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1. Introduction.

In computing the variance of a sample of N data points {x}, the fundamental
calculation consists of computing the sum of squares of deviations from the incan.
This quantity, which for brevity will be referred to as "the sum of squarcs" or
simply as "S", is defined as

N

where
N

N i (1.1b)

This computation can be easily performed directly by the two-pass algorithm
(1.1) provided that (a) N is small compared to the amount of core memory avail-
able and (b) the variance is not too small relative to the norm of the data,

11x4 2  (EN 1 x2)1/2. If either of these conditions is violated, however, the situa-
tion changes. If N is large, this approach to computing S may be unsatisfactory
since it requires passing through the data twice: once to compute Y and then again
to compute S. This problem is sometimes avoided by use of the following tcy lbook
algorithm, so called because, unfortunately, it is often suggested in statistical
textbooks:

NN

S 2 _ET2 (2)

This rearrangement allows S to be computed with only one pass through the data,
but the computation may be numerically unstablc and should almost nc'vcr bc
used in practice. This instability is particularly troublesome when S is very small
compared to 11412, in which case even the two-pass algorithm can be unstable.

In discussing the stability of a numerical scheme for computing S, a useful
concept is that of the condition nwnbcr n of the data. This quantity was first
introduced by Chan and Lewis[2] who give a thorough discussion. Briefly, 1. is a
measure of the sensitivity of S to changes in the data. The quantity Ki is an upper
bound for the relative perturbation which would occur in the exactly coinputed
sum of squares if the input data contained relative errors of size u. If the true sum
of squares is S, then K is given by

II.11(
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It is easy to see that . > 1 and that in general r. grows as the variance decreases.
An error analysis of the textbook algorithm[2 shows that the relative error

in S can be bounded by something on the order of

3NK2u,

where u is the machine roundoff unit (sce section 6). This algorithm is therefore
seldom useful, as confirmed by the experimental results of Table 1.

The error analysis of the two-pass algorithm found in section 6 shows that
the relative error in the sum of squares computed using that algorithm can be
bounded by

Nu + N 2K2u2.

The second term in this bound has traditionally been ignored in error analyscs of
the two-pass algorithm as being of second ordcr. But in the case we are intcrcstcd
in here, when N and K are both large, this term can easily dominate. Table 2
shows this happening in practice.

During the preparation of this manuscript, a simple modification of the two-
pass algorithm was found by Professor Ake Bjrck which reduces this bound.
Based on the error analysis of section 6 for the standard two-pass algorithm, he
suggested computingS by

NN2S = r x - 2  , -i (1.,4)

In exact arithmetic the second term is zero, but computationally it is a good
approximation to the error in the two-pass algorithm. Note that (1.4) can also
be vicwed as the textbook algorithm applied to the data {(xj - i)}. The error
analysis of section 6 shows that the relative error in S computed by (1.4) call be
bounded by

Nu+4N u 2.

This modification adds only N additions and 2 multiplications to the cost of the
two-pass algorithm (already 3N-2 additions and N+ 1 multiplicatious) and can
be very useful when the data is poorly conditioned. See table 3 for some immcrical
results.

Of course formula (1.4) is still a two-pass algorithm. For large N it iliay
be desirablc to compute S with only one pass through the data. A numbcr of
papers have appeared recently on "updating" algorithms for computia, S. These
are algorithms which are based on formulae for adding one new data point to a
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sample and computing the value of S for the combined sample by updating the
(presumably known) value of S for the original sample. By starting with a s.- mple
of size 1 and applying this formula repeatedly, we get a one-pass algorithin for
computing S for a sample of arbitrary size. Youngs and Cramcr[Oj have invcs-
tigated several such algorithms and have found the following algorithm to be the
best:

S:= 0
T:=-- xj

for j:= 2,3,..., N do
T :=- T-+ x.,
s5:=-s+ Ij _ x -) T)2.

This is based on the updating formula

S1, -S +j- -( 1)()xJ - T,,j )2 (1.)

where Si, stands for the sum of squares for the data points xi through z. and T,s
is the sum of xi through xj. This notation will be used throughout.

