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Tear Strength and Tensile Strength
of Model Filled Elastomers

P. Dreyfuss, A. N. Gent and J. R. Williams
Institute of Polymer Science
The University of akron
Akron, Ohio 44325

Summary

Q"@Measurements have been made of the tear strength, tensile
strength, and energy dissipated during stretching for model filled
elastomers consisting of polybutadiene with glass beads incor-

porated. The glass beads were pretreated with various silanes,

some of which could, in principle, form covalent bonds with the

polybutadiene matrix during free~radical crosslinking of the
latter and some of which could not. The tear strength of the
elastomer was increased by the addition of glass beads, by about
25 per cent for the largest beads, having a mean diameter of

150 um. This effect is attributed to increased roughness of the

W T

tear path. The breaking elongation in tension was reduced by the
addition of glass beads but the breaking stress was only seriously
reduced for the least-well-adhering beads. . The stored strain
energy densiéy at break was reduced in ali cases. This is attri-
buted to large glass beads acting as fracture nuclei in tension.

Calculated sizes of a Griffith crack, 150-300 um, are consistent

with this hypothesis. Strain energy dissipated due to dewetting
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was found to be in the range 4-13 per cent of the input energy,
depending upon the degree of interfacial adhesion, in addition
to about 10 per cent dissipated in the unfilled material. The
maximum value observed is in reasonable agreement with theo-

retical predictions.




1. 1Introduction

There have been a number o0f studies of the mechanical

properties of elastomers filled with solid particles, for
example, glass beads, as models of rocket propellants and con-

ventional carbon-black-filled materials (l1-4). Some of these

R R R

studies dealt mainly with the stiffening effect of incorpor-
ating solid particles and some were concerned also with changes
in tensile breaking stress and extensibility on adding them to
rubber. However, no study has yet been carried out of the tear
strength, as far as the present authors are aware. Yet the

resistance to a propagating tear, measured by the fracture

energy T required per unit area of the tear plane, is in many

ways a more fundamental measure Of the strength of a material

I R T

than, say, the breaking stress Gb or elongation eb

for a strip in tension. This contention is based on Griffith's

at break,

concept of tensile rupture as the catastrophic growth by tear-
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ing of a chance edge nick or flaw (5). If the material is
linearly elastic up to the point of rupture, with Young's modulus
denoted by E, then the breaking stress and elongation at break
can be expressed directly in terms of the fracture energy or

tear strength T and the depth ¢ of an edge nick (5):
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cbz =TE/ ", (L)
and
ekf =T / TcE. (2)

Even if the material follows a non-linear relationship between
tensile stress and elongation, a corresponding relation can

be derived for the elastic strain-energy density Ub at

break (6) :

u, =T/ 2 ke, (3)
where k is a numerical quantity, decreasing from T at small
breaking elongations to a value of the order of unity at large
breaking elongations (7). Equations (1) and (2) are then ob-

tained as special cases of equation (3) when ey is small,.

—

Considerable evidence has accumulated showing that elastic
materials do, indeed, undergo tensile failure by tearing apart
at a stress-raising flaw, and that equations (1-3) successfully
predict the tensile properties in terms of the depth ¢ of a
flaw, the elastic modulus E, and the tear strength, or fracture
energy, T (6,8). Moreover, T can be measured independently in
a number of ways. One convenient method is by means of the
cleavage test shown in Figure 1. The tear strength T is given
in this case by (6):

T=2F/¢t, (4)




where F is the tear force and t is the width of the tear path,
often about 50 per cent greater than the specimen thickness
because the tear plane is not accurately perpendicular to the
two surfaces of the specimen but lies at an angle of about
45° to them under the shearing action of the tear force F (9).
Simple elastomers filled with glass beads or other model
fillers have been shown to be stiffer, and sometimes stronger,
than the corresponding unfilled material (l1l-4). Large changes
in stiffness have been associated with "dewetting", when the
elastomer detaches from the glass beads at high strains to form
vacuoles. When dewetting is pronounced, then the presence of
the glass beads is stated to have no effect on the tensile
properties (4). In order to study the process of fracture in

glass-filled elastomers in more detail, it thus seems advisable

to control the tendency of the elastomer to dewet from the glass.

Glass beads have therefore been obtained with a variety of surface

pretreatments. In sOme instances; for example, when the glass
had been treated with vinyltriethoxysilane; chemical bonding to
the elastomeric matrix would be expected to occur during the

free-radical crosslinking of the diene elastomer itself after

the glass filler had been incorporated (10,11) .In other instances;
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for example, when the glass had been pretreated with dimethyl-
diethoxysilane or had received no pretreatment at all; then

no interfacial chemical bonding between the elastomeric matrix
and the glass filler particles would be expected to occur when
the elastomer was later crosslinked.

