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Aspart of an effort to determine electron density profiles in the auroral

region of the ionosphere. a method has been developed for directly calculating
real height from virtual height data obtained at high latitudes. The essential
ingredient of the method is the representation of the curved portion of the
ordinary ray dispersion curve by an analytic form which reduces the virtual
height - real height integral relation to a form of Abel's integral equation.
Numerical checks indicate that the present method gives an accurate represen-

tation of the, dispersion curv.Tecreteso the Present Procedure has
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been verified for the came of a linear electron density profile.
The present method will be applied to the numerical calculation of real

height electron density profiles in the auroral region from virtual height data.
The accuracy and convenience of the present method will be assessed by
comparison of the results with those obtained from standard programs.

Unclassified
SECURITY CLAISIFICATIOW Of THIS PA0I(M" boo af Rme.

L7



• \ _.....p. , t,

c

1. INTRODUCTION

2. ANALYSIS 7

2. 1 Extraordinary Ray 7
2. 2 Ordinary Ray-Linear Segment 10
2. 3 Ordinary Ray-Determination of Curved Segment 12
2.4 Calculation of Real Height for Curved Segment

of Dispersion Curve 13

3. VERIFICATION OF REAL HEIGHT FORMULA FOR A LINEAR

ELECTRON DENSITY PROFILE 16

4. SUMMARY AND CONCLUSIONS 17

REFERENCES 19

Illustrations

1. Sketch of Ordinary and Extraordinary Dispersion Curves
for 9 Less than 300 6

2. Comparison of Exact and Approximate Dispersion Curves
for Several Values of 0; Y = 0. 3 14

3



A Method for Direct Determination of Real
Height From Virtual Height Data for the

Auroral Region of the Ionosphere

1. INTRODUCTION

For the case of no magnetic field, the group index of refraction is of fairly

simple form and the virtual height-real height integral relation may be expressed

as a special form of Abel's integral equation and solved for real height as a direct

function of virtual height. I

In the presence of a magnetic field, the group index of refraction becomes

quite complicated and, in general, the group height-real height integral relation

cannot be reduced to a form of Abel's integral equation. The approach generally

used here is the laminar method2 ' 3 in which the electron density profile is divided

into a series of slabs in each of which average values are used to describe the

properties of the slab. The integral relation then reduces to a set of simultaneous

equations whose coefficients may be calculated, giving the real height as a function

of virtual height. Improvements to the laminar method have been provided by

Titheridge by use of a single polynomial 4 or a series of overlapping polynomials. 5

For the particular case of longitudinal propagation, the group index of refrac-

tion becomes fairly simple and the group height- real height relation may be reduced

to a form of Abel's integral equation. Since, in the auroral region, the angle 0

between the magnetic field and the incident ray is less than about 300 for vertical

(Received for publication 13 November 1979)

(Due to the large number of references cited above, they will not be listed here.
See References, page 19.)
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propagation, it is natural to inquire whether the group height-real height relation

may be expressed. at least approximately, in terms of Abel's integral equation.

For the extraordinary ray, Figure 1. the index of refraction remains virtually

unchanged for 9 less than about 300 6 and the real height in the auroral region may

be determined from an Abel integral equation in a fairly straightforward manner.

00oNOIARA RAY

0
I-Y Xi  I IY
X

Figure 1. Sketch of Ordinary and Extraordinary
Dispersion Curves for 0 Less than 300

For the ordinary ray, however, as seen in Figure 1, the situation is somewhat

more complicated. Although u 2 is almost linear over a portion of X v fN2/f2 ,

where jis phase index of refraction. fN is plasma frequency and f is probing fre-

quency, the curve bends rapidly at the larger values of X to give a reflection level

at X = I. It is found that the nonlinear portion of the curve may be fitted by a

simple power law for which an Abel integral equation obtains. Thus, the dispersion

relation for the ordinary ray may be regarded as made up of two segments for each

of which the real height may be obtained directly.

