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ELASTICITY THEORY OF COMPOSITES

by
J. R. Willis

Bath University

SUMMARY

The determination of the overall elastic moduli of random composites

is approached using variational principles. Information on the configu-

ration of a composite is never complete and strict estimates can do no

more than take the form of bounds that use whatever statistical inform-

ation is available. The classical Hashin-Shtrikman bounds are deduced

as special cases of bounds that allow explicitly for any two-point cor-

relations and it is shown that these general bounds take a simple form

not given before for any two-phase composite. Self-consistent estimates

are related to the variational formulation. Bounds of higher order are

discussed and equations that define a new optimal bound of third order

are given explicitly. The concluding sections treat wave propagation

problems from the standpoint of a new variational principle which reduces

to the Hashin-Shtrikman principle in the static limit.
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1. INTRODUCTION

The subject of this article is the theoretical determination of the

overall properties of inhomogeneous materials such as fibre-reinforced

plastics. The distinguishing feature of these materials, to which the

generic term 'composite' is applied, is that they are strongly inhomo-

geneous relative to a small length scale (the microscale) and yet, rela-

tive to a larger scale (the macroscale) over which variations in applied

loads are significant, they appear either homogeneous or else their

faverage' properties appear to vary smoothly. Generally, a composite

may comprise n different phases, distributed either deterministically or

at random, and it will be assumed that the microscale defined by the

local phase geometry is sufficiently large for each phase to be treated

as a continuum: this is certainly true of fibre-reinforced plastics and

it is true also of polycrystalline aggregates. The latter represent a

limiting case in which the number of phases is indefinitely large, each

crystal orientation being regarded as defining a different phase.

The article will be concerned with the determination of the overall

elastic response of a composite, since this particular aspect of material

behaviour can be treated with reasonable precision. Some of the methods

to be described have wider application (when suitably generalized), for

example to the elastoplastic response of a polycrystal, but study of the

simpler elastic problem permits some assessment of limitations inherent

in these methods, by comparison with results obtained from methods that

allow greater precision but are less easily generalized.

The elastic properties of composites have been studied quite inten-

sively during the past twenty years and many of the simpler problems are
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at a definitive state of development. A reasonably comprehensive review

is contained in the recent book by Christensen (1979). The major gaps

in Christensen's presentation concern allowance for random phase geo-

metry when this is not isotropic, and wave propagation in randomly inhomo-

geneous composites. Progress has, in fact, been made in both of these

areas which happen, too, to be of particular interest to the writer.

Correspondingly, attention is focussed in this article upon problems for

random media, which need not be isotropic. The presentation is self-

contained; the longer-established results are deducible as special cases

and some of the more important of these are discussed explicitly, though

not in the detail given by Christensen. Apart from introductory material,

the present review is largely complementary to one recently prepared

by the writer (Willis, 1980d). This covered a somewhat broader range

of topics and emphasised more strongly composites consisting of a matrix

reinforced by inclusions. Distinctive features of the present work are

the discussion of bounds, including a new simple formula which allows

for arbitrary two-point correlations in a two-phase composite, new

optimal bounds of third order and a variational treatment of wave prop-

agation problems.
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2. OVERALL PROPERTIES

Underlying the 'overall modulus' concept is the belief that, in a

specimen subjected to some system of loading, the stress and strain fields

vary in a complicated fashion from point to point but, if some form of

'running average' is taken which, in effect, replaces the fields at X

by weighted means evaluated over some neighbourhood centred on ,

whose dimensions are small relative to overall specimen dimensions and

yet large relative to the microscale, then the 'averaged' stress and strain

fields will vary smoothly relative to the macroscale. It is difficult

to define the averaging procedure precisely for a general composite but

it corresponds, hopefully, to what might be measured by a strain guage

or a transducer. The details of the fields in the neighbourhood of X

are then expected to be determined Just by their mean values at z and

the local configuration of the material. These expectations are indeed

borne out for composites with a periodic structure, for which the stress

and strain fields may be expressed, asymptotically at least, as products

of periodic functions with the period of the structure, and amplitudes

that vary smoothly on the macroscale. For static problems, these ideas

were enunciated by Sanchez Palencia (1974). The Floquet theory approach

of Kohn, Krumhansl and Lee (1972) for dispersion relations for periodic

composites is essentially similar, except that it does not even require

the wavelength associated with the 'amplitude' function to be large.

Overall moduli are defined so that they relate 'average' stress to

'average' strain. Symbolically, if stress and strain tensors are denoted

4r , 6 and their local averages are correspondingly represented as , ,

then the tensor of overall moduli L is defined so that
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G- = t. (2.1)

Strictly, if the relation (2.1) is to apply when W" , are generated

from arbitrary boundary conditions, then L should be a non-local oper-
ator (Kroner, 1977) but, asymptotically, when boundary conditions are

such that 6 , t vary smoothly relative to the microscale (and so hardly

at all in a neighbourhood of X ), L reduces to a tensor of moduli ex-

cept, of course, in a thin layer close to the boundary of the specimen

which is excluded from detailed consideration.

If the validity of (2.1) is accepted, the overall moduli L may be

determined experimentally by studying the response of a macroscopically

uniform specimen when it is subjected to loads that generate uniform

average stress and strain fields. In fact, the tensor of moduli L may

be defined in an unambiguous manner by subjecting a specimen that occupies

a region V with boundary 2V to surface displacements that have the

form

q4 e,..~ (2.2)

relative to a Cartesian basis, the summation convention being implied for

repeated suffixes. Application of Gauss' theorem then shows that the

volume average of the strain actually produced throughout V is e
precisely (. having components e.. ). If the average over V of the

stress 4r is denoted by 6, then 6 depends linearly upon e and de-

fines the tensor L in (2.1). The above discussion assumes, of course,

that the phases of the composite are linearly elastic and that there is
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perfect adhesion across phase boundaries. It may be noted that the com-

ponents C' of the mean stress may be determined from measured values

of surface traction, through the relation

Z. 4,(2.3)

where V has also been used to denote the volume of the region V to

avoid further symbols, and - =40Vr. the normal to OW having compo-

nents fk Equation (2.3) follows from Gauss' theorem, together with

the requirement that the stress 0" should be self-equilibrated; that is,

Cr 0 (2.4)

except at interphase boundaries, across which C.11. is continuous.
'tJ

The latter proviso is included in (2.4) if the derivatives are inter-

preted in the sense of generalized functions (Gel'fand and Shilov, 1964):

this interpretation will be used throughout the sequel to avoid the need

for explicit discussion of jump conditions and it should not be assumed

that sharp changes in properties are thereby excluded.

An alternative definition for L is obtained by applying to the

specimen the traction boundary condition

Equation (2.3) then ensures that the average of the actual stress over
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V is and L follows from (2.1), this time with Z calculated as

the average of the strain e over V . Again, i can be determined

from surface values of displacement alone, by use of the identity

- + VJ A - (2.6)

Thus, either experiment determines L from values that are accessible

to measurement, in principle at least. They were both proposed, as pre-

cise mathematical definitions for L , by Hill (1963a). The two defini-

tions are not equivalent to one another for arbitrarily inhomogeneous

bodies and the extent to which they agree in their estimates for L pro-

vides a partial check on the validity of the 'overall modulus' concept.

The definitions are interesting for another reason, also developed

by Hill (1963a), that, when either of the boundary conditions (2.2) or

(2.5) is applied, then the average energy density U in the specimen is
given by

24 = ~ E (2.7)

precisely, again by application of Gauss' theorem combined with one of

(2.3), (2.6). The shorthand notation implicit in (2.1) has been extended

in (2.7) which, in suffixes, would read

2 wlevoied (2.8)

In the sequel, suffixes will be avoided wherever possible.
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The derivation of (2.7) has assumed the usual symmetry of the tensor

of moduli L which applies to the actual inhomogeneous specimen. Cor-

responding symmetry of L may be demonstrated by calculating the incre-

ment in mean energy corresponding to an increment G in mean

strain: the argument that led to (2.7) gives

(2.9)

which, when compared with calculated by differentiating (2.7), gives

the desired result.