One imporant characteristic of this updating formula is that S1, is forted
from SIj-I by adding to it a nonnegative quantitiy. In thc textL-ol ir::orithm
(1.2), on the other hand, S is formed by a subtraction which can lead to gross

cancellation and even to negative values of S being computed.

In practice the method (1.5) generally performs on a level comparable to the
two-pass algorithm (1.1). Chan and Lewis[2] present detailed error analy:,'i of
some similar updating methods.

In the next section we present a generalization of the updatiu, fornmu,.. (I.G)

for combining two samples of arbitrary size. Then in section 3 we dc,,cribc a
pairwise algorithm for computing S which is essentially still a one-pss al,'orithm
but which numerically is often more stable than the standard two-pasi algorithm.

2. A General Updating Formula.

The method of Youngs and Cramer depends on an updating formula which
allows one to compute S for j-+ I points when given the value of S for j points and
one new point. In other words, we can combine a sample of size j wvith a sample
of size 1 and determine the value of S for the combined sample.

This formula can be easily generalized to allow us to combine two s..,npcs of
arbitrary size. Suppose we have two samples ) {x,!n-4- and we nlow
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in M+n

5 jm -= W - Tmi- Piu~im=1 i=M--f-

M-. i=m+I

Then, if we combine all of the data into a sample of size rn + n, it can be shown
that

T , +n Ti,m + Ti.m+n (2.1a)

Si,,n+. Sio + Sm+i,m+.rl 2

+ nm+ it)(!Tm - Tm+ 1 9 mvn). (2. 1Ib)

If we rewrite the latter formula as

S',m+n = 5s', + sM+Im+. + n(m+ n)( n' "' - T 1,,,-1

then we see that for m = 1, n = j - 1, this reduces to the forniula of Your.s
and Cramer, since S -- 0 for any single data point. The form (2.1 b) is more st able
numerically, however.

Regardless of what method is used to compute S, the formum:e (2.1) n.ay be
useful in their own right whenever two samples must be coinbin(id. 011c l', Sible
application is to parallel processing. If one has two or morc procc :or, availalbIr, the
sample can be split up into smaller subsainples, and tlhc sum of 1; .ic ccowpiutcd
for each subsample independently using any algorithm dcsired. The.tium of .qIuarc.
for the original sample can then be calculated using the updating forwmul; :.

However, even in the case of a single processor, it is very d.,irabih to c,,11,putc
S using (2.1). The method (1.5) may be generalized to compute S b~y proce.sino-
the data in groups of in elements: compute the sum of squarei for c;cx .roup usi.-.
the two-pass algorithm and then update the global S accordingly. Tr;ditiona,
updating algorithms such as that of Youngs and Cramer have iscd nm - .

We have found, however, that the stability of the algorithm is incrcnsd by
taking m > 1. One can easily see that the total number of arithmetic opera tions
performed on the data is minimized by taking m - V-. We nmi-.ht expect that
this choice of m will minimize the resulting error. Although we do not have a
satisfactory error analysis of this algorithm, the experimental results of t ,blc '1 do

4
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tend to confirm this prediction. Strictly speaking, with m > I this is no longer a
one-pass algorithm, but we see that only m data values at a time nccd to be kept
in core, and m can be as small as necessary.

3. The Pairwise Algorithm.

Table 4 shows that choosing m > I not only gives more accuracy than using
m = 1, but can actually give significantly more accuracy than the tv.o-pa);S al.go-
rithm. This suggests that when computing the sum of squares for the subsaniplcs
of size m, we should not use the two-pass algorithm when S is sniall. It.-tier, we
should split the subsample into yet smaller groups. Taking ti s id a to the lirmit
yields a pairwise algorithm analogous to the wcll-known pairv..ic al'-orit!iin for
computing the sum of N numbers. Let Si,, stand for the sum of squares of cl,-nents
xi through x-, and let fit- [N/2J, the largest integer not cxcced ina N/2. Then
the method consists of computing S1,N by first computing S11 ,, and S,,. I,N and
then combining these by means of (2.1). Each of these latter quantities has been
computed by a similar combination of still smaller subsamplc.i.

