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FOREWORD

This is the final report on research performed at the Honeywell Systems

and Research Center, Minneapolis, Minnesota under Contract N00014-75-

C-0144, entitled "Optimal Linear Control." The Scientific Officers for the

project were Mr. D. S. Siegel and Mr. R. Von Husen in the Vehicle Technology

Division of the Office of Naval Research.

Dr. C. A. Harvey was the Principal Investigator. His co-investigators at

Honeywell were Dr. G. Stein, Dr. C. E. Mueller, and Mr. G. L. Hartmann,

along with consultants Mr. J.C. Doyle, Dr. E.B. Lee, Dr. M.G. Safonov,

and Dr. H. R. Sirisena. Section 3 of this report was written by Dr. Stein,

Mr. Doyle, and Dr. Safonov. The other co-workers have contributed to

previous reports on the program.
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SECTION 1

INTRODUCTION

This is the final report on a program aimed at advancing the state-of-the-

art of design technology for linear control systems. About 1960, linear

optimal control techniques were first developed to provide improved

performance of control systems, Practicing control engineers did not

recognize any real need for such techniques because the control design

problems they faced could readily be treated with previously existing

techniques. But the benefits promised by linear optimal control were

enticing and the mathematical rigor associated with this formulation of

control system synthesis was intriguing to researchers. Publications on

this topic dominated the control literature in the ensuing years. The

benefits promised by linear optimal control techniques were:

* Optimal performance

* Guaranteed stability

0 Integrated multivariable designs

* Computer-automated synthesis

These benefits for a flight control system could be interpreted as providing

optimal handling qualities, for example. The guaranteed stability should

lead to reduced flight test time and expense. Integrated multivariable design

could greatly enhance maneuverability through optimal simultaneous operation

of all available control inputs. The computer-automated synthesis could

provide inexpensive designs with rapid iteration capability, an extremely

attractive feature for integrated vehicle or control-configured vehicle

designs.
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With few exceptions, these benefits have not been realized. Optimal linear

control technology has maintained its research status and control system

designers have continued to use conventional design techniques. These

conventional design techniques are closely related to design specifications

that have evolved through experience with control system behavior. This

research program was initiated in 1974 to transform the optimal linear

control technology from its research status to a practical design technology.

The goal of the research was to bridge the gap between the optimal linear

technology and linear control system design practice.

The basic steps proposed to achieve the desired goal were to:

0 Formulate the optimization structure and the weight

selection procedure in the linear optimal technology so

that the resulting control system would meet key conventional

design specifications

0 Relate conventional design procedures to optimal design

procedures to improve their acceptance by practicing

design engineers

0 Demonstrate the results with authentic examples

The approach taken was to first treat single-input systems and then

generalize the results to multi-input systems.

The results obtained in this study are summarized in Section 2. Section 3

presents the technical details of the past year's results.

2



SECTION 2

PROGRAM SUMMARY

This section presents the initial assumptions and summaries of the results

obtained for single-input systems and multi-input systems.

INITIAL ASSUMPTIONS

The primary assumption was that a gap existed between modern control

theory as embodied in linear optimal control technology and the design of

practical control systems. Modern control theory provided a synthesis

method usually formulated in the time domain. The system is represented

in this formulation by the linear differential equation

x = Ax + Bu (1)

where x and u denote the state vector and control vector, respectively, and

the measurement equation

y = Cx (2)

where y denotes the vector of measurements. Process noise and sensor

noise may be added to these equations. The design specification is expressed

in terms of a scalar performance index, which in the deterministic regulator

case has the form

f (xTQx + u TRu) dt (3)

0 

31
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The synthesis procedure yields a feedback controller of the form

u = -Kx (4)

which stabilizes the system and yields a minimum value for J. If the

complete state can be measured, C may be chosen to be the identity, and

x in Eq. (4) can be replaced by x. Otherwise, x denotes an estimate of the

state obtained with an observer in the deterministic case and with a Kalman

filter in the stochastic case. The gain matrix, K, may be determined by

solving an algebraic Riccati equation; various computer algorithms exist

for solving such an equation efficiently.

On the other hand, the design of practical control systems used synthesis

techniques generally formulated in the frequency domain with the system

represented by an input-output relation such as

y = G(s) u (5)

Synthesis was accomplished with the aid of Bode plots, root locus, Nyquist

diagrams, etc. The design specifications were expressed in terms of gain

and phase margins, bandwidth, high-frequency attenuation, low-frequency

gain, response time, peak overshoot, etc.

Each of these technologies had their own strengths and weaknesses. The

modern approach treated multi-input systems with ease, could be easily

implemented with the aid of a computer, and provided stable controllers.

Its weaknesses were that it was not clear how to select the Q and R matrixes

or how different observers influenced the system performance, and most

importantly that the synthesis procedure was not related to the key design

4
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specifications considered in the practical approach. The strengths of the

practical approach were that it was related to key design specifications, was

well-understood, and was widely accepted by practicing control system

designers. The weaknesses were that it only treated one loop at a time so

that it might be conservative, not give the best design, and could be costly

in time and money.

Based on this assessment of the gap, we assumed the major step required

to bridge the gap was to relate the design parameters in the modern approach

to the key design specifications. It was assumed that for this purpose it

would suffice to consider only the case in which the complete state could be

measured. We also assumed that the existing key design specifications for

single-input systems would have direct extensions for multi-input systems.

SINGLE- INPUT RESULTS

Reference 1 presents a detailed description of most of the results obtained

for single-input systems. The independent design parameters in the modern

approach are the optimization structure, its parameters, and the Q matrix

and the scalar R. Choice of the optimization structure is part of the design

process. That is, the designer is free to include compensators and integrals

of states in the model before applying the optimization procedure. For

example, if the system is represented by Eq. (1), a first-order compensator

could be added to the model by augmenting Eq. (1) with

u = -au + av (6)

G. L. Hartmann, C.A. Harvey, and C.E. Mueller, "Optimal Linear Control
(Formulation to Meet Conventional Design Specs.), " ONR CR215-238-1,
Honeywell Systems and Research Center, Minnespolis, Minnesota, March 1976.

I
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and then combining Eq. (1) and (6) into

- A A

x Ax +Bv (7)

with = (xT u) . The optimization can then be performed with respect to

a performance index

tj (-TQx +vRv) dt (8)
0

One characterization of optimal linear controls corresponding to Eq. (1),

(3), and (4) is that the return difference magnitude is greater than or equal

to one for all frequencies. That is,

T(-jw) T(jw) z 1 for all real w (9)

where

T(s) = I - G(s) (10)

is the return difference, and

G(s) = -K(sI - A)- B (11)

is the loop transfer function. This implies that there is a gain margin of at

least -6 dB and +- dB and phase margin of at least 60 deg at the input u.

Also the loop transfer function is asymptotic to a nonzero constant times

s for large I s I . This rate of attenuation of high-frequency inputs may

not meet design specifications in many cases. The addition of a compensator

as indicated above provides a method for increasing the rate of attenuation.

The optimal characteristics hold at the input v, but at the input u the rate

6
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of attenuation of high-frequency inputs is increased from s to s . The

price paid for this increase in high-frequency attenuation rate is a reduction

in gain and phase margins at u from those at v. Additional desirable features

of the control system may be used in determining the optimization structure.

The latest result in this area is presented in the discussion on the choice of

performance index parameters to meet frequency domain robustness and

sensitivity specifications in Section 3.

For a given optimization structure the optimal controls may be "haracterized

in terms of a set of independent design parameters in the performance index.
th

For an n -order system there are n such parameters. A convenient set of

independent parameters is the weight on control, R, and n - 1 parameters

associated with the asymptotic closed-loop eigenvalues which are approached

as R tends to zero. For single-input systems the performance index Eq. (4)

is equivalent to

(rTr +Ru 2 ) dt (12)

for some scalar

r = hx (13)

with h denoting a row vector. The performance index Eq. (4) is equivalent

to the performance index Eq. (12) in the sense that the optimal control gain

matrix is the same. As R tends to zero the closed-loop eigenvalues approach

the finite zeros (or their left-half plane images) of the transfer function

r/u h(sl- A) B (14)

7



and infinity in a Butterworth pattern of order n - m, where m is the number

of finite zeros. With the constraint that the finite zeros lie in the left-half

plane, they determine the vector h to within a constant which may be chosen

so that the leading coefficient in the numerator of Eq. (14) is one. Then this

vector and the parameter R form a convenient characterization of the optimal

control. The parameter R is inversely related to the bandwidth and the

vector h is related to the root locus parameterized with R.

Design rules based on these characterizations are given in Reference 1.

Their use was demonstrated in two illustrative examples there: a jet engine

and a flight control system. The only shortcoming was that the compromise

between high-frequency attenuation and stability margins associated with the

use of a compensator was not clearly delineated. Recognizing that an

observer in the deterministic case or a Kalman filter in the stochastic case

plays the role of a compensator, we examined the stability margins for a

system with such a state estimator in the loop. It was found that for such

an optimal control system there is no guaranteed stability margin. This

result was reported in References 2 and 3. A method for adjusting the design

of observers or Kalman filters was developed so that the stability margins of

the closed-loop system with the observer or filter implementation will

asymptotically approach those of the full-state feedback implementation as

a design parameter tends to infinity. The adjustment procedure is described

2 J. C. Doyle, "Guaranteed Margins for LQG Regulators, " IEEE Trans. Automat.
Contr., Vol. AC-23, No. 4, August 1978, pp. 756-757.

3 C. A. Harvey, and J. C. Doyle, "Optimal Linear Control (Characterization
and Loop Transmission Properties of Multivariable Systems), " ONR Report "

No. CR 215-238-3, Honeywell Systems and Research Center, Minneapolis,
Minnesota, August 1978.
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in References 3 and 4. For the Kalman filter design, this procedure involves

adding to the process noise intensity during the filter design an additional

matrix multiplied by a scalar parameter. That is, during the design of the

filter, the process noise intensity, Q0 , is replaced by

Q(q) = Qo + q2BTvB (15)

where V is any positive definite symmetric matrix, q is a scalar parameter,

and B is the control coefficient matrix as in Eq. (1). With V fixed, the filter

is a function of the parameter, q. And as q tends to infinity, the stability

margins of the controller with the filter in the loop as a state-estimator tend

to the stability margins of the controller with full-state feedback. Here the

trade-off on the design paraneter, q, is between the stability margins and

the accuracy of the state estimte. These results also hold for multi-

variable systems.

MULTIVARIABLE RESULTS

The first major result obtained for optimal multivariable control systems

was the characterization of the performance index in terms of asymptotic

eigenvalues and eigenvectors. This result was reported in References 5

and 6. It is a direct extension of the single-input results and provides a

4 J. C. Doyle and G. Stein, "Robustness with Observers, " IEEE Trans. Automat.
Contr., Vol. AC-24, No. 4, August 1979, pp. 607-611.

5C. A. Harvey, G. Stein and J. C. Doyle, "Optimal Linear Control (Character-
ization of Multi-Input Systems)," ONR CR 215-238-2, Honeywell Systems and

Research Center, Minneapolis, Minnesota, August 1977.
6 C. A. Harvey and G. Stein, "Quadratic Weights for Asymptoti.; RegulatorIProperties, "IEEE Trans. Automat. Contr., Vol. AC-23, No. 3. June 1978,
pp. 378-387.

9



method for selecting the quadratic weights on the basis of desired modal

properties. For a multivariable system with n states and m control inputs,

the performance index Eq. (3) is equivalent to one of the form

J = 5 (rTr + 2 uTRu) dt (16)
0

where r is an m vector

r = Hx (17)

and p is a real scalar parameter. In this case, as p tends to zero certain

closed-loop eigenvalues approach the finite transmission zeros associated

with r and the remainder approach infinity in Butterworth patterns. In

addition to this characterization of closed-loop eigenvalues, there is a

characterization of the corresponding eigenvectors in terms of H and R in

the multi-input case.

In References 5, 6, and 7 it is shown how the m x n matrix H and the m x m

matrix R are computed based on desired closed-loop eigenvalues and eigen-

vectors. This method for selecting weights was demonstrated in two

illustrative examples: a flight control system in References 2 and 3. and

control of a jet engine in Reference 8.

7 G. Stein, "Generalized Quadratic Weights for Asymptotic Regulator
Properties," IEEE Trans. Automat. Contr., Vol. AC-24, No. 4, August
1979, pp. 559-566.

8 C. A. Harvey and G. Stein, "Linear Multivariable Control Design Based on
Asymptotic Regulator Properties, " in Alternatives for Linear Multivariable
Control, National Engineering Consortium, Inc., Chicago, 1978, pp. 355-367.

10
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'4 The high-frequency attenuation characterization of optimal multivariable

controls is also a direct generalization of the single-input case. The

attenuation is first-order at each input, and adding a compensator will

increase the attenuation order by the difference between the orders of the

denominator and numerator of the compensator. Also in this case the

price paid for increased order of attenuation is a reduction in stability

margins.

It had been assumed at the outset that these characterizations could be

related to design specifications. The asymptotic regulator properties could

be related to bandwidth and desired modal specifications. The asymptotic

filter design procedure could yield single-loop-at-a-time stability margins.