Bounds upon components of the tensor of overall moduli L may now

be developed from (2.7) and the classical variational principles for

elasticity. For the boundary condition (2.2), the minimum energy prin-

ciple asserts that

def .0. 60 (2.10)

for a strain field derived from any displacement field 1t4 that

conforms with (2.2) on . The simplest field that can be substituted

into (2.10) is this gives

L L (2.11)

where LV denotes the average of L over V ; it was introduced by

Voigt (1889). The symbol , in (2.11) defines an ordering in the

sense that the quadratic form L (Lj is positive semidefinite,

, ... ... . . ... . . . ,. .. . . . . . . . . ., .:.L?. :. l ; .- ' 
' m

V. .
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for symmetric second-order tensors e . Dually, for the boundary condi-

tion (2.2), the complementary energy principle asserts that

2 tt d5 . M S_ d 2U (2.12)

V V V
where t - Ij d It is any self-equilibrated stress field,

4 and M is the tensor of compliances, inverse to L

The simplest stress field € to substitute into (2.12) is a constant;

this given, upon use of Gauss' theorem,

2 e, M 2 U (2.13)

where M is the average of 1 over V , introduced by Reuss (1929).

The left side of (2.13) is maximized by taking

(2.14)

where L is inverse to t . It follows then that

The result (2.15) is due to Hill (1952). It can also be deduced in a

corresponding fashion if L is defined by the boundary condition (2.5).

The bounds L , depend only upon the moduli and concentrations of

the phases and take no account of how the phases are distributed. The

construction of better bounds which make more allowance for the structure
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of the composite is considered in later sections. Before proceeding,

however, it may be remarked that corresponding mean value theorems can

be developed for a body subjected to finite deformation. The relation

(2.3) is valid in any continuum but it is useful to have a description

that employs Lagrangian variables, based upon a fixed reference state.

Relative to such a state, Hill (1972) has shown that an equation of the

form (2.3) applies if the Cauchy stress 6r is replaced by nominal stress

and 7. is interpreted as a Lagrangian coordinate. Alternatively, 6"

may be replaced by Kirchhoff stress and X. is interpreted as the cur-

rent (Eulerian) coordinate, expressed as a function of the Lagrangian

coordinates. An equation like (2.6) (not symmetrized) applies to the

deformation gradient, and mean Kirchhoff stress, nominal stress and de-

formation gradient are related exactly as though the fields were uniform.

Similar relations apply to rates which allow, for elastic materials, gen-

eralizations of (2.7) and (2.9); some implications for nonlinearly elas-

tic composites have been explored by Ogden (1978).
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3. STRESS POLARIZATION AND VARIATIONAL PRINCIPLES

Bounds better than (2.15) require the construction of stress and

strain fields that make some explicit allowance for the microscopic

arrangement of the composite. For this purpose, it proves useful to

introduce a homogeneous 'comparison' material with moduli L and to set

X-0

L L 4. L (3.1)

Substitution of (3.1) into the constitutive relation

SL e (3.2)

and thence into the equilibrium equation (2.4) gives

which is to be solved together with whatever boundary condition is given.

The discussion to follow will be phrased in terms of the displacement

condition

LLV (3.4)

with a mind to subsequent specialization to (2.2). If the Green's func-

tion Q for the homogeneous comparison material is known, (3.3) and

(3.4) may be expressed together in the form

--------------------------------------------- --
-



where L4.x) is the field that the boundary condition (3.4) would gen-

erate by itself in the homogeneous comparison body. An integral equation

for the strain &.() is now deduced by integration by parts, followed

by differentiating with respect to X . This gives

W d x(3.6)•V

where C. is the strain associated with $A and r(X, ')has components

l ( xk xI , ) = ** ~ k ~ / ~ i ? j (3.7)
(kt)i

It has a singularity of order I-X "  which is to be interpreted

in the sense of generalized functions (Gel'fand and Shilov, 1964). In

the sequel, (3.6) will be written even more briefly as

' 5L e. (3.8)

If the components of L are small, equation (3.8) can be solved by

iteration and the resulting series, suitably truncated, can be substituted

into the energy and complementary energy principles. This has been de-

veloped in detail by Dederichs and Zeller (1973); the validity of the

bounds is, of course, independent of convergence of the perturbation

series.

It is possible, however, to make rather better use of the work
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implicit in the construction of the bounds of Dederichs and Zeller (1973),

by considering a form for e that contains some parameters which may be

chosen optimally. It is helpful for this purpose (as well as for other,

subsequent, developments) to introduce the stress polarization T so

that

(L L (3.9)

and

4. (3.10)

Equation (3.8) gives

and, for any choice of T, equations (3.11) and (3.10) generate

strain and stress fields S and 0-.* that are, respectively, compatible

with boundary conditions and self-equilibrated. If the mean energy den-

sity in the actual body is called U , the minimum energy principle gives

2U L(~ ) .( 0 (.12)

where the 'Inner product' is defined so that

(L 111 01 x (3.13)
V
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The first term on the right side of (3.12) is simplified by employing

(3.10) and (3.11) for 4. .to and and using the 'virtual work'

equality

Ir, ro) 0 .
(!gf i. 0 (3.14)

for any self-equilibrated stress field d- and strain field e. com-

patible with zero boundary displacements. Then, in terms of 0I. (3.12)

becomes

+(S L (3.15)

where 2 U,(5 @. L. The Inequality (3.15) will be used in full

later. Clearly, the last term is the one whose evaluation is the most

complicated. A variational principle in which it does not appear can,

in fact, be generated by noting that the exact polarization T must

satisfy the equation

[ Ly-'+ r] 0 - (3.16)

from (3.9) and (3.11). This equation is self-adjoint and hence the

actual field extremizes the functional

+ q- ro (3.17)
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This principle was deduced from the field equations by Hashin and Shtrikman

(1962a) and directly from (3.16) by Willis (1977). Here, however, it

seems particularly apt to give a derivation which corresponds to that

of Hill (1963b). This shows how the Hashin-Shtrikman principle is re-

lated to the classical energy principles. Reverting to (3.15), there-

fore, the offending last term is rewritten(_r-, SL, ___r ) = ([(5j -',fl ._-co, SL ( ~ 'r ri-t o)

I' t 3/ -' .18)

since the exact T satisfies (3.16), the first term on the right of

(3.18) is zero when t = t and is small when is a good approxi-

mation to . tence, (3.15) gives

2(U.)!5 L L+ e)0 (3. 19)

where E has been written for the "error" +

If, now, L is chosen in such a way that SL is negative definite at

each point of V , dis::arding the last term in (3.19) gives

2(L -I .) - ) (3.20)

The extreme value of is 2(40- LA) whatever L 0is chosen.
The inequality (3.19) shows that the lashin-Shtrikman principle embodied

in (3.20) is weaker than the corresponding classical principle, through
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neglect of the term quadratic in . Hill (1963b) made no use of the

operator equation (3.16) but instead gave in the form

L L (3.21)

The complementary energy principle

22U (3.22)

may be expanded similarly: with the notation

M M 5 M(3.23)

so that M is inverse to L.. and some use of the identity

it follows that

I(r - (1. 5M L( E* 0..(.25)

If L is chosen so that M is negative definite (or, equivalently,

so that 5L is positive definite), (3.25) implies

-. ram(3.26)

The traction boundary value problem can be treated in a similar way.
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Its duality with the displacement problem is best displayed by intro-

ducing a strain polarization It , so that

If tractions are specified that would generate the stress field 6 in

the comparison material, an operator may be defined so that

r + ,(3.28)

which is analogous to (3.11). The corresponding analogue of (3.16) is

[ CS ' "-". (3.29)

with which the functional

do% -(" ) (3.30)

may be associated. The minimum energy principle and the complementary

energy principle now in effect change roles. The analogue of (3.12),

from the complementary principle, is

- ( ) . .c. (3.31)

which, expanded in terms of 7 , is
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-*)..32)

This, finally, can be subjected to the reasoning that produced (3.19),

to give

- + (L. mj L

so that

whenever M is chosen so that 5M is negative definite (or, equiva-

lently, so that 5L is positive definite). The "error" in (3.33)

still conforms to (3.21); in terms of 7

(3.35)

It is, of course, possible to express the functional in terms

of and in terms of ' with and related by (3.27)1.

