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As part of an effort to determine electron density profiles in the auroral
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A Method for Direct Determination of Real
Height From Virtual Height Data for the
Auroral Region of the lonosphere

1. INTRODUCTION

For the case of no magnetic field, the group index of refraction is of fairly
simple form and the virtual height-real height integral relation may be expressed
as a special form of Abel's integral equation and solved for real height as a direct
function of virtual height. !

In the presence of a magnetic field, the group index of refraction becomes
quite complicated and, in general, the group height-real height integral relation
cannot be reduced to a form of Abel's integral equation. The approach generally
used here is the laminar methodz’ 8 in which the electron density profile is divided
into a series of slabs in each of which average values are used to describe the
properties of the slab, The integral relation then reduces to a set of simultaneous
equations whose coefficients may be calculated, giving the real height as a function
of virtual height. Improvements to the laminar method have been provided by
Titheridge by uase of a single polynomial‘ or a series of overlapping polynomials.

For the particular case of longitudinal propagation, the group index of refrac-
tion becomes fairly simple and the group height-real height relation may be reduced
to a form of Abel's integral equation. Since, in the auroral region, the angle 8
between the magnetic field and the incident ray is less than about 30° for vertical

(Received for publication 13 November 1979)

{Due to the large number of references cited above, they will not be listed here.
See References, page 19.)




propagation, it is natural to inquire whether the group height-real height relation
may be expressed, at least approximately, in terms of Abel's integral equation.
For the extraordinary ray, Figure 1, the index of refraction remains virtually
unchanged for # less than about 30°  and the real height in the auroral region may
be determined from an Abel integral equation in a fairly straightforward manner.

Figure 1, Sketch of Ordinary and Extraordinary
Dispersion Curves for § Less than 30°

For the ordinary ray, however, as seen in Figure 1, the situation is somewhat
more complicated. Although u.2 is almost linear over a portion of X = erlfz,
where pis phase index of refraction, l‘N is plasma I[requency and f is probing fre-
quency, the curve bends rapidly at the larger values of X to give a reflection level
at X = 1. It is found that the nonlinear portion of the curve may be fitted by a
simple power law for which an Abel integral equation obtains. Thus, the dispersion
relation for the ordinary ray may be regarded as made up of two segments for each
of which the real height may be obtained directly.

8. Davies, Kenneth (1969) lonospheric Radio Waves, Blaisdell Publishing Company,
waltham, Massachusétis, Chapter 5, pp 130-135.
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2. ANALYSIS

2.1 Extrsordinary Ray
For the extraordinary ray the index of refraction in longitudinal propagation
is given by

X (1)

where

f
Y= H is the gyromagnetic ratio
T gy £

and rH is the gyromagnetic frequency. As indicated previously, the dispersion
relation given by Eq. (1) remains virtually unchanged for ¢ less than about 30°.
We may therefore use Eq. (1) in the analysis of the relation between group height
and real height for the auroral region.
The virtual height h’(f), which is a function of input frequency f, is related to
the real height h by the integral
h

r
h'(t‘)=g p ' dh (2)

where h is real height, h, is the height at reflection, that is, when u= 0, and u'
is the group index of refraction and given by

u'=a%-(uf)=u+t‘§#. 3)

The group index may now be expressed explicitly as a function of X and Y. For our
purposes, however, it will be more convenient to use the first form of Eq. (3). We

may then write Eq. (2) as

h
r

f S (uDdn=n"tn. @

Noting that at the upper limit hr the index p vanishes, we can take the derivative
outside the integral sign and write

h
r

grt{ wtdh = h'(0 .

1
3




We may now integrate with respect to f to obtain 1

n
r i
J -2V an - [ winar (8)
o .

H

where the lower limit of f is set at fH since X is negative in the range 0 to fH when
Y > 1. Noting that Y is independent of the variable dh, we may transpose the term
in 1 - Y to the right-hand side and write Eq. (6) in the form

hr
J @ -thZamsw'0, )
0
f
go=-0-0% | n'oa. (8)
;

H : ]

To reduce Eq, (7) to the form occurring in Abel's integral equation we introduce
new variable F and FN where

_ ¢2
F=f -ffH.

_ e 2
FN-IN ,

which allows us to cast Eq. (7) in the form

F
J(F-&)llzud§=ﬂ'(f) (9)

where § = FN is a running va;-;able with maximum value F corresponding to the
reflection frequency and u = .

We may express Eq. (9) in the canonical form of Abel's integral equation by
differentiating both sides of Eq. (9) with respect to F. However, the solution can
also be obtained by direct use of the Laplace transform, indicating at the same time
the simplicity and utility of the Laplace transform technique in this type of integral
equation. Applying the Laplace transform to Eq. (9) we obtain

Vi _1 Ws) = A(s)

=z s37! (10)

where the bar indicates the transformed variable, and s the transform parameter,
that is,
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Ws) = jo' wig) e 56 a (11)

and we have made use of the relation for the Laplace transform L of a convolution
integral for two lunctions f(§) and g(£) in terms of the individual transforms

¢

Tis) g(a) = L%’ (¢ - n) gn) dn . (12)
Solving Eq. (10) for u(s) we obtain
- 2 3/2
u(s) = —— 8" ' “ Hi(s) . (13)
T

Since the inverse Laplace transform for sn does not exist for n >'0 except when n
is an integer we write Eq. (13) in the form

We) = 2 —msz Ha) (14)
) LA
whose inverse transform is readily calculated as
agr= 2 & f BE) gF (15)
n d €? 0 ¢ _F)IIZ

where F is now the running variable and { is the maximum value of F corresponding
to the plasma frequency F at reflection. Since u= gg— we can write Eq. (15) as

§
_2d H'(F)
h(&)—n '3 { mdF (16)

which can be further written in the forms
F

v
2 1 dH’ (F)
nF )= 2 dF , (17)
v ”fo (F,-F)- ¢ ¥
f
_ 2f" 1 dH (M) o, 8
M=y, ®Tar 4 18

where Fv or fv is the maximum value of F or f corresponding to the reflection
height, and
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Carrying out the differentiation we obtain

t t,
M 1/2
2 (1-Y) 1 1 Y
ht) = 3 rf __-r_h’mduiff =y B af. (19)
H
H

2.2 Ordinary Ray--Linear Segment

As indicated previously, the ordinary ray remains almost linear over some
range of X and then begins to bend rapidly toward 4 = 0 at X = 1. We shall there-
fore consider the ordinary ray as made up of a linear and a curved segment joined
at the common point X= Xl. The point X1 is chosen at the point at which the u
curve starts to bend away noticeably from the straight line portion of the curve,

The contribution of the straight line portion of the curve may be obtained in
the same manner as for the extraordinary ray. However, to use the Abel integral
relation it is necessary that the upper limit refer to the point X at which u vanishes.
The lower limit may be arbitrary, so long as H’ (f) vanishes at the lower limit, 7
a condition which is automatically satisfied. We therefore extend the straight line
to = 0at X =1+Y and calculate the contribution to the real height of the straight
line portion from 0 to X1 as the difference of the contributions from 0 to 1+Y and
from X1 to1+Y.

For the straight line portion between 0 and 1+ Y the real height-virtual height
relation is

d ’
(uf) dh = h'(f)df (20)
Joar w {

but p.2 is now given by
2 X (21)
The lower [requency limit can here be taken as zero since X remains positive for

the ordinary ray when Y becomes greater than unity. Following the same procedure
as for the extraordinary ray we obtain

h
ro, g 1/2
J @t 0% dn= w0, (22)
0

f
H'(D = (1+1)1/2 j(; h*() df , (23)

7. Sneddon, I.N. (1972) The Use of Integral Transforms, McGraw-Hill Book
Company, New York, Chapter 3, pp 207-211.

10
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which can be written as

F
fo (F -E)”zudg = H' (F),

where
F=t24+ ff
2
E=Fy=f°.

The real height h, is then given by

Fv
2 1 dH' (F)
h (F ) = = dF
or
f
Y ! (f)
2 1 dH
ho(fy) = 7 {) rar ¢
where
2 2 2
R” = f, +ffo-(f +ffH).
Carrying out the differentiation we obtain
3 £
v

v 1/2
_2 (1+Y) ; _1 1Y ,
ho(fv)_i.fo_._ﬁ___._h(f)df "fo R Ty H (Daf.

For the interval between X 1 and 1+ Y the height relation is

h

J 1/2

2 2 .

fh %+ oty - 105 dh=H{(D),

1

£
0= 0+s0Y2 [ n'nas
1

1

11

(24)

(25)

(26)

(27

(28)

(29)
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where the subscript 1 corresponds to X1 and the frequency { 1 is given by

2 _ 2
£,%+ flfH- !'Nl . (30)
We now write Eq. (28) in the form
F
[ ®-e" 2wt =1 @ (31)
1
which may be solved for h, (fv) to yield
F .
2 v 1 dHl. (F)
hy (FJ) =35 {, 7z —9F — 9F (32)
(F_-F)
1 v
or
f, ¢
dH. " (f)
_ 2 1 1
hy () = 2 { x af . (33)
1
The height h01 between 0 and X1 is accordingly given by
1
hg, = hg-h, . (34)

2.3 Ordinary Ray—Determination of Curved Segment

We represent the curved portion of the dispersion curve in the interval X1 to 1
by

2 2 (35)

p=a(-x% u,
where a and @ are parameters to be determined and Ky is the index of refraction
given by the straight line portion of the curve at the point Xl. that is,

2_1-x1 (36)
Hy = 7Y

The value of & is between 0 and 1 and approaches zero as § becomes small.
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Since (1 - X) goes to zero at X=1, the derivative of u2 with respect to Y
vanishes at X=1. The exact dispersion curve is also known to be independent
of Y at X=1, so that the form for #2 in Eq. (35) has the proper qualitative depen-
dence upon Y, In fact, a computational check of u2 from Eq. (35) as a function
of Y was in good agreement with the exact dispersion equation.

The slope of the uz-x curve given by Eq. (35) is infinite at X=1, whereas the
exact curve has the form, near X=1,

uls —— a-x (37)
sin” 8

with a slope of magnitude —12—— . However, since 8 is less than 30°, the slope
from Eq. (37) is generall;ll:rgoe. Thus, the “2 curve given by Eq. (35) should
generally be in good agreement with the exact dispersion curve.

The values of a and @ were determined by fitting the value of “2 in Eq. (35)
to those of the exact dispersion curve at X1 and a point X2 between X1 and 1. The
results obtained for § = 10°, 20° and 30°, and for Y=0.3 are shown in Figure 2
where it is seen that the fitted curves are in good agreement with the exact curves.
The accuracy of the fit was found to be fairly insensitive to a moderate change in
the point X2. say from 0.9 to 0. 8. In addition, although the slope at X1 was not
determined, the value from Eq. (35) was in fairly good agreement with that ob-
tained from the exact dispersion curve. It thus appears that the form chosen for
“2 in Eq. (35) is a useful and accurate representation of the curved portion of the

exact dispersion curve.

2.4 Calculation of Real Height for Curved Segment of Dispersion Cutve
The apparent height h’(f) for the interval X1 to 1, with u.2 now given by Eq. (35)

is then

h

r 1 a f
{ faZp (1-%% dh= [ n'@at (38)
1
1 1
i
which can be expressed as
A
2 2 1 _ [
a { (1% - £ fa—_rdh-_{h(f)df. (39)
1 1

8. Davies, Kenneth (1969) Ionospheric Radio Waves, Blaisdell Publishing Company,
Waltham, Massachusetts, Chapter 5, p 125.
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The terms in B, and f are independent of real height h and we can accordingly
write Eq. (39) in the form

h a
[ #?-1,H% an = v @
1

where

14
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t
-1
H'(f)=—{;2-— J n'at. “1
a Ky fl

Changing to the variables F and { we write Eq. (40) in the canonical form

F [¢] .
{ (F-£)2 udf = H'(F) “2)
1

which yields under Laplace transformation

Ws) I (%‘ + 1)

;-&l
-]

= H(s) . (43)

Solving Eq. (43) for u(s) we have

a
+1
uis) = —-a-l—— s! H(s) (44)
r(—z- + 1)

which may be written as

2
i(s) = — S — M) (45)
T (i +1 1- -2

The inverse transform of Eq. (45) is then

g-é‘. . r—ui—-‘;; d;'g‘zz- fFl Fll-% H' (F)dF (46)
which may be written as
na Fv
" E!iz"z(—"‘r fFl (F‘,-:r)""z dlf”F(F) aF “n
or
i ol v 1 dH' (1) 4y
) 329_ [1 (fvz_fz)m df

15




where we have used

a
rasHrra-§ - T “9)
.ill-!-
Carrying out the differentiations we may write Eq. (48) ar
nin-'-,“— ‘V a-1
df f ’ (1-a) ’
h, = S h' () H' (D)
1 a 177,
T ol T H
X
1 M1 Y 1 ’
+ ——n —7q H () . (50)
T (1+Y) My

3. VERIFICATION OF REAL HEIGHT FORMULA FOR A
LINEAR ELECTRON DENSITY PROFILE

Since the real height formulas derived here are of the same general type, we
shall, for convenience, work with the equations for the extraordinary ray. For a
linear gradient

f. " =ah (51)

where fN and h are referred to suitable initial values which may be taken as zero.
The apparent height h’(f) is then given by
h

r
h'ip=_3 uf dh
a |

2
“'Y”n t 2 1/2 2

where the upper limit corresponds to the value of tN at which u vanishes. The
integral yield

h ) = [3?; (1-Y)r3] . (53)
[
The quantities H’(f) and %ir(-f—) are then given by




X e TSN gy,

1ot
H'® = (1-% [ n'at

n

HD = o 1-v3/37°
1

7
dH'(D _(1-Y) .
- = 17021 - 1)

which can be expressed in terms of F by

o -

dH'(F) _
—aF =T

The real height hr is then obtained from

dH'(F)
—3rF— 9F.

v
]
2 F
h, =35 J .———177 9F .
r m fo (F, -F)

Changing the variable to G= F!/2 yields
G
v 2

4 G
h = — dG,
ro" Y 6,°-69

which can easily be evaluated as

which, from Eq. (51), is identical with hr'

(54)

(55)

(56)

(57)

The solutions for the ordinary

ray, both linear and curved portiona, can easily be verified in a similar manner.

4. SUMMARY AND CONCLUSIONS

A method has been developed for directly calculating real height from virtual
height data in the auroral region of the ionosphere. The principle approximation

17




in the method is the representation of the curved portion of the dispersion curve for
the ordinary ray by an analytic form which reduces the virtual height-real height
integral relation to a form of Abel's integral equation. Numerical checks show
that the present method gives an accurate repregentation of the exact dispersion
curve. It is therefore felt that good results should be obtained when the present
procedure is applied to virtual height data. The correctness of the real height
formula has been verified for the case of a linear electron density profile.

The present method will be applied to the numerical calculation of real height
from virtual height data and its accuracy and convenience will be assessed by
comparison of the results with those obtained from standard programs.

18
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