But we found that these stability margins were inadequate measures of the

robustness of stability with respect to uncertainties. In this regard, valid

design specifications for multivariable systems did not exist. This was

another major result; examples are given in Reference 3.

Based on this finding, a new method of analyzing robustness of linear

multivariable systems was developed in terms of singular values. This

method, described in Reference 3, provides a valid generalization of the

single-input stability margin concept to multi-input systems. To illustrate

this method, consider the unity feedback system with a nominal loop

transfer matrix, G(s), and consider a perturbation from the nominal of the

form (I + L(s)] G(s). If we assume that G and L are square and rational,

that L is stable, that the nominal closed-loop system, G(I + G) 1 , is stable,

and that the determinant of G(s) is not identically zero, then the perturbed

system is stable if

11
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0(I + G (s)) > a (L(s)) (18)

for all s in the classical Nyquist D-contour. Here a and a denote minimum

and maximum singular values, respectively, and the singular values of a

matrix are the square roots of the eigenvalues of the product of the matrix

times its complex conjugate transpose. The concept of a stability margin

for multi-loop systems may thus be based on the magnitude of the minimum

singular value of I + G -1  But to be of value, it is necessary to have an

estimate, or an upper bound of estimates, of the magnitudes of the maximum

singular values of realistically expected perturbations for comparison. in

conventional single-input design, such estimates have often evolved from

data based on experience and some knowledge about unmodeled dynamics.

For example, the 6 dB gain margin is almost a universal specification which

covers a wide range of parameter uncertainty, and high-frequency attenuation

specifications in flight control systems cover expected resonances of flexure

modes and actuator rate limits that are neglected in the design model.

There is no such data base for estimates of singular values of expected

perturbations in multi-input systems.

The development of methods for estimating and using estimates of uncertainty

bounds has been the main subject of our most recent research. The detailed;

description of the results obtained will be given in Section 3. They may be

summarized as follows: To illustrate the role of singular-value analyses in

multivariable design, some control law design examples for the CH-47

helicopter were examined. These examples clearly demonstrate the utility

of the methodology developed. A methodology was developed for frequency

domain analysis of feedback system robustness using sectoricity conditions.

12
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This yields a generalization of the circle stability criterion and can provide

tight bounds on the frequency response matrix of the closed-loop system.

The final result reported is a characterization of trade-offs between the cost/

noise matrixes used in Linear Quadratic Guassian optimal controller

synthesis and the robustness properties of the closed-loop system.

INTERPRETATION OF RESULTS VERSUS PROGRAM OBJECTIVES

For single-input systems, the gap between modern control technology and

real-world design specifications was bridged. Thus modern control

technology can be used for efficient design of good practical control systems.

The results provide the framework for the design engineer to judiciously

manipulate the design parameters of an optimal control formulation so that

design objectives will be satisfied.

For multi-input systems, singular-value analysis provides an underpinning

for conventional and modern design technologies which means authentic

design specifications for stability margins can now be given (formulated

precisely in terms of singular values). Also, design parameters in the

optimal theory have been related to conventional design parameters, which

means that the choice of design parameters in optimal control technology is

no longer a trial-and-error procedure but can be made on the basis of

desired closed-loop characteristics.

I
I
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SECTION 3

DETAILS OF LATEST RESULTS

The results obtained during the final year of the program are presented

in this section. To gain insight into the use of singular value analysis

in an actual multivariable control system design, the control of the longi-

tudinal motion of the CH-47 helicopter was examined. Single-input and

multi-input designs were considered, and these examples provided a good

illustration of the applicability of singular value analysis to the design of a

system that is robust with respect to actuator rate limits and unmodeled

high-frequency dynamics.

The second major topic considered was the frequency-domain analysis of

feedback system robustness. This analysis provided two major results:

The first is a generalization of the circle stability criterion which yields

a quantitative method for characterizing the robustness of a system with

respect to component variations. The second is a method for generating

tight bounds on the frequency-response matrix of a system based on the

nominal system and bounds on perturbations from it. The final topic

considered was the choice of cost and noise matrixes, the design para-

meters in the Linear Quadratic Gaussian (LQG) methodology, so that

frequency-domain robustness and sensitivity specifications for the resulting

controller would be met. Formal trade-offs were derived and a method is

suggested for iteratively adjusting these matrixes to achieve design

objectives. Each of these topics is described in detail below.

14



SINGULAR VALUES AND FEEDBACK: DESIGN EXAMPLES

In this subsection some control law design examples for the CH-47

helicopter are used to explore and illustrate the role of singular value

analyses in multivariable design.

Design techniques for linear multivariable control systems have long

suffered from the lack of reliable measures of robustness. By robustness

we mean an intentionally-designed tolerance for differences between the

nominal plant model used for design and the actual plant being controlled.

Such differences arise as a result of parameter variations, neglected

dynamics, approximated functional relationships, nonlinearities, etc.

They are present to some extent in all physical systems. Critical closed-

loop properties such as stability must therefore be designed to remain

intact in the face of these differences, and key performance variables

should exhibit only weak dependence on them.

For single-input single-output systems, the degree to which such tolerance

is achieved has been historically (and reliably) measured in terms of the

minimum distance of a loop's Nyquist diagram from the so-called critical
9

point (-1, 0) in the complex plane. The familiar concepts of phase margin

9I. M. Horowitz, Synthesis of Feedback Systems. New York: Academic
Press, 1963.

15
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and gain margin are measures of this distance and are often specified as

explicit minimum robustness requirements of control loops. 10

Many attempts have been made to apply these measures of robustness to ]

multivariable systems. A common engineering practice, for example, is

to measure gain and phase margins of individual loops one at a time with "

other loops variously open or closed. More formal methods have been

advocated by Rosenbrock, who applies these measures to the inverse
12

Nyquist plots of diagonally dominant systems, and by MacFarlane et al.,

who apply them to the eigenvalue (or characteristic loci) plots of multi-

variable systems. All of these approaches have been shown to be unrealistic

in the sense that a lack of tolerance in certain directions goes undetected. 1 3  i
In effect, the methods can indicate that all is well with respect to robustness

when dangerous sensitivities in fact exist.

1 0 Background Information and User Guide for MIL-F-94900, Report AFFDL-

TR-24-116, Air Force Flight Dynamics Laboratory, January 1975.

IIH.H. Rosenbrock, Computer-Aided Control System Design. New York:

Academic Press, 1974.

12A. G. J. MacFarlane and B. Kouvaritakis, "A Design Technique for Linear

Multivariable Feedback Systems, " International Journal of Control, Vol. 23,

No. 6, June 1977, pp. 837-874.
1 3 J. C. Doyle, "Robustness of Multivariable Linear Feedback Systems,"

Proc. IEEE Conf. on Decision and Control, San Diego, California,
January 10-12, 1979.

1I
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The concept of singular values of matrix transfer functions has recently

been applied to overcome this reliability problem. Doyle 1 3 established

a multivariable stability-robustness theorem which guarantees that a

stable multivariable control system will remain stable in the face of

multiplicative model perturbations whenever the singular values of these

perturbations remain appropriately bounded. This result has since been

shown by Sandell to be a special case of a general invertability condition

L for stable perturbed operators. It is also implicit in the recent stability

results of Safonov. 15 When it is combined with efficient computational

procedures for singular-value decomposition and with tight bounding

formulas for the magnitudes of model perturbations, the result appears

to provide a valuable new multivariable design tool.

The role which singular value analyses might play in multivariable design

will be extended and illustrated by means of some trial control design

examples for the longitudinal degrees of freedom of the CH-47 helicopter.

In forward flight, this vehicle exhibits coupled pitch attitude and vertical

motion dynamics which must be controlled by coordinated actuation of two

inputs. This offers a realistic yet manageable design example. We begin

the discussions in the next subsection with a quick review of Doyle's

stability-robustness result and of some bounding formulas for model

1 4 N. R. Sandell, "Singular Values and Robustness," Proc. Allerton Conference1 on Communication, Control, and Computing, Monticello, Illinois, October 1978.

1 5 M. G. Safonov, "Robustness and Stability Aspects of Stochastic Multivariable

I Feedback Design," PhD Dissertation, MIT, September 1977.
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perturbations recently developed by Safonov. 1 6 Specifics of the CH-47

design problem are given in succeeding subsections and various trial

designs are then discussed. Conclusions and some open research questions

are given in the last subsection. We caution all readers to consider the

control laws presented as illustrative only. They are not, and are not

intended to be, final 'flight-quality' designs.

Multivariable Robustness Concepts

We consider finite dimensional, linear, time-invariant multivariable feed-

back loops represented in the frequency domain as shown in Figure 1.t The

matrix G (s) represents the nominal plant transfer function and L(s)

represents a multiplicative perturbation such that the actual plant is given

by

G(s) GO(s) [I + L(s)] (19)
~-1 G

If L(s) and the nominal closed-loop system, (I + G ) G , are both stable0 0

then the following result holds:

Theorem--The perturbed closed-loop system remains stable for all

perturbations L(s) such that

-1a[L(s)] <aiI + G 0(s)] (20)

14 s15
t More general systems can be treated with Sandell's and Safonov'

genera lizations.
16 M.G. Safonov, "Tight Bounds on the Response of Multivariable Systems

with Component Uncertainty, " Proc. Allerton Conference on Communication,
Control, and Computing, Monticello, Illinois, October 1978.
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3l.

L -.

j. Figure 1. Multivariable Feedback Loop

for all complex frequencies, s, on the classical Nyquist D-contour. Here

the symbols a[A] and O[A] denote the maximum and minimum singular

values of matrix A, respectively, with singular values being defined as

the square roots of eigenvalues of A A. Equation (20) immediately suggests

that the function [I + G I(s)], seD, provides a reliable measure of multi-
f

variable robustness--the bigger a, the better. Moreover, since this function

is equal for s = +jw and tends to infinity on the infinite segment of the

D-contour (at least for all physical systems), it suffices to look at the

singular values for real positive frequencies only, that is, the system

remains stable if

a[L(jQw)] <[I + G 0(jO)] (21)

for all 0 <u<a*

The D-contour encloses the right-half plane with three segments: 1)

s = jw, 0<w< 0; 2) s = Rej, R-, -< -<0<2; and3) s = jw, -0<w<0.
2- - 2' W ~w

It is usually indented to exclude singularities along this path.
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This equation calls for nothing more than "generalized Bode gain plots"

(a and 0 vs. w) to measure system robustness. We will refer to these plots

as sigma-plots for convenience.

In order to use Eq. (21), we must be able to calculate singular values

efficiently and be able to characterize realistic perturbations L(s) for

complex systems. Numerical procedures for the first requirements are
discussed by Laub 7 The second requirement is satisfied to a substantial

degree by the following composite sectoricity results due to Safonov.1 6

Consider the system diagram shown in Figure 2. The matrixes Go , G
0 yv

G and G are nominal transfer functions of our original plant with its
eu ey

block diagram redrawn so that the uncertainties of individual components

are all collected into one perturbation matrix: diag [ci(s), i 1, 2,... NJ.

iG G
0 Y

{ G ' e
eu ev e

diaq (c.(s)) .

-!

Figure 2. Plant with Component Perturbation

17A. J. Laub, "Computational Aspects of Singular Value Decomposition,"

Proc. Allerton on Communication, Control, and Computing, Monticello, f
Illinois, October 1978.
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The c. s are nominally zero and are assumed to have known individual1

bounds

Ici(jw)l < Iri(Jw)l (22)

where the r. 's are stable, minimum phase, rational transfer functions. Let1

R = diag(r.) and letI

a) the nominal system be stable, and

b) the matrix M= I - G* R RG be uniformly positive for all wev ev

Then the perturbed system's transfer function matrix will belong to a

"conic sector" (a circle in the frequency domain) defined by

aQ (j W) G(j w) - G(j w ) P (j <1 for all w (23)

with

G G + G yvM Gev R RGeu (24)

Q y[Gyy M 1 Gyy] -1 (25)

' * ,r * *1 -l
P= Ge RI-RG G RI RG (26)

eu ev ev eu

Note that Eq. (23)-(26) provide a way to compute bounds for the total

perturbation L(s) in Figure 1 from known bounds for individual component

elements of the plant.

2
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Example Design Problem

To examine the potential utility of the above concepts in multivariable

system design, we will treat a longitudinal-axes design problem for the

CH-47 helicopter. This vehicle is a tandem rotor machine whose physical

characteristics and mathematical models are given in Reference 18.

Control over vertical motions is achieved by simultaneous changes of blade

angle-of-attack on both rotors (collective), while pitch and forward motions

are controlled by changing blade angle differentially between the two rotors

(differential-collective). These blade angle changes are transformed

through rotor dynamics and aerodynamics into hub forces which then move

the machine.

