
TRIDENT H GHER LEVEL LAN LUAG E SYNTAX DEFINFTION.(U)

TRD ENT 16G S LEVELAPON S ENT O N (9

NOV 79 P SHERALIN

UNCLASSIFIED NSWC/TRE391N NL

flflfflfllflfflfl END

IA.'1 1* 2.8 12.

Hill'' 1~-2 12.2

11111L2 tn 4i iII.6

&WJROCOPY RESOIV'flO T[SJ CrHARf
N AIIN WMA~

UNCLASSIFIED
FECUPlITY CLASSIFICATION Of THIS PAGE (W m Do Entered) ,_

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLEINGO FORM

3GOVT ACCESSION NO: 3. RECIPIINT-S CATALOG NUM1190R

NSWCR- .

r TRIDENT HIGHER LEVEL LANGUAGE SYNTAX DEFINITION. Final J (1 At .

. 6. PERFORMING ORG. REPORT NUMOER

7. AUTHOMt() U CONTRACT Ol GRANT NUMOI 0o)

- Paul'Shebalin 1

9. PERFORMING ORGANIZATION NAME AND ACORES$ 0R " WOMRK NI,ET. VA:ER.ASK

Naval Surface Weapons Center

Code K51 OMN
Dahlgren, VA 22448

I I. CONTROLLING OFFICE NAME AND ADDRESS_________

* Strategic Systems Project Office r~ovg#!!g79
Washington, DC 20390

14. MONITORING AGENCY NAME & AOoRESS(it different from Conrolling Offie) IS. SECURITV CL.

Unclassified
. I5e. DE[CLASSIFICATION/ DOWNGRAOINGSC u.l

16. OISTRIuTrON STATEMENT (ol Iha RpAort)

Approved for public release; distribution unlimited.

17. DISTRIIUTION STATEMENT (01 the abstre n elred In &let 20, It differenl hem RepoNt)

IS. SUPPRLSMENTARY NOTES

It. KEY WORDS (Continue an, powrs* side it necessary nd identt by block number)

TRIDENT fire control
language syntax
programming

software

20. -" ACT (coninue -' revrwo it necoooint and idhentify by block WNab"e)

This document presents a complete and rigorous syntactic definition of

the TRIDENT Higher Level Language (THLL). Two different formulations are
included: syntax graphs and productions. The syntax graphs provide a
visual aid to quickly determine the structure of all THLL constructs. The
productions express the syntax as it is used, essentially, by the compiler....

DD O 1473 EDITION OF0 I NOV so IS OIUSOL1TDD, JAN ? ,SN 0102-LF-014-6601 UNCLASSIFIED //
. - A

FOREWORD

The TRIDENT Higher Level Language (THLL) is a procedure-oriented
programming language for use in writing software programs for the TRIDENT
Digital Control Computer (TDCC). This computer is to be used in the
Mk 98 FCS and the Mk 88 Mod fire control system (FCS).

The purpose of this document is to provide a complete and rigorous

syntactic definition of THLL.

This technical report supersedes NSWC/DL TN-K-9/78, dated May 1978.

Questions, comments, and suggestions regarding the material pre-
sented herein should be directed to the Fire Control Programming Branch,
Support Software Group.

s N

R. T. RY D, JR., Head
Strategic Systems Department

i on0 For

i :7 o:i

ii_; 1 - -- -_.-._. ..

q,,.

CONTENTS

INTRODUCTION 1

SYNTAX GRAPHS 3

BASIC SYMBOLS, CONSTANTS AND IDENTIFIERS 3
Constants 6
Identifiers 13

EXPRESSIONS 14
Variables 14
Function Designators 14
Simple Expression 20
Assignment Expression 24

STATEMENTS 24

Change of Control Statement 25
Proper Statements 26

DECLARATIONS 28

PROGRAMS 55

APPENDIXES

A--BNF DEFINITION OF THLL A-1
B--TRICOMP COMPILER DIRECTIVESB-I
C--SYNTAX DIAGRAM CROSS-REFERENCEC-1

DISTRIBUTION

LIST OF TABLES

TableM

1 Character Set 3
2 THLL Operators 4
3 Delimiters 5
4 Numerical Functions 17
5 Miscellaneous Functions 19

v

,1J

INTRODUCTION

The purpose of this document is to provide a complete and rigorous
syntactic definition of the TRIDENT Higher Level Language (THLL). Con-
tractor and NSWC personnel who work with THLL are provided herein with a
validation tool which will allow a quick determination of a program's
syntactic correctness. The TRIDENT Higher Level Language User's Guide
(NSWC TR-3657 Revised June 1978) should be consulted for any questions
concerning the semantics or pragmatics of THLL programming.

The grammatical definition of THLL given here consists of a set of
syntax graphs and a Backus-Naur Form (BNF) description (Appendix A).

In the syntax graphs, a distinction is made between terminal and
* non-terminal elements by representing a terminal with capital letters or
. special characters and enclosing it in a smooth, closed curve:

A non-terminal, corresponding to the left-hand side of a BNF production,
is represented with lower case letters enclosed by a rectangle:

Correct sequences of terminals and non-terminals, again corresponding to
the right-hand side of a BNF production, are interconnected with arrows:

€i t

low'.I

The BNF description of THLL, given in Appendix A, is essentially a bottom-
up presentation of the syntax. Generally, each syntax graph corresponds
to a set of BNF productions. A BNF production consists of a left-hand
side and a right-hand side separated by the symbol 'I=u. The BNF's left-
hand side is always a non-terminal of the grammar, while the right-hand
side consists of a set of alternations, each alternation consisting of a
sequence of grammar symbols. Non-terminals are represented with lower
case letters enclosed by the symbols 1<' and '>', and terminals are
represented by capital letters or special characters. Alternations in a
BNF production are separated by the backslash character, I\', for example:

<return statement> ! I= RETURN \ RETURN <expression>

which corresponds to the syntax graph

* return statement

-- expression

Because a particular syntax graph may correspond to several BNF productions,
the grammar defined by the syntax graphs has fewer non-terminal elements
than the BNF grammar. Thus, the syntax graph representation of the THLL
grammar is somewhat coarser than the BNF representation. For example,
the precedence of arithmetic and logical operators is not reflected in
the syntax graphs.

Much of the explanatory text for this report was taken from the THLL
User's Guide (NSWC TR-3657).

2

SYNTAX GRAPHS

BASIC SYMBOLS, CONSTANTS AND IDENTIFIERS

On the lowest level, a THLL program is a character string. Charac-
ters are grouped together as items which fall into one of the following
categories:

1. Operators

2. Delimiters
3. Constants
4. Symbols (identifiers)

There is a fixed number of operators and delimiters and these are listed
* in Tables 2 and 3.

The character set includes the English letter alphabet (A-Z), the
numerals (0-9), a single space, and certain special characters (see
Table 1).

Table 1. Character Set

A B C D E F G H I J K L M N 0 P Q

R S T U V W X Y Z 0 1 2 3 4 5 6 7

8 9- + *# () = , $: # "$1

, < > _ ? @ i \

Note: Where two characters appear, the upper one is used for coding
purposes to cause the lower one to appear on the TRIDENT Digital Control
Computer (TDCC) output devices.

character

-Iletter

J1 digit

3special chatrte

3

Table 2. THLL Operators

Class Mnemonic Meaning

Arithmetic + addition

Arithmetic - subtraction

Arithmetic * multiplication

Arithmetic / division

Arithmetic ** exponentiation

Arithmetic MOD modulo

Relational LES less than

* Relational LEQ less than or equal

Relational EQL equal

Relational GRT greater than

Relational GEQ greater than or equal

Relational NEQ not equal

Logical OR or

Logical XOR exclusive or

Logical AND and

Logical NOT not

Assignment = assignment of value

Bit ANDB, BITAND and bits

Bit ORB, BITOR or bits

Bit XORB, BITXOR exclusive or of bits

Bit NOTB, BITNOT not bits

Addressing LOC LOC X is the virtual1 address of the
word containing the first bit of X.

Addressing LOCA LOCA X is the absolute address of
the word containing the first bit
of X.

Addressing ENTRYP ENTRYP X is the virtual1 address of

the beginning of procedure X and

is used to pass the procedure as a
formal parameter.

1 Absolute address on the CDC 6700.

4

.9.,

Table 3. Delimiters

ALPHA FIELD $

ARITHMETIC FINIS POINTER

ARRAY FOR PRESET

BEGIN FORMAT PROCEDURE

CASE GLOBAL REAL

CASEEND GOTO REPEAT

COMEND HALF RETURN

* COMMENT ICL SPRINT

* COMMON IF STACK

COMPONENT IFEND STEP

CPRINT INSERT SWITCH

DEFINE INTEGER SYNONYM

DEVICE INTERRUPT TASS

DO KBDSS THEN

DOUBLE LINK TO

ELSE LOGICAL UNTIL

END LOOPEXIT VALUE

ENDCASE MDF WHILE

ENDCOM MTF

ENDIF NULL

EXEC OFFSET

EXIT OPTARG

EXTERNAL OWN

5

)]

Constants

constant

boolean constant

Numbers

number

F[int ge b-

S real;%me

scaled real number

Integers

integer

binary digit

S0

7

octal digit

decimal digiit

9

'I.0

8

hex digit

dndecimal digit

-*0-

A decimal integer is simply a sequence of decimal digits.

decimal integer

~ ,9

• a.

... , , I I

Similarly, binary, octal, and hexadecimal integers are sequences
of binary, octal, and hexadecimal digits, respectively.