The algorithm can be implemented as just described, but for reasons N.'.ich
we will explain shortly it is actually best to perform the pairwise alTorithim in
a somewhat modified manner. Consider the following example with N == 13.
Schematically, we compute from left to right in the tableau (3.1). The interlirdiate
Tij are also computed in a similar tableau for use in updating the Sj,j. The final
value TI,N will be the sum of all the data points as computed by the p);irwise
summation algorithm. In practice we can compute from top to bottom in thc.se
tableaux requiring only one pass through the data and using only O(log: N) sI orage
locations for intermediate results. We require one such location ior each column
in each tableau. The computation for the tableau (3.1) would proceed as follows:

(a) Compute S, 2 and store in Sf1].
(b) Compute S3,4, combine with S11] to get S1,4, and store this in S12].
(c) Compute S,e and store in S[1].
(d) Compute Sj,s, combine with S[1] to get S5 ,8 and then combine this

with S[2] to get S,s, which is then stored in S[3].
(e) Compute Sgbio and store in Sf1].
(f) Compute S1 1 ,1 2 , combine with S[il to get S, 12 , which is then stored

in S[2].
(g) Clean-up (necessary when N is not a power of 2):

Combine x13 with S[2] to get S%,1. Combine this with S[3] to get ',.13.

5



S11

X2~

/ °3,4 \
3 

\X4 
3

X5 S, 

8
S5, 8  (3.1)

SI,1 3

• 
1,13

all,12 S 12 -,.

Zj 
2

Zj13

Alternatively, wc can use a stack structure for the teniporary loctionis as is done
in the sample FORTRAN routine given in section 9.

The final step (g) of our algorithm requires the combination of .i ii1Ap- of cluitc
disparate sizes. Such a calculation would bc avoided if wc adopted the al-orithm
as described in the first paragraph of this scction. For the piirw',isc summation
algorithm, Tsao[41 points out that the corresponding method ies a decr(-scd
##average error complexity" and presents an implementation bscd on the binary
expansion of N. That strategy could bc adopted in the prescnt contcxt ais well,
but its usefulness here is questionable. We feel that the small increase ini accuracy
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which might result would be more than offset by the increased work which wc
would thus incur. For the updating formula (2.1b), it is desirable to have n = m
whenever possible, since that formula then becomes simply

S1,2m = Sj,m + S.+I,2m + I(T,, - Tm+1,2,?,) 2.
2m

In this respect, the tableau (3.1) gives the preferable computational scheic. In
fact, the amount of work required to perform the pairwise algorithm as drscribcd
here is not significantly more than that required for the two-pass al-,orithm. Al
operation count shows that roughly 2N additions and 5N/2 multip licatioi s arc
required, as opposed to 3N additions and N multiplications for the tv.o-pass al-
gorithm. In addition, some bookkeeping operations are required to nmw.na::C the
pairwise algorithm.

Although we are not able to provide any error bounds proving Lhe superiority
of the pairwise algorithm, our experimental results have been quite satis actorv.
Some of these results are shown in table 5 of section 8.

5. Extensions.

Often one wants to compute a weighted sum of squares of dcviatioiuo iroin
the mean,

N

The updat.ing formulae (2.1) still hold with only a few minor modifications. Let
W,k-- = jw. Then (2.1) is replaced by

Ti,m+n Ti'm + T.n+j,m+n
W,,m+n W m + Wm+i'm+n

w) 14W ,,,,
Si~ + W -S (W) +_it

, , "m Wn+,n+n(W,m + Wm+i,,,,+,,) (5.2)

X Wm+l,. - Tn+im+n.

