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Effect of Controlled Rolling on the Crystallographic Texture and
the Mechanical and Ballistic Properties o0f Steel] Armor Plates

by Hsun Hu

\E& Abstract
/

The scope of the present research included two parts:

(1) to further strengthen the (112)+(111) texture in the 5Ni steel
{(actually a medium-carhon 5Ni-Si-Cu-Mo-V steel) armcr by intro-
ducing modifications to the previously employed hot-rolling pro-
cess, and to provide latitude in production of this superior
textured armor plate; (2) to investigate the crystallographic
texture formation in an austenitic steel system (such as the

A-286 alloy) so that textures other than those formed in gquenched-
and-tempered martensite can be produced and their effects on
properties can be studied. [\\

Results indicate that the intensity of the (112)+(111)
texture in the 5Ni steel armor can be further increased by
controlled rolling with declining temperatures, and that the V50
ballistic limits of the 60, 70, and 80 percent rolled plates
correlate with the texture-intensity parameter within the scatter
band of the earlier data. However, for the 90 percent rolled

plates, the VSO ballistic limit falls below the scatter band of

the correlation. Also, the back-spalling resistance of the
heavily rolled plates appears to be lower. These results have
been discussed in relation to the changes of other mechanical

properties as a consequance of the low rolling and finishing

temperatures employed.
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Results from the present study on the A-286 alloy indicate
that a complete transition of the rolling texture from the coprer-
type to the brass-type can be effected by decreasing the rolling
temperature., A large variety of textures can he produced by
appropriate thermul and mechanical processing treatments. These
textures can probably be utilized to advantece only in specific
applications for sheet materials, The alloy does not appear to
be suitable for producing strongly textured thick plates because
of the very limited temperature range for hot working te high

reductions without concurrent recrystallization,

Introduction

To further extend the study of the effect of crystallo-
graphic texture on the mechanical and ballistic properties of high-
hardness steel armor plates, the contract with the Army Materials
and Mechanics Research Center was renewed for another year in
January 1979, The scope of the present research program can be
described in two parts.

First, because the beneficial effect of the (112)+(1l1l1)
texture on the ballistic performance of the quenched-and-tempered
5Ni steel (actually a medium=-carbon 5Ni1~Si-Cu-Mo-V steel) armor
has been well established,l_B)* and because of the increased
interest in producing armor plates of thinner gages with this

4.5)

texture for improved propercies, it appears highly desirable

*See References,
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to extend our studies from previous thermomechanical processing
treatments involving mainly a final isothermal rolling at 1500°F
(816°C) to controlled rolling with declining temperatures. The
possibility of finish-rolling at somewhat lower temperatures
would further strengthen the texture of the austenite, hence the
texture o! the martensite, Furthermore, successful application

&

0of this controlled roliing with declining temperatures would

provide more latitude in production of the textured armor plates,

including those of the thin gages.

Second, to .nvestigate the rolling texture formation in

a stable-austenitic steel system, it was decidede) that the A-286

alloy could be used because the alloy is fcc at all temperatures
and can be strenythened by precipitation harcdening, Consequently,
Jdifferent crystallogyraphic textures other than the (112)+(111)

typel'?) {martensite producerd by gquenching straightaway-rolled

austenite), th- ~(110) typel'7) (martensite produced by quenching

; , . . 2,7
cube-textured recrystallized austenite), and the ~(1lll) type ' )
(martensite produced by gquenching cross-rolled austenite) can be

produced; their effects on the mechanical and ballistic properties

of the plates can then be studied.
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Reégearch Part I {5n: Steel

Material and Procedures

Steel Composition and Ingot Dimansions

One 500-pound (227 ky) heat, aimed to the same nominal
composition as the steels used in earlier investigations,l'z) was
melted and cast in vacuum in the laboratory. The dimensions of
the ingyot were also the same as those of the ingots made pre-
viously, namely 7 by 12 by 24 inches (180 by 300 by 600 mm).
Results ¢f ladle and check analyses are given in Table I. The
sample for check analysis was taken from one of the slabs pre-
liminary hot-rolled to the smallest intermediate thickness (1.40
inches cr 36 mm) near the top end of tne ingot. The present
steel matched closely in chemistry with L‘hose steels used pre-
1,2,5)

viously.

Preliminary Hot Rolling and Preparation
of the Intermecdiate Slabs

Afrer solicification in the mold, the ingot was hot-
ctarged into a preheating furnace at 2250°F (1230°C) and soaked
for two hours. The procedures for preliminary hot rolling to
slabs of four intermediate thicknesses, namely 5.50, 2.75, 1l.85§
and 1.40 inches (140, 70, 47, and 36 mm), were the samre as those
employed in earlier investigations.l'z) The ingot was first

rolled from 7 to 5.50 inches thick. A predetermined length was

torch-cut from the bottom end of the slab, and the remaining
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portion ¢f the slap was reheated to temperature by returning it
to the furnace for about 20 minutes. The piece was then further
rolled to the next intermediate thickness (2.75 inches), and another
predeternmined length was torch-cut from the previocus cut end of the
rolled slab. The reheating, hot rolling, and torch cutting were
repeated when the slab was rolled to 1.85 inches thick, and finally
the remaining piece was further rolled to 1.40 inches thick, the
smallest thickness of the intermediate slabs.