For example, equation (3.16) can be written

[LO.. LO 4-L, rL (3.36)

from which follows, using a rearrangement of (3.24), an equation of the

form of (3.29), with the operator d replaced by A , where

V 
__
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_ o- L r~ o.(3.37)

Correspondingly, A where is defined by

(3.30) but with replaced by A. Dually, .8 ( )--i# where

is defined by (3.17), with r replaced by r where

r = - (3.38)

Finally, there are duals of (3.25) and (3.26), obtained from the minimum

energy principle for the traction problem:

- I-

~ (3.39)

and

whenever SL is negative definite everywhere in V.
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4. INCLUSION PROBLEMS

For any composite that comprises a matrix reinforced (or weakened)

by inclusions, a fundamental problem is to determine the way in which

any particular inclusion perturbs the field that the matrix would support

in its absence. Interaction effects between inclusions are significant

but the problem of finding the effect of a single inclusion in an infi-

nite homogeneous matrix provides an essenLial building block for consider-

ing a general composite. This basic problem is discussed now. The inte-

gral equations (3.8) or (3.16) are relevant and it is natural to identify

the comparison material with the matrix. With a slight distortion of

earlier notation, therefore, the matrix is taken to have moduli L

while the inclusion, which occupies a region D , is taken to be uniform,

with moduli L . The field e is now the strain field that would be

present if the matrix contained no inclusion and the term involving

represents the perturbation of this field produced by the inclusion.SL

is zero except over V and (3.8) is now an integral equation only for

,!CE; elsewhere, it provides a representation for the strain field e
Equivalently, 7 is non-zero only over ) and equation (3.16) applies

only for X C . Either of these equations could be studied equally

well but there is some later advantage in concentrating upon (3.16).

The region P occupied by the inclusion will be assumed to be

bounded. The three-dimensional problem will be considered first but

afterwards a short discussion will be given of the corresponding two-

dimensional problem for which the inclusion may be an infinite cylinder.

The matrix is infinite in extent and so the operator r that appears in

(3.16) is obtained, via (3.7), from the infinite-body Green's function
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G . This satisfies, in matrix notation, the differential equation

L (4.1)

where . 7) is a differential operator whose symbol L ()has
components

[L.( 1jL) 4 1 (4.2)

Equation (4.1) can be solved by noting the plane-wave decomposition

r- -'s , is V"l T ) (43)

given by Gel'fand and Shilov (1964). Solving the differential equation

(4.1) with replaced by and then performing the super-

position implied by (4.3) gives

The components of g (so called to correspond with now follow

using (3.7):

and substitution of (4.5) into (3.16) gives
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where

i 2.P .~t .) bL fAw)4 ') ~ 47

(?,Dis called the Radon transform of !(7). In (4.6), the term

flo~represents the part of the integrand of (4.5) that depends upon

only; it is actually the Fourier transform of I,-
It is not clear whether (4.6) is superior to (3.16) in general but

it is particularly useful when D is an ellipsoid. To illustrate this,

consider first the case for which P represents a sphere of radius 4,

centred at the origin. If is taken constant over D , its Radon
transform is obtained as times the area of intersection of the plane

with ; that is,

~~-t ir a~fHa~~) (4.8)

The second derivative that appears in (4.6) is then constant when I1: I

and x &D , so that the left side of (4.6) is constant over I . If

e is taken constant, therefore, 1 may be taken constant and must

satisfy th2 algebraic equation

+e Th (4.9)

where the constant tensor is given by
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~ S11  A (4.10)

This result was first given by Kneer (1965). The case for which P is

the ellipsoid

Tfl- <I (4.11)

can be reduced to the one just considered by the dual transformations

=A z_ (4.12)

this reproduces equation (4.9) except that P is now given as

S . 6 [ lA (4.13)

This result was given first by Khatchaturyan (1967) for a generally

anisotropic matrix. For an isotropic matrix, the result was derived

using methods of potential theory by Eshelby (1957), who expressed

in terms of elliptic integrals. Eshelby (1961) showed further that, for

an inclusion in an isotropic matrix, a polynomial field would

generate a polynomial field within the inclusion: the corresponding re-

sult for a generally anisotropic matrix was given by Asaro and Barnett

(1975) and Willis (1975), essentially by demonstrating that, if T
v

is a polynomial of degree n in-X , then (pT I is a polynomial of

degree Alf2 in

The tensor P given by (4.13) has generally to be computed. However,
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for illustration, it will be evaluated for a spherical inclusion in an

isotropic matrix. Thus, L. is taken to have components

(L k kj(4.14)

so that it has bulk modulus K and shear modulus 0 . It is helpful to

use the symbolic notation

L. (31C 2t (4. 15)

introduced by Hill (19 65a), in which the product of two isotropic ten-

so rs A 3A2t/A) and B: (3 5 2/4 8 ) is given by

It Is easily deduced from (4.14) that

p"
and the components of follow correspondingly. The tensor P is
isotropic and its 'moduli' )4 may be obtained from the scalars

-~~t .. = (.18

for each of which the integrand of (4.10) reduces to a constant. Com-

pleting the details gives
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(3, J (k *2_____ (4.19)

No other special case is particularly simple. However, some reduc-

tion is possible when the inclusion is long and thin, so that it approx-

imates to a cylinder with elliptic cross-section. If its principal axes

are aligned with coordinate axes and the 3-axis is the one of greatest

length, the matrix A may be taken diagonal, with entries (1/a1,)eAs),E),

where 6 is small. The integral in (4.13) may now be transformed by

projection onto the circular cylinder of unit cross-section defined by

+1j - av < . The element of area on this cylinder is

d-5 , representing arc length around a cross-section, and the ele-

ment of solid angle 4S is given by

45 4~~J(1+g33, (4.20)

The function Ffl is unchanged by the projection because it is homo-

geneous of degree zero. The variable is now replaced by J,-IS/

and (4.13) takes the form

f -I .3

(4.21)

The integral with respect to may be estimated asymptotically by

setting E = 0 directly; performing the resulting elementary integration

with respect to I/ then gives

..
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p ~ . (4.22)

Equation (4.22) offers a solution to the cylindrical inclusion problem

that is an alternative to the usual one involving complex variables.

Reverting now to composites, suppose that a composite comprises a

matrix with moduli L , which contains fl different types of ellipsoidal

inclusion, with moduli L , distributed at volume con-

centrations Cf , where each Cr is small. The overall moduli of the

composite may be estimated by imposing a uniform strain & at infinity.

