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FOREWARD

This report is a Final Report summarizing research supported by the

U.S. Army Research Office under Grant No. DAAG29-77-G-0196, Project No.

P-14707-gL. This Final Report covers the entire period of the grant, from

August 15, 1977 to February 14, 1980.

The main computer system problem areas investigated were concerned

with decision tables, grammatical inference, string merging, computational

complexity analysis, and proof-checking.
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SUMMARY OF RESEARCH

The main problem areas investigated were decision tables, grammatical

inference, string merging, computational complexity analysis, and proof-

checking,

In the area of decision tables, we have (a) derived various results on

converting flowcharts to decision tables, including conditions for "semantic"

conversion (i.e. without introducing new variables or test and sets) and

conditions for reducing their complexity, (b) implemented a decision table

processor with facilities for checking consistency and ranges, for generating

test data, and for handling subtables, (c) adapted the assertion method for

proving decision table programs correct, (d) studied decision table programming

methodologies, and as an example developed a decision table processor as a

decision table, (e) derived lower upper bounds for the complexity of an optimal

decision table conversion algorithm, and (f) examined various properties of the

"level-rule" graph representation of a decision table (-including loop structures

and planarity),

I In the area of grammatical inference, we examined a new technique for

inferring regular grammars from sets of strings. In many cases, this new

technique produces less complex grammars, Of special interest is the technique's

use of recursion,

In the area of string merging, which has applicability to text editing,

we have extended results of others to permit very general changes to sets of

strings. The shortest common supersequence and longest common subsequence

problems are solved as special cases.

In the area of computational complexity (or algorithm analysis), we have

investigated a particular class of assignment problems - the "stable marriage"

problem. We derived upper bounds to a known algorithm for its solution.
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Furthermore, we extended this algorithm to the case where the number of

participants was allowed to increase with time, and have studied its com-

plexity, Our new procedure has produced stable solutions with considerable

computational savings over others. The analysis of a probabilistic version

of the problem was also initiated,

In addition, we have continued work on a proof-checking system, A new

task we have initiated is the implementation of such a system on a micro-

computer system.

i
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A. DECISION TABLES

Emulation of Flowcharts

A decision table can be regarded as a tabular general-purpose programming

language, In the past, decision tables have been promoted as good alternatives

to flowcharts for the preliminary design of complex logical programs. We have

taken the view that decision tables are also useful for implementing algorithms

of any sort, not just for their traditional applications. We base this view

on the previously reported [1] propositions that a decision table is complete

in theory in that any computable (i.e. recursively enumerable) function can be

implemented by a decision table, and that a decision table is complete in

practice in that any program flowchart can be functionally converted to a

decision table, "Functional conversion" means that, for any input, the table

computes the same function as the flowchart. In a sense, a decision table

incorporates sequencing, alternation, and iteration capabilities within a single

program control structure.

Upon examining the decision table as a program control structure, results

analogous to those of Peterson/Kasami/Tokura [2] and of Ledgard/Marcotty [3]

were obtained. We have shown that any flowchart can be emulated by a decision

table having 8 rules, where e is the number of action blocks in the flowchart,

and furthermore that any flowchart can be emulated by a decision table having

no more than Tr+1 "levels," where i is the number of condition-tests in the

flowcharts, Emulation is stronger than functional conversion in that the order

in which condition-tests and actions are executed must remain identical. However,

it may be necessary to introduce new "semantics" (i.e. a new control variable

with associated tests and sets). We have also shown that there exist flovwcharts

that cannot be implemented by a decision table without introducing new tests

and actions and/or changing execution sequences, and that a necessary (but not

sufficient) condition for a nontrivial flowchart to be implenented by a decision
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• table without introducing new semantics is that of action-test independence.

Action-test independence permits execution sequences to be changed as necessary.

In addition, relationships between the "cyclomatic complexity" measure

of :IcCabe [4] for flowcharts and the level complexity of decision tables were

examined. Conditions under which level complexity can be reduced, by merging

or coalescing nodes while maintaining semantic equivalence, have been derived.

We have shown that a reduction in level complexity may lead to an increase in

cyclomatic complexity.

The results described above are reported in [5], Of course, it is clear

that many questions remain, An incidental contribution of this research is in

fact the demonstration that decision tables are subject to the same kinds of

formal scrutiny as flowchart programs, Indeed many of the questions raised

about algorithms and flowcharts should also be raised about decision tables

regarded as just another program control structure. In addition to questions

about complexity and reducibility, questions of reliability, verifiability, and

general programming methodology are well worth investigating, For example, we

discuss elsewhere in this report the use of the "assertion method" for proving

decision programs correct. Our main conclusion here is that, regarded as a

general-purpose programing language with a control structure that enforces

certain disciplines, decision tables provide a viable alternative to conventional

"algorithmic" languages.

A
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A Decision Table processor

We have implemented a decision table processor (actually several different

versions) - in part to test various ideas on increasing the amount and value of

diagnostic information and other aids, and in part to provide a means to actually

run decision table programs, The latter enabled us to gain experience in the

actual use of decision tables, which was very necessary for our study of pro-

gramming methodological questions [as reported elsewhere], In turn, this actual

use of a decision table processor gave us added insight into the kinds of diag-

nostic information that would be of value, A basic objective of ours is to

develop the processor to the point where it can be profitably used in introductory

programming classes.

Among the diagnostic facilities we have implemented are ambiguity checks

(for consistency or redundancy) that incorporate some semantic range analysis,

and test data generation,

We have also aimed for generality - i.e. an implementation that handles

extended-entries, subtables, and recursion (as well as iteration).

The various facilities mentioned above have been worked on separately, in

many cases by different individuals. A remaininq task is the inteqration of all

these facilities into a sinqle decision table processor.

Correctness Proofs

Decision table programs can be proven correct by an adaptation of the

"inductive assertion" method of Floyd, In princiDle. we may oroceed by first

representing the decision table to be verified as a "level-rule" graph, which

is in essence a flowchart, The main problem then is to discover loop invariants,

a problem whose resolution depends upon an in-depth understanding of how the

underlying algorithm works,

We have investigated the questions of whether loop invariants are easier

to discover for decision table programs, and whether it is possible to use



I. .

-6-

the table itself (rather than the graph) for the proofs. Our work on the first

question is inconclusive in part because "easiness" is so subjective, Regarding

the second question, we have indeed proven some decision tables to be correct

without appealing to their graph representations, However, these tables were

small, and it is not clear that we can always meet with similar success for

significantly larger tables,

Decision Table Programming Methodologies

One of our tasks was the development of programming methodologies that are

suited to the design of decision table programs. We have proceeded under the

assumption that decision tables can and should be designed without thinking

in algorithmic language terms (and especially without "flowcharting" an

algorithm), This is not to say, however, that methodologies developed for the

design of algorithmic language programs cannot or should not be adapted. The

concepts of modularity and top-down refinement, for example, are certainly

of value for decision table design. We have, in fact, demonstrated this by

so designing a non-trivial decision table program - specifically, a decision

table preprocessor.

Optimal Conversion

In our earlier work [6], we developed a dynamic programming algorithm

for converting decision tables to time or space optimal decision trees. One

of our previous results was that the number of minimizations required for the

algorithm is at most H 1 (1 + Mi), where Mi is the number of values that thei1 1 1

i-th condition can assume, and where N is the number of conditions. This

upper bound is a worst-case bound in that it applies in the case of a fully

expanded table. However, a stated advantage of the dynamic programming

algorithm is that it can be used on a compressed table, only partially expanding

some rules as necessary. The number of required minimizations then is usually

less that the worst-case bound by an amount that depends upon the necessary
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expansions, How much less is tie question we have now addressed.

One reduction in the upper bound given above is based upon the observation

that this bound unnecessarily counts evaluations of the end-conditions fo(O/Ro) ,

which evidently don't require minimizations, There are 1N:I Mi of these, hence

a better worst-case upper bound is Hi= (I + Mi) T 11i= M. For the special
i1 1 1 1V

case where Mi = M for all i, the bound simplifies to (1 + M)N - MN. [Note; M : 2

is the limited-entry case.]

The case where compressed rules are disjoint was considered next. For

each such rule, having (say) j "don't cares", the upper bound may be reduced by

(1 + M)j - Mi.

Finally, we considered the case where two compressed rules overlap, where

one rule has j, "don't cares" and the other rule has j2" The upper bound may

then be reduced by (i + M)J1 + (I + M)J2 - K, where K depends upon the amount

of overlap.

Work is continuing along these lines, with the objective of obtaining the

lowest possible upper bound while making as few restrictive assumptions as

possible.

Graphical Considerations

We have investigated various properties of the level-rule graph associated

with any decision table. The level-rule graph is obtained by treating the

"levels" of the decision table as nodes, and the rules of the decision table

as the interconnecting branches. The loops of such a graph are, of course,

of special interest, and so we have designed a loop detection algorithm (as

a decision table!). Complexity measures of decision tables based upon the

loop structure of their level-rule gravhs were also examined, as well as

methods for reducing such complexity.

In conclusion, we have examined the question of "well-structuredness"

of decision tables. Planarity of their level-rule graphs was found to be



a necessary but not sufficient condition for at least one definition of well-

structuredness (analogous to that for algorithmic programs).

~~i
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B. COMPUTATION.THEORY

Grammatical Inference

Part of our study resulted in an alternative inference scheme to one

proposed by Feldman, et.al. in a Stanford Artificial Intelligence Project [1].

This scheme was described in a report entitled "A New Heuristic For Inferring

Regular Grammars" which has been accepted for publication.

The most significant aspect of the new scheme was a simplified set of

conditions for reducing the number of production rules in the inferred grammar.

Comparison tests using five cases reported by Feldman, et.al, showed improve-

ments in complexity under the measures proposed by Wharton [2] and by Feldman [1].

Another interesting aspect of the new scheme was its use of recursion in

reducing the complexity of its output. This enabled the scheme to infer

infinite languages without resorting to the explicit "residue" rules found in

Feldman's scheme. In summary, this study melded ideas and notions from the

areas of grammatical inference, computational complexity, and recursion theory

to generate new results,

String Merging (Text Editing)

In this part of our study we extended results by Wagner and Fischer [3]

to the case where very general changes to sets of strings could be studied.

These results were summarized in a report entitled "The String Merging Problem"

which has been submitted for publication,

Wagner and Fischer [3] posed the fundamental string-to-string correction

problem (STS-problem) that has received much interest [4, 5, 6, 7], Recently

there has been work done to improve the time and space complexity requirements

of their original algorithm [8, 9, 10]. In this research we generalized their

original problem to address the case where more than two strings are considered

and where none of the strings are given any special designation. This approach
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I- incorporates some of the ideas found in [6] and [ii].

In order to describe this approach we need the following notion. Let E

denote an arbitrary finite set of symbols, Z* the monoid freely generated from

E under concatenation, and P(E*) the set of all subsets of E*, If X is a

string (finite sequence) of symbols then f <i> is the ith symbol of T, X<i:j>

is the substring k <i> C<i+l> ... T <j>, and JTJ is the length (number of

symbols) of T, i.e., T= )[<1; i0>,

For a fixed Z, an edit operation a is any mapping from E* to p(Z*). We

will use S to denote an arbitrary finite set of edit operations. Then for A,

B . E* and a - s, B is a result of editing A under s (written A => B via s) if

B Z s(A). An edit sequence s is any finite sequence of edit operations, The
action of s = als2,...Jsm on string X is defined to be s(X) = sm(sm(,,. sl(X))...).

We let ip represent the null sequence and define '(X) = T. For a sequence of

strings flX2,.,.,X I a merge sequence of operations is any sequence of edit

sequences p = such that n i si(T) + ¢ (is not empty). I.e., a

merge sequence of operations can edit a sequence of strings into a common string,

For a fixed E, a set S of operations is said to be complete if for any finite

sequence of strings X1,X2 ,...,XC from E* there always exists a merge sequence

from S.

As in [11] we let y be an arbitrary cost function such that y(s) is a

nonnegative real number for all s c S, Then y is extended to edit sequences

S = ,S2, Sm via y(s) = Ji=ly(si). For consistency we set y(p) = 0.

In addition y is extended to merge sequences j =SlS s via y(j) m

We now define the merge distance for a finite sequence of strings lI2, ...'m

to be the minimal cost of editing all the strings into one common string.

Formally, D min{y(p) li is a merge sequence for Llkl,., it

Since the merge distance for a sequence of strings is independent of the particular

arrangement of the strings, we can then use the terms merge set of operations

and merge distance for a set of strings without any ambiguity.

C
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This notation enables us to state the string merging problem (SM-problem).

Given a finite set of strings { a complete set of edit operations s,

and an associated cost function y, the problem is to determine the merge distance

DOj),... and any particular member of(n7=i. si(. whreD( X2 "***Xm)

y(s.) Necessary and sufficient conditions for this problem to match the

STS-problem were formulated, The special case where deletion is the only allowed

editing operation was shown to solve the longest common subsequence problem

(LCS-problem) while the special case where insertion is the only al"owed editing

operation was shown to solve the shortest common supersequence problem

(SCS-problem). Algorithms to solve each special case were found that operated

in polynomia time complexity with respect to the number of strings under

consideration, but exponential time complexity with respect to the maximum

length of the strings.

The biological and data compression applications mentioned in [63 are

still valid under the present formulation. Since we are not actually constrained

to looking for solutions to the LCS-problem and SCS-problem, we actually have

broadened the scope of possible applications. For example, in the case of data

compression for several files, depending on the cost function y, it may be

desirable to store something other than the solution to the LCS or SCS problems.

Also, in the field of molecular biology when studying the amino acid sequences

of several proteins, perhaps the solution to the SM-problem for particular y

and S would be of considerable interest.

In summary, this problem formulation seems to be a very general approach

to describing related text editing problems. An application to data compression

techniques is briefly discussed at the end of the above mentioned report.

I

AtIM
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Aspects of the Stable Marriage Problem

Here we studied the computational complexity, the sequential versus

batch processing, and the probabilistic aspects of the classical version of

the assignment problem formulated by Gale and Shapley. In the first case,

we published a paper entitled "The Upper Bound for the Stable Marriage Problem."

In the second case we have submitted a report entitled "A Generalization of

the Stable Marriage Problem" for publication, In the last case we are currently

in the process of writing a report on our investigation of a probabilistic

interpretation of the statility condition posed by Gale and Shapley,

The problem of pairing n boys with n girls in accordance with their

preferences was first formulated and solved by Gale and Shapley [12], The

first paper derived the upper bounds to the Gale and Shapley algorithm in a

manner that illustrated several characteristics of worst case situations.

The net effect of these results was to indicate the unusualness of a situation

in which the upper bound-actually occurred,

The second report extended the solution algorithm to the case where the

number of participants was allowed to increase with time,

To state this problem in simpler terms consider the following situation.

Suppose we have just computed a stable solution for 50 boys and 50 girls when

lo and behold another boy and girl enter the scene, Would it be necessary to

start all over and apply the algorithm by McVitie and Wilson [13] to the problem

of 51 boys and 51 girls, or is there an efficient way of augmenting our current

solution to incorporate the new persons? An affirmative answer to this question

was the main result of this part of the research, Indeed, instead of the

expected 200 proposals (Wilson [14]) to process the group from scratch, it was

shown that less than 90 proposals would normally suffice.

The essential notions for our main result are the concepts of a stable

community and a ripple operation. Informally, a stable community consists

A _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _
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of paired couoles and possibly some surplus persons of one sex such that
the qroup meets the stability requirements as mentioned In Gale and Shapley [12],

Any extra person(s) must be less appealling to all members of the opposite sex.

E.g., any solutions to the case of possibly uneven sets of boys and girls as

in McVitie and Wilson [13] would constitute a stable community, The second

notion is that of a ripple operation which can be viewed to consist of the

following steps, The inputs are a stable community and a separate set of persons

of one sex (possibly different from the sex of any surplus persons in the

community), The ripple operation starts by letting all members of the sex of

this separate set propose to their best choices. All members of the opposite

sex that have been paired regard their mates as being placed on hold. Any

person receiving one or more proposals must decide amongst these choices and

any current person on hold. As in the original algorithm by Gale and Shapley

[12], all rejected persons must proceed to propose to their next choice. The

process is repeated until all members of the proposing sex are on hold or until

those that aren't have been rejected by all members of the opposite sex. A key

result is that the resulting situation again forms a stable community,

Only requiring that relative choices remain constant, this new procedure

produces stable solutions with considerable computational savings over other

implementations of Gale and Shapley's algorithm. It is our contention that this

result is significant enough to make feasible the consideration of this algorithm

for many practical situations,

The last aspect of this phase of the study is still in progress, We have

made computer simulated analyses of a probabilistic interpretation of the

Stable Marriage Problem. The results have shown that for certain parameter

settings, considerable computational savings may be gained at the expense of

relatively little "stability" loss. We are investigating the use of this

notion in conjunction with our results from the second phase of this study to

produce an efficient multi-pass alqorithm for the original problem.lwl A
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C. COMPUTER AIDED INSTRUCTION - PROOF CHECKING SYSTEM

We have developed a system on the IBM370 that examines a mathematical

proof written in a language that resembles that used by mathematicians and

tries to verify that each step follows logically from the reasons given,

and thus that the proof is valid. Each step is considered a "theorem" and

the reasons "axioms", and the computer uses the resolution method to try

to construct a proof for that step. In addition, the system does bookkeeping

and provides editing facilities,

Our primary purpose was to provide a tool for teaching mathematics

students to write valid proofs - the student is asked not only to write a

proof, but also to check it on the computer, just as we assign students the

task of writing a program and checking it on the computer. It affords the

student prompt, objective feedback and the opportunity to retry until he

succeeds. If this system proves successful, it should be possible to

modify it to (a) check program correctness proofs, and (b) check decision

tables for correctness.

The IBM370 system is working, but needs some further checking before

it is used with a class, and we are continuing to work on it. We know

that the system can be used at least with selected subject matter in the

intended way.

We believe the system can also be implemented on a microcomputer'system.

We expect such a system to be more economical, and if so, it could be made

available in many places such as high schools and small colleges that cannot

afford an IBM370. This is true especially if the system is portable.

We have started the task of converting the system to an 8080. The 370

system is written in PL/I, but uses only a small subset of PL/I. We have

written a compiler for the 8080 for a suitable subset of PL/I, and in that

subset. This compiler includes 16-bit integers, strings, and logical vari-
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ables, internal and external procedures, and the common execution sequence

m. control. It produces relocatable code, and we have an overlay loader,

Much of the present proof-checking system will convert with minor changes,

but certain parts will have to be rewritten to adapt efficiently to the

new environment.

This system will also serve as a good example to compare a microcomputer

to a large computer system for a non-trivial application, because essentially

the same system will be available on both machines, and with roughly 8000

cards of PL/I source program, it is not a small system.

A I
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"A New Heuristic For Inferring Regular Grammars"

Abstract

Modifications to a grammatical inference scheme by Feldman, et al. are

presented. A comparison of the relative performance of the original and

modified schemes is made using the complexity measures of Feldman and Wharton.

The case where a complex model is used to generate the sample set is then

analyzed. A set of 104 samples was found that trained the program to infer

the grammar that corresponded to the original model. The results of a study

of the performance of this algorithm when there is a large number of samples

is then presented, The major conclusion of this study is that the modified

scheme has a superior performance on small sample sets but is highly unsuit-

able for large ones.

(Accepted for publication in IEEETPAMI)

"The String Merging Problem"

Abstract

The string merging problem is to determine a "merged" string from a

given set of strings. The distinguishing property of a solution is that the

total cost of editing all of the given strings into this solution is minimal.

Necessary and sufficient conditions are presented for the case where this

solution matches the solution to the string-to-string correction problem.

A special case where deletion is the only allowed editing operation is shown

to have the longest common subsequence of the strings as its solution.

Similarly, the case where insertion is the only allowed operation is shown

to have the shortest common supersequence as its solution. Algorithms for

these cases are presented that have time complexities that are polynomial

with respect to the length of the strings, but exponential with respect to

the number of strings.

(Submitted for publication)
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"The Upper Bound To The Stable Marriage Problem"

Abstract

The stable marriage problem was originally posed by Gale and Shapley.

The worst case performance of their solution is derived in a manner that

illustrates the complexity characteristics of the problem. Several con-

clusions about the nature of the worst case situation are presented.

(J. Opl. Res. Soc., vol 29, 8, pp 811 to 814)

'A Generalization Of The Stable Marriage Problem"

Abstract

The stable marriage problem posed by Gale and Shapley is generalized

to the case where the number of participants may increase with time. This

new problem is solved in a manner that permits the introduction of arbitrary

numbers of participants of either sex. The complexity of the new algorithm

is analyzed in terms of the required number of proposals. Worst case and

average case results are presented. In addition, the average satisfaction

of the participants under this new approach is studied.

(Submitted for publication)

"On The Emulation Of Flowcharts By Decision Tables"

Abstract

Any flowchart can be emulated by a decision table, whose "complexity"

depends on that of the flowchart. However, it may be necessary to introduce

a new control variable with associated tests and sets, or to permit changes

in execution sequences provided action-test independence holds. Two measures

of decision table complexity are discussed and interrelated. Finally, con-

ditions and procedures for reducing complexity are presented.

(Submitted for publication)
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