Following previous practice, all these slabs of various
thicknesses were first cocled in air to approximately 800°F
(427°C), then cooled slowly in vermiculite to the ambient tempera-
ture. These procedures were found to be necessary to eliminate
hairline cracks on the cut faces of the slabs. Such cracks fre-
guently induced edge cracking in the finished plates that were
isothermally rolled at 1500°F (816°C) to 0.55 inch (14 mm) thick
and water-quenched.z)

Slabs of the four intermediate thicknesses were cut longi-
tudinally along the centerline of the width into two haives. Thus,
each piece became only 6 inches (150 mm) wide for final rolling.
A hole 5/32 inch (3.97 mm) in diameter was drilled on the centerline
cut face at half thickness and one-third-length position ot each
piece for accommodating the monitoring thermocouple in final
rolling. These preparations were essentially the same as in earlier

pra:tices.l'z)

JET &

baci ol b e




Final Controlled Rolling with Declining
Temperatures and Subsequent Treatments

For final reolling, the intermediate pieces were reheated

at 1700°F (927°C) for two hours. The same rolling schedules
1,2)

employed in earlier investigations were used to roll the
intermediate pier -=, 1.40, 1.85, 2.75, and 5.50 inches thick, to

the final 0.55-inch-thick plates in 5, 6, 9, and 18 passes, for

M e € gk e S

a total reduction in thickness of 60, 70, 80, and 90 percent,
respectively.* These plates were designated A, B, C, and D for
increasing reductions.

In contrast to previous investigations, the temperature
of each rolling pass was allowed to decline by a predetermined
amount so that rolling started at 1500 to 1600°F (816 to 871°C)
! and finished at 1300 to 1350°F (704 to 732°C) depending on the
total reduction or number of passes. For example, for the 60
percent reduced plates (Plate A), rolling started at 1E90°F,
finished at 1350°F; for the 70 percent reduced plates (Plate B),
rolling started at 1500°F, finished at 1340°F (727°C); for the
80 percent reduced plates (Plate C), rolling started ct 1529°F
{827°C), finished at 1320°F (716°C): and for the 90 percent
reduced plates (Plate D), rolling started at 1600°F, finished at

1300°F. Table II shows the temperatures actually recorded at

each pass, together with the reduction schedule employed in the

*The amount of reduction per pass was mostly around 0.030 inch
(0.76 mm), except for the last few passes when lighter reduc-
tions were employed to contrel the final thickness.
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final controlled reollirng ¢f the plates. The plates were
imrmediately water-spray-quenched to room temperature after
the final pass.

The rolled and gue rates, 0.55 inch thick and
6 inches wide, were subsequently cut into pieces 12 inches
(300 mm) long, tempered at 350°F (177°C) for one houar, and
cooled in air. These plates were then surface~ground to remove
the oxide scale and the decarburized layer before ballistic
testing. Specimens for various other mechanical tests, and for
microsceopic or X~-ray examinations, were all prepared from the

tempered plates.

Results and Discussion

Texture of the Control-Rolled Plates

The crystallographic textures of the control-rolled
plates were examined by X-ray pole figures determined from the
midthickness section. Following the same procedures employed
previocusly, both the (110) and (200) pole figures were determined

by the Schulz reflection technique up to a tilt angle of 80

degrees from the rclling-plane normal, using filtered MOKa radia-~- 1
tion. Figure 1 shows the (110) pole figures for the plates rolled
60, 70, 80, and 90 percent. The corresponding (200) pole figures
of these plates are shown in Figure 2.
As can be seen from these pole figures, the nature and
degree of intensity of the textures were similar to those of the

plates processed by isothermal rolling at 1500°F in the earlier
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investigations. ! However, for the same rolling reductions,

the intensities of the textures of the present plates were some-
what higher than those of the previous plates isothermally rolled
at 1500°F. This apparently was a consequence of rolling with
declining temperatures and with the considerably lower finishing
temperatures employed in the present rolling schedules. Similar
effects of rolling temperature on texture intensity in guenched
8)

4340 steel armor plate were observed by Zarkades.

Microstructure of the Plates

The microstructures of the control-rolled then quenched-
and~-tempered plates were examined by optical microscopy and
transmission electron microscopy (TEM) at one-million-volt
acceleration. Both the longitudinal and the transverse cross
sections of the plates were examined. Figure 3 shows the optical
micrographs of the plates rolled 60 and 90 percent with declining
temperatures then quenched and tempered. As in previous iso-
thermally rolled plates, structural banding was more clearly
shown in the longitudinal than in the transverse sections of the
specimens. For the 90 percent rolled plates, the banding appeared
to be slightly mcore severe and the bands were more closely spaced
than in the earlier plates isothermally rolled 90 percent at
1500°F.l'2) Other than this, no unusual features could be noticed

in the microstructure of the present plates.