The mean stress " in the composite is given by the formula

=L 4 + (4.23)

where represents the mean polarization in the r-th phase. To lowest

order in CP . the inclusions do not interact and T may be estimated

as the solution of equation (4.9), with t = SL = L. L and

. P , the value appropriate to an inclusion of rth type. The low-

concentration estimate of the tensor of overall moduli then follows,

using (2.1), as

L+ Z L'@ .+. (4.24)

This result is (asymptotically) exact. It is affected by the symmetry of

the individual inclusions but not by their relative positions because
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they are by definition far apart. Estimates that apply at any concen-

tration are considered in the following sections.
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5. THE SELF-CONSISTENT METHOD

Consider now a composite comprising a matrix containing n dif-

ferent types of inclusions, not necessarily ellipsoidal, with tensors of

moduli and volume concentrations Cr, 9 = f"  
, not neces-

sarily small. A comparison material different from the matrix will be

used, so the matrix is now regarded as phase A+ I , with moduli L41

and volume concentration C. R Let the average values of the stress

and strain over the 0hth phase be denoted ", C. Then

-%, fL . (5.1)

A01 (5.2)

and

(5.3)

Eliminating C C between (5.2) and (5.3) gives

n

e - L F 21 L d4. L(L 0.)+1 (5.4)
f .k~

so that, if i is prescribed and

A ,(5.5)

the tensor of overall moduli L is given by

IMA
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Lu L (5.6)

The problem now is to estimate the tensors A An approximate method

for performing this estimation is to embed a single inclusion of Vth type

in an infinite matrix composed of the overall material. If the inclu-

sion is an ellipsoid, A follows from the results of the preceding

section, with L zL and SL =L -L,. The polarization t is

found from equation (4.9) with . i & and then equation (3.9) gives

If the #th inclusion is not an ellipsoid, the solution of the inclusion

problem is less straightforward. It is convenient for the discussion to

follow, however, to treat (5.7) as defining in such cases. Sub-

stituting (5.7) into (5.6) now gives an algebraic equation for L , since

it appears on the right side both directly and implicitly through the

tensors ? . The estimate for L that results from solving this equa-

tion is usually termed the self-consistent estimate. The prescription

was developed in essentially this form by Hill (1965c) and Budiansky

(1965). It allows for inclusion shape and also approximately for inter-

actions because the inclusion is embedded in the 'overall' material. It

also reduces correctly to (4.24) in the limit of low concentrations. A

possible objection is that the inclusions actually interface with 'over-

all' material rather than with the matrix. One method of overcoming this

is to surround the inclusion by a 'shell' of matrix material and then to

embed this new compound inclusion in an infinite matrix of 'overall'
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material. For spherical inclusions, it is reasonable to take the shell

as spherical and to choose its radius so that the inclusion concerned

occupies exactly its share of the matrix. Kerner (1956) solved this

problem for isotropic phases, exactly for an imposed dilatation and

approximately for an imposed shear. The exact solution for an imposed

shear has been provided by Christensen and Lo (1979).

Suppose now that the composite has no clearly defined matrix phase

or, equivalently, that i n 0 . The prescription (5.6) fails in

this case but, if the shapes of the phases can still be distinguished,

it remains possible to estimate the tensors A by solving inclusion

problems. Three possible prescriptions for estimating L are now avail-

able. Equation (5.2) requires that

C. [I + L (5.8)

equation (5.3) 2 requires

and finally, , rZ c "imples

[LL, - 4- 0 .(5.10)

Equations (5.8) to (5.10) are not all equivalent, for (5.8) can be ex-

pressed in the form

Le(511
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and equation (5.10) is equivalent to

(5.12)

It is clear from these relations that equations (5.8) to (5.10) become

equivalent when ? = P for all r , that is, when all phases can be

modelled by similar ellipsoids. The prescriptions (5.8) to (5.10) were

proposed variously by Hershey (1954), Kr~ner (1958) and Eshelby (1961)

for estimating the overall moduli of a polycrystal by treating each

grain as a sphere. Their equivalance was proved, essentially as above,

by Hill (1965a). It is true also that, when P = for all '

equation (5.6) can be manipulated into any of the forms (5.8) to (5.10),

with fl replaced by A+4-1 . This was noted for spheres in an isotropic

matrix by Budiansky (1965) and generally by Hill (1965c).

The great advantage of the self-consistent method is its simplicity.

Furthermore, it will be seen when examples are discussed later that it

often yields results of acceptable accuracy. There are, however, some

situations with which it cannot be expected to cope. If, for example, an

isotropic matrix contained spherical isotropic inclusions, arranged on a

lattice, the simple self-consistent method would estimate the overall

moduli as isotropic even though they should plainly reflect the symmetry

of the lattice. Although exact methods are available for periodic com-

posites, real composites are usually not perfectly periodic, though they

may well display some directional bias 'on average'; the inadequacy of
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the self-consistent method would remain in this case also. The section

that follows presents a method that makes systematic allowance for such

phase geometry.
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6. BOUNDS FOR OVERALL MODULI

If every detail of the geometry of a composite were known, overall

moduli could, in principle, be calculated exactly by solving the rele-

vant boundary value problem. In practice, however, except in cases such

as those displaying periodicity, a complete solution could not even be

computed because of the detail that it would contain. Also, in practice,

only certain 'average' features of the microstructure will be known. If,

for example, only the moduli and mean concentrations of the phases are

known, the only completely accurate statement that can be made is em-

bodied in the inequalities (2.15); that is, that the Reuss and Voigt

estimates bound the overall moduli. If more information is available,

however, it should be possible to provide better bounds. This inform-

ation is likely to be statistical in character and it is necessary now

to make a slight digression to discuss random media and introduce there-

by the quantities that will be employed.

6.1 Random Media

A random medium is one of a family, any member of which may be

characterized by a label a that belongs to a sample space . The

value of 04 is taken as defining the medium completely. It has asso-

ciated with it a probability density f -) which is defined over S .

The sample space S could be of low dimension, for example if the ran-

dom medium were known to be perfectly periodic, except for uncertainty

over the position of any one representative cell, or it could be of in-

finite dimension, with 0 representing the values of C at each indivi-

dual point of the medium. For an A-phase material, it is convenient to

introduce the indicator function f (x), that takes the value 1 if
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7t lies in phase # and zero otherwise; it depends, of course, on C.

The mean value, or ensemble average, of j (Z) defines the probability

of finding phase 0% at Z. Thus,

(X U J t(,.ep doe. (6.1)

Likewise, the probability P( (X i') of finding simultaneously phase

ft at X and phase j at X - is

P, L, ?4) AN),(_')) , (6.2)

Probabilities involving more points are defined similarly. If, now,

phase 0' has moduli L 2 t. ,the value L ( )of the

tensor of moduli at X can be written

and this has, using (6.1), mean value

SL )> L x (6.4)

Similarly,

n

The individual components in (6.5) represent two-point correlation functions.
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Correlation functions for more points follow a similar pattern; clearly,

they are expressible in terms of P (7c), $ X') and so on, for

any physical quantities whose values are given for each phase.

The foregoing description is useful for developing statements 'on

average', taken over many specimens produced, perhaps, by some manu-

facturing process with which the probability .P(@) is associated. A

statistically uniform material is one for which the probabilities ()

P etc. are insensitive to translations; thus P (X) reduces

to a constant, P (7) becomes a function of - only, and

so on. For such a medium, it is usual to make an assumption of ergodic

type, that local configurations occur over any one specimen with the

frequency with which they occur over a single neighbourhood in an ensemble

of specimens. In this case, the probability Pe is identified with the

volume average of the function 1, ( !) and so represents the volume

concentration c. of phase e , while P (X, 3c) becomes the average

of f, L+X') X'* -) as X ranges over a large volume.

Strictly, these notions require the medium to be infinite but they pro-

vide useful empirical definitions in practice. Clearly, it will be

possible to determine multipoint probabilities only up to some relatively

low order. Correspondingly, Kroner (1977) proposed classifying materials

as uniform 'of grade k 'if probabilities involving up to k points

were known to be translation-invariant. lie classified other properties

(such as isotropy) similarly.