Model filled compounds were prepared using these treated
and untreated glass beads, by mixing them into polybutadiene,
together with a free-radical crosslinking agent, dicumyl peroxide.
These mixes were then pressed into sheets and the elastomeric
matrix crosslinked by heating. Both tensile fracture experi-
ments and measurements of tear strength have been carried out
on the resulting materials. The results are presented below.
2. Experimental details

Soda-lime glass beads were obtained from two sources:
Potters Industries, Inc. (U.S. Sieve No. 140-270, density 2.48,
refractive index 1.51) and Petrarch Systems, Inc. (70-140 mesh,

same density and refractive index). Treated glass beads were

obtained solely from Petrarch and had the same size as untreated

glass from the same source.

By inspection, all of the glass beads had a wide range

of sizes. Those from Potters Industries ranged from 30-95 um




in diameter, and those from Petrarch Systems ranged from 80-220 um
in diameter. They also contained a small proportion of markedly
non-spherical particles, some irregularly rounded like beach peb-
bles and some sharply pointed. The beads were added to polybuta-
diene (Diene 35 NFA, Firestone Tire and Rubber Company) at a
concentration of 50 parts by weight per 100 parts of elastomer,
corresponding to a volume fraction of about 1lé per cent in the
final product. This elastomer was chosen because it is a simple
non-polar polymer, transparent and non-crystallizing. Dicumyl
peroxide (Dicup R, Hercules Inc.) was added at a concentration

of 0.05 parts by weight per hundred parts of elastomer and cross-
linking was effected by heating the mixture in a heated press

for 2 h at 150°C. Molded test sheets were prepared in this way
with a thickness between 1 and 3 mm,

Tear tests were carried out as shown in Figure 1, using
strips about 2 mm thick cut from molded sheets. The strips were
about 2 cm wide and 12 cm long. They were scored with a sharp
knife along the center line to a depth of about one-half of the

original thickness, so that only about 1 mm of thickness remained

to be torn through. The rate of tear was quite low, about 40 um/s.

All experiments were carried out at room temperature, about 24°C.
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Method of measuring tear strength

Figure 1.




Tensile tests were carried out using dumb-bell shaped
specimens, about 3 mm thick and 6 mm wide, cut from molded

sheets with a sharp die. The nominal breaking stress db

was determined from the breaking force, by dividing by the
unstrained cross-sectional area of the narrow central part of

the tensile specimens. It is thus not the true breaking stress,
which is given by cb(l + eb). The elongation e, at break was
determined from measurements of the elongation of the narrow
central region of the tensile specimens up to break. All tensile
measurements were carried out at a crosshead speed of about 8 mm/s,
corresponding to a rate of elongation of about 0.2 s~ !.

Other measurements were carried out to determine the dis-
sipation of mechanical energy during stretching. The hysteresis
ratio H, defined as the energy dissipated relative to the energy
supplied in stretching the specimen, was determined from the
areas A; and A, under the loading and unloading force-displacement
relations when specimens were stretched to various extents at a
rate of elongation of about 0.0l s~! and then allowed to retract
at the same rate back to the unstrained state. The hysteresis

H was then calculated as follows:

H = (Al - Ag) /A1 (5)
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It should be noted the same testpiece was stretched repeatedly;
first, to 25 per cent elongation and back to the unstrained state,
then to 50 per cent elongation and back to zero, then to 75 per
cent elongation and back to zero, and finally, if the test strip
did not break, to 100 per cent elongation and back to zero. Be-
cause of the prior extensions, it is probable that the measured
hysteresis at the larger extensions was somewhat less than it
would have been for a specimen not previously stretched at all.

3. Experimental results and discussion

Tensile properties

Values of the nominal breaking stress 5 and breaking

elongation e, are given in Table 1 for all of the compounds

examined. ;; each case about eight separate measurements were
made, the mean values and standard deviations being given in
the table.

The tensile breaking stresses were found to be generally
higher for the compounds containing untreated glass beads and
for those containing beads treated with aminopropylsilane or
vinylsilane. 1Indeed, the values oObtained were comparable to
those for the unfilled material. The breaking elongations ey

were also similar in magnitude for these compounds, although
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they were significantly lower than the values obtained for
the unfilled material. These specimens also showed little
visible dewetting of the glass beads before rupture. 1In
contrast, compounds filled with glass beads treated with
dimethylsilane and octadecylsilane were found to have rather
lower breaking stresses and breaking elongations than the
other materials and they also exhibited substantial dewetting
of the filler particles before rupture.