The TEM micrographs in Figure 4 show the fine structures
of the martensite in the gquenched-and-tempered plates rolled 60
and 90 percent. Again, there was very little difference in
comparison with the isothermally rolled plates produced in

. . . , 1,2
earlier investigations.™' )

As was observed previously, there
was no significant difference in the martensite structure among

the plates rolled to 60 and to 90 percent reductions.

In-Plane Tensile Properties

The in-plane tensile properties of the plates were deter-
mined by testing specimens 0.25 inch (6.3 mm) in diameter and 1
inch (25 mm) gage length, prepared along three directions in the
plane of the plate. These were the longitudinal (L), the
diagonal (D), and the transverse (T) directions. Duplicate
specimens were tested, and the averaged testing data are summarized
in Table III. As can be noted, the strengths and ductility were
anisotropic in the plane of the plate. The vield and tensile
strengths were higher, whereas the percentage of reduction in area
and total elongat.on were lower, in the transverse direction than
in the longitudinal c¢r the diagonal direction. The properties in
the diagonal direction were intermediate between those in the
longitudinal and the transverse directions but closer to those in
the longitudinal direction. The difference between the longitudinal
and the transverse properties increased with increasing rolling

reduction.
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Such in-plane anisotropies were gquite similar to those
observed earlier in isothermally rolled plates (see Table III in
Reference 1). This agreement was expected because the nature of
the texture, (112)+(111), is essentially the same for all these
rolled and immediately quenched plates. However, the strengths
of the present plates were somewhat higher, and the ductility
lower, than the corresponding properties of the isothermally

rolled plates reported earlier.l) It can also be nociced in

Table II11 that the yield strength increased and the total elonga-
tion decreased rather consistently with increasing rolling reduc-
tion. In those plates isothermally rolled at 1500°F and quenched,
such dependence of strength and ductility on rolling reduction
was not clearly indicated (see Table III in Reference 1).

These observations suggest that the observed difference
in the mechanical properties of the present plates as compared
with those of the isothermally rolled (at 1500°F) plates is a

consequence of the lowered rolling and finishing temperatures,

which would result in higher dislocation contents. Other
possible causes, such as the precipitation of second-phase
particles (although no direct evidence was indicated by the TEM
micrographs), for the observed mechanical properties are at
present unclear, Further study will be required to identify

all the contribucing factors.




Through-Thickness Tensile
Properties of hotched Specimens

As initially suggested by Richmondg)

of the U. §. Steel
Research Laboratory, the resistance to spalling at a constant
strain rate could be determined for plates by testing the through-
thickness tensile strength under constraint conditions, such as
with the sharply notched specimen shown in Figure 5, in which the
strains € T &, 0. In previous investigations a gualitative
correlation was observed between the through-thickness tensile
strength of such notched specimens and the resistance to back

1)

spalling of the ballistically tested plates, or between the

through-thickness tensile strength of the notched specimens and
. - . . L - 7
the diameter of exit holes of the ballistically tested plates. )

Similar tests were conducted on notched specimens of the

present plates, and the results are shown in Table IV, As can be

noted, the through-thickness tensile strength and total elonga-
tion of the notched specimens decreased with increasing rolling
reduction. The through-thickness tensile strengths of the present
plates were, in fact, appreciably lower than thcse of earlier
plates isothermally rcolled at 1500°F, similarly guenched and
tempered (see Column 1 of Table XIII in Reference 1), particularly
for those plates rolled to high reductions. These results

suggested that the resistance to back spalling of the present

heavily rolled plates would probably be even lower than that of

the earlier plates rolled isothermally at 1500°F to correspondingly

- 11 -




high reductions. This seemed to have been confirmed by the
ballistic~testing results for the present plates, as will be
reported in a later section.

Charpy Impact Properties

The Charpy V-notch impact properties of the plates were
determined by testing at room temperature on duplicate full-size
specimens prepared along the longitudinal, diagonal, and trans-
verse directions. The results are summarized in Table V. The
impact energy was the highest in the longitudinal direction,
lowest in the transverse direction, and intermediate in the
diagonal direction. This is in good agreement with the results
obtained by Zarkadeslo) on the isothermally rolled (90 percent
reduction at 1500°F) plates produced earlier in this Laboratory.
However, the impact energies of the present plates were somewhat
lower than the corresponding impact energies of the earlier
isothermally rolled plates. For example, the impact energies
reported by Zarkadeslo) were 17.5, 15.2, and 11.5 ft-1b (23.7,
20.6, and 15.6 J) for the longitudinal, diagonal, and transverse
directions, whereas for the corresponding directions in the
present plates (Plate D-1 in Table V), the impact energies ware
14.0, 12.5, and 9.8 ft-1b (19.0, 17.0, and 13.3 J), respectively.
In comparison with the isothermally rolled plates, the lower
impact energies of the present plates were consistent with their

higher strengths and lower ductilities. Data in Table V also

indicated a consistent dependence of impact energy on rolling

reduction.