For future use, the two-point probabilities P (., $') are now

discussed for a two-phase material. They satisfy the relations
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22.~~ ~ XI I X IK 4LX- XI ) 66

always. Therefore, when the medium is statistically uniform (up to

grade two),

P c 4-CCf) (6.7)
P ~ Ci +2 C,~ C' C C

where is some function that depends upon (XC -)only which, further-

more, is an even function of its argument. If, in addition, the medium

has no long-range order, ? Co.C $ at large separations of ) and

7' and I tends to zero as tends to infinity. If the dis-

tribution of phases is isotropic (up to grade 2. ), then f is a function

of JX-Xi only; it should be noted that this statement makes no refer-

ence to the elastic symmetries of the phases themselves so that the com-

posite could still be elastically anisotropic.

Suppose now that the composite comprises a matrix in which are

embedded inclusions of known shapes and orientations. All mean values

for this composite follow from knowledge of the probability of finding

any specified number of inclusions in any specified region. This will

not be discussed in detail but, for purposes of later application, if

the matrix contains just a single population of inclusions, centred at

X A F= I 2.... . will be defined as the probability density for
.%
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finding an inclusion centred at X will denote the joint
ZA A

probability density for finding different inclusions centred at

- and so on. Statistical uniformity, isotropy, etc. for such a
'A 

e-a

composite is expressed in terms of etc. in a similar manner
A AG

to that described above for r etc.

6.2 Hashin-Shtrikman Bounds

In most applications, it is unlikely that information of grade higher

than two (in Kroner's terminology) will be available. Therefore, although

formal extensions are possible (and will be outlined later), attention

vill be focussed now on the best bounds that can be obtained using two-

point correlations only. Inequalities such as (3.15) which are derived

from the classical energy principles are excluded immediately for, written

explicitly, the last term in (3.15) is

which involves points taken three at a time. The Hashin-Shtrikman ine-

qualities (3.20), (3.26) were constructed to contain no such term and

bounds can be obtained from them by considering trial fields of the form

= 2 (6.8)

for an n-phase material,where the are functions of alone, inde-

pendent of the configuration: any relaxation of this restriction would

introduce terms into (27)that would involve more than two points,

so that (6.3) is the most general trial field that can be allowed.
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Substituting (6.8) into (3.17) now gives

Y(~) V' 1 Ld Jr [(,- L)? ()-

This depends upon the sample , as it must. Further simplification is

possible subject to the assumption that the functions le vary rapidly

over regions that are still sufficiently small relative to the macro-

scale for the functions -r ?X)to be treated as effectively

constant. It is credible (though not rigorously proven) in this case

that the value off(I *) is independent of o( and so idc;,tical with

its mean value, or ensemble average. Then, (6.9) reduces to

R 1') -'Lt P_ (x) -to_ ,i [(L - oL I ' X -2_ e" (K

SS o(6.10)

This is extremized when

- L."LdVP-- ,

. ie ) ,, - 1 2 . - (6.11).,
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to give the extreme value - (<t>, <*), <Z> denoting the ensemble

average of T Wi.

It may be noted that, if the integral equation (3.16) is averaged

conditionally upon phase I being present at X , it gives

.' * )(6.12)

where < d denotes the expectation value of conditional

upon phase ,, being present at PC . C,(z> denotes the expecta-

tion value of (!'), conditional upon phases r' and S being present

at X I , / respectively and P (-I is the corresponding con-

ditional probability for finding phase 5 at X , so that

X) P (x (6.13)

is idniferwt

Equation (6.12) reduces to (6.11) if <_ i_ identified with T

and, in addition

< ZYX<Orb (6.14)

Equation (6.14) is not, of course, strictly correct, unless the composite

has some special structure such as periodicity. It is an example of

the 'quasicrystalline approximation', introduced as an ad hoc approxi-

mation by Lax (1952); its appearance from the variational principle at
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least partially explains its success.

The discussion so far has been rather general; it is desirable now

to specialize to the case of a statistically uniform medium and to the

boundary condition (2.2), so that e, a to obtain bounds upon over-

all moduli. The body has already been assumed to be large relative to

the microstructure and it might be expected that X X ) could be re-

placed by its infinite-body form (4.5). This is not quite correct be-

cause this is of order 1 7.I at large I so that the integral in

(6.11) would converge only conditionally. It may be noted, however, that

the mean value of the exact r over V is zero, since it is associated

with zero boundary displacement. Consequently, for any field that

oscillates rapidly about a mean f, I( Zl -- V)exactly and, in

this latter form, a convergent integral is obtained if is now re-

placed by . This does not prove that this prescription is correct,

but further arguments for its plausibility have been advanced by Korringa

(1973), Willis and Acton (1976) and Willis (1977), which are also developed

slightly differently in the review of Willis (1980d). These essentially

hinge upon representing P in terms of the infinite-body operator as

above, plus an additional term whose influence will be felt only in a

layer close to the boundary OV. In this approximation, the operator

r is insensitive to translations and the functions -T,(X)reduce to con-

stants V that satisfy the algebraic equations

Al (6.15)

------ --- -
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where | Cx) represents the probability of finding phase 5 at

I , given phase r at the origin. The concentration % is its mean

value. Having solved the system (6.15), to give

t St (6.16)

say, the extreme value of J )is expressible in the form

)~c~>~(L0 (6.17)

where the estimate

AL , (6.18)

for the overall moduli bounds L from below if L - L is positive

definite for each r , and from above ifL#- L f is negative definite

for each r

The solution (6.18) takes a particularly simple form if all of the

functions I, are isotropic and so depend upon r only.

The result given in Section 4, that the integral of F' over any sphere
is r , independently of its radius, implies that the integral of Or

over any shell ='i fr > 0 is zero. The integrals in (6.15) may

therefore be replaced by integrals over a small sphere centred at the

origin, within which P differs negligibly from its value at the

origin, namely, . Evaluating the integral then gives

$(6.19)
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where ( > 2CdS . It follows now that

<,_- f[ ~t+QLo-L)Pi]'J-' '-.V . °,[ C,!) , [I4,¢ , f %-( ,_.
(6.20)

and, correspondingly,

L Z~c4I +(L )f' Cs * i - .)i (6. 21)

The estimate (6.21) was originally produced by Hashin and Shtrikman (1962a,

b, 1963) from their variational principle and by a different but equiva-

lent method by Walpole (1966a,b). Both derivations relied upon the iso-

tropy of the phase geometry from an early stage, however, and the equa-

tions (6.15), which allow for any two-point probabilities, were derived

much more recently, by Willis (1977). It was also observed by Willis

(1977) that the same formal simplification occurs if the function

has 'ellipsoidal' symmetry, such as would be obtained if an isotropic

distribution were subjected to an affine transformation. Overall moduli

are still bounded by (6.21) except that the tensor P is now defined

by (4.13).

Equations (6.15) can also be solved for a two-phase composite with

arbitrary geometry. In terms of the function f introduced in equations

(6.7), let

X- (6.22)
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Equations (6.15) now take the form of (6.19), with n a2 and P re-

placed by P and their solution yields the estimate (6.21), similarly

modified, for L .

Willis (1977) suggested that the estimates (6.21), with P taking
'ellipsoidal' form, might be appropriate to discuss a composite containing

aligned ellipsoids including, as limiting cases, thin needles and flat

cracks. Justification was provided by Willis (1978), through explicit

study of a composite containing inclusions, whose distribution was de-

scribed by the probability densities P. , P etc. for the positions

of their centres. If was 'ellipsoidal', (6.21) was reproduced.

Willis (1980a) also generated a result rather like the one above with P
replaced by P , for a matrix containing a single population of aligned

inclusions of any shape, distributed arbitrarily. Only the 'ellipsoidal'

example has been worked out in detail, however.

