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"Let X denote the life of some system. We define the/observed hazard

rate at time t , call it R(t) , as the instantaneous/ probability

(density) of failure of X at time ¢t given survival.up to t and

given a complete description of the system state at ¢t S, We conjecture
X T Y e

that the total observed hazard-~-namely, j'R(t)dtL~is an exponential

_

random variable with mean 1 and verify Ehté’for the special case when

X 1is the distribution of system life of an n component system hav-

ing an arbitrary monotone structure function.




THE OBSERVED HAZARD AND MULTICOMPONENT SYSTEMS

by

Mark Brown and Sheldon M. Ross

0. INTRODUCTION

Let X denote the survival time of some item and suppose X has
digstribution function F and density f . Then, the hazard rate function
of X--call it A(t)~-is defined by

f(e

- —£L8)
M) s TV -

As
AM(t)dt s P{t <X <t +dt | x> ¢},

we can interpret A(t) as the instantaneous probability (demsity)
that an item of age t will fail.

The distribution F can be expregsed as

t
1l - F(t) = exp (- J’A(s)ds .
0

implying that

X
1 - F(X) = exp —f)\(s)ds .
0

Now, as is well-known, 1 - F(X) has a uniform distribution on (0,1)
and as the negative logarithm of such a random variable has an

exponential distribution with mean 1, it follows that




X
J.A(s)ds ~ Exponential (1) ,
0

or, in words, the total hazard experienced by the item is exponentially
distributed with mean 1.

In the above, the hazard rate at time t was defined to be the
probability (demsity) of failure at t given survival up to that time.
Now, however, let us suppose that we define the observed hazard at time
t--call it R(t)--to be a random variable which represents the actual
probability (density) of death at time t given not only the fact of
survival up to time t but also a complete description of the "state"
of the item at that time. (Such a quantity would, in general, be a random
variable as it would be a function of the "state" of the item at time ¢
and the state would itself generally be a random variable.) For instance,
for a given individual, R(t) would denote the probability (density)

of failure at time t given the life history of the individual up to

time ¢t .
X
We conjecture that f R(t)dt 4s also an exponentially distributed
0

random variable and in the following section, we verify this conjecture

in the case of an n component coherent system in which components

function for a random time and then fail.




1. COHERENT SYSTEMS AND THE OBSERVED HAZARD

We are given a system consisting of n components each of which is
at all times either working or failed. In addition, we suppose that
whether or not the system is working is solely determined as a function
-=-call it ¢--of the component states. That is, letting x, equal 1 or
0 according to whether or not the ith component is working, then we
suppose that there exists a nondecreasing binary function ¢ such that
‘1 if system works under state vector Xx
v O(XI’ Y x“) i lO otherwisge.

Suppose now that component 1 is initially working and will work
for a random time having distribution l-'1 at which time it will fail,
i=1, ..., n . Once a component has failed, it remains failed from that
time on. Let xi(t) equal 1 if component {1 13 working at time ¢

and 0 otherwise and define the random sets C(t) by

C(t) = {1 : o(1,,x(E)) = 1, ¢(0,,x(t)) = O}

where ¢(1,,x) = o(x,, ..., x 1 eees X ) and 0(01,5) -

1-1"" %3410

o(xl, ceey x1_1,0,11+1, coes xn) . In words, C(t) is the set of critical
components at time ¢t , where a component is critical at some time if
its failure at that time would cause the system to go from working to
failed.

If we let L denote the length of system life, then assuming in-

dependence of components, the total observed hazard experienced by the

system during its lifetime could be expressed as




L
1
L J. Z xi(t)dt = total system hazard
3 o 1eC(t)

where Xi(t) is the (usual) hazard rate function of component 1 at time
t . We now show that this random quantity is exponentially distributed

with mean 1.

Theorem:

The total system hazard is an exponential random variable having mean

The proof is by induction on n . As the observed hazard rate is
equal to the (usual) component hazard rate when n = 1 , the result follows
in this case. So assume the result for any system of n - 1 components
and consider an n component system. Say a component is a l-component
minimal cut set if its failure guarantees system failure even if all other

components are working. We consider three cases.

Case 1:

There do not exist any l~component minimal cut sets.