2)
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The VSO ballistic limits of the present .ates were
determined by using 0.50 caliber AP M2 projectiles at zero-degree
obliquity. These ballistic limits, together with ot.'er pertinent
information such as texture type, texture intensity, and the hard-
ness and thickness of test plate, are summarized in Table VI. The
V50 ballistic limit increased with increasing rolling reduction
and the intensity of the (112)+(111) type texture. The texture
intensities of the present plates were somewhat higher than those
of the correspondingly reduced plates rolled isothermally at
1500°F (compare with Table VIII in Reference l, and Table III in
Reference 2).

To compare the ballistic limits of the present plates with
those of the earlier plates as a function of texture intensity,
the ballistic limits of the present plates were corrected for
thickness to 0.470 inch (a common thickness arbit.arily selected

previously for comparison), and added to the plot of Figure 5 in

Reference 2. This new plot is shown in the present report as
Figure 6. The data points for the present plates are represented by j
the triangles. As shown, the data points for the A, B, and C
plates, which were rolled 60, 70, and 80 percent, respectively,
were well within the scatter band. For the plates rolled 90 per-
cent (the D plates), the ballistic limit fell below the scatter

band, A tendency for the ballistic limits to level off was also
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indicated by the C plates, which were rolled 20 percent with a
finishing temperature of 1320°F (716°C).,

The back-spalling tendency of these plates can be
qualitatively judged by the size and appearance of the exit holes
on the back side of the tested plates. Figures 7A to 7D show the
photographs of the ballistic-tested plates a-2, B-2, C-2, and D=2
(see Table VI), respectively, The back-spalling tendency of the
present plates, particularly those rolled to high reductions,
appeared to be somewhat greater than that of earlier plates pro-
cessed by isothermal rolling to the same reductions. This is in
confirmation of the prediction based on the through-thickness
tensile strengths of notched specimens of the plates.

These results indicate that the apparent increase in
texture intensity obtalined by decreasing the finishing tempera-
ture to 1300°F (704°C) did not proportionately improve the
ballistic limits of the plates. On the basis of the various
mechanical properties of the plates observed, such as higher yield
and tensile strengths, lower ductility, lower through-thickness
tensile strength, and lower impact energy than those of the earlier
plates isothermally rclled at 1500°F, the apparent increase in
texture intensity may not simply represent an increase in the
degree of preferred orientation, but also an actual increase in
the dislocation contents. It is also possible that some precipita-

tion may have occurred by rolling and finishing at these low




temperatures, even though no visible precipitation was evident
in the TEM micrographs of the specimens (Figure 4), Moreover,
in a highly dislocated matrix, such as quenched martensites, it
is rather difficult to visually detect the presence of small

amounts of fine precipitates.

Summary and Conclusions

In an attempt to further strengthen the (112)+(111)
texture and to provide more latitude in production for the 5Ni
steel armor, the effect of controlled rolling with declining
temperatures (in the range 1600 to 1300°F) on the crystallographic
texture and the mechanical and ballistic properties of the plates
has been studied. Results indicate that the apparent texture
intensities of the preseﬁt plates were somewhat higher than those
of the earlier plates processed by isothermal rolling at 1500°F
to corresponding reductions because the temperatures for the
majority of rolling passes and the finishing pass were consider-
ably lower than in earlier investigations. The various mechanical
properties and the ballistic performance of the present plates
were also affected by the low rolling and finishing temperatures,
For example, the yield and tensile strengths were higher, whereas
the ductility, the through-thickness tensile strength, and the
impact energy were lower for the present plates than for the

earlier plates.

- 15 -
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As was observed in previous investigations, the V50
ballistic limit increased with the rolling reduction and the
intensity of +*he (112)+(111) type texture, In comparison with
the ballistic performance of earlier plates as a function of the
texture-intensity parameter, the VSO ballistic limits of the
present plates rolled 60, 70, and 80 percent were well within

the scatter band of the correlation. However, for the present
plates rolled 90 percent, the ballistic limit fell below the
scatter band of the correlation. The back-spalling resistance

of the present plates, particularly those rolled to high reduc-
tions, also appeared to be somewhat inferior to that of the
earlier plates rolled isothermally at 1500°F to the same reduc-
tions. These results indicate that an apparent increase in
texture intensity due to rolling and finishing at considerably
lower temperatures may not result in a corresponding improvement
in the ballistic properties. As indicated by the differences
observed between the various mechanical properties of the present
plates and those of the earlier plates rolled isothermally, an
actual increase of the dislocation contents and possibly some

precipitation hardening may have been effected by the controlled

rolling with declining terperatures employed.