Another quantity which is often of interest is the covariance of two s.'iiiplcs
(x{} and (yi). For this it is necessary to compute

N

CIN = D(i - i)(y. - i),
a= 1
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If we let T(Z - i, T gi, then the updating formula for C is

C,,+n - C,m + Cm+,m+, + (m+)

_ , m m + ,- _n) (5 3)

6..Error analysis of the two-pass algorithms.

We assume throughout our error analyses that we are dealing with a machine
with a guard digit and relative precision u. On a base f machine with a t digit
mantissa and proper unbiased rounding, u =2

Roman letters with tildas over them will be used to denote quantities ac-
tually computed numerically. The same letter without a tilda will iidicate the
corresponding exact quantity.

In this section we present error analyses for both the standard two-pas., algo-
rithm (1.1) and Bjbrck's modification (1.4). Let

N

S1

s=1

S --S1 - S2.

The standard two-pass algorithm is S. We first compute a value i for t1he
mean of {x,}. If this is computed in the standard manner we have

N
=-- i- - zi(l + .), with IeiI < Nu + O(,, 2), (0.1)

= + -K

The computed value Sl is then given by

8



$1 X '- - X')2 (1 + ')), Ijil < (N + 2)u + O(u2)

2
2(+ :) (6.2)

+ (h 57 Xii )2 (N+

The O(u 2) terms in the bounds for r/, and IJ4 turn out to be unimportiant in the

present error analysis and will be dropped below. Note that (x, -. T) = 0 and
that the following inequalities hold:

IE ( Xi - i)2 th - Sl41,o < S(N + 2)u,

I E 'i <- I1X1211El12 N 211C.lll < N 11,112U,

Es(z - i)l< S/ 21177112 < S11 2N l/,,iko, < S/ 2N'1 / 2(N\-- 2)u;.

So from (6.2) we obtain the bound

jj- - S11 _ S(N + 2)u + 2N(N + 2)S' 211zXIu 2 + N2 lzlI2u 2(1 + (N -j- 2)u).

Recalling the definition (1.3) of r., we see that

S < (N + 2)u + 2N(N + 2)cu2 + N2Ku( + (N + 2)u) (6.3)

__ Nu + N 2K2u2 + 2N 2 u2 .

When N >> 1, Kc >> 1, the term N2 .K2 u2 may cause problems as wS seen in

table 2. Note that this term results from the term N(kE x.z) 2 in (6.2). Ve 'ill

now show that the computed value k2 is a good approximation to this error. We

have that

9



I 2(Zc, -, )(1 +- ) with , j-,, < (N + 2)u. + ocu2).

- ( (xi - - jji x-&)(N +EiN N)(E))
N ( _i)x - ) -- - X)Ti)((E X4i)N + > ~

+ (>2 i~)2 (N 2 + 2NE-yi + (E2 _)2)

Note that ,§2 contains a term (ExiC;)2, so, using Bjdrck's modification of the
two-pass algorithm we compute S as

---(§, -)(I +b), with I61 < U

2I 2(

Bounding these quantitics as bcforc gives the followring bound for the reiatire error:

- <(N + 2)u ± (N + N +2(N- i 2))+2

+U (N +[ 2)(3N2K 2 + (on + 4) ; + (n + 2))u 3 + O(u 4)
-, Nu +- 4N 2 +2  3N 3K2u3.

Te modification has thus reduced the "second order term" by rouehly a factor

of Kq.

7. Calculat<on of thc mean in double preciion.

A grcatcr accuracy can be achicvcd from any alTorithin for computing, the

sum ol squarcs by simply using higher precision arithructic. It is jinportant to

10
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note, however, that a large increase in accuracy can often be achieved by Shiting
only some of the calculations to double precision. From the error analy. is of the
two-pass algorithm, we see that computing the sample mcan in doublc pr ci .ion
would replace the bound IeJ < Nu + 0(u2) in (6.1) by JIj < Nu 2 + -(1,j,). If
the remainder of the calculations are still computed in single precision, the error
bound (6.3) will nonetheless be replaced by the improved bound

S < Nu + O(u 3).

The difference which this can make in practice is evident from table 6 in sect-ion
8, which gives the results of some numerical experiments.