No chemical bonding would be expected to take place
between dimethyl- and octadecyl-groups and polybutadiene during
the free-radical crosslinking of the latter. Some weakening
effect of adding glass beads treated with these silanes is
therefore to be expected. On the other hand, previous work has
indicated that chemical bonding can occur bet&een vinyl groups
on glass and polybutadiene (10,11),so that greater strength
and less dewetting would be expected in this case. It is
interesting to note that aminopropylsilane-treated glass and
untreated glass gave similar results to the vinylsilane-treated
glass. as though a significant degree of interfacial bonding
had been achieved ip these cases also. It has been remarked

previously that polybutadiene adheres to glass to a considerable
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degree (11), much more than to simple non-polar substrates.
Further study of the interfacial chemistry of polybutadiene
on glass and on aminopropylsilane-treated glass is clearly
called for.

An alternative measure of the strength in tension is given
by the strain energy density Ub at break. Approximate values

of Ub were calculated from the measured breaking stress and

breaking elongation, assuming that linear stress-strain relation-

ships were followed up to break,i.e., Uy =(l/2)cbeb. The values

obtained in this way are given in the final column of Table 1.
This procedure will somewhat underestimate the true value of

the work expended in stretching the specimen because the stress-
strain relations become markedly concave toO the strain axis near
rupture when the elastomer matrix dewets from the filler. How-
ever, a correction would become necessary later if the actual

work expended were to be employed for Ub in equation (3). This

is because Ub there denotes strain energy available to propagate

a tear, whereas the energy lost in dewetting can no longer be
employed for rupture. Thus, the procedure followed here, although

imprecise, should give more realistic values for the elastic strain energy
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density available at the point of rupture than would the total
energy expended in stretching the specimen to rupture.

The results show a marked decrease in Ub on adding glass

beads, even when the glass was pretreated with a bondable silane,
and a further large decrease when the glass was pretreated with
a non-bonding silane, The glass particles may be acting as
fracture nuclei, as discussed in a later section.

Energy dissipated in stretching

Experimentally-determined values of the mechanical hysteresis
ratio H, defined by equation (5), are given in Table 2. For the
unfilled material H was rather small. About 10 per cent of the
energy expended in stretching was dissipated internally. When
bondable glass beads were incorporated the value of H rose to
12-16 per cent. Somewhat higher values, 14-20 per cent, were
obtained for the compounds containing untreated glass beads, and
non-bondable glass beads, treated with dimethylsilane, gave values
for H of 12-17 per cent. The highest values of H, 17-22 per cent,
were obtained for the comp?und containing octadecylsilane-treated
beads. It is noteworthy that these beads were also the most dif-
ficult to incorporate into the elastomer, being the least readily
wetted, and that the compound exhibited the most extensive de-

wetting of the beads on stretching.
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Thus, the amount of hysteresis that can be attributed to

dewetting varies from about 4 per cent to about 13 per cent,
depending upon the degree of interfacial adhesion. These values
may be compared to a theoretically-calculated result for
abrupt and complete dewetting of the matrix from rigid spherical
inclusions (12):

H=3g/ n
where @ denotes the volume fraction of filler particles. Thus

the maximum possible contribution to mechanical hysteresis arising

from dewetting for a volume fraction of 0.16 is predicted to be
about 15 per cent, close to, but somewhat higher than, the exper-
imental value obtained with the least-well-adhering particles.
Tear strength

Measurements of fracture energy, or tear strength, T were
carried out on 5 or more strips of each compound. The values
obtained were found to vary by about + 15 per cent, even though
the tear force had been averaged along the length of each strip.
The mean values of tear strength are given in Table 3. They
are seen to be significantly increased by adding glass beads,
by about 25 per cent for the larger sized beads. but the tear
strength does not appear to depend upon the degree of interfacial

bonding to a significant degree.
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It seems likely that the intrinsic tear strength of the
filled materials is not much different from that of the elas-
tomeric matrix. The main effect of the glass beads is apparently

to cause a deviation of the tear path from a straight line, so

that the tear becomes rougher and the tear strength correspond-
ingly higher (8). A noticeable increase in roughness of the
torn surface was observed in comparison with that of the unfilled

material. The scale of roughness is probably set by the size of

the beads; it is noteworthy that the larger glass particles gave
compounds having higher tear strength. However, if the particle
size is smaller than the natural tear roughness of the unfilled
elastomer, then they would presumably have little influence on the
tear strength by this particular mechanism of enforced deviation
of the tear path.

Fracture nuclei in tension

The depth c of the hypothetical nick or flaw from which
tensile fracture initiated may be calculated by means of equation

(3) , using the measured tear energy T and strain-energy density

at break Ub' A value of 2 is assigned to the numerical quantity
k, as an appropriate value for moderate deformations (7). The

values obtained in this way for the depth ¢ of fracture nuclei
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are given in the last column of Table 3. They are seen to be

significantly larger for the glass-filled materials than for

the unfilled elastomer, and to be generally of the same order
of magnitude as the diameter of the largest glass particles

present. The only significant exception is shown by the last

B T L S . R o

material, for which the filler bonding is least strong and
dewetting is most pronounced. 1In this case, the initial frac-
ture nucleus may be a larger flaw associated with several con-
tiguous dewetted particles.

Nevertheless, the general correlation shown in Table 3
between the calculated flaw size and the size of the glass par-
ticles, for materials having a wide range of values of U,
strongly suggests that tensile rupture in elastomers cs;:aining
solid particles takes place by catastrophic tearing from an
initial flaw which may be identified with an unusually large
dewetted particle. If this proposed mechanism of tensile rupture

is correct, it would probably be more appropriate to calculate

the depth ¢ of the edge flaw from which fracture initiates using

the tear energy T of the unfilled material, rather than the
measured values for each filled material. Values of ¢ calcu-
lated in this way are given in the last column of Table 3, and

denoted c¢'. This procedure brings the calculated values into
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closer agreement but it does not alter the general correlation
noted above with the diameter of the large;t glass particle
present.

Clearly, when the particle diameter is smaller than the
size of adventitious flaws in the elastomer, which appear to
be generally about 50 um (13), then the observed correlation
between the size of the effective fracture nucleus and the size
of the filler particles will cease to hold. A study of the
effect of particle size over a wider range than employed here
is therefore required in order to test the proposed mechanism
of tensile rupture in a critical way.

4. conclusions

(i) Addition of 16 per cent by volume of glass beads to
polybutadiene was found to increase the tear strength signifi-
cantly, by about 25 per cent for beads with a mean diameter of
150 um. This effect was largely independent of the degree of
interfacial bonding between the glass beads and the elastomer.
It is attributed to an increased roughness of the tear path in
the glass-filled materials.

(ii) The strain-energy density at break was found

to be much lower for the glass-filled materials than for the
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unfilled elastomer, especially with unbonded glass beads.
It is suggested that unusually large beads will act as frac-

ture nuclei in tension. In agreement with this hypothesis

the size of Griffith flaws, calculated from tensile and tear

' measurements, was found to be guite similar to the diameter of

the largest beads.

(iii) The tensile breaking stress was increased by adding
bondable glass beads and decreased by adding non-bondable
beads. These chgnges probably reflect corresponding differ-
ences in Young's modulus E. Indeed, it can be inferred from
Equation (1) that the bondable beads have a greater stiffening
effect than the non-bondable beads, as would be expected, and
that this effect can outweigh the larger flaw size ¢ associated
with the presence of glass beads.

(iv) Energy dissipation, associated with dewetting the

beads on stretching the filled materials, was found to vary

between about 4 per cent and 13 per cent of the input strain

| energy, depending upon the degree of interfacial adhesion. The
maximum amount of energy dissipated is thus close to a theo-
retically-predictea value of 15 per cent, for complete dewetting

of 16 volume per cent of filler particles.

L
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Table 1: Tensile properties of glass-filled
polybutadiene. Volume fraction of

glass is 0.16

Mean diameter Glass Nominal Breaking Strain energy
of glass beads treatment breaking elongation density at _
- stress break ‘
q (um) stress break !_
3 y
g (mpa) Y EE(MJ/m ) %
pffect of addinq untreated glass

(No glass added) - 0.85+0.03 2.06+0.18 0.88

60 none 0.81+0.04 1.73+0.04 0.70

150 none 0.87_-1;0.015 1.38+0.10 0.60

Effect of silane treatment

150 none 0.87+0.015 1.38+0.10 0.60

150 as l.OOj—_0.0ZS 1.23+40.15 0.62

150 VS 0.88511-_0.01 1.18+0.05 0.52

150 DMS 0.80510.01 0.95+0.08 0.38

150 0s 0.57+0.008 1.34+0.10
Note:
AS: Aminopropyltriethoxysilane
VS: Vinyltriethoxysilane
DMS: Dimethyldiethoxysilane

0s: Octadecyltriethoxysilane
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Table 2: Mechanical hysteresis H on stretching

to specified elongations and retracting

Mean diameter Glass Maximum elongation 5

of glass beads treatment 0.25 0.5 0.75 1.0 1

4 (um) 2

5

(None) - 0.12 0.09  0.09 0.09 §

| 60 none 0.16 0.20  0.17 0.17 3
: 150 none 0.16 0.14

a

‘ 150 AS 0.12 0.12
; 150 Vs 0.16 0.12
150 DMS 0.12 0.17

150 0s 0.22 0.22
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Table 3: Tear strength of glass-filled polybutadiene,

volume fraction of glass is 0.16

Mean diameter Glass Tear strength c = T/40y s
of glass beads  treatment T (J/nt) T ()
4 (um

(None) ' - 405 115 115
60 none 440 155 145 ?
150 none 520 215 170 :
| 150 AS 530 215 165 ;
% 150 A 490 235 195 §
150 DMS 400 265 265 g
150 0s 560 370 265 §
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