- 16 -




Recommendations for future Work

Results from rrevious and present investigations on 5Ni
steel armor indicated that the (112)+(lll) textured plates had
ballistic properties substantially superior to those of the
random-textured plates. The VSO ballistic limit increased with
the intensity of the (112)+(111) texture practically linearly
provided that the temperature of rolling was within the range
1600 to 1400°F (871 to 760°C)., To facilitate the production of
such superior textured armor by industrially established pro-
cessing techniques with few changes reguired, it would be highly
desirable to study the effects of microalloying on the retarda-
tion of recrystallization in the 5Ni steel dux:ng hot rolling so
that the steel can be processecd at higher temperatures to high
reductions without concurrent recrystallization. A very strong
texture would thus be developed in the deformed austenite. hence
in the quenched-and-tempered martensite., Hot rolling and finish-
ing at higher temperatures would facilitate commercial production

of such textured armor plates even for th. thir gages.
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Research Part I1 (A-286 Alloy)

Alloy Composition and Ingot Dimensions

One 500-pound heat, aimed to the nominal compositicn of
the A-286 alloy given in the literature,ll'lz) was vacuum-melted
and cast in the melt shop of the Laboratory. The ingot, 7 by 12
by 24 inches {180 by 300 by 600 mm), the same as the SNi steel
ingot, was hot-charged into a preheating furnace at 2000°F (1093°C),
ané soaked at temper .ture for 2 hours. The ingot was first hot-
rolled from 7 to 5.50 inches (180 to 140 mm) thick. After it was
cooled to room temperature, a piece abcit 8 inches (203 mm) in
length was cut from the bottom end of the ingot. The remainder
of the rolied ingot was reheated to temperature and hot-rolled to
2.75 inches (70 mm) thick. Ancother piece about 14 inches (356 mm)
in length was cut from the previously cut end of the slab. The
process of reheating, hot rolling, and cutting was repeated until
four slabs having the intermediate thicknesses 5.50, 2.75, 1.85,
and 1.40 inches (140, 70, 47, and 36 mm) were obtained.

After the hot top was cut off and discarded and a small
slice was taken for check analysis from the 1,40-inch-thick slab,
the remaining 1.40~-inch-thick material was used for preliminary
studies of the microstructural and textural characieristics of
the alloy after various thermomechanical processing treatments.
Appropriate processing of the intermediate slabs to the final

1/2-inch-thick armor plates with desired crystallographic textures
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and high strength depends on the results of these preliminary
studies,

The chemical compositicon of the alloy, as shown by the
ladle and check analyses, is given in Table VII. Except for the
nitrogen concentration, which is higher thar originally aimed
(0.005%), the concentrations of all other alloying elements are

within the aim range.

Solution Treatment and Microstructure

The microstructure of the hot-rolled slab that was cooled
in air consisted of recrystallized grains with annealing twins.
There were some c¢oarse (2 to 5 uym in diameter), gray-etching,
second-phase particles. p:zlieved to be titanium carbide (TiC),
because X-ray energy : .+ t.a of these partic.es examined in the
SEM (scanning electron microscopy) indicated high titanium contents,
and because titanium nitride (TiN) can easily be recognized micro-
scopically by its characteristic angular shape and reddish orange
color. These TiC particles could not be eliminated by solution
treatments at temperatures as high as 2300°F (1260°C). Small
specimens annealed for one hour at various temperatures, ranging
from 1800 to 2300°F (9B2 to 1260°C), and gquenched in water showed
little difference in hardness, as can be seen in Table VI.I. The
microstructures of the specimens solution-treatea at 2300°F and at
1800°F showed biy differences in grain size, but only minor differ-
ences in the amount and size of the second-phase particles,

Figure 8.




These results suggested that a solution treatment by
annealing at 1800°F for 1 hour and quenching should be adeguate
for the dissolution of the gamma prime (vy') phase Ni3(Ti,Al) or

the eta (n) phase Ni_Ti—~the principal second phase for precipita-

3
tion strengthening in the A~286 alloy. Furthermore, a smaller
venultimate grain size (by solution annealing at a lower tempera-
ture) would be more desirable for the development of a strong
texture by subsequent thermomechanical processing than a coarser

greined material.

Rolling Textures and Their
Dependence on Temperature

To provide necessary information for appropriate thermo-
mechanical processing of the 1/2-~inch-thick texture :'lates, the
textural behavior of the alloy was studied extensivel, by using
small specimens. Rectangular blocks, approximately 3/4 inch
(19 mm) thick by 1~1/4 inches (32 mm) wide by 1-1/2 inches (38 mm)
long, were first solution-trezted by annealing at 1800°F (982°C)
for 1 hour and gquenched. The blocks were then isothermally rolled
(by reheating to temperature after each pass) to 90 percent reduc-
tion in thickness at various temperatures ranging from 1800 to
-100°F (982 to -73°C). 1In a manner similar to the textural

3) 3)

behavior of various fcc metalsl and alloys,1 including the

Type 304 stainless steels,l3’l4)

the rolling texture of the A-286
alloy changed gradually from the copper-type to the brass-type

with decreasing temperature. A completely brass-type texture was
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produced at -100°F, by usiny dry-iced acetone as the cooling bath.
In comparison with the Type 304 stainless steels,l4) the tempera-
ture for a complete texture transition from the copper to the
brass type is much lower in the A-286 allcocy {(~100°F vs 392°F or
200°C), suggesting that the stacking-fault energy of the A-286
alloy is considerably higher than that of the Type 304 stainless
steels.

