
.....OWS 116 AIR FORCE AVIONICS LAB WRIGHT-PATTERSO0N AFB OH F/S 9/2
COMPUTER PROGRAM DEVELOPMENT SPECIFICATION FOR IDAMST OPERATION--ETC(U)

UNCLASSIFIED AFALTR-76-209-AD0-2

AFAL-TR-76-2O
9 , Addendum #

COMPUTERMENTY§ECIFICAIO Ncomp . TE PORE

FOR

I FLIGHTPROGRAM...U

("~0~J1 1(0

' i "i

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

DTIC
SELECTE,

AIP 17 19Wo
AIR FORCE AVIONICS LABORATORY

= ' AFAL/AAA-1

WRIGHT-PATTERSON AFB, OHIO 45433
-A 7o 80 4-15 066

;
.,., l, - ,'0l

Table of Contents

PAGE

1.0 Scope 7

1.1 Identification 7
1.2 Functional Summary 7

'2.0 Applicable Documents 7

3.0 Requirements 8

3.1 Program Definition 8
3.1.1 Hardware Interfaces 8

* 3.1.1.1 Bus Control Interface Unit (BCIU) 8

3.1.1.1.1 Instruction Format 9

3.1.1.1.2 BCIU Register 13

3.1.1.1.3 Interrupt Generation e6

3.1.1.2 Remote Terminals 26

3.1.1.2.1 Basic Characteristics 26

3.1.1.2.2 RT Functions 27

3.1.1.3 Processor Control Panel (PCP) 28

3.1.2 Software Interfaces 30

3.1.2.1 Events 31

3.1.2.2 Tasks 31

3.1.2.3 Comsubs 35

3.1.2.4 Compool Blocks 35

3.1.2.5 Real-Tima_ Pseudo Statements 36

3.1.2.6 PALEFAC 37

3.2 Detailed Functional Requirements 37

3.2.1 IDAMST Local Executive Functions 37

3.2.1.1 Function One - Local Executive Control Function 38

3.2.1.2 Function Two - Hardware Interface Control Function 48
3.2.1.3 Function Three - Application Software Interface

Control Function 52

3.2.1.3.1 Inputs 52

3.2.1.3.2 Processing 57
3.2.1.3.2.1 Task Scheduling 59
3.2.1.3.2.2 Task Termination/Cancellation 59

I f--- lfhl ;fY ., A7
1 Approved bor pu!;ic j',.!

Distribution Unihrt ied

tam -,

Table of Contents - Cont.

PAGE

3.2.1.3.2.3 Event Signalling 59
3.2.1.3.2.4 Wait 59
3.2.1.3.2.5 Compool Read/Write 63
3.2.1.3.2.6 Executive Service Return 63
3.2.1.3.3 Outputs 67

3.2.1.4 Function Four - Event Handling Function 69
3.2.1.5 Function Five - Task Checking Function 74
3.2.1.6 Function Six - Task Dispatching Function 80
3.2.1.7 Function Seven - Minor Cycle Set-Up Function 82

3.2.1.8 Function Eight - Asynchronous Message
Handling Function 92

3.2.1.9 Function Nine - Local Executive Initialization 105
" 3.2.2 IDAMST Master Executive Functions 110

3.2.2.1 Function Ten - Initialization and Start-Up 110
3.2.2.2 Function Eleven - Synchronous Bus

Communication Control 117
3.2.2.3 Function Twelve - Asynchronous Bus

Communication Control 126
3.2.3 IDAMST Monitor Control Function 131
4.0 Quality Assurance Provisions 138
4.1 Introduction 138
4.1.1 Category I Test 140
4.1.2 Computer Programing Test and Evaluation 141

4.1.3 Preliminary Qualification Tests 141
4.1.4 Formal Qualification Tests 142
4.1.5 Category II Tests ACC _ :_- 142
4.2 Verification Requirements N L_ H 142
4.2.1 Performance Un i,. L] 142
4.2.2 Priority/Timing r,142
4.2.3 Interfaces By__ 143
4.2.4 Logic Paths i:s'jt . 143
4.2.5 Off- Nominal Conditions FL 2 t, r)d(c s 143

A 11 /or
, Dist spucial

2 A
172

LIST OF FIGURES

FIGURE PAGE

1. BCIU Instruction Format 10

2. Processor Control Register (PCR) 15

3. Internal Status Register (ISR) 18

4. BCIU Built-In Test (BIT) Word Format 22

5. IDAMST Processor Control Panel (PCP) 29

6. States of a Task 32

7. Major Functions of Local Executive 39

8. Local Executive Functional Flow 40

9. Terminal Organization Address Table (TOAD) 42
Description

10. Sub.address Name Keys Table (SNAKE) 44

11. Local Executive Control Processing 45

12. Interrupt Handling Processing 51

13. Task Table A 55

14. Asynchronous Data Descriptor Block 56

15. Synchronous DDB 58

16. Task Scheduling Processing 60

17. Task Termination/Cancellation Processing 61

18. Wait Processing 64

19. Compool Block Processing 65

20. Executive Service Return Processing 66

3

L _ ',- ... ,-= ME....

LIST OF FIGURES (CONT'D)

FIGURE PAGE

21. Event Handling Processing 72

22. Task Checking Process 78

23. Task Dispatching Processing 83

24. Processing of Minor Cycle Set-Up Function 90

25. Reception Queue 95

26. Asynchronous Message Reception Processing 96

27. Transmission Queue 100

28. Asynchronous Message Transmission Processing 103

29. Local Executive Initialization Processing 107

30. Master Executive Functions 111

31. Master Executive Initialization 113

32. Master Executive Start-Up 114

33. BCIU Instruction Format 120

34. Instruction Block Organization 121

35. Instruction List Pointer Table 123

36. Minor Cycle Phase Table Illustration 124

37. Master Synch. Control Processing 125

38. Asynchronous Control Function 132

39 Monitor Control Processing 136

4

LIST OF TABLES

TABLE PAGE

I BCIU Registers 14

II Input to the Local Executive Control 41
Function

III Functions Invoked to Service 47
Asynchronous Receptions

IV Inputs to Hardware Interface Control Function 49

V Inputs to Application Software Interface 53
Control Function

VI Outputs from Application Software 68
Interface Control Functions

VII Event Record Table 70

VIII Input to Event Handling Function 71

IX Outputs from Event Handling Function 73

X Local Processor Tasks Table B 75

XI Inputs to Task Checking Function 77

XII Outputs from Task Checking Function 79

XIII Inputs to Task Dispatching Function 81

XIV Outputs from Task Dispatching Function 84

XV Inputs to Minor Sych Set Up Function 85

XVI Synchronous Pointer Index Table 86

XVII Pointer Block Descriptor Table 87

XVIII Minor Cycle Event Generation Table 88

XIX Outputs from Minor Cycle Set-up Function 91

5

LIST OF TABLES (CONT-D)

TABLE PAGE

XX Input to Asynchronous Message Reception 93

XXI Outputs from Asynchronous Message Reception 98
Function

XXII Inputs to Asynchronous Message Transmission
Function

XXIII Outputs from Asynchronous Message
Transmission Processing 104

XXIV Inputs to Local Executive Initialization
Function 106

XXV Outputs from Local Executive Initialization
Function 109

XXVI Inputs to M.E. Initialization & Start-Up
Function 112

XXVII Inputs to Master Synchronous Control
Function 119

XXVIII Outputs from Master Synchronous Control
Function 127

* XXIX Inputs to Asynchronous Bus Communication
Control Function 128

XXX Outputs from Asynchronous Control Function 133

XXXI Inputs to Monitor Control Function 135

XXXII Outputs from Monitor Control Function 137

XXXIII Verification Cross Reference Index 139

1 6

1.0 SCOPE

1.1 Identification

This specification establishes the requirements for performance,

design, test, and qualification of a computer program identified as

Operational Flight Program (OFP), Executive Software for the IntEgrated

Digital Avionics for the Medium STOL Transport (IDAMST).

1.2 Functional Summary

YThe IDAMST Executive Software Systems provides the system soft-

ware services for the application software. It has been divided into three

major functions denoted as Master Executive, Local Executive and Monitor

*. Executive Functions. These functions provide services for the execution of

real-time applications, data bus management, system control, common data

r" utilization and Remote Terminals communication.

2.0 Applicable Documents

The following documents of the exact issue shown form a part of

this specification to the extent specified herein. In the event of conflict

between the documents referenced herein and the contents of this specifica-

tion, the contents of this specification shall be considered a superseding

requirement.

Specifications:

1) OFP IDAMST Error Handling and Recovery System Software

(EHARS), SD2042

2) System Specification Type A SI 1010, June 1976

3) Control/Display System Segment Spec Type A SR 5020.

Other Publications:

1) Specifications for IDAMST Software Technical Report

2) DAIS Mission Software Executive Specification
F33615-75-C-1181, 26 December 1975

7

* s m. l__l . - _m i

3.0 REQUI REMENTS

3.1 Program Definition

3.1.1 Hardware Interfaces

The IDAMST Executive System interfaces with the following ele-

ments of hardware: a Bus Control Interface Unit (BCIU), Remote Terminals,

Mass Memory, a Processor Control Panel (PCP), and Processors.

3.1.1.1 Bus Control Interface Unit (BCIU)

The Bus Control Interface Unit (BCIU) shall provide the inter-

face control and data transfer function required to connect a Processor with

* two multiplexed data buses. The BCIU shall be directed to operate in a mode

by its interfacing processor. The following are the modes in which the BCIU

shall be capable of operating:

a. Remote Mode, providing transfer of date in both directions

between the Processor and either of the two Buses, providing status replies

on the appropriate bus in response to comands, and special internal opera-

tions and interrupts to the associated processor upon receipt of certain

special conmands on the data buses.

b. Master Mode, providing control of the data bus based upon

instructions fetched from the memory of the Processor through the Direct

Memory Access (DMA) Channel by the BCIU.

This Master Control mode shall result in:

1. The BCIU issuing Bus Commands to other devices on the Data

Buses.

2. Participating in data transfers on the buses (when the

instruction dictates it).

8

3. Checking status responses from devices on the data buses.

4. Checking formats of the data bus operation.

5. Reporting of error conditions to the processor.

At any time, there shall only be one BCIU in Master Mode.

3.1.1.1.1 Instruction Format

The BCIU instruction list is composed of pairs of instructions

accessed by the BCIU using a DMA channel. The BCIU sequentially Interprets

instruction pairs to determine the action required. The format of the in-

struction pair is shown in Figure 1.

Each of the fields in the two word instruction have the

following uses:

a. OP CODE - These two bits deterine the function of the

command.

00 - Halt the BCIU. This is always the last command in a

list and denotes that no other command is to be performed. When the BCIU

executes this instruction the Halt bit is set inthe Internal Status Register

and a BCIU level 1 interrupt will be generated.

01 - Link. This OP code is used to link sections of the

command list. Thus, the individual instructions of the command list need

not occupy contiguous memory locations. The second word of the instruction

is used as the address of the next two word instruction. The other fields

of the instruction are ignored except for the interrupt (1) field.

9

9 L.
LLLS

&F) LP) 00 AJC

u0 03
0 0- 5cL

-~~~V VcU)l:

LU L> U -I -D

C)0 0 -
0 cc0

LL LI)) w0 cc
tj~~L -I -mm C

U- LJM L 0 LL 0j
cr_ ~ ~ ~ 0 9 j o-

Q= E

N. UU coV 0 1-

~~.& 0 tn(.

LUL&J LJJ LU
CO0 w I--

a.n .. j 0

8- -11 5 CD
r. LU P" a - U.-

U. 4n 00.
0" 0L CDI

QI CDJ Zi
S 1-0. L

a. 90-o Co.-Qz
of U)

LU LD U.go

U) ~ 0 0

ccIn n- .

* C. ~ Z LU0

mum-K - L

10 = No Operation. This OP code has two uses. The first

is to cancel commands which the Master Processor no longer wishes the Master

BCIU to perform.

The second is tG create a processor interrupt before the

next BCIU instruction is generated. A typical use of the latter case is

sending Mode Commands. The Mode Data Register must be set before the com-

mand is sent. Thus, the interrupt causes a BCIU pause which permits the

Master Processor to set the MDR and then set the Continue Bit in the PCR to

reset BCIU processing.

For this OP code only the interrupt field is examined.
All other options are ignored.

11 = Bus Operation. For this operation the rest of the fields

are interpreted as reception or transmission across the Bus.

b. RETRY - If the transmission attempted by this instruction

was not successfully completed, and this field is not zero, then the trans-

mission will be retired up to three times.

c. SPARE - This bit is not used.

d. I - If this bit is set, successful completion of this

instruction will cause an interrupt. The PCI bit in the ISR will be set.

The interrupt will be of level 1. The discussion accompanying the No Opera-

tion Code explains the use of this bit, although the bit may be used in any

of the four instructions.

e. RECEIVE DEVICE ADDRESS - This field contains the address of

the terminal to receive the message. This field Is only used for BCIU in-

struction OP code "Bus Operation" (11). If the Receive Device Address is

not the address of the Master BCIU (as contained in the BCIU address field

of the PCR), then a Receive Command will be formed by concatenating the

Receive Device Address Field, a bit denoting Receive, the Receive Subaddress/

11

* - ,..

Mode field, and the Word Count/Mode Code field. This receive command will
then be transmitted across the Bus.

If the Receive Device Address field is the address of this
BCIU and the Receive Subaddress/Mode field is not zero (i.e., this is not a

Mode Command), then the Receive Subaddress field will be used to load the

Data Address Register (see Section 3.1.1,1.2.15) which will then determine

where the received message will be stored.

f. RECEIVE SUBADDRESS/MODE - This field describes the message

to be received. The use of this field is described in the Receive Device

Address field. If this address were zero it would indicate that this is a

Mode Command.

g. WORD COUNT/MODE CODE - For mode commands this field con-

tains the number of the command. For Receive/Transmit connands this field

contains the number of data words to be transmitted.

h. B - This field indicates which Bus will be used for data

transmission. If this bit is zero, Bus number one will be used. If this

bit is one, Bus number two will be used.

i. TRANSMIT DEVICE ADDRESS - This field is similar to the

Receive Device Address except that it is the address of the terminal which

will send the message.

If the address is not that of this Master BCIU, then Trans-

mit Command will be formed by concentrating the Transmit Device Address

field, the Transmit bit, the Transmit Subaddress/Mode field and the Word

Count/Mode Code field.

If the Transmit Device Address field is the address of this

terminal then the Data Address Register will be formed (see Section

3.1.1.1.2.15) and the data will be written into the Bus from that address.

12

For Mode Commands the Transmit Device Address field is the

address of the terminal to receive the Mode Command and the Receive Device

Address field is the address of the Master BCIU.

It is an error for the Receive Device Address field and the

Transmit Device Address field to be the same device. This error will cause

an interrupt of level 1 and the IVI bit will be set in the Internal Status

Register.

j. TRANSMIT SUBADDRESS/MODE - The use of this field has been

* - discussed in the description of the Transmit Device Address field.

For mode commands, both the Transmit Subaddress and Receive

Subaddress will be zero.

3.1.1.1.2 BCIU Registers

The registers on the BCIU control its mode of operation, pro-

vide information for the master processor and provide information to its

local processor. There are sixteen, 16-bit registers accessible to the

processor through the PIO.

These registers and their respective PIO addresses are listed

in Table 1. Their description follows:

3.1.1.1.2.1 Processor Control Register (PCR)

This register's format is Illustrated in Figure 2.

The description of this format follows:

a. Master - This bit is set to logic 1 by the processor, to

direct the BCIU to operate in Master Mode.

b. GO - Set to logic 1 by the processor to indicate the BCIU

is to enter an operational mode. A logic 0 indicates the termination of an

operational mode. A HALT instruction in master mode will set it to logic 0.

13

TABLE I. BCIU REGISTERS

PIO ADDRESS 0 PROCESSOR CONTROL REGISTER (PCR)

I INTERNAL STATUS REGISTER (ISR)

2 BASE ADDRESS REGISTER (BAR)

3 INSTRUCTION ADDRESS REGISTER (IAR)

4 BUILT-IN-TEST REGISTER (BITR)

5 MODE DATA REGISTER (MDR)

6 LAST COMMAND REGISTER (LCR)

7 STATUS CODE REGISTER (SCR)

8 MASTER FUNCTION REGISTER (MFR)

9 POINTER REGISTER (PR)

10 DATA ADDRESS REGISTER (DAR)

11 WORD COUNT REGISTER (WCR)

12 XMIT STATUS WORD REGISTER (XSWR)

13 RECV STATUS WORD REGISTER (RSWR)

14 INSTRUCTION WORD REGISTER 1 (IWR1)

15 INSTRUCTION WORD REGISTER 2 (IWR2)

14

U, inl Z

91.

ILiJ

C.
6 LI C4

F-WO

LL-J
C~i d0

tn-
SJJ)

0l
i-

)I-
g-

Lra.
0n

0L

f.-15

c. FAIL- Set to logic 1 after detecting an error in self-test.

d. SPARE - Set to logic 0.

e. System Reset Acknowledge - Set to logic 1 by the processor
to indicate acknowledgement of the power-on-reset interrupt.

f. Self-Test By-Pass - Set to logic 1 by the processor indicate

that the BCIU is not to perform self-test.

g. BCIU Address - These 5 bits shall be set by the processor

to indicate the address on the BCIU.

h. SPARE - Set to logic 0.

i. READY - Set to logic I by the BCIU after completing its
power-on initialization.

j. BUSY/CONT - Set to logic 1 by the remote processor to
indicate the BCIU is to enter BUSY state. It is set to logic by the BCIU

after having been directed to exit BUSY state.

In master mode, the bit is set to logic by master processor
to indicate to the BCIU that an interrupt has been processed.

k. RUN - Set to logic 1 by BCIU after being directed to enter

an operational mode or upon exciting a BUSY state. It is set to by the
BCIU after terminating an operational mode.

r

16

L,

q

3.1.1.1.2.2 Internal Status Register (ISR)

This register shall be set only by the BCIU. It contains indi-

cations of the cause of a BCIU generated interrupt. This register is clear-

ed by the BCIU prior to processing a new instruction or command.

This register's format and the meaning of each bit is indicated

in Figure 3. The interrupt levels generated by these bits are

also indicated in this figure.

A description of each bit follows:

a. HALT (H) This bit shall be set to logic 1, in Master Mode

only, to indicate that the BCM has processed a HALT instruction. The oper-

ational mode (Master) shall be terminated.

b. Program Controlled Interrupt (PCI) This bit shall be set to

logic 1, in Master Mode only, after completion of 2 word instruction opera-

tion In which PCI was requested (PCI-1).

c. Invalid Instruction (IVI) In Master Mode only, this bit

shall be set to logic 1 if the Device Address within the Receive field of

the 2-word instruction is equal to the Device Address within the Transmit

field.

d. System Interrupt (SI) In REmote Mode only, this bit shall be

set to logic 1 upon receiving the System Interrupt Mode Command.

e. Mode Data Present (MDP) This bit shall be set to logic 1, in

Master Mode only, after successfully receiving the Data Word associated with

Mode Operations (Interrupt results from mode operations 3, 10, 11, and 13 -

Refer to paragraph 3.2.1.1.1.).

17

%0

Q -I

i

0Q

Mr, w0 0J
M0c .

LU CD * Kl - -u

= ~ atJ Wo Cl,, I

VI) 3K.-- = m-I.

IL 0= ,- c.n kn ujwg-LW
CD CD LU &LJ~

K~~V LO) 2 i

C D < I .- . - I - CaQ I-c n M; > W E, :M C4
Cc =)I- Lc I &xW = =CLi 0-0 ~ CL&) Z: x x

a-C
x Vx:<a

z "K9. w w = W
ui ~ ~ ~ 55 C-)~ :I. c^C K5.(l n(

3c = . -4

CL.

. .. ta- -W D WM4 n t

54n

LA8

f. Asynchronous Message Xmit/Recv (AXR) In Master or Remote

Modes, this bit shall be set in conjunction with Bit 6 (AM) to indicate

whether the BCIU was the Receiver (AXRuO) or the Transmitter (AXR-1) of an

asynchronous message (Sub-Address-31).

g. Asynchronous Message (AM) In Master or Remote Modes, this

bit shall be set to logic 1 after successful completion of an asynchronous

bus message operation (Sub-Address-31).

h. Master Function (MF) This bit shall be set to logic 1, in

Remote Mode only, after receiving the Master Function Mode Command.

* 1. Transmit Status Exception (XSEX) This bit shall be set to

logic 1, in Master Mode only, after receiving an excepted, valid status word

associated with a Remote device in Transmit Mode in which the Message Error,

Terminal Failure, or Status Code is non-zero. The status word shall be

placed intact within the Xmit Status Word Register.

J. Receive Status Exception (RSEX) This bit shall be set to

logic 1, in Master Mode only, after receiving an expected, valid status word

associated with a Remote device in Receive Mode in which the Message Error,

Terminal Failure, or Status Code is non-zero. The status word shall be

placed intact within the Received Status Word Register.

k. Transmit Status Error (XSE) This bit shall be set to logic

1, in Master Mode only, if an expected status word associated with a Remote

device In Transmit Mode is not received, is received invalidly, is received

validly with bad parity, or is received validly with good parity with a

Device Address that does not match the Transmit Device Address within the

2-word instruction.

19

" lg.

1. Receive Status Error (RSE) This bit shall be set to logic 1,

in Master Mode only, if an expected status word associated with a Remote

Device in Receive mode, is not received, is received invalidly, is received

validly with bad parity, or is received validly with good parity with a

Device Address that does not match the Receive Device Address within the 2-

word instruction.

m. No Data Receive (NDR) This bit shall be set to logic 1, in

Master Mode only, after commanding a remote device to transmit one or more

data words and the first such data word has not arrived within 60 micro-

seconds after status word reception.

n. Incomplete Data (ICD) This bit shall be set to logic 1, in
Master Mode only, after receiving at least one expected data word and with

further data words expected, the next data word is not received within 60

microseconds after reception of the last data word.

o. Invalid Data (IVD) This bit shall be set to logic 1, in

Master Mode only, after an expected data word was received with Parity Error

indicated. Data word reception continues.

p. Direct Memory Access Error (DMA) This bit shall be set to

logic 1, in Master or Remote Mode, after an unrecoverable DMA Error is de-

tected while attempting to fetch an instruction word, a pointer word, or a
data word from main memory or while attempting to store a tag word or a data

word into main memory.

,2..)

20

3.1.1.1.2.3 Base Address Register (BAR)

This register shall be set only by a Processor for the associa-

ted BCIU (Master/Remote) and shall contain the most significant 10 bits of a

pointer word address within main memory for a given data transfer operation.

The addressed pointer word shall contain the true data block address.

3.1.1.1.2.4 Instruction Address Register (IAR)

This register shall be met only by a Processor whose associated

BCIU is to operate in Master Mode. The register shall contain the main mem-

ory address of the initial 2-word instruction executed, the BCIU shall modify

the register in order to reflect the address of the next instruction to be

executed. The register shall be unused in Remote Mode.
9

3.1.1.1.2.5 Last Command Register (LCR)

This register shall be used only in support of the Transmit

Last Command Mode Command. In Remote mode, the BCIU shall place commands

which are received validly and directed to the particular BCIU into this

register. Exceptions shall be Transmit Status Word, Transmit Bit Word, and

the Transmit Last Conand itself.

3.1.1.1.2.6 Built-In Test Word Register (BITR)

This register shall be used to either maintain the Built-In Test

Word (Remote Mode), or to temporarily hold Terminal Failure or bus monitoring

of own transmission information (Master Mode). The format of a BCIU BIT word

is shown in Figure 4, and described in the following paragraphs.

a. Power-On-Reset This bit shall be set to logic 1 if the BCIU

performs Power-On Initialization.

b. Power Supply Failure This bit shall be set to Logic 1

in the event of failure.

21

aNVWWO3 GIIVANI

VIVO allVANI

La u~ A.LflVd Vi.va

La. Mal M~fOO N~OM

LO3~ -O-S3 1Od

22

c. BIM I Out This bit shall be set to logic I by the Remote

Mode BCIU after powering down BIM I as a result of receiving a Remove Power

BIM I Mode Command. The BIT shall indicate that power has been removed from

BIM 1.

d. BIM 2 Out This bit shall be set to logic I by the Remote

mode BCIU after powering down BIM 2 as a result of receiving a Remove Power

BIM 2 Mode Command. The bit shall indicate that power has been removed from

BIM 2.

Mode. DMA Error This bit shall be set to logic 1 by the Remote

Mode BCIU after an unrecoverable direct memory access error is detected while
fetching data words from or storing data words (excluding tag words) into

main memory.

f. Failure Code Errors The failure code shall be set to indi-

cate detected self-test failures as follows:

o No failure 00000

o BIM #1 failure 10001

o BIM #2 failure 10010

o MROM Parity Error 10011
o BCM Data Flow Error 10100

o BCM DROM Error 10101
o BCM SEQ Error 10110
o PIM DMA Data Flow Error 10111

g. No Data Received This bit shall be set to logic 1 by the
Remote Mode BCIU after having been directed to receive one or more data words

and the first such data word has not arrived within 75 microseconds after

command word reception.

h. Word Count Low This bit shall be set to logic 1 by the Re-

mote Mode BCIU after having been directed to receive two or more data words,

at least one such data word has arrived, but the next expected data word does

23

• % * .

not arrive within 60 microseconds of last data word reception.

i. Word Count High This bit shall be set to a logic I by the

Remote Mode BCIU after detecting another Data Word after the word count is

zero.

j. Data Parity Error This bit shall be set to logic I by the

Remote BCIU after an expected data word was received with Parity Error indi-

cated. Data word reception continues.

k. Invalid Data This bit shall be set to logic 1 by the Remote

, mode BCIU after an expected data word was received with RECV WORD INVALID

indicated. Data word reception continues.

1. Invalid Command This bit shall be set to logic 1 by the
Remote BCIU after receiving a mode command in which the mode code designates

an invalid operation for the BCIU.

3.1.1.1.2.7 Status Code Register (SCR)

This register shall be used in Remote Mode only and shall be

set and reset by the Remote Mode Processor. The actual status code shall be
the nine (9) least significant bits of the register and shall be merged into

any status word prior to status word bus transmittal by the Remote BCIU.

3.1.1.1.2.8 Master Function Register (MFR)

This register shall be used only in support of the Master Func-

tion Mode Command. In Master Mode and in accordance with Master Function

processing, the contents of the register shall be transmitted to the Remote

device as a data word immediately following the command word. It shall be

the Master Processor's responsibility to set the register. In Remote Mode,

the Remote Mode BCIU shall place the received data word, in response to the

Master Function mode command, into the MaSter Function Register. It shall

be the Remote Processor's responsibility to then interpret the contents of

the register.

24

L.9W.

I I

3.1.1.1.2.9 Instruction Word Register 1 (IWRI)
This register shall be used in Master Mode only to hold the

first half of the current 32-bit instruction.

3.1.1.1.2.10 Instruction Word Register 2 (IWR2)

This register shall be used in Master Mode only to hold the

second half of the current 32-lbt instruction.

3.1.1.1.2.11 Xmit Status Word Register .(XSWR)

This register shall be used in Master Mode only to hold any
" status word received from a Remote Device in Transmit Mode, in whicb the

Message Error, Terminal Failure, or Status Code fields were non-zero.

3.1.1.1.2.12 Received Status Word Register (RSWR)

This register shall be used in Master Mode only to hold any

status word received from a Remote device in Receive Mode, in which the

Message Error, Terminal Failure, or Status Code fields were non-zero.

3.1.1.1.2.13 Mode Data Register (MDR)

In Master Mode, and only in accordance with performing a cer-

tain class of mode commands, the contents of this register shall be trans-
mitted to the Remote device as a data word immediately following the command
word. The Master Processor shall be responsble for setting the register.

In Remote Mode, the MDR shall be undefined for the Mode Operation defined.

3.1.1.1.2.14 Pointer Register (PR)

This register shall be set by a BCIU operating in either Master

or Remote mode and shall contain the initial data area address for a given
data bus operation involving main memory data transfers. The register shall

be used in Tag Word Operations.

25

o OWN=

3.1.1.1.2.15 Data Address Register (DAR)

This register shall be set by a BCIU operating in either

Master or Remote mode and shall be used to indicate the main memory address

of the next data word to be fetched/stored in support of a given bus opera-

tion. The register shall be derived from the Pointer Register and in all

cases (Receive or Transmit) that value shall be initially incremnnted by 1

to get over the Tag Word. This value then becomes the address to fetch/store

the first data word. As each word is fetched/stored, the BCIU shall incre-

ment the register value by 1 to affect sequential data word fetch/stores.

3.1.1.1.2.16 Word Count Reister (WCR)
* This register shall be derived from the Bus Command and set

* by the BCIU in either Master or Remote Mode. In Bus Operations involving

data word transfers, it shall indicate the remaining number of data words

to be transferred. The register shall be decremented by 1, by the BCIU, as

each data word transfer is performed.

3.1.1.1.3 Interrupt Generation

The BCIU shall examine the Program Controlled Interrupt Indica-

tor within the Instruction Word One Register (IWRI). If set to logic 1, the

BCIU shall set the PCI indicator within the ISR to logic 1. (see Figure

3). The BCIU shall begin to examine the contents of the ISR
from right to left, one field at a time. If any field is found to be non-

zero, the BCIU shall discontinue the examination and present the correspond-

ing level interrupt as indicated in Figure 3.

3.1.1.2 Remote Terminals

3.1.1.2.1 Basic Characteristics

The Remote Terminal (RT) provides the interface between the

IDN4ST Multiplex System and an Aircraft Subsystem.

The RTs provide for Bus communication with the IDAMST

processors (as described in Section 3.1.1.1.2).

The subaddress field of each Transmit or Receive Command acts

as a message identifier. The message is formatted by the RT for correct in-

terface with the Interface Modules (IM) which relay (or accept from) the sig-

nals to the aircraft subsystems.

The RT also as a buffer, holding the message until correct

transmission has occurred.

The RT performs all the error checking and setting of error

and status bits of a remote BCIU.

3.1.1.2.2 RT Functions

The RT shall contain the registers, logic, decoders, buffers,

comparators and control sequences required to perform the following functions:

a. Receive Command Words from the Bus.

b. Detect Command Words directed to this RT.

c. Receive Data Words from the Bus (one at a time) if directed

to do so by the received Command Word.

d. Transmit Data Words through the Bus to the data bus (one at

a time) if directed to do so by the received Command Word.

e. Transmit Status Words through the Bus to the data bus as

directed by the received Command Word.

f. Perform Mode Operations when and as directed by received

Command Words.
g. Distribute received Data Words to the proper channels of

the proper IMs.

h. Input Data Words from the proper channels of the proper IMs

for transmission to the data bus.

i. Maintain the Status Word and the Built-In-Test (BIT) Word

of the RT by performing continuous and periodic self test functions within

the RT.

J. Maintain an Activity Word and Error Word for monitoring

status of serial digital IM's.

27

k. Maintain a Last Command Register for verification of com-
mand receipt in the event of an invalid response.

1. Perform Bit and Word Masking.

3.1.1.3 Processor Control Panel (PCP)

The IDA14ST Processor Control Panel is illustrated in Figure 5

and its description follows.

3.1.1.3.1 IDAMST Bus Power Switches

The function of these switches is to provide the required sig-

nal to the power control unit to turn on and off the power supplied to the
multiplex elements (Remote Terminal side A and B, and the Bus Control Inter-

face Units). These switches shall also control power to all other processor

control panel functions. These switches shall be push-on, push-off, and

backlighted to indicate the "on" condition.

3.1.1.3.2 Processor Power Switches

The function of these switches is to provide the control sig-

nal to the power control unit to turn on or off each processor. One switch

shall be supplied for each processor. The processor "power on" signal shall

also be supplied to the advisory caution panel circuitry to control the pro-

cessor failure indication. The switches shall be push-on, push-off and back-

lighted as described below.

3.1.1.3.3 Processor Interrupt - Startup/Restart

This switch, when depressed, shall enable the startup/restart

interrupt to each Processor. The processor shall enter the Startup/Loader

program and perform complete system restart as defined in the System Control
Procedures. This switch shall be a momentary switch and backlighted while

depressed.

3.1.1.3.4 Processor Interrupt - Reconfiguration

This switch, when depressed, shall enable the reconfigure in-

terrupt to each Processor and cause the Master Executive performing system

control (either Master Executive in Master Processor or Monitor Processor) to

28

" .-. * .

LL..

LA.6

-I-LA-. I- Lai 0
Mv 0) ~LA.

LLSJ 0

C)

cj 06 LiL-

.~ .%.LA.

Cll

Cla-

29

initiate reconfiguration. Reconfiguration is performed after one or more

processors have failed; the system is in either the recovery or backup mode;
and the pilot manually initiates reconfiguration.

3.1.1.3.5 Press to Test

The function of this switch shall be to test all lights on the

PCP.

3.1.1.3.6 Switch Indicators

3.1.1.3.6.1 IDAST BUS Power and Processor Interrupts

These switches shall be backlighted to indicate the "on" con-

dition.

3.1.1.3.6.2 Processor Power

These switches shall be backlighted as follows:

a. White - Indicates the switches have been depressed

b. Green - Indicates ("GO") that power has been supplied

to the processor and the "Processor GO/NO-GO" signal has been set to the "GO"

state within the previous 40 msec.

c. Red - Indicates ("Fail") processor power is "on"
and the absence of the "GO" signal for more than 40 msec.

3.1.2 Software Interfaces

The IDAMST Executive software interfaces with the Application

software developed for IDAMST and a pre-processor software system (PALEFAC)

that allocates and initializes the executive tables.

The IDAMST Application Software has been defined to consist

of Events, Tasks, Comsubs, Compool Blocks and Real-Time Pseudo Statements.

30

Tasks and Comsubs are processing modules containing executable

code and local data. Compool Blocks and data modules used for communication

between tasks. Events are boolean values used for control interactions be-
tween tasks.

Real-Time Pseudo Statements are the means through which the

Application Software will communicate with the Executive.

3.1.2.1 Events

Events are used for control communication between tasks. An

event has two possible values: on and off.

q

* Any Task may have an associated Task Activation Event. Such

an Event is set on when the Task is Activated and set off when the Task re-

f" turns to Inactive or Uninvoked state. The Activation Event associated with

a Task must have the same name as the Task.

Any Compool Block may have an associated Compool Update Event.

Such an Event is set on when the Compool Block Is updated, either by a Task

or an RT. The Update Event associated with a Compool Block must have the

same name as the Compool Block.

Minor Cycle Events are set on by the Executive according to

specified rates and phases. They may only be referenced in Event Condition

Sets.

3.1.2.2 Tasks

Tasks are the principal processing module within the IDAMST
Application software. All tasks have been defined to exist in a given "state"

at a given time. These "states" are illustrated in Figure 6. The

"states" of tasks are controlled by the application software through the

Real-Time Pseudo Statements (see Paragraph 3.1.2.5). A task shall become

"Invoked" only after betnq scheduled by another task, otherwise it shall

remain uninvoked.

31

-7-_

6-1

a3--

00
LUJ w LUc

0i L

4n CD

I-I

cm Q
='

I---

L'U

0i U, -- P

U '
LU L&

LnU

lou

I32

Immediately after being scheduled, a Task is Inactive; how-

ever, it has the potential to become Active, depending upon its Event Condi-

tion Set. The Event Condition Set is a collection of Conditions, each of

which may be either "on" or "off." Each Condition has a "desired" value.

When all the conditions in the Event Condition Set have their desired values,

if the Task is Inactive, the Executive will put it into Active state. A

Task may have a null Event Condition Set, in which case it can only be In-

active momentarily.

Each Condition in an Event Condition Set is associated with a

"* set of Events. When any of these Events is set on, the Condition is set on;

when any of these Events is set off, the Condition is set off. One Event

may be associated with more than one Condition in an Event Condition Set.

In addition, one Condition may be associated with a "Minor Cycle Event."

These are Executive-generated Events which are set "on" at certain specified

times and are otherwise inaccessible to the Application Soft-
ware. If a Condition is associated with a Minor Cycle Event, it may not be

associated with any other Event.

A Condition may be either Latched or Unlatched. A Condition

associated with a Minor Cycle Event must be Unlatched. The sole difference

between a Latched and an Unlatched Condition is that upon the Scheduling or

Activation of a Task, the Unlatched Conditions are set to the undesired

value. Thus, a Task can only be Activated by an Unlatched Condition when the

value of that condition is changed to the desired value subsequent to the

last Scheduling or Activation of the Task. By contrast, Latched Conditions

are changed only when one of their associated Events is changed. Therefore,

a Task with only Latched Conditions in its Condition Set will be Immediately

Activated after it is Scheduled if all the Conditions were satisfied before

the Schedule Statement.

A Task may return from Active to Inactive state from two

causes: either because it completes execution, or because it is forcibly

Terminated by another Task. In either case, immediately after it returns to

Inactive state, the Event Condition Set is evaluated, and if all the Condi-

33

tions have their desired values, the Task is immediately re-activated.

When a Task is Activated, it is immediately put into Dis-

patchable state. If, at any point during its execution, a Task executes a

Walt Statement, the Executive will place it into Wait state until the speci-

fied condition is satisfied, upon which the Task will again become Dispatch-

able.

All Dispatchable Tasks should theoretically be executed immed-

lately. However, since there may be more than one Dispatchable Task at any

time within any one of the DAIS Processors, Tasks are ordered by Priority to

resolve possible conflicts. Whenever the Executive in any Processor is not

called upon for immediate action, it selects the highest Priority Dispatch-

able Task, and causes the Processor to execute it.

Some tasks are declared "Privileged Tasks" and are considered

to have the highest priority. Thus, as soon as they are scheduled and their

Event Condition Set is satisfied, they immediately become executable with

the highest priority.

If a Task is Active but has not yet been executed, it is said

to be Ready. If it has been in the process of execution, but has been in-

terrupted by a higher priority Task, it is said to be Suspended. If it is

executing, it is said to be Executing.

Any given Task may only be Scheduled by one Task, which is

called its Controller. Two Tasks with a common Controller are said to be
"siblings." The Tasks Scheduled by any Task are said to be its "sons." If

a Task has no sons, it is said to have no "descendents;" otherwise, its

descendents are its sons and all the descendents of its sons.

Only a Task's Controller may Cancel or Terminate it; however,

when a Task is Cancelled or Terminated, all of its descendents are Cancelled

or Terminated. If a Task attempts to Cancel or Terminate itself, it will

Cancel or Terminate all of its descendents, but will leave its own state

unchanged.

34

3.1.2.3 Comsubs

In addition to Tasks, the IDAMST Application Software may in-

clude another kind of processing module, known as the "Comsub." A Comsub

is a Jovial J73/1 based procedure declared external to any Tasks. A Comsub

may be called from many Tasks; there is a copy of each Comsub in any proces-

sot containing a Task from which the Comsub may be called.

A Comsub communicates with a Task which calls it only through

its parameters and/or function result. No Comsub may execute any Real-Tim

Pseudo-Statements; however, one Comsub may call another.

When a Task calls a Comsub, the Task is considered to be exe-

cuting within the code of the Comsub. Thus, it is possible for one Task to

be suspended within the code of a Comsub at the same time that another Task
is executing within the same Comsub. In other words, a Comsub must be re-

entrant. To implement this, every Task has a Comsub Local Storage Area

assigned by PALEFAC for storage of local data by the Comsubs which it calls.

At any time, there is a Comsub Stack Pointer which points to the area avail-

able for storage to the next called Comsub. This Comsub Stack Pointer is

considered to be part of the process state of the Task, and is saved upon the

occurrence of an Interrupt.

3.1.2.4 Compool Blocks

All communication of data between Tasks or between Tasks and

the external environment (RT's) is done by means of "Compool Blocks."

No Task may directly access a Compool Block; instead, a Task

references a "Local Copy" which has size and attributes identical to the Coin-

pool Block. A Task may copy the Compool Block into its Local Copy by a READ

Statement, or copy the Local Copy into the Compool Block by a WRITE statement.

From the point of view of the Application Software, READS, WRITEs, occur in-

stantaneously, so a Compool Block can never be read when it has been partially

updated by a WRITE.

35

Compool Blocks are divided into three classes: Input, Output,

and Inter-task. Input Compool Blocks can only be accessed by Tasks in a READ

statement. Their values are determined by RT's. Output Compool Blocks can

only be accessed by Tasks in a WRITE statement; their values are "received"

only by RT's. Intertask Compool Blocks are used solely for communication be-

tween Tasks.

Since a Compool Block may be accessed in more than one pro-

cessor and also, possibly, in an RT, Compool Blocks may exist in multiple

copies. Any prcessor in which a Compool Block is read has a Physical Copy

of the Block; any RT which references the Block, or any processor which only

WRITEs the Compool Block, is considered to have a Virtual Copy of the Block.
To maintain consistency between the various copies of a Compool Block, the

Executive must send Compool Update Messages across the Data Bus. Compool
Blocks are further classified according to when these Update Messages are

sent as: Synchronous, and Asynchronous.

Synchronous Compool Blocks are updated from a single authori-
tative Copy, whether in a processor or an RT, at a specified rate and phase.
All copies of an Asynchronous Compool Block are updated when any of those

copies is changed, either by the hardware of an RT or by a WRITE statement

within a processor.

3.1.2.5 Real-Time Pseudo Statements

The application software requests services from the Executive
system through Real-Time Pseudo Statements. These pseudo-statements are in-

terpreted by the Executive software into calls to different functions as ex-
plained in Section 3.2.1.3. The statements implemented in the IDAMST system

are:

a. SCHEDULE

b. CANCEL

c. TERMINATE

d. WAIT

e. SIGNAL

f. WRITE
g. READ

36

SAW-.

3.1.2.6 Palefac

The PALEFAC software system is responsible for the allocation

and initialtzatiein of the Executive Tables driving the IDAMST Executive soft-

ware. These tables describe the attributes and inter-relations of the vari-

ous components of the application software, i.e., tasks, events, compool

blocks, comsub.

PALEFAC shall generate two types of executive tables: Local

Executive Tables and Master Executive Tables. The Local Executive Tables are

used for control of Tasks, Events, Compool Blocks and Comsub. The Master

Executive Tables are used by the Master Executive to control the operations

of the master processor and its interface with the master BCIU.

These tables have been described extensively in Section 3.2

and have been identified with the particular function involved with the data.

3.2 Detailed Functional Requirements

3.2.1 IDAMST Local Executive Functions
The IDAMST local Executive shall reside in each processor

within the IDAMST federated system and it shall be functionally identical in

each processor.

The functions of the Local Executive shall be to:

1. Perform services as requested by the application software.
These services are:

a. Event signalling

b. Task scheduling

c. Task termination

d. Task cancellation

e. Wait

f. Compool Read/Write

37

2. Perform event handling, and task checking and dispatching.

3. Control the interface with the BCIU with regard to Local

Executive Communi cations.

4. Respond to minor cycle interrupt and participate in the

transmission and reception of synchronous messages.

5. Participate in asynchronous message transmission and

reception.

Figure 7 illustrates the functions interrelation-

ship.

Figure 8 illustrates a top level functional flow

as exercised by the IDAIST Local Executive.

3.2.1.1 Function One - Local Executive Control

The purpose of this function is to provide single point con-

trol of the Local Executive by maintaining the proper sequencing of its func-

tions. The Local Executive Control processes requests from the Application

Software Interface and the Hardware Interface Functions.

3.2.1.1.1 Inputs to the Local Executive Control Function

Inputs are listed in Table II.

In order to identify messages received from Remote Terminals,

two tables of predetermined information are used. These are called the Ter-

minal Originator Address Table (TOAD) and the Subaddress Name Keys Table

(SNAKE).

3.2.1.1.1.1 Terminal Originator Address Table (TOAD)

This table, illustrated in Figure 9 shall appear once

in every processor. An entry in this table is generated for each of the 32

possible Remote Terminals. Thus, the RT address is to index into this table.

38

wI

BCIU

INTERFACE AND
CONTROL ERROR RECOVERY

, [LOCAL
• | EXECUTIVE

EVENT
HANDLING

TASK
DISPATCHING

HANDLING]

TASK
CHECKING

CYCLE

/SET-UP

APPL, 1. SCHEDULING
SOFTWARE 2. TERMINATION/CANCELLATION

IFCE 3. EVENT SIGNALLING\4. WAIT

5 (. COMPOOL READ/WRITE
6. SERVICE RETURN

APPLICATIONS SOFTWARE

MAJOR FUNCTIONS OF LOCAL EXECUTIVE

Figure 7

39

0L LLu

LLJ Cn Lu -4'

LS

- (A 4n0

V) LLu LL

C.0) =~ - I
S u

CL)

Lu _

ULLu u CD c
.. ZL Wb

-=~~V bidLJL)

CLJ C.) Lu,

w C

) w b

Lul-

-. 0 Cj b

Lu.-.
Lu.-L

40

LiU

LUi
LA-

0

CC

C CA W

0~~ LL@ C @

u CL

do CA. 0. toi
#A W. 0 C o4

ui E u W .

to 0In 0

(L U In W AC UL I
LUS LI Inn 4A 0

9- . E 9

E -4)
0 U 0(.

>1 C .0.~ 0

w01

4J - 4

0 41

ITEM DESCRIPTION

1 Number of Asynchronous Messages from this RT

2 Pointer to First Message described in SNAKE

Table (Fig. 3.2.1.1-2)

o This table to contain one entry for each of the 32 possible

Remote Terminals

Figure 9 Terminal Origination Address

Table (TOAD) Description

42

This table shall specify the number of synchronous messages associated with

the RT and shall provide a pointer to the message descriptions located in

the Subaddress Name Keys Table. If there are no messages originating from

this RT, its entry in this table shall be null.

3.2.1.1.1.2 Subaddress Name Keys Table (SNAKE)

This table, illustrated in Figure 10 shall appear once
in every processor. It shall contain an entry for each possible asynchron-

ous message from the remote terminals to the processor. All messages from

an RT shall be contiguous within this table and they shall be indexed by the
pointer stored in TOAD (ref. para. 3.2.1.1.1.1) and identified by the sub-

address accompanying the RT message.

3.2.1.1.2 Local Executive Control Processing
This function controls the sequence of operations performed

by the Local Executive. These operations are a consequence of:

a. The reception and processing of a minor cycle

(synchronous) interrupt.

b. A service request originating in an application or

Executive Task.

c. The processing of an Asynchronous Reception.

d. The performance of System Initialization.

Figure 11 demonstrates the Local Executive Control

Processing sequence.

Upon being entered, the Function will determine if a minor-

cycle set-up is due. If a minor-cycle set-up is not pending the Event Queue
is immediately searched. After the Local Executive Control Function de-

queues an Event from the Event Queue, control is passed to the Event Hand-

ling Function.

43

ITEM DESCRIPTION

1 RT sub-address originating the message

2 Pointer to Asynchronous DDB for this message

, (ref. para. 3.2.1.3.1)

o This table to contain an entry for each possible

asynchronous message from RT's.

Figure 10 Sub-address Name Keys Table (SNAKE)

44

* - . : _ -] . . - :. . . l~l l :

EXECUTIVE
CONTROL

SET PRIVILEGED
MODE FLAG

I
N YCALL

CYCLE PENDING MINOR CYCLE
SET-UP
REF. 3.2-1.7

IF EENTDkEVE•PENDING >EVENT

CALL EVENT
HANDLING
FUNCTION
REF. 3.2.1.4

SIF ASYNCH.

RECEPTION .,DECODE
PENDING ID ASYNCH.

ID

IF CALL JAL
IF " ,._._ ASYNCH. I CALL

TRANSMISSION > TRANSMISSION IFUNCTION
QUEUEDFUNCTION IREF. TABLE 3.2.1.1-2

I (PARA. '
~3.2.1.8.2)

CALL UPDATE
DISPATCH FIRST BUFFER
FUNCTION POINTER

(REF. Para. 3.2.1.8.1

Figure 11 LOCAL EXECUTIVE CONTROL PROCESSING

45

. . . "..Ii ''"IIn'l i"...... I -- I I I I IImNIIm

If an asynchronous reception is pending in the Reception

Queue, the Asynchronous ID is decoded, and the proper function is invoked

accordingly. If the asynchronous message was sent by a Remote Terminal (RT),

the Executive Tables associated with the Remote Terminal are examined. These

tables, as described in Section 3.2.1.1.1, specify the Data Descriptor Block

associated with the RT. If the source of the asynchronous message is not an

RT, the type of message and the parameters to pass to the specified function

are determined from the ID. The types of Asynchronous ID's, the Functions

invoked to service them, and the parameters passed to those Functions are

listed in Table

After the asynchronous message is processed, it is dequeued

from the Reception Queue. Otherwise, if the processing had not been accomp-

lished successfully, the ID would still be available in the Reception Queue.

Finally, the Task Dispatching Function is called.

The local executive sets the Privileged Mode flag when it is

entered and resets the flag before passing control to a non-privileged task.

The privileged mode flag is used to prevent local executive routines or "pri-

vileged" tasks from being re-entered before completion. If an interrupt

occurs when the privileged mode flag is set, the interrupt processing routine

shall return to the point of interruption when it completes execution. Simi-

larly, when a Privileged Mode Task makes an Executive Service Request, the

Local Executive shall return control directly to the task.

3.2.1.1.3 Outputs from the Local Executive Control Functions

The actual output of this Function is the initiation of the

various Functions in the exercise of the sequence control. Each one of these

Functions do require several inputs for their processing as listed in the

description of each specific function and Table III.

46

CL 4-E L4 4 ,4.)
u 1- As 41 C to1 0) I

gos ic 1.0 1.0 u .0 LaJ FE

1t4 si- a a
Cu n. 4u1 m.) 4m C . p.- beu m

Ru 4.-U 0-L Eu B0 .0W # 0 I-L 00 I-
U) CI 3 cU- -sU-s

a. 41 u LL.n CA VI LL. u VI .C

o C i C.- CV r- Eu EuM Eu Os

LU

Ln

*u

Zo 0 C

C4 S I-EE

4 C4

0 C

o . 0.o 4-. M *v 4)t
I.- 41 16. Cu L. uI

u. U. 10 1 O ~)

03 41~ CO1C

L - Lu c-U - IL

-44

-47

"Il

3.2.1.2 Function Two- Hardware Interface Control Function

The Hardware Interface Control Function shall have as its

prime objective the proper conduction of communication between the Local

Executive and the Bus Control Interface Unit (BCIU). This communication

shall be accomplished through the reading and loading of the BCII) registers.

This Function shall be responsible to process all interrupts

received from the BCIU and, as a consequence, invoke the proper functions

to service the interrupts. It shall accept asynchronous messages for trans-

mission, supply the Local Executive with asynchronous messages received and

accept and enqueue minor cycle numbers as a result of a synchronous inter-

rupt reception.

Interrupts received as a result of terminal failure or Data

communication error shall cause the invocation of the Error/Failure Control

Function.

3.2.1.2.1 Inputs to Hardware interface Control Function
The inputs to this Function are listed in Table IV

3.2.1.2.1.1 BCIU Registers

The BCIU registers referred to in Table IV are listed

in Table I and described in Paragraph 3.1.1.1.2.

3.2.1.2.1.2 BCIU Interrupts

The BCIU activates six levels of interrupts directly related

to the contents of Internal Status Register (ISR). As described in Para-

graph 3.1.1.1.3, asynchronous message transmission and reception are related

to Level 2 interrupts. The Master Function and the reception of synchronous

transmission is related to Level 3 interrupt.

Power-On Initialization generates a Level 1 interrupt.

48

UU

La.'

La.'

Ux

La.

6-

Lait
4= 0 r

41 W1 C

v- LL.1

41 to

* 49

3.2.1.2.2 Hardware Interface Control Function Processing

The Hardware Interface Control Function shall be invoked upon

the reception of an interrupt from the BCIU. This function shall invoke the
proper Local Executive function to service the interrupt. This processing is

illustrated in Figure 12.

If the "Privileged Task Mode" flag is set, the status of the

processor (program counter, registers, condition status, etc.) prior to the

interrupt is locally saved to allow for immediate return after the interrupt

is serviced. If the "Privileged Task Mode" flag is not set, the processor

" status is saved in the Local Processor Tasks Table B entry for the interrup-

ted task.

The origin of the interrupt is identified, if necessary,

reading the Internal Status Register (ISR) of the BCIU. Then, the appropri-

ate Executive Function is invoked to service the interrupt, namely, asyn-

chronous reception, asynchronous transmission or the Error/Failure Control

Function.

Upon return, the "Privileged Task Mode" flag is checked. If

it is on, the processor will return to the state prior to the interrupt.

Otherwise, return will be through Function 1, Local Executive Control and

eventually the Dispatcher.

3.2.1.2.3 Hardware Interface Control Function Outputs

On exiting this function, the only parameter actually output

by this function is the Minor-Cycle Pending Flag.

All other outputs indirectly concerned with this Function

shall be output by the Functions being invoked.

50

REINTERRUPT

MODE' FLAG SET/ PROCESSOR STATE

' 7 IN LOCAL AREA

SAVE PRIOR STATE

EXAMINE IN TASK TABLE B

INTERNAL ENTRY AND

STATUS SUSPEND TASK

REGISTER

IF TERMINAL TRANSFER
FAILURE OR TO
DATA ERROR ERROR CONTROL

FUNCTION

IFASE FUCINF READ SET

MASERFUCTONMINOR CYCLE MINOR

FINTERRUPT Hn i NUMBER FROM CYCLEIBCIU PENDING

PRIVILEGED MODE
FLAGST IGET R.TDY

FLAGISET I'-TO RETURN TO,

IPREV. STATE IFNC, CALL

-ASYNCHAYNCH.
"RECEPTION RECEPTION

_TO RETURN
-TO LOCALI

EX EC. CONTROL |IF CA.LL

' I~ASYNCH. \ _ ASYNC:H.
trRANSM. TRANSM.
lCOMP.ETIO/

Figure 1,2 interrupt Handling Processing

51

3.2.1.3 Function Three - Application Software Interface
Control Functions

This function serves as an interface between the application

software and the executive services. Each service is initiated by explicit

task action through the exercise of the Real Time Pseudo-Statements. In-

cluded in the category of local executive servicessare the folloving:

1. Task scheduling

2. Task termination and task cancellation

3. Event signalling

4. Compool read/write

5. Walt - Absolute Time

- Relative Time

- Latched Event

- Unlatched Event

Upon termination of the executive service, an Executive Ser-

vice Return Function shall be activated. This function determines whether

control must be relinquished to the calling task or more executive functions

need to be exercised.

3.2.1.3.1 Inputs to Application Software Interface Control Function

The inputs to the local executive services function are listed

in Table V. The source of these inputs is the requesting applica-

tion or executive task.

Task Table A and Data Descriptor Blocks are preloaded tables.

Their description follows.

Task Table A

This table is illustrated in Figure 13. This table

shall appear once in every processor. It shall contain an entry for any

task residing in the processor and for the controller and sons of this task,

whether resident in this processor or not.

52

TABLE V INPUTS TO APPLICATION SOFTWARE INTERFACE CONTROL FUNCTION

ROUTINE INPUT PARAMETERS SOURCE

SCHEDULE 1. TASK TABLE A ENTRY OF TASK TO REQUESTING

BE SCHEDULED TASK

CANCEL 1. TASK TABLE A ENTRY OF TASK TO

BE CANCELLED

TERMINATE 1. TASK TABLE A ENTRY OF TASK BEING

TERMINATED

EVENT 1. DESIRED EVENT VALUE

SIGNALLING 2. EVENT TABLE ENTRY
. (REF. TABLE VII)

COMPOOL 1. COMPOOL BLOCK DDB ADDRESS

READ 2. LOCAL STORAGE INTO WHICH EACH

COMPOOL BLOCK IS TO BE READ

COMPOOL 1. COMPOOL BLOCK DDB ADDRESS

WRITE 2. LOCAL AREA TO BE WRITTEN FROM

WAIT:

ABSOLUTE TIME 1. ABSOLUTE TIME

RELATIVE TIME 2. RELATIVE TIME

LATCHED EVENT 1. DESIRED EVENT VALUE

2. EVENT TABLE ENTRY

UNLATCHED EVENT 1. DESIRED EVENT VALUE

2. EVENT TABLE ENTRY
(REF. TABLE VII)

53

* .

Task Table A shall be ordered according to the invocation

tree, according to the following rules:

a. The controller of a task always precedes the task.

b. If Tasks A and B are siblings and A precedes B,,and A is

not the controller of B, then all offsprings of A precedes B.

Asynchronous Data Descriptor Block (DDB)

Every physical or virtual copy of a compool block within a

processor has an associated DDB. An asynchronous DDB area shall appear once

in every processor. An asynchronous DDB is generated for each compool block

that is read, written or updated by a task in this processor.

Figure 14 illustrates the components of an asynchronous

DDB.

Item #1: Is off because this is an Asynchronous DDB.

Item #2: Is on if there is a physical copy of this compool

block within this processor. This item indicates whether Item #7 is present.

Item #3: Is on if there is an Update Event for this compool

block within the processor. This item indicates whether Item #8 is present.

Note that this item can be on only if Item #2 is on.

Item #4: Is on if there is a virtual copy of this compool

block in an RT and this compool block is written within this processor. This

item indicates whether Item #9 is present.

Item #5: Is the number of non-local physical copies of this

compool block to be updated from this processor. It is zero if the compool

block is not written within this processor. This item indicates the number

of items of types #10 and #11.

Item #6: Is the number of words in the compool block, includ-

ing the MC Tag Word.

54

-I-

ITEM DESCRIPTION

1 NON-RESIDENT BIT

2 PROCESSOR NUMBER

3 INDEX TO TASK TABLE ENTRY

4 NON-RESIDENT BIT FOR CONTROLLER

5 PROCESSOR NUMBER FOR CONTROLLER

6 INDEX TO TASK TABLE ENTRY FOR CONTROLLER

7 i INVOKED/UNINVOKED BIT

8 NUMBER OF DESCENDANTS

FIGURE 13 TASK TABLE A

r

Item #1: ON if the task is non-resident.

Item #2: Processor number where a non-resident task resides.

If the task is resident to this processor, this

item will be zero.

Item #3: For non-resident task, pointer to task Table A in

the appropriate processor. For resident task, points

to entry in Local Processor Task Table B (ref. Table

X.

Item #4 - #6: Point to the controller in the same way that Items #1

-#3 point to the task. If this task is the highest

task in the hierarchy tree, these items will be set to

zero.

Item #7: ON if the task is uninvoked.

Item #8: The total number of descendants of this task with

entries in this processor's task Table A.

55

* .- *

ITEM DESCRIPTION

1 SYNCH BIT

2 LOCAL COPY BIT

3 UPDATE EVENT BIT

4 REMOTE TERMINAL TRANSMIT BIT

5 NUMBER OF NON-LOCAL PHYSICAL COPIES

(INDICATES NBR. OF PAIRS 10, 11)

6 NUMBER OF WORDS IN COMPOOL

7 ADDRESS OF LOCAL COPY

8 OFFSET TO UPDATE EVENT IN EVENT TABLE

(TABLE VII

9 REQUEST VECTOR FOR REMOTE TERMINAL TRANSMISSION

10 (OFFSET TO DDB OF PHYSICAL COPY WITHIN EACH PROCESSOR

11 REQUEST VECTORS FOR UPDATING NON-LOCAL PHYSICAL COPIES

FIGURE 14 ASYNCHRONOUS DATA DESCRIPTOR BLOCK

56

t4

Item #7: If present, is the starting address of the local

physical copy of the compool block.

Item #8: If present, is an offset from the beginning of the

Event Table to the entry for the Update Event associated with this compool

block.

Item #9: If present, is the Request Vector for updating the

virtual copy of this compool block within an RT.

* Item #10: If present, are offsets from the beginning of the

DDB area within each processor with a physical copy of this compool block

to the DDB for that physical copy.

Item #11: If present, are the Request Vectors for sending

updates for non-local physical copies of this compool block.

Synchronous DDB

Synchronous DDB's are used for Synchronous Compool Blocks. All

Synchronous DDB's within a processor are contained in a single contiguous

synchronous DDB area. A synchronous DDB area shall appear once in every

processor.

A synchronous DDB is illustrated in Figure 15

3.2.1.3.2 Application Software Interface Control Function Processing

This function consists primarily of a collection of Executive

Service Routines. Whenever a task requests an executive service by means of

a Real Time Pseudo Statement, a call to an executive service routine is

effected. The return from the service routing is done through this control

function in order to determine whether return should be directly to the call-

ing task or to satisfy any other request from the Local Executive.

57

ITEM DESCRIPTION

1 Synchronous Bit

2 Number of Words in Compool Block

3 Absolute Address of Compool Block

4 Period -1

5 Phase

4

Item #1: On for a Synchronous DDB

Item #2: Number of Words in Data Block

Item #3: Starting Address of Compool Block

Item #4: Number of Minor Cycle between successive

transmission of this block

Item #5: Phase on which the Compool Block is transmitted

FIGURE 15 SYNCHRONOUS DDB

58

* .

3.2.1.3.2.1 Task Scheduling

The Task Scheduling Service shall be accomplished as illustrated

in Figure 16.

3.2.1.3.2.2 Task Termination/Cancellation

This service shall forcibly terminate or cancel a task, as re-

quested, and act upon the tasks descendants.

When a task is terminated, it is put into an Inactive State; a

cancellation request will establish the task as uninvoked. A termination or

cancellation request may be for self-termination or cancellation or may

specify a descendant. A request on a descendant shall also affect the des-

cendant's descendant. On the other hand, a request for self-cancellation or

self-termination shall be interpreted as a request to cancel or terminate
only its descendants.

The Cancellation/Termination processing is illustrated in

Figure 17.

3.2.1.3.2.3 Event Signalling

The event signalling services requests to set an event state to

either "I" or "0". Upon receipt of this request, the proper event informa-
tion will be stored in the Event Queue. The Event Handling Function will
proceed to exercise the request as described in paragraph 3.2.1.4.

3.2.1.3.2.4 Wait

Wait service is requested by a dispatchable task to place it-

self into a wait state until a specified time occurs or a specified Event

attains a specified value.

An Absolute Time Wait places the task into Wait state until a

specified absolute time. If the specified time has already occurred, this

statement is a No-Op.

59

TASK
SCHEDULING

SET INVOKED/UNINVOKED
INDICATOR IN TASK TABLE A
TO INDICATE INVOKED

IF TASK IS __ ENQUEUE
NON-RESIDENT SCHEDULE

REQUEST
IN TRANSMISSION

RETURN
QUEUE

SET TASK STATE
_IN LOCAL PROCESSOF
TASKS TABLE B TO
INVOKED

SET UNLATCHED
CONDITIONS TO
UNDESIRED
VALUE

PERFORM
TASK CHECKING
(ref. P 3.2.1.5)

Figure 16 Task Scheduling Processing

60

I = E
La 5; = N

In 2=a 4nI.

.-.i -

CCu. uIn U. Cl

I-'

LI OI

'a In 'a .D
C,'a I~

0-. j ~ OL&
4A'a

ui ui -

= Lm

14a

61 5.i

LAO

I. L

-2-

-Aw w

US I. 7L

=J =J I. 0- W

IN.

now

A Relative Time Wait places the task into Walt state for a

specified period of time. If the specified period is non-positive, this

statement is a No-Op.

A Latched Wait places the task into Walt state until a speci-

fied Event reaches a specified "desired value." If the Event aleady has
the dtsired value, this statement is a No-Op.

An Unlatched Wait places the task into Wait state until the

specified Event is changed to the specified value. This statement is never

a No-Op.
q

This service processing is illustrated in Figure 18.

3.2.1.3.2.5 Compool Read/Write

Compool blocks, classified according to when they are updated,

are named Synchronous and Asynchronous.

Synchronous Data Blocks are updated from a single authoritative

copy at a specified rate and phase. Asynchronous Compool Blocks are updated
whenever any particular copy is changed, either by the hardware of an RT

or by a WRITE statement within a processor.

The first word of each physical and virtual copy of a compoolblock in a processor shall consist of a "Minor Cycle Time Tag" indicating

the last time the physical copy was updated. The generation of this "Time

Tag" has been explained in Paragraph 3.2.1.2.

Compool Block Processing is illustrated in Figure 19.

3.2.1.3.2.6 Executive Service Return Function

This function is called by all executive service routines on

their way to relinquish control. As illustrated in Figure 20, this

function shall determine whether there is a need to perform additional

S..local executive functions. These additional functions could have been as a

63

WAIT.

IWATIF PLACE TASK
REUS SSPECIFIED IN TIME-WAIT

O| TIME TIME 1 CURRENT/ CHAIN THRU
TIIE TASK TABLE B

IRETURN4

SET TASK STATUS
IN TASK TABLE B
TO WAITING

~U14LATCHED
'OR EVENT NOT PLACE TASK IN

AT DESIRED VALEVENT
WAIT CHAIN THRU
EVENT RECORD
TABLE AND
TASK TABLE B

SET TASK STATUS
IN TASK TABLE B
TO WAITING

Figure 18 - WAIT PROCESSING

64

I.-

L) ,

C.I- CL. SMJ

0W.. ..
L.J 02M

LL I

L~~ LL6(a CM.C.c :

SM -. S

(A 000 co Lo

CD4

31 IL L- = =

COli ZO. L, 0r (D S UrL'

0 0

U.a

J LLJ j U-65

MODEU FLGIEXE O~T

~((ref. P. 3.2.5

ASKNH REUETI AS

FIGURE 20 ~ EXECUTIVECRTRNRCSSG

66VLGE AL OA

result of asynchronous or synchronous messages received while executing the

executive services in a privileged mode or the executive services themselves

requested further services.

The first thing that this function shall do is inspect the sta-

tus of the task that requested the services. If the task was operating as a

"Privileged Mode" Task, the local executive shall return immediate control

to the task, rather than perform the checking mentioned above and servicing

the pending requests.

3.2.1.3.3 Outputs from Application Software Interface Control Functions

The outputs received from this control function are listed in

Table VI.

The Wait chain listed in this table is a result of the Wait

function. It is a chain of tasks waiting for the same type of condition.

There shall be one Wait chain for tasks waiting on time, one for each event

waited on, and one for each event whose complement is waited on.

All tasks in same Wait chains are tied together by the forward

and back pointers in their Local Processor Tasks Table B entries (ref. Par.

3.2.1.5.1). The Wait chain on time is ordered by time. The first task in

a chain waiting on an event or the complement of an event is located by a

pointer in the Event Record Table entry for the event (ref. Table VII

67

- gj 1 CM 0i ~ f q~ i e

L&J C4J el; ; .;r C. ; r; C'.C C.C

LL. .j

C4 U. C4 J 4 1% 4 (4 C4 C4 C4C4

QI

La.

w 0 D0

do to to = 0.r
* 00 . 00

W V) 0) S s

CD-

0 04 J0

04.)

00f
a 4J

'-44

C6

3.2.1.4 Function Four

The Event Handling Function is exercised from requests by
tasks in the local processor or, through transmitted messages, from tasks
related to a remote processor or remote terminals.

All the information concerning events is kept in an Event
Record Table. Each processor contains an event record for each Event con-

tained within the processor. The Event Handling Function shall act on
Event Condition Sets as specified in the Event Record Table. This Event
Record Table is illustrated in Table VII.

3.2.1.4.1 Inputs to Event Handling Function

The inputs to this function are shown in Table VIII.

3.2.1.4.2 Event Handling Processing
The IDAMST Executive System receives requests for event pro-

cessing from application software tasks or executive tasks. These requests
will consist of commands to set an Event to a value of "I" or "0". The pro-

cessing of this function is accomplished as demonstrated in Figure 21.
The processing of this function consists of setting the desired value of an

Event into the Event Record Table. If the table indicates that there are
copies of this event in other processors, an asynchronous message is formu-

lated and enqueued.

The Event Record Table indicates any local tasks with the
Event as part of their Event Condition Set. Thus, these conditions are set

in the respective Task Table B entries.

Finally, the Task Checking Function is invoked to check the

condition status of these tasks.

3.2.1.4.3 Outputs from the Event Handling Function
Outputs from this function are shown in Table IX.

69

* -. .

4J- ~h -

4J 4J AA 03

c 4J 0 4

4j.. CL -r-

WC .C 4a 41
= 4) ()L 4J 4n.0 4

4C 41 ED 'a

.CCL. VIL/ "- w. C. JLJ
I;" >I C 0) 0~ 14

C0 4J * ~ ..
Wa 4-) W. IAr - wn4Jw 4.-u AnU

OE .0 41 V 4.3 LV
4')L. I-- c n 4

00 C1 'a r-4 = 0 E
*i 4-- 4I -0 - 4 03 4J 41 f

£-. 0' wO 5 (D c IAo> 04 "-- c;3 .C(.a L. L03 4-J _n-WE 4 flj

03) 44 4Ji 03' 0E IG Z
-.3 P~ U- w.1 .w qu 0S C*0 CVIJ

LLI 0 0 0 V

c CL

31. 0-.
_ A 0 L>,5

C- C 0. c. . 0'-
). 0 60 w-. 0 1

0 ~0 u.. (. .3 . 0 (. .
CL C Cm CM 4J E-1 a

43 -r- 0i 0 a03 'i0
0.~~4 0.0 0a-~L

CL 0 C M C .

-~ ~ ~ C LI r- 4J u 30 I0
.AJ 4'0 4'0g C U. ., .fa-4

4 _ ai 4- 4- 0 5 0. .n .
'a 'a a 'a c3 ' 'a

0 41 4'JJ~5

1-j in CL '1 Ca C ca a

0 ~ l 0n to I- WI 3u '-C

(.3 0 Z -JC 70

CA 0 -' e 0

-U

LU

Lu

LL.
u

LLI

C r4

to 0 f

IIgo

LuC fu C

IV) 15
o L) 0 *W

I- U *.71

EVENT
HANDLING

SET VALUE
IN EVENT RECORD

TABLE

NON-LOCAL COPY Q TANMISIO

ASSOCIATED IN LOCAL PROC. TASKr~ ~TASKS ASOITD(TABLE

CALL TASK
CHECKING
FUNCTION

IF ENTASKSFOR ALL .FEET STATE

WIINGO SUCH TASKSIODSPTHBE

I (CLEAR THIS

' ' EVENT WAIT

RETURN [CHAIN

FIG. 21 EVENT HANDLING PROCESSING

72

* ..

J I

-- - - - - - - - -IIIIIIIIIII

.

LhJ
w.
LLJ

-41

U

CD -0 -1

o to

-i t -

4 .

in E

-44

Z 73

1. -. - . '

3.2.1.5 Function Five - Task Checking - Local Executive

The purpose of this function is to determine whether a given

task should change states and become Active.

3.2.1.5.1 Inputs to the Task Checking Function

Related to each task resident in a processor there exists a

table internal to the Local Processor. The entries to this table, described

in Table X are ordered according to the tasks priority.

The inputs to the Task Checking Functions shall be, as listed

in Table XI, the entries to the tasks on the Local Processor Tasks

Table B.

4

3.2.1.5.2 Task Checking Function Processing

This function will be invoked by the Local Executive Control:

a) Each time a task is invoked.

b) Each time an Event, except Minor Cycle Events, is signalled

and posted in the Local Processor Tasks Table B (ref. Table

X).

c) Whenever a Task ends.

d) Whenever a Task is forcibly terminated.

This function is processed as indicated in Figure 22.
As this function is invoked, it will verify the status of the Task from the

Local Processor Tasks Table. A task can be in either of two states, invoked

or uninvoked, as shown in Figure 6 and explained in Section 3.2.2.2
If in an invoked state, the Task Event Condition Set is checked against the
desired Event Condition Set as established in the input table. If all condi-

tions are satisfied, the Task state is changed to Active and Dispatchable and

all its Unlatched Events Conditions are complemented. If the task is indi-

cated as a Privileged Mode task, it will be called immediately and control

is transferred to the task. Either way, if the task has an Activation/Termi-

nation Event, the Event is put into the Event queue.

3.2.1.5.3 Output from Task Checking Function

The outputs from this function are listed in Table XII.

74

CL

.00 -C 4- W)

m. o '- £
No 0:9 C - 4; .- 0

4J1 C "-n 4.a -
fu4.4 0 u1. 0 3 0

.00 +A e 4

4J 41 0 #a .0 4J 0- 2
0 e

49C; CC.- "tI
ca C .- C) %I- 41 "- 3:

".. iC . 0 04Jo 4)
lLin 4. 4.1 4J 4"- 4J 61 .0

41 4) 4/1 c
ic 4A ta 6- @ 1

*0 "- C0 4 u- cm .0 #
V)0 0 m 4.) c v Mn LL.0u

21. InC- to- 4 '" V)- 4J Ca- C, S .
C 6Z1 -@- 16 4.1 1. to 4 t l a+

+a- C- 0 C 4 w C %1n4. -
E~ u9 M , 4 6 co a) viCI

C ~) ou- &.4. 6 =4 v go V
6i 1 4J cm Co W) low 4. = 41s 4J SQ3 CA 4) 0£ 0 4J Co 4 41 4J 61 6

Ln r_. "a2 C 0- .go 4.4 1 1 c -
LL W I un w) r- ".- =C4 a) d W 0 4J3

qw .,J "p4. C4 4) 0- x4 a 410 m4
'U C9 #a Co "- =n CL61W 0W M4

LI Cr 4) 4) J0 6 6)C4.- 4
31. r- l V) 4 0 4J .,Vx .cv 0 4W rC

c al "a QL. I.~ 4 C Cb -

4!-5 5 - =n L).p 61£ 'v 613
a.c CI 4 on 3. X. 0 toi .. 0 fa) a IN£

4-

oo 11

4.11

C 9- C9
0 a. 0o C

4) 4) 4W .0
410 3: 4/-P . L

In 16 4) a
w C 4n CA LI mc

O c ap ~ 0
44 i 4- L 4J . 4-A 41

C 0 4.1 i
C19 3- 5 4-.9

cn Cw IV in m 0 6
W. *I *) LI 4) i '- 6 0 a-

WC~4 4) 40 4P " Jt
.U S. C w at -

4A 0 W- -r 21.

Nn CA PC- COL An. lo a. 3-

t" 4t 4).-4 00r o C o

vi - 03-)C 61 ~ 756

C

C ~ ~ . 4A < -

=' 4J-U 4J 4)

4. L. 0 4

go-4W1M0 (A c c
= 4JU LD 4

0 r_ rU
LUJe 00

"- l0 -P .0 J"-g

ann 91.

LLI0

coC4 4GI

0 4J1
o ~ 4 ci Uc a

I76

LUJ

o 4 1

I-I--

wA c 4) a) a,

V) Lii 43 43 43
41 4' 4')

be 41 43 43 4

0 > so

I-V

0 4
4J -r

-0 8) 41 I

in 0 0

o0 4J

0 ~ 4 0 0

I- VI 43 4 L 77

CA
wi 0c

uj I. c 0.-L 2

Lhe

0.~ L.J

ajz -1 V)L

SM~b -j-S~~Z LM W~s. MI

I-- 2Cgn I-

00

:0. w

:m = LM

he. -C

Li i C

78L

LiU
I ,
LLJ

LUS

In

04

i21.
In -

0 u
4J W 4J1

0 0 4
I- 4 0 o

IC 4-)

'.479

3.2.1.6 Function Six - Task Dispatching - Local Executive

The main purpose of the Task Dispatching Function is to search

for the highest priority dispatchable task in the Processor. Upon finding

a task, control is transferred to it.

3.2.1.6.1 Inputs to Task Dispatching Function

The inputs to this function are listed in Table XIII.

3.2.1.6.2 Task Dispatching Processing

The Task Dispatching Function is called by the Local Executive

Control Function. It takes place whenever the Event Queue is empty, the

Task Checking Function and all other Local Executive Tasks have been com-

pleted.

rThe objective is to determine the highest priority task in the

local processor that is in the dispatchable state. If the task is being

resumed from an interrupt point, the save area will contain the address at

where the task was interrupted and the information contained in all the reg-

isters at the time of interruption. If the task is being entered at its

beginning, only the task start address will be defined; therefore when

initiated, tasks cannot depend upon register initialization.

The Local Executive Control Function, through the Task Check-

ing Function, keeps track of the highest priority task made dispatchable

since the last Dispatch. Thus, when the Task Dispatching Function is called,

it commences scanning on the task table starting with the highest priority

Dispatchable task. If the last Dispatched task is still the Highest Prior-

ity Task, then control will be returned to the original task. Otherwise,

control will be given to a new task.

Upon normal termination, the dispatched task returns to the

Task Dispatching Function. The dispatcher will, in turn, return to the

Local Executive Control Function.

80

LJ

L&J

o D
I.c 4)J1

0 u
LL.0

41

-L. 4) 0 10

= C 4-)
C-) U .i

CCLJ 1 C4

V) 4) 1. V)

I., "- G)

0J S.. %A

.- I0 4. . I

I- 0-A 4-4

4~4A

4) C go4A

-r-~. 4AC.0 0

41 4 4) 4
4A M c "-- 'D

toJ 4JI 0 C 0.

I.- .n u 0 01 0

U) U 01 ,- ~ .C81

The processing accomplished by this Function is illustrated

in Figure 23.

3.2.1.6.3 Outputs from Task Dispatching Function

The outputs from this Function are listed in Table XIV.

3.2.1.7 Function Seven - Minor Cycle Set-Up Function

The Minor Cycle Set-Up Function shall be initiated by the

Local Executive Control Function upon detection of a pending Minor Cycle.

This function performs the processing necessary to prepare for synchronous
message transmission and reception each minor cycle.

3.2.1.7.1 Inputs to the Minor Cycle Set-Up Function

4The inputs to this function are listed in Table XV

and described in the following paragraphs.

The Synchronous I/O Tables are used to determine which DMA
Pointers to set up in the appropriate DMA Pointer Block on any given Minor

Cycle.
a) Synchronous Pointer Table (SYNPTR)

The SYNPTR Table will appear once in every processor that has

any dynamically maintained synchronous pointers in the DMA Polnt&r Block
(ref. para. 3.2.1.7.3). It contains two blocks of pointers for each Minor

Cycle. One contains the addresses of all Compool blocks received during the
Minor Cycle, excluding the Compool blocks whose addresses are fixed within

the appropriate DMA Pointer Block. The other contains the addresses of all
Compool blocks transmitted during the Minor Cycle but not fixed within the

appropriate DMA Pointer Block. If for a given Minor Cycle, all the DMA Poin-
ters within the DMA Pointer Block are of a fixed nature, then the appropriate
pointer in SYNPTR for this Minor Cycle shall be null.

82

ASK ISPATCHINO A CONTROL)

START TABLE SEARCH
STARTING AT HIGHEST
PRIORITY TASK MADE
DISPATCHABLE SINCE

I LAST DISPATCH

_ _ CHECK NEXT
DO WHILE HIGHEST C HIGHEST PRIORITY
PRIORITY & DISPATCHABLE TASK, BUT NOT IN

STASK HAS NOT BEEN FOUN PRIVILEGED MODE/ RESTORE REGS.,
IDISABLE INTERRUPTS] rI IFUKPROG. STATUS&

IF DISPATCHABLE RESET PRIVILEGED QUESU STACK
TASK FOUND I MODE FLAG DIPTHN PROCE N PoI ER

83ToTASF CONROL
IMAKE TASK

RETURN INITIALIZE COMSUB]
rPLACE IT _T ' SAK POINTER

1 IF ASSOCIATED _ .IN EVENT I

FIGURE 23. TASK DISPATCHING PROCESSING
F TS

83

Lai

CK i

4) P

U-

owa C" c

C UCA

4A

C W dp

In-4

4A-I

484

- P4 --

9..S

ILl

LL

U-

C.L

I- o

LiiL

ol 0

o CD

ca -i
= .- c

C- V w 2

CL I-
= ==

=- 3
0Dcr

Inc

S8

b) SYNPTR Index Table

The SYNPTR Index Table is used to locate the blocks of Receive

and Transmit Pointers within SYNPTR for any Minor Cycle. This table shall

appear once in every processor that has dynamically maintained pointers in

the DMA Pointer Block and will contain one entry for every minor cycle num-

ber. The items in this table are described in Table XVI below.

TABLE XVI SYNCHRONOUS POINTER INDEX TABLE

ITEM DESCRIPTION
NO.

1 Number of variable Synchronous Receive Pointers

for this Minor Cycle within SYNPTR.

2 Offset from the beginning SYNPTR to first Receive

Pointer in SYNPTR for this Minor Cycle.

3 Number of variable Synchronous Transmit Pointers

for this Minor Cycle within SYNPTR.

4 Offset its first Transmit Pointer in SYNPTR

for this Minor Cycle.

c) Pointer Block Descriptor

The Pointer Block Descriptor shall appear once in every pro-

cessor. It is used by the Minor Cycle Set-Up Function to determine which

parts of the DMA Pointer Blocks are fixed and which are variable.

It contains four words as shown in Table XVII. They are

pointers to the first nonfixed pointer in the respective block of the OKMA

Pointer Block.

86

TABLE XVII POINTER BLOCK DESCRIPTOR TABLE

ITEM
NO. DESCRIPTION

1 Address of first variable Receive Pointer in Block 0

2 Address of first variable Transmit Pointer in Blo-;: 0

3 Address of first variable Receive Pointer in Block 1

4 Address of first variable Transmit Pointer in Block 1

Minor Cycle Event Generation Table

The Minor Cycle Event Generation Table shall appear once in

every processor in the IDA1ST system. This table shall be used by the Local

Executive to determine which Minor Cycle Event to signal on any given Minor
Cycle.

The Minor-Cycle Event Generation Table consists of two inter-

dependent parts. The first part shall contain an entry for every Minor Cycle

in a major frame ordered by Minor Cycle number. Minor Cycles shall be num-

bered in ascending order. Each entry shall contain two items. One entry

shall indicate the number of Events for the Minor Cycle. The second entry is

an index field containing an offset to the beginning of the second part of

the table. This offset points to the beginning of a list of Event Table

pointers which point to the appropriate period - phase events in the Event

Record Table (Table VII). If there are no Minor Cycle events for a

given Minor Cycle, the proper entries in the first part of the table shall be

set to zero.

The actual arrangement of Event Record Table pointers may

vary within the second part of the Minor-Cycle Event Generation Table. Many
distinct Minor Cycles can cause activation of an identical list of Minor

Cycle Events, thus the groups pointed to by Part 1 of this table for several

different Minor Cycles may be the same.

87

An illustration of the Minor-Cycle Event Generation Table

Is shown in Table XVIII.

TABLE XVIII MINOR CYCLE EVENT GENERATION TABLE

Number of Events Offset to First Event for this Minor

for Minor Cycle 0 Cycle in Part 2

PART 1
Number of Events for Offset for this Minor Cycle in Part 2
Minor Cycle 1

Number of Events

Last Minor Cycle Offset in Part 2

Blank Offset into Event Record Table

PART 2

Blank Offset into Event Record Table

3.2.1.7.2 Minor Cycle Set-Up Processing

The main objective of this Function is to generate the

address pointers used by the Bus Controller Interface Unit (BCIU) to store

or access, via the DMA channel, synchronous message data received or syn-

chronous message to be transmitted. These pointers shall be stored tn a

table designated as DMA Pointers Table.

88

This Function also determines which tasks depend on the
Minor-scle to become dispatchable. Those tasks that have their Event Condi-

tion Set sat-ste,& v this Minor-Cycle and are "Privileged Mode" tasks, shall
become Active, Dispatchable and directly executable by the Minor-Cycle Set-Up

Function. This action takes advantage of Its knowledge of the nature of the

Events it is signalling to bypass the Event Handling Function (3.2.1.4) and

the Task Checking Function (3.2.1.5) of the Local Executive.

The processing performed by this Function is illustrated in

Figure 24.

In the process of setting up the DMA Pointer Table, this

Function makes use of the Minor Cycle number to index Into the SYNPTR Index

Table. With the information obtained from this table, the SYNPTR for the

particular Minor Cycle will be read and the addresses of all Compool blocks

to be received and transmitted during the Minor Cycle will be fetched. Mak-

ing use of the information stored in the Pointer Block Descriptor Table, the

Compool blocks addresses shall be stored in the DMA Pointer Tables. The DMA

Pointer Tables are described in Paragraph 3.2.1.7.3..

3.2.1.7.3 Outputs from the Minor Cycle Set-Up Function

The items output from this Function are summarized in

Table XIX.

The DMA Pointers Blocks Table shall contain the address

pointers for the Compool blocks into which receive messages are to be stored
by the BCIU and out of which the BCIU will access messages for transmission

during a Minor Cycle. This table, as shown in Table XVI is divided

into four parts. Two parts are used for even-numbered Minor Cycles and the

other two for odd-numbered Minor Cycles.

Part I shall contain pointers for message reception while

Part 2 shall contain pointers for message transmission. Each part shall con-

tain up to 31 pointers that are accessed by the BCIU as described in Section

3.2.1.2. Word 0 in each block shall not be used as a pointer since a sub-

89

iINOR CYCLE
SET-UP FUNCTIO

READ BCIU VFR ANDE

OBTAIN MINOR CYCL
NUMBER

MORE THAN LAST Or RO

FOR LLE IGAENTSTFO

POO RETURN

RESETUT E 24PRCSIGOFCNRCCESE-PFRTO

ESgT

- '- /F-

C.CD

L- CD)

C.) -4

CAJ 4

CD.

ccn

= -

o 0 0

L~l I-- -
-d V) LU

L.) 0- =.)4
-i ~ ~ L I- L) I

cc -x;5 u

a0V) V

-Iui ui c

co LU =

-91

address of zero indicates a Mode operation. The pointer corresponding to sub

address 31, for both reception and transmission, is reserved for asychronous

message reception and transmission.

The table shall contain fixed pointers and some that are

dynamically set up every time the DMA Pointer Block is used. Thus, if a corn-

pool is received or transmitted every even or every odd minor cycle, then its

pointer shall remain fixed in the DMA Pointer Block.

3.2.1.8 Function Eight - Asynchronous Message Handling Function

The Asynchronous Message Handling Function shall manage

the reception and transmission of asynchronous messages via the BCIU. Asyn-

. chronous messages are utilized to perform the following:

a. Invoke a task when a task is located in a different

*" processor than its controller.

b. Task termination/cancellation when a task to be termina-

ted or cancelled is in a different processor than the controller task.

c. Write compool block data when the compool block to be

written has copies in other processors.

d. Signal Events when the Event Record has copies in other

processors.

e. Update Compool Blocks in other processors or Remote

Terminals.

Although the Local Executive determines the necessity for

an asynchronous message transmission, the actual transmission of the message

is controlled by the Master Executive located in the Master Processor.

3.2.1.8.1 Asynchronous Message Reception Function

The Asynchronous Message Reception Function shall accept

an incoming Asynchronous message received through the BCIU and enqueue it is

processing.

3.2.1.8.1.1 Inputs to Asynchronous Message Reception Function

The input to this function shall be the Reception Queue as

noted in Table XX.

92

IA IJms-~--

w

sJJ
'UJ

ml-

C)

z

I-V

I-3

F7

The Reception Queue, as illustrated in Figure 25

shall consist of the following items:

a. The Request Pending Flag indicating the presence of a

message that has not been processed by the Local Executive.

b. Three 33-words buffers for storing the received

Asynchronous messages.

c. Pointer to first buffer in queue indicating the next

buffer to be processed, i.e., the buffer succeeding the last one fully pro-

cessed.

d. Pointer to last buffer in queue pointing to the last

buffer filled by a reception from the BCIU.

The Reception Queue is filled in by the BCIU. (Section

3.2.1.2) and removed from it by the Local Executive Control Function (Section

3.2.1.1) in a First-In-First-Out basis.

The reception buffers are considered to be arranged cycli-

cally, thus, the last physical buffer succeeds the first physical buffer.

3.2.1.8.1.2 Asynchronous Message Reception Processing

The Asynchronous Message Reception Function is invoked by

the Hardware Interface Control Function after receiving a level of interrupt

indicating the reception of an asynchronous message.

The Asynchronous Reception Function shall examine the Asyn-

chronous Message ID. If the ID indicates a realignment request, the Asyn-

chronous Transmission Function shall be called to re-transmit the last mes-

sage. Otherwise, as indicated in Figure 26 , the "Next Buffer" and
"Last Buffer" pointers in the Reception Queue are adjusted (ref. para.

3.2.1.8.1.1) and the "Reception Pending" Flag in the same queue is set.

94

REQUEST FIRST BUFFER POINTER
PENDING
FLAG

LAST BUFFER POINTER

33-WORDS

BUFFER #1

33 WORDS

BUFFER #2

33 WORDS

BUFFER #3

FIGURE 25 RECEPTION QUEUE

95

AD-AO83 118 'AIR FORCE AVIONICS LAB WRIGHT-PATTERSON
AFB OH

F/ 9/2
'COMPUTER PROGRAM DEVELOPMENT SPECIFICATION FOR IDAMT OPERATION--ETC U)

UNCLASSIFIED AFAL-TR'76"209"ADD-2 NL2f//II/I/I//I/lfflf

I lfflflIfI..flf
EEEEEEEllllEEE
IIIEEEIIPr

ASYNCH
RECEPTION

DECODE
ID

IF I CALL

RETRANSMIT ASYNCH

MESSAGE TRANSMISSION(P. 3.2.1.8.2)

RETURN UPDATE

r• "LAST BUFFER"a POINTER TO
POINT TO BUFFER
JUST FILLED

UPDATE ASYNCH
RECEPTION POINTER
IN D14A POINTER
BLOCK TO NEW
RECEPTION BUFFER
(ref. P. 3.2.1.7.3)

SET "RECEPTION

PENDING FLAG" IN
RECEPTION QUEUE

IF NOT ALL , , SET
RECEPTION BUFFERS '1BUSY" BIT
FULL / IN PCR TO

IZERO

FIGURE 26 - ASYNCHRONOUS MESSAGE RECEPTION PROCESSING

96

ir. .

The "BUSY" bit in the BCIU PCR register shall be set to

zero only if the Reception Queue is not full with unprocessed messages.

3.2.1.8.1.3 Outputs from Asynchronous Message Reception Function

The outputs from the Asynchronous Message Reception Func-

tion are listed in Table XXI.

3.2.1.8.2 Asynchronous Message Transmission Function

The Asynchronous Transmission Function accepts messages

enqueued by the Local Executive into a transmission queue and prepares them

for transmission by the BCIU. The necessity for the transmission of an asyn-

chronous message is determined by the Local Executive in order to accomplish

tasks services as enumerated in paragraph 3.2.1.8.
4

This function is invoked from:

a) The Interrupt Handling Function (Section 3.2.1.2) after

termination of a previous Asynchronous transmission.

b) The Asynchronous Message Reception Function (Section

3.2.1.8.1) upon reception of a message requesting a retrismission of the

last message.

c) The Local Executive Control Function on a request to

initiate a BCIU transmission.

3.2.1.8.2.1 Inputs to Asynchronous Message Transmission Function

The input to this function is a Transmission Queue as noted

in Table XXII.

The Transmission Queue is illustrated in Figure 27.

It consists of a number of Message Descriptor Blocks that contain pertinent

message information and a series of pointers used in the fetching of the mes-

sages to be transmitted. A description of these parameters follows:

97

t n

b-i
CD

a--

LIL

LAJ

s-i 40

01 4'

0 Z ~ 1
cmi 1: t

I-. 498

US

0

CA)

&4-

Ln 1

La.))

64

o) E

z9

Message Descriptor Blocks

Final Request Vector #4

Transm.T Async ID #4 Transmission Buffer Areaa
Pointer Buffer Pointer #4

Request Vector #5 Buffer #2

Async ID #5

Buffer Pointer #5 Buffer #3

Available for enqueuing

by Local Executive Proper
Available for First Free

enqueuing by Buffer Point

Local Execuitve Pointer

Proper

Request Vector #0
Last Async ID #0

Transm. Buffer Pointer #0

rBuffer #0 First Used

Current Request Vector #1
Buffer

Transm. Async ID #1 Buffer #1 Pointer

Pointer Buffer Pointer #1

FRequest Vector #2

Async ID #2 Null

Request Vector #3

Async ID #3

Buffer Pointer #3

FIGURE 27 TRANSMISSION QUEUE

100

- - *

a) Message Descriptor Blocks

The Message Descriptor Block consists of:

1. Asynchronous Request Vector

The Asynchronous Request Vector is a 9-bit cqde that

identifies each asynchronous message that exists in the system. If the local

executive is not in the Master Processor, an Asynchronous Request Vector asso-

ciated with an Asynchronous message to be transmitted will be loaded into the

BCIU Status Code Register (SCR). This Status Code Register will be decoded

by the Master Processor and as a consequence the Master Processor will gener-

ate the commands required by the asynchronous messages as described in para-

graph 3.3.2.3.

If the local executive is located in the Master Proces-

sor, this Request Vector will be input to the Master Asynchronous Control

Function through its vector stack (ref. para. 3.2.2.3).

2. Asynchronous ID Word

The ID word will be appended to the beginning of the

message and the Local Executive receiving the message will make use of this

word in identifying the message, (ref. para. 3.2.1.1.2). The Asynchronous

ID word will contain the address offset to the message Data Descriptor Block

(DDB) (ref. 3.2.1.3) if a Compool Block Handling is invoked. If the message

is to be sent to an RT, the ID shall be set equal to 177777, and shall not be

appended to the message.

3. Pointer into Transmission Buffer Area

The buffer pointer points to a buffer allocated within the

transmission buffer area holding the data to be transmitted. It should be

noted that the first two words of each buffer shall contain a Tag Word as

described in 3.2.1.2, and the Asynchronous ID word, respectively. The data

begins on the third word. If a message has no associated data, the buffer

pointer is zero and no buffer is allocated for the message. On the other

hand, it is possible for a series of messages to point to the same buffer.

101

b) Last Transmission Pointer (LTP) pointing to the Message

Descriptor Block of the last message transmitted by the BCIU.

c) Current Transmission Pointer (CTP) pointing to the Mes-
sage Descriptor Block as the message currently set-up for transmission by the

BCIU.
d) Final Transmission Pointer (FTP) pointing to the Message

Descriptor Block of the message most recently enqueued by the Local Executive.

e) Transmission Buffer Area used to hold the data to be

transmitted.
f) First Used Buffer Pointer (FUBP) pointing to the first

word in the area occupied by a message, thus unavailable for enqueueing mes-

sages.
g) First Free Buffer Pointer (FFBP) pointing to the first

word in the buffer area available for storing new transmission messages.

3.2.1.8.2.2 Asynchronous Message Transmission Processing

The Asynchronous Transmission Function shall dispose of

messages stored in its transmission queue in a First-In-First-Out basis. To

this effect it shall make use of the transmission pointers identified in the

Transmission Queue as described in Para. 3.2.1.8.2.1.

Upon being entered, the Asynchronous Message Transmission

Function shall have its Current Transmission Pointer (CTP) pointing at the

Description Block of the message last transmitted. Thus, upon a request to

retransmit the previous message, CTP will be equal to the Last Transmission

Pointer (LTP).

Figure 28 illustrates this function processing.

3.2.1.8.2.3 Outputs from Asynchronous Message Transmission Function

The outputs from this function are listed in Table XXIII.

102

tP -L L

a.J

C' . -JI

WIW)

im0

CD I-

U~ ~ ~ L 06.XZ .J0

C~ 0- U.-

0' L~0 LLJ W 0 J

CLa

w 12

66

I-... .

U

zc
c%1

00

LL. C

C Ig r

w C

- C,

Z 0

* CC)

0 z 0 o 0

*V C.D

41 -

CLI- ~ ~ I

104

3.2.1.9 Function Nine - Local Executive Initialization Function

This function is invoked by the system hardware, namely, the

ROM, upon system initialization on request from the pilot or on re-initiali-

zation as a recovery from a power-down condition.

Its purpose is to initialize or re-initialize the state of

the Local Executive and the BCIU associated with the Remote Processor.

3.2.1.9.1 Inputs to the Local Executive Initialization Function

The inputs to this function shall be as listed in Table

XXIV.

, 3.2.1.9.2 Processing of Local Executive Initialization Function

The pilot shall manually power-up the system and turn the

"processors on." The pilot shall have the capability to restart the system

and thus initialize a start-up sequence.

Each processor initiates operation under control of the

start-up program residing in its ROM. This start-up program shall determine

whether a normal start-up or a power-transient recovery is to be initiated.

For a normal start-up, the ROM shall perform a processor

self-test and initiate the BCIU self-test.

The Processor Control Panel (PCP) discretes shall be read

and the processor assignment determined. The BCIU shall be initialized by

loading the BCIU address into the PCR bits 7 - 11, setting the Master/Remote

(bit 1) bit in the PCR to agree with the processor's assignment and setting

the Go bit (bit 2) of the PCR to 1.

After the software has been loaded from mass memory the

local processor executive system tables are Initialized and set up for a

minor cycle 0.

The Local Exec Initialization Processing Sequence is

shown in Figure 29.

105

T7z

I 4

U-n

t-.
a 4J

-a

1-I1

- 03

Ln

I-

CD 0 40

o~c a)0 ..

a-

-am

0 4J) 4

C- w

~10

IF POWER U SIGNAL LOCAL
SHUT-DOWN IEVENT FOR
FLAG SET POWER TRANSIENT

jRECOVERY

PERFOR, PROCESSOR ;IF BCIU INITIALIZE
NOT OPERATING BCIU
(PCR READY BIT

" I PERFORM P ROCESSOR/BCIU L

iDETERMINE PROCESSOR
'ASSIGNMENT FROM

IF FAILURE SPCP DISCRETES

PROCESSOR
"FAILURE RESTORE PROCESSOR(

TSTATE PRIOR TO
LOAD PCR WITH ROMI POWER FAILURE
BCIU ADDRESS,
MASTER/REMOTE BIT
.GO BIT nSO IT IF REMOTE\ LOAD BCIU

INITIALIZE PROCESSOR BITR WITH

EXECUTIVE SYSTEIASI CODE OR

TAB ES SIGNAL OTHER
J 'PROCESSORS

ON POWER-
SET-UP FOR TRANSIENT RESET SYNCH
MINOR CYCLE RECOVERY COMPOOLI I POINTERS

TRANSER COTROL]
INITIATE MINORITO LOCAL EXEC. CYCLE AT BEGIN4

CONTROL FCN. NING OF LAST I SET BCIU
(ref. P. 3.2.1.1)1 MINOR CYCLE JPCR TO

S"GO-

FIGURE 29. LOCAL EXEC. INITIALIZATION PROCESSING

107

If a remote or monitor processor recovers from a successful

power-transient, an Event shall be signalled to start the power-recovery

operations.

If the local executive determines that its BCIU is not

operating (PCR "Ready" bit 1), it shall initialize the BCIU and through the

PCP discretes determine the processor assignment. The local executive shall

initialize for power-transient recovery by signalling the Master Processor

about the power recovery through the BCIU bit register and setting the BCIU

synchronous compool pointers to "null" compools. The master processor,

upon receiving indication of a transient recovery, shall restart operation

at the end of the last successful minor cycle. Finally, the BCIU PCR shall

be set to 'Go".
4

3.2.1.9.3 Outputs from the Local Executive Initialization Function

The outputs from this function are listed in Table XXV.

108

L Ia

La..

I-

I.4J
C

LLIJ

- in- 01 i

I- '

4) 4

IV in

06

-to

10

6.. AM= pw.

3.2.2 IDAMST Master Executive Functions

The Master Executive shall reside in the master processor

and in the monitor processor. Its main function is to manage and control

all data bus communication among the processors and remote terminals and

direct the initialization and start-up on the software system.

A block diagram of its functions is shown in Figure 30.

3.2.2.1 Function Ten - Master Executive Initialization & Start-Up
Functions

The main objective of this function is to establish the

proper operational sequence to enter normal system operations.

Each processor in the IDAMST system will contain a basic

start-up program residing in a READ-Only-Memory (ROM) module which will con-

trol the initiation of operations within the processors.

This start-up program sequence is considered part of the

initialization function and as such is being described inthe processing

description of this function (ref. para. 3.2.2.1.2).

3.2.2.1.1 Inputs to Master Executive Initialization & Start-Up
The inputs to this function are listed in Table XXVI.

3.2.2.1.2 Initialization & Start-Up Processing

This function processing is illustrated in Figure 31

and Figure 32.

The start-up procedure shall be initiated by the pilot going

through a sequence of actions using the Processor Control Panel (PCP). These

are:

a) Manually turning the power-on for the system. This action

shall set a "normal start-up" discrete.

110

if u

SMASTER BCIU I

SYNC ASYNC START-UP

BUS BUS &

CONTROL CONTROL INIT.

IQ

-uJ

TIME MASTER
0r

CONTROL EXECUTIVE

LOCAL EXECUTIVE

FIGURE 30 MASTER EXECUTIVE FUNCTIONS

111

* . . ,-

V.4.

-I--

9-
2-

I-ig
4n0

C2=; 4- S
0 c I-c

4- 0

4J 4

CA r. A "

Ia. CL C- nE

01

OL7 JI cc

La - 0

R; ~ ~ ~ ~ , -L a ,C1-L

161 2:40 CDI.

too

4n
cI

in I.- cc:-4L
c A r-.

(O= 1-J CD

op M 06t
I. cx Cw

9~ j~~ 0- Lne-Lo1-

La)L W c
*~~C *.Clc t -

V) 0 .k
w L I-.. aiZ. 4
0-J~ U... - S

VA xC > V A

K) -l I.- LO - .3

START-UP
PROGRAMl

IF SUCESSFL hn SECSSFUAPV

else) ET lseT

P'ORNTIAL~DI[LTARTASTE
DISRET ST POCSXECU TIEFO

INTEAFAD PERFOR

IF heO REPORT H
TRNSERCO ROTSgCCSSULFAILURE L

FGR3. MATREXECUTIVE SATU

I114s

b) Turning the power-on for every processor.

c) Activating a "START" switch to initiate system start-up.

Upon the start-up program in the ROM taking control, it shill

check for a normal start-up sequence ("normal start-up" discrete). If this

discrete has not been set, the program will determine if a successful power

shut down was accomplished. If successful, the master executive shall sig-

nal the other processors of the necessary operation and initiate minor

cycle operation at the end of the last successful minor cycle. The Local

Executive shall execute its sequence as described in Function Nine, para-

graph 3.2.1.9. If the power shut-down was not accomplished successfully, a

normal start-up sequence shall be performed.

The ROM start-up program shall perform the processor and BCIU

self-tests, the processor/BCIU interface test and read the PCP assignment

discretes to initialize the BCIU as per its Master/Remote bit and the device

address and setting the PCR "GO" bit. If the tests are satisfactory the

Master Executive shall be loaded from mass memory and a check sum performed

on the master executive.

The master executive will take control and perform a bus

communication test with the other processors.

If a failure occurs in any of the previous tests, i.e. pro-

cessor self-test, BCIU self-test, processor/BCIU Interface test, Master load

verification, Master load check sum, Remote/Master bus communication test,

the "Fail" Light" for the respective processor shall be displayed. The pilot

shall reassign the processors, turn-off those that failed and restart the

system.

After successful testing, the master executive shall deter-

mine, from a discrete originating in the Processor Control Panel (PCP) which

application software to load and the desired configuration. If the discrete

indicates GTP-1, the GTP-l software shall be loaded and verified from mass

memory. A check sum shall also be performed on each processor load.

115

Upon finishing the execution of GTP-1, GTP-2 may be indicated

through the PCP or else regular mission software is to be loaded from mass

memory. If there has not been a failure to load the mission software, the

system parameters and mission-dependent data shall be loaded from mass mem-

ory.

To initiate the normal system operation the minor cycle inter-

val timer shall be initiated and the application software master sequencer

invoked.

3.2.2.1.3 Outputs from M.E. Initialization & Start-Up Function

Upon exiting this function the IDAMST system shall have each

processor loaded with the proper executive and application software. One
processor shall contain master and local executives, another processor shall
contain only a local executive and the third processor shall contain a master

executive with monitoring functions and a local executive. The application

software shall be allocated as per the configuration management.

116

477

3.2.2.2 Function Eleven - Master Synchronous Bus Communication Control

The master executive controls the transmission of synchronous

message data over the BCIU each minor cycle. These data may be in the form

of minor cycle mode commands, actual synchronous messages and/or status word

polling messages.

There are sixty-four minor cycles occurring per major cycle

where a major cycle is defined as occurring every second. Synchronous mes-

sages can be transmitted at different binary rates per major cycle, thus, the

possible synchronous data periods are:

I Every Cycle

2 Every Other Cycle

4 Every Four Cycles

8 Every Eight Cycles
16 Four Times a Major Cycle

32 Twice a Major Cycle

64 Once a Major Cycle

Synchronous messages, while perhaps on the same period as

described above, can be scheduled on the BCIU at different phases with

respect to the start of the major cycle. Thus every message has associated

with it a period and a phase. The phase of a message is its displacement

relative to the first minor cycle. A message with a period of two will have

its first occurrence in minor cycle 0 or I with a phase of 0 or I accordingly

similarly for a period of four the message can have a phase of 0, 1, 2, or 3.

Messages transmitted each minor cycle always have a phase of 0 and a period

of 1.

A phase table, as illustrated in Figure 34 , identifies

the phases associated with the minor cycles with respect to the transmission

rates.

117

3.2.2.2.1 Inputs to Master Synchronous Control Function

The inputs to this function are listed in Table XXVII.

The input tables are described below.

3.2.2.2.1.1 BCIU Instruction Formats

Each BCIU command consists of instruction pairs in the format

as illustrated in Figure 33. The BCIU sequentially interpret each

instruction pair to determine the action required. Depending on the OP Code

contained in the instruction pair, the BCIU will initiate a bus transmission,

transmit a masking mode comand, perform any bus operations but will use the

second word of the instruction as the address of the next instruction pair.

The rest of the fields in the instruction pair are described in detail in

Section 3.1.1.1.

3.2.2.2.1.2 BCIU Synchronous Instruction List

The BCIU Instruction List contains an instruction pair for

each synchronous message that is transmitted on the data bus. If any of the

synchronous transmissions require bit or word masking, the instruction pair

that affects the transmission will be preceded by one to send the proper

Mode Command. A word mask will also require the loading of the BCIU Mode

Data Register with the desired word mask.

Since each message is not transmitted every minor cycle, the

instruction list must be organized so that the proper instruction pairs can

be linked together at the start of each minor cycle to form the complete in-

struction list for that minor cycle. Thus, instruction pairs are organized

in instruction blocks. The Synchronous Instruction List will contain one

block of instructions for each phase and period for which there are synchro-

nous bus transmissions. The organization of these blocks is illustrated in

Figure 34. The last instruction pair in each instruction block is a

Link instruction. This link instruction pair is dynamically set by the

Master Executive to point to the next block of instructions to be performed
during the current minor cycle.

118

LL.~

Ul

'a6.

-AJ

-11

4 03

La

CA

00 4

Iin

-11

6-4

IJ3 Lai 9-

Q CL

F- U. r-i Q

LIL 00 :c

ClC

LL 0. (n 0-

c ~ ~ ~ C q/) =~.j
LUV LJV)L. I. - LI
wj.r 0j w L -

I- cm. 0. I=~4
*u Q)L 0A M

LM 0 A Lm L iJ

I-~~~C I--6 ,0 ~ 9
U, uJV VL)U UCV)i

I0Q W AO LJ

(A0 uj ULA U
L&LJI~ 0 -L

no LI.J

V)L LA LC CA C

LL Wt LIP

0 CDW
=~ 0 9-9-iV-
LLJ CD9-4 0" CD

-L L I- -i Q

4AJ a.i 3cO. LJ 0 La-

0 J 0. 0u 0 -

0~ . V
L')9 V) CL. QL 0) oc

C)L -- X

I-LCD I- &AO.

CD O. C) , D L

LiJ C) CD - C V

00 P" LI.
CI co 9-)

120 I~

co 0L 0

-j V

-- J

U.C.

I- I/A f<4 <

C-) 0.

u--. C) 00 LA C
L V)l Co 1-4 OCD C

I-- C>
6- Li j L) U Vfl)'

Nd~ LLJLLJ..j

0p i 0 -- CC 0
* -0' \LAJ -J LIP) cn V) I=Cl.

LL CL

-4 1 L

ILLU

L)C- A 2L-

V). U LL4L
=A~ LOJ CMC)1

LL . 4 V) = .< -
LL CV) ICL V~) M -

w- 0

0. L- %0 CL

4n~a 0 V) V) C

en~ a-:---

C0 LA-D
C). -i 0UJUL. I

LUJ <-. LAJL .
CDm A C.;= = CLwc

00 Q CI C0
V)P4 - 4l

Uj LA ld.4J .

-4'w CL.~ C C

C.) Q

Q uJC M W 4A
< D JJLnWL

121-

3.2.2.2.1.3 Instruction List Pointer Table

This table is used by the Master Executive to set the appro-

priate Link instruction pairs every minor cycle. This table is illustrated

in Figure 35.

This table will contain an entry for each phase and period
in which a synchronous message appears. The entries are arranged in ascend-
ing sequence by phase and then by period. Thus, the entry for phase X and

period Y is entry (X + Y).

3.2.2.2.2 Processing by Master Synchronous Control Function

This function is initiated upon the occurrence of an interval

timer interrupt and its processing is illustrated in Figure 36.

r" Upon entering, this function shall first determine whether

error processing is under way. If this is so the error processing function
will be invoked. Otherwise; the function will determine if all minor cycle

transmissions have been completed. If they are not completed, the minor

cycle shall be extended for one more minor cycle period if the minor cycle
has not been extended before. If the minor cycle has been extended before,

a message shall be displayed and the master processor halted. This action
will cause the monitor processor to take over and manage any reconfiguration

request.

If the synchronous bus transmissions for the minor cycle have
been completed, the minor cycle number is incremented and loaded into Master
Function Register of the BCIU and the Minor Cycle pending bit is set in the

Master Processor. A minor cycle phase table shall be generated identifying

the phases applicable to all the period for this minor cycle as explained in
paragraph 3.2.2.2. Figure 36 illustrates this table for three differ-

ent minor cycles.

Making use of this table and the Instruction List Pointer Table

(para. 3.2.2.1.3), the appropriate instruction blocks shall be linked creat-

ing a continuous instruction list to control the BCIU's operation for the

122

FIRST WORD IN LAST WORD IN
RATE PERIOD PHASE INST. BLOCK INST. BLOCK

64 1 0 Absolute Addresses
32 2 0 of First Word in
32 2 1 Instruction Block
16 4 0 Absolute

4 1 Addresses of
4 2 Last Word in

16 4 3 Instruction
8 8 0 Block

8 1 (Second Word of
Link Instruction)

8 8 7
4 16 0

16 1

4 16 15
2 32 0

32 1
32 2

2 32 31
1 64 0

1 64 63

Figure 35 Instruction List Pointer Table

123

* .~...

MINOR CYCLE 43 60 61

PERIOD PHASE PHASE PHASE

-2 1 0,1

4 3 01
8 3 4 5

16 11 12 13
*32 11 28 29

64 4 60 61

Figure 36 Minor Cycle Phase Table

Illustration

124

IENIN FLAGLI

C"O MASTE POROCESSORIN

DO~CCL PHASE TABLEADPC

"RUN"~ INK ISrSESTN"CTN
IFSYNCHRONOUSLOCREEN F OR

TRANSMSSIONCYCLE11 NOMMR

LOAD MCU ASTR W

EXTENADTIN ADDE OPEOFO

SET MIRC YCL

FIGURE ~~ ~ ~ ASE 37PATEOYNH.CETOLPOCSSN

.1.-

125f

current minor cycle.

The proper register in the BCIU are loaded and the synchroni-

zation commands are transmitted to the remote processors.

3.2.2.2.3 Outputs from Master Synchronous Control Function

The outputs from this function are shown in Table XXVIII

3.2.2.3 Function Twelve-Asynchronous Bus Communication Control

The responsibility of this function is to control all asyn-

chronous communication through the BCIU. Requests for asynchronous trans-

mission can be received from the local executive resident in the remote pro-

cessor or the local executive in the master processor. Requests for trans-

mission are identified to the master executive by the Interrupt Request Vec-

tor associated with each asynchronous message.

The asynchronous transmission is formulated as described in

the following paragraphs.

3.2.2.3.1 Inputs to Asynchronous Control Function

The inputs to this function are listed in Table XXIX

3.2.2.3.1.1 Request Vectors
The Request Vectors are 9-bits data fields associated with

the asynchronous messages existing in the system. Each request vector will

point to a particular message, thus a maximum of 512 asynchronous messages

can be provided for in the system.

A local executive located in a remote processor requests an

asynchronous message by loading the proper interrupt vector into the BCIU's

Status Code Register. The local executive located in the Master Processor

passes the associated interrupt vector to the master executive by loading it

126

Li

Liin

cc U

VIn

IL I

U- ca

o cn

*~ 0 U05
j w w

ci 4,1 u

m- -

112

drfC'WA-4 -'O

"7A

w~ AMJ

-J

40

I-J

41.

Lf C~ I~V 4u W
10 00 10100

o~~t toA00 0 0

c 41

40
I-

El
- U,-

I-

6. 1. 41)
00C0 w r_

w 0 P- CL
0 0 in - 0. r- I

£0 x A =e 0go

Li0 0 0U
0 1p'f

4)~~:P &

#A 44 - 0

4.4. C4J 44.

128

into an interrupt vector stack. In either case, the master executive uses

the interrupt vector as an index into the Master Request Decode Table des-

cribed in 3.2.2.3.1.2.

3.2.2.3.1.2 Master Request Decode Table

The Master Request Decode Table contains an entry for every

processor-to-processor and processor-to-RT asynchronous compool block update
message. The interrupt vectors are used to index into this table, thus, the

entries will be numbered in ascending, consecutive order. Messages origina-

ting in an RT are defined using a different set of tables, Master Remote

Terminal Request Tables. There are two different types of entries in this

table: one for transmissions involving no masking and one for transmissions

involving bit or word masking. For messages with no masking, the entry is a

master instruction set to effect the transmission. Messages that entail bit

or word masking will have for entry several items relating to the mask des-

cription.

Item #1 will be zero to indicate that it is not a master

Instruction set.

Item #2 will be a pointer to a second table, Master Instruc-
tion Supplement Table, describing the bit or word masking.

Item #3 is the word mask that will appear in the bus message.

If It Is a bit masking, item #3 will be all ones.

3.2.2.3.1.3 Master Instruction Supplement Table

This table will contain an entry generated for any asynchron-

ous message that has word or bit masking and originates at a processor.

Each entry contains two master instruction sets. The first

is the Mode command indicating the proper masking; the second is the command

which performs the BCIU transmission.

129

3.2.2.3.1.4 Remote Asynchronous Table

If the asynchronous message received by the Master Processor

has originated at a Remote Terminal (RT), the Master Executive will make use

of its Remote Terminal Request Tables.

The Remote Asynchronous Table will contain an entry for each

of the 32 possible remote terminals. These entries will be indexed by a

Remote Terminal identification number.

Item #1 will contain the total number of asynchronous mes-

sages transmitted from this RT.
I

Item #2 will contain an index pointing to this RT's entry
in the Remote Termnals Master Instruction Keys Table.

3.2.2.3.1.5 Remote Terminals aster Instruction Keys Table

This table will have an entry for all asynchronous messages

originated by a Remote Terminal. All the messages associated with an RT will

be contiguous within the table.

The entries to this table are accessed by item #2 of the

Remote Asynchronous Table described in 3.2.2.3.1.4.

Item #1 contains a mask associated with the RT Activity Reg-

ister. This mask's value will identify the particular asynchronous request.

Item #2 contains the Instruction Set necessary to satisfy the

RT request.

3.2.2.3.2 Asynchronous Control Function Processing

Asynchronous Processing is performed whenever: (a) Master

BCIU receives a status word from a remote processor containing an interrupt

vector with an octal value of 001 through 776. This condition shall generate

a level 3 interrupt indicating the reception of a valid status word.

130

* %*..<,

(b) The local executive located in the Master Processor pas-

ses an interrupt vector to the laster executive through the interrupt vector

stack as described in Function Seven.

This function shall fetch the top interrupt request vector

(the oldest) and use it to index into the Master Request Decode Table describ-

ed in paragraph 3.2.2.3.1. If this table indicates bit-or-word-maksing mes-

sage, the Master Instruction Supplement Table will be utilized. As indicated

in paragraph 3.2.2.3.1, if the request for transmission comes from a Remote

Terminal, the Master Remote Terminal Request Tables shall be used instead.

If the status word received indicates a status word error,

the error processing function shall be invoked instead.

The processing performed by this function is illustrated in
Figure 38

3.2.2.3.3 Outputs from Asynchronous Control Function

The outputs from this function are listed in Table XXX

3.2.3 Function Thirteen - Monitor Control Functions

The monitor control functions will be performed by the Master

Executive residing in the Monitor Processor only. Its functions are:

a. To receive and process asynchronous messages from the

master processor updating its bus control data base.

b. To monitor the master processor for minor cycle synchroni-

zation operation.

c. To assume control of the system if any processor/BCIU

falls.

In the event of the Master Processor or its BCIU's failure,

f the monitor control function shall assume control of the system automatically.

131

, __

L3~

0 40

I-- CD

-a.a

(A- (A

C9C
4n cn a t
ui ul i

L6

LAi.

132

4.A

*-A

R-

a z :
CD

ooc

5- c

CL s-i

00
0g

VI1 0

013

If a remote processor/BCIU fails, the master executive in the master proces-

sor shall confirm the failure and relinquish control to the monitor proces-

sor.

The monitor processor shall contain also a local executive

system as described in Section 3.2.1. While in monitor mode, the subset of

tasks and events residing in the monitor processor shall be updated as per

request from the other processors. No data, command or signal transmission

shall be generated from the monitor processor while in the monitor mode.

3.2.3.1 Inputs to Monitor Control Function

* Inputs to the Monitor Control Function are listed in Table
• XXXI

3.2.3.2 Monitor Control Processing

The main purpose of the Monitor Executive function is to

monitor the performance of the master processor and its BCIU and to assume

control of the operating system upon recognizing the master failure.

Upon assuming control, the operator (pilot) shall be informed

of the failure and the Monitor Processor shall continue in control of the

processing system until reconfiguration is established.

The monitor executive monitors the master processor by moni-

toring the issuance of minor cycle commands. Upon recognizing the lack of

minor cycle reception for N minor cycle lengths, the monitor shall assume

system control.

The processing performed by this function is illustrated in

Figure 39

3.2.3.3 Outputs from Monitor Control Function

The outputs from this function are listed in Table XXXII

134

K_ -

a rt. ~t,. -. -- - -

L2

'u

I-A

- iiI
CL 0a.

Cf. I- L

41o

2-C

-4J

r
%LL.

E

0 4J

135

CNTROL
FNCTION

IF ANY FAILURE MODIFY MASTER
INFORMATION IS SYNCH. INSTRUCTION LIST
RECEIVED 7AND MASTER REQUEST
ASYNCHRONOSLYJ DECODE TABLES

5I

IF RECEIPTION OF SET PCR IN
MINOR CYCLE COMMAND MONITOR BCIU
HAS LAPSED FOR 3 TO 'MASTER', 'GO',, I MINOR CYCLE LENGTHy

4 I.

LOAD BCIU IAR
WITH ADDRESS FOR FIRST
BCIU INSTRUCTION

TRANSMIT ASYNCH.
MESSAGE TURNING OFF
MASTER & REMOVE BCIU'S
AND SIGNAL EVENT TO
START MISSION CRITICAL
APPLICATION TASK$

DISPLAY FAILURE
TO PILOT

INITIALIZE MINOR
CYCLE COUNT TO
BEGINNING OF LAST
COiANDED MINOR CYCLE

INITIALIZE INTERVAL TI R

ERVICE ANY- EENT

D/OR TASK UPDATE A
P FR REOUPST

Figure 39 Monitor Control Processing

136

'La~

LL.I

4.D

144 W

o to

-C

4'

+0
W. 41

C ~ in i
4j "- C

C-) ulS. ~ I

0 S. S..
01 ~ An

o C. 4))4 137

4.0 QUALITY ASSURANCE PROVISIONS

4.1 Introduction

Tests and evaluations shall be conducted to verify that the

performance and design of the OFP-Executive shall meet or exceed the require-

ments specified in Section 3.0. The test category, verification method, and

test requirements for performance/design requirements are specified in the
Verification Cross-Reference Index (VCRI), Table XXXIII. The requirements

* delineated shall be the basis for the test plan and test procedure which

shall be written. The four methods given in Table XXXIII of verifying in-

dividual requirements are explained as follows:

a. Inspection - Formal verification of a performance of a

4design requirement by examination of the assembled CPCI at the time and place

of qualification testing. Inspection is not often specified as a formal

means of verification for a requirement. One set of requirements that might

be verified by inspection are the data base requirements, which can be veri-

fied by comparing the data base documentation with a system tape listing.

b. Analysis - Formal verification of a performance or design

requirement by examination of the constituent elements of a CPCI component.

For example, a weapons guidance equation or a coordinate conversion equation

might be verified by analysis.

c. Demonstration - Formal verification of a performance or

design requirement by observation of a demonstration test. For example,

visual demonstration might be used to verify that the displays generated by

the CPCI are in the format necessary to satisfy human performance require-

ments.

d. Review of Test Data - Formal verification of a perfor-

mance or design requirement by examining the data output after operation of

a CPCI component when selected input data are processed. For example, a re-

view of hardcopy printout test data might be used to verify that the content
, ,of a specific told-in message is correctly processed. This method is the

138

TABLE XXXIII VERIFICATION CROSS REFERENCE INDEX

Method Legend: NA Not Applicable

1 - Inspection A - Computer Program Test 'and

2 - Analysis Evaluation

3 - Demonstration B - Preliminary Qualification Test

4 - Review of Test Data C - Formal Qualification Test

II - Category II Test

SECTION 3 METHOD TEST CATEGORY
REQUIREMENT - VERIFICATION

REFERENCE NA 1 2 3 4 A B C II REQUIREMENT

3.2.1 X

3.2.1.1 X X X X 4.2.2, 4.2.3, 4.2.41

3.2.1.2 X X X X of ,

3.2.1.3 X X X X ,, ,, ,,

3.2.1.4 X X X X mm

3.2.1.5 X X X X " °'

3.2.1.6 X X X X " of

3.2.1.7 X X X X " a "

3.2.1.8 X X X X " " "

3.2.1.9 X X X X " "

3.2.2 X " a "

3.2.2.1 X X X X " " '°

3.2.2.2 X X X X " " "

3.2.2.3 X X X X " " "

3.2.3 X X 4.2.2, 4.2.3, 4 . 2 .41

139

• I II._ i.... I--- :J.., i

4.--

one likely to be used for the majority of qualification testing.

Narrative data pertaining to test categories, amplifying the

tabular content of the VCRI are specified in subparagraphs below. Test re-

quirements referenced in the VCRI are specified in 4.2 and subparagraphs

thereto.

4.1.1 Category I Test

Category I testing is subdivided into the following broad

types:

a. Computer Program Test and Evaluation - Tests conducted

prior to and in parallel with preliminary or formal qualification tests.

These tests are oriented primarily to support the design and development

process.

b. Preliminary Qualification Tests - Formal tests oriented

primarily towards verifying portions of the CPCI prior to integrated testing/
formal qualification tests of the complete CPCI (see paragraph 4.1.3 below).

These tests will typically be conducted by the contractor's design and de-

velopment facilities.

c. Formal Qualification Tests - Formal tests oriented pri-

marily towards testing of the integrated CPCI, normally using operationally

configured equipment at the category II site prior to the beginning of cate-

gory II testing. This testing will emphasize those aspects of the CPCI per-

formance which were not verified by preliminary tests. The testing require-

ments which cannot be verified during category I test shall be specified in

paragraph 4.1.5.

Qualification of this CPCI shall be accomplished during

qualification testing to the maximum extent possible, as a result of prelim-

inary qualification tests (PQT) and formal qualification test (FQP) conducted

by the contractor and witnessed/verified by the procuring activity.

140

4.1.2 Computer Programing Test and Evaluation

Programming test and evaluation which apply satisfy one or

both of the following criteria:

(1) They are intended to be the only source of d4ta to

qualify specific requirements in Section 3.

(2) They must be accomplished as part of an integrated test

-£ program involving other systems/equipment/computer programs.

4.1.3 Preliminary Qualification Tests

These tests will directly support the top-down implementa-

tion and verification. Method of verification shall be as specified in

Table XXXIII. The following three levels of qualification shall be

r performed.

a. Unit Design Qualifications shall apply to each module.

At this level the characteristics which are of primary interest are the

internal workings of the module; logical flow control, numerical results,

convergence, scaling, and range.

b. Module Design Qualifications shall apply to each module
after it is interfaced with its environment. These tests are basically in-

terface tests; correct internal operations are assumed. The object is to

verify that two or more modules work together. To comply with the top-down

approach the interfacing tests shall be sequenced from the top to the bottom.

c. System Design Qualifications shall apply to the completely

assembled CPCI. This level requires a totally integrated computer program.

Such testing discloses errors due to conflicts Introduced by data sharing

convention violations, improper range of input values, sequencing require-

ments and communications and control. The internal working of the CPCI is

of primary concern with the interfaces of the CPCI with the external environ-

141

,4

ment deferred to the Formal Qualification Tests.

4.1.4 Formal Qualification Tests (Specified in the Part II

Specifications)

4.1.5 Category II Tests (Specified in the Part II Specifications)

4.2 Verification Requirements
This paragraph specifies in greater detail the method used

to verify the Individual requirements given in Table XXXIII. (This table

cross-references the sub-paragraphs of 4.2 which apply).

4.2.1 Performance

The specified function shall be verified with respect to

one of the following performance criteria.

a. Accuracy which may be affected by input precision, input
frequency, input accuracy, or number of iterations.

b. Execution time
c. Storage used
d. Response time

e. Long term degradation

f. Stability

4.2.2 Priori ty/Timing
The specified function shall be verified with respect to

one of the following priority/timing criteria:

a. Interrupt and return

b. Frequency
c. Consistancy in events

d. Order of processing

e. Scheduling/cancelling consistency

f. Job stacking

142

--

4.2.3 Interfaces

The specified function shall be verified with respect to

one of the following interface parameters:

a. Data locks
b. Range

c. Consistency

d. Initialization

e. Data organization

f. Human command/response

g. External procedures

* 4.2.4 Logic Paths

The specified function shall be verified with respect to

the correctness of the logic paths by exercising the computer program in

operation.

4.2.5 Off-Nominal Conditions

The specified function shall be verified with respect to

off-nominal conditions such as:

a. Error detection
b. Error recovery

c. Limitations

143

