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ABSTRACT ' -

Let X denote the life of some system. We define the(observed hazard
rate at time t , call it R(t) , as the instantaneous( probability
(density) of failure of X at time t given survIvalYP to t and
given a complete description of the system state at t . We conjecture

that the total observed hazard--namely, f R(t)dtL--is an exponential1 0

random variable with mean 1 and verify It4hfor the special case when
X is the distribution of system life of an n component system hav-
ing an arbitrary monotone structure function.

MU=DMNG JPA &," WT 1" uk



THE OBSERVED HAZARD AND MULTICOMPONENT SYSTEMS

by

Mark Brown and Sheldon M. Ross

0. INTRODUCTION

Let X denote the survival time of some item and suppose X has

distribution function F and density f . Then, the hazard rate function

of X--call it A(t)--is defined by

X(t) -1 - F(t)

As

(tOdt= P{t < X < t + dt I X > t

we can interpret X(t) as the instantaneous probability (density)

that an item of age t will fail.

The distribution F can be expressed as

t1 - F(t) = exp {.f X(s)ds~

implying that

1 - F(X) = exp f { (s)ds
0

Now, as is well-known, 1 - F(X) has a uniform distribution on (0,1)

and as the negative logarithm of such a random variable has an

exponential distribution with mean 1, it follows that
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f (s)ds Exponential (1)I 0
or, in words, the total hazard experienced by the item is exponentially

distributed with mean 1.

In the above, the hazard rate at time t was defined to be the

probability (density) of failure at t given survival up to that time.

Now, however, let us suppose that we define the observed hazard at time

t--call it R(t)--to be a random variable which represents the actual

probability (density) of death at time t given not only the fact of

survival up to time t but also a complete description of the "state"

of the item at that time. (Such a quantity would, in general, be a random

variable as it would be a function of the "state" of the item at time t

and the state would itself generally be a random variable.) For instance,

for a given individual, R(t) would denote the probability (density)

of failure at time t given the life history of the individual up to

time t .

X
We conjecture that f R(t)dt is also an exponentially distributed

0

random variable and in the following section, we verify this conjecture

in the case of an n component coherent system in which components

function for a random time and then fail.
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1. COHERENT SYSTEMS AND THE OBSERVED HAZARD

We are given a system consisting of n components each of which is

at all times either working or failed. In addition, we suppose that

whether or not the system is working is solely determined as a function

--call it #--of the component states. That is, letting xi equal 1 or

0 according to whether or not the ith component is working, then we

suppose that there exists a nondecreasing binary function f such that

1 1 if system works under state vector x*(x) - *(x , . ... ' xn) " o otewie
10otherwise.

Suppose now that component i is initially working and will work

for a random time having distribution Fi at which time it will fail,

i - 1, ..., n . Once a component has failed, it remains failed from that

time on. Let x i(t) equal 1 if component i is working at time t

and 0 otherwise and define the random sets C(t) by

C(t) =U{ : W (Ot) = I (Oj,!_(t)) = 0}

where *(ll.x) - (xl, ..., x 1 1,l,x i+, .. , xn ) and *(Oi,x) =

$(x 1 , ... , x i-,O,xi+, ... , x) In words, C(t) is the set of critical

components at time t , where a component is critical at some time if

its failure at that time would cause the system to go from working to

failed.

If we let L denote the length of system life, then assuming in-

dependence of components, the total observed hazard experienced by the

system during its lifetime could be expressed as
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L

ficC t) Xi(tOdt - total system hazard
0

where X~ (tW is the (usual) hazard rate function of component i at time

t . We now show that this random quantity is exponentially distributed

with mean 1.

Theorem:

The total system hazard is an exponential random variable having mean

Proof:

The proof is by induction on n . As the observed hazard rate is

equal to the (usual) component hazard rate when n - 1 , the result follows

in this case. So assume the result for any system of n - 1 components

and consider an n component system. Say a component is a 1-component

minimal cut set if its failure guarantees system failure even if all other

components are working. We consider three cases.

Case 1:

There do not exist any 1-component minimal cut sets.