The temperature dependence of the rolling-texture transi-
tion in the A-286 alloy can be described as follcws:

1. Rolling at 1800°F (982°C) or even at 17C0°F (827°C) causes
concurrent recrystallization, resulting in nearly random or very
weak textures. Figure 9A shcows the microstructure of the specimen
rolled 90 percent at 1700°F. The textures of the specimens rolled
at 1800°F and at 1700°F are shown by the (111) pole figures in
Figure 10, A and B, respectively. As can be noted, the texture
of the specimen rolled at 1700°F is slightly stronger than that of
the specimen rolled at 1800°F. The observed difference in the
degree of texture intensity between these two specimens, both
being completely recrystallized, can probably be understood on the
basis of the amount of rolling deformation, ¢r number of passes
necessary for recrystallization to occur at the temperature of
processing. It can also be observed that considerable grain
retinement has occurred during isothermal rolling of the specimen
at 1700°F (compare tiw¢ grain size of the solution-treated specimen,

Figure BB, and that of the specimen rolled at 1700°F, Figure 9A).




2. Rolling at temperatures in the range 1500 to above 900°F
(816 to above 482°C) produced a strong texture of the copper type.
Rolling in the temperature range 1400 to 1300°F (760 to 704°C),
even for the small-size specimens, should be avoided because
rapidly increased hardening due to precipitation causes extensive
cracking of the strip. As shown by the (11ll) pole figures in
Figure 11, the texture of the specimen rolled at 1500°F (Figure
11A) can be described very well by the ideal oricntations of the
copper type, namely, ~{123}<412>, {110}<112>, and {112}<111>.

When the temperature of rolling is decreased to 900°F, although
the same ideal orientations can approximately describe the texture,
a substantial broadening of the orientation spread is clearly
indicated (Figure 1l1B). The microstructures of these specimens
are shown in Figure 9B (rolled at 1500°F) and 9C (rolled at 900°F).

3. For rolling temperatures in the range 900 to S00°F (482
to 260°C), a gradual transition of the texture from the copper
type to the brass type becomes increasingly evident. The textures
of the specimens rolled at 700°F (371°C) and at SO00°F (260°C) are
shown in Figure 12, A and B, respectively.

4. Such texture transition is nearly complete in the specimen
rolled at approximately 80°F (27°C), as shown by the (111) and
(200) pole figures in Fiagure 13, Although the central portion of
the (11ll) pole figure has not shown the splitted intensity maxima
to represent the {110}<112> texture, this ideal orientation is

clearly indicated in the (200) pole figure. When the rolling
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temperature is further decreased to -100°F (-73°C) by using dry-
iced acetone as the cooling bath, a completely brass-type texture
is produced, as shown in Figure 1l4. The microstructure of this
specimen, Figure 9D, shows the presence of numerous very finely
spaced deformation bands.

Recrystallization Textures of
Isothermally Rolled Strips

Annealing the various isothermally rolled specimens at
2000°F (1093°C) for 1 hour caused complete recrystallization; and
for those already recrystallized during rolling, there was con-
siderable grain growth. Selected specimens were also given a
recrystallization anneal at 1800°F (982°C) for comparison with
the specimens annealed at 2000°F. The recrystallization textures
were essentially the same upon annealing at both of these tempera-
tures, except for the fact that the texture was a little sharper
in the specimen annealed at the higher temperature than at the
lower temperature. The recrystallization or annealing textures
of the varicus isothermally rolled strips can be summarized as
follows:

1. For the already recrystallized strips (rolled at 1800
and 1700°F) having nearly random or very weak textures, annealing
at 2000°F either further randomized or slightly strengthened the
texture as a consequence of additional grain growth. This is

shown by the (111) pole figures in Figure 15.




2, For the specimen rolled 99 percent at 1500°F having a
strong texture of the copper type (Figure 11A), the recrystal-
lization texture is {111}<110> + {001}<11l0>, as shown by the
(111) and (200) pele figures in Figure 16. This is in contrast
to the strong cube texture normally observed in other fcc metals
or alloys.la) Such textural behavior upon recrystallization is
presumably a consequence of the dissolution or precipitation of
the dispersed second-phase particles in the specimen during the
recrystallization anneal, Similar effects have been observed in
other fcc alloys.ls)

3. For specimens rollad at 900 to 500°F (482 to 260°C) and

having the transiticnal rolling textures (Figqures 11B, 12A, and

12B), the recrystallization texture is the {112}<111> type, as
shown in Figure 17 by the (111) and (200) pole figures of the
spe-imen recrystallized by annealing at 18Q0°F (982°C) for 1 hour.
Anneuling at 2000°F (1093°C) for 1 hour produced the same, but
somewhat sharper, recrystallization texture. As shown by the pole
figures in Figure 18, the same {112}<lll> type recrystallization
textures were produced by annealing the specimens rolled at 700°F
(371°C) and SOQ00°F (260°C) at 2000°F (1093°C) for one hour.