A scale part may be appended to a binary, octal, or hexadecimal
integer to partially form a binary, octal, or hexadecimal integer,
respectively. The scale part specifies a power of 2.

scale part

" -- decimalinteger

To complete the representation of a binary, octal, or hexadecimal
number, the integer part and optional scale part may be preceded by a
minus sign; and the resulting string is surrounded by quotation marks and
prefixed with the appropriate character.

binary number

digit part

10

-- - -" : " ' llII - I I I1 0I

octal number

I hex number

A decimal number consists only of a decimal integer followed by a
scale part.

decimal number

SIA

*Pq11

Real Numbers. A real number consists of a decimal floating point
number followed by an optional, base 10 exponent.

real number

'*decimaldeia

Sintegerinee P L

S

Scaled Real Numbers

scaled real numbers

real number........... scale part

Boolean Constants. In THLL, the logical values for 'true' and
'false' are represented by the strings, TRUE and FALSE.

boolean constant

RUE

J FALSE

12

Strings. A literal character string is denoted by a '#' followed
by a character sequence flanked by identical delimiting characters. The
delimiting character can be any of the THLL characters as long as it is
not contained in the character sequence comprising the string. The
string length may be from 0 to 256 characters.

string

delimiting delimiting

character E i character

Sf

Identifiers

A THLL identifier is a user-defined name which can denote a com-
ponent, array, stack, device, procedure, format, variable, label, or
switch. Although an identifier may be represented by up to 256 charac-
acters, only the first eight determine its uniqueness. 'Letter' may be
any of the 26 alphabetic characters.

identifier

0i

decimal

I digit

leetter

component id, array id, stack id, device id, procedure id,
format id, variable id, label id, switch id

S identifier j

13

L -.W,-

EXPRESSIONS

An expression is a rule for computing a new value from existing
values. Expressions are built from constants, variables, function
designators, and operators.

expression

,i' simple expression }

• [assignment expression

Variables

Variables may either be simple or subscripted. An array may have
a maximum of three subscripts and a component may have a maximum of two.

variable

,', variable I

array id epeso

component id

Function Designators

A function designator is the application of a procedure to a fixed
set of parameters, resulting in a value. It is an expression and must
be of type I, D, R, or P.

14

function designator

prcdr dactual

pparameter

* There is a set of predefined (standard) functions for which the
user does not have to supply a declaration. These functions are listed

I in Tables 4 and 5.

actual parameter

I•q

ev

W(ET' procedure id

15

Although it is syntactically correct to use a loop argument any-
where in a function parameter list, it is semantically correct to use
a loop argument only after the fifth parameter in a READ/WRITE statement.

loop argument

In Tables 4 and 5, types of values are given using the following
abbreviations :

I - integer

H - half
D - double
R - real
P - pointer
N - no type

16

Table 4. Numerical Functions

Function Name Type of Argument(s) Type of Value

ABS (HIDR) I, D, R correspondingly

SIGN (HID) I, D (1 or -1)

(R) R (1. or -1.)

SQRT (HIDR) R

SIN (HIDR) R

COS (HIDR) R

* TAN (HIDR) R

COT (HIDR) R

ARCCOS (HIDR) R

ARCSIN (HIDR) R

ARCTAN (HIDR) R

ARCCOT (HIDR) R

LN (HIDR) R

EXP (HIDR) R

FLOAT (HID) R

FLOAT (P},
FIXH (R) I

FIXI ({R}[,I]) I

FIXD (R) D

(DH} IHI) I, D corresponding to
SHIFTA I argument 1

17

• . . . ?- - .

Table 4. Numerical Functions (Cont'd)

Function Name Type of Argument (s) Type of Value

SIHIT)I, D corresponding to

SHIFTL I I argument 1

III(JHJ) I, D corresponding to
SHIFTR II argument 1

TEST.BIT)
• PI,

SET. BIT ()

J, P

H

TGL.BIT (I, .ID, P

POCA (R,R,R,R) N

CAPO (R,R,R,R) N

ROAX (R,R,R,R,R) N

ROTA (R,RR,R,R) N

18

7

Table 5. Miscellaneous Functions

Function Name Type of Argument Type of Value

LENGTH (J)

MLENGTH
I(Q8I I!ID ~ {I}I {I} {!})N

M OVNC ,{~ , ,'4 I, {, NCONC P~ P~ I! I l !I I!)N
(J I JAI? , , , H , JA , JH , N

ORDERC ({P) I

PUSH (stack id, expression) N

POP (stack id) N

STACKWC (stack id) I

STACKSC (stack id) I

BOUND (array id, I) I

SWA (I) N

19

0 r.

Simple Expression

Constants, variables, function designators, conditional expressions,
case expressions, and location expressions are basic elements in THLL.
Simple expressions are basic elements or constructed from these using
the bit, arithmetic, relation, and logical operations.

relational operator

SLES

EQ

- EQL

S GRT

< GEQ

simple expression

oxprem*Ion operator expresio

20

7

.. .II I - 1 .. .O W-,N..S--d -

Arithmetic Expression. An arithmetic expression is a primary or
basic element or a combination of basic elements connected by arith-
metic or bit operators.

primary

jconstant'"I

• "Ivariable-

4 S< LOC F vai11bDle2!

procedure, i

function

designator

conditional

expression

ca se ...re .s..ion _

I)21expressio
n

21

arithmetic expression

4.NO

FolI0rmr

LO
I

22AN

Conditional Expression. A conditional expression allows the evalu-
ation of a statement or expression to proceed only if programmer-defined
conditions have been met. The conditional expression becomes a conditional
statement if the common type of all THEN expressions and the ELSE expres-
sion is of type statement.

conditional expression

IF Fexpesio THN expression ES

ENDIFsttteeent

Case Expression. The general form of the case expression, CASE P DO
el, 02,., en ENDCASE, allows the evaluation of one of a set of
indexed expressions. The expression, P, is evaluated to an integer which
serves as an index to select which expression ei will be done. If P
produces a value less than 1 or greater than n, then P is assigned the
value n. The case expression becomes a case statement if the common
type of all DO expressions is of type statement.

* *

23

case expression

ENDCAS E

4Assignment Expression

The value of an assignment expression is the value of the right-side

expression. The assignment of this value to the left-side variable can
be considered a side effect.

assignment expression

STATEMENTS

A THLL statement is a program unit which produces an effect on the
environment.

statement

. change control statement

Iproper statement '

24

* 9~p

Change of Control Statement

Change of control statements transfer control to a designated point
in the program or return control from a called procedure to the point of
call.

change control statement

goto statement

, T eaeeit statem ent

eoto statement

switch id I si/ 2

The effect of an exit statement is to transfer control to the end
of the present block or to the end of an embracing block labeled by theindicated label identifier.

exit statement

25

The effect of a return statement is to terminate the evaluation of
a procedure body and transfer control to the calling procedure.

return statement

SRETURN expression T

Proper Statements

proper statement

.J block statement "

l oop statement 1-

Snull statement

A block may be defined as a sequence of zero or more declarations
followed by one or more statements or expressions, all separated by semi-
colons and embraced by BEGIN-END brackets.

26

L:,

block statement

label L

~There are four types of loop staternents. Each type used the reserved

word DO followed by an expression or a proper statement, which will be
evaluated zero or more times according to conditions.

-

VEND

27

loop statement

m varibleE expression

expression DOexpressionl

, , proper statement

null statement

DECLARATIONS

The primary purpose of declarations is to provide information to the
compiler about symbols used in the program. This includes data types,

array and stack sizes, I/O formats, procedures, etc.

There are two categories: data and procedure. Every identifier
which does not appear as a label must be declared. A procedure declara-
tion defining an identifier to be a procedure name binds it to the pro-

cedure definition. All other declarations fall into the data category.

28

w-ma

declaration

procedure declaration -

d ata declaration

Attributes. Both data and procedures are given various attributes
upon declaration. These attributes define type, size, and allocation
mode in the case of data, and access and type in the case of procedures.

type attribute

PINTER

full attribute

29

*11 •

attribute head

--tpeatrbte
STAC K/ '

FORMAT,

•ALPHA

DEIC

value attribute

procedure attribute

30

**1U*

Arrays can be defined as having one, two, or three dimensions.

array size

Sinteger integer integer

The lower bound for any dimension is always 0, while the upper bound is
defined through an array declaration. An externally defined array can

be declared with either its proper numerical dimensional bounds or with
asterisks.

external size

Procedure Declaration. A procedure declaration defines an identi-

fier to be the name of a procedure. The main part of a procedure is the
procedure body which is always a block that specifies the piece of code
to be executed when the procedure is invoked.

procedure declaration

31

procedure body

Sblock statement

The procedure body is preceded by the procedure head which contains:

1. Access of the procedure

2. Type of the value of the procedure

3. Name of the procedure

4. List of formal parameters

5. Description of formal parameters

Items 1, 2, 4, and 5 may be omitted.

procedure head

DEMdescriptor e

0t
specification

32

- -7

procedure head 3

procedure head0

procedure head 2

descriptor head

C exeutiv 1111-33

hed
deti i

executive head

Every formal parameter must appear in the specification part.
Those parameters which are to be transmitted by value will appear in
the value part and the specification part. The specification part

* will follow the value part, if there is one, or the procedure head,
° if there is no value part.

specification part

specification element

arrayspifato -- -

specification element

34

•~ ~~ ~~ 40 INON 'o I.... -M,L ..

procedure specification

Sprocedure identifier argument

attribute list Ilis

array specification

If the formal parameter procedure has arguments, they must be de-

scribed in order of occurrence within parentheses. It is also necessary
to indicate the transmission mode of these arguments.