6.3 Bounds for Compliances

Bounds for compliances are obtained by inversion of L , to produce

corresponding estimates M for M1. These can also be obtained directly,

however, by considering the traction boundary value problem, with boundary

condition (2.5). The bounds follow by extremizing the functional

given by (3.30): their structure is exactly like that for L, except

that (L - LO) is replaced by (1b-I.) and is replaced by-

The infinite-body form for the operator A can be deduced by noting

that, when V is large, equations (3.16) and (3.29) must be consistent,

with L , .=£ and =W-= L F*(< >. The result is that,

for large V is defined by

(E .) (i4(6. 23)
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Then, for a composite with "ellipsoidal' symmetry, for example,

(6.24)

where

Q = L L L (6.25)

It can be verified directly, using (3.24), that L and t, as given

by (6.21) and (6.24), are inverses.

6.4 Bounds of Higher Order

The bounds that are given by (6.18) are not the best that are ob-

tainable from the trial field (6.8) for T , since they were derived

from the Hashin-Shtrikman principle rather than the stronger classical

principles. The penalty for using the latter is that three-point proba-

bilities will also be involved. Still,assuming that these are known,

(6.8) is now substituted into the minimum energy principle (3.15), to

give

V-1f~ ~ dx Cz' Jx L,

(6.26)

• 1
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where

(6.27)

and

Specializing now to a statistically uniform medium, the integrals that

appear in (6.27) and (6.28) may be evaluated as in the preceding section:

for (6.27), a is replaced by U O - CS  and is replaced

by , and similar replacements are made in (6.28). The expectation

values of the operators A , then become translation-invariant
. _ i's

and, if e. (Z) is taken equal to - ,the functions may be

taken constant. If the right side of (6.26) is now replaced by its ex-

pectation value, it follows by extremizing that

V Aft(6.29)

where L is the Voigt estimate Z C1 L. and n

satisfy the equations

z ( A,> Ts<-2,<)6,>= (6.30)
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with

and

= ~dXf"()( -efdX fl4(7t")

Following Beran and Molyneux (1966) and Dederichs and Zeller (1973),

Kroner (1977) generated an 'optimized' third-order bound, essentially by

substituting into (3.15) the trial field

t (6.33)

in which the constant tensor 4 was arbitrary. This possibility is

included within (6.8) and the bound (6.29) is correspondingly tighter.

The work required to produce the Beran-Molyneux bound is only marginally

less than is needed to produce (6.29). since it requires evaluation of

<A,$> and

Kroner (1977) also produced a tighter bound for a special type of

material that he termed 'disordered'. Its distinctive feature (which he

describes in terms of the moduli and topology being uncorrelated) is that

it permits the replacement of the awkward function fI() in (6.31) and
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(6.32) by , where the constant tensor is defined by (4.10).

For (6.31), this is legitimate so long as is Isotropic, but for

(6.32) it requires more justification: KrLoner (1977) considers the re-

placement justified so long as L- is identified with L when

<S )~ Without arguing for or against this prescription, it is

simply remarked that its adoption yields simple forms for ( ,4,?,

for which (6.29) and (6.30) lead to the upper bound (6.21), previously

derived from the Hashin-Shtrikman principle, except that now L. is

identified with L

Analogous lower bounds of third order can be obtained from (3.22);

no explicit development will be given.

Bounds that involve still more statistical information can be found

by allowing trial fields more complex than (6.8). For example, the trial

field

~~~~~r (!I ;tv4)'i ()) Jf (6.34)

in which the functions and f (x C) are to be determined

optimally, introduces correlations involving up to four points in the

Hashin-Shtrikman principle, and up to five points in the classical prin-

ciples. These are not considered further, except to remark that Willis

(1978) employed a polarization similar to (6.34) for a matrix containing

a single set of inclusions and obtained, by considering only the terms

of low order, a variational estimate for the €&-coefficient in the low-

concentration expansion for L, C being the volume concentration of

the inclusions.
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6.5 Further Comments on the Self-Consistent Method

The Hashin-Shtrikman estimate (6.18) for L provides a lower bound

when L. is sufficiently small and an upper bound when L is suffi-

ciently large. At intermediate values of L0 , it does not yield a bound,

but it is still a variational estimate and it might be postulated that

this estimate will be closest to L when L , for then the mean
0%_- -0

polarization will be zero. An estimate of self-consistent type is there-

fore obtained by postulating that L is identical to L when L L
- 0

That is,

L L (6.35)

or, equivalently,

L~ f 2 (6.36)

The prescription (6.35) of course is not exact because L is estimated

from a piecewise-constant polarization field. If the composite has

isotropic (or, more generally 'ellipsoidal') phase geometry, L is given

by (6.21) and it is easily seen that the self-consistent prescription

(6.35) yields any of (5.8), (5.9) or (5.10), with P ? for all r

The interesting point is that the prescription (6.35) allows for two-

point statistics in a general way and makes no reference to particular

inclusion shapes. Thus, it provides some justification for the use of

(5.8) to (5.10) for composites such as isotropic polvcrystals, in which

the grains are certainly not all spheres, and, in addition, offers an

*1,-z J
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extension of the self-consistent method to composites in which the

microstructure displays spatial bias.
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7 EXAMPLES

The application of the preceding theory will now be illustrated for

some simple examples.

7.1 An Isotropic Mixture of Isotropic Phases

In the notation of Hill (1965a), introduced at equation (4.15), let

a composite have nl phases, with moduli (----2...d( 4 '= I,2... n,

distributed statistically uniformly and isotropically. It is reasonable

to take the comparison material as isotropic so that (3j .ZA),

say. The Hashin-Shtrikman bounds for this composite then follow from

(6.21), with the tensor P given by (4.19). Explicitly,

6-- -- 41 (K 3'

(7.1)

Equations (7.1) yield upper bounds for F , whenever A 94 are

chosen larger than kr ',U" for each 01 and the smallest upper bounds

are obtained by setting , * - L'%) ,/4 =/ = Pax 6  .

Similarly, the greatest lower bounds are found by setting -- =/C K f&(k

= m4 . These bounds were given by Hashin and Shtrikman

(1963), with the implicit restriction that * , .4 had both to be

obtained from the same phase, and 4 similarly. This restric-

tion was removed by Walpole (1966a).

Equations (7.1) also provide self-consistent equations for the



50

determination of I, /4, if K and k are identified with 4r. and

and / are identified with . For a two-phase material, elimination

of Z from equations (7.1) yields a quartic equation for, . This

will not be given but a difficulty with the self-consistent method will

be highlighted by considering the special case k - , so that

the composite represents a porous medium whose matrix phase has moduli

k., .It is easy to show in this case that

4(1-,) k * ,(7.2)

3 c, kx I.

while A satisfies the quadratic equation

+ j K,i (.j3 C) - 4A2 (4 -S'c,)j 31^A K, (/2c)

(7.3)

If, now, -- , equations (7.2) and (7.3) have solutions

K = ,_______

C3- 1 ) (7.4)

The corresponding Hashin-Shtrikman upper bounds are found from (7.1)

with = :

F!'
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(4.18) for the isotropic tensor . The corresponding scalars calcu-

lated for T are independent of rotation and so may be calculated for

any one orientation, say that for which L = L. Once KT and/ ,

have been found in this way, (7.16) gives the bulk and shear moduli

A in the form

~,M ,t4(7.8)

where L , (3K,3I). If L is cubic, so that

d-x3X a- -j e A

(7.9)

with equations for other components obtained by cyclic permutation of the

suffixes, it follows that

L> 3K -t4~9' (7.10)

Then, if the notation L (3 & , , introduced by Walpole

(1966b) is employed, products and inverses can be worked out directly

and, if T represents T referred to the cube axes,
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4. 3P1'L +~i~j'~ ztf')(7.11)

Then, from (7.10) and (4.18),

3k T , --, +3K KJ-

21k. -1 J+ 4. L +2/ ]
-) (7.12)

Bounds for ,,4 follow by specifying ',' appropriately. The unique

choice for X is K. , which givesor X -  and X =C, exactly. A4

on the other hand, may take either of the values A¢ , A , the greater

giving an upper bound and the lower a lower bound for4 . When,*=/,

4=4 ,where

11At /-/ , 0 (7.13)

and, when , 7  , ? , where

a -a
In these equations, /4 and are obtained from. P evaluated with
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and , respectively. The bounds (7.13), (7.14) were first

given by Hashin and Shtrikman (1962b).

A self-consistent estimate may be obtained from equation (6.23),

which implies that X T =A"T = . The first of these gives K C

exactly, while the second can be manipulated to give

IF 4 )(7.15)

This result was first given by Hershey (1954) in the form of a quartic

equation with factors (7.15) and (fK. ?Xc). He assumed spherical

grains and applied the prescription (5.9).

Anisotropic polycrystals require a computation. Kneer (1965) studied

textured polycrystals, in which grains were modelled as spheres but not

all crystal orientations were equally likely. This required the evalua-

tion of P for an anisotropic comparison material, using (4.10). Ex-

amples for which the actual phase geometry is anisotropic do not yet

appear to have been studied, though the development of Section 6 now

makes this possible.

7.3 A Composite Containing Long Aligned Fibres

The prototype of the composite now to be considered consists of a

matrix reinforced by long parallel fibres, distributed randomly on any

cross-section. Such a composite is transversely isotropic and was first

studied systematically by Hill (1964). For present purposes, there is

nothing to be gained from immediate specialization to this extent and so an
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fl-phase composite will be considered, with each phase transversely iso-

tropic with symmetry axis parallel to the 3-axis, and with two-point

probabilities P,$ ( -;,) that depend only upon 00 )

Greek suffixes taking the values 1, 2 only. The composite may thus be

treated as two-dimensional, or else may be regarded as the limit of a

composite with 'spheroidal' symmetry. In either case, estimates of over-

all moduli are obtained from (6.21), with the tensor P taking the form

(4.16) with a -1

The tensor of moduli L is most usefully expressed, in the notation

of Hill (1964, 1965b) and Walpole (1969), as

L l (7.16)

when arL-e implies

2JICL 31 oi 2-e 31.

(7.17)

In this notation, the product L L of two such tensors is given by
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L1 i = 4.k.2i~;,~e~~i~ ~ ,n~,2QV~~ii*awiae,4ppz)(7.18)

and

where

,a = ,iU (7.20)
A /

When L is a tensor of elastic moduli, it has the symmetry _ but

products do not share this property. The moduli k , # are the plane-

strain bulk and shear moduli. Other useful quantities are the plane-

strain Poisson's ratio 0 and the longitudinal Young's modulus E

These are

), t/2k , E( 7.21/k. (7. 2)

Positive-definiteness of L requires that all of I,-, E and p are

positive.

Taking the comparison material as transversely isotropic now, with

components as in (7.16) with it is fairly easy derived from

(4.16) that

p a (,/Zk41 .) , o, 0 , ,( .4k)/4 (k 4, '/)t) , (722

Ii , I,
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this was given by Walpole (1969) and Laws and McLaughlin (1978). All

that is required now is routine substitution into (6.21). Walpole (1969)

gives the results in the form

A1'1

- + k 2c41.

: £ p /r.+ r)r,.)I" -f,=

(7.23)

from which both bounds and self-consistent estimates follow. Equivalent

formulae, together with useful variants involving E and V , were given

by Hill (1964, 1965b) for a two-phase composite, except that he obtained

no bound for f . lashin (1979) recently reconsidered the two-phase

problem and derived estimates of moduli from a 'composite cylinder'

model similar to the spherical model of Kerner (1956). It generated as

estimates the bounds that are obtained from (7.23).

7.4 Composite Containing Short Fibres

Fibre-reinforced composites frequently contain fibres whose length

to thickness ratio is of the order of TO to ITo. The an;ilvs is of the pre-

ceding section therefore applies only approximately and some assessment

of its range of validity is called for. Such an assessment can be made

if the fibres are modelled as aligned spheroids. This allows a fairly

straightforward self-consistent analvsis aid, if the distribution Of tihe
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fibres is taken as 'spheroidal', bounds can also be constructed using

(6.21). The self-consistent approach requires the evaluation of P for

a transversely isotropic matrix. Although the integrals can be worked

out analytically, their form is still sufficiently complicated to require

numerical evaluation by computer except, of course, that for long fibres,

approaches the value (7.22). Laws and McLaughin (1979) have carried

out the required computations for a glass reinforced polyester resin.

Their results will be discussed later. A complete set of bounds has not

been found but, in the course of a study of waves in composites, Willis

(1980b,c) obtained as a by-product the estimate (6.21) for 'spheroidal'

P, when both phases were isotropic and the comparison material was

identified with one of them. Again, general results could be obtained

only with a computation but som general feeling for the influence of

fibre length can be gained by considering the asymptotic form taken byP,

for a spheroid whose thickness to length ratio is S , where E << I

Willis (1980b) gave the formula

(3, 44/ I

+ ( £ F._

(7.24)

Russel (1973) did not give but derived an equivalent result calculated

1(3
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from general formulae of Eshelby (1957). If L is identified with one

of the phases, say L , it is advantageous to use (6.21) in the

equivalent form

L= + + c !  (7.25)

whose similarity with (4.24) may be noted. Clearly, now, the error

involved in disregarding terms of 
order £ is small so long as LA IT I

is of the same order as 1. I, for example. Within this range, fibres

with an aspect ratio of 10 or more may be regarded as long. If, however,

is much stiffer than L so that is small, terms of
w 2.-%I

order ,L make a significant contribution because the 0(l) part of

is singular. The extreme case is that of phase 2 being rigid, when (7.25)

gives

L L -I c, P-2 /Cl (7.26)

.ft..

in which a singular result is obtained if the terms of order E are

ignored. Explicitly,

L _. 4- 0," ., I, ,

(7.27)

The example treated by Laws and McLaughlin (1979) falls in the inter- W

mediate range, the ratio of Young's moduli for E glass and their polyester
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resin being around 20, and the results of their calculations differed

appreciably from the infinite-fibre predictions, for aspect ratios up to

about 100. Clearly a similar situation would occur for many other

composites.

Real composites contain imperfectly aligned fibres of variable length.

Laws and McLaughin (1978) made some approximate allowance for these fea-

tures but no rigorous study has yet been made. One possibility would be

to obtain both bounds and self-consistent estimates from (7.25), but with

?replaced by the tensor P defined by (6.22). The difficult task, of

course, would be that of realistically estimating the function f which

defines the two-point probabilities.

7.5 A Body Containing Aligned Cracks

A body containing aligned penny-shaped cracks, whose centres are

distributed uniformly at number density f12 , can reasonably be treated

as a limiting case of a composite with 'spheroidal' symmetry, the thick-

ness to diameter ratio of the spheroids being E« < . Willis (1980b)

gave the result

P ,v) 0/ 3/(3K441A)) o, 112Aj)

~ cak~y)/s)(7.28)

so that, if L is identified with L ( L = C for the cracks), sub-

stitution of (7.28) into (7.25) yields an upper-hound estimate for L
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Again, the presence of the term of order C in (7.28) is crucial, since

without it the inverse in (7.25) does not exist. The result was given

by Willis (1980c). It is complicated when expressed in terms of L but

takes a much simpler form when expressed in terms of the inverse M

V- (7.29)

where the relation cz - 4RflX3)/3 between volume concentration and

number density has been employed and the limit E- 0 has been taken with

number density fixed. Equation (7.29) confirms that the cracks interact

only with the stress components t$ T dr ) as thev should. Hoenig
13 & )3 53

(1979) has performed self-consistent calculations for the same configura-

tion. His estimates agree with (7.29) at low concentrations; more gen-

erally, (7.29) bounds the compliances from below.

r,
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8. WAVE PROPAGATION

Problems involving wave propagation necessarily involve spatial

variation and effective properties cannot be defined through global

averages, in the way outlined for static problems in Section 2. Instead,

at least for random composites, equations which govern the ensemble aver-

age < of the solution to any particular boundary value problem are

sought or, alternatively, <%4) is constructed directly. Work published

to date has relied on one of two methods. The first involves solving the

dynamical analogue of (3.8) by perturbation theory. If this is done in

the most elementary manner, it leads to a series some of whose individual

terms contain integrals that diverge, which are then grouped together in

a way that eliminates the divergence by a technique known as renormaliza-

tion. This is a well-known technique in many branches of physics; its

application to composites has recently been discussed by McCoy (1979).

Alternatively, the equations can be solved by the method of smoothing

introduced by Karal and Keller (1964), in which an essential intermediate

step is to represent /= - (14> in terms of <> . The statisti-

cally fluctuating term &I can then be eliminated from the starting

equation to give an equation for <&> itself. Karal and Keller (1964)

truncated their formal iterative solution after one iteration to obtain

results valid for weakly inhomogeneous media. McCoy (1973), on the other

hand, considered the series to arbitrary order, to obtain formal expres-

sions containing correlation functions of all orders. Since these are not

generally known, however, the method is most useful for weakly inhomo-

geneous media. An entirely different method has been applied to composites

consisting of a matrix with distributed inclusions. Each inclusion is
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treated as a scatterer, which scatters the field incident upon it. The

complication is that the field incident upon any one inclusion has con-

tributions from the scattered fields of every other inclusion. The scat-

tered fields have always been represented explicitly as eigenfunction

expansions (typically involving Hankel functions), so that the method

appears to be restricted to an isotropic matrix, at least in the form pre-

sented. After some complex manipulations, equations for the coefficients

defining the fields scattered from the inclusions are derived. These are

ensemble averaged (essentially as in (6.12)) and the system is closed by

making the quasicrystalline approximation of Lax (1952) (essentially as

in (6.14)). Particular examples of this approach are provided in the

papers of Bose and Mal (1973, 1974), Datta (1977, 1978), Twersky (1977),

Varadan, Varadan and Pao (1978) and Varadan and Varadan (1979).

A compressed and preliminary account will now be given of a varia-

tional approach. It is a natural extension of that already given for

static problems and offers a unified treatment for materials such as

polycrystals (for which only perturbation theory has been available) and

matrix-inclusion composites (for which only the multiple scattering method

has been available), without restriction to an isotropic matrix.

8.1 Variational Formulation

The equation of motion for any continuum may be given, in the absence

of body forces, in the form

= w- (8.1)

where r denotes momentum density and the superposed dot represents
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(8.10) 4

and M are the derivatives with respect to t of ,

Equations (8.9) and (8. 10)1 generalize (3.16) and (3.7). The object now

is to produce a variational principle, analogous to the Hashin-Shtrikman

principle, that is equivalent to equations (8.9). One possibility is to

construct an analogue of Hamilton's principle, using a Lagrangian that

is quadratic in f , . Such a principle was displayed by Willis (1980d)

but an alternative, which appears to be better, is to obtain a principle,

similar to that of Gurtin (1964), which is tailored to the type of ini-

tial conditions that are actually imposed. To develop this, let U

P1I . cr 1 tI be displacement, momentum, stress and strain fields gener-

ated by polarizations " 71 with homogeneous initial and boundary

conditions, so that they satisfy (8.1), (3.10), (8.3) 2 (but not neces-

sarily (8.2)) and define fields with a suffix 2 similarly. It is now

easy to show that the bilinear form

V , - L

where * denotes the ordinary operation of convolution with respect to

time, is symmetric and it follows immediately that equations (8.9) are

equivalent to the variational principle

a 0, (3.12)
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where

-- ±fd ',e

,--- - j (8.13)

e and k being expressed in terms of C , r via (8.4). The functional

(8.13) is a generalization of (3.17).

The principle (8.12) may now be employed to generate approximate

solutions by the procedure given in Section 6. If 7 is replaced by its

expectation value in (8.12), this equation generates exactly 'hierarchy

equations' such as (6.12), by suitable choice of variations. These are

of no use as they stand but the observation that they can be obtained

in this way encourages the production of approximations generated from

trial fields T*, 71. The natural extension of (6.8) is

(8.14)

the extremum of X is obtained when - , i satisfy

L0) + X i s+ M , Psi,,

5 sfr -fs 'Sir~
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These equations generalize (6.11) and are the same as would be produced

from the exact 'hierarchy equations' by making the quasicrystalline assump-

tion (6.14) with regard to both I and T . Similar equations were

produced by Willis (1980c), for a matrix containing inclusions. In

that work, however, they were derived making the quasicrystalline assump-

tion explicitly, without reference to a variational principle. More

general approximate equations could also be obtained from (8.12), whose

full implications are still under investigation. The article is con-

cluded, however, with a short discussion of the properties of (8.15).

8.2 Wave Speeds

The polarizations (8.14) generate a mean wave

[A -7 .- .MP s4 .3-5 - _ (8.16)

obtained by taking the mean of (8.4). Correspondingly, using (8.16),

equations (8.15) can be recast in the form

qoTr)-,_ 4, 1 -5 P -)_ _,r,,4 .] -< )

(8.17)

An elementary and important problem for the ordinary clastodvnamic equations
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is to determine the speeds with which plane waves may travel in an in-

finite, homogeneous medium. The corresponding problem for (8.15) is to

dutermine possible plane-wave solutions, for which

ti (k A

x + WOJ(8.18)

with t 1 constants, in an infinite, statistically uniform medium.

Thus, plane-wave solutions of (8.15) are required, when 14 , the' ,- 0 '

probabilities ' , are translation-invariant and the operators

$, M take limiting forms corresponding to infinite V . The limit

is easily taken for the equivalent equations (8.16), (8.17). Equation

(8.16) gives (with a = )

<L.>S kn,.)Q- M (8.19)

where

(8.20)

and are the Fourier transforms of the operators ,5 .

Equation (8.17), implies, when V is large,

- --........ ,.. x...,...
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2-.-
5 kii)cI (8.22)

which may be solved by the method that was explained for the special

case (4.1): Willis (1980b) showed in detail that

2 %.

'.8.23)

wothe Gre en's funct n T s s

q. + OC4- ,O(8.24)
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so that they represent the speeds and polarizations of plane waves that

can propagate in the direction in the comparison material. In

(8.23), the eigenvectors UA are taken as normalized. The limiting

case £00 reproduces the static formula (4.4).

Attention will now be restricted to long waves or equivalently, to

small W and a lowest-order approximate solution of (8.21) and the cor-

responding equation for TI will be constructed by retaining only terms

of order zero in k or 60 . Amongst the operators -"' F4 §

, only the first has a term of order zero in I, since the other

three involve at least one time derivative. 
Furthermore, 5 " 0

g4-
defined by (4.5). The Fourier transforms 5 etc., on the other hand,

are all homogeneous of degree zero and are retained exactly. Equation

(8.21) now reduces to

+

(8.25)

while the corresponding equation for 7T becomes

where < is the strain associated with <K and both are evaluated

at 0 -O - Equations (8.25) are identical with (6.15). Therefore, by

definition of L , they imply

<t~ :L"L,<'~>(8. 27)
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(each side having the exponential dependence restored). Also, from equa-

tions (8.26),

where f ¢ is the mean density of the composite . Equations

(8.27), (8.28) show that the mean polarizations <t' . <11 > are

those that would be generated relative to L0 , if the mean

wave <14> propagated in a homogeneous medium with moduli L and den-

sity , This conclusion can also be reached by algebraic manipulation.

Retention of terms of higher order in the equations produces both dis-

position and attenuation. Attenuation in a matrix containing inclusions

has been studied by Willis (1980c). A more complete study of the pre-

sent system is being conducted and will be reported elsewhere.
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