6. Davies, Kenneth (1969) Ionospheric Radio Waves, Blaisdell Publishing Company.
Waltham, Massachusetts, Chapter a. pp 130-135.
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2. ANALYSIS

2.1 Extaordiary Ray

For the extraordinary ray the index of refraction in longitudinal propagation

is given by

U2  Xi~. 1)Al

where

fH
Y -- Tis the gyromagnetic ratio

and f is the gyromagnetic frequency. As indicated previously, the dispersion

relation given by Eq. (1) remains virtually unchanged for 0 less than about 300.

We may therefore use Eq. (1) in the analysis of the relation between group height

and real height for the auroral region.

The virtual height h* (f), which is a function of input frequency f, is related to

the real height h by the integral

hr

h'(f)= dh (2)

where h is real height. hr is the height at reflection, that is, when g= 0, and i

is the group index of refraction and given by

Il.= d (1.f)- = A+ f - (3)

The group index may now be expressed explicitly as a function of X and Y. For our

purposes, however, it will be more convenient to use the first form of Eq. (3). We

may then write Eq. (2) as

h
r

f r (gf)dh = h'(f). (4)

0

Noting that at the upper limit hr the index IA vanishes, we can take the derivative

outside the integral sign and write

h
r

d ji rdh h'(f). (5)

7



We may now integrate with respect to f to obtain

r f
f f(1- X )1/ 2 dh = f h'(f) d f (6)

where the lower limit of f is set at fH since X is negative in the range 0 to fH when

Y > 1. Noting that Y is independent of the variable dh, we may transpose the term

in I - Y to the right-hand side and write Eq. (6) in the form

hr

J (f2 _ fN f_2 )112 dh - H'(f) (7)
0 N;

fH'(f) = (I -_Y)1/2 f h"(f) df. (8)

f H

To reduce Eq. (7) to the form occurring in Abel's integral equation we- introduce

new variable F and FN where

F = f2 - ff H

2
FN =N

which allows us to cast Eq. (7) in the form

F
F(F - g 1/2 u d= H'(f) (9)

where = F N is a running variable with maximum value F corresponding to theN dh
reflection frequency and u 2 dh

We may express Eq. (9) in the canonical form of Abel's integral equation by

differentiating both sides of Eq. (9) with respect to F. However, the solution can

also be obtained by direct use of the Laplace transform, indicating at the same time

the simplicity and utility of the Laplace transform technique in this type of integral

equation. Applying the Laplace transform to Eq. (9) we obtain

U(s) R(s) (10)

where the bar indicates the transformed variable, and s the transform parameter,

that is,

8



U(s)- u(t)e-s (11)

and we have made use of the relation for the Laplace transform L of a convolution

integral for two functions f(t) and g(t) in terms of the individual transforms

'Re) i(s) - L f( - ij) g(0) dQ. (12)
0

Solving Eq. (10) for Z(s) we obtain

(s) s32 IT(s). (13)JIJ

n
Since the inverse Laplace transform for s does not exist for n >'0 except when n

is an integer we write Eq. (13) in the form

jj-g) (14)

whose inverse transform is readily calculated as

2 d2  ' F

u(k)= H- J (F) dF (15)
dt 0 (4 -F) /

40

where F is now the running variable and t is the maximum value of F corresponding
dh

to the plasma frequency FN at reflection. Since u = we can write Eq. (15) as

2( d =2 f H'(F) 
(16)

h~)= d f - ~ dF
0 (k -F)i

which can be further written in the forms
F

v

! f I dH' (F) (17)
v a 0 (F.F)/Z dF , 1

f

2~ f2v 1 dH(f) df( 18)

where F or fv is the maximum value of F or f corresponding to the reflection
v

height, and

9



R2 fv2  fv H (f2 fH )

Carrying out the differentiation we obtain

2 1/1

2 (1y)l/ h' ( Y H* (f) df. (19)h(fv)- 2  ( " d . 1

2.2 Ordinary Ray-Unear Segment

As indicated previously, the ordinary ray remains almost linear over some

range of X and then begins to bend rapidly toward i = 0 at X = 1. We shall there-

fore consider the ordinary ray as made up of a linear and a curved segment joined
at the common point X= X1. The point X1 is chosen at the point at which the 92

curve starts to bend away noticeably from the straight line portion of the curve.

The contribution of the straight line portion of the curve may be obtained in

the same manner as for the extraordinary ray. However. to use the Abel integral

relation it is necessary that the upper limit refer to the point X at which 1i vanishes.