In this case, the observed hazard rate will be 0 until a component

fails. At this point, the remaining hazard will be exponentially dis-

tributed with mean 1 by the induction hypothesis. Hence, the result follows

in this case.
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Case 2:

There exists exactly one 1-component minimal cut set--say {}

In this case, let LI  denote the life of component 1 and let T

denote the first time any of the components 2 through n fail. Now,

conditional on T - t , the total observed hazard can be expressed as

LI LI
1 1 t

f X1(s)dt if f Xl(S)ds < A f (S)ds

0 0 0

t L 1 t

5 XI(s)ds + Exp (1) if f Xl(S)ds > f A 1 (s)ds

0 0 0

where we have used the induction hypothesis in writing that the remaining

observed hazard starting at time T - t and assuming that component I has

not yet failed is exponentially distributed with mean 1. Thus from the

above, we see that, given T - t , the total observed hazard has the same

distribution as the random variable defined by

E1  if E < c

c + E2  if E2 > c

where c is a constant and El , E2  are independent exponential random

variables each having mean 1. Such a random variable is easily seen to be

also exponential with mean 1.
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Case 3:

There exists at least two 1-component minimal cut sets--say {1} and

(2.

In this case, we can combine components 1 and 2 into a single com-

ponent which fails when either one of them fails and the result follows

from the induction hypothesis.

Remark:

The above proof goes through in an identical manner even when the

component lifetimes are dependent. Of course, the observed hazard rate at

time t would no longer be I Ai(t) but would have to be suitably
iEC(t)

modified.

mo
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2. SOME FINAL REMARKS AND A HEURISTIC ARGUMENT

(i) Whereas we have only established that the total observed

hazard experienced by a system is exponentially distributed

with mean 1 for the rather special system described in

Section 1, we believe that this result holds with tremen-

dous generality. (Another system in which we have been

able to verify it is when events occur in accordance with

some arbitrary point process and each event has a random

nonnegative damage associated with it. The system is said

to fail the first time the total cumulative damage exceeds

some specified value.)

(ii) An interesting sidelight about the system of Section 1 is

that it is well known that if all component life distributions

are IFR (increasing failure rate) in the sense that Xi(t)

is a monotone nondecreasing function for all i - 1, ..., n

then it need not be the case that the system hazard rate is

also increasing. However, it easily follows in this case

of IFR component life distributions that the observed system

hazard rate--namely, I Xi(t)--increases up to the time
ieC(t)

of system failure.

(iii) A general definition of the random hazard can be given along

the following lines: Let (F , 0 < s < -1 denote an in-

creasing family of sigma fields and let X denote a stopping

time defined on this family. Let

P~t < X < t + h I F t
R(t) - limh

h+O
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where we assume the above limit exists almost surely.

We now claim that, when it is well defined,

X

(2.1) f R(t)dt has an exponential distribution with mean 1.

0

We now present a heuristic argument of the above.

Heuristic Argument of (2.1)

t
Let H(t) f f R(s)ds . We wish to argue that H(X) is exponential

0

with mean 1 and to do so, we shall argue that its failure rate function--call

it A(s)--is identically 1. To show that X(s) = 1 , let us condition on

the event that H(X) > s and on the values of T and R(Ts ) where T5 S

is defined to be the time at which H is equal to s--that is, H(T) s

Now given H(X)> s , Ts , R(T s) A s

X > T + E with probability 1 - CA + o(c)
5 5

Hence,

H(X) > H(T s + e) with probability 1 - As + o(e)

But

H(Ts + e) - H(T s) + cA s + (E)

- s + CA + o(E)

and so
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H(X) > s + cX + o(e) with probability 1- X + o(C)

which, for A > 0 , is roughly equivalent to
s

H(X) > s + 6 with probability 1 - 6 + o(6)

Thus, independent of Ts , A , given that H(X) > s , it has probability

6 + o(6) of failing during the next 6 units of hazard. Thus,

P{H(X) < s + 6 I H(X) > s} - 6 + o(6)

Dividing the above by 6 and letting 6 go to 0 "proves" that the

failure rate function of H(X) is identically one.

I

----------------------------------