In this case, the observed hazard rate will be O until a component
fails. At this point, the remaining hazard will be exponentially dis-
tributed with mean 1 by the induction hypothesis. Hence, the result follows

in this case.




Case 2:

There exists exactly one l-component minimal cut set--say {1} .

In this case, let L, denote the life of component 1 and let T

1
denote the first time any of the components 2 through n fail. Now,

conditional on T = t , the total observed hazard can be expressed as

L L t
I Al(s)dt if I Al(s)ds ijl Al(s)ds
0 0 0

t Ll t

J‘Xl(s)ds + Exp (1) ({if f xl(s)ds >Ikl(s)ds
0 0
where we have ugsed the induction hypothesis in writing that the remaining
observed hazard starting at time T = t and assuming that component 1 has
not yet failed is exponentially distributed with mean 1. Thus from the
above, we see that, given T = t , the total observed hazard has the same

distribution as the random variable defined by

E if E, < ¢

1 1

if E, > ¢

c+ E 2

2

where c¢ 1is a constant and El ’ Ez are independent exponential random

variables each having mean 1. Such a random variable is easily seen to be

also exponential with mean 1.




Case 3:

There exists at least two l-component minimal cut sets--say {1} and

{2} .

In this case, we can combine components 1 and 2 into a single com-
ponent which fails when either one of them fails and the result follows

from the induction hypothesis.

Remark:

The above proof goes through in an identical manner even when the
component lifetimes are dependent. Of course, the observed hazard rate at

time t would no longer be z Ai(t) but would have to be suitably
ieC(t)

modified.




2. SOME FINAL REMARKS AND A HEURISTIC ARGUMENT

(1) Whereas we have only established that the total observed
hazard experienced by a system is exponentially distributed
with mean 1 for the rather gpecial system des~ribed in
Section 1, we believe that this result holds with tremen-

dous generality. (Another system in which we have been

able to verify it is when events occur in accordance with
some arbitrary point process and each event has a random
nonnegative damage associated with it. The system is said
to fail the first time the total cumulative damage exceeds
some specified value.)

(ii) An interesting sidelight about the system of Section 1 is
that it is well known that if all component life distributions
are IFR (increasing failure rate) in the sense that Ai(t)
is a monotone nondecreasing function for all i =1, ..., n,
then it need not be the case that the system hazard rate is
also increasing. However, it easily follows in this case
of IFR component life distributions that the observed system

hazard rate--namely, E Ai(t)--increases up to the time
ieC(t)

of system failure.
(iii) A general definition of the random hazard can be given along

the following lines: Let {Fs » 0 <8 <=} denote an in-

creasing family of sigma fields and let X denote a stopping

time defined on this family. Let

P{t<x<t+h|Ft}
h

R(t) = 1lim
0

SR ; - ot N a g iAot . e Y




where we assume the above limit exists almost surely.

We now claim that, when it is well defined,
X

(2.1) J.R(t)dt has an exponential distribution with mean 1.
0

We now present a heuristic argument of the above.

Heuristic Argument of (2.1)

t
Let H(t) = f R(s)ds . We wish to argue that H(X) is exponmential
0

with mean 1 and to do so, we shall argue that its failure rate function--call
it A(s)--is identically 1. To show that A(s) = 1 , let us condition on

the event that H(X) > s and on the values of T, and R(TS) where T_

is defined to be the time at which H 1is equal to s--that is, H(TS) =35 .

Now given H(X) >s , T_, R(TS) = Ag

s

X > TS + ¢ with probability 1 - eAS + o(e)

Hence,

H(X) :_H(Ts + ¢) with probability 1 - eks + o(e) .

But

H(Ts +g) = H(Ts) + eAS + o(e)

= g + eks + o(e)

and so




H(X) > s + eh, + o(e) with probability 1 - er + o(e)
which, for As > 0, 1is roughly equivalent to

H(X) > s + § with probability 1 - 6 + o(4)

Thus, independent of Ts , As , given that H(X) > s , it has probability

8 + 0(8) of failing during the next ¢ wunits of hazard. Thus,
P{H(X) <8 + & | H(X) > 8} = § + 0o(8) .

Dividing the above by & and letting & go to O 'proves" that the

failure rate function of H(X) is identically one.