The generalized updating algorithm and the pairwise algorithi art also
improved by calculating the corresponding running sums in double prcci-;on.
Numerical results for these modified algorithms are given in tables 7 aild 8 rcr;pvc-
tively.

8. Experimental results

All of the results presented in this section were computed on a;II I ,N\ 3O/1U's
computer at the Stanford Linear Accelerator Center. The data u.ed was ,fovidcd
by a random number generator with mean I and a variety or v;triances
a2. For this choice of the mean, n Fi I/o. In each case the rcult. liav, I,. ,n
averaged over 20 runs. Single precision was used in most of the i,. is cxci.1t iii
the cases where the mean was computed in double precision (t; G-8). III .si:l -1v
precision, u m 5 X 10- 7. The "correct" answer for use in computi;i,: thl .-Cal
was computed in quad precision. We report the number of correct digits in (1C
calculation, defined as - logl 0(E) where E is the relative error.

tI



Table .1: Number of correct digits for the textbook algorithm on N data points
chosen randomly from N(1.0, o2).

2' N 64 250 1024 20,18

1.0 5.4 4.3 4.1 4.1
10- 1 4.2 4.7 3.0 3.0
10-2 3.2 3.2 2.0 2.0
10- 3  2.2 2.2 1.0 1.0
10- 1 1.2 1.1 0.0 0.0
10- 5 0.2 0.2 -1.0 -1.0
10-6 -0.8 -0.8 -2.0 -2.0
10- 1 -1.8 -1.9 -3.0 -3.0
10- 8  -2.8 -2.8 -4.0 -4.0

Table 2: Number of correct digits for the two-pass algorithm on N data points
chosen randomly from N(I.0, a2).

__ 64 250 1024 2048

1.0 5.2 5.1 4.0 4.0
10-1 5.4 4.5 4.2 4.2
10-2 5.6 4.5 4.4 3.7
10- 3  5.6 4.6 4.5 3.6
10- 4  5.2 4.8 4.4 4.0
10- 5  5.5 5.3 3.1 3.0
10- 6 4.5 4.4 2.1 1.9
10- 1 3.5 3.3 1.1 0.9
10- S 2.5 2.3 0.1 -0.1

12



Table 3: Number of correct digits for Bj~irck's two-pass algorithm on N data points
chosen randomly from N(1.0, a2).

04 250 1024 2048

1.0 5.2 5.1 4.0 4.0
10-1 5.4 4.5 4.2 4.2
10-2 5.6 4.5 4.4 3.7

101 5.6 4.6 4.4 3.6
10-1 5.2 4.8 3.9 3.7

101 5.2 5.0 3.9 3.8
10 -B 5.4 5.0 4.1 4.0

101 5.7 4.0 4.2 4.2
10-8 6.2 4.0 3.8 3.3

Table 4: Number of corrcct digits for thc generalized updating algorithml oil 1024I
data points chosen randomly from N(1.0, a02) with various valucs or m. (Note
that m == 1 corresponds to algorithm (1.5) while m = 1024 is just the tw,,o-pass
algorithm).

iTn

\2 1_24r 16 32 64 128 256 512

1.0 4.0 4.0 4.3 4.6 4.9 5.0 5.0 5.1 5.0 4.2
10-1 4.2 4.2 4.5 4.8 5.0 5.1 5.2 5.3 -1.5 4.3

102 4.5 4.4 4.7 5.0 5.1 5.3 5.4 4.9 4.5 4.4
10-3 4.1 4.2 4.5 4.8 5.0 5.2 5.2 4.8 41.6 4.0
10-1 3.6 3.7 4.0 4.3 4.5 4.8 5.0 41.8 -1.8 -1.6

105 3.2 3.4 3.8 4.1 4.3 4.0 4.8 5.1 5.1 3A4
10-0 2.5 3.0 3.3 3.7 4.0 4.3 4A 4.6 '1.6 2.4

107 1.4 2.1 2.5 2.9 3.6 3.6 3.5 3.4 3.3 1.A
10-8 0.4 1.0 1.7 2.4 3.0 2.8 2.5 2.4 2.3 0.4

13



Table 5: Number of correct digits for the pairwise algorithm on N data points
chosen randomly from N(1.0, o2).