4. For the specimens rolled 90 percent at approximately 80°F
(27°C) and at -100°F (-73°C), having a brass-type rolling texture
(Figures 13 and 14), the recrystallization texture is {110}<112> +

{110}<001>, as shown in Figure 19. In contrast to the more complex
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recrystallization textures of brass, or of other fcc metals or

3 the brags-

alloys that develop a brass-type rolling texture,l
type rolling texture in A-286 alloy was retained upon recrystal-
lization or recrystallization in situ. For the specimen rolled

90 percent at “80°F and annealed at 2000°F (1093°C), the recrystal-
lization texture was practically the same as those shown in

Figure 19.

Precipitation Hardening in Rolled
and Recrystallized Specimens

The aging treatment commonly employed for precipitation
strengthening in the A-286 alloy is to anneal the specimen at
1300 to 1400°F (704 to 760°C) for 12 to 16 hours and to cool in
air.lz) Depending on the Ti/Al ratio, the precipitated phase is
either the gamma prime (Yy') phase Ni3(Ti,Al) or the eta (n) phase
Ni3Ti, as a high Ti/Al ratio indicates a strong tendency for the
gamma prime phase to transform into the eta phase after long

periods of thermal aging.ls)

For the specimens rolled 90 percent
at 1500°F (8l16°C), overaging occurred upon annealing at 1400°F
(760°C) for about four hours, whereas aging at 1300°F (704°C)
increased the hardness, appreciably in the first hour, but with
only minor variations during further prolonged aging periods.
These results are shown in Table IX.

Specimens rolled 90 percent at 1500°F (B8l6°C) and

recrystallized at 2000°F (1093°C) had a low hardness corresponding

to the soluticn~treated condition. Table X shows the substantial




increases in hardness upon aging at 1300°F (704°C). These data
indicate that the hardness reached a maximum after aging 16 to

32 hours., The microstructures of a recrystallized, and of a
recrystallized and aged, specimen are shown in Figure 20. There
is no great difference visible between the optical micrographs

of these two specimens, except for the faintness of the grain and
the twin bcundaries. The response to etching is drastically
different between the specimens in the solution-treated (by the
recrystailization anneal) and in the aged conditions. The texture
is essentially unchanged after the aging treatment.

Final Rolling of the Slabs

On the basis of the information obtained from the extensive
studies of the textural behavior in relation to the thermomechanical
processing treatments of the alloy, iscthermal rolling at 1500°F
(816°C) appeared to be the only sensible possibility for final
rolling the intermediate slabs to the 1/2-inch-thick plates. For
slabs of such intermediate thicknesses, 1.85, 2,75, and 5.50 inches
(47, 70, and 140 mm), even at this temperature (1500°F) isotheymal
rolling to high reductions poses great difficulties. On a trial
basis, we conducted the final rolling as follows.

The slabs were reheated to 1800°F (982°C) and soaked at
temperature for two hours, The two 1l.85-inch~thick slabs to be
rolled 70 percent to 0.55-inch-thick plates (B-1 and B-2 plates)
were processed first. For the B-1l plate, the slab was rolled with

a start-rolling temperature of 1550°F (843°C), and finish-rolled




at 1380°F (749°C) in 8 passes. The plate was water~spray-guenched
after the final pass. To raise the finishing temperature to above
1400°F (760°C) so that the effect of precipitation hardening could
largely be avoided, the B-2 plate was rolled to the final thickness
alsc in 8 passes, starting at 1600°F (871°C), finishing at 1420°F
{771°C), and similarly quenched. It was noticed tha: some edge
cracking occurred in both plates. This seemingly partial success
in the final rolling of the B-plates (70% reduction) led to the
trial rolling of the next thicker slabs (2.75 inches or 70 mm thick)

to be rolled 80 percent to the final 0.55-inch-thick plates (C-1

and C-2 plates). The start-rolling temperature for the C-1 plate
was 1600°F (871°C). On the second pass, the tail portion of the
piece was split open widely from the midthickness plane of the
plate. The same failure orccurred on the C-2 plate in the third
pass. The final rolling operation was then stopped.

Upon close examination of the finished B~1 and B-2 plates,
it was discovered that besides the numerous cracks on the edges,

both plates were cracked extensively from the thermocouple hole

(drilled from one of the side faces of the slab to the geometric
center of the slab) along the midthickness plane of the rolled
plate. Consequently, the pilates were all scrapped. The A-286
alloy obviously has to be hot-worked at much higher temperatures
for plates of these thicknesses. However, a strong texture will
not be produced during such hot working because of concurrent

recrystallization.
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A small piece was cut out from the scrapped B-1 plate
material, and the texture was examined at approximately the mid-
thickness section of the gspecimen. As shown by both the (11l1)
and (200) pole figures in Figure 21, the 70 percent rolled plate
had developed a strong copper-type texture, which is in excellent
agreemer . .**th the rolling texture of the small-size specimen
rolled L7 nercent isothermally at 1500°F (Figure 1llA). The
:ntensity of the texture of the B-plate is, in fact, somewhat
stronger than that of the small-size specimen. This is obviously
due to the fact that the B plate was actually rolled with a con-
siderably lower finishing temperature and without intermediate

anneals between passes.