Our objectives will be to design a command augmentation control law

which achieves tight, non-interacting control of the vertical velocity and

pitch attitude responses. A small perturbation linearized aircraft model
18

should prove adequate for this purpose and is available. The state

vector consists of the vehicle's basic rigid body variables x = (V, z, q, 8)

(forward velocity, vertical velocity, pitch rate, pitch angle). Two inte-

grators are appended to achieve integral control of the primary responses,

and controls are the collective and differential-collective inputs described

above: u = (c, dc). Hence, the design model is

18A. J. Ostroff, D. R. Downing, and W. J. Road, "A Technique Using a Non-

linear Helicopter Model for Determining Terms and Derivations, " NASA

Technical Note TN D-8159, NASA-Langley Research Center, May 1976.
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x Ax + Bu A, B in Reference 18 (27)

x = -z + z (28)
5 cmd

6 = -+ ecr d  (29)

The major approximations associated with this model are due to neglected

dynamics of the rotors, to neglected nonlinearities in the blade angle

actuation hardware, and to variations of the A, B matrixes with operating

point (flight condition variations). We will treat modeling errors due to

these approximations as sources of the perturbation L(s) in Figure 1 and

will attempt to make controllers robust with respect to them.

Characterization of L(s)

In view of the stability-robustness theorem cited earlier, it is justifiable

to consider nominal design models to be incomplete if they are not

accompanied by estimates of the function a[L(s)]. (How else can a designer

ensure the required degree of robustness?) Such estimates are developed

in this section for the model in Eq. (27)-(29).

Perturbations Due to Rotor Dynamics- -Elementary dynamic and aerodynamic

analyses of rotating airfoils, hinged at the rotor hub, indicate that lift

forces will not be transmitted to the hub instantaneously with collective

changes in blade angle-of-attack but will appear only when the cone angle

i of the rotor has appropriately changed. The dynamics of the latter have

been shown to be damped second-order oscillations with natural frequency

equal to rotor speed and damping determined by somewhat uncertain

I
23

a
tt .:, .. < i. ,. , ,.. .. . - : , ' o* .'I . . . .. ..



4

aerodynamic effects. 19 Hence, rotor dynamics can be crudely represented

by second-order transfer functions

2WR
gR (s) 2 2 (30)

s + 2CwRS + WR

with wR = 25 and C conservatively confined to the range 0. 1 < C < 1. 0.

Because collective and differential-collective inputs both involve coning

motions of the rotors, one such transfer function will appear in each

control channel. Since these dynamics are neglected in Eq. (27), it then

follows that any perturbed transfer function matrix computed from Figure 1

will have the form

G = G0 (1 + L) + G diag (gR) (31)

hence,

L = diag (gR -1) (32)

max s 2 + 2Cw aR

[L = 2 + 2CwRS (33)

R R

This function was evaluated for a range of s = j w values (with brute force

maximization over C) and is shown by the lower solid line in Figure 3.

1 9 R.H. Hohenemser and S. Yin, "Some Application of the Method of Multi-
blade Coordinates," Journal of American Helicopter Society, July 1972.
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Figure 3. a(L) Bound

An alternate bound for a [L] developed from Safonov's formulas, Eq. (23)-(26)

is also shown as the upper solid line in Figure 3. In this case, the rotor

j ,,dynamics are redrawn as in Figure 2, with nominal damping value, C0 = 0. 55,

plus an internal component perturbation, 6C, bounded by

6C Inr with r = 0. 45 (34)

The transfer functions for Figure 2 are

G LL 2= [2 i:: -2w + 2C wRs + 7R (35)

~ .Z.~ L,- - j L -
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and according to Eq. (23), the rotor dynamics at each frequency then

belong to a circle in the complex plane with center, gRs defined by Eq. (24)

and radius, g given by fp/q with scalars p and q defined by Eq. (25) -

and (26). Using this circle in Eq. (32) gives the bound j

a[L]< IgR- 1 + "gR (36).1

which is plotted in Figure 3. Note that this "Safonov bound" is slightly -

more conservative than Eq. (29) because it admits a larger class of

damping perturbations--that is, 8 in Eq. (31) may itself be a dynamical -

operator.

Perturbations Due to Rate Limits--In addition to the dynamics of rotors,

each control channel of the CH-47 also exhibits various nonlinearities I
which are neglected in the nominal design model. Of these, the rate limit

nonlinearity imposes the greatest dynamic constraint on performance, and

we consider bounds only for this one effect.

An approximate model for rate limits on the CH-47 is given by

u = R1im SAT[94(u - u)/R im] (37)

where SAT( ) denotes the standard saturation nonlinearity, saturating at

+1. Bounds for this model can be developed with Safonov's procedure by I
treating the SAT element as an uncertain component. For example, if

we are prepared to restrict our system to functions C(t) whose L.-norms

are less than some multiple of the limit, say

26 l
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I'c L,,_< f1.0 (38)

then

SAT() = (0.5 + 0. 5/1) + (8c)C (39)

with 18cl < Irl = 0.5- 0.5/

The 6c perturbations are nonlinear, of course, and Eq. (23)-(26) do not

apply to them as stated. Fortunately, Reference 16 shows that the bounds

are still valid for these and other more general perturbations. Hence,

the rate limit nonlinearities belong to a conic sector and have a a[L] bound

analogous to Eq. (37). This bound is plotted in Figure 3 (dashed lines)

for several values of the magnitude ratio I. Note that as T becomes large,

the bound approaches unity at all frequencies. This is consistent with

physical intuition since the effective gain across rate-limited nonlinearities

will approach zero for large signal levels.

Perturbations Due to Operating Point--The third major source of model

uncertainty is the variation of A, B matrixes with flight condition. Such

"component" variation could again be translated into an overall bound for

L(s) via Safonov's procedure. In this case, however, the result would be

unduly conservative because coefficient variations tend to be highly corre-

lated and are not arbitrary dynamical operators. A more direct way to

compute the bound is to solve Eq. (19) for L(s) with known G(s) matrixes

and to maximize over a number of representative flight conditions. That

is,

a L(jw) max 0[G ° (jw) G.(jw) - I] (40)
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Results of this process are shown by the dotted line in Figure 3. We see

the (initially surprising) result that a[L] becomes quite large at low

frequencies. This happens because the basic helicopter's low-frequency

modes are stable at some flight conditions and unstable at others. (Theo-

retically, a G(jw ) will approach infinity for frequencies and flight conditions

where these modes cross the j w-axis.) This means that the perturbations

exhibited by our plant are not necessarily stable and, hence, the stability-

robustness theorem cited earlier fails to apply. We will see later that

stable controllers can still be obtained and that the ability to incorporate

unstable L's in a generalized multivariable stability-robustness theory

appears to be an important research topic. For the moment, however,

our designs will be restricted to individual flight conditions for which the

dotted L's in Figure 3 can be disregarded.

Trial Controller Designs

Contemplation of Eq. (21) and the uncertainties given in Figure 3 shows

that the stability-robustness theorem basically works by imposing a
'multivariable bandwidth" limitation on the feedback loop. Magnitudes

of L(j I tend to be large (unity or greater) beyond certain frequencies,
-1

requiring G to be large and consequently G to be small. This is most
O 0

readily illustrated with a single-loop example where plots of the function
-1

_[l * g ] reduce to the inverse closed-loop frequency response, that is,

11 g1 1  1+ g (41)
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The condition that a[l + g be large then translates directly into the

high-frequency "roll-off" requirement commonly imposed on classical
9

control loops. We begin with such an example.

Single-Loop Pitch Attitude Control--The vertical velocity and pitch attitude

motions of the nominal CH-47 model at hover uncouple naturally into two

non-interacting channels: (i, x 5 ) controlled by (c), and (v, q, 8, x 6 ) controlled

by (dc). The hover flight condition thus offers an attractive single-loop

design case. Sigma-plots for several trial pitch-motion controllers for
this case are shown in Figure 4. These controllers were all designed with

the linear-quadratic methodology (selected largely for convenience) and

correspond to the following cost functional:

0

1.0

0.1

0.1 1.0 Rad/Sec 10 100

3 Figure 4. Trial Designs for Pitch Control at Hover
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[(57.3 x 6) 2 + P(dc) 2]dt (42)
0

with p 900., 9. 0, 0. 09, and 1. 0, respectively, for the four trials.

(These weighting selections are motivated by the "asymptotic" procedure
of Reference 20. They achieve a single slow mode near the origin for
forward speed and a third-order (asymptotic) Butterworth pattern for the

remaining states. ) As expected, bandwidth of these controllers increases

with decreasing p and eventually violates the stability-robustness constraint

imposed by neglected rotor dynamics (for the moment we ignore rate

limits and flight condition variations). That this violation actually produces

instabilities was verified by computing closed-loop roots of the trial

controllers in the presence of the rotor. Trial 3 is unstable: Our options

are therefore to restrict bandwidth to approximately Trial 2 or to provide

additional roll-off beyond the maximum 20 dB/decade attenuation inherent
21

in LQ-designs. The latter option is illustrated by Trial 4 which uses a

p value somewhat smaller than Trial 2 but includes a low-pass filter at

w= 12 rad/sec to help avoid the rotor resonance peak. Note that the
t

closed-loop frequency responses are well-shaped for all pure LQ-trials

and that Trial 4 achieves extra bandwidth at the expense of slightly larger

M-peaks.

According to Eq. (41), these are given by the sigma-plots of Figure 4
viewed "upside-down. "

2 0 G. Stein, "Generalized Quadratic Weights for Asymptotic Regulator
Properties, " IEEE Trans. Auto. Control, Vol. AC-24, No. 4, August 1979,
pp. 559-566.

2 1 R. E. Kalman, "When is a Linear System Optimal?" Journal of Basic
Engineering, Vol. 86, pp. 51-60, 1964.
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Multi- Loop Designs--

Maximizing Bandwidth--The beauty of singular values is that the above

stability-robustness analyses carry over without change to multivariable

systems. This is illustrated in Figure 5 with some trial two-channel

designs at a 40-knot forward speed flight condition. These controllers

are again of the LQ-type, this time using the cost function

2 + (57. 3 x) 2 + (c 2 + p2

0

with (pp 2 ) (10000, 900), (9.0, 9.0), and (1.0, 1.0) for the t!,ree trials

shown. The distinction between Figures 4 and 5 is that Figure 5 shows

two sigma-plots for each trial, corresponding to the two singular values

of (I + G- ). For stability-robustness, the smaller of these values must

10.

(O I + G_ 0I (1 G -0 o

0 [!RAELIMI

"0.1 1.0 rad/sec 100

I Figure 5. Trial Designs for Pitch and Vertical Velocity Control
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fall above the sigma-plot of L at all frequencies. The larger value is

unspecified. However, in order to maximize bandwidth "in all directions,"

it is reasonable to adjust the relative weights (Pl P ) so that the two singular
1 2

values are approximately equal and then to push them jointly to as high a

bandwidth as the a[L] plot permits. (For the moment, we again use only

neglected rotor dynamics for L. ) This design philosophy is incorporated

in the three trials of Figure 5. The first trial has low bandwidth and

substantial differences between the two singular values. These differences

are reduced and bandwidth is increased in the next trial. The third trial

serves to maximize bandwidth by using additional roll-off filters in each

control channel.

Transient Response--As seen from these trials, singular value

analyses appear to offer a convenient way to maximize multivariable band-

width subject to stability-robustness limitations. The next design step is

to achieve reasonable command responses from the resulting feedback

loop. One way to do this is to place a command-shaping filter ahead of

the loop, as indicated by the dashed box in Figure 1. For feedback loops

with integral control on the primary responses, such sophistication is

often unnecessary because commands insertcJ at the integrators (as shown

in Eq. (28) and (29)) produce good transients. This is the case here, as

evidenced ,y the responses of Trial 3 to step attitude and step velocity

commands shown in Figure 6. Note that the loops are tight, well-damped,

and non-interacting, as desired.

Rate Limiting--So far we have ignored model uncertainties due to

rate limits. This was done because there is no a priori way to select the

'32
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parameter TI for Figure 3, which is determined by the maximum magnitudes

- j of signals in the closed loop. Clearly, for TI sufficiently large, all our

trial designs would violate the resulting a[L] bound. That such violations

actually correspond to instabilities was verified by repeating the transient

responses for Trial 3 with progressively larger attitude commands.

Unstable behavior occurs for 6 > 18. degrees with - 60.
cmd -

In order to improve robustness with respect to rate limits, the following

iterative procedure may be used:

1. Assume a signal level limit '< 0"

2. Design I + G1 consistent with the resulting ([L].
0

3. Evaluate the actual maximum signal level, T1 by computing

transient responses with worst-case commands and/or initial

conditions.

4. If T1 and T10 are substantially different, return to step 1 with

T , 0 + d(.- t. Stop otherwise.

An illustration of the first iteration of this procedure is given in Figure 5,

where the assumed signal level T0 = 20. (the dashed a[L] curve) yields a

controller (Trial 2) whose actual signal level is 11 - 0.6. The associated

transient responses are slow but stable. To fine-tune this design, a

second iteration might be taken with TI0 
= 5.

Flight Condition Variations--We noted earlier that a[ L] due to operating

point changes becomes quite large at low frequencies because the

c is at the designer's discretion.
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helicopter's slow modes are not stable at all operating points. At inter-

mediate and high-frequency ranges, however, the uncertainty bounds are

reasonably small (Figure 3). This suggests that if the loop transfer matrix

G o(s) has sufficient low-frequency gain to stabilize the slow modes under

all conditions, then the design might well be stable even though the

(sufficient) stability-robustness condition fails. This is in fact the case.

Both trial designs 2 and 3 remain stable at eight representative flight

conditions ranging from hover to 160-knot forward speed and from +2000

ft/min to -2000 ft/min ascent rates. The intuitive idea underlying this

result (sufficiently high low-frequency gain) may well provide needed

insight toward a generalized multivariable robustness theory for unstable /
perturbations.

/

Conclusions /

This subsection has presented several trial control law designs tW explore

and illustrate the role which singular value analyses might play in multi-

variable system design. The examples confirm that stability-robustness

condition Eq. (20) provides a reliable measure of robustness and they show

that this condition offers a natural way to limit multivariable bandwidth

during the design process. The bounding formulas Eq. (23)-(26) were

seen to be very useful for bounding the functions F[L], although for some

situations (flight condition variation) they tend to be excessively

conservative.

Major weaknesses displayed by the present singular value stability-

robustness theory include its inability to handle unstable perturbations

and its implicit tendency to limit all loop bandwidths to be consistent with
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the worst-case L direction. Although such situations did not arise with the

helicopter, it is easy to imagine design problems where some control

directions have large L's at low frequencies, hence calling for low band-

widths, while other directions have smaller L's, hence permitting greater

bandwidths. It is then unduly conservative to restrict all direction to the1slowest case. It is hoped that the examples presented here will motivate
further research to overcome these weaknesses.

FREQUENCY-DOMAIN ANALYSIS OF FEEDBACK
SYSTEM ROBUSTNESS

A feedback control system design is said to be robust if it is able to meet

design specifications despite differences (within a given class) between the

nominal plant model used for design and the actual plant. For multi-input-

multi-output (MIMO) feedback systems which are subject to bounded pertur-

bations, but which are designed using a linear-time-invariant nominal

plant model, frequency-domain "sectoricity" conditions lead to a MIMO

generalization of the circle stability criterion, which is found to be useful

for ascertaining the robustness of the property of system stability. More-

over, the sectoricity conditions can even provide tight bounds on the fre-

quency response matrix cf the closed-loop system.

Besides being able to cope with simple bounded-parameter uncertainty,

the results work equally well with perturbations taking the form of time-

varying parameters, imprecisely- known component Nyquist-Loci (including

so-called "singular perturbations"), and even bounded nonlinearity. The

results are indifferent as to whether the perturbations occur at the plant

input, at the plant output, or even at internal points in the plant.
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In feedback control system design problems, the design specifications

usually demand that the system be "robust" against the effects of deviations

within specified bounds of the component dynamics from the idealized

component models used in designing the system. Such deviations may take

the form of unmodeled nonlinearity, incorrect parameter values, time-

varying parameters, unmodeled fast modes (including singular perturba-

tions), etc.

A methodology is presented here which, given a MIMO linear-time-

invariant (LTI) feedback system design and quantitative bounds on the

deviation of the system components from design nominal, enables us to

assess robustness in two ways: first, a frequency-domain stability test

is presented which allows as to guarantee stability for the entire class of

component deviations within the given bounds. This result, which is

actually a generalization of the circle stability criterion, provides a method

for quantitatively characterizing the robustness of a system against com-

ponen variations. Second, a method is presented for generating tight

quantitative bounds on the feedback system's frequency-response matrix

from knowledge of the nominal system dynamics and the given bounds on

component deviations from nominal.

While the robustness results which are obtained are quite general in their

applicability (they apply even to systems with nonlinear and/or multivariable

components) it may prove conceptually helpful to consider a more specific

feedback control configuration. Accordingly, we illustrate the practical

implications of the results for the "canonical" MIMO feedback system

depicted in Figure 7.
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FEEDBACK COMPENSATOR_____Y1
T(s) =G(s)G C(s)(I + G fc(S)G(s)G C(s))G P(s)

Figure 7. Canonical MIMO Feedback System

The plant G(s) is assumed to consist of the interconnection of single-input

single-output (S150) LTI components C.i(s) + 8C.i(s) in Figure 8, where

C (s) . .. 0

C(s) 0o C (s) . oj

L N 2( * Csj (44)

6C 1 (s) 0 ... 0

6C(s)= 0 6C (s) . .. 0
2

0 ** * 
8 CN(s) (45)
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Figure 8. Interconnected Configuration of Plant

It is assumed that the controller matrixes (Gpc (s), G Fc(s), Gc (s)), the
plant interconnection matrixes (G I(s), GF (s) , G 0(s)), and the nominal

component transfer function matrixes Ci(s) are known. However, theII

perturbations 6Ci(s) are assumed to be unknown except that they are open-
loop stable and that their frequency responses are bounded in magnitude
by the magnitude of given rational transfer functions Ri(s) (with no poles or

zeros in Re(s)> 0):

216Ci(Jw)I < IR.iJw)I "e (46)

For some C > 0 and all w.
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Given an operator A, we say that A is stable if

sup II xl , O

We say that a feedback system is stable if the operator mapping system -

input(s) into the system output(s) is stable. We say that an operator is

nonanticipative if for any "time" t e R+, the instantaneous output of the --

operator (Ax)(t 0 ) is independent of tx(t)lt > to]. 0

Given an LTI operator with a rational transfer function matrix A(s) s C n1 m ,

we say that A(s) is minimum phase if A(s) has no transmission zeros in

Re(s)> 0; that is, if Rank (A(s)) is the same for all s with Re(s) > 0.

JT

An n x n complex matrix A(s) is para-hermitian if A T(-s) = A(s).

The following conventions of notation are used in the sequel:

R+ Non-negative real numbers
i+

T T
x , Transpose of the vector x, the matrix A

L 2  Inner-product space of functions x: R+ -4 R n with

inner product <x1 , x2 L o Jx(x(t)dt
2 o

and norm lx I L2 <x, X>L2

A(s) Transfer function matrix
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* * TT
x , A Complex conjugate of the vector x , the matrix AT

A Operator mapping R n l valued functions of t e R+
into R n 2 valued functions of t e R+

L 2 Inner-product space of functions x:R+ -+ Rn with inner-
T T

product <x1 , x > = " x1 (t)x 2 (t)dt and norm
2 T 06 1

I xIT = <Xii X2 >

I I xI T (See L2T above)

<x , x 2 > T(See L2T above)

L -Set okf functions x:R -* R n such that x c L for each
2e 2T

T< ; that is

L2e [xIxeL 2 r VTeRR +

Al(s) Spectral factor of the full-rank rational

para-hermitian matrix A(s) having the properties

that A 2 (s) is minimum-phase and has no poles in
Re(s) > 0, and that (AA

. t(-s)) (A (s)) A(s)
(The matrix A 2 (s) always exists for every full-rank

rational para-hermitian matrix.? 2

A2(jW) = AI(s) Is=jw when A(s) = A(j)Ijw= s

I

22D. C. Youla, "On the Factorization of Rational Transfer Function Matrices,'
IRE Trans. on Information Theory, July, 1961, pp. 172-182.
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A 2  Nonanticipative operator having transfer function

A 2 (s); defined for any operator A (not necessarily

causal) whose transfer function A(s) is a full rank

para-hermitian matrix

A > 0 Hermitian matrix A is positive semidefinite

A Adjoint of the linear operator A relative to the

inner-product space L 2 (the operator whose impulse

response matrix is wT(t 1 , t 2 )where W(t 2 , tl) denotes

the impulse response matrix of A)

O(A) Largest singular value of the matrix A

a(A) Smallest singular value of the matrix A

0 Zero operator Ox = 0 for all x

I Identity operator Ix = x for all x

Problem Formulation

We consider the class of systems which can be represented as a LTI

interconnection of N uncertain components, with the system having not

more than N outputs. It is assumed that a nominal LTI model C.(s)

i = 1, .... N) is available for each of the N uncertain components but

that the actual system components have a perturbed input-output relation

C.(s) + 6C., Thus, we are considering the class of systems that can be

represented in the form shown in Figure 9. :
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4

U

K9

Figure 9. System with Uncertain Components

In this case Q(s) =1, P(s) = (r(-s) r(s )) 2

f (C(s) + 6C) e (48)

where

I(s) is the transfer function matrix of the system's LTI

internal and external interconnections

C(s) =diag (C (s),...C (s))
-1 :-N
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e col (e ... ,e )where e. (i l,...,N)is the i th

-1' -N -1

component' s output signal

I~Is)

I s) I(s) Ief(s

We denote by Tthe operator mapping i- into y; that is, T is the overall

system's input-output relation

y T u (49)

For analysis, the following equivalent representation of the system (Figure

10) will prove convenient:

Figure 10. Equivalent System with 'Uncertain ComponentsI
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a/

I - L(s(
e(50)

v 6C e (51)

where

v f - C(s) e (52)

and +.leC -1 I . -

L iL 1 I +1 CQ I IC) I I (I CI~)~
L E ee (I Yeyf-)ll -' )Ie - (53)

eu e UI- IC) I I (I - CI
L ef eu ef ef

For example, uncertain pole-zero locations can be analyzed within this
framework (see Figure 11).

To keep the mathematics tractable, it is assumed that I(s), C(s) and, hence,

SL(s) are rational transfer function matrixes. Since it is possible to approxL-

mate most interesting systems with non-rational transfer functions

arbitrarily closely by systems with rational transfer functions of sufficiently

high degree, this does not appear to be a significant limitation.!
The perturbations 6Ci are presumed to be uncertain, except that input-

output pairs y = 6Cx are assumed to lie within certain "bounding" sets

called conic sectors.

By arbitr , iiLy closely we mean that the L2 -norm of the difference in the

system's imnpulse responses can be made arbitrarily small; for stability

and transient analysis this is usually a good definition of closeness.
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(S ( + Cl C

* C~(s) (s+ C~ ~ + C2 4 C)

I V(s) I 0E 1(S)

IE I

0 C2  0

Lo 0 C

00 011

S + C S " -
2 sC1 C2_

-s - 1 1

US(S + C2)(s+CI T -2TS +9( WC3) C3  S(S+ F) +3 S

- - - - - -___ - s - - - --

7 - C2( T +- ) T -s c-T +c 3) -s+-7, C3 1 + c,)(s +c)

Figure 11. Component Uncertainty Representation
of Uncertain Pole-Zero Locations
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Definition- -Given three operators C, R, and S mapping into appropriate

vector spaces, we define

L2e-Cone (C, R, [S) (x, 3I' fl 're C x~iIi~ Ll

for all r e R + L 2e x L2e (54)

Similarly, we define

L2- Cone (C, R, S) j (x, y)I Ij - L 2

< I 2Rx L 2  (55)

If H is an operator with the property that H - C is stable, and if for some

> 0, all T 6R+ and allx (with x e L2T for all T e R+)

iS(y- Cx) 2iI (56)

then we say H strictly inside L -Cone (C, R, S). (57)

Likewise, if for some e > 0 and for all x e L
2 2

I IS(y - x) I22< I IRxI IL2 - e (58)
L 2 2

then we say H strictly inside L 2-Cone (C, R, S). (59)

t2

We say that an operator H is stable if sup LI IHxT lxi 0,
I C R t 0
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If Eq. (57) or (58) hold, but with c 0, then we say "H inside...

instead of "H strictly inside..."

(End of Definition)

We remark that in general neither of the two cones, Le-Cone (C

2e oe(, ,S
and L2-Cone (C, R, S) is a proper subset of the other!t However, when

H, C, S, and R are stable nonanticipative operators, then Eq. (58) is

implied by Eq. (57).

The robustness results reported here assume that associated with each

of the uncertain perturbations 6C. (i = 1,..., N) are two stable minimum-
N1

phase LTI operators Ri and Si with respective rational transfer function

matrixes R.(s) and S,(s) such that either

6C. strictly inside L -Cone (0R., S.) (60)
O2e

or
6 C. inside L -Cone (0, R, S.

(where 0 denotes the zero operator 0 0 x)

t
For example, the L 2e-Cone (0, 1, 1) contains unstable functions like (x, y)

= (et , et ) which is not in L 2-Cone (0, 1, 1) and L 2-Cone (0.1, 1) contains

functions not in L 2 e-Cone (0,1,1) like (x,y) (u 1(t - 1), u 1(t)) where

u (t) is the unit step.
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We use the notation

-.C -1 -

SC(s) A~ dia g(S(s),.,S()

-C -1 N..

~ ~ (61)

It is further assumed that S. iOW) S.(jw) and R. (jOW) R.i(jw) are uniformly

positive definite for all w.

For nonanticipative stable LTI 6C. these conicity conditions are actually

equivalent to either of the following two equivalent f requency- domain

conditions on the Laplace transform 6C.i(s) of the impulse response of 6C:

1. R. (jw) R.(jw) - 6C. OW) S. OW) S.(OW) 6C.(OW) (62)

uniformly positive definite for all w

2. a (S i(jw) 8C.i(jw) R. (jW) C

for some e > 0 and all w

For any collection of matrixes Al.. A N diag (A, ... A N is the block
diagonal matrix.N1' N

For any collection of operators Al,. ... A Nth notation 1ig(l A*
denotes the operator

A~ ~ [x ~ [ :
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I. I

If additionally SC(s) is scalar, then these conicity constraints on 6C. are

equivalent to the bound

i R.(jw)I
I

68cio )l _ i o)l (63)

for all uw.

For the canonical LTI feedback control system example of Figures 7 and 8,

the matrix L(s) becomes

L(s) L (5
L(s)=- 1 u2- yv

s(s) +L (s)
eu Iev

G (s) C(s) (I + F(s) C(s)) P(s) iG (s) QI + C(s) F(s))1

00

(I + F(s) C(s)) P(s) I -F(s) (I + C(s) F(s)) 1

where

F(s) = GF (s) + GI(s) Gc(s) GFc(s)

P(s) = G Ic(s) Ge(s) G P(s)

Notice that L (s) = T(s) in the idealized case where 6C. 0 for all
..... N y u

These frequency-domain representations of conicity conditions follow from
Lemma A (Appendix A), if we take u(t) e(t) = Eo (Cos(wt) and y(t)
= (Cu)(t) = R (C(jw) E ejwt).~e - O



Robustness of Stability

The following theorem gives sufficient conditions for the overall system T

to be stable.

Theorem 1 (Multivariable Circle Stability Criterion--If

1. T is stable when 6 C 0 (64)

2. S (jQw) - R (jw) L (jw) *R(Jw) Lv(jw) (65)

is positive semidefinite for all w

Then, the system T is stable for every collection of perturbations

(6C. l . . n)

satisfying

6C. strictly inside L -Cone (, RB S )2e -c (66)

(i = l,...N)

Proof:

See Appendix D.

Comment:

The condition (65) can be expressed equivalently in a variety of ways in

terms of singular values. That is,

1. a( -(C Lev) (R L )> 0 (67)-- c...-.-e -c-ev -

2. [ (S§ L -l 1 -(S L )-R R ] >0 (68)
SL-ev -- ev -c -c
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3. a (S Le -1 -R (69)

4. a (R cL evS c1) )< (70)

For the canonical LTI feedback control system in Figures 7 and 8 having

scalar LTI perturbations 6C . satisfying Eq. (46), Theorem 1 becomes the

following.

Corollary la--A sufficient condition for the feedback control system of

Figures 7 and 8 to be stable for all nonanticipative 6G. (i 11 ... , N) satisfying

16C (jW) 12 < IR. (jw) 12  e (71)

for some c> 0andaillw

is

1. the system is stable when 6G.C 0

2. a (C (jw + F-1(jw) R 1 (w00)>l1 (72)

for all w, where

RI(S) 0... 0

0 R 2 (S)... 0

R (S). (73)
c -

0 ... Rn S)
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Proof: From Lemma A,

6C inside L -Cone (1 R., VI)

2e

where R 1 is the LTI operator whose impulse response is the inverse

Laplace transform of [ Ri(-s) Ri(s)J . Condition (72) ensures that

Eq. (69) is satisfied, which in turn ensures that Eq. (65) is satisfied.

The result follows from Theorem 1.

Bounds on the Overall System's Input-Output Relation T

The following theorem characterizes a conic sector which bounds the input-

output relation of the overall system. This in turn can be used to bound

the frequency response matrix of the system when all the perturbations

6C. are LTI.

Theorem 2 (Conic Sector Bounds on T)--Suppose for all i = 1,..., N that

6 C. inside L -Cone (0, R, S.).~ - 2~f i "1.

Let

T L +L (S S -L RR L)=NOM yu yv c -c -ev '-cc -ev

L R R L (74)
ev c c eu

LT (Sc S - L R R L )1L ) 1(75)
( yv ~ -c -ev -c ev ) yv

P :(R L ) I-R L ( S )(R L L )
;-T -c-e u "c-ev (-c -c '-c -ev) (R L
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fi
r If

L. t
a) the overall system T is stable when 6C 0 and

b ) S c  "W W j ) W ) R c (Jw ) L e v ( W) (7 7 )

c cc ev c e

uniformly positive definite for all real w.

Then
1 11

T inside L -Cone (To ~T 2 ' P T (78)t2p'2NOM

Proof: See Appendix E.

The frequency-domain implications of this theorem for LTI 6C.(s) are

given by the following corollary.

Corollary 2a--Suppose that the 6Ci has stable LTI elements satisfying

-at ( P (s) aC(w - j)<W(9
Let TNOM(s), PT (s), and Q T(s) be the respective transfer function matrixes

of TNOM' PT' and

tWe remark that it is possible for the inverses in QT to fail to exist. (It
happens that the inverse in P always exists whenever the inverse in Q
exists; further the condition T77) ensures that the inverse

(Sc Sc - Letvc*Rc Lev )- 1 exists). The operator qT can fail to exist,
however, if Lyv (jw ) does not have full rank at all frequencies w. The
situation would correspond to uncertainty vanishing in certain "vector
directions" in the output space in which y lies. This should be regarded as
a pathological situation arising from an unrealistic model of the system's
uncertainty, somewhat analogous to the situation that arises in Kalman
filtering when the measurement noise matrix fails to be invertible.
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if

a) the overall system is stable when 6C 0 (80)
) >- 1 + e for some e> 0 and all w (81)

I j)Lev Cjw R--( (1

Then for all w

a (j) (T(jw) - TNOM (jW)) T T ( 1 (82)

where T(s) denotes the transfer function matrix of the overall system T.

Proof: Follows from Theorem 2 by taking u(t) = U cos wt applying

Parseval's theorem to Eq. (76) and by observing that the condition

PT - (T - T NO M ) QT(T-T NO M ) (83)
positive semidefinite

is equivalent to the condition

a (T-TNOM) PT )<i (84)

In the case of the canonical feedback control system of Figures 7 and 8,

the result of Corollary 2a specializes to the following:

Corollary 2b-- Let

TNO M = G O (I + CF)- 1 [C - (I - F E F)-F E]P (85)

• - 1 *

PT = P (E - F F) P (86)

QT =([G (I + CF)l] (I - F*EF)I [G(I + CF) (87)

tNote that condition (a) is equivalent to L(s) having no poles in Re(s) > 0.
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where

F = G +G G G G (88)
F I c FC 0

P = G I G C G (89)

E [Rc(I+ CF)-] [Rc(I+ CF)] (90)

If

a) The system of Figures 7 and 8 is stable when 6C. 0 and

b) a QC(jw) + F-(jw RC(j) > 1 + e (91)

for some e > 0 and all w.

Then for the feedback control system of Figures 7 and 8 the closed-loop

frequency response matrix T(jw) is bounded for all w by

T ) (T(jw) - TNOM (Jw)) P T(j _)< 1. (92)

Proof: Direct substitution into Corollary 2a.

The bounds provided by Theorem 2 and its Corollaries 2a and 2b are

optimally tight bounds when the only information available about the pertur-

bations is

6C inside cone (0, R, S) (93)

The following theorem makes this statement more rrecise.
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Theorem 3--Let T NOW (T and R T be as in Theorem 2 and suppose that

Eq. (76) and (77) hold. Then for every pair (u, Y) % L -Cone
2

(T NWEqT there exists a 6C inside L 2-Cone (0. R, S) such that(T-NoM' -TT 2~hr eit

y Tu (94)

Proof: See Appendix F.

Discussion

The main implication of robustness results such as Theorems 1 and 2 is

that one can test stability and find conic sector bounds on the response of

complicated interconnections of components having unknown-but-bounded

uncertainty in their input-output relations. Particularly important is the

fact that if the given bounds on component uncertainty are aggregately

given as simply

6C strictly inside Cone (0 R , S ) (95)
~c -c

or the frequency-domain condition

a Sc OW) 6Ci(jw) R c(jw)I I _<I JW, (96)

Then the bounds on the overall system's input-output relation are optimally

tight as a consequence of Theorem 3.

If, for example, we are able to reduce this design specification to a

frequency response specification such as
1 1

- (Q2 (jw) (T(jw) - T (jW))P- 2 (jw)) < 0 (97)
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where

Tspec(.uw) is the desired nominal system frequency response

Qspe(Jw) and Pspec(Jw) establish bounds on the acceptable deviation

between T(jw) and TNOM(jW)

then one can apply standard norm inequalities to the optimally tight bounds

of Theorem 2 (or its corollaries) to denote whether this specification

Eq. (97) is met. In particular we can show that if, say, Eq. (82) holds,

then for any (Ts , P Q
Spec' spec Qspec

-a Q2 (jw) - T 2 (jw < k(jw) (98)
Qspec(JW) spec (jw)Pspec

where ( p2(j -) 2 (j)

k(jw) =\(T spec/

a (Q(w spec (sw)

+ aQ 2  (jw) (To(jw) -Tp (jw) Re2 (jW) (99)
(s Spec NOM Spec ) Spec

(The proof of this is straightforward. ) Thus the specification Eq. (97) is

satisfied if K(jw) < 1 for all w.

CHOICE OF LQG COST AND NOISE MATRIXES TO MEET FREQUENCY-

DOMAIN ROBUSTNESS AND SENSITIVITY SPECIFICATIONS

Formula are presented that characterize the trade-offs between the choice

of cost/noise matrixes in Linear Quadratic Gaussian (LQG) stochastic

optimal control and resultant feedback systems' "robustness' properties.

That is, stability margins, noise response, tracking accuracy, and other

58

A Z



so-called robustness properties that can be characterized in the frequency-

domain. An algorithm is described that enables systematic synthesis of

feedback compensators to meet frequency-domain inequality specifications

on robustness properties by iterative adjustment of LQG cost/noise matrixes.

The global convergence properties of the algorithm are discussed.

A great many of the important properties of a LTI feedback control system

are directly related to the frequency response of the two matrixes

A A

S(s) _ (I + L(s))
-A

and T(s) 4 I - S(s) L(s) (I + L(s))

where L(s) denotes the system's open-loop transfer function matrix

resulting when the feedback loops are opened at some specified system

node.

For the sake of concreteness, consider the feedback control system of

Figure 12, having open-loop transfer matrixes

L (s) = P(s) F(s)
y

L (s) = F(s) P(s)
u

at the y-node and at the u-node, respectively.

Consider S and T The matrix T is the closed-loop system transfer
y y y

matrix. That is,

y= Tr
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PLANT I
NOISE

r F+s P(s) y

COMMAND T- PLANT

INPUT PLANT OUTPUT

I II

UNITY GAIN SENSORS
0

SENSOR
NOISE

Figure 12. A Feedback Control System

and the closed-loop tracking error is
A A

Sr
y

the poles of T (s) (or, equivalently, the poles of S (s)) are the closed-loopy A y

system's poles. The matrix S (jw) is a natural inultivariable generalization
y

of the classical Bode sensitivity function characterizing the sensitivity of I
the system output Y(jw) to small variations in L (jw). The matrix T (jw)y Y
extends to this multivariable feedback configuration the Bode sensitivity

function for small variations in the sensor gains. The singular values of
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Vr

S13, 23
T (jw) characterize the system stability margins (gain and phase

y
margin) at the y-node. The respective sensitivities of y to sensor noise,

A

0, and to plant noise, F, are proportional to T (jw) and S (jw). Thus,
A y Y

closed-loop poles, sensitivities of y to noise and parameter variations,

stability margins at the y-node, and even closed-loop response and

tracking error are all directly related to S and T . Sensitivities andY Y A
stability margins at the u-node are similarly related to S and T which,

A y U
when P(s) exists, are completely determined by S and I-S through the

y y
relations

S = PS PV u

I - S y = P (I - S u) IP -

It follows that synthesis of a feedback controller to meet specifications

regarding pole locations, sensitivities to noise and parameter variations,

and stability margins is equivalent to designing F(s), to 'shape" the
matrixesS and I -S associated with some particular system node.

23 M.G. Safonov and M. Athans, 'A Multiloop Generalization of the Circle
Stability Criterion, " Proc. Asilomar Conference on Circuits, Systems
and Computers, Pacific Grovo, California, November 6-8, 1978.
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The purpose of this subsection is to describe how the frequency response

quantities S(jw) and T(jw) may be systematically shaped to meet inequality

constraints on I ISil and IIT II by iterative adjustment of frequency-dependent

24-26
cost and noise-intensity matrixes in the LQG optimal control problems.

The subsection is organized as follows: 1) notation is described, 2) the use

of LQG in single-loop feedback synthesis is described in depth, followed by

3) the more complicated multiloop case, and 4) the conclusions are

presented.

Notation
T T

x , A denote the transpose of x, A

x AA denote the complex-conjugate of x T , AT

Fourier and Laplace transforms and frequency-responses and transfer
I A 2

functions are denoted with a circumflex accent: i(s), A(ju), B~s), Q(-s etc.

Where no confusion can result, the arguments involving jw and s are

suppressed.
'T ^

x~~st denote AT( T s
X,,(s), A,:(s) deoex (- s), A (-s)

24M. Athans, 'The Role and Use of the Stochastic Linear-Quadratic-
Gaussian Problem in Control System Design," IEEE Trans. on Automatic

Control, Vol. AC-16, 1971, pp. 529-552.

25 D. C. Youla, et al., "Modern Wiener-Hopf Design of Optimal Controllers

Part I: The Single-Input-Output Case," IEEE Trans. on Automatic
Control, Vol. AC-21, 1976, pp. 3-13.

2 6 D. C. Youla, et al., "Modern Wiener-Hopf Design of Optimal Controllers--
Part II: The Multivariable Case, IEEE Trans. On Automatic Control,
Vol. AC-21, 1976, pp. 319-338.
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Note that

x(j0w) x (jw) V w

A,,(jw)- A (jw) V w

for all (x, A) that are Laplace or Fourier transforms of real-valued

functions.

The notation a.(A) (i 1, 2, 3.... ) is used to denote the singular values of

A ordered such that

a1(A)>a2(A)>a 3 (A)>...

The singular values of A are the square-roots of the eigenvalues of A*A

(and also AA). Orthonormal eigenvectors uv(i = 1,... )of AA*are left

singular vectors of A; analogously orthonormal eigenvectors v (i 1 ....

of A*A are right singular vectors of A. Note that

A = a.U.V.

The largest singular value of A is denoted a (A).
max

8 1(. ) denotes the unit step function,

O, if a > 0
8_ (a) :

0, ifa<0
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If the matrix Q =Q is rational and if Q(jw) is positive semidefinite for

all w, we denote by Q and Q any stable minimum-phase spectral

factors of Q satisfying

(QQ(r)), 2 (Q2(r)) (-.) (Q 2 )

such spectral factors always exist. Note that if Q is a 1 x 1-matrix, then

2 1(r)2Q = Q and we may write simply Q2 without ambiguity.

The Single-Input- Single-Output (SISO) Case

Consider the problem of designing a stabilizing proper rational SISO

feedback compensator

u(s) = F(s) (r(s) - y(s)) (100)

for the strictly proper rational SISO plant

y = P(s) . u(s) (101)

subject to the frequency-domain constraints
S is2

P1 • < 1, V- (102)

I A 1 < 1, _Vw (103)

where P1 and p2 are real-valued uniformly bounded, uniformly positive

functions of w2 with lim P1 (W ) <1 and where w
A A ^ -1 T- (1 + P F) (104)
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The variables PI and p2 may be selected to reflect design specifications

on such things as stability margins, sensitivity to plant and sensor noise

and/or parameter variations, closed-loop tracking error, frequency

response, resonance peak, and other measures of system performance

related to isi and iT1. However, we will not dwell on how to choose P1

and P2' but rather will be concerned solely with the problem of synthesizing
A 2

a stabilizing feedback F to satisfy Eq. (102) and (103) for given p1 and P2"

We make no a priori assumption that there exists a stabilizing F (s) that

meets the specifications (102) and (103). However, when F(s) does exist,

then the problem is equivalent to the optimization

inf J1 (S) (105)

S e S

where

JI(S) = 1 . ML I + - *42  • •I - sl I dw (106)

S (SI S = (1 + PF) F proper and rational;

AA

F P has no pole-zero cancellations in Re(s) > 0;
A

S has no poles in Re(s) > 0)

(S) - 1.* (107)

w 2 (T) = -1 (2 i I 1 ) (108)

where M 1 and M 2 are specified real-valued positive functions of w. Note

that J (S) = 0 if and only if (102) and (103) are satisfied, otherwise

I
65I



J l(S > 0. Furthermore, if Jl(S) 0 for someS e S, thenJ has no1 1 00 the Jhsn

local minimum S e S for which J (9)> 0 (Lemma D, Appendix G). So

whenever there exists an S such that (102) and (103) are satisfied, theno

associated with every S 1 e S at which J (S1 > 0 and with every e > 0 there

is anS 2 e Swith IS2 - S _< eVw such that J 1 ($ 2 ) <J 1 (S)" (109)

Thus, if one can find an algorithm that generates such an $2 for every such

Sr. then subject to the additional technical condition that the amount of

decrease is for all S 1 uniformly bounded below by some continuous non-

negative strictly increasing function (J 1(S1 )), the algorithm when applied

iteratively converges to an S e S such that (102) and (103) are satisfied.

LQG stochastic optimal control theory is the basis for such an algorithm.

The LQG theory2 4 - 2 7 provides a method for solving the superfically

unrelated optimization problem
0

rain E . ;Q+uR ~

mF E ( S

subject to

y =P -(u +

u = -F" (y +

27U. Shaked, "A General Transfer Function Approach to the Steady-State

Linear Quadratic Gaussian Stochastic Control Problem, " International

Journal of Control, Vol. 24, 1976, pp. 771-800.
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p

where (, 8) are independent stochastic processes having respective power

4 spectra (0, 8). The connection between LQG theory and the present problem

becomes somewhat more transparent if we observe that the above LQG

optimization problem is equivalent to the unconstrained optimization problem

(see Reference 25).

AA

m rin J2 (S)

SS (110)

where 2

+ (R " P 1-2 + R +Q 8) Ii S dw (111)

where (Q, -, R, 8) and their inverses are specified proper rational

2
functions of -s

The connection between the LQG problem and the optimization (105) can

be further clarified as follows: Let (Q, -, R, 6) be arbitrary and let

So denote the resulting minimum of J 2 Now suppose that we perturb

j (Q, R) by making the substitutions

Q-Q + CLQ (112)

R R + £,R(113)
where

R =R 1 + AR 2  
(114)
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42 = -PI'2 (AQ * + R )/ (IP12  + e) (115)

The change in functional J 2(S) is for any fixed S given by

1 ~ ~ ^1A 2 1*12 i
Ai (S) =C -r tQ~ Ipi iS

I :1

(J (s)+ A"2 _ ) + A 2 " ds

OD (117)
R • 1"~ 2  . 112

+ R 1 1- 12] d (118)

So, if we choose

1M = - (119)

M - 0 " 121 (120)

W1(S 0 1 (pi. Is 0 -1 (121)

l W (T A 6- (p2 " i1 - S2 -1) (122)

I
I

I
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4

then A2(S) (S 12 + W (T M for 
do)~~~V 4~r~ w1 S) N 1  'S'~ 1  'd

C J CD (W W (S)M 11

20 2 2

Trhus, adding the (AQ. aR) terms in the LQG optimization adds a penalty

in J2(5) for J, (S) plus a small penalty for the second term in Eq. (123).

Whenever an S e S exists which decreases the righthand side of Eq. (123),

the solution to the LQG problem will necessarily generate such an S,

provided e is sufficiently small.

If the function S-S 0 is "reasonably smooth, " we may expect the two terms0

on the righthand side of Eq. (123) to be highly correlated so that each term

must decrease individually, including JI(S) in particular; though no simple

and precise conditions guaranteeing that J (S) decreases seem possible.

To summarize we have, subject to seemingly reasonable assumptions,

that (LQ, 6R) cause J (S) to decrease. So if the amount of decrease is

uniformly bounded below by some continuous nonnegative strictly increasing

function 0(J I(S)), the problem of finding a feedback F(s) stablizing the plant

P(s) and satisfying Eq. (102) and (103) is in principle solvable via the

following LQG-based iterative algorithm for reducing J 1 to its minimum:

Step 1: Choose any suitable initial values for

(Q, - , , ).

I
69

I



Step 2: Solve the LQG problem for the S S and corresponding

which minimize J 2(S). If Eq. (102) and (103) are

satisfied, stop; otherwise continue.

",!Step 3: Leaving( )unchanged, choose some small e > 0 and

modify (Q, R) according to the formula (112) - (115) and

(121 )and (122). Regurnto step 2.

(End of Algorithm)

This algorithm is of course highly idealized and has one especially note-

worthy flaw: The functions AQ and AR1 given by Eq. (123) and (124) are

irrational and consequently it is impractical to solve the LQG optimization
A 2

problem exactly. In practice it will be necessary to approximate 6Q(-s
A 2 2

and AR(-s 2 ) with rational functions of -s , possibly by approximating the

irrational function 6 () in Eq. (121) and (122) with functions of the form
A A 

-
Iwhere t(s) is some, perhaps very coarse, rational approximation to a

unity gain bandpass filter whose passbands coincide with the frequency

ranges over which the term 6_1 ( ) 1 0. Since the complexity of the problem

of solving the LQG optimization Eq. (110) at each iteration of the algorithm

and the complexity of the resultant LQG feedback F(s) are in direct

proportion to the number of poles in (Q, R, e, ), we will in practice want
-A

to use a coarse approximation to AQ and AR, having as few poles as

possible. Whether or not a given approximation is too coarse and whether

or not a given e in Eq. (.112) and (113) is sufficiently small may be readily

checked at each iteration of the algorithm following minimization of J2

by simply computing J 1 for M 1 and M 2 given by Eq. (119) and (120) and
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checking to see if indeed J1 is reduced by the S minimizing J2" It is

stressed that in design applications where the specifications (102) and (103)

are fairly undemanding, it may often suffice to use extremely coarse

approximations to 6Q and AR, possibly even constant approximations such
2 2

as, for example, sup AQ(w ) and sup 6R(w ), respectively. Since the

quality of a given approximation is determined solely by whether J1 (S)

is reduced, it seems likely that the approximation to (AQ, 4R) has to be

most accurate at frequencies where AQ or AR1 are nonzero, whiie accuracy

is relatively unimportant at frequencies where both AQ and R I are zero.

Note that the LQG optimization of Eq. (110) and (111) is completely

symmetric with respect to the roles played by (Q, Ri) and (-2, ^6). Conse-

quently, we may exchange (Q, Ri) with (6, 6) in Eq. (112)-(122) and thereby

obtain a "dual? procedure for synthesis of a stabilizing feedback satisfying

Eq. (102) and (103) in which (Q, R) are held fixed and and 8 are varied

at each iteration of the design algorithm.

Insofar as satisfying closed-loop system design specification- on noise

response, tracking error, sensitivity, and stability margins is concerned,(n

there is no reason to prefer varying (Q, R) over varying (:, 8) or vice

versa: both procedures will tend to lead to a design that meets the

specifications of Eq. (102) and (103).

As a final remark, we note that closed-loop system poles are precisely

the left-half plane zeros of

R + P,.Q P
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i

and
+ A A (124)

so closed-loop poles are directly related to the choice of (Q, R, -, @).

However, because an LQG optimal feedback design can have a fairly

complicated closed-loop transfer function T(s), classical root locus design

intuition based on the behavior of a system with one or two dominant poles

and no nearby zeros may be of little value. That is, closed-loop pole

location by themselves may not always provide readily interpretable

information about a system's transient response. We note that the complex-

ity of a system's closed-loop transfer function has no bearing on the

interpretation of frequency response quantities such as IS I and TI 2

(which are directly related to system sensitivity, RMS noise response,

RMS tracking errors, and stability margins).

The Multivariable Case

We now consider the multivariable analog of the ideas developed in the

preceeding subsection. The problem is to design a stabilizing MIMO proper

rational feedback F(s) for a MIMO strictly proper rational P(s) to stabilize

the closed-loop system

v(s) =  P(s) U(s) (125)
A^

u(s) =  F(s) (r(s) - y(s)) (126)

and satisfy the contraints

Q2(r)m a S" ) <1 V-v (127)
max ss

(r) 2j ' 1 I Vw (128)
max s S
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where

(Q s Rs 8s ) are para-hermitian rational functions of -s which

are uniformly bounded and uniformly positive definite on the jw -axis

with

linj a( 2  < 1 and whereW 0 max \s

S AI - T A (I + (129)

The variables (Qs' , R , 8 } play a role analogous to P1 and P2 in

Eq. (101 )-(103) and may be selected to reflect design specifications on

sensitivities, stability margin, noise response, tracking error, and so

forth. We assume that p 4 dim(y) = dim(u), that is, there are exactly as

many sensors as there are actuators and that

det (lP(s)) t (130)

When a solution to the foregoing feedback synthesis problem exists the

problem is equivalent to solvng the optimization problem

min J1(S)

SeS (131)

t
This condition should be distinguished from the more restrictive condition

det (P) # 0 V s, which would imply that P has no transmission zeros.

This condition (Eq. 130) is, loosely speaking, equivalent to requiring that

each sensor measure something different.
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1

where

1(S) L- J Tr( 1  S M 1 •S + W (I-S) M (I- S))ud(
-0 2 IL (132)

SA IS^ Q + PF) F proper and rational; the closed-loop

system of Eq. (100) and (101)has no poles in Re(s)>0 (133)

-2 W*A P j A (r) A _ A;' (r)

k\7 (S) bQ • ui i1 r=I  's

A A' (r )(r

I 1--- Si~i

T • * (L) - 134b)" - s s

u is the ith left singular vector of
1A

s S

v. is the ith left singular vector of
1 t 1

- (r) '(R
s S

and M 1 and I are positive definite on the jw axis but otherwise arbitrary.

Note that J (S)> 0 unless Eq. (127)-(130) are satisfied, in which case
1 A

JI (S) = 0. In order to ensure that J11 has no local minima at which J (S) > 0

(at least when an S satisfying Lq. (127) and (128) exists) we choose
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M 7: (135a)1 1 s

A A A (135b)

(set, Lemma D, Appendix G) where a1 and o2 are any specified scalar

functions of -s 2 that are real-valued and positive along the j-axis. Thus,

provided an S e S satisfying Eq. (127) and (128) exists, then in every
A A

neighborhood of each S I at which J TI> 0, there is an S2 with

JlI(S2) < JI(S

12 11

As in the SISO case, LQG stochastic optimal control theory provides a

systematic method for generating such an S2 .

The LQG theory provides a method for solving the stochastic linear optimal

control problem

m - [Y Y + uR u] du, (136)

subject to

p (u + ) (137)

-(Y4e (138)

where (s, 6) are zero mean stochastic noise with respective power

spectra ) )
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S9 A 2 A 2 2
Note that (Q(-s),-(), , R(-s ),6-s) are, distinct from the (Q' , Bp

E in Eq. (127) and (128). The LQG optimization of Eq. 0136)-01 383)
27

max' be solved by matrix spectral factorization or (with the aid of an

augmented plant model to incorporate the s -dependence of(Q2,,e)

b\ the' Solution of the al -ebraic Riccati equations. With a few computations,

it can be shown that the LQG optimization is equivalent to the unconstrained

optimization probl-m.

*A min J 2 (S)
S~ S (1 39)

where

+ TR QI Q)e I

±PRP- (I-SP2 (IS)

.44+ P RP (- e(s) ] d w (140)

The connection between the LQG optimization and Eq. (1 31) can be seen

by examining the effect of certain small perturbations (AQ, AR) on the value

of J 2(S)

Q- + CQ (141)

R- R + eAR (142)

76



where

6R AR + , 2 (143)

1 2';

6 0* * 1 0

( + P p ) -i( T P (144)
0

With this perturbation to (Q, R), the resulting perturbation to J is for
A 2

any fixed S I -T given by

IA

AJ 5 - I T r (66SPP, )
2 217

Tr l AAl A*d 15
+ Tr (P, AR P (I- S) (I dw (145)

If we choose
A ^ A

AQ = W 1 (S ) (146)

AR1 = R W 2 (I-S ) P (147)
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and take and 0 such that

M = PoP, f - (148)
M11

M = e 2 * e (149)S2 2 s

:': for some real-valued uniformly positive, uniformly-bounded w dependent

scalars. and 02" then

1 J2W(S)-W (5))". S
JS) £ J (5) + 2---f[Tr (O 1 -. *

AA A

+ ( (I - So ) - 2 (I - S)(I - S)M 2 (I - S), dw (150)

We conclude that provided M ' 6) satisfy Eq. (148) and (149), then

the perturbations (AQ, AR) given by Eq. (141)-(144) and Eq. (146) and (147)

tend for e sufficiently small to perturb the minimizing values of S for the

LQG problem of Eq. (140) in such a way as to reduce J (S) whenever
A A1

J1(S) > 0 and an S e S exists satisfying Eq. (127) and (128).

Thus, the cost weighting matrix perturbations (-Q, R) given by Eq. (141)-

(144) and Eq. (145) and (146) tend to generate an LQG optimal feedback

that satisfies the constraints of Eq. (127) and (128) and stabilizes the plant
AA A

P(s). As in the SISO case, the AQ and 6R are in general irrational and

must be approximated at each iteration by rational matrixes. Accuracy of

the approximation is the most important at frequencies and in "singular-

vector directions" where (AQ, R) are nonzero.
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Conclusion

As a method for meeting frequency-response inequality specifications on

closed-loop system robustn( ss, the LQG theory has been examined. An

algorithm for iterative adjustment of the frequency-dependent noise/cost

matrixes (Q, E, R, 6) has been described which, under reasonable but as

yet imprecisely formulated assumptions, is globally convergent to a feed-

back design meeting the specifications. However, because exact implemen-

tation of the algorithm requires solution of infinite dimensional LQG

problems (infinite dimensional Riccati equations or spectral factorization

of irrational transfer functions), the algorithm can be only approximately
implemented in practice. When suitable appro:timations are employed,
the algorithm appears to provide a viable engineering methodology for the

synthesis of robust multivariable feedback control systems.
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APPENDIX A

LEMMA A (FREQUENCY-DOMAIN CONICITY TEST)

Let P(s) and Q(s) be proper rational para-hermitian matrixes of full normal

rank; P(s) is uniformly positive definite on the s = j w axis and Q(s) is

positive definite on the s = jw axis. Let C(s) be a proper rational matrix

* which has no poles in Re(s) 2 0. Let T be a stable operator. If for some

e > 0 and every input-output pair (u, y) satisfying y = T u we have

I I Q (jw) - C(jw) U(jw) ) d(A

Then

T Inside L -Cone (C, Pi, 91 (A-2)T inide 2e ~

wher'e C, P , 9 are the LTI operator whose impulse responses are the

inverse Fourier transforms of C(jW), P (w), Q (jw). If additionally

Eq. (58) holds for some e > 0, then

T strictly inside L2 e- Cone (T, Pi, 91) (A-3)
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If the assumption that C(s) has no poles in 1(s) ; 0 is relaxed to no poles

on the j w-axis then Eq. (A-2) and (A-3) hold if one substitutes "L2-Cone

2e2(C, -P 9" for "L - Cone (C,~ p2 (2)., !!

PROOF OF LEMMLA A:

We first consider the more difficult L -Cone case. Let P denote the
2e

nonanticipative minimum phase LTI operator whose impulse response is

the inverse Fourier transform of P (jw). Let w and y satisfy

(PiU) Wt, if t S7 Ti-. )T if ives

y Tu

Let Y(ju) and W (ja) denote the respective Fourier transforms of y and

w . Then

-- 'r

ti9(y u) _)I2 = (Y C 0 - P iu)l

;1= 19 (y -C 0- w wl 2

I I

(By causality of p2 C R -2)

f I Q (y - C P-, w 112  dt

f Q7(j ) (Y(jW) -C(jW) (i () W Q W) 2

d~8
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(by Parseval's Theorem)

Sf IWlT(iw)I 2" (j W) f Tp~i)w dw

* ~(by Eq. (-)

= 11w T L2 -e p w W -I 2

-. I(By Parseval's Theorem)

IW~l~ - II 2 WIT

(Since W T(t) 0 if t2 T ', and flzfl 2 2: 114Tv Z.)

11ll rulI 2 e [lull 2

where

= +g

flT ullT
g =sup
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The L 2-Cone case in which C(s) is permitted to have poles in (R(s)) > 0

but no poles on the s-jw axis follows trivially from Parseval's Theorem.

(End of Proof)
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APPENDIX B

LEMMA B

* FREQUENCY-DOMAIN TEST FOR "OUTSIDE" L -CONICITY
2e

-OF INVERSE RELATIONS

Let P(s) and Q(s) be proper rational para-hermitian transfer function matrixes
1

of full normal rank; suppose P(s) is positive definite on the s = jW axis and

Q(s) is uniformly positive definite on the s = jw axis. Let G, C be LTI

operators with transform functions G(s), C(s) and suppose that the LTI system

is stable and nonanticipative.

If for all

Q(j wU) - [G(jw) (I + C(juv) G(jw] P(jW) [G(jw) (I + CG(jwI (B-l)

is positive semidefinite, then G I (the inverse relation of G) satisfies

D. C. Youta, "On the Factorization of Rational Transfer Function Matrices,5 IRE Trans. on Information Theory, July, 1961. pp. 172-182.
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(1 outside L -Cone (C. 2 .
2e

PROOF OF LEMMA B

Let (x, y) be any input-output pair satisfying

y G x (B3-2'

1ind

MV~, if t
v 0 f (B-4)

This relation is established by the system

VU

(which by hypothesis is a stable system).

Let V(jak) denote the Fourier transform of V (j w). Note that from (B3-1),

it f ollows th at f or ev ery comiplex V (j Lc
T*



77AD-o3 130 HNYELSTC AND RESEARCH CENTER MINNEAPOLIS MN F/S 12/1

DEC 79 C A ARVEY. M 6 AFONOV. 6 STEIN N001475 11
UNCLASSIFIED 79SRCST ONR-CR215-23854 NFL fIIIIIIIIIIIIlfflf

IIIIIIIIIII5



IIV (iw)11 2 - jP (Jw) G(j w) (I + C(j w) G(J)) 1 Q-(JW) V (j w)lI2

-i oIw) vrjw] * [Q(J W) (piQW) GO W)

( + coGw) O . Q-i (- jw P W)

S(PA(J W) G(jW) ( + C(jW) G(jW) 1 Q-i (j W) (B-5)

0 [Q (w) V Q w)] 0

Now for x, y, v, and v defined as above we have

lii yll 2 =11 PiG (I +CG)- I i-vi1 2

= I' G (I + CG) - 1 Q-'v 2

(by causality of PG(I+ CG) - 1

, f 11(PG(I +CG)- 1 v)(t)II2 dt
0

(This integral exists since P G(I + CG) -  is stable.)

IIpu 'w) G(jw) + C(jw)G(jw Q d(jw) V r(Jw)11 2 d w
- /

(By Parseval's theorem and the stability of P*G(I+ CG)!R- " )

I 11V TwlI
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00

rilr

~(By condition (B-5).) "'

-- llv (t~ll 2 dt -

(By Parseval's theorem)

T II (t)II 2 dt
0

Since V (t) =0, if t >

I Ilv(t)II 2  dt

2 21 = 119 II2

-- II (x- C )112
-y Tr

Thus.

G outside Cone (C P, 9)

(End of Proof)
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APPENDIX C

LEMMA C

If Q £ xn is a herrnitian positive definite matrix, and B e Crnis a

matrix of full rank r I n, then the matrix Q = (B Q B )has the

properties that

a. Q-B QBkO

b. iSle any other matrix such thatQ- B SBk OthenQ2:S

PROOF OF LEMMA C

Consider the C nspaces C Qnwith inner product < x V x2 > Q= x1 Qx 2 and

C Irwith inner product <yl, Y2 > 1 = y I y2 . Consider the matrix B as a

linear mapping of C Q ninto C. Then, if we denote the adjoint mapping
a

of B as B , we have

*Xl Bx >x1 2 <2 = 2 1

=<B ax 1,X2 >Q

a X (Ba )*Qx(C- 1)

19



n!

For all x 1  x 2 eC Hence(a)*
B (B (C-2)

BQ_ (C-3)

Thus, the pseudo-inverse (or, Moore-Penrose inverse) of B is

B = Ba[BBa]-

Q1IB* [BQ1B*] (C-4)

Thus,

Q (BQ 1B*)-1 (BQ B)- BQ- QQ-1 B*(BQ B) 1

=(Bt)* Q Bt (C-5)

Now, let = x2 be the orthogonal decomposition of a vector x e CQn 

x = x 1 + x2  (C-6)

where

x 1  = projection of x onto the null space of B

x2  = projection of x onto the orthogonal complement of the

null space of B (so, <x 2 , xl> Q =0)
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The matrix B has this property that for all x

B Bx = Bx 2  (C-7)

Thus,

x (Q-B QB) x

= (x1 + x2 )*(Q - (BtB)* Q(BtB)) x1 + x2

= x 1 Q X + X x*IQ2x2

-x2 Q x2

(Since B B x = 0) (C-8)

= <X 1, xl> Q +x 2 P Xl> Q +<x 2 ' XI>Q

<X x 1 > Q  (C-9)t.
S0

which establishes claim a.

Let S be any matrix satisfying

Q - B* S B z 0 (C-10)
tr t

Then, since BBt =1, we have for anyy c C r that B y x2 is in the

orthogonal complement of the null space of and hence
S i* * )*B* Bt

y Sy y*(BB S BB y (C-I)
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X2 B SBX2  (C- 12)

x2 Q X2 (C-13)

=x 2 B QBx 2  (C-14)

(By (C-8) and (C-9))

=y (BB )Q(BB )y (C-15)

=y Q y (C-16)

which establishes claim b.
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APPENDIX D

PROOF OF THEOREM 1

1
From the sector stability criterion, it suffices to show that L evoutside

S R
-C

Cone (9 c S) S sector

Sc -R4)

and that 6 C inside Cone (0, R e . S ). The former follows from Lemma B

(Appendix B). The latter follows from the composite sector property.

IM. G. Safonov, "Robustness and Stability Aspects of Stochastic Multi-

variable Feedback Design, " PhD Dissertation, MIT, September 1977.
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APPENDIX E

PROOF OF THEOREM 2

The overall input-output relation T of the system is

T = L +L C) L e  I eu (E-yv)

We are given that for all i = 1, . . . , N

8C strictly inside Cone (0, R eI Sc)  (E-2)

From which it follows (from the proof of Theorem 1) that

6Ci inside sector)

K'~c
Applying the inverse, sum, inverse, and premultiplier sector properties,

it follows that

6C) L L insideZe) Zeu

s +RL RL)

-c -c ev -c -eu '
Sector (E-3)

S -RL -RL
c ~c.,ev -c-eu
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r Hence, for any input-output pair (u, v) satisfying

V C (8+L )I'Lu (E-4)

We have

<(S +1R L )v+R L u. (S - R L )v+ R L u)>
-c -c-ev - -c-eu- -_c -c-ev - -c-eu-

0 ~(E- 5)

Now, from conditions (a) and (b) and Theorem 1 (the multiloop circle theorem)

th rltin ( IC L I is stable. Since by hypothesis L is stable, itth e ai n M - ' I : e I e ev
follows that (( C) -L ) L is stable and hence, whenever ui e L2 then

v c L 2 .* For any u, v c L2 let U(j w) and Vojw) denote the respective fourier

transforms of u and v. From (B-5) and Parseval's theorem it follows that

for all u L 2

C

DFIISR L ) v- R L uH) (t)] -dt (E- 6)

c c ev - u) ~cj-e

P C (j0 [cw) + (w)Le _jW) W

+ R c(j w)L eu(jW) UOW)l

I (-c(jw) - Rc(jw) L ev(J w Y)) W

U9



iH

Rc(Jw)._eu(Jw)(jw ) dw (E-7)

P v(jW) -Z(j W) V(j )

f v(j W) U*(j w d (E-8)

-z (j ) -e(jw ) uT)(j )

J • [ (,vw)- Tw (j)U(iw)]*Q -[V.:Tj)Uj)

- U (Jw) RT(JW) U(JW) dw (E-9)

where

QT(s) = c (-s) Sc(s) - Lev(-s) R cT(-s) Rc (s) Lev(S) (E-10)

Z(s) Lev T(-s) R T(-s) Rc (s) Leu (S) (E-11)

O(s) Leu T(-s) R cT(-s) Rc (s) Leu(S) (E-12)

A 1T v(S) - (s) Z(s) (E-13)

Pv(s) e e(s) + Z T(-s) QVI(s) Z(s) (E-14)
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=(R~ (-s) L ()T

R c(s) L ev(S) (S cT (-S) Sc(s) - (R c(-s) Lev(-S))T (Rc(s) L ev)) -

(Rc(- s) L e(-s)) T] Rc(s) L e(s) (E'-15)

L uT(-s) F / (-s)[I-Rs)Les (cSSc) 1

L v (S)R T ) R C Ts L ~ ) -1s)(- 6

pT TiS-

Thus, it follows that

f J U*(W)f.T(jw-) U(j w) dw (by Parseval's Theorem)

tNote that in deducing (E- 16) f rom (E- 15), we have used the matrix identity

I + A(s) (B(s) - AT (-s) A (s)) - 1 AT (S

11- A(s) (B(s))- I1 T (-S) ~1
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I I

-].' [Vlu) - TvlJW) Uliw)]*Q(w)[V(i) - Tv(jw) U(iw)] dw

(from (B-6)-(B-8))

L'V(W) (wUOjw) IL 0 W) Q (j w) L (jw )

; LyvO)(V(jw- T(j W) U(j (W ) Qvld)Ly(w-

2 LYV' J Iy yLLiviw) v<Jo ri>,w)o] dw<

(By Lemma C, Appendix C)

1Y Q T (j w][ dw

_ [y(jw) U ( T (w)] QT(w) [ LU()

-9 T' (Ay - ATu) L L2
2  (E-18)

(By Parseval's Theorem)

where

Ay =L V
-yv -

A -
AT(s) Lyv(s) Tv (s) =L yv(s) Qv- (s) Z(s)

Ly SCT (-S ) Sc(s) - Lev T(-s) R c T (-s) R c (s) Lev()

Lev (-S)R (-s) R c(s) Leu(S)
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*

Since y L Lyv v + YYU f Ay + L y u u, it follows from (E-18) that

tII i II tpT 2t>(l y - (Ly + AT) u L
1 u T IL2 Y_ _1L

= (y- T )u 2II -nom L 2

(End of Proof)

1J
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APPENDIX F

PROOF OF THEOREM 3

We adopt the notation of Appendix E. Suppose (u, y) e L2 -Cone

(TNoM PT Q ). Let (U(jw), Y(jw)) denote the Fourier transforms of

*u, y). Let

V(,) = L yv+(jw)(Y(jw) - L yu(Jw) U(jw) + Tv (jW) U(jw) (F-l)

where (suppressing jw's)

L Q L L Q-1 L I (F-2)yv v yv Lyv v yv-

is (refer to the proof of Lemma C) the pseudo-inverse of L considered
n r +yv

as a map of Cr(J) into C Consequently (see the proof of Lemma C,

(C-8 through (C-10)) it follows from the fact that L maps into the ortho-yv
gonal complements of the null space of L v (relative to the inner product
space CQn (j w)) that V is in the orthogonal complement of the null space

of Lv (again relative to CQy. Hence, (see Eq. (C-8) through (C-10) in

this proof of Lemma C), we have that

'" * -l1 -l *',

(V-T U) L (L Q -1L Q L )(F-3)
v yv yv v yv v y

(V-T vU Qv (V-T U)V v v

This fact will be used shortly.
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Now. since (y, u) inside cone (TNO.~ 1 we have from Parseval's
Thbeorem that:

0 29 dw (i u1-IG(-T U112'(F4
-IP* ll 1;T ( T NOM (/4

= dw (upT Uu -1 '1 ST iL (V-T vU)112) (F-5)

0 *

=fdw (1T UI(2 (V -T vU) *LQvL )L yv(F-6)

(V-T U)

Then clearly 6C inside Cone (0, R p S )since
ee

<Re, R z >

Its 6 Ozl 11 c c L 2__

S~~l~c LZI 2 1 1 c 1

!IR e 11L2 ls

-IicZ "L 2 IcV L 2eL 2

JiB e IILc 2

slI1 Cz 11
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Since (e, v) inside L- Cone (0, R, S)). And further

6Ce =V

fdw ( U - (- Q(V-T U))
- C

From (F-3)

_ CO c c e c C

(S -R L )v-R L u) (t)l dt

L c c c e uJ

(See Eq. (E-6) through (E-9) of Appendix E)

Sv+ R e)(t)] T ~V -R e) (t] dt

(since L uu + L ev v e)

-I v-1 2 + II13 eI11

IIL 2 IIL 2

(e, v) inside Cone (0, R ,S)

Le Cbe the mapping defined by cc

(6 Cz)(tM (<R e, R z > v(t)
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APPENDIX G

LEMMA D

Let W RQ , E 0 and S be as in Section 3 of the main report and suppose
s S S

that there exists an S eS such that Eq. (127)-(128) are satisfied. Then
A
S is a global minimum of J I(S),

J(§o) 0
1 0

and J1 (S) has no local minimum S with JI(S) >O.

PROOF

From Eq. (127) - (128) we readily verify that Jl(S)> 0 V S and J (So) = 0.

So S is clearly a global minimum of J (S).
0 1

It remains to prove J (S) has no local minimum S with J (S1) > 0. For the
A 11

sake of argument suppose S1 is a local minimum of JI(S) with J (S ) > 0.

Since every element of S is stable and rational it follows that

i 1  - 1oi _sup a (S " S < C.

0 U max 1 0 I

From 1 (Lemma C) it follows that

S + (1-6) •1eS

1D. C. Youla, et al., "Modern Wlener-Hopf Design of Optimal Controllers--
Part I: The Multivarlable Case, " IEEE Trans. On Automatic Control,
Vol. AC-21, 1976, pp. 319-338.
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(except possibly for at most p4 dim (y) distinct values of 6eR). Hence for

everye > 0 there exists a 6 > 0 such that S +(I-6). eSand
2 o0

S1s2 - - 6. - sl l <

Now, using the fact that Eq. (135) holds, the expression (132) for JI(S) can

be rewritten as

1 (r) *(4)
J (S) yf .- j f AI(EE

(2 (4 J~r -~ 2 (,,(r) A

6 1 s / 1 2 a~ (I-S)

es (~) 8j(ao.(R (I-S)* - dwj

From Lemma E, it follows that

JI (S 2) <JI 1S )

contradicting the hypothesis that S1 is a local minimum of J (S) with

J(S 1) > 0. Q.E.D.

LEMMA E -!

LetX0, X eC pxp leta a X ) < 1, let 5 [o6 e ], and let0 max 0

X = (1 -6)• X + 6 . X 2

Then

P. ai 2 ( .i ( a12 (X ) - )
=l
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P 2 2< i. a (Xl), I (a i (X)I

i= 1

Proof: Let aeC p and consider the function f: Cpx - R defined by

f(X) = a* X X a

The second differential of f(X) is

2a* AX. (AX) *a 0

hence f(X) is a convex function; that is,

* * * * * 2
a X 2 X 2  a ' (1- 6 ) a X 1 X a + 6 a X X a

for all 6e [0. 11 and all aeC.

Since the vector a is arbitrary it follows that

X 2 X 2  (1- 6). X1 X1  + 6 X X 0
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and therefore

* * 2
XX (1- 6) Xx + 6 a (X) I2 2 11 max o

* 2 *
Hence, denoting by A (AA) a. (A) the ith eigenvalue of AA ordered

according to size from largest to smallest (i.e., )(AA*) > 2 (AA ) >

I kp(AA )), it follows from the above inequality thatt

* * 2

X.(X2X ) £ X.((l- 6)X X1  + 6 " a 2x). I)
1 2 2 1 1 1max o

= (1- 6) Xi(XiXl*) + 6 2ax(X)

or equivalently,

a 2 (X ) S(I-6) a 2 (X ) + 6. a 2  (X ), v i
1 2 i 1 max o

It follows that = 1,..., p
a (X2)" 6 (a (X)" 1) 2 o i2(X 1 ) 6_1(.2(X) 1)

1 2 1 i 2 (X 8'a1( -iimaxo

The following brief proof was provided by J. C. Doyle:
Let m i denote the set of all vector subspaces of dimension i. Suppose
A -B > 0. Then

iX(A) = max fmin x Ax)
Mem. xcM x x

max min x (A - B)x + x Bx

Mem. (xeM x x x x

= max m x Bx = (B

Mem. xcM

10I
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and since a mx(X o < 1,

p

S2 12

p

< a (X) 6- (2 (X1 )-1

Q. E.D.

109



DISTRIBUTION LIST

4 Office of Naval Research Naval Coastal Systems Center
800 N. Quincy St. Hydromechanics Division
Arlington, VA 22217 Panama City, FL 32407
R. von Husen, Code 211 4 D. Humphreys, Code 794
S. L. Brodsky, Code 432 1 David Taylor Naval Ship R&D Center

Office of Naval Research Bethesda, MD 20084
Eastern/Central Regional Office J. P. Feldman, Code 1564 1
495 Summer St. W. E. Smith, Code 1576 1
Boston, MA 02210 1

Naval Post Graduate School
Office of Naval Research Monterey, CA 93940
Western Regional Office Technical Reports Library I
1030 E. Green St. L. Schmidt I
Pasadena, CA 91106 1 D. Kirk 1

Naval Research Laboratory Defense Technical Information Center
Washington, DC 20375 Building 5

Code 2627 3 Cameron Station
Alexandria, VA 22314 12

Naval Air Systems Command
Washington, DC 20361 Air Force Office of Scientific Research
D. Kirkpatrick, AIR 320D 1 Building 410
R. C. A'Harrah, AIR 53011 1 Boiling Air Force Base

Washington, DC 20332
Naval Air Development Center G. W. McKemie
Warminster, PA 19874
C. J. Mazza, Code 6053 1 Air Force Flight Dynamics Laboratory
C. R. Abrams, Code 6072 1 Wright-Patterson Air Force Base

Dayton, OH 45433
Naval Material Command R. Anderson, Control Dyn. Br.
Washington, DC 20360 F. George, Control Dyn. Br. I

Code 08T23 1
Air Force Institute of Technology

Naval Weapons Center Wright-Patterson Air Force Base
China Lake, CA 93555 Dayton, OH 45433
B. Hardy, Code 3914 1 P. Maybeck

Naval Surface Weapons Center Army Armament R&D Command
Silver Spring, MD 20910 Building #18
J. Wingate, Code R44 1 Dover, NJ 07801

N. Coleman, DRDAR-SCFCC
Naval Air Test Center
Patuxent River, MD 20670 NASA Langley Research Center
J. McCue, Code TPS I Hampton, VA 23665

Technical Library



NASA Dryden Research Center Scientific Systems, Inc.
P. 0. Box 273 Suite No. 309-310
Edwards, CA 93523 186 Alewife Brook Parkway

Technical Library I Cambridge, MA 02138
R. K. Mehra

National Transportation Safety Board
Bureau of Technology Calspan Corp.
Laboratory Services Division P.O. Box 400
800 Independence Ave., SW Buffalo, NY 14225
Washington, DC 20 94 E. G. Rynaski
R. von Husen 1 K. S. Govlndaraj

Systems Technology, Inc. Systems Control Inc.
13766 South Hawthorne Blvd. 1801 Page Mill Road
Hawthorne, CA 90250 Palo Alto, CA 94306
R. Whitbeck 1 E. Hall

The Analytic Sciences Corp. Flight Research Laboratory
6 Jacob Way Dept. of Mechanical & Aerospace
Reading, WA 01867 Engineering
C. Price 1 Princeton University

Princeton, NJ 08544
Massachusetts Institute of Technology R. F. Stengel
Lab. for Information and Decision
Systems

Cambridge, MA 02139

M. Athans 1

University of Michigan
Dept. of Naval Architecture & Marine

Engr.
Ann Arbor, MI 48109
M. G. Parsons 1

Nielsen Engineering & Research, Inc.
510 Clyde Avenue
Mountain View, CA 94043
J. N. Nielsen 1

University of Notre Dame
Dept. of Electrical Engineering
Notre Dame, IN 46556
M. K. Sain 1

The C. S. Draper Laboratory, Inc.
555 Technology Square
Cambridge, MA 02139
R. V. Ramnath 1

Alphatech, Inc.
3 New England Executive Park
Burlington, MA 01803
N. R. Sandell 1

I