The lower limit may be arbitrary, so long as H' (f) vanishes at the lower limit,
7

a condition which is automatically satisfied. We therefore extend the straight line

to tt = 0 at X = 1 + Y and calculate the contribution to the real height of the straight

line portion from 0 to X as the difference of the contributions from 0 to 1+ Y and

fromX 1 to I+Y.

For the straight line portion between 0 and 1 + Y the real height-virtual height

relation is
hr f

fo d (,uf) dh= f h'(f)df (20)

2.
but A is now given by

2 = ( - 121)

The lower frequency limit can here be taken as zero since X remains positive for

the ordinary ray when Y becomes greater than unity. Following the same procedure
as for the extraordinary ray we obtain

h r/2

f (f2 + ffH f 2)1  dh = H'(f) , (22)
0

f
H'(f) = (I+Y)I/2 J h'(f) df, (23)

0

7. Sneddon, I. N. (1972) The Use of Integral Transforms, McGraw-Hill Book

Company. New York, Chapter 3, pp 207-211.
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r

which can be written as

F

f (F - 4)I/2 udt =H'(F) (24)

where

F= f 2 + ffH

F N = fN

The real height h0 is then given by

F
V

h (F f 1 dH (F) dF (25)ID(v 1f 0 (F v F)1 / 2 dF

or
f

V

h,(f) f -d H'M d- f (26)
0 df70 T

where

il R2 = fv
R 2=fv 2+fv fH -( fH

Carrying out the differentiation we obtain
t. fv

V , 1/2 V

h(f 2 f I+yI h'(f) df - 1 Y H' (f) df. (27)ID V 7f 0 1 R+Y

For the interval between X I and I+ Y the height relation is

hhr 2 2 1/2 (8

fr (f2 + ffH fN )  dh = HI (f) (28)

fH'(f)= (I +Y) 1 / 2 ff h'(f)df 1 (29)

fI



where the subscript 1 corresponds to X and the frequency fl is given by

2 2  f f = f 230)
1 1 H N1

We now write Eq. (28) in the form

F

f (F -) 1 1 2 ud = H 1 (F) (31)
41

which may be solved for h I(f v) to yield

F
v dH (F '( F)

h 1lF)= f (FvF)'lIZ -wiF-- dF (32)

or

f
)(f)h fI I I' df .133)

v I  W - - U-- d

The height h0 1 between 0 and X 1 is accordingly given by

h = h 0 - h 1  (34)

2.3 Ordinary Ray-Determination of Curved Segment

We represent the curved portion of the dispersion curve in the interval X to 1

by

A2 = a(l-X) of 1 2 (35)

where a and a are parameters to be determined and ji 1 is the index of refraction

given by the straight line portion of the curve at the point X 1, that is,

2 X 1
I = i =1  (36)

The value of a is between 0 and 1 and approaches zero as 0 becomes small.

12
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I

Since (1 -X) goes to zero at X- I. the derivative of g2 with respect to Y

vanishes at X= I. The exact dispersion curve is also known to be independent
of Y at X = I, so that the form forg2 in Eq. (35) has the proper qualitative depen-

dence upon Y. In fact. a computational check of 1 2 from Eq. (35) as a function

of Y was in good agreement with the exact dispersion equation.

The slope of the g2_X curve given by Eq. (35) is infinite at X= 1, whereas the

exact curve has the form, near X= 1, 8
! 2 1

2= I (l-X) (37)
sin 6

1
with a slope of magnitude s . However, since 0 is less than 300. the slope

from Eq. (37) is generally large. Thus, the g 2 curve given by Eq. (35) should

generally be in good agreement with the exact dispersion curve.~2
The values of a and a were determined by fitting the value of j/s in Eq. (35)

to those of the exact dispersion curve at X 1 and a point X 2 between X I and 1. The

results obtained for 0 = 100, 200 and 300, and for Y= 0.3 are shown in Figure 2

where it is seen that the fitted curves are in good agreement with the exact curves.