Summary and Recommendations

The textural behavior in relation to the thermomechanical
processing treatments of the A-286 alloy has been studied exten-
sively with small-size specimens. The textures of the as-rolled
(at 90% reduction) and of the subsequently recrystallized specimens
were examined along with the hardness and microstructures of the
processed specimens. Results show that isothermal rolling at
1700°F (927°C) and higher temperatures caused concurrent recrystal=-
lication and resulted in very weak textures. Rolling at 1500°F
(816°C) and lower temperatures down to above 900°F (482°C) produced

a strong texture of the copper type. For rolling temperatures in

the range 900 to 500°F (482 to 260°C) indications of a gradual

transition of the texture from the copper-type to the brass-type

LT
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became increasingly evident. Such texture transition was nearly

complete in the specimen rolled at “80°F {27°C), and a brasgss-type

texture was produced by rolling at -100°F (-73°C).
! Annealing the various isothermally rolled specimens at
2000 or 1BOO°F (1093 or 982°C) for 1 hour produced recrystalliza-
tion texture of three main types: from the copper-type rolling
texture (rolled at 1500 to above 900°F), the recrystallization
texture was {111}<110> + {001}<110>; from the transitional rolling
textures (rolled at 900 to 500°F), the {112}<111>; and from the
brass~type rolling texture (rolled at ~80 or -100°F), the
{110}<112> + {110}<001>. These recrystallization textures which

i are distinctly different from the recrystallization textures

normally observed in common frc metals or alloys, are developed
presumably under the influence of dissolution or precipitation
of finely dispersed second-phase particles during the recrystal-
lization anneals. The alloy can be substantially strengthened
by precipitation hardening upon aging at 1300 to 1400°F (704 to

760°C); the texture of the specimen is essentially unchanged by

such aging treatments.

A wide variety of textures can be produced in the alloy
by appropriate thermal and mechanicali processing treatments, and
these textures can probably be utilized to advantage in specific
applications., However, these possibilities can only be suitably
applied to sheet materials, for which heavy rolling reductions

can be employed at relatively low temperatures without encountering
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the effects of precipitation hardening. The alloy does not appear
to be suitable for producing strong textures in thick plates
because of the very limited temperature range for hot working to

high reductions.
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Table IV i
i y
' :
Through-Thickness Tensile Properties of Notched Specimens of Steel y
Armor Plates Control-Rolled with Declining Temperatures to Various
Reductions, Immediately Quenched, and Subsequently Tempered
rensile streayc
Hot Rolling of Notched
Plate Reduction, Specimens Total
Designation % ksi (MFa) Elongation, %
7961-8019
(or 919)
A-1 60 421.1 (2903) 0.71
g B-1 70 397.3 (2739) 0.40
c-1 20 323.1 (2228) 0.36
D~1 90 292.8 (2019) 0.25

Results represent the averaged values of duplicate specimens
tested for each single plate.




Table V

Charpy V=-Notch Impact Properties of Steel Armor Plates
Control-Rolled with Declining Temperatures to Various

Reductions, Immediately Quenched, and Subsequently Tenpered

Plate

Hot Rolling
Reduction,

Impact Enerqy

L D T
Designation % ft-1b (J) ft-1lb (J) ft-1lb (J)
7961-8019
(or 919)
A~l 60 19.0 (25.8) 15.6 (21.2) 11.5 (15.6)
B-1 70 17.2 (23.3) 15.4 (20.9) 12.5 (17.0)
C-1 80 17.0 (23.1) 14.5 (19.7) 12.0 (16.3)
D-1 90 14.0 (19.0) 12.5 (17.0) 8.8 (13.3)

Results represent the averaged values of duplicate specimens tested

for each single plate.
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Table VIII

Hardness of Specimens Sclution-Treated by Annealing
for 1 Hour at Various Temperatures and Quenching in Water

Annealing Hardness
Temperature, °F DPH
1800 (982°C) 135
1900 (1038°C) 132
2000 (1093°C) 132
2100 (1149°C) 128
2200 (1204°C) 129

2300 (l260°C) 130




Table 1IX

Precipitation Hardening of the Specimens Rolled
90 Percent at 1500°F (816°C), Then Aged for
Various Times at Temperatures Indicated

Aging
Temperature, Aging Time,
°F hr Hardness DPH

1400 (760°C) 327 (as-rolled)
336
335
313
298
283

283

NSO

[V o

1300 (704°C)

327 (as-rolled)
354
355
360
360
357
356

NGO &N O

w =




Table X

Precipitation Hardening cf the Specimens Rolled 90 Percent
at 1500°F (816°C), Recrystallized at 2000°F (1093°C) for
1 Hour, Then Aged for Various Times at 1300°F (704°C)

Aging
Temperature, Aging Time,
°F hr Hardness DPH
1300 (704°C) 0 124>
1 220
2 242
4 254
8 268
16 280
32 281

*As-recrystallized
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