_2'_, 64 256 1024 2048

1.0 5.8 5.8 5.6 5.6
10- 1 6.0 5.7 5.7 5.7
10-2 6.2 5.8 5.7 5.6
10- 1 5.9 6.0 5.6 5.6
10- 1 5.5 5.8 5.9 5.8
10- 1 4.7 5.2 5.4 5.4
10- 0 4.5 4.7 4.8 4.9
10- 1 3.9 4.2 4.3 4.4
10-8 3.2 3.7 3.8 3.9

Table 6: Number of correct digits for the two-pass algorithm on N data points
chosen randomly from N(1.0, a2). In this test the means were computed in double
precision.

N
o2 64 250 1024 2043

1.0 5.2 5.1 4.0 4.0
10-1 5.3 4.5 4.2 4.2
10-2 5.6 4.5 4.4 3.7
10- 1 5.G 4.6 4.4 3.6
10- 4  5.2 4.8 3.9 3.7
10- 1 5.1 5.0 3.9 3.8
10- 5 5.2 5.0 4.1 4.0
10- 1 5.4 4.5 4.2 4.2
10- 8 5.6 4.5 4.4 3.7

14



Table 7: Number of correct digits for the generalized updating algorithui on 1021
data points chosen randomly from N(1.0, a2) with various values of 17. In this
test the running sums were computed in double precision. (Note that in = 1
corresponds to algorithm (1.5) while m = 1024 is just the two-pass algorithm).

o2 1 2 4 8 16 32 64 128 250 512

1.0 4.0 4.0 4.3 4.6 4.9 5.0 5.1 5.1 5.0 4.2
10-' 4.2 4.2 4.5 4.8 5.0 5.1 5.2 5.3 '1.5 41.3
10- 2 4.4 4.4 4.7 4.9 5.2 5.3 5.4 4.9 1.5 41.1
10 - 3 4.4 4.4 4.7 4.9 5.2 5.3 5.3 4.8 ,11.3 1.6
10- 1 3.9 3.9 4.2 4.5 4.8 5.0 4.9 4.8 4.8 1.8
I0 - 1 3.9 3.9 4.2 4.5 4.8 5.0 5.0 4.9 '2.9 4.3
10- 6 4.1 4.1 4.3 4.0 4.9 5.0 5.1 5.1 41.8 4.2
10- 7  4.2 4.2 4.5 4.8 5.0 5.2 5.2 5.3 4.5 4.3
10- -  4.4 4.4 4.7 5.0 5.2 5.3 5.4 4.9 4.5 4.4

Table 8: Number of correct digits for the pairwise algorithm on N data points
chosen randomly from N(1.0, o2). In this test the running sums were computed in
double precision.

2N
02 64 250 1024 2048

1.0 5.9 5.8 5.7 5.7
10-' 5.9 5.7 5.7 5.7
10-2 0.0 5.7 5.7 5.0
10- 3  6.0 5.7 5.6 5.5
10- 1 5.9 5.8 5.7 5.0
10- 5 5.9 5.8 5.0 5.6
10- 5 5.9 5.8 5.7 5.0
10- 7  6.0 5.8 5.7 5.7
10-8 6.1 5.8 5.8 5.6
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3. A FORTRAN iopmmt . the p ei aithm.

