AD=A083 118

UNCLASSIFIED

P2

AIR FORCE AVIONICS iLAB WRIGHT=PATTERSON AFB OH F/6 9/2
COMPUTER PROGRAM DEVELOPMENT SPECIFICATION FOR IDAMST OPERATION==ETC(U)

JUL 7
AFAL-YR-76-209-ADD-2

e

P FAL-TR-76-209, Addendum #2

Fan -E'Y\ \,“?h"“ | ;
Nyu:?\ f‘ K

/.;"M"’—'
COMPUTER PROGRAMQEVELOPﬁ ENTQECIFICA“ON
~ FOR ¥

IDAMST OPERATIONAL EL FLIGHT P! PROGRAM EXECUTIVE_, ,,/ ';

="
b | SOFTWARE

. 1\ ’alYPEBS-AJJvenaIUmzZ.’ /
l - —— f:' =

, S |

; : b E . V- ’?\ \

Y] | e @3,6":\‘:11 742

N e TS T T Ae . e

i

v o)
i
RIS .
o @f AFAL=TR- o301 40 b-2, S PEC-Sb-211-FT
—
> ,
=

i
'\ ,
’:' APPROVED FOR PUBLIC RELEASE; DISTRIBUTION yUNLIMITED
£,
&3 AIR FORCE AVIONICS LABORATORY S
SR AFAL/AAA-1
ig WRIGHT-PATTERSON AFB, OHIO 45433 -'
e | ,i
: oxsero 80 4 15 066,/

("‘ i
\ﬁ-— s e e s o e RN

T
e e ik ot

e Ba —— :,'“ . #&’w PP ™ "
L - -.mmw‘;-:vwm-w e LR PSRN S R
Table of Contents

PAGE

1.0 Scope 7

1.1 Identification 7

1.2 Functional Summary ' 7

2.0 Applicable Documents 7

3.0 Requirements 8

) 3.1 Program Definition 8

3.1.1 Hardware Interfaces 8

. v 3110 Bus Control Interface Unit (BCIU) 8

) \ 3.1.1.1.1 Instruction Format 9
ﬁ ' 3.1.1.1.2 BCIU Register 13
' } 3.1.1.1.3 Interrupt Generation 6
3.1.1.2 - Remote Terminals 26

. I 3.1.1.2.1 Basic Characteristics - 6

oo 3.1.1.2.2 RT Functions 27

3.1.1.3 Processor Control Panel (PCP) 28

3.1.2 Software Interfaces 30

3.1.2.0 Events 3

3.1.2,2 Tasks 3]

3.1.2.3 Comsubs 35

3.1.2.4 Compool Blocks 35

* 3.1.2.5 Real-Time Pseudo Statements 36
T 3.1.2.6 PALEFAC 37

! - 3.2 Detailed Functional Requirements 37
' ' 3.2 IDAMST Local Executive Functions 37
3.2.1.1 - Function One - Local Executive Control Function 38

3.2.1.2 Function Two - Hardware Interface Control Function 48

3.2.1,3 Function Three - Application Software Interface

: ' Control Function 52

3.2.1.3.1 Inputs 52

3.2.1.3.2 Processing 57

3.2.1.3.2.1 Task Scheduling 59

- 3.2.1.3.2.2 Task Termination/Cancellation 59

[DISTRIBUTION STATiMrNT £

1 Approved for puniic rrlaase:
Distribution Unlimited

3.2.1.3.2.3
3.2.1.3.2.4
3.2.1.3.2.5
3.2.1.3.2.6
3.2.1.3.3
3.2.1.4
3.2.1.5
3.2.1.6
3.2.1.7
3.2.1.8

3.2.1.9
3.2.2

3.2.2.1
3.2.2.2

3.2.2.3

3.2.3
4.0

4.1

4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.2

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5

Table of Contents - Cont.

Event Signalling

Wait

Compool Read/Write

Executive Service Return

Outputs

Function Four - Event Handling Function
Function Five - Task Checking Function
Function Six - Task Dispatching Function
Function Seven - Minor Cycle Set-Up Function

Function Eight - Asynchronous Message
Handling Function

Function Nine - Local Executive Initfalization
IDAMST Master Exascutive Functions
Function Ten - Initialization and Start-Up

Function Eleven - Synchronous Bus
Communicatfon Control

_Function Twelve - Asynchronous Bus

Communication Control

IDAMST Monitor Control Function

Quality Assurance Provisions
Introduction

Category I Test

Computer Programming Test and Evaluation
Preliminary Qualification Tests

Formal Qualification Tests o .
Category II Tests Accussiciaor

Verification Requirements
Performance
Priority/Timing
Interfaces

Logic Paths
O0ff - Nominal Conditions

Aoailand/or
Dist special

PAGE

59
59
63
63
67
69
74
80
82

92
105
110
10

nz

F IGURE

—
-

o [+ ~ [=)] (3] > w n
. . . - . . .

10.
",
12.
13,
14,
15,
16.
17.
18,
19,
20,

LIST OF FIGURES

BCIU Instruction Format

Processor Control Register (PCR)
Internal Status Register (ISR)

BCIU Built-In Test (BIT) Word Format
IDAMST Processor Control Panel (PCP)
States of a Task

Major Functions of Local Executive
Local Executive Functional Flow

Terminal Organization Address Table (TOAD)
Description

Sub.address Neme Keys Table (SNAKE)
Local Executive Control Processing
Interrupt Handling Processing

Task Table A

Asynchronous Data Descriptor Block
Synchronous DDB

Task Scheduling Processing

Task Termination/Cancellation Processing
Wait Processing

Compool Block Processing

Executive Service Return Processing

PAGE

10
15
18
22
29
32
39
40
42

a4
45
51
55
56

60
61

65
66

FIGURE
21.
22.
23.
24.
25.
26.
27.
28.
29,
30.
31.
32.
33.
34.
35.
36.
37.
38.
39

LIST OF FIGURES (CONT'D)

Event Handling Processing

Task Checking Process

Task Dispatching Processing

Processing of Minor Cycle Set-Up Function
Reception Queue

Asynchronous Message Reception Processing
Transmission Queue

Asynchronous Message Transmission Processing
Local Executive Initialization Processing
Master Executive Functions

Master Executive Initialization

Master Executive Start-Up

BCIU Instruction Format

Instruction Block Organization
Instruction List Pointer Table

Minor Cycle Phase Table ITlustration
Master Synch. Control Processing
Asynchronous Control Function

Monitor Control Processing

PAGE
72
78
83
90
95
96

100

103

107

m

13

14

120

121
123
124
125
132
136

o

LIST OF TABLES

TABLE ' PAGE
I BCIU Registers 14
. 11 Input to the Local Executive Control 41
Function
f ' I1I Fxnctions Invoked to Service 47
’ synchronous Receptions
; 1v Inputs to Hardware Interface Control Function 49
‘ v Inputs to Application Software Interface 53
§ Control Function
. V1 Outputs from Application Software 68
Interface Control Functions _
VII Event Record Table 70 f
VIII Input to Event Handling Function n %
IX Outputs from Event Handling Function 73 E
X Local Processor Tasks Table B 75 !
X1 Inputs to Task Checking Function 77 E
. * XI1 Outputs from Task Checking Function 79 g
X111 Inputs to Task Dispatching Function 81 %
- X1y Outputs from Task Dispatching Function ?
XV Inputs to Minor Sych Set Up Function
XvVI Synchronous Pointer Index Table
F XVI1 Pointer Block Descriptor Table
\ VIl Minor Cycle Event Generation Table
XIX Outputs from Minor Cycle Set-up Function

TABLE
XX
XXI

XXII
XXIII
XXIV
XXV
XXVI
XXVI1
XXVIII
XXIX

XXX
XXX1I
XXXI1
XXXIII

LIST OF TABLES (CONT'D)

Input to Asynchronous Message Reception

Outputs from Asynchronous Message Reception
Function

Inputs to Asynchronous Message Transmission
Function

Outputs from Asynchronous Message
Transmission Processing

Inputs to Local Executive Initialization
Function

Outputs from Local Executive Initialization
Function

Inputs to M.E. Initialization & Start-Up
Function

Inputs to Master Synchronous Control
Function

Outputs from Master Synchronous Control
Function

Inputs to Asynchronous Bus Communication
Control Function

Outbuts from Asynchronous Control Function
Inputs to Monitor Control Function
Outputs from Monitor Control Function

Verification Cross Reference Index

 PAGE
93
98

99

104

106
109
12
119

127

1.0 SCOPE

1 1.1 \\\\\sldentification

This specification establishes the requirements for performance,
design, test, and qualification of a computer program identified as
Operational Flight Program (OFP), Executive Software for the Intdgrated
Digital Avionics for the Medium STOL Transport (IDAMST).

1.2 _'/”Eunctional Summary
K:9The IDAMST Executive Software Systems provides the system soft-
ware services for the application software. It has been divided into three

. ‘ major functions denoted as Master Executive, Local Executive and Monitor
. Executive Functions. These functions provide services for the execution of
; real-time applications, data bus management, system control, common data
| f utilization and Remote Terminals communication. _
2.0 Applicable Documents

The following documents of the exact issue shown form a part of
this specification to the extent specified herein. In the event of conflict
between the documents referenced herein and the contents of this specifica-
tion, the contents of this specification shall be considered a superseding
requirement.

Specifications:

1) OFP IDAMST Error Handling and Recovery System Software
(EHARS), SD2042

2) System Specification Type A SI 1010, June 197¢

3) Control/Display System Segment Spec Type A SR 5020,

Other Publications:

1) Specifications for IDAMST Software Technical Report

2) DAIS Mission Software Executive Specification
F33615-75-C-1181, 26 December 1975

3.0 REQUIREMENTS

3.1 Program Definition

3.1.1 Hardware Interfaces ,

The IDAMST Executive System interfaces with the following ele-
ments of hardware: a Bus Control Interface Unit (BCIU), Remote Terminals,
Mass Memory, a Processor Control Panel (PCP), and Processors.

3.1.1.1 Bus Control Interface Unit (BCIU)

The Bus Control Interface Unit (BCIU) shall provide the inter-
face control and data transfer function required to connect a Processor with
two multiplexed data buses. The BCIU shall be directed to operate in a mode
by its interfacing processor. The following are the modes in which the BCIU
shall be capable of operating:

a. Remote Mode, providing transfer of date in both directions
between the Processor and either of the two Buses, providing status repiies
on the appropriate bus in response to commands, and special internal opera-
tions and interrupts to the associated processor upon receipt of certain
special commands on the data buses.

b. Master Mode, providing control of the data bus based upon
instructions fetched from the memory of the Processor through the Direct
Memory Access (OMA) Channel by the BCIU.

This Master Control mode shall result in:

1. The BCIU issuing Bus Commands to other devices on the Data
Buses.

2. Participating in data transfers on the buses (when the
instruction dictates it).

3. Checking status responses from devices on the data buses.
4. Checking formats of the data bus operation.

5. Reporting of error conditions to the processor.

?

At any time, there shall only be one BCIU in Master Mode.

3.1.1.1.1 Instruction Format

The BCIU instruction 1ist is composed of pairs of fnstructions
accessed by the BCIU using a DMA channel. The BCIU sequentially interprets
instruction pairs to determine the action required. The format of the in-
struction pair is shown in Figure 1.

Each of the fields in the two word instruction have the
following uses:

a. OP CODE - These two bits deterine the function of the
command.

00 = Halt the BCIU. This is always the last command in a
1ist and denotes that no other command is to be performed. When the BCIU
executes this instruction the Halt bit is set inthe Internal Status Register
and a BCIU level 1 {nterrupt will be generated.

01 = Link. This OP code is used to 1ink sections of the
command 1ist. Thus, the individual instructions of the command 1ist need
not occupy contiguous memory locations. The second word of the instruction
is used as the address of the next two word instruction. The other fields
of the instruction are ignored except for the interrupt (1) field.

*L 3unNdld
1VWd04 NOILINYLSNI NId8

(NOTLONYLSNI ¥3d SITYLIY FIYHL 30 WAWIXVW)
NOILINYLSNI QYOM ¢ SIHL A8 Q3MOTIV SITULIY 40 YIGWAN 40 FWVYMLI0S OL YOLVIIONI = A¥L3Y

(40SS3208d 0L [19d] LdNU¥IINI G3TI04INOD QIWKVYI0YA SINISTMd L 3I907) °NOILVYIMO SNE HL
40 NOIL3TdWOI TN4SSIIONS NOdN YOSSII0Ud 3HL OL 1d4NYY3IINI NV YIHLIHM ILVOIGNI OL 118 = I

(2WI8 $13313S L 21901)
*NO Q3Wd04¥3d 39 T1IWHS NOILVYIdO SN SIHL SNG HOIHM 3NI43Q oL LI19 = €

o
9l 4\ it L 9 S L SiIg
300W/SS3Haavans SS3daav q 3000 3a0W
LIWSNWVYL 321A30 /INNOD QYOM
LIWSNVIL
3a0W/SS3yaavans SS3daay 3000
EVYEMED 3J1A30 I NVdS AL 40
ETYENED
9l 4! t 4 9 § 14 £ L siIf

10 = No Operation. This OP code has two uses. The first
is to cancel commands which the Master Processor no longer wishes the Master
BCIU to perform.

The second is tc create a processor fnterrupt before the
next BCIU instruction is generated. A typical use of the latter case is
sending Mode Commands. The Mode Data Register must be set before the com-
mand is sent. Thus, the interrupt causes a BCIU pause which permits the
Master Processor to set the MDR and then set the Continue Bit in the PCR to
reset BCIU processing.

For this OP code only the interrupt field is examined.
A11 other options are ignored.

11 = Bus Operation. For this operation the rest of the fields
are interpreted as reception or transmission across the Bus.

b. RETRY - If the transmission attempted by this instruction
was not successfully completed, and this field is not zero, then the trans-
mission will be retired up to three times.

c. SPARE - This bit is not used.

d. T - If this bit is set, successful completion of this
instruction will cause an interrupt. The PCI bit in the ISR will be set.
The interrupt will be of level 1. The discussion accompanying the No Opera-
tion Code explains the use of this bit, although the bit may be used in any
of the four instructions.

e. RECEIVE DEVICE ADDRESS - This field contains the address of
the terminal to receive the message., This field 1s only used for BCIU in-
struction OP code "Bus Operation" (11). If the Receive Device Address is
not the address of the Master BCIU (as contained in the BCIU address field
of the PCR), then a Receive Command will be formed by concatenating the
Recefve Device Address Field, a bit denoting Receive, the Receive Subaddress/

n

aqo-

Mode field, and the Word Count/Mode Code field. This receive command will
then be transmitted across the Bus.

If the Receive Device Address field is the address of this
BCIU and the Receive Subaddress/Mode field is not zero (i.e., this is not a
Mode Command), then the Receive Subaddress field will be used to load the
Data Address Register (see Section 3.1.1,1.2.15) which will then determine
where the received message will be stored.

f. RECEIVE SUBADDRESS/MODE - This field describes the message
to be received. The use of this field is described in the Receive Device
Address field. If this address were zero it would indicate that this {s a
Mode Command.

g. WORD COUNT/MODE CODE - For mode commands this field con-
tains the number of the command. For Receive/Transmit commands this field
contains the number of data words to be transmitted.

h. B - This field indicates which Bus will be used for data
transmission. If this bit is zero, Bus number one will be used. If this
bit is one, Bus number two will be used.

i. TRANSMIT DEVICE ADDRESS - This field is similar to the
Receive Device Address except that it is the address of the terminal which
will send the message.

If the address is not that of this Master BCIU, then Trans-
mit Command will be formed by concentrating the Transmit Device Address
field, the Transmit bit, the Transmit Subaddress/Mode field and the Word
Count/Mode Code field.

1f the Transmit Device Address field is the address of this

terminal then the Data Address Register will be formed (see Section
3.1.1,1.2.15) and the data will be written into the Bus from that address.

12

i

For Mode Commands the Transmit Device Address field is the
address of the terminal to receive the Mode Command and the Receive Device
Address field is the address of the Master BCIU.

It is an error for the Receive Device Address field and the
Transmit Device Address field to be the same device. This error will cause
an interrupt of level 1 and the IVI bit will be set in the Internal Status
Register.

J. TRANSMIT SUBADDRESS/MODE - The use of this field has been
discussed in the description of the Transmit Device Address field.

For mode commands, both the Transmit Subaddress and Receive
Subaddress will be zero.

3.1.1.1.2 BCIU Registers

The registers on the BCIU control its mode of operation, pro-
vide information for the master processor and provide information to its
Tocal processor. There are sixteen, 16-bit registers accessible to the
processor through the PIO.

These registers and their respective PI0 addresses are listed
in Table I, Their description follows:

3.1.1.1.2.1 Processor Control Register (PCR)
This register's format is illustrated in Figure 2.
The description of this format follows:

a. Master - This bit is set to logic 1 by the processor, to
direct the BCIU to operate in Master Mode.

b. GO - Set to logic 1 by the processor to indicate the BCIU

is to enter an operational mode. A logic 0 indicates the termination of an
operational mode. A HALT instruction in master mode will set it to logic 0.

13

PI0 ADDRESS

TABLE I.

O 0 ~N O ;v &~ W N

- et emt b ek b
N s W N - O

T Y -
R S N S . ,.m

BCIU REGISTERS

PROCESSOR CONTROL REGISTER (PCR)

INTERNAL STATUS REGISTER (ISR)

BASE ADDRESS REGISTER (BAR)

INSTRUCTION ADDRESS REGISTER (IAR)

BUILT~IN-TEST REGISTER (BITR)

MODE DATA REGISTER (MDR)

LAST COMMAND REGISTER (LCR)

STATUS CODE REGISTER (SCR)

MASTER FUNCTION REGISTER (MFR)

POINTER REGISTER (PR)

DATA ADDRESS REGISTER (DAR)

WORD COUNT REGISTER (WCR)

XMIT STATUS WORD REGISTER (XSWR)

RECV STATUS WORD REGISTER (RSHWR)

INSTRUCTION WORD REGISTER 1 (IWR1)

INSTRUCTION WORD REGISTER 2 (IWR2)

14

(¥dd) ¥3LSI93Y¥ T0YLINOD ¥OSS3II0Ud

' 3¥NoLd

15

8s°1 gSH
N | INOD | quvis | aavaw | 3uvas | ssauaav nida | dages | xus | Fuves | v YILSWH
/Asng
9t Sl vl €l AREER ! L 9 g ¥ € L

oqo-

c. FAIL - Set to logic 1 after detecting an error in self-test.

d. SPARE - Set to logic O.

e, System Reset Acknowledge - Set to logic 1 by the processor
to indicate acknowledgement of the power-on-reset interrupt. '

f. Self-Test By-Pass - Set to logic 1 by the processor indicate
that the BCIU is not to perform self-test.

g. BCIU Address - These 5 bits shall be set by the processor
to indicate the address on the BCIU,

i. READY - Set to logic 1 by the BCIU after completing its
power-on initialization.

j. BUSY/CONT - Set to logic 1 by the remote processor to
indicate the BCIU is to enter BUSY state. It is set to logic by the BCIU
after having been directed to exit BUSY state.

In master mode, the bit is set to logic by master processor
to indicate to the BCIU that an interrupt has been processed.

k. RUN - Set to logic 1 by BCIU after being directed to enter

an operational mode or upon exciting a BUSY state. It is set to by the
BCIU after terminating an operational mode.

16

3.1.1.1.2.2 Internal Status Register (ISR)

This register shall be set only by the BCIU., It contains indi-
cations of the cause of a BCIU generated interrupt. This register is clear-
ed by the BCIU prior to processing a new instruction or command.

This register's format and the meaning of each bit is indicated
in Figure 3. The interrupt levels generated by these bits are
also indicated in this figure.

A description of each bit follows:
a. HALT (H) This bit shall be set to logic 1, in Master Mode

only, to indicate that the BCM has processed a HALT instruction. The oper-
, } ational mode (Master) shall be terminated.

. b. Program Controlled Interrupt (PCI) This bit shall be set to
L logic 1, in Master Mode only, after completion of 2 word instruction opera-
tion in which PCI was requested (PCl=1).

c. Invalid Instruction (IVI) In Master Mode only, this bit
shall be set to logic 1 if the Device Address within the Receive field of
the 2-word instruction is equal to the Device Address within the Transmit
field.

d. System Interrupt (SI) In REmote Mode only, this bit shall be
: ' set to logic 1 upon receiving the System Interrupt Mode Command.

e. Mode Data Present (MDP) This bit shall be set to logic 1, in
Master Mode only, after successfully receiving the Data Word associated with
Mode Operations (Interrupt results from mode operations 3, 10, 11, and 13 -
Refer to paragraph 3.2.1.1.1.).

17

.%.-.

M ‘fpF = ST —

(4SI) ¥31SI93Y¥ SNLVLS TYNYILNI ‘€ N9I4

(40YY3) SSIIIV AYOWIW LI3YIA - wa| 9l s
ViVa AIWANI - Al | 6L
Y0443 ALI¥Vd Viva - da | HlL{ b
VIVG 3137dWOINI - @1 €l
@3A13234 VIVG ON - doN | 2L q
40443 SNLVIS AI3Y - sy | 1t .
Youd3 SNIVIS LIWX - sx| ol
NOILdIDXI SNIVIS AD3Y - XIS | 6 | ¢
NOILdIDX3 SNIVLIS LIWX - xasx | @
(AINO 300W 310W3I¥) NOILONNS YILSWW - M| ¢ o |
*INI 9SH INAS ¥ - wl 9 -
LIWX = L “A234 = @ "INI 9SW INAS V - vl s |2
IN3SI4d Viva 300W - din | ¢
(AINO 300W 3LOWIY) LdNUYIINT W3LSAS - IS
(AINO 300w YILSWW) NOILONYLSNI QITWANI - /IAI | €
LdNYYIINT A3 TIOUINGD WWVEI0Yd - Id{ 2 {1
1IVH - Hi 1 _
ONINVIW | 118 | |
S b £ 2 L
IS 1PN
VWG |GAL | 3d0 | GD1 | AN | 3SY | 3ISX | X3ISY | X3ISX | AW | WY | uxv | dOW | ,p\p (104] W 14N¥Y3INI
91 l

S

s

f. Asynchronous Message Xmit/Recv {AXRQ In Master or Remote

Modes, this bit shall be set in conjunction with Bit 6 (AM) to indicate
whether the BCIU was the Receiver (AXR=0) or the Transmitter (AXR-1) of an
asynchronous message (Sub-Address=31).

g. Asynchronous Message (AM) In Master or Remote Modes, this
bit shall be set to logic 1 after successful completion of an asynchronous
bus message operation (Sub-Address=31).

h. Master Function (MF) This bit shall be set to logic 1, in
Remote Mode only, after receiving the Master Function Mode Command.

1. Transmit Status Exception (XSEX) This bit shall be set to
logic 1, in Master Mode only, after receiving an excepted, valid status word
associated with a Remote device in Transmit Mode in which the Message Error,

Terminal Faflure, or Status Code is non-zero. The status word shall be
placed intact within the Xmit Status Word Register.

J. Receive Status Exception (RSEX) This bit shall be set to
logic 1, in Master Mode only, after receiving an expected, valid status word
associated with a Remote device in Receive Mode in which the Message Error,
Terminal Failure, or Status Code is non-zero. The status word shall be
placed intact within the Received Status Word Register.

k. Transmit Status Error (XSE) This bit shall be sat to logic
1, in Master Mode only, if an expected status word associated with a Remote
device in Transmit Mode is not received, is received invalidly, is recefved
validly with bad parity, or is received validly with good parity with a
Device Address that does not match the Transmit Device Address within the
2-word instruction.

19

1. Receive Status Error (RSE) This bit shall be set to logic 1,
in Master Mode only, if an expected status word associated with a Remote
Device in Receive mode, is not received, is received invalidly, is recefved
validly with bad parity, or is received validly with good parity with a
Device Address that does not match the Receive Device Address within the 2-
word instruction.

m. No Data Receive (NDR) This bit shall be set to logic 1, in
Master Mode only, after commanding a remote device to transmit one or more
data words and the first such data word has not arrived within 60 micro-
seconds after status word reception.

n. Incomplete Data (ICD) This bit shall be set to logic 1, in
Master lMode only, after receiving at least one expected data word and with
further data words expected, the next data word is not received within 60
microseconds after reception of the last data word.

o. Invalid Data (IVD) This bit shall be set to logic 1, in
Master Mode only, after an expected data word was received with Parity Error
indicated. Data word reception continues.

p. Direct Memory Access Error (DMA) This bit shall be set to
logic 1, in Master or Remote Mode, after an unrecoverable DMA Error is de-
tected while attempting to fetch an instruction word, a pointer word, or a
data word from main memory or while attempting to store a tag word or a data
word into main memory.

20

3.1.1.1.2.3 Base Address Register (BAR)

This register shall be set only by a Processor for the associa-
ted BCIU (Master/Remote) and shall contain the most significant 10 bits of a
pointer word address within main memory for a given data transfer operation.
The addressed pointer word shall contain the true data block address.

3.1.1.1.2.4 Instruction Address Register (IAR)

This register shall be met only by a Processor whose associated
BCIU is to operate in Master Mode. The register shall contain the main mem-
ory address of the initial 2-word instruction executed, the BCIU shall modify
the register in order to reflect the address of the next instruction to be
executed. The register shall be unused in Remote Mode.

3.1.1.1.2.5 Last Command Register (LCR)

This register shall be used only in support of the Transmit
Last Command Mode Command. In Remote mode, the BCIU shall place commands
which are received validly and directed to the particular BCIU into this
register. Exceptions shall be Transmit Status Word, Transmit Bit Word, and
the Transmit Last Command itself.

3.1.1.1.2.6 Built-In Test Word Register (BITR)

This register shall be used to either maintain the Built-In Test
Word (Remote Mode), or to temporarily hold Terminal Failure or bus monitoring
of own transmission information (Master Mode). The format of a BCIU BIT word
is shown in Figure 4, and described in the following paragraphs.

a. Power-On-Reset This bit shall be set to logic 1 {f the BCIU
performs Power-On Inftialization.

b. Power Supply Failure This bit shall be set to Logic 1
in the event of failure.

3|

ew ok

l - ONVWNOD GITVANI
o
@ v1va QITVANI
[~4
[w]
&
] 40¥Y¥3 ALIYVd ViV
&
Py
a MOT INNGD QYOM
=
HOIH INNOD QYOM
- 03A13234 V.iVQ ON
=]
wd
(=]
a S
o w
Lomd o
| M f1
w =
& el =
=
= w RER Y
-
2
> < 1n0 2# Wig
]
) 1N0 L# W18
™ 34N7IV4 A1ddNS ¥3IMOd
- 13534-NO-43M0d
22
S S TR SN AT SRS

BCIU BUILT-IN-TEST (BIT) WORD FORMAT

4.

FIGURE

P Yy

c. BIM 1 Out This bit shall be set to logic 1 by the Remo;e
Mode BCIU after powering down BIM 1 as a result of recefving a Remove Power
BIM 1 Mode Command. The BIT shall indicate that power has been removed from
BIM 1.

d. BIM 2 Out This bit shall be set to logic 1 by the Remote
mode BCIU after powering down BIM 2 as a result of receiving a Remove Power
BIM 2 Mode Command. The bit shall indicate that power has been removed from
BIM 2,

e. DMA Error This bit shall be set to logic 1 by the Remote
Mode BCIU after an unrecoverable direct memory access error is detected while
fetching data words from or storing data words (excluding tag words) into
main memory.

f. Failure Code Errors The faflure code shall be set to indi-
cate detected self-test failures as follows:

o No failure 00000
o BIM #1 failure 10001
o BIM #2 failure 10010
o MROM Parity Error 10011
o BCM Data Flow Error 10100
o BCM DROM Error 10101
o BCM SEQ Error 10110
o PIM DMA Data Flow Error 10111

g. No Data Received This bit shall be set to logic 1 by the
Remote Mode BCIU after having been directed to recefve one or more data words

and the first such data word has not arrived within 75 microseconds after
command word reception.

h. Word Count_;qy‘rjpj§_§1t shall be set to logic 1 by the Re-
mote Mode BCIU after having been directed to receive two or more data words,
at least one such data word has arrived, but the next expected data word does

23

1

not arrive within 60 microseconds of last data word reception.

§. Word Count High This bit shall be set to a logic 1 by the
Remote Mode BCIU after detecting another Data Word after the word count is
zero.

j. Data Parity Error This bit shall be set to logic 1 by the
Remote BCIU after an expected data word was received with Parity Error indi-
cated. Data word reception continues.

k. Invalid Data This bit shall be set to logic 1 by the Remote
mode BCIU after an expected data word was received with RECV WORD INVALID
indicated. Data word reception continues.

1. Invalid Command This bit shall be set to logic 1 by the
Remote BCIU after receiving a mode command in which the mode code designates
an invalid operation for the BCIU.

3.1.1.1,2.7 Status Code Register (SCR)

This register shall be used in Remote Mode only and shall be
set and reset by the Remote Mode Processor. The actual status code shall be
the nine (9) least significant bits of the register and shall be merged into
any status word prior to status word bus transmittal by the Remote BCIU.

3.1.1.1.2.8 Master Function Register (MFR)

This register shall be used only in support of the Master Func-
tion Mode Command. In Master Mode and in accordance with Master Function
processing, the contents of the register shall be transmitted to the Remote
device as a data word ifmmediately following the command word. It shall be
the Master Processor's responsibility to set the register. In Remote Mode,
the Remote lode BCIU shall place the received data word, in response to the
Master Function mode command, into the Master Function Register. It shall
be the Remote Processor's responsibility to then interpret the contents of

the register.

o

3.1.1.1.2.9 Instruction Word Register 1 (IWRI)
This register shall be used in Master Mode only to hold the
first half of the current 32-bit instruction.

3.1.1.1.2.10 Instruction Word Register 2 (IWRZ)
This register shall be used in Master Mode only to hold the
second half of the current 32-ibt fnstruction.

3.1.1.1.2.11 Xmit Status Word Reaister (XSWR)

This register shall be used in Master Mode only to hold any
status word received from a Remote Device in Transmit Mode, in which the
Message Error, Terminal Failure, or Status Code fields were non-zero.

3.1.1.1.2.12 Received Status Word Register (RSWR)

This register shall be used in Master Mode only to hold any
status word received from a Remote device in Receive Mode, in which the
Message Error, Terminal Faflure, or Status Code fields were non-zero.

3.1.1.1.2.13 Mode Data Register (MDR)

In Master Mode, and only in accordance with performing a cer-
tain class of mode commands, the contents of this register shall be trans-
mitted to the Remote device as a data word immediately following the command
word. The Master Processor shall be responsible for setting the register.

In Remote Mode, the MDR shall be undefined for the Mode Operation defined.

3.1.1.1.2.14 Pointer Register (PR)

This register shall be set by a BCIU operating in either Master
or Remote mode and shall contain the initial data area address for a given
data bus operation involving main memory data transfers. The register shall
be used in Tag Word Operations.

25

3.1.1.1.2.15 Data Address Register (DAR)

This register shall be set by a BCIU operating in either
Master or Remote mode and shall be used to indicate the main memory address
of the next data word to be fetched/stored in support of a given bus opera-
tion. The register shall be derived from the Pointer Regfster and in all
cases (Receive or Transmit) that value shall be initially incremented by 1
to get over the Tag Word. This value then becomes the address to fetch/store
the first data word. As each word is fetched/stored, the BCIU shall incre-
ment the register value by 1 to affect sequential data word fetch/stores.

3.1.1.1.2.16 Word Count Register (WCR)

This register shall be derived from the Bus Command and set
by the BCIU in either Master or Remote Mode. In Bus Operations involving
data word transfers, it shall indicate the remaining number of data words
to be transferred. The register shall be decremented by 1, by the BCIU, as
each data word transfer is performed.

3.1.1.1.3 Interrupt Generation
The BCIU shall examine the Program Controlled lnterrupt Indica-

tor within the Instruction Word One Ragister (IWR1). If set to logic 1, the
BCIU shall set the PCI indicator within the ISR to logic 1. (see Figure

3). The BCIU shall begin to examine the contents of the ISR
from right to left, one field at a time. If any field is found to be non-
zero, the BCIU shall discontinue the examination and present the correspond-
ing level interrupt &s indicated in Figure 3.

3.1.1.2 Remote Terminals

3.1.1.2.1 Basic Characteristics
The Remote Terminal (RT) provides the interface between the

IDAMST Multiplex System and an Afrcraft Subsystem.

The RTs provide for Bus communicatfon with the IDAMST

processors (as described in Section 3.1.1.1.2).

.- - - L - 3
N, B R 3

The subaddress field of each Transmit or Receive Command acts
as a message identifier. The message is formatted by the RT for correct in-
terface with the Interface Modules (IM) which relay (or accept from) the sfg-
nals to the aircraft subsystems.

The RT also as a buffer, holding the message until correct
transmission has occurred.

The RT performs all the error checking and setting of error
and status bits of a remote BCIU.

3.1.1.2.2 RT Functions
The RT shall contain the registers, logic, decoders, buffers,
comparators and control sequences required to perform the following functions:

a. Receive Command Words from the Bus.

b. Detect Command Words directed to this RT.

c. Receive Data Words from the Bus (one at a time) if diracted
to do so by the received Command Word.

d. Transmit Data Words through the Bus to the data bus (one at
a time) if directed to do so by the received Command Word..

e. Transmit Status Words through the Bus to the data bus as
directed by the received Command Word.

f. Perform Mode Operations when and as directed by received
Command Words.

g. Distribute received Data Words to the proper channels of
the proper IMs,

h. Input Data Words from the proper channels of the proper IMs
for transmission to the data bus.

i. Maintain the Status Word and the Buflt-In-Test (BIT) Word
of the RT by performing continuous and periodic self test functions within
the RT.

J. Maintain an Activity Word and Error Word for monitoring
status of serifal digital IM's,

o -y N
T ORI Al . - . PRI -

k. Maintain a Last Command Register for verification of com-
mand receipt in the event of an invalid response.
1. Perform Bit and Word Masking.

3.1.1.3 Processor Control Panel (PCP)
The IDAMST Processor Control Panel is 1llustrated in Figure 5
and its description follows.

3.1.1.3.1 IDAMST Bus Power Switches

The function of these switches is to provide the required sig-
nal to the power control unit to turn on and off the power supplied to the
multiplex elements (Remote Terminal side A and B, and the Bus Control Inter-
face Units). These switches shall also control power to all other processor
control panel functions. These switches shall be push-on, push-off, and
backlighted to indicate the "on" condition.

3.1.1.3.2 Processor Power Switches

The function of these switches is to provide the control sig-
nal to the power control unit to turn on or off each processor. One switch
shall be supplied for each processor. The processor "power on" signal shall
also be supplied to the advisory caution panel circuitry to control the pro-
cessor failure indication. The switches shall be push-on, push-off and back-
lighted as described below.

3.1.1.3.3 Processor Interrupt - Startup/Restart

This switch, when depressed, shall enable the startup/restart
interrupt to each Processor. The processor shall enter the Startup/Loader
program and perforimn complete system restart as defined in the System Control
Procedures. This switch shall be a momentary switch and backlighted while
depressed.

3.1.1.3.4 Processor Interrupt - Reconfiguration

This switch, when depressed, shall enable the reconfigure in-
terrupt to each Processor and cause the Master Executive performing system
control (either Master Executive in Master Processor or Monitor Processor) to

28

(d3d) L9uRd L043U0) J0SSII04G LSWYAI - G 34nbi4

1531
dWv

st i TR

3N914 Llavis3d
-NOJY /dNLYYLS '

—lllltlllilnmhmzxmuhz~ 40SS3I0ud

P

A

. o
430/N0 440/NO 130/N0 ~
i €4 r L# '
| ¥INOUOSSIIOUI— |
]
440/N0 440/N0 :
g 9p1S v 3PIS O

e ot

43Mod snd LSWval

.ﬁbn

=7

initiate reconfiguration. Reconfiguration is performed after one or more
processors have failed; the system is in either the recovery or backup mode;
and the pilot manually initiates reconfiguration.

3.1.1.3.5 Press to Test

The function of this switch shall be to test all lights on the
pcp.
3.1.1.3.6 Switch Indicators

3.1.1.3.6.1 IDAMST BUS Power and Processor Interrupts
These switches shall be backlighted to indicate the “on" con-

dition.

3.1.1.3.6.2 Processor Power
These switches shall be backlighted as follows:

a. White - Indicates the switches have been depressed

b. Green - Indicates ("GO") that power has been supplied
to the processor and the "Processor GO/NO-GO" signal has been set to the "GO"
state within the previous 40 msec.

€. Red - Indicates ("Fafl") processor power is “on"
and the absence of the "G0" signal for more than 40 msec.

3.1.2 Software Interfaces

The IDAMST Executive software interfaces with the Application
software developed for IDAMST and a pre-processor software system (PALEFAC)
that allocates and initializes the executive tables.

The IDAMST Application Software has been defined to consist
of Events, Tasks, Comsubs, Compool Blocks and Real-Time Pseudo Statements.

30

Tasks and Comsubs are processing modules containing executable
code and local data. Compool Blocks and data modules used for communication
between tasks. Events are boolean values used for control interactions be-
tween tasks.

Real-Time Pseudo Statements are the means through which the
Application Software will communicate with the Executive.

3.1.2.1 Events
Events are used for control communication between tasks. An
event has two possible values: on and off.

Any Task may have an associated Task Activation Event. Such
an Event is set on when the Task is Activated and set off when the Task re-
turns to Inactive or Uninvoked state. The Activation Event associated with
a Task must have the same name as the Task.

Any Compool Block may have an associated Compool Update Event.
Such an Event is set on when the Compool Block is updated, either by a Task
or an RT. The Update Event associated with a Compool Block must have the
same name as the Compool Block.

Minor Cycle Events are set on by the Executive according to
specified rates and phases. They may only be referenced in Event Condition
Sets.

3.1.2.2 Tasks

Tasks are the principal processing module within the IDAMST
Application software. All tasks have been defined to exist in a given "state"
at a given time. These "states” are illustrated in Figure 6. The
"states" of tasks are controlled by the application software through the
Real-Time Pseudo Statements (see Paragraph 3.1.2.5). A task shall become
"invoked" only after being scheduled by another task, otherwise it shall
remain uninvoked.

K)

jysel © jo sajeys - g aunbiy

] (ALIYOI¥d A9 Q3IT0YLNOD)

: ALITIBYTIVAY ¥0SS3004d OL 9NIGY0IIV

;

“ ONILNOIXI Q3ANI4SNS AQV3Y .
' LIVM
3 \.\||}v
w INGVHIYASIO < > ONILIVM ,
3 1L ™ |
1 ¥0 INIA3 ‘
ﬂ I1VNINYIL _
& 40 aN3 :

3 — T .

m INLLIV = = IALLIWNI

SIN3IAI
ador I gayoaninn
-~ —
31N03HIS .
NSV1 V 30 SIIVIS
Y T

i g, 158 TR s SR TR

Immediately after being scheduled, a Task is Inactive; how-
ever, it has the potential to become Active, depending upon its Event Condi-
tion Set. The Event Condition Set is a collection of Conditions, each of
which may be either "on" or "off." Each Condition has a "desired" value.
When all the conditions in the Event Condition Set have their desired values,
if the Task is Inactive, the Executive will put it into Active state. A
Task may have a null Event Condition Set, in which case it can only be In-

- active momentarily.

Each Condition in an Event Condition Set is associated with a
* i set of Events. When any of these Events is set on, the Condition is set on;
when any of these Events is set off, the Condition is set off. One Event
’ may be associated with more than one Condition in an Event Condition Set.
, } In addition, one Condition may be associated with a "Minor Cycle Event."
; These are Executive-generated Events which are set "on" at certain specified
times and are otherwise inaccessible to the Application Soft-
ware, If a Condition is associated with a Minor Cycle Event, it may not be
associated with any other Event.

A Condition may be either Latched or Unlatched. A Condition
associated with a Minor Cycle Event must be Unlatched. The sole difference
between a Latched and an Unlatched Condition is that upon the Scheduling or
Activation of a Task, the Unlatched Conditions are set to the undesired

N value. Thus, a Task can only be Activated by an Unlatched Condition when the
value of that condition is changed to the desired value subsequent to the
last Scheduling or Activation of the Task. By contrast, Latched Conditions
are changed only when one of their associated Events is changed. Therefore,
a Task with only Latched Conditions in its Condition Set will be immediately
Activated after it is Scheduled if all the Conditions were satisfied before
the Schedule Statement.

! A Task may return from Active to Inactive state from two

causes: efther because it completes execution, or because it is forcibly
Terminated by another Task. In efther case, immediately after it returns to
Inactive state, the Event Condition Set is evaluated, and if all the Condi-

g

SAL NP NIOY WPt T a1 T o . e

tioris have their desired values, the Task is immediately re-activated.

When a Task is Activated, it is immediately put into Dis-
patchable state. If, at any point during its execution, a Task executes a
Wait Statement, the Executive will place it into Wait state until the speci-
fied condition is satisfied, upon which the Task will again becoﬁe Dispatch-
able.

A11 Dispatchable Tasks should theoretically be executed {mmed-
jately. However, since there may be more than one Dispatchable Task at any
time within any one of the DAIS Processors, Tasks are ordered by Priority to
rasolve possible conflicts. Whenever the Executive in any Processor is not
called upon for immediate action, it selects the highest Priority Dispatch-
able Task, and causes the Processor to execute it.

Some tasks are declared "Privileged Tasks" and are considered
to have the highest priority. Thus, as soon as they are scheduled and their
Event Condition Set is satisfied, they immediately become executable with
the highest priority.

If a Task is Active but has not yet been executed, it is said
to be Ready. If it has been in the process of execution, but has been in-
terrupted by a higher priority Task, it is said to be Suspended. If it is
executing, it is said to be Executing.

Any given Task may only be Scheduled by one Task, which is
called its Controller. Two Tasks with a common Controller are said to be
"siblings." The Tasks Scheduled by any Task are said to be its "sons." If
a Task has no sons, it is said to have no "descendents;" otherwise, its
descendents are its sons and all the descendents of its sonms.

Only a Task's Controller may Cancel or Terminate it; however,
when a Task is Cancelled or Terminated, all of its descendents are Cancelled
or Terminated. If a Task attempts to Cancel or Terminate {tself, it will

Cancel or Terminate all of its descendents, but will leave its own state
unchanged.

34

3.1.2.3 Comsubs

In addition to Tasks, the IDAMST Application Software may in-
clude another kind of processing module, known as the "Comsub." A Comsub
is a Jovial J73/1 based procedure declared external to any Tasks. A Comsub
may be called from many Tasks; there is a copy of each Comsub in any proces-
sor containing a Task from which the Comsub may be called. '

A Comsub communicates with a Task which calls it only through
its parameters and/or function result. No Comsub may execute any Real-Time
Pseudo-Statements; however, one Comsub may call another.

When a Task calls a Comsub, the Task is considered to be exe-
cuting within the code of the Comsub. Thus, it is possible for one Task to
be suspended within the code of a Comsub at the same time that another Task
is executing within the same Comsub. In other words, a Comsub must be re-
entrant. To implement this, every Task has a Comsub Local Storage Area
assigned by PALEFAC for storage of local data by the Comsubs which it calls.
At any time, there is a Comsub Stack Pointer which points to the area avail-
able for storage to the next called Comsub. This Comsub Stack Pointer is
considered to be part of the process state of the Task, and is saved upon the
occurrence of an Interrupt.

3.1.2.4 Compool Blocks
A1l communication of data between Tasks or between Tasks and
the external environment (RT's) is done by means of "Compool Blocks.”

No Task may directly access a Compool Block; instead, a Task
references a "Local Copy" which has size and attributes identical to the Com-
pool Block. A Task may copy the Compool Block into its Local Copy by a READ
Statement, or copy the Local Copy into the Compool Block by a WRITE statement.
From the point of view of the Application Software, READS, WRITEs, occur in-
stantaneously, so a Compool Block can never be read when it has been partially
updated by a WRITE.

35

L. J

Compool Blocks are divided into three classes: Input, Output,
and Inter-task. Input Compool Blocks can only be accessed by Tasks in a READ
statement. Their values are detarmined by RT's. Output Compool Blocks can
only be accessed by Tasks fn a WRITE statement; their values are “received"
only by RT's. Intertask Compool Blocks are used solely for communjcation be-
tween Tasks. '

Since a Compool Block may be accessed in more than one pro-
cessor and also, possibly, in an RT, Compool Blocks may exist in multiple
copies. Any prucessor in which a Compool Block is read has a Physical Copy
of the Block; any RT which references the Block, or any processor which only
WRITEs the Compool Block, is considered to have a Virtual Copy of the Block.
To maintain consistency between the various copies of a Compool Block, the
Executive must send Compool Update Messages across the Data Bus. Compool
Blocks are further classified according to when these Update Messages are
sent as: Synchronous, and Asynchronous.

Synchronous Compool Blocks are updated from a single authori-
tative Copy, whether in a processor or an RT, at a specified rate and phase.
A1l copies of an Asynchronous Compool Block are updated when any of those
copies is changad, either by the hardware of an RT or by a WRITE statement
within a processor.

3.1.2.5 Real-Time Pseudo Statements

The application software requests services from the Executive
system through Real-Time Pseudo Statements. These pseudo-statements are in-
terpreted by the Executive software into calls to different functions as ex-
plained in Section 3.2.1.3. The statements implemented in the IDAMST system
are:

a. SCHEDULE
b. CANCEL

c. TERMINATE
d. WAIT

e. SIGNAL

f. WRITE
g. READ

36

‘ﬁon

3.1.2.6 Palefac

The PALEFAC software system is responsible for the allocation
and initialization of the Executive Tables driving the IDAMST Executive soft-
ware. These tablas describe the attributes and inter-relations of the vari-
ous components of the application software, i.e., tasks, events, compool
blocks, comsub. '

PALEFAC shall generate two types of executive tables: Local
Executive Tables and Master Executive Tables. The Local Executive Tables are
used for control of Tasks, Events, Compool Blocks and Comsub. The Master
Executive Tables are used by the Master Executive to control the operations
of the master processor and its interface with the master BCIU.

These tables have been described extensively in Section 3.2
and have been identified with the particular function involved with the data.

3.2 Detailed Functional Requirements

3.2.1 I1DAMST Local Executive Functions
The IDAMST local Executive shall reside in each processor
within the IDAMST federated system and it shall be functionally identical in

each processor.

The functions of the Local Executive shall be to:

1. Perform services as requested by the application software.
These services are:

a. Event signalling
b. Task scheduling 1
c. Task termination
d. Task cancellation
e. Waft

f. Compool Read/Write

37

2. Perform event handling, and task checking and dispatching.

3. Control the interface with the BCIU with regard to Local
Executive Communications.

4. Respond to minor cycle interrupt and participate in the
transmission and reception of synchronous messages.

5. Participate in asynchronous message transmission and
reception.

Figure 7 illustrates the functions interrelation-
ship.

Figure 8 illustrates a top level functional flow
as exercised by the IDAMST Local Executive.

3.2.1.1 Function One - Local Executive Control

The purpose of this function is to provide single point con-
trol of the Local Executive by maintaining the proper sequencing of its func-
tions. The Local Executive Control processes requests from the Application
Software Interface and the Hardware Interface Functions.

3.2.1.1.1 Inputs to the Local Executive Control Function
Inputs are listed in Table II.

In order to identify messages received from Remote Terminals,
two tables of predetermined information are used. These are called the Ter-
minal Originator Address Table (TOAD) and the Subaddress Name Keys Table
(SNAKE).

3.2.1.1.1. Terminal Originator Address Table (TOAD)

This table, illustrated in Figure 9 shall appear once
in every processor. An entry in this table is generated for each of the 32
possible Remote Terminals. Thus, the RT address is to index into this table.

38

e e

BCIU

7 ’

3 Ld
”

HARDWARE INITIALIZATION
INTERFACE AND

i CONTROL ERROR RECOVERY

N

. : P LOCAL
. EXECUTIVE
: CONTROL

} EVENT
HANDLING

TASK

DISPATCHING
ASYNCH.

e MESSAGE

HANDLING

TASK
CHECKING
= MINOR
: CYCLE
SET-UP

APPL. 1. SCHEDULING
SOFTWARE 2. TERMINATION/CANCELLATION
IFCE 3. EVENT SIGNALLING
N 4, WAIT
N 5. COMPOOL READ/WRITE
N 6. SERVICE RETURN
N

APPLICATIONS SOFTWARE

S MAJOR FUNCTIONS OF LOCAL EXECUTIVE

Figure 7

- ‘
, H014 TYNOILONA4 JAILND3X3 TWI01 - 8 3unbyy
* 3L14M/QVIY 100dW0D
F . LIVM k
INITIVNOIS IN3AJ
| NOILYTTIINVI/NOILVNIWY3L
T _ ONIINAIHIS = — —
_ ~ _ | _ _ m
b el ! L1y b yenr | “ vy | b
I ! /avdl LivM s/3|a/L] laauos| e | | ' _ .
3 439311IA1Yd {@39311A1Yd 39311ATYG, .
ll.l..ll. I _l 1] _nl.Iu. - — o
1=~ "1 | “
f |
, ONINIIHD | | ONINIIHD onpioad | | wswe | ;
ASYL T T ASyL ASVL mwwu4~>_za_ g ,
1 .I.UI -] | - T T ,
NOISSIWSNVY ONITONVH ONIONVH dn-13s o
J1YNIWY3L 9YSSIH | | HILvdSIa 3Na3HIS %3079 31949
/139NVD HONASY 100dW02 1NIAZ YONIH
| L | i | 1 I | |
{
NOISSIWSNVYL NOILd303Y 104.1N0D
J9VSSIH 39YSSIW IAILND3X3
: *HONASY “HINASY W07
. NOILVZIWILINI
: ONITONVH IAILNDAX3
LdNYYILNI W01

. -MWTN
r

B

"‘\;-”‘-"-‘\M .

g

bujssadoay abesssy snouoaysulsy

uojjouny buyppuey xo0ig |oodwo)
uojjoung bugydjedsig jysey
uog3ouny bupydays ysey

bujssadouad abessay snouodyoulsy

bu}ssadodq sbessal SNOUOAYIUAS

(VNS ‘avol)
S3|qe] aAL3INISX3
uojidsday 1y

anand) uojjdsdsy

anandh JudA3
be|4 buppuad
uo3dasay snouoaydudsy

be{4 bugpuad (947 4oup

3INFYIAY

3UN0S

IWVN V1va

NOLLONAS TOMINGD 3AILNI3X3 WIOT 3HL OL Siadn -~ 11 T18VL

a

e

g o

ITEM DESCRIPTION

Number of Asynchronous Messages from this RT

Pointer to First Message described in SNAKE
Table (Fig. 3.2.1.1-2)

o This table to contain one entry for each of the 32 possible
Remote Terminals

Figure 9 Terminal Origination Address
Table (TOAD) Description

42

- o

sy &

This table shall specify the number of synchronous messages assocfated with
the RT and shall provide a pointer to the message descriptions located in
the Subaddress Name Keys Table. If there are no messages originating from
this RT, its entry in this table shall be null,

3.2.1.1.1.2 Subaddress Name Keys Table (SNAKE)

This table, fllustrated fn Figure 10 shall appear once
fn every processor. It shall contain an entry for each possible asynchron-
ous message from the remote terminals to the processor. All messages from
an RT shall be contiguous within this table and they shall be indexed by the
pointer stored in TOAD (ref. para. 3.2.1.1.1.1) and identified by the sub-
address accompanying the RT message.

3.2.1.1.2 Local Executive Control Processing
This function controls the sequence of operations performed
by the Local Executive. These operations are a consequence of:

a. The reception and processing of a minor cycle
(synchronous) interrupt.

b. A service request originating in an application or
Executive Task.

c. The processing of an Asynchronous Reception.

d. The performance of System Initialization.

Figure n demonstrates the Local Executive Control
Processing sequence.

Upon being entered, the Function will determine if a minor-
cycle set-up is due. If a minor-cycle set-up {s not pending the Event Queue
is immediately searched. After the Local Executive Control Function de-
queues an Event from the Event Queue, control is passed to the Event Hand-
14ng Function.

43

ITEM DESCRIPTION
1 RT sub-address originating the message
2 Pointer to Asynchronous DDB for this message

(ref. para. 3.2.1.3.1)

o This table to contain an entry for each possible

asynchronous message from RT's.

Figure 10 Sub-address Name Keys Table (SNAKE)

44

o A A5 e e

OCAL
EXECUTIVE
CONTROL

SET PRIVILEGED
MODE FLAG

IF MINOR

CYCLE PENDINy

N

IF EVENT

CALL

MINOR CYCLE
SET-UP

REF. 3.2.1.7

PENDING

>

IF ASYNCH.
RECEPTION

DEQUEUE
EVENT

CALL EVENT
HANDLING
FUNCTION
REF. 3.2.1.4

\

PENDING

DECODE
ASYNCH.
1D

IF
TRANSMISSION
QUEUED

CALL

| ASYNCH.
TRANSMISSTON
FUNCTION
(PARA,

3.2.1.8.2)

CALL
FUNCTION
REF. TABLE 3.2.1.1-2

CALL
DISPATCH
FUNCTION

Figure 11

45

UPDATE

FIRST BUFFER

POINTER

(REF. Para. 3.2.1.8.1

LOCAL EXECUTIVE CONTROL PROCESSING

If an asynchronous reception is pending in the Reception
Queue, the Asynchronous 1D is decoded, and the proper function is invoked
accordingly. If the asynchronous message was sent by a Remote Terminal (RT),
the Executive Tables associated with the Remote Terminal are examined. These
tables, as described in Section 3.2.1.1.1, specify the Data Descriptor Block
associated with the RT. If the source of the asynchronous message is not an
RT, the type of message and the parameters to pass to the specified function
are determined from the ID. The types of Asynchronous ID's, the Functions
invoked to service them, and the parameters passed to those Functions are
Tisted in Table

After the asynchronous message is processed, it 1s'dequeued
from the Reception Queue. Otherwise, if the processing had not been accomp-
lished successfully, the ID would still be available in the Reception Queue.

Finally, the Task Dispatching Function is called.

The local executive sets the Privileged Mode flag when it is
entered and resets the flag before passing control to a non-privileged task.
The privileged mode flag is used to prevent local executive routines or "pri-
vileged" tasks from being re-entered before completion. If an interrupt
occurs when the privileged mode flag is set, the interrupt processing routine
shall return to the point of interruption when it completes execution. Simi-
larly, when a Privileged Mode Task makes an Executive Service Request, the
Local Executive shall return control directly to the task.

3.2.1.1.3 Outputs from the Local Executive Control Functions

The actual output of this Function is the initiation of the
varfous Functions in the exercise of the sequence control. Each one of these
Functions do require several inputs for their processing as listed in the
description of each specific function and Table III.

46

SR 4

e R

-

L e Bt e TR 9 T e R 2

s

e D L Rk Yl vt 1 B B

deuuIdl = Bely
9jRujwuad] /| 9due)

Aajul y a|qey jyse}l

{9due) = beyy
3JBU JWUd| /|9duR)

Aaju3 y a|qel ysel

Aa3u3 y a1qel ysel

Sn|ep padisaq
Aaju3 3a|qe] juaAl

{eusalx3y = be|4
Leudal3x3/euasyu]

8aa

Leuadyx3y = beyy
Leusd3x3 /| euddlu]

(1

(2
(1

(1

(¢

(1

(2

(2°2°c°L"2°¢ “edey)
sjeujuwday /| 9oue)

(2°2°€°1°2°¢ ‘eaed)
djeuuadf /adue)

(L°2°€°L°2°€ “rdeq)
3 npayds

(y°1°2-¢ “earq)
bugpuey JuaAj

(6°2°€°L'2°¢ °eaey)

bu}|puey yd01g oodwo)

3sanbay ajeujuwaa]

Jsanbsy [3duey

3sanbay 3| npayas

teubys Jusa3

ajepdn joolg Loodwo)
uojssjpusuea] 1y

sddjawedeyd Induj

Pa%OAU] UO}3OuNy

abessay Jo adAy

SNOILdII3Y SNONOYHINASY 3JIAYIS OL GIH0ANI SNOILINN

II1

ERii)

47

e

oo

3.2.1.2 Function Two - Hardware Interface Control Function

The Hardware Interface Control Function shall have as its

prime objective the proper conduction of communication between the Local
Executive and the Bus Control Interface Unit (BCIU). This communication
shall be accomplished through the reading and loading of the BCIU registers.

This Function shall be responsible to process all {nterrupts
received from the BCIU and, as a consequence, invoke the proper functions
to service the interrupts. It shall accept asynchronous messages for trans-
mission, supply the Local Executive with asynchronous messages received and
accept and enqueue minor cycle numbers as a result of a synchronous inter-
rupt reception.

Interrupts received as a result of terminal failure or Data
communication error shall cause the invocation of the Error/Failure Control
Function.

3.2.1.2.1 Inputs to Hardware Interface Control Function
The inputs to this Function are listed in Table IV

3.2.1.2.1.1 BCIU Registers
The BCIU registers referred to in Table IV are listed
in Table 1 and described in Paragraph 3.1.1.1.2,

3.2.1.2.1.2 BCIU Interrupts

The BCIU activates six levels of interrupts directly related
to the contents of Internal Status Register (ISR). As described in Para-
graph 3.1.1.1.3, asynchronous message transmission and reception are related
to Level 2 interrupts. The Master Function and the reception of synchronous
transmission is related to Level 3 interrupt.

Power-On Initialization generates a Level 1 interrupt.

48

nIdg

niae

493s}bay uojjouny aajsey
493)sibay snjels jeuaajuj

teubis 1dnyy3IN]

1s433s 163y nIog

¥ 3IN3Y333Y 304N0S

JWvN viva

NOILINNS TOYLINOD 3IIVAYIINI IFYVMAUVH OL SINdNI

Al 38vL

L L ——— {

49

LA S .
EENRPERPS = SO O AR ol AT P s Y

3.2.1.2.2 Hardware Interface Control Function Processing

The Hardware Interface Control Function shall be invoked upon
the reception of an interrupt from the BCIU. This functfon shall invoke the
proper Local Executive function to service the interrupt. This processing is
illustrated in Figure 12.

’

If the "Privileged Task Mode" flag is set, the status of the
processor (program counter, registers, condition status, etc.) prior to the
interrupt is locally saved to allow for immediate return after the interrupt
is serviced. If the "Privileged Task Mode" flag is not set, the processor
status is saved in the Local Processor Tasks Table B entry for the interrup-
ted task.

The origin of the interrupt is identified, if necessary,
reading the Internal Status Register (ISR) of the BCIU. Then, the appropri-
ate Executive Function is invoked to service the interrupt, namely, asyn-
chronous reception, asynchronous transmission or the Error/Failure Control
Function.

Upon return, the "Privileged Task Mode" flag is checked. If
it is on, the processor will return to the state prior to the interrupt.
Otherwise, return will be through Function 1, Local Executive Control and
eventually the Dispatcher.

3.2.1.2.3 Hardware Interface Control Function Outputs
On exiting this function, the only parameter actually output
by this function is the Minor-Cycle Pending Flag.

A11 other outputs indirectly concerned with this Function
shall be output by the Functions being fnvoked.

50

—

" VRN 4 e oS
‘F

e B v R —
INTERRUPT
HANCLING
IF 'PRIVILEGED \y__ SAVE PRIOR
MODE' FLAG SET PROCESSOR STATE
IN LOCAL AREA
SAVE PRIOR STATE
EXAMINE IN TASK TABLE B
INTERNAL ENTRY AND
STATUS SUSPEND TASK
REGISTER
IF TERMINAL TRANSFER
FAILURE OR 10
DATA ERROR ERROR CONTROL
FUNCTION
IF N\ |(READ SET
MASTER FUNCTION MINOR CYCLE MINOR
INTERRUPT __J,/'> NUMBER FROM CYCLE
== : BCIU PENDING
*PRIVILEGED ﬁ?EE>1 FLAG
FLAG' SET —L GET RIADY
TO RETURN TO
PREV. STATE TF CALL
SYNCH . ASYNCH.
RECEPTION 7 RECEPTION
COMPLET iGN
RETURN GET READY
|_{TO RETURN
T0 LOCAL

Figure

12

EXEC. CONTROL

Interrupt Handling Processing

51

CALL
ASYNCH.

| TRANSM.

3.2.1.3 Function Three - Application Software Interface
Control Functions

This function serves as an interface between the application
software and the executive services. Each service is initiated by explicit
task action through the exercise of the Real Time Pseudo-Statements. In-
cluded in the category of loca) executive servicessare the following:

Task scheduling
Task termination and task cancellation
. Event signalling
Compool read/write
Wait - Absolute Time
- Relative Time
- lLatched Event
- Unlatched Event

O BWwW N~
.« e e e

Upon termination of the executive service, an Executive Ser-
vice Return Function shall be activated. This function determines whether
control must be relinquished to the calling task or more executive functions
need to be exercised.

3.2.1.3.1 Inputs to Application Software Interface Control Function
The inputs to the local executive services function are listed
in Table V. The source of these inputs is the requesting applica-

tion or executive task.

Task Table A and Data Descriptor Blocks are preloaded tables.
Their description follows.

Task Table A

This table is illustrated in Figure 13, This table
shall appear once in every processor. It shall contain an entry for any
task residing in the processor and for the controller and sons of this task,
whether resident in this processor or not.

52

.ﬁ.-.

TABLE V INPUTS TO APPLICATION SOFTWARE INTERFACE CONTROL FUNCTION
ROUTINE INPUT PARAMETERS SOURCE
SCHEDULE 1. TASK TABLE A ENTRY OF TASK TO REQUESTING
BE SCHEDULED TASK
CANCEL 1. TASK TABLE A ENTRY OF TASK TO
BE CANCELLED
TERMINATE 1. TASK TABLE A ENTRY OF TASK BEING
TERMINATED
EVENT 1. DESIRED EVENT VALUE
SIGNALLING 2. EVENT TABLE ENTRY
(REF. TABLE VII)
COMPOOL 1. COMPOOL BLOCK DDB ADDRESS
READ 2. LOCAL STORAGE INTO WHICH EACH
COMPOOL BLOCK IS TO BE READ
COMPOOL 1. COMPOOL BLOCK DDB ADDRESS
WRITE 2. LOCAL AREA TO BE WRITTEN FROM
WAIT:
ABSOLUTE TIME |1. ABSOLUTE TIME
RELATIVE TIME | 2. RELATIVE TIME
LATCHED EVENT | 1. DESIRED EVENT VALUE
2. EVENT TABLE ENTRY
UNLATCHED EVENT 1. DESIRED EVENT VALUE
2. EVENT TABLE ENTRY

(REF. TABLE VII)

53

aqo-

Task Table A shall be ordered according to the invocation
tree, according to the following rules:

a. The controller of a task always precedes the task.

b. If Tasks A and B are siblings and A precedes B,,and A {s
not the controller of B, then all offsprings of A precedes B.

Asynchronous Data Descriptor Block (DDB)

Every physical or virtual copy of a compool block within a
processor has an associated DDB. An asynchronous DDB arsa shall appear once
in every processor. An asynchronous DDB is generated for each compool block
that is read, written or updated by a task in this processor.

Figure 14 illustrates the components of an asynchronous
DDB.

Item #1: Is off because this is an Asynchronous DDB.

Item #2: Is on if there is a physical copy of this compoo]
block within this processor. This item indicates whether Item #7 is present.

Item #3: Is on if there is an Update Event for this compool
bieck within the processor. This item indicates whether Item #8 is present.
Note that this item can be on only if Item #2 is on.

Item #4: 1Is on if there is a virtual copy of this compool
block in an RT and this compool block is written within this processor. This
item indicates whether Item #9 is present.

Item #5: Is the number of non-local physical copies of this
compool block to be updated from this processor. It is zero 1f the compool
block is not written within this processor. This item indicates the number
of items of types #10 and #11.

Item #6: Is the number of words in the compool block, fnclud-
ing the MC Tag Word.

54

ITEM DESCRIPTION

NON-RESIDENT BIT

PROCESSOR NUMBER

INDEX TO TASK TABLE ENTRY

NON-RESIDENT BIT FOR CONTROLLER
PROCESSOR NUMBER FOR CONTROLLER

INDEX TO TASK TABLE ENTRY FOR CONTROLLER
INVOKED/UNINVOKED BIT

NUMBER OF DESCENDANTS

00 N O O & W N —

FIGURE 13 TASK TABLE A

Item #1: ON if the task is non-resident.

Item #2: Processor number where a non-resident task resides.
If the task is resident to this processor, this
item will be zero.

Item #3: For non-resident task, pointer to task Table A in
the appropriate processor. For resident task, points
to entry in Local Processor Task Table B (ref. Table

X).

Item #4 - #6: Point to the controller in the same way that Items #1
-#3 point to the task. If this task is the highest
task in the hierarchy tree, these items will be set to

zero.
Item #7: ON {f the task is uninvoked.
Item #8: The total number of descendants of this task with

entries in this processor's task Table A.

55

sy

ITEM DESCRIPTION
1 SYNCH BIT
2 LOCAL COPY BIT
3 UPDATE EVENT BIT
4 REMOTE TERMINAL TRANSMIT BIT
5 NUMBER OF NON-LOCAL PHYSICAL COPIES
(INDICATES NBR. OF PAIRS 10, 11)
6 NUMBER OF WORDS IN COMPOOL
7 ADDRESS OF LOCAL COPY
8 OFFSET TO UPDATE EVENT IN EVENT TABLE
(TABLE VII)
9 REQUEST VECTOR FOR REMOTE TERMINAL TRANSMISSION

10 }
N

OFFSET TO DDB OF PHYSICAL COPY WITHIN EACH PROCESSOR
REQUEST VECTORS FOR UPDATING NON-LOCAL PHYSICAL COPIES

14 ASYNCHRONOUS DATA DESCRIPTOR BLOCK

56

Item #7: If present, is the starting address of the local
physical copy of the compool block.

Item #8: If present, is an offset from the beginning of the
Event Table to the entry for the Update Event associated with this compool
block. '

Item #9: If present, is the Request Vector for updating the
virtual copy of this compool block within an RT.

Item #10: If present, are offsets from the beginning of the
DDB area within each processor with a physical copy of this compool block
to the DDB for that physical copy.

Item #11: If present, are the Request Vectors for sending
updates for non-local physical copies of this compool block.

Synchronous DDB

Synchronous DDB's are used for Synchronous Compool Blocks. Al1l
Synchronous DDB's within a processor are contained in a single contiguous
synchronous DDB area. A synchronous DDB area shall appear once in every
processor.

A synchronous DOB is 11lustrated in Figure 15

3.2.1.3.2 Application Software Interface Control Function Processing

This function consists primarily of a collection of Executive
Service Routines. Whenever a task requests an executive service by means of
a Real Time Pseudo Statement, a call to an executive service routine is
effected. The return from the service routing is done through this control
function in order to determine whether return should be directly to the call-
ing task or to satisfy any other request from the Local Executive.

57

>

L Lerewe

ITEM DESCRIPTION
1 Synchronous Bit %
2 Number of Words in Compool Block ’ g
3 Absolute Address of Compool Block i
4 Perfod -1 !
5 Phase ;

i
g
Item #1: On for a Synchronous DDB %
) Item #2: Number of Words in Data Block §
Item #3: Starting Address of Compool Block :
Item #4: Number of Minor Cycle between successive

transmission of this block

Item #5: Phase on which the Compool Block is transmitted

S

pIpv———

FIGURE 15 SYNCHRONOUS DDB

58

(R

g T s

O ol A . Bva - . PN IERIER taR TR

3.2.1.3.2.1 Task Scheduling
The Task Scheduling Service shall be accomplished as illustrated
in Figure 1.

3.2.1.3.2.2 Task Termination/Cancellation
This service shall forcibly terminate or cancel a task, as re-
quested, and act upon the tasks descendants,

When a task is terminated, it is put into an Inactive State; a
cancellation request will establish the task as uninvoked. A termination or
cancellation request may be for self-termination or cancellation or may
specify a descendant. A request on a descendant shall also affect the des-
cendant's descendant. On the other hand, a request for self-cancellation or
self-termination shall be interpreted as a request to cancel or terminate
only its descendants.

The Cancellation/Termination processing is illustrated in
Figure 17.

3.2.1.3.2.3 Event Signalling

The event signalling services requests to set an event state to
either "1" or "0". Upon receipt of this request, the proper event informa-
tion will be stored in the Event Queue. The Event Handling Function will
proceed to exercise the request as described in paragraph 3.2.1.4.

3.2.1.3.2.4 MWait

Wait service is requested by a dispatchable task to place it-
self into a wait state until a specified time occurs or a specified Event
attains a specified value.

An Absolute Time Wait places the task into Wait state until a
specified absolute time. If the specified time has already occurred, this
statement is a No-Op.

59

TASK
SCHEDULING
, i

SET IHVOKED/UNINVOKED
INDICATOR IN TASK TABLE A
- . TO INDICATE INVOKED

. IF TASK IS\ ENQUEUE

‘ ' NON-RESIDENT SCHEDULE

; REQUEST
IN TRANSMISSION

; QUEUE

T RETURN
’ SET TASK STATE

IN LOCAL PROCESSOR

| TASKS TABLE B TO
INVOKED

SET UNLATCHED
CONDITIONS TO
UNDESIRED
VALUE

PERFORM
TASK CHECKING
(ref. P 3.2.1.5)

Task Scheduling Processing

Figure 16

Suee b S e N W

(2 30 1 333uS)

/NI Livm
3A0u38 NI 4l

1
9 3gvl

ONISSIJ0¥d NOILVITIONVI/NOILVNIWYIL ASVL °L

ASVYL NI 31ViS
QINOANINA L3S

"30BR0 NOISSTWSNVYL

{ 1N301S3U-NON

NI 153003
IN3n0N3

_INVaN3IS3Ia JI|

v 379v1 jaSYL NI
31viS GINOANINA L3S

AN

8 378Vl SxSvl
¥0SS3004d WI0T NV

vV 374yl ASVL NI 3LVi1S

ODIOANIND 13S|

3}

S1HvYON3DS30
3HL YTV ¥04

®

L 380913

SVl 03HILvdS1a 153nb3
1SV1 10N NOILLVTTIINYD

S1 %svl 41 F)!
In3nd

NOISSIHSHWYL

NI 1S3nb3y

In3nbn3

v 15303y

NI ¥OLVIIONI NO1LYTI3ONVD
GIOANINA L3S 4l

L eaduLab

AN301S34-NON

/ SI ASvl 41

014VT1T30NVI
\zozs_:s&uh

61

(2 30 2 399yS)

SNISSI0Yd NOILVTIIINVI/NOILYNIWYIL NSVL °£1 3¥n914

§'1°2°C “4ed ")
NOILONNI SNIXIIHD '
ASVL TWD
anand $5304d .
IN3A3 NI 3A3 NOILVNIWYIL NOTIVNIW3L
11 1Y 03LV120SSY 41 WH0343d v
]
b X1 NI <
NIVHD HWOYd | NIVHD 153nb3y SINVONIDS30
3A0W3Y LIVM NI 31 3n3nbN3 S11 1 404)
g 318V ASVL
NSVL NI 31V1S \S.Es_ms 1
JALLIVNI 135 10N SI asSvi 41

A Relative Time Wait places the task into Wait state for a
specified period of time. If the specified period is non-positive, this
statement is a No-Op.

A Latched Wait places the task into Wait state until a speci-
fied Event reaches a specified "desired value." If the Event already has
the desired value, this statement is a No-Op.

An Unlatched Wait places the task into Wait state until the
specified Event {s changed to the specified value. This statement is never
. a No-Op.

This service processing is illustrated in Figure 18.
H
r 3.2.1.3.2.5 Compool Read/Write

Compool blocks, classified according to when they are updated,
are named Synchronous and Asynchronous.

i Synchronous Data Blocks are updated from a single authorjtative
copy at a specified rate and phase. Asynchronous Compool Blocks are updated
whenever any particular copy is changed, either by the hardware of an RT

or by a WRITE statement within a processor.

. . The first word of each physical and virtual copy of a compool
block in a processor shall consist of a "Minor Cycle Time Tag" indicating

| the last time the physical copy was updated. The generation of this "Time

| Tag" has been explained in Paragraph 3.2.1.2.

Compool Block Processing is illustrated in Figure 19.

' 3.2,1.3.2.6 Executfive Service Return Function

E i This function is called by all executive service routines on
L

: their way to relinquish control. As illustrated in Figure 20, this

function shall determine whether there is a need to perform additional
local executive functions. These additional functions could have been as a

63

IF WAIT
REQUEST IS
- ON TIME

RETURN

. WAIT

IF \
SPECIFIED

. Y v S P

TIME > CURRENT
TIME

IF

UNLATCHED

OR EVENT NOT
AT DESIRED VAL

y Figure 18 - WAIT PROCESSING

64

PLACE TASK
IN TIME-WAIT
CHAIN THRU
TASK TABLE B

SET TASK STATUS
IN TASK TABLE B
TO WAITING

PLACE TASK IN
EVENT

WAIT CHAIN THRU
EVENT RECORD
TABLE AND

TASK TABLE B

SET TASK STATUS
IN TASK TABLE B
TO WAITING

- e SR ARSI

IR TN

Aars e

NOISSINSNYHL WIO1-NON

ON1SS3308d A2078 004W0I “61 IUN9IJ

b IN3A3 S1S1X3

b INIA3 IN3A3

. NI Jlvadn

3IW1d 4l
anand $31407 |

1
IN3INbNI

1N3AY 3LV0dN
31¥120SSV 31}

%079
NI 1S3nD3y 1V 404 | 100409 OINI |
433408 Ad0D
¥344n8 . $31d0)
NOISSIHSNVSL WI07-NON
OINI Ad0D ANY 41
WIISAH
%3018 100dH0) /135 10N 9v13 XSvi
OLNI Ad0d 04 039371ALYd 31
W07 Ad0D .
33070 ViVa W01
OLNI %2018 5
100440 Ad03
¥dd NI 118 N3NL3Y
ASNg., 474 n13¢ NI 118
13 LASng. 13§ WILLIYD 31
00dWO0D “HINASY TWNEILX3 (€
00143d/35WHd 00d#03 "HINASY WWNUILNI (2
LN38uND 01 WD A1 004005 SHONTHIDRAS {3
3NIW¥313G OL 800 NI / 1352
001¥3d/3SVHd YI3H) 35V
ON1S537082
%079
10040)
v e amdee

65

ﬁb—

R e R MY AT RPN

EXECUTIVE
SERVICE
RETURN

IF "PRIVILEGED RETURN
MODE” TASK CONTROL TO
EXECUTING TASK

(ref. P. 3.2.1.5)

DISABLE
INTERRUPTS
IF EVENT,
ASYNCH. RECEPTIOP ‘S”§Z§$°
OR MINOR CYCLE :
PENDIHG [
ENABLE
INTERRUPTS
RESET
EXECUTIZE
RIVILEGED
L CALL LOCAL
MODE FLAG EXEC. CONTROL
{ref. P. 3.2.1.1)
ENABLE
INTERRUPTS

ETURN TO \
TASK REQUESTIiG
RVICE

FIGURE 20; EXECUTIVE SERVICE RETURN PROCESSING

66

sy .
. SRR S Pl A A

result of asynchronous or synchronous messages received while executing the
exacutive services in a privileged mode or the executive services themselves
requested further services.

The first thing that this function shall do is inspect the sta-
tus of the task that requested the services. If the task was opérating as a
“Privileged Mode" Task, the Tocal executive shall return immediate control
to the task, rather than perform the checking mentioned above and servicing
the pending requests.

3.2.1.3.3 Qutputs from Application Software Interface Control Functions
The outputs received from this control function are listed in

Table VI.

The Wait chain listed in this table is a result of the Wait
function. It is a chain of tasks waiting for the same type of condition.
There shall be one Wait chain for tasks waiting on time, one for each event
waited on, and one for each event whose complement is waited on.

A1l tasks in same Wait chains are tied together by the forward
and back pointers in their Local Processor Tasks Table B entries (ref. Par.
3.2.1.5.1). The Wait chain on time is ordered by time. The first task in
a chain waiting on an event or the complement of an event is located by a
pointer in the Event Record Table entry for the event (ref. Table VII

67

W b | A B T W e R R s n T it 91 i OB RS T

o, SRR AN e
<
[

N ™M
.
Mm™
>
g
.
NN
.
"M m™m

g alqel ysel upey) 3pen :
§'e'etLee Kdoj ed07 joodwo) s
g'eeg'L-ee A2018 |00dwo) ejeg |ooduo) ;
9°2°'¢°L'2’¢
1A S A a|qel p40dsy Juarjl SN3e3S JUSA3 —
¢teretLtece g 91qey ysey Uo}IRILPU] dA}IORU]
FARA N G A X ‘ g SLqel jsel ‘y s|qe} jysey UO}Ie3|pU] pay0AULuUn
A Sl A > g alqel jysel ‘y alqe] jysej UOLJRILPU] BOAU]
W EREEE] NOILYNILS3A IWYN viva
SNOILINNA TOYLINOD IIVAYILINI FYVML3I0S NOILVIITNddV WOY4d Sindino IA 378VL
r- -

3.2.1.4 Function Four

The Event Handling Function is exercised from requests by
tasks in the local processor or, through transmitted messages, from tasks
relatad to a remote processor or remote terminals.

A1l the information concerning events is kept in an Event
Record Table. Each processor contains an event rscord for each Event con-
tained within the processor. The Event Handling Function shall act on
Event Condition Sets as specified in the Event Record Table. This Event
Record Table is illustrated in Table VII.

3.2.1.4,1 Inputs to Event Handling Function
The inputs to this function are shown in Table VIII.

3.2.1.4.2 Event Handling Processing

The IDAMST Executive System receives requests for event pro-
cessing from application software tasks or executive tasks. These requests
will consist of commands to set an Event to a value of "1" or "0". The pro-
cessing of this function is accomplished as demonstrated in Figure 21.
The processing of this function consists of setting the desired value of an
Event into the Event Record Table. If the table fndicates that there are
copies of this event in other processors, an asynchronous message is formu-
lated and enqueued.

The Event Record Table indicates any local tasks with the
Event as part of their Event Condition Set. Thus, these conditions are set
in the respective Task Table B entries.

Finally, the Task Checking Functfon fs invoked to check the
condition status of these tasks.

3.2.1.4,3 Outputs from the Event Handling Function
Outputs from this function are shown in Table IX.

69

(3]

a4

KR o 2o

-

- e aa—— L.

g

‘t# WAl uj

Pajsjoads yse) yoevd 403 pajeadas aq | LM 6 ‘g Swal]

39S UOLIIPUO) SIE UE JUIAT SIYF YIimM ysel

Y3 40 SI|QRL)YSR] A0SSI0Ud |©I0T u} ¥ Aujul L .Jjise] J40j A4ju3 g aqel jyse] 0 § Aajul 6
JUdAT syl bBuyasiy jysey
403 335 UOLI|PUO) JUBAT 3Y3J ULYI M U0} |SO4 L ¥selL uj uoj3jsod 344 8
91qeL JU3A] Sy} Joy Bn|ep 385330 L
o# Wl up patjjoads
Adoj yoea 40) 355 3uU0 3q ||}M 34dYy) Kdo) {ed207-uoN puz jO 40SS3I04Y 9
40SS3204d 43Y30 u} JUIAJF Syl
40j 3|Ge] SJUIAJ O03u} anjep 335330 L
dlgel p4028y JuaAj
Ue U} JUBAT SEYI YJIM U0SS3I0u4 3O J3quNy Ado) (e207-uoy 3S| JO J0SSII0LY 9
Juawajdwo) uo HuiljeM jse] 03 4d3ujog S
JUSAT SIY3 uO buijjum
(Aue ji) sjsel 4o} SSauppy JuaA3 uo buyjieM jysel 03 43jUL04 b
33S UOL3|puo) JUIA] BYy3 UL JUBA] SLY)
9ARY JPYJ JOSSII0UAG SEYI ULYIPM SASB) JO Jaquny 0] pajujoqd s)se] (ed207 JO Jaquny £
(2 40 |) JUBA3 Sy} SBdUBUBBA YO LyM
‘3U0 S}Y3 ueyl 4IY30 *S40SS304d JO AIqUNN s91do) |ed207-uoN jo asquny 2
ole 03 0. anjep JuaAj L
IN3IWKHOD NOILdI¥dS3a W3ILI
379v1 Q40034 IN3A3 IIA 378vi
LA 4 - :Qr : - \

70

papeo|-3ud

bujpuey abessay °youdsy
Buyjpuey abessay yduks

sjse] uoljedy|ddy

alqel p402ay JudAj

JUDGA] O dnjeA pa4}Sag
A4juj ajqe} p4odsy JuU3Aj

NN

324n0S

JWVN V1Va

NOILOHNA ONITIONYH LIN3A3 0L SindNI

I1IA 38Vl

n

EVENT
HANDLING

72

I

USRI I e L A

SET VALUE
IN EVENT RECORD
TABLE
IF NECESSARY FOR A | SET-UP_ REQUEST IN
NON-LOCAL COPY TRANSMISSION
QUEUE
FOR ALL \\ SET EVENT CONDITION
ASSOCIATED IN LOCAL PROC. TASK
TASKS AJ//FV TABLE
CALL TASK
CHECKING
FUNCTION
IF ANY TASKS [FOR ALL SET STATE
WAITING ON SUCH TASKS TO DISPATCHABLE
CURRENT VALUE
OF EVENT
CLEAR THIS
EVENT WAIT
RETURN CHAIN
FIG. 21 EVENT HANDLING PROCESSING

73

A INIIX3 |20 - bujpuey
abessay snouocaydufisy ananph uojssjusuea)

p4023y 3|qel jysel

3[qe) p40I3Y JUIAJ anjep JuaA3 pajepdn]
JINYIIN NOILVYNILS3a JWYN viva .
NOILINN4 ONITTONVH IN3A3 WOY4 S1NdiNO X1 378vl b

3.2.1.5 Function Five - Task Checking - Local Executive
The purpose of this function is to determine whether a given
task should change states and become Active.

3.2.1.5.1 Inputs to the Task Checking Function

Related to each task resident in a processor there Exists a
table internal to the Local Processor. The entries to this table, described
in Table X are ordered according to the tasks priority.

The inputs to the Task Checking Functions shall be, as listed
in Table XI, the entries to the tasks on the Local Processor Tasks
Table B.

3.2.1.5.2 Task Checking Function Processing

This function will be invoked by the Local Executive Control:

a) Each time a task is invoked.

b) Each time an Event, except Minor Cycle Events, is signalled
and posted in the Local Processor Tasks Table B (ref. Table
X).

c) Whenever a Task ends.

d) Whenever a Task is forcibly terminated.

This function is processed as indicated in Figure 22.
As this function is invoked, it will verify the status of the Task from the
Local Processor Tasks Table. A task can be in either of two states, invoked
or uninvoked, as shown in Figure 6 and explained in Section 3.2.2.2
If in an invoked state, the Task Event Condition Set is checked against the
desired Event Condition Set as established in the input table. If all condi-
tions are satisfied, the Task state is changed to Active and Dispatchable and
all its Unlatched Events Conditions are complemented. If the task {s indi-
cated as a Privileged Mode task, it will be called immediately and control
fs transferred to the task. Either way, if the task has an Activation/Termi-
nation Event, the Event is put into the Event queue.

3.2.1.5.3 Output from Task Checking Function
The outputs from this function are listed in Table XII.

74

e

’ l.\l N =
v « sttt R, s .

'
!
i
!

uoj3ouny 3jep 4o 3dnaaadjul

ue Bupanp paAes aq (|im "sbay § 433uno) weaboud *9°d pue °sbay 404 vauy sAeg 4

"19S 3Q LL}M 319 43pa0 YGIH 3yl ‘IudA3
uo Bugjgem 1 °uo bugjem s} ysel ayj Jajaweaeq ug pajjeM JUsA3 40 uwj} ol
*GH WaH 40) SB JUIUMDD BurS upey) LM 404 43JULO4 pARMIOY 6

(p°2°€°1°2°¢ "vaeg) Juaal awes ay} uo Bujjjem
3Se] JO anany 40 N3N Ml 3yl 03 S43UL04 ujey) LM 404 43JULO4 doeg 8

pugndaxa jou S} ysey
Yl 3} 433UL04 >IRIS JUB4AND 3Y] ULeIUOD 03 °207 d33U}04 oe}S qQNSWOo) 403 e3UY 3ARS L

jsel siy3 433U }04

404 ®3UY YIRS qnswo) jo Bujuuibag o ssaAppy 3RS Qnswo) 404 Injep Le}ijul 9
¥SeL U} JuswiadlelS I|qelndaxy 3Isdi4 Asel Jo ssaappy bujjaels S

FUCTY|

paydjejun ue se g4 wal] up 319 bujpuodsaudod
9y} 03 sJUL04 uol3isod 3ig Aue uj ,3uQ, ¥ ySey JUSA3 payd3eun ¥
UOLIBALIDY BU033Q A3S}IeS 03 385 UOLILpUO) 39S UOL}puo) JUBA] pausag £
39S UOL3Lpuo) [enjae ysej Spyi 39S UO}J}PUO) JUBAF JudS3a4 .

*jse]l 3poy

pabpay jAjad 33edLpul sanfep (L°¢ a4nbi4 995 IIudLd3Y)
JuUdNbISQNS “3|qeyojeds)g *bujjjem aAjjoeu] payoAujupn snjeas jsel L
INIWHOI NOILdI¥IS3a Will
g 378vL SASYL Y0SS3II0Ud TvI01 X 318vi

75

el i

o
e W L R i<

-

*

a

*¥Se] S|y} 404 JUBAT UO{IRA}IIY
pa3e}0SSe 3y} 03 I[qel JUSAJ UO J3IUL04

*349Yy pa403s 3q |Lm ssauappy bBuypjuaeys

$3} *ALInJssadons paja|dwod S| UOEINIAXI

jysel 43Iy °“pSINIPX3 JuswIILIS M Fudd3J
ISOW dy3 BULMO| 10 SSIUPPY Y} 40 UO}IRD0A

-Uu} jyse] uo ssauppy bujpjaels jysej ayjl sujejuo)

JUBAT UOJIRALIOY 03 43JUL04

$S3UppY 3403S3Y

£l

el

ANIWWOD

NOILdI¥IS30

*3u0) - 8 319YL SASYL ¥0SSI0Ud WI0T

x 378Vl

76

e

pau i3 apadd
pauJuId)apadd
pauLw133padd

uoj3ouny Buipuey JusA3

{043u0) *23x3 [eJ07

yse) j0 ssauppy bujjdels
yse) JUBAI paydIe|un

395 JuaA3 pad}sag

385 UOLILPUO) JUDAI JUdSIUd
J03RDLpul Sn3els jysej

1$3443uU3 3|qel jYSel °2044 |ed07

ESUELEEES]

34N0S

T09WAS

WYN Viva

NOILONAS ONINIIHD ASYL OL SLNdNI

IX 378vl

77

¢

R R

T

PR

319vHILVdSIa
KLI40TYd 3AVS

v 1IS
N1y NOdn

ASYL 1D

1 01 V4

1SIHDIN 41 3NTVA ﬁg

/ 3dAL

«ONILNJAXI ASVL
039311A14d. 135

3000 039311AINd.

b N33 |

INIA3
NOLLVALLIV
a31v1308sy 41

~SIasyL 41

w:g<> QIYISIOHD
01 SNOLLIONOD
0LV INN 43S

[

3719VHILVdS10 |
2 LIATLV.OL

1v1S I9NVHI |

$S300¥4 ONINDIHD NSVL ‘22 WN9Id

@314S11VYS
S HELEIF]

Q3YIS3a LSNIVOV
135 NOILIGNOD
INIA3 3WVdHOD

rd

GINOANT
ST asyt dl

PN

78

ananh Jus3A3
up (Aue 4i) 3JuaA3 uopealldy
UOL3 |pUo) JuUaA] paydeiun
snje3s jysey
(x 3l9el) aiqel jysey 2044
L®207 u} S3ja3u3z pajzepdn

EW[ENEEED]

NOILVNILS3a

TOGWAS

3WYN viva

SNOILONNA 9NINI3IHD NSVL WO¥H S1nd1nO

11X . 3gvl

79

. - ro—rr o —— —— e s i
R N e g - ’ aan e

3.2.1.6 Function Six - Task Dispatching - Local Executive

The main purpose of the Task Dispatching Function is to search
for the highest priority dispatchable task in the Processor. Upon finding
a task, control is transferred to it.

3.2.1.6.1 Inputs to Task Dispatching Function
The inputs to this function are listed in Table XIII.

3.2.1.6.2 Task Dispatching Processing

The Task Dispatching Function is called by the Local Executive
Control Function. It takes place whenever the Event Queue is empty, the
) Task Checking Function and all other Local Executive Tasks have been com-

’ pleted.

The objective is to determine the highest priority task in the
local processor that is in the dispatchable state. If the task is being
resumed from an interrupt point, the save area will contain the address at
where the task was interrupted and the information contained in all the reg-
isters at the time of interruption. If the task is being entered at its
beginning, only the task start address will be defined; therefore when
initiated, tasks cannot depend upon register initialization.

The Local Executive Control Function, through the Task Check-
ing Function, keeps track of the highest priority task made dispatchable
since the last Dispatch. Thus, when the Task Dispatching Function is called,
it commences scanning on the task table starting with the highest priority
Dispatchable task. If the last Dispatched task is still the Highest Prior-
ity Task, then control will be returned to the original task. Otherwise,
control will be given to a new task.

Upon normal termination, the dispatched task returns to the
Task Dispatching Function. The dispatcher will, in turn, return to the
Local Executive Control Function.

L v .‘@Ml/:yrnl,‘(ﬂw1

,%'

vy
D e L O

uojjouny buypyosyy ysep

{oajuo) 3dnauaaljul
pauuualspadd

{043U0) 3ALINIAXT |07

yojedsiqg 3se| aduys ajqeyojedsip speuw
yse3 A3jaopad 3saybiy 30 A3pa0pdyg
JUIAJ UOLIRALIDY 03 43JULO4
A33U}04 YI0I}S qnsSwo)
eady 3AeRS JO SIUIJU0)
ASe] JO SS3aJppy bujjdeys
snje3s jysej
Uo jJeuMoju]

a|1qe) SySel 40SSII0AJ |RI07

ENLELEEEL

334n0S

J09WAS

JWvN viva

NOILONNS ONIHOLVASIO ASVL OL SiNdNI

11l 38vl

81

The processing accomplishad by this Function is illustrated
in Figure 23.

3.2.1.6.3 Qutputs from Task Dispatching Function
The outputs from this Function are listed in Table XIV.

3.2.1.7 Function Seven - Minor Cycle Set-Up Function

The Minor Cycle Set-Up Function shall be initiated by the
Local Executive Control Function upon detection of a pending Minor Cycle.
This function performs the processing necessary to prepare for synchronous
message transmission and reception each minor cycle.

3.2.1.7.1 Inputs to the Minor Cycle Set-Up Function
The inputs to this function are listed in Table XV
and described in the following paragraphs.

The Synchronous 1/0 Tables are used to determine which DMA
Pointers to set up in the appropriate DMA Pointer Block on any given Minor
Cycle.

a) Synchronous Pointer Table (SYNPTR)

The SYNPTR Table will appear once in every processor that has
any dynamically maintainéd synchronous pointers in the DMA Pointer Block
(ref. para. 3.2.1.7.3). It contains two blocks of pointers for each Minor
Cycle. One contains the addresses of all Compool blocks received during the
Minor Cycle, excluding the Compool blocks whose addresses are fixed within
the appropriate DMA Pointer Block. The other contains the addresses of all
Compool blocks transmitted during the Minor Cycle but not fixed within the
appropriate DMA Pointer Block. If for a given Minor Cycle, all the DMA Poin-
ters within the DMA Pointer Block are of a fixed nature, then the appropriate
pointer in SYNPTR for this Minor Cycle shall be null.

82

ASK DISPATCHIN
(KROM LOCAL EXEC. CONTROL)

START TABLE SEARCH
STARTING AT HIGHEST
PRIORITY TASK MADE
DISPATCHABLE SINCE
LAST DISPATCH

DO WHILE HIGHEST

HIGHEST PRIORITY
PRIORITY & DISPATCHABLE TASK, BUT NOT IN
TASK HAS NOT BEEN FOUN PRIVILEGED MODE

e oo
Tt VA A M. -

CHECK NEXT

IF DISPATCHABLE :>
TASK _FOUND

DISABLE INTERRUPTS

IF TASK FOUND
FINISHED EXECUTIQ

RETURN

RESTORE REGS.,
IPROG. STATUS &
COMsUB STACK

[TF TASK \
IRESET PRIVILEGED SUSPENDED

POINTER

ENABLE INTERRUPT

|

TRANSFER CONTROL
TO TASK

FIGURE

MODE FLAG ‘ /
SET PRIVILEGED
IMODE FLAG
|
MAKE TASK
INACTIVE
| PLACE IT
IF ASSOCIATED | IN EVENT
JACTIVATION EVE QUEUE

INITIALIZE COMSUB

STACK POINTER

]

23. TASK DISPATCHING PROCESSING

83

ENABLE INTERRUPTS

l

CALL TASK

e

A SP R

uoj3ouny Buj|puey Fu3A3

uojjouny bupyosy) jysejl

anand Jusa3

sn3e3s ysey

:91qeL Sysel J0SS3I0dg (2307

FINNI4

i NOLlvNI1S3Q

T08WAS

IWUN viva

NOILINNA ONIHILVCSIQ XSYL WOYd Sindino

AIX 3lqel

84

;
i
!
¥
i
]
|

3avo1-3yd

SYSVL 40 NIVHD SNILIVM-IWIL
}Ja<» NOILVY3NID INIAT 31043 HONIW
¥01dI¥IS30 %2078 ¥IINIOd

3718vL X3ANI Y1dNAS

(YLdNAS)
378VL ¥3INIOd SNONOUHINAS

:$318VL 0/1 SNONOYHINAS
Y3GHAN 3TIAD YONIW

FINIYIIN 3UN0S

T08HAS

3WVN Viva

NOILINAS dN=-13S 314D HONIW OL S1NdNI

AX

318Vl

85

st el o e e

oa

IR R P T IR

b) SYNPTR Index Table

The SYNPTR Index Table is used to locate the blocks of Receive
and Transmit Pointers within SYNPTR for any Minor Cycle. This table shall
appear once in every processor that has dynamically maintained pointers in
the DMA Pointer Block and will contain one entry for every minor cycle num-

ber. The items in this table are described in Table XVI below.
TABLE XVI SYNCHRONOUS POINTER INDEX TABLE
ITEM
NO. DESCRIPTION
1 Number of variable Synchronous Receive Pointers
for this Minor Cycle within SYNPTR.
2 Offset from the beginning SYNPTR to first Receive
Pointer in SYNPTR for this Minor Cycle.
3 Number of variable Synchronous Transmit Pointers
for this Minor Cycle within SYNPTR,
4 Offset its first Transmit Pointer in SYNPTR
for this Minor Cycle.

¢) Pointer Block Descriptor

The Pointer Block Descriptor shall appear once in every pro-
cessor. It is used by the Minor Cycle Set-Up Function to determine which
parts of the DMA Pointer Blocks are fixed and which are varfable.

It contains four words as shown in Table XVII. They are
pointers to the first nonfixed pointer in the respective block of the UMA
Pointer Block.

TABLE XVII POINTER BLOCK DESCRIPTOR TABLE

ITEM
NO. DESCRIPTION
1 Address of first variable Receive Pointer in Block 0
2 Address of first variable Transmit Pointer in Blo-: 0
3 Address of first variable Receive Pointer in Block 1
4 Address of first variable Transmit Pointer in Block 1
{ ; Minor Cycle Event Generation Table
. The Minor Cycle Event Generation Table shall appear once in
} every processor in the IDAMST system. This table shall be used by the Local
Executive to determine which Minor Cycle Event to signal on any given Minor
Cycle.

} The Minor-Cycle Event Generation Table consists of two inter-
dependent parts. The first part shall contain an entry for every Minor Cycle
in a major frame ordered by Minor Cycle number. Minor Cycles shall be num-
bered in ascending order. Each entry shall contain two items. One entry
shall indicate the number of Events for the Minor Cycle. The second entry is
an index field containing an offset to the beginning of the second part of
the table. This offset points to the beginning of a 1ist of Event Table
pointers which point to the appropriate period - phase events in the Event

Record Table (Table VII). If there are no Minor Cycle events for a
given Minor Cycle, the proper entries in the first part of the table shall be
set to zero.

The actual arrangement of Event Record Table pointers may
vary within the second part of the Minor-Cycle Event Generation Table. Many

L distinct Minor Cycles can cause activation of an identical 1ist of Minor
Cycle Events, thus the groups pointed to by Part 1 of this table for several

different Minor Cycles may be the same.

87

An illustration of the Minor-Cycle Event Generation Table
is shown in Table XVIII.

TABLE XVIII MINOR CYCLE EVENT GENERATION TABLE
Number of Events Offset to First Event for this Minor
for Minor Cycle 0 Cycle in Part 2
PART 1
Number of Events for | Offset for this Minor Cycle in Part 2
Minor Cycle 1
Number of Events
Last Minor Cycle Offset in Part 2
Blank O0ffset into Event Record Table
PART 2
Blank Offset into Event Record Table
3.2,1.7.2 Minor Cycle Set-Up Processing

The main objective of this Function is to generate the
address pointers used by the Bus Controller Interface Unit (BCIU) to store
or access, via the DMA channel, synchronous message data recefved or syn-
chronous message to be transmitted. These pointers shall be stored tn a
table designated as DMA Pointers Table.

- " - . ;. v — P .
.~ . T A OO Al e mi e 1 s - e S B ch M i< Ak o o

— This Function also determines which tasks depend on the

M1 cle to become dispatchable. Those tasks that have their Event Condi-
ti::g;§f~;;E?§?Ted~bx\this Minor-Cycle and are "Privileged Mode" tasks, shall
become Active, Dispatchable and directly executable by the Minor-Cycle Set-Up
Function. This action takes advantage of its knowledge of the nature of the

Events it is signalling to bypass the Event Handling Function (3.2.1.4) and
the Task Checking Function (3.2.1.5) of the Local Executive.

The processing performed by this Function is fl1lustrated in
Figure 24,

!) In the process of setting up the DMA Pointer Table, this

Function makes use of the Minor Cycle number to index into the SYNPTR Index
Table. With the information obtained from this table, the SYNPTR for the
particular Minor Cycle will be read and the addresses of all Compool blocks

. to be received and transmitted during the Minor Cycle will be fetched, Mak-
ing use of the information stored in the Pointer Block Descriptor Table, the
Compool blocks addresses shall be stored in the DMA Pointer Tables. The DMA
Pointer Tables are described in Paragraph 3.2.1.7.3..

3.2.1.7.3 Qutputs from the Minor Cycle Set-Up Function
The items output from this Function are summarized in

Table XIX.

The DMA Pointers Blocks Table shall contain the address
pointers for the Compool blocks into which receive messages are to be stored
by the BCIU and out of which the BCIU will access messages for transmission
during a Minor Cycle. This table, as shown in Table XVI is divided
into four parts. Two parts are used for even-numbered Minor Cycles and the
other two for odd-numbered Minor Cycles.

Part 1 shall contain pointers for message reception while
Part 2 shall contain pointers for message transmission. Each part shall con-
tain up to 31 pointers that are accessed by the BCIU as described in Section

P2 3.2.1.2. Word 0 in each block shall not be used as a pointer since a sub-

AR

-

AINOR CYCLE
SET-UP FUIHCTION

t

READ BCIU IFR AND
OBTAIlt MINOR CYCLE
NUMBER

l

IF MINOR CYCLE SIGN ENT FOR
NUMBER 1S Nor_?§§;>>-----’""‘ MlnoaLcsngTsvgcn
MOPE THAH LAST Of ERROR

I

LOAD BAR WITH
ADDRESS OF DHA
POINTER BLOCK

RESET THE PCR
“BUSY/CONTINUE" BIT
70 _LOGIC O

FOR ALL EVEHTS

IN MIJIOR CYCLE EVEN
GENERATION TABLE FO
JHIS MINOR CYCLE

PERFORM DMA POINTER
TABLE SET-UP FOR
NEXT 1MINOR CYCLE

-

RETURN

FIGURE 24.

FOR ALL TASKS TAKE TASKS 0UT
WAITING ON THIS = t OF TIME-WAIT
MINOR CY CHAIN AND MAKE

{

PERFORM DMA POINTER
TABLE SET-UP FOR
THIS MINOR CYCLE

FIND TASKS WITH
| THIS EVENT IN THE
EVENT CONDITION SET

FOR ALL TASKS
WITH SATISFIED

PATCHABLE]

PROCESSING OF MINOR CYCLE SET-UP

(e
SET TASK
STATUS TO
"ACTIVE &
“DISPATCHABLE"

ITF PRIVILEGED
{MODE_TASK

FUNCTION

SET"PRIVILEGED;
TASK EXECUTING
IMDICATOR

I

CALL TASK

1

UPON RETURN
RESET
PRIVILEGED BIT

) IN3A3 3704 YONIW)
JHL NO ONILIVM S)SVL ¥04 S3I¥IN3

NOILINNJ ONIHILVCSIQ ASVL 8 318Vl ASV1 d3itvadn > w
NOILINN ONITIONVH IN3A3 . InINd INIAI .

119 ASNg ¥2d NId4 40 L3S

nig (yva) ¥31S193d SSIyaav 3sve

to nrag . 378vL SA3018 SYIINIOd Viad

J3GWNN 3704 HONIW .

JONFUI4N _ NOILVN11S30 T08WAS 3WVN ViVa

NOILONNA dN-13S 370AD JONIW WO¥4 SINdiNO XIX 378Vl

L | address of zero indicates a Mode operation. The pointer corresponding to sub
address 31, for both reception and transmission, is reserved for asychronous
message reception and transmission.

The table shall contain fixed pointers and some that are
dynamically set up every time the DMA Pointer Block is used. Thus, if a com-
pool is received or transmitted every even or every odd minor cycle, then its
pointer shall remain fixed in the DMA Pointer Block.

3.2.1.8 Function Eight - Asynchronous Message Handling Function

The Asynchronous Message Handling Function shall manage
the reception and transmission of asynchronous messages via the BCIU. Asyn-
chronous messages are utilized to perform the following:

a. Invoke a task when a task is located in a different

processor than its controller.

b. Task termination/cancellation when a task to be termina-
ted or cancelled is in a different processor than the controller task.

c. Write compool block data when the compool block to be
written has copies in other processors.

d. Signal Events when the Event Record has copies in other
processors.

e. Update Compool Blocks in other processors or Remote
Terminals.

Although the Local Executive determines the necessity for
an asynchronous message transmission, the actual transmission of the message
is controlled by the Master Executive located in the Master Processor.

3.2.1.8.1 Asynchronous Message Reception Function

The Asynchronous Message Reception Function shall accept
an incoming Asynchronous message received through the BCIU and enqueue it is
processing.

3.2.1.8.1.1 Inputs to Asynchronous Message Reception Function

The input to this function shall be the Reception Queue as
noted in Table XxX.

92

- R " -
- e e e Y . i

LR

s

e

xS

e el R

n1g

anand uo}3dsday

FON3IIN

ININOS

T08WAS

3WVN Viva

NOILd3234 39VSS3W SNONOJHINASY OL LNdNI

XX 378Vl

93

& %

The Reception Queue, as illustrated in Figure 25
shall consist of the following items:

a. The Raquest Pending Flag indicating the presence of a
message that has not been processed by the Local Executive.

b. Three 33-words buffers for storing the received
Asynchronous messages.

c. Pointer to first buffer in queue indicating the next
buffer to be processed, i.e., the buffer succeeding the last one fully pro-
cessed.

d. Pointer to last buffer in queue pointing to the last
buffer filled by a reception from the BCIU.

The Reception Queue is filled in by the BCIU. (Section
3.2.1.2) and removed from it by the Local Executive Control Function (Section
3.2.1.1) in a First-In-First-Out basis.

The reception buffers are considered to be arranged cycli-
cally, thus, the last physical buffer succeeds the first physical buffer.

3.2.1.8.1.2 Asynchronous Message Raception Processing

The Asynchronous Message Reception Function is invoked by
the Hardware Interface Control Function after receiving a level of interrupt
indicating the reception of an asynchronous message.

The Asynchronous Reception Function shall examine the Asyn-
chronous Message ID. If the ID indicates a realignment request, the Asyn-
chronous Transmission Function shall be called to re-transmit the last mes-
sage. Otherwise, as indicated in Figure 26 » the "Next Buffer" and
“Last Buffer" pointers in the Reception Queue are adjusted (ref. para.
3.2.1.8.1.1) and the "Reception Pending" Flag in the same queue is set.

94

oqo-

REQUEST
PENDING
FLAG

FIRST BUFFER POINTER

LAST BUFFER POINTER

33-WORDS

BUFFER #1

33 WORDS

BUFFER #2

33 WORDS

BUFFER #3

FIGURE

25 RECEPTION QUEUE

95

AD=A083 118

UNCLASSIFIED

AIR FORCE AVIONICS LAB WRIGHT=PATTERSON AFB OH F/6 9/2
COMPUTER PROGRAM DEVELOPMENT SPECIFICATION FOR IDAMST OPERATION==ETC(U)

JUL 76
AFAL=TR=76~209~ADD=-2

ASYNCH
RECEPTION

DECODE
ID

'lr'l“"'\
RETRANSMIT

o
A

F— T AU . <ot

MESSAGE ‘//’

< RETURN)

FIGURE 26 -

CALL

ASYNCH
TRANSMISSION
(p. 3.2.1.8.2)

UPDATE

"LAST BUFFER"
POINTER TO
POINT TO BUFFER
JUST FILLED

UPDATE ASYNCH
RECEPTION POINTER
IN DMA POINTER
BLOCK TO NEW
RECEPTION BUFFER
(ref. P, 3.2.1.7.3)

SET “RECEPTION
PENDING FLAG" IN
RECEPTION QUEUE

SET

IF NOT ALL
ERS\

RECEPTION BUFF

FULL /

ASYNCHRONOUS MESSAGE RECEPTION PROCESSING

96

"BUSY" BIT
IN PCR TO
ZERO

e

o

The "BUSY" bit in the BCIU PCR register shall be set to
zero only if the Reception Queue is not full with unprocessed messages.

3.2.1.8.1.3 Outputs from Asynchronous Message Reception Function
The outputs from the Asynchronous Message Reception Func-

tion are listed in Table XXI.

3.2.1.8.2 Asynchronous Message Transmission Function

The Asynchronous Transmissfon Function accepts messages
enqueued by the Local Executive into a transmission queue and prepares them
for transmission by the BCIU. The necessity for the transmission of an asyn-
chronous message is determined by the Local Executive in order to accomplish
tasks services as enumerated in paragraph 3.2.1.8.

This function is invoked from:

a) The Interrupt Handling Function (Sectfon 3.2.1.2) after
termination of a previous Asynchronous transmission.

b) The Asynchronous Message Reception Function (Section
3.2.1.8.1) upon reception of a message requesting a retransmission of the
last message.

c¢) The Local Executive Control Function on a request to
initiate a BCIU transmission.

3.2.1.8.2.1 Inputs to Asynchronous Message Transmission Function
The input to this function is a Transmission Queue as noted

in Table XXII.

The Transmission Queue is illustrated in Figure 27.
It consists of a number of Message Descriptor Blocks that contain pertinent
message information and a series of pointers used in the fetching of the mes-
sages to be transmitted. A description of these parameters follows:

97

33019 S433UL04 YWa U} 433ulod
nig uo}3daday SNOUOUYIUASY
.uojp3oung {043uo)
aALNI3X] {R207] ansnp uojidaday pajepdn
0437 03 39S ¥dd
nIdg NIJ8 ul 348 4ASNE.
NI NOILYNILS3d TOGWAS 3WYN Viva

NOILINNS NOIL4323¥ 39VSSIW SNONOYHINASY WOYd Sindino

o

IXX 318vl

papeo]-aud

S43juU}j0d 431ing

B3y 4334Ng UO|SSjuUSURL)
S493U}04 UO}SS jusSuRLY
syo0|g 403d}a2s3q sbessay

sonand uojssjwsued}

Enl ELEREL] 3%n0s

T08WAS

IWVN Viva

i
L
8
r
'
i
L
3

NOILONNS NOISSIWSNVYL 39VSSIW SNONOYHONASY OL SindNI

IIXX 378vl

99

Message Descriptor Blocks

Final ;ﬁRequest Vector #4
Transm. | Async ID #4 Transmission Buffer Areaa
Pointer Buffer Pointer #4 “* .
Request Vector #5 Buffer #2
. Async 1D #5 '
Buffer Pointer #5 Buffer #3
: : . Available for enqueuing
;- by Local Executive Proper
' Available for First Free
} enqueuing by Buffer Point

Request Vector #0
— Async ID #0

Transm. Buffer Pointer #0
Pointer

Last

Buffer #0 " First Used

Buffer
. Current Request Vector #1 Pointer
- — Async 1D #1

Transm. Buffer #1
Pointer - Buffer Pointer #1

Request Vector #2

Async ID #2 Null N

Request Vector #3
i ' Async 1D #3
Buffer Pointer #3

PRYSR FIGURE 27 TRANSMISSION QUEUE

T WRRERERR VI AT fns e i e

a) Message Descriptor Blocks
The Message Descriptor Block consists of:

1. Asynchronous Request Vector
The Asynchronous Request Vector is a 9-bit cqde that

jdentifies each asynchronous message that exists in the system. If the local
executive is not in the Master Processor, an Asynchronous Request Vector asso-
ciated with an Asynchronous message to be transmitted will be loaded into the
BCIU Status Code Register (SCR). This Status Code Register will be decoded
by the Master Processor and as a consequence the Master Processor will gener-
ate the commands required by the asynchronous messages as described in para-
graph 3.3.2.3.

If the local executive is located in the Master Proces-
sor, this Request Vector will be input to the Master Asynchronous Control
Function through its vector stack (ref. para. 3.2.2.3).

2. Asynchronous ID Word
The ID word will be appended to the beginning of the

message and the Local Executive receiving the message will make use of this
word in identifying the message, (ref. para. 3.2.1.1.2). The Asynchronous
1D word will contain the address offset to the message Data Descriptor Block
(DDB) (ref. 3.2.1.3) if a Compool Block Handling is invoked. If the message
is to be sent to an RT, the ID shall be set equal to 177777, and shall not be
appended to the message.

3. Pointer into Transmission Buffer Area

The buffer pointer points to a buffer allocated within the
transmission buffer area holding the data to be transmitted. It should be
noted that the first two words of each buffer shall contain a Tag Word as
described in 3.2.1.2, and the Asynchronous ID word, respectively. The data
begins on the third word. If a message has no associated data, the buffer
pointer {s zero and no buffer is allocated for the message. On the other
hand, 1t 1s possible for a series of messages to point to the same buffer.

101

b) Last Transmission Pointer (LTP) pointing to the Message
Descriptor Block of the last message transmitted by the BCIU.

c) Current Transmission Pointer (CTP) pointing to the Mes-
sage Descriptor Block as the message currently set-up for transmission by the
BCIU. , .
d) Final Transmission Pointer (FTP) pointing to the Message
Descriptor Block of the message most recently enqueued by the Local Executive,

e) Transmission Buffer Area used to hold the data to be
transmitted.

f) First Used Buffer Pointer (FUBP) pointing to the first
word in the area occupied by a message, thus unavailable for enqueueing mes-
sages.

g) First Free Buffer Pointer (FFBP) pointing to the first
word in the buffer area available for storing new transmission messages.

3.2.1.8.2.2 Asynchronous Message Transmission Processing

The Asynchronous Transmission Function shall dispose of
messages storad in its transmission queue in a First-In-First-Out basis. To
this effect 1t shall make use of the transmission pointers identified in the
Transmission Queue as described in Para. 3.2.1.8.2.1.

Upon being entered, the Asynchronous Message Transmission
Function shall have its Current Transmission Pointer (CTP) pointing at the
Description Block of the message last transmitted. Thus, upon a request to
retransmit the previous message, CTP will be equal to the Last Transmission
Pointer (LTP).

Figure 28 illustrates this function processing.
3.2.1.8.2.3 Outputs from Asynchronous Message Transmission Function

The outputs from this function are listed in Table XXIII.

102

o

e

ONISSII0Ud “WSNVHL OSW "HONASY

Q03INIIWSIK SI
Y0SSII0¥d 310W3Y .
- 9NISSI)04d

I | W

4804, A8

Q314104 ¥3440n9 OL
1v Q3INIOd 9NI3g
22078 ¥0L4I¥IS30
“OSW WOY4 OI
ONASY ¥34Shvul

*82 uN914
S14NEY3INT 379VN
T
(£°2°2°¢ varg)
NOILINN4 e oAl 135 sl
041N0D “Wiod sng| | +ASPEe 118 WASPG.
HONASY 12 n128 1 |
128 40
mwmumHWWﬂ_ IS NI MOL23A
153003y V01
i .
VIS
NI 40153 //¥0853004d
1S303 avo1 { atsw 31

411 = dld
NIND NI "9SK J]

LEER)
1X3IN 0L d8nd 3ivadn
0 NI %2018 H01d1¥3S3a

Y3IIN10d NOISSIWSNYL

*9SW 1X3N OL SINIOd d1D
Kd11) ¥ILNIOd NOISSIWSNYVYL

1SV 3lvadn

40193A

Q31LIWSNWIL 1SV 0L
TWILINIAT LON SI
Y0133A »mm:cww

431NI0d

NOISSIWSNVYL LSy

HINASY VWO OINI
SS3y0aY ¥3ding
9SH_HINASY QYOI

/ 39¥SSIH LSV
LIWSNVYL-3Y 0L

= (d13) ¥3IINIOd
NOTSSIMSNVYL INTuun

N\, 153003y 41

NOISSIWSNVL
*9SW HONASY

»

A YO

103

P i d

. . nIog ¥dd u} 348 .Asng/enujjuol, <
greee’e LO43UO0) “umIO) SNg SNOUOUYIASY -
apoy 4d3sey ul
n1J8 u} ¥IS .
19poy djowdy ul 40303 359nb3Y SNOUOAYOUASY
. * $3}0018 4a3uiodd
n1d4 UO}SSUSURAL SNOUOLYIUASY VWA
uopjauny
uojssjpusuea] abessayy snouocsyoudsy anