known conjecture of Ringel and Kotzig

asserts that all trees ( acyclic connected graphs) are

graceful. We make the corresponding conjecture that all trees

are harmonious , where we have to modify the definition

slightly so as to allow one vertex label to be repeated.

This Is true for all trees with at most nine vertices.

_ _  -~~~~~~~~~~~ --
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(2) Is there a polynomial—time algorithm to

determine if G is harmonious? We conjecture that there is

no t .

(3) Is H(n) ~ cn~? Is c < 1/2? We think that

the answer to both questions is in the affirmative.

(LI ) How large must m be for an St
_set of size n

and modulus m to exist? For t = 2 , It is known that the

answer is ( l + o ( l ) ) n 2 . We conjec ture  that m > (1~~~( 1) ) t

(5) What is the value of A(n,d,w)? From our
w— 6+l

results It follows that (1+0(1)) r~ < A(n,26,w) <

~~, w— 6+l
(l+o(l)) ‘ — . The upper bound is known to be

— correct if w = LI and S = 2 or 3. Is it always correct?
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