SUbiROUrINZ UPDATE(l',INSUMSX)
IN:ZGE3 N,N
REAL09 3,SUbX(N)

C 6IVEN DHE SUM AND SUN OF SQUARES OF DEVIATIONS FROM THE
C MEAN FOR A SAMPLF OF N POINTS,
C
C N

C SUl SUM Y(I)
C I=I
C
C 2
c S = SUM (Y(I) - S3L1/m)
C 1=1
C
C AND GIVEN K NEW DATA POINIS X(1)...X(N), THIS POUTINE PRODUCES
C THS SU. AND SUl CF SQUARES FOR THE COMBINED SAMPLE:
C
C N
C SUA := SUM + SUM X(1)
C 1=I
C

C 2 N 2
c S := SUM (Y(I) - SUM!('.+N)) * SUl (X(I) - SU.J/(M•N))
C 1: I I =
CI

C IHE SUl AND SUM OF SQUARES FOR THE NEW POINTS ARE CALCULATED
C USING rHE PAIRWISE ALGORTIHM. THE OLD SUM AND SUM OF SQUARES
C iS THLU UPDATED.
C
C THIS 3JUTINE HAS LOCALLY DIMENSIONED AFRAYS TERMS, SURA AND
C SA VHI:H CURPENTLY HAVE DIPENSION 21. THIS LIMITS THE
C NUMBER OF POINTS WHICH CAN BE HANDLED To N ( 2 *20 % 1048576.
C TO UJS WITH LAPGEF N, INCRLASE THESE DIMENSIONS TO SOMETHING
C AT LEAST AS LARGE AS LOG2(N)+1.

1NISGER TERMS (21),T3PT
REAL~d SUhA(21),SA(21),MEANNS'JM,NS

IERS(1) w 0
rjP * 2
N2 = N/2
IF (N .LE. 0) GC TC 70

5 IF (h .GT. 1) GO TO 6
NSU.M • X(1)
NS a 0
GO 10 50

is



6 DO 20 tI,N2
C # CJMPUTS THE SUN AND SUN OF SQUARES FOR THE NEXT TWO
C # DATA PoiNrs iN X. PUT THESE QUANTITIES ON TOP OF
C # THE STACK.

SUMA(TOP) - X(2*I-1) * X(2*I)
SAIrOP) = (X(2*I) - X(2*1-1))**2 / 2.0
TER5S(TCP) = 2

13 IF (TEBMS(TOP) .NE. TER.S(TOP-I)) GO TO 20
C 8 TOP TWO FLEBENTS ON STACK CONTAIN QUANTITIES COMPUTED
C 8 FFOM THE SAME NUMBER OF DATA POINTS. COMBINE THEN:

:)P u= TOP-i
TERMS (TOP) v 2 * TERPS (TIP)
SA(TCP) = SA(TOP) + SA(TOP+1) + (SUMA(TOP)- SUdA(TOP+.1) t**2

/ TERMS (TOP)
SU.A(TOP) = SUMA(TOP) + SUJMA(TOP+I)
3o TO 10

23 TOP = TCP+1
C

TOP = TOP-i
IF (2*!12 .EQ. N) GO TO 30

C # N IS ODD. PUT LAST PCINT ON STACK:
TOP = TCP+I
TER $ (TOP) = 1
SUMA(TpP) = x(,)
SA(TOP) = 0.0

30 T = TEkMS(TOP)
NSJ4 = SU.1A (TOP)
NS = SA(TOP)
IF (TOP .LT. 3) GC TO 50

C # N IS NOT A PCWER OF 2, THE STACK CONTAINS MORE THAN
C # ONE ELEMENT. COMBINE THEM:

DO 4O J=3,TOP
I = TOP*2 - J
JS NS + SA(I) + T*(TEFMS(I)*NSUN/T - SUMA(l))*e2 /

X (TERtS(I) * (TERMS(I).T))
NSthv, = NSUM + SUMA(1)

4a r = T+TERrS(I)
C
C

50 C.TINJE
C # COMBINE NS AND ZSUM WITH S AND SUN RESPECTIVELY:

IF (M .EQ. 0) GO TO 60
N5 = S + NS NM*(N*SUH/E - NSUM)**2 / (N*(N+,w)
NSU2 SUM + NSUIM

60 S = NS
SUN = NSUM

C
70 RETURN

END
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A W epuar

We are particularly indebted to A. Bjcirck for his suggestions concerning the
two-pass algorithm.
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