argument list

argument head OPTARG

L', ,. 35

argument head

prcdr agmn

0txbtels

ty36

Data Declarations. All identifiers (symbhols) used in a THLL program
must be declared.

data declaration

arrach declaration

etyea declaration

eea declaration

stack declaration

insert declaration

comonn declaration2

synnymdlarati

4.. 37

Array Declarations. Array declarations provide information concern-
ing the type, name, and size of an array, as well as indicating its
allocation mode. Array subscripting starts with zero. For example, an
array named TAB which is to be one-dimensional and contain 10 elements
would be indicated by TAB(9). Arrays may be one-, two-, or three-dimen-
sional with the maximum size of each dimension being specified by an
integer constant in the declaration statement.

array declaration

array attribute

type attribute
*I

full attribute

38

'.9,. P

Type Declarations. Type declarations specify variables to be INTEGER,

DOUBLE, REAL, or POINTER. The variable specified by an identifier can
only assume values of the declared type by assignment or preset declara-
tion. If the variable receives an assigned value, automatic type

conversion will have occurred.

type declaration

type attribute ,

full attribute

Alpha Declarations. An alpha declaration defines an identifier to

be of type ALPHA. The maximum length of any string that can be stored

is specified in the declaration. If more than one string is declared
in the same declaration, all will have the same length unless indicated

otherwise. The first character of a string is designated as the zero
character.

alpha declaration

alpha identifer decimal3

identifier

39

alpha attribute

Switch Declarations. The identifier following the reserved word,
* SWITCH, is associated with a sequence of labels to the right of the

assignment operator. A positive integer, indicating relative position
within the list from left to right, is associated with each label
identifier.

If "L", an identifier, is bound to a switch list by a switch decla-
ration then the value of the address expression L(e) is the nth label
in the switch list for "L", where n is the integer value of e. If n is
less than I or n is greater than the count for the last label, then n
is set to the value of the last label.

switch declaration

SWITH identifier . label.list.

label list

40

External Declarations. An external declaration does not define an
identifier, it equivalences it to an identifier defined outside of the
program. Sufficient information about the identifier, its type, its
dimensions if it is an array, its arguments if it is a procedure, must
be given to allow the identifier declared EXTERNAL to be treated properly
by the compiler. Component, label, and switch identifiers cannot
be declared EXTERNAL.

external declaration

Sexternal procedure I

declaration w

I

external variable
declaration

external stack

group

Sexternal array 'I

declaration

external procedure declaration

-4GERAL p roc edu r e

specification

41

,-WNW

external variable declaration

4 external stack group

42

7 *

external array declaration

EXTERNALARY

HALF

identi fiefrxera

size

Stack Declarations. Stack declarations provide information concern-
ing the type, name, and size of a stack, as well as indicating its
allocation mode.

, *, 4 3

stack declaration

Global Declaration. A global declaration makes an identifier, de-
fined in one program, known to a separately compiled program.

global declaration

GLOBAL identifier 1

44

• II

Format Declaration. A format declaration binds an identifier to a
format list which is used to indicate the manner of converting and editing
information between the internal representation and the external character
string.

format declaration

format list

I fo m tll

45

45

format element

ly4m l

4.s

46

Device Declarations. In a device declaration, the identifier is
bound to the TDCC hardware device specified.

device declaration

SDEVICE identifier device

device

CPRINT

47

- .#

TASS Declaration. The TASS declaration permits the programmer to
include TASS control cards as a part of the THLL source text. The TASS
declaration can appear anywhere in the source text where a declaration
can appear. Ideally, it should appear immediately after the first BEGIN.
The effect of the TASS declaration is to treat all card images, beginning
with the next card until a card image with a double slash (i.e., //) in
card columns 1 and 2 is encountered, as TASS control.

TASS declaration

TASS I tas s control 1,cards ----

INSERT Declarations. The INSERT declaration permits the programmer
to include source text from other than the current compiler source. The
source text to be included is selected from a data set referenced by
file name (first identifier) and member name (second identifier).

INSERT declaration

-110 INSERT dniir ietfe

Component Declarations. By using components, a programmer is able
to access parts of a word. Also, a specific field of a word may be
written into by using a component as the left-side variable in an assign-
ment expression.

Component declarations come in two forms. One form allows all
component characteristics to be specified for one symbol in a single
declaration, while the other form allows the type information, the
field information, and the offset information to be specified for a list
of component identifiers by separate declarations.

48

component declaration 1

4 component declaration 2

component head

49

component tail

field list

50

bit field

offset list

51

component list

ttype PE
aCOPONENTattibute

If an identifier is declared to be a component according to
component declaration 1, and the component field is a proper part of a
word, then this identifier must appear in all three lists; the component
list, the offset list, and the field list. For whole word and double
word components the field definition may be omitted.

Common Declarations. The common declaration provides a mechanism
for defining a block of memory for OWN data such that only the origin of
this block is a global symbol and that various parts of this block can
be referenced symbolically. The common body, that is, the portion of the
common declaration following the keyword COMMON, should not contain the
keyword OWN. All common data are implied to be OWN. With this agreement,
the common body is identical in the GLOBAL COMMON definition and in the
EXTERNAL COMMON use.

common declaration

declaraton

52

Preset Declaration. The preset declaration is used to initialize
OWN variables at compile time. Simple and subscripted variables may be
preset. Subscripted variables using a stack identifier cannot be preset.

preset declaration

PR E s preset element

•BEGIN preset EN

preset element

vaial T vaibesimple

variblevaribleexpression list

simple expression list

Only expressions that can be evaluated at compile time must appear
in the simple expression list.

53

'-U

Synonym Declaration. A synonym declaration allows a THLL program-
mer to associate a segment of source text with an identifier. When dollar
signs ($) are used to delimit a synonym definition, the synonym defini-
tion may not contain any imbedded dollar signs.

synonym declaration

SYNNY synonym element

synonym

el eme nt END

synonym element

synonym right side

", item delimiter item delimiter

A THLL item is a constant, an identifier, an operator or a delimiter.

An item delimiter is a THLL item that is not a constant and not the semi-
colon. The right-end item delimiter is the first occurrence of the
source THLL item that functions as the left-end item delimiter.

54

- .

PROGRAMS

A THLL program is simply a BEGIN-END FINIS block containing one or
more declarations.

program

Sidentifier prog r a m END FINIS

hea

program head

BEGIN 5declaration

55

* APPENDIX A

4 BNF DEFINITION OF THLL

ONF GRAM"AR FOR IILL

1.BASIC SYMOCLS, CONSrANTS9 AND IOFNTIFIERS

1.1 CHAFACTFPS

t. -(LETTFR~il!z A\R\C\O\F\F\G\H\I\J\K\L\M\N\C\P\C\R\S\T\U\aW\X\Y\Z

2. 90IGIY2-11= 0 \ I \ Z \ 3 a 4 \ 5 6 8 \ 9

3. -cSPFCIAL CHARACT[!,-I$= -~'/g~~~~s~e-~t

* 1. tCHARACTERbtl= -CLETTER3 \ 'DIGIT', a SPECIAL CHARACTEP3,

1.2 CONSTANTS

5,. (CONqSTANT)-11 cNUNDERi- a 'OOLEAN CONSTANT), a cSTRING',

1.2.1 NUMEERS

6. cNUMRERill 'INTEGER,' a REAL NUMBER'- \ 4SCALED REAL NUMBER2

1.2.1.1 INTEGERS

7. caINAFY CIGIT>11= 0\1

A. 'oCrAL UIGIT'If= 'BINARY OIGrT'a\2a\aI4as6\7

9. c'c*CIIOAL OIGIT'Yt'= 'OCTAL DIGIT'a\6\9

10. lHEX CIGIT?,!= 'BE(LIMAL nIGIT3.A\B\C\O\EaF

it. tnECIMAL INTE6ER'-ff= cUECIPAL DIGIT', a

<DECIMAL INTEGER'- <DECIMAL DIGIT%

12. 'SCALF PARTi'''= K 'DLCIMAL INTFGERv- a K+ 'DECIMAL INTEGERa

K- 'DOECIMAL INTEGER,,

13. 'B4INAPY INFrvl (BINARY DIGIT', a 4INARY INTEGER', 'BINARY DIGIT',

1'.. -c 3INA PY NUMRFRP.~ 3- 'CCPTIONAL -P, (BINARY INTEGER)' a

8'-OPTrDNAL -3, CBINAFY INTEGER), 'SCALE PART'-

A-1

15. 'OCTAL INTEGER3Itz foCTAL OIGZT3 C OCTAL INTEGERD' (CCTAL OIGIT3

16. 'OCTAL NUMBFE3,t1 C~cOPTIONAL - - 'OCTAL INTEGER), \

C'cOPTIONAL -2, 4OCTAL INTEGER,, tSCALE PARTbl

17. 'DECIMAL NUMPER''!1= 4DECIMAL INTEGER,-\

'cDECIMAL INTEGER,- SCALE PART,

18. 4HEX INTEGERit!= cHEX DIGIT, \~ '"EX INTEGER), <HEX DIGIT),

19. 'CHEX NUM6cR2't!= X0OPTIONAL -i 'HEX INTEGER)-#\

X'<OPTIONAL -3 4HEX INTEGER', <SCALE FART'>

20. 'INTEGER3'I!= (BINARY NUMRER' \~ <OCTAL NUMBER1, \ CECIVAL NUMBER*

'HEX NUMBER.%

1.2.1.? REAL NUMBERS

21. 'E-XPONENT2'!f E 'DECIMAL INTEGER3, \ E ' DECIMAL INTEGER', X

E - 'DECIMAL INTEGER)-

22. <FLOATING POINT NUMgERD-1! cDECIMAL INTEGER% . 'OECIVAL INTEGER*'

COECIMAL INTEGER', .