The accuracy of the fit was found to be fairly insensitive to a moderate change in

the point X 2 . say from 0. 9 to 0. 8. In addition, although the slope at X 1 was not

determined, the value from Eq. (35) was in fairly good agreement with that ob-

tained from the exact dispersion curve. It thus appears that the form chosen for
A2 in Eq. (35) is a useful and accurate representation of the curved portion of the

exact dispersion curve.

2.4 Calculation of Real Height for Curved Segment of Dispersion Curve

itThe apparent height h'(f) for the interval to 1, with 2 now given by Eq. (35)
is then

hr 1 f

fa '2.( 1 -X) dh= f h'(f) df (38)
11

which can be expressed as

1 hr a f

a ) _1-2fN) - dh= £ (f) df. (39)
I ~ fI

8. Davies, Kenneth (1969) Ionospheric Radio Waves, Blaisdell Publishing Company,
Waltham, Massachusetts, thapter 5, p 125.
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The terms in ul1 and f are independent of real height h and we can accordingly
write Eq. (39) in the form

hr of

i f f d h H H(f) (40)

where

14



!f

H -(f) f ( f ) d f  (41)

a f1

Changing to tihe variables F and we write Eq. (40) in the canonical form

F

(F-) udt = H'(F) (42)

1

which yields under Laplace transformation

i(s) r + 1) U (s). (43)
tv. 1

S

Solving Eq. (43) for U(s) we have

{s) 1 1 + I

U(s) = 7 T(s) (44)
1" + 1)

which may be written as

"i(s) 1 s2 (45)
r(+1 -

2 s 7

The inverse transform of Eq. (45) is then

_I_ d fF I H' (F)dF (46)
-J '-(1+*) d Fr 1 r(l-A)

which may be written as

F
sin f I dH'(F) dF (47)

= I (Fv. F)'d

or

f

h sin-* 1 ddH(f) df (48)

1(fv f

15
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where we have used

Wa
: 1rla ,a) rl -a) - -T (48)

sin -r

Carrying out the differentiatons we may write Eq. (48) ap

h alin - f v df f a h' (l-l H'(f)
1 f 2 a /a

li Y 1
+ F= H' (f (50)

(l+Y) )A, (f"

3. VERIFICATION OF REAL HiGHT FORMULA FOR A
LINA, ELERCrON DENSITY PROFILE

Since the real height formulas derived here are of the same general type. we

shall, for convenience, work with the equations for the extraordinary ray. For a

linear gradient

2fN = ah (51)

where fN and h are referred to suitable initial values which may be taken as zero.

The apparent height h'(f) is then given by
h

r

h'(f)= f jLf d-h

0

h'(f) f (I d "n )1 ~N) (52)

where the upper limit corresponds to the value of fN at which f vanishes. The

integral yield

h' Ma- If)U- )f31-(3

The quantities H'(f) and d'- are then given by

16



I
ifH'lf) a (I-Y)'1 f h'(fldf

H'(f) (-Y) 3 2 3  (54)

1

d H'(f) (I-Y)" f(2f- f (55)

which can be expressed in terms of F by

1
I

d H'(F) F (56)

The real height hr is then obtained from

F
V

2 f d dH'(F)dFhr = 0j (FvdF.F) 1

F I

h 2 -F F(7
r  Is o . (F v -F)1/d

Changing the variable to G= F 1 / 2 yields

G v 2

h 4 f G dG,h r = a f0 (G ZG )1 / 7

which can easily be evaluated as

F
hr a "

which, from Eq. (51), is identical with h r The solutions for the ordinary

ray, both linear and curved portions, can easily be verified in a similar manner.

4. SUMMARY AND CONCLUSIONS

A method has been developed for directly calculating real height from virtual

height data in the auroral region of the ionosphere. The principle approximation

17



in the method is the representation of the curved portion of the dispersion curve for

the ordinary ray by an analytic form which reduces the virtual height-real height
integral relation to a form of Abel's integral equation. Numerical checks show

that the present method gives an accurate representation of the exact dispersion
curve. It is therefore felt that good results should be obtained when the present
procedure is applied to virtual height data. The correctness of the real height

formula has been verified for the case of a linear electron density profile.
The present method will be applied to the numerical calculation of real height

from virtual height data and its accuracy and convenience will be assessed by
comparison of the results with those obtained from standard programs.

18
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