'DOECIMAL INTEGER',

23. '-cPAL NUMBER1'I= 'cFLOATING POINT NUMBER)- \

< FLOATING POINT
NUM BR) cEXPONENT3)

1.2.1.3 SCALFO REAL NUMBER

24.. cSCALED RFAL NUMBER2,11= 4REAL NUMBER)- 'SCALE PART),

1.2.2 ROOLEAN CONSTANTS

25. cBODLFAN CONSIANTI,1t TRUE \ FALSE

1.2.3 STRING

26. cCHARACTEQ SECUENCEPff= 'EMPTY' -

<CHARACTER SEQUENC~v' tCHARACTE"'

27. 'DELIMITING CHARACTUR>II= ANY CHARACTE R NOT IN THE CHARACTcR

SEQDUENCE

A-2

28. 'STRING)-ll O-OELIMIrING CHARACTERi' 'CHARACTER SEQtJENCE',

<DELIMITING CHARACTER',

1.3 IDFNTIFIERS

29. <PERICOS,'V!= * tPERIODS',

30. <IDENTIFI7Ri'!?= CLETTERi, \ clIDENTIFIERi' cLETTER' \

-(IDENTIFIER), 'DECIMAL DIGIT)-~

(IDENTIFIER'- 'PERIOS'- cLETTER)-~

<IDENTIFIER), 'PERIOOSi (DECIMAL DIGITv,

31. <CDMPCNENT IO'-If= cloENTIFIER>

32. <ARFAY 10DI!= 'CIDENTIFIER',

33. 'STACK IO'tI= <IDENTIFIER)-

34.. cflEVICE In),!!= <IDENTIFIER'-

35. <PROCEOUrC- IC''!I= 'IDENOIFIER',

-36. 'cFORMAT I03,11= <IDENTIFIERI'

37. 4VARIABLE ID>!!= 'IDENTIFIER',

38. cLARIFL 10D'!I= <IDENTIFIER),

3q. 'SWITCH In)-!!= -'IDEN TIFIE:R',

A- 3

j2. EXP917SSIONS

40. 4EXPIFSS3IONII:1 'cSIMPLE fEXPRESSION)- < ASSIGNMENT EXFRESSIONP

2.1 VARIABLES

41. 'COMPCNENT HEAI~I= cCOPPONENT 10l I <FXPRtSSION3a

<COMFON-ENT HEAD) , . EXPRESSION3

4?~. ICCOMPONENT VARIABLE1-1: 4COMPONENT HEAD' I

43. (ARRAY NEAO'i'= cARRAY IC', I 'EXPRESSION) a

* <ARRAY HEARO' , cEXPRESSIONH'

44,. ISUBSCRIPIEn VARIABLE)-fl= 'ARRAY hEAD' I

'CSTACK 103- 1 (EXPRESSION3,

0.5. cVAPlA9LEIf= <VARIABLE 101- \ 'SUBSCRIPTED VARIABLE) a

'COMPONENT VARIABLEi-

2. 2 FUINCT ION DESIGNATORS

*46. (tACTIuAL PARAMETER!!= cEXPRESSION2, a (ARRAY 10o- a 'STACK 10' a

OCFVICE 103, a ENTRYP iPROCEDURE 0ID'

<FORMAT 10, a 4LOOF ARGUMENT)-

41. cPARAVETER LIST3,1'= <ACTUAL PARAMETER2, a

'PARAMETER LIST'- 4 ACTUAL PARAMETER),

48. (LOOP STFP NEAD',Il= FOR (VARIABLE 10' < EXPRESSION), STEP

* cEXPRESSION'-

4q. <LOOP REPEAT HEAD'!I= FOR (VARIABLE 10D' =EXPRESSICi, REPEAT

cEXPRESSIONP

50. (LOOP ARGUMENT TAIL3!!= cEXPRESSIONv, (tARAMETER LIST')-

rt. 'LOOP ARGUPIENT),If= WHILE 'LOOP ARGUMENT TAIL,-a

<LOOP STEP HEAD', WHILE (LOOP ARGUPENT TAIL', a

'LOOP' STEP HEAD'- UNTIL (LOOP ARGUFENT TAIL., a

'LOOP REPEAT' HEADi- WP'IL' (LOOP A;GUMENT TAIL,-

A-4

52. <FU.NCTION OESIGNAlOP)-!l= OPROCFOURI- 10>\

'PROCEDURE TO, I -[PARAMETER LIST* I

2.3 SIMPLE EXPRESSIONS

53. <P.ELATIOtIAL CPERArOR)-!: LES \ LEG \. EQL \ GRT \ GEU \ NEU

S4.. cRELATION)'t! CARITHMFTIC FXPRESSION 'RELATIONAL OFERAYORi)

<ARITHMETIC EXPRESSIONP

55. 'RO(LEA" PRIMARY2.I= 'RFLATION'- \ CAPITNMETIC EXPRESSION)

56. (R0)LFAN SECONOARY),fl 98OOLEAN PRIMARY' NOT tBOOLEAN PRIMARY2

ST. 4BOOLCAN FACTORvtl= <BOOLEAN SECONOARY3 ,

<BOOLEAN FACTOR), AND 'gOOLFAN SECONDARY)

68. 4BOOLEAN TERM)!!= 'eDOLEAN FACTOR) \

'DOOLEAN TERNv OR cBOOLEAN FACTOR),~

<BOOLEAN TERM) XOR <BOOL!:AN FACTOR),

59. tqOnLEAN EPRESSION),!!= -ROOLEAN TERM),

*60. CSIMPLE EXPRISSION!Ilz <BOOLEAN EXPRESSION>

2.3.1 A&ITMETIC EXP4FSSIONS

61. qNOT1'?I BIND \ NOTB

62. AcNo-ff= R11'ANO \ ANCB

63. & R , ! 9ITCR \ ORB

*6.. cXO5;3-1= BITXOR \XORB

es. 'MULl OP'''= * .I~moo

C6. 'AOD O0P*t' '.

6?. cPRIMARYtt!! -(I;ONSTANTv) \ cVARIABLE', \ LOC <VARIABLE),

LOC fPROCtOUPE ID)' \ LOC (FORMAT ID* \.

cFUNCTION DESIGNATORi \ cCCNVITIONAL EXPRESSION' ,

4CASF EXPRESSION), \ ((LXPR; SSjON)- I

b~o 4PRIMARY ',**I= PRIMARY) \ 'NOT), PRIPARY

F69. 'PRIMARY 1),!l= qPRIMARV 2v \ cPRIMARY 31 46NDv gPRIPARY 2

A- 5

70. 'PRIMARY 43-!=~ <PRIMARY 31,

'PRIMARY 4', CORI- <PRIY'ARY 3' \

<PRIMARY 4, <XOQi <PRIMARY 31-

71. 4FACTOR>1'= 4PRI.MARY 4 \ <FACTOR)- 9 <PRIMARY 4.'

72. <TERM),!!= <FACTOq> \ cTEPMi CMULT OPR) <FACTOR,'

73. <ARITHMETrIC fXPQESSlON;.l -'TERM> '<AOCO oR' <TERM),~

CARITHMETIC EXPRESSION), cXOD OP3' CTERMI'

2.3.2 CONCITIOA. EXPRESSION

*7-. <IF HE.AOi''! IF 'FXPRESSION' THEN vEXPRESSION' \

IF <EXPRESSION), THEN <STATEMENT),\

<IF HEAD' , <EXPRESSION), THEN -'EXPRESSION' \

'cIF HEAD)- . EXPRESSION3, THEN 'STATEMENTi'

75. <IF TAIL',!= IFFNO \ ENDIF

76. -'CONOITIOt4AL E1xPRESSION'!lz 'IF HEAD', cIF TAIL),\

<IF HEAD', ELSE 'tEXPRESSICN2' <IF TAIL'-\

<IF HEAD)- ELSE <STATEMFNT'- 'IF TAIL>

2.3.3 C AS FE EXPRSSIO0N

77. CASf HEAfl)'IY' CASE '(EXPRESSION> DO <EXPRESSION' \

CASE <EXPRESSION,- 00 <STATEMENT> '

'CASE HEAD' , <EXPRESSION,,,

'CASE HEACl, < STATEMENT),

78. 'CASE TAIL'?!' CASEENO \ ENOCASE

?9. <CASE E-XPRESSIO)N'-!! 'CASE MEAt!' gCASF TAIL)-

2.4 ASSIGN~MENT ExPpfSSIOhS

60. 'ASSIGNMFNT EXPRESSICN,-!!= cVARIARLE, z <EXPRESSION',

A-6

3. STATEM-NTS

81. CSTATE M NTI>!= 'CHANGE CONTROL STATEMENT' \ 'PROPER STATEMENT>

3.1 CHANGE OF CONTROL STATEMENTS

82. <CHANGE CONTROL STATEMENT>!!= <GOTO STATEMENT). \ <FXIT STATEMENT) ,

<RETURN STATEMENT>

3.1.1 GCTC STATEMENTS

83. <GOTO STATEMENT>!! .
: GOTO <LABEL IO' \

GOTO <SWITCH I> I <EXPRESSION>

3o1.2 EXIT STATEMENTS

B's. <XIT STATEMENT>I!= EXIT \ EXIT <LABEL IC> \

LOCPFXIT \ LOOPEXIT (LASEL 10'

3.1.3 RETURN STATEMENTS

85. <QcTU;N STATEMENT>!!= RETURN \ RETURN <EXPRESSION'

3.2 PROPER STATEMFNTS

86. (PROP&R STATEMENT)I!!- <BLOCK STATEMENT" \ <LOOP STATEMENT>

'NULL STATEMENT>

3.2.1 BLOCK STATE MENTS

87. <LABEL ENO>!!= 'LABEL IO, I END \ <LARLL ID' 1 <LAf9EL FNOv.

8B. 'LABEL STATEMENT>!!: <EXPRESSION' \ <STATEMENT> \

'LACEL ID' I <LABEL STATcMENT>

89. <'LOK HFA0>!-- 4PROGRAM HEAOD' % 'LABEL STATEMENT3.

B:GIN 'LABEL STATEMENT' \

<BLOCK HFAO> * 'LABL STAT-MENTi,

A-7

. 14 m

90. glLOCK STATEMENT>!!= (BLOCK HEAO] ENO \ 'LOCK HEAD),: ENO N

<LOCK HEAD' ; CLABEL END>

3.2.2 LOOP STATEMENTS

91. <LOOP STATEMENT TAILI,!= -(EXPRESSION) 00 <-EXPRESSION> N.

'EXPRESSION" 00 <PROPFR STATEMENT',

92. <LOOP STATEMENT)!!= WHILE <LOOP STATEMENT TAIL, \

4LOOP STEP HEAD> UNTIL <LOOP STATEMENT TAIL'

LOOP STEP HEAO> WHILE 'LOOP STATEMENT TAIL" '.

(LOoF REPEAT HEAD). WHILE <LOOP SIATEMENT TAIL3'

3.2.3 NULL STATEMENT

93. <NULL STATEHENT),It= NULL

A-8

4. '

4. DECLAPAT IOKS

94. <nECLARATION!!= <PROCEDURE DECLARATION' \ <DATA DECLARATION)

4.1 ATTRIBUTES

q5. (TYPP ATTRIBUTE>t!= REAL \ INTEGER \ DOUBL' \ POINTER

96. <FULL ATTRIBUTF>!= OWN tTYPE ATTRIBUTF' \ <TYPE ATTFIBUTE' CWN

ge. <ATTRIBUT HFAOfe!= <TYPE ATTRIBUTE> STACK a

FORMAT \ ALPHA \ DEVICE

9B. <VALUe ATTRIBUTE)-!= VALUE 'TYPE ATTRIUTE' \

'TYPE ATTRIBUTE> VALUF

99. <PROCEDURE ATTRIBUTEI!= PROCEDURE \ <TYPE ATTRIBUTE' PROCEDURE \

r" LINK PROCEDURE \

'TYPE ATTRIrDUTF> LINK PROCEDURE

100. <ARFAY SIZEi-!= 'INTEGER, c 'INTEGER3, <INTEGER' a

'INTLGER> < 'INTEGER) , <INTEGER'

101. <EXTERNAL SIZE>t1= <ARRAY SIZE),,= ',

4.2 PROCE tRf OECLARATIONS

102. 'ARGUMENT HEAD 21,!!= <ATTRIBUTE HEAD) \ 'TYPE ATTRIBUTE> \

<PROCEDURE ATTRIBUTE) \

<PRCC OUR
.
ATTRIBUTE) <ARGUMEKT LIST' \

<TYPE ATTRIBUTE> ARRAY (<FXTiR? AL SIZE' I \

HALF ARRAY I <EXTERNAL SIZE' I '

<VALUE ATTRIBUTE,

103. <ARGUMENT HEAD,!!= (cARGUMENT HEAf) 2> a

'ARGUMENT HEAD' < 'ARGUMENT HEAD 2'

104.. ARGUMFT LIST>f-- <ARGUMENT HFAD> \ (OPTARG)

<ARGUMENT HEAD' * OPTARG I

A-9

'.,. o

1:5. ARRAY TYPE'I?= 4JYPE ATTR.1811TE ARRAY HALF ARRAY

1 6~. 'ARRAY SPrCIFrCATXON'II! 'ARRAY TYPE), (ICENTIFIEro,

cF(XTFRNAL SIZEN' I

<ARRAY SPECIFICATION2, (CIDENTIFIER3 '

<ARRAY SP7CIFICATION) , ICENTIFIER>

(-EXTERNAL SIZE,,

107. 'PROCEDURe SPECIFICATION>11= -PROCEDURE ATTRIBUTE> <IDENTIFIER* '

PROCEDURE ATTRI FlUTE'- cIDENTIFIER3-

(ARGUMENT LIST,,

101J. -'SPECIFICATIOK tLMENT)-I= <ATTRIBUT.: HEAD,- <IDENTIFIER), \

<TYPE ATTRIBUTEj- 'IDENTIFIER'- \

fSPECIFICATION ELEMENT' , 'IENTXFIER',

* 109. <SPEC IFICATION PART>tI= 'SPECIFICATION ELEMENT>

CPROCEDURE SPECIFICATION) %

<ARRAY SPECIFICATION>

110. <-:XECUTIVC HFAD'II= tXEC \ EXEC INTERRUPT <INTEGER)-

111. tW1SCVIPY0R HEAOD!'1 'EXECUTIVE HEAD) PROCEDURE clOENTIFIER' ,

'cPROCEDURE ATTRIBUTE), IDENTIFIER' ,

<PROCEDURE ATTRIBUTE' 'IDENTIFIER' OPTARG

112. 4PROCrDURE HEAD 1>11= DEFINE tPROCEDURF ATtRIIIUTE'. <IDENTIFIER'.

('IDENTIFIER'I

<PROCEDURE HEAD t' , <IDENTIFIER'

113. cPROCF0UrI-- HEAD 2'!?' <PROCEDURE HEAD 1I \

'PIZOCEDURE HEAD 0), OPTARG

11'.. <PROCEDUFr~ HEAD .3',!= 4PROCEOURE HEAD 2', VALUE tIDENTIFIERi, \

<PROCtOURE HEA)>,< iN IF ' It HulR'

115. 'PROCEDURE HEAD'?I!' DEFINE cDESCRIPTOR HEAll' \

<PROCEDURE HEArl 2'- 'SPECIFICATION PART), \

<PROCEDURE HEAn 31- <SP CIFICATICN PARTv, \

(cP40CEOURE HEA01-'. ISP--CTFICATICN PART',

A-10)

116. <PROCEDURE ODY3,! cB LOCK STATEt4ENTi

117. <PROCEOUR-- DECLARATIONWil= 'PROCEDURE HEAD)- <PROCEDURE BODY],

..3 DATA DECLARATIONS

118. <DATA O1:CLARATION'i-!= <ARRAY DECLARATION,, \ <TYPE- D:CLARATION) a

'cALPHA DECLARATION)- \ cSWITCH CECLARATION' a

'ExTERNAL DECLARATION'- a

<STACK DECLARATION)- \ <GLOBAL CECLARATION' a

* (<FORMAT DFCLARATION,' a 'DEVICE DECLARATION),'

<TASS DECLARATICN'- \ cINSERT DECLARATION*

(COMPONENT DECLARATION Vo a

<COMPONENT DECLARATION 2'- a

<COMMON DECLARATION'- a <PRESET DECLARATION' '.

(SYNONYM DECLARATION3)

4.3.1 ARRAY DECLARATIONS

119. <ARPAY AT7QIBUTE3-t1= (TYPE ATTRIBUTE), a 'FULL ATTRIBUTE' a

OWN HALF \. HALF a HALF OWN

120. <ARRAY PECLAPATION!-!= <ARRAY ATTRIBUTE)- ARRAY 'IDENTIFIER'-

(<ARRAY SIZE))

<ARRAY DECLARATION> 41'IENTIFIER' a

<ARRAY DECLARATION'- c IDENTIFIER'-

<ARRAY SIZE',

4..3.2 TYPE OECLARATIONS

121. -(TYPE OECLARATION>If= 'cTYPE ATTRIBUTC> 'IDE-NTIFrER', \

<FULL ATTRIBUTE)- cIDENTIFIER> \

<TYPE DECLARATION), < IDENTIFIER',

A-11

4..3.3 ALPHA DECLARATIONS

122. (tALPHA ATTRIBUTED,!I= ALPHA % OWN ALPHA \ ALPHA OWN

123. 4ALPHA OfCLARATIONHII= -'ALPHA ATTRIBUTED, cIOFNTIFIER3,

('INTEGERD,)

-(ALPHA DECLARATION)- . 'IDENTIFIER' ,

<ALPHA DECLARATION, . 4IOENTIFIER',

I cINTEGER' I

46.3.'. S14ITCH OECLAPA71ONS

*12'4. (LABEL LrST3,1t= <LABEL TO'v \ -CLABEL LIST' , ' LABEL 1IC'

125. cSWITCH CrCLARATIONI-g= SWITCH 'IDENTIFIER', ='LABEL LIST).

4.3.5 EXTERNAL DECLARATIONS

12b. -'XTERNAL DECLARATION3'11= (EXTERNAL PROCEDURE DECLARATION' -

'cEXTERNAL VARIABLE DECLARATION' .

(EXTERNAL STACK GROUPD) \

(EXTERNAL ARRAY OECLARATIOIN'

4.3.5.1 E.XTERNAL PROCEDURE DECLARATIONS

127. (EXTERNAL PROCEDURE DECLARATION3'tt= EXTERNAL

* 'PROCEDURE SPECIFICATIONs-

14. 3.5.2 EXTERNAL VARIAf3LE DFCLARATIONS

128. 'EXTERNAL VARIAPLF BECLARATION'tf.= EXTERNAL (TYPE ATTRIBUTED,

(IDENTIFIER) ,

<'EXTERNAL VARIABLE DECLARATIOND,

-cIDENTIFIFR*

A-12

4.3.S.3 EXTEPNAL STACK GROUP DECLARATION

129. 'LXTERNAL STACK GROUP*S!: EXTERNAL <ATTRIBUTE HEAD, -eIDENTIFIER' %

<EXTERNAL STACK GROUP2) 41BIENTIFIERI

4... EXTERNAL ARRAY DECLARATIONS

130. (ARRAY LIST ,1W= 'IDENTIFIER', I <EXTERNAL SIZE>

cARRAY LIST* , 'IENTIFIER', \

<ARRAY LIST)- , 'IENTIFIER'- (<EXTtRNAL SIZE3)

*131. 'EXTERNAL ARRAY OECLARATION3,I1 EXTERNAL <TYPE ATTRI6BUTE. ARRAY

* (<ARRAY LIST. '-

EXTERNAL HALF ARRAY 'ARRAY LIST',

i..3.6 STACK DECLARATIONS

132. 'cSTACK NAME3-1!= <IDENTIFIFR, (<INTEGER), I

*133. <STACK DECLARATION3'It= 'tYPE ATTRIGUTEv' STACK (STACK NAM4E' \

<FULL ATTRIBUTE'o STACK (STACK NAME> \

'cSTACK DECLARATION'o , <IDENTIFIER,,~

<STACK DECLARATION' , .'STACK NAME'

i.3.7 GLOBAL D'FCLARAlIONS

13'4. 'GLonAL OCCLARATION>11= GLOBAL 'IDENTIFIER' ,

<GLORAL DECLARATION', cl-INTIFIER,,

Ai.3. 8 FORMAT DECLARATIONS

135. (OPTIONAL %I,!!= s \ 4EMPTYV

136. 'OPTIONAL -1,!= \ -% EMPTY'

A- 13

13'. (rORMAT ELlFMtNT)!.= <OPTIONAL $I- (STRING),

'INTEGER) ((FORMAT LISiT I

R''OlFCIMAL NUMBER),'

<OPTIONAL $) PcDCIMAL NUM0FR, F'COPTIONAL -3,

'OVCIMAL NUMBER), \

PI<CCIMAL NUMBER), <OPTIONAL P, FlOPTIONAL -

'(JECIMAL NUMBERjl \

'OPTIONAL $ F''[OPTICNAL - 'DECIPAL NUMeER l

'cOPT IONAL %3 P 'OPT IONAL - <DECIIPAL NUMBER),'

(OPTIONAL %5' O''OPTICNAL - <)c-ClMAL NUHSER'' @

OPTIONAL Si H'<OPTIONAL - <DkCIMAL NUMBER3 '.

4OPTIONAL P, O'<OPTICNAL - <OrCIMAL NUMBER' 0

(OPTIONAL I S'O0ECIMAL NUMBERi- \

(tOPTIONAL V D El<OECIMAL NUMSFR3, \

(OPTIONAL $1, L'COECIMAL NUMBER;,' \

AOPTIONAL S3, A*40ECIMAL NUMBER,*

138. cFORHAT LIST1'?C= <FORMAT ELEMENT), % (tFRMAT LIST,, , 'FORMAT ELEMENT.

139. <FOFMAT CO'CLARATION'-!!= FORMAT CIDENTIFIER, I 'FORMAT LIST,

4..3.9 DEVICE DFCLARAIIONS

1.oo. <OEVICE)'I!z CPRINT \. SPRINT \ HOF \~ MTF \ KBOSS \ ICL

11.1. <nEVICE OECLARATION,!t: DEVICF 'IOE NTIFIER, 'DOEVICE' '

'cDEVICE DECLARATION) cIDENTIFIERv'

4 DEVICE3'

Lm.3.10 lASS DFCLARATION4S

14.2. (lASS DECLARATIONDI!= TASS 4TASS CONTROL CARDS), (SfE TEXTI

1.3.11 INSERT OECLARATIONS

14.3. -(INSERT CECLARATIfN-s! INSFPT 'tIDENTIFIER'. < IDENTIFIER],I

A- 14

4o.3.12 COMPONENT DFCLARATIONS

1. <COMPONENT ATTRIBUTE,!= -TYPE ATTRIBUTE> COMPONENT

145. 'COMPCN-NT LIST'!!: <COMPONENT ATTRIBUTE,, <IOENTIFIES'

'CCMFONENT LIST' , IO-NTIFIER'

146. <COMPCNENT OFFSET,!!= OFFSET • cINTEGER3 % OFFSET - <INTEGER3 .

OFFSET <INTEGER)

147. <OFFSET LIST)!!= <COMPONFNT OFFSET' FOR <IDENTIFIER' \

'OFFSET LIST> , 4IDENTIFIER>

148. <SIGN EXTENSION>t= LOGICAL % ARITHMETIC

* 149. cQI FIELOlit - 'SIGN EXT9rNSION, FIELD (<INTEGER' , INTEGER)

FIELD (<INTEGER, . <INTEGER, I

150. 'FIELD LIST),!= 'BIT FIELD' FOR 'IDENTIFIFR> \

'FIELD LIST) . cIDENTIFIERi

151. <COMPONNT DECLARATICN I>3I-- <COMPONENT LIST> \ 'OFFSET LIST' \

<FIELD LIST'

152. <COMPONENT HEAD')!!= 'COMPONENT ATTRIBUTE) 'IDENTIFIER)

153. <COMPONENT TAIL'!!= I -BIT FIELO' , 'COMPONENT OFFSET' i

I 'COMPONENT OFFSET' , <BIT FIELD) I \

I 'COMPONENT OFFSET' I

154. 'COMPONENT DECLARATION 21!I= 'COMPONENT HEAD' <COMPONENT TAIL'

4.3.13 COMMON DECLARATIONS

155. <COMMCN HEAD'If= GLOBAL COMMON <IDENTIFIER'-

EXTERNAL COMMON <IDENTIFIEQ"

156. crOMMON FLEMFNT'!?= TYPF OECLARATION' \ 'ALPHA DECLARATION3 \

<ARRAY DECLARATION, \ (STACK OFCLARATION>

157. cCOMMON LIST'-1= <COMMON ELEMENT) * \

'COMMON LIST' tCOMMCN ELEMENT'

158. <COMMON TAILIl= ENOCOM \ COMENO

159. <COMIICN DWCLAPATIOt0>!|= <COMMON HEAU, 'COMMON LIST' cCCMMON TAIL'

A-15

4. 3.14 PRESET DECLARATIONS

160. -'SIlPLE EXPRESSION LISTI!: 'SIMPLE EXPRESSION)-

cSIMPLE EXPRESSION LISTj

cSIMPLE EXPRESSION3

161. <PRESET ELEMENT!!1= 'VARTABLEp = 'cSIMPLE EXPRESSION LIST) %

'VARIABLE), TO 'VARIABLE) =

'cSIMPLE EXPRESSION LXST3

162. <PRESET LISTi-!= <PRESET ELEMENT],'

<PRESET LIST> Z PRESEr ELEMENT),

163. (PRESET DECLARATION)!!= PRESET <PRESET ELEMENT) \

PRESET BEGIN <PRESZT LIST3, END I

PRESET BEGIN <PRESET LIST) :. END

'..3.15 SYNONYM OECLARATICNS

164. <THLL ITEM)!: 'CONSTANT), \ <IOENTIFIER3\

ANY OPERATOR OR DELIMITER

165. -cTHIL ITEM SEOUENCEI!1= 'EMPTY)- \ 'DILL ITEM>

<THLL ITEM SEOUENCE, <THIL I7EMi

lE6. 'SYNONYM RIGHTSIOE!!l= 'cEMPTY)- \ 'CONSTANT)- \

<ITEM OELIMETFR3' 'THLL ITEM SEOUENCE)

-'ITEP' OELIMETERo

016?. 'ITEM OELIMEIER!-!= <THIL ITEMi- THAT IS NOT A cCONSTANT' OR

SEMICOLON AND DOES NOT OCCUR IN 'TNLL ITEM SEOUENCE,

168. 'SYNONYM :LEMENT3)!f= <IDENTIFIER> = 'SYNONYM RIGHTSIE

169. <SYNONYM LIST)!!:= 'SYNONYM ELEMENT)- \

<SYNONYM LISTP ;'SYNONYM ELEMENT),

179. cSYNIONYM DECLARATION),!!1 SYNONYM <SYNONYP -LEMENT3,

SYNONYM BEGIN 'SYNONYM LIS0) ENO

SYNONYM BEGIN 'cSYNONYM LIST)- ENO

A- 16

*-I.

5. PROGRAMS

171. tPPOGPAM HEAD'II= 43EGIN (ECLARATION) \

(PROGRAM HEAO : 'OECLARATION2.

172. tPROGRAM,!!= cIDENTIFIER. cPROGRAM HEAD. END FINIS \

,IDENTIFIER), <PROGRAM HEAn I END FINIS

* .A-17

APPENDIX B

TRICOMP COMPILER DIRECTIVES

I .

B.1 GENERAL DESCRIPTION

The compiler directives are used to communicate various options to
the compiler and to control the format of the printable listing.

The compiler enters the directive mode when either a \ or \\ is
detected. The directive mode is terminated when the end of an input
card has been detected. The \\ will allow the active card to appear
on the printed listing. The \ will suppress printing of the active
input card. The line counts will indicate that a line was suppressed.
The \ and \\ will have no effect in a comment, TASS declaration, or
SYNONYM definition. The \ or \\ can appear after any THLL item except
FINIS and TASS;. If during a synonym expansion a \ or \\ occurs, it
will cause the directive mode to be entered. The remainder of the
synonym (even if on different cards in the synonym definition) and the
remainder of the input card will be considered directives. A \ detected
in a synonym expansion will cause that line to be suppressed. The
following synonym definition will allow lines containing \ to be printed.

SYNONYM \ =

In a similar manner, all directives may be suppressed in the listing.

More than one directive may be included on one input card. The
directives have the following general form:

KEY D Y

where

KEY is a keyword identifier

D is an optional series (possibly empty) of THLL items that do not
match the THLL item Y required by the KEY

Y is either an identifier, string, number, or signed number as
required by the KEY. Some directives do not require a Y.

Examples:

(a) \ LINE = 1

(b) \ TITLE #'NAME OF MY TASK'

(c) \\ TITLE = #'',PAGE

The first example will cause the input lines to be double spaced.
The second example will put a title on each page. The third example

B-1

removes the user's title and causes a page to be ejected. Only the
third example will be printed. The = and comma are completely optional.

The KEY used in the directives is just a predefined identifier
which has no special meaning when not in the directive mode; therefore,
the KEY words are not reserved words.

When the directive mode is entered, only a KEY or end of card will
be recognized. After a key is recognized, only the Y or end of card
will be recognized. If the Y is a string, processing continues until
the string is terminated. Therefore, the user should be careful to
terminate the string. Failure to do so can cause subsequent source
cards to be incorporated in the string, since string processing does not
terminate at the end of the card. The directive mode is restarted after

* a directive has been completely recognized.

Most of the options on the TRICOMP control card are available
through directives. The directive KEY spelling, in some cases, will not
be the same as the spelling of the option on the TRICOMP card. After
the completion of a compile unit (program), the compiler will return to
the state as defined on the TRICOMP card. Therefore, each compile unit
can specify the resources needed for that program.

B.2 DIRECTIVE NOTATION

The following notation is used in the description of directives:

N- is an integer number. It may be a binary, octal, decimal or
hexadecimal integer constant. The number must not be real or
large enough to be considered double. An illegal number will
cause that directive recognition to be aborted and the direc-
tive mode to be restarted. All signs are also ignored.

SN - is an integer number with optional sign. (See the description
of N above.)

S - is a string. If the string is continued on the next card, the
directive is ignored and directive processing is terminated.

ID - is an identifier. The identifiers used as KEYs may also be
used without causing confusion. A new directive will not be
started by using KEY as an identifier.

Except as noted, all directives are valid within one program. The
compiler will return to the state specified on the TRICOMP control card
after each program.

B-2

B.3 LISTING DIRECTIVES

1. PAGE - Immediately home paper. If this directive is printei,
it would appear on the new page.

2. SPACE N - Print N blank lines before the next printable
line. If the next printable line comes from an insert that is not being
printed, then the directive is ignored. Spacing will not pass the end
of page. Default is 0.

3. LINE N - Print N blank lines after each printable line.
Spacing will not pass the end of page. The next printable line will
appear at the top of the next page. Default is 0.

4. TAB N - Move the card image right to the Nth column. The
integer number is limited to 48. Default is 0.

5. ATAB SN - Adjust the TAB number by SN. If SN is negative,
the tab will move to the left. The tab number will not go below 0 or

rabove 48. Tab numbers less than 0 are replaced by 0, but tab values
* greater than 48 are remembered but limited to 48.

6. TITLE S
or

TITLE -S - Print the string S at the top of each page just
below the standard TRICOMP header. If the minus (-) is used before the
string, then the string will begin in column 1 and its first character
will be interpreted as a carriage control character. Otherwise, the
string will be printed starting in column 21. This directive will be
ignored if the string goes beyond the end of card. Tong strings can be
defined in a synonym and then expanded in the S position. A maximum of
130 characters including the carriage control character can be handled
by the compiler. Longer strings will be truncated. If the standard
TRICOMP header is suppressed, column 1 will be set to the home paper
carriage control character and columns 121 through 130 will be used to
specify the page number. An empty string will suppress the directive
title line. Default is no title line.

7. NOHEADER - Suppress the standard TRICOMP header at the top
of each page. If no directive title line is specified, only the home
paper carriage control and page number will be printed for each new page.
These will be aided to the title line if it does exist, and the title
line will be first on the page.

8. HEADER - Restore the standard TRICOMP header at the top of
each page. If a directive title line was being printed, it must be re-
defined because the home paper carriage control has been placed in that
line. Both the standard TRICOMP header and title line would cause a new
page to be ejected. HEADER is default.

B-3

9. RSIDE N - If N = 0, the right side of the listing is
suppressed. If N = 1, restore the right side of the listing. This is
helpful if a listing is to be printed on the intercom. The right side
of the listing includes columns 73 through 90 of the input card image
and the program name and line number. Default is 0.

10. MLINE N - Print a maximum of N lines to a page. Low value
of N is limited to 10. There is no upper end of the value of N. Large
values of N will have the effect of suppressing page headers. The
standard TRICOMP header, directive title line (if it exists), and the
top blank line are not counted towards this line count. Default is 56.

B.4 COMPILER DIRECTIVES

1. NOCODE - No code is to be generated. Pass 3 is suppressed.
This is equivalent to P=2 on the TRICOMP control card or PASS=2 directive.
Default is to include all passes if no fatal error occurs.

2. LIST N - This is the same as the L = octal number on the
TRICOMP control card.

N = 0: No listirg except for errors and compile times.

N = 1: List only the source input file, errors, cross-
reference and compile times. This is default.

N = 2: Also list the insert files in addition to the
N = 1 option.

3. OPT N - Same as the OPT option on the TRICOMP control
card. On the directive card, any THLL constant number can be used.

N = 0: No optimization

N = 1: Optimization is done.

Optimization is turned on by a single bit. Default is 1. This directive
will cause the optimization to be altered at that point in the program.

4. BOUNDS N - This is the same as the B = octal number option
on the TRICOMP control card.

N = 0: No runtime check of array subscripts will be
performed.

N 3 0: Runtime array bounds check. This is default.

This directive will alter the bounds checkinq at that point in the program.

B-4

5. ABORT - This will cause the compiler to terminate the
SCOPE job control stream if this or any of the remaining input programs
has a fatal error. All of the input THLL programs will be compiled,
but after the last program, TRICOMP will abort to an EXIT(S) card if any
of the programs has a fatal error. EXIT and EXIT(U) control cards will
not be honored when skipping SCOPE control cards. The directive will
not cause an abort if only an earlier program has a fatal error. Default
is to not abort.

6. SKIP - This turns on the skip mode of the compiler. All
input between the SKPSTART and SKPEND directives will not be processed
by the compiler. The SKPSTART directive must occur after the SKIP direc-
tive. Care must be taken because skipping can go beyond program
boundaries.

7. NOSKIP - This turns off the compiler skip mode. The
SKPSTART and SKPEND directives will not be honored. This is default.

8. SKPSTART - If the skip mode is active, then start skipping

all input until a SKPEND directive. The SKPEND directive is the only
directive that will be honored.

9. SKPEND) - This terminates the skipping of the input text.
It has no effect if there is not skipping. It can come from a synonym
expansion. It cannot come from an insert file that is not already active.
(Insert declarations are skipped.)

10. PRIV - This is the same as the EXEC option on the TRICOMP
control card. This causes only the current program to be assembled in
PRIV mode.

11. NOPRIV - This turns off the EXEC option on the TRICOMP
control card for just the current program.

12. PASS N - This is the same as the P = octal number option
on the TRICOMP control card.

N = 1, 2, 3, 4: Execute N passes of the compiler, and
then pass 5.

N = 5: Execute all passes.

13. SCHEMA - This turns on the SCHEMA option on the TRICOMP
control card for just the current program. Cenerate schema data.

14. NOSCHEMA - This turns off the SCHEMA option on the TRICOMP
control card for just the current program. Do not generate schema data.

B-5

15. CRET - This turns on the CRET option on the TRICOMP control
card for just the current program. Compile as a GDDF creating program.

16. NOCRET - This turns off the CRET option on the TRICOMP
control card for just the current program. Compile as normal program.
This is default unless CRET appeared on the TRICOMP control card.

17. GDDF - This turns on the GDDF option on the TRICOMP control
card for just the current program. Compile as a program that is to be as-
sembled using a GDDF.

18. NOGDDF - This turns off the GDDF option on the TRICOMP
control card for just the current program. No GDDF is allowed in the
assembly program generated by the compiler. This is default when GDDF
is not specified on the TRICOMP control card.

19. CODEFILE ID - This is the same as the A = Filename option
on the TRICOMP control card for just the current assembly. The default
filename for the output to the assembler is BPCODE unless changed on

* the TRICOMP control card. Only the last filename specified by a CODEFILE
directive will be used for that program. The code cannot be sent to more
than one file.

20. XREF N - This is the same as the R = octal number option
on the TRICOMP control card. This controls the level of cross-reference.
This directive cannot be used after the first user-defined symbol is
encountered.

21. T ID - This is the same as the T = ID option on the TRICOMP
control card. The default filename for TASS control cards is TCARD unless
changed on the TRICOMP control card. This directive will have effect only
within one program. All the cards included in TASS declarations will go
to the last specified file. Additional T directives will cause the cards
in the following TASS declarations to go to the newly specified file. A
T directive cannot be placed in a TASS declaration. The directive card
would be written on the TASS control card file.

22. ICF N - This is the same as the ICF = octal number option
on the TRICOMP control card for only the current program.

23. DSS N - This is the same as the DSS = octal number option
on the TRICOMP control card for only the current program.

24. RSS N - This is the same as the RSS = octal number option

on the TRICOMP control card for only the current program.

11-6

25. LAB N - This is the same as the LAB = octal number option
on the TRICOMP control card for only the current program.

26. HEAD N - This is the same as the HEAD = octal number option
on the TRICOMP control card for only the current program.

27. FSL N - This is the same as the FSL = octal number option
on the TRICOMP control card for only the current program. In order for
this directive to have an effect, it must occur before the first format
declaration.

28. SYN N - This is the same as the SYN = octal number option
on the TRICOMP control card for only the current program. In order for
this directive to have an effect, it must occur before the first synonym
definition.

29. DEBUG N - Compiler systems use.

30. CGOPTS N - Compiler systems use.

31. BIN S - This is the same as the BIN = PPNNNNN option on
the TRICOMP control card. It applies to current compile unit. When
the compile unit has been completely processed, the compiler reverts to
the mode specified on the TRICOMP card. The string S must be of the form
such that it represents the name of a Binder Library, for example BIN =

#/BTLIBR/. If the string contains more than eight characters, it will
be truncated to eight characters. The use of a null string, such as
BIN = #//, will cause the compiler to generate source code for TASS on
the file specified by the A option on the TRICOMP card, the file specified
by the CODEFILE compiler directive, or the default file BPCODE.

32. MAXBLK N - This is the same as the MAXBLK = octal number
option on the TRICOMP control card for only the current program. In
order for this directive to have an effect, it must occur before the
first user-defined block. Only the first occurrence of this directive
in a program will be honored.

33. IDSS N - This is the same as the IDSS = octal number option
on the TRICOMP control card for only the current program. In order for
this directive to have an effect, it must occur before the first user-
defined block is opened. Only the first occurrence of this directive in
a program will be honored.

34. SCANMAX N - This is the same as the SCANMAX = octal number
option on the TRICOMP control card for only the current program.

B-7

35. ICFMIN N - This is the same as the ICFMIN = octal number
option on the TRICOMP control card for only the current program.

36. ICFPAGE N - This is the same as the ICFPAGE = octal number
option on the TRICOMP control card for only the current program.

37. TMPMAX N - This is the same as the TMPMAX = octal number
option on the TRICOMP control card for only the current program.

38. OWNBR N - This is the same as the OWNBR = octal number
option on the TRICOMP control card for only the current program.

39. INSBR N - This is the same as the INSBR = octal number
option on the TRICOMP control card for only the current program.

* 40. CONBR N - This is the same as the CONBR = octal number
. option on the TRICOMP control card for only the current program.

" ' B-8

Lp. •

APPENDIX C

* SYNTAX DIAGRAM CROSS-REFERENCE

.4

DEFINED USED

A 9, 46

actual parameter 15 15, 16
ALPHA 30, 40, 42
alpha attribute 40 39

alpha declaration 39 37, 52

AND 20
ANDB 22

argument head 36 35
argument list 35 35, 36
ARITHMETIC 51

arithmetic expression 22 20

ARRAY 35, 36, 38, 43
array attribute 38 38

* array declaration 38 37, 52

array id 14, 15

array size 31 31, 38
array specification 35 34
assignment expression 24 14

attribute head 30 34, 36

B 9, 10

BEGIN 27, 54, 55

binary digit 7 8, 10
binary number 10 7

BITAND 22
bit field 51 50

BITNOT 22

BITOR 22

BITXOR 22
block statement 27 26, 32

boolean constant 12 6

C 9, 11

CASE 24

CASEEND 24

case expression 24 21

change control statement 25 24

character 3 13

COMEND 52

COMMON 52

common declaration 52 37

COMPONENT 49, 52

component declaration 1 49 37

component declaration 2 49 37

component head 49 49

component id 14

component list 52 49

component tail 50 49

conditional expression 23 21

C-1

DEFINED USED

constant 6 21, 54
CPRINT 47
D 9, 46
data declaration 37 29
decimal digit 8 9, 13
decimal integer 9 10, 11, 12, 39, 46
decimal number 11 7
declaration 29 55
DEFINE 32
delimiting character 13
descriptor head 33 32

* DEVICE 30, 42, 47
o device 47 47

device declaration 47 37
device id 15
digit 3
DO 24, 28
DOUBLE 29
E 9, 12, 46
ELSE 23
END 27, 54, 55
ENDCASE 24
ENDCOM 52
ENDIF 23
ENTRYP 15
EQL 20
EXEC 34
executive head 34 33
EXIT 25
exit statement 25 25
expression 14 2, 15, 16, 21, 23, 24,

25, 26, 27, 28
EXTERNAL 41, 42, 43, 52
external size 31 35, 36, 43
external array declaration 43 41
external declaration 41 37
external procedure declaration 41 41
external stack group 42 41
external variable declaration 42 41
F 9, 46
FALSE 12
FIELD 51
field list 50 49
FINIS 55
FOR 16, 28, 50, 51
FORMAT 30, 42, 45
format declaration 45 37

C-2

DEFINED USED

format element 46 45

format id 15, 21

format list 45 45, 46
full attribute 29 38, 39, 44
function designator 15 21
GEQ 20
GLOBAL 1, 44, 52
global declaration 44 37
GOTO 25
goto statement 25 25

GRT 20

H 46

" HALF 36, 38, 43
. hex digit 9 11

hex number 11 7
1 46

ICL 47
identifier 13 1, 13, 33, 34, 35, 38, 39,

40, 42, 43, 44, 45, 48, 49,

50, 51, 52, 54, 55
IF 23

IFEND 23

INSERT 48
insert declaration 48 37

INTEGER 29
integer 7 6, 31, 34, 44, 46, 50, 51

INTERRUPT 34
item delimiter 54 54

K 10
KBDSS 47

L 46

label id 25, 27, 40
label list 40 40
LEQ 20
LES 20
letter 13 3, 13
LINK 30
LOC 21
LOGICAL 51
loop argument 16 15

LOOPEXIT 25
loop statement 28 26
MDF 47
MTF 47
NEQ 20
NOT 20
NOTE 22

C-3

.. I '-p *H m r n

DEFINED USED

NULL 28
null statement 28 26
number 6 6
O 46
octal digit 8 8, 11
octal number 11 7
OFFSET 50, 51
offset list 51 49
OPTARG 33
OR 20
ORB 22
OWN 29, 38, 40
P 46

* POINTER 29
preset declaration 53 37
preset element 53 53

* primary 21 22
PROCEDURE 30, 33
procedure attribute 30 33, 35, 36
procedure body 32 31
procedure declaration 31 29
procedure head 32 31
procedure head 1 33 33
procedure head 2 33 32, 33
procedure head 3 33 32
procedure id 15, 21
procedure specification 35 34, 41
program 55
program head 55 27, 55
proper statement 26 24, 28
R 46
REAL 29
real number 12 6, 12
relational operator 20 20
REPEAT 16, 28
RETURN 2, 26
return statement 26 25
S 46
scaled real number 12 6
scale part 10 10, 11, 12
simple expression 20 14
simple expression list 53 53

t special character 3 3
specification element 34 34
specification part 34 32
SPRINT 47
STACK 42, 44

C-4

DEFINED USED

stack declaration 44 37, 52
stack id 14, 15
statement 24 23, 24, 27
STEP 16, 28
string 13 6
SWITCH 40
switch declaration 40 37
switch id 25
SYNONYM 54
synonym declaration 54 37
synonym element 54 54
synonym rightside 54 54

, TASS 48
* tass control cards 48

tass declaration 48 37
THEN 23
THLL item 54 54
TRUE 1, 12
type attribute 29 29, 30, 34, 35, 36, 38, 39,

42, 43, 44, 49, 52
type declaration 39 37, 52

UNTIL 16, 28
VALUE 30, 33
value attribute 30 36
variable 14 21, 24, 28

variable id 14, 16
WHILE 16, 28
X 11
XOR 20
XORB 22
07
1 7
2 8
3 8
4 8
5 8
6 8
7 8
8 8
9 8
+ 10, 12, 22, 50, 51

10, 11, 12, 22, 46, 50, 51
10, 11, 46
12, 13
13

C-5

* *.

DEFINED USED

14, 15, 21, 25, 33, 35, 36,

38, 39, 43, 44, 45, 46, 48,
50, 51
14, 15, 21, 25, 33, 35, 36,
38, 39, 43, 44, 45, 46, 48,

50, 51

14, 15, 16, 23, 24, 31, 33,

35, 38, 39, 40, 42, 43, 44,

45, 47

16, 24, 28, 40, 47, 54
{ 16
} 16
* 22, 31

* / 22
•** 22

27, 31, 32, 33, 52, 54, 55

27
$ 46

C-6

"* _*-- ..

DISTRIBUTION

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314 (12)

Library of Congress

Washington, DC 20540
ATTN: Gift and Exchange Division (4)

GIDEP Operations Office
Corona, CA 91720

Local

K50 -GE
K50-EG&G (Library)

K51
K53 (2)
K54 (6)

K55 (2)
K56 (2)
K70
X210 (6)
X211 (2)

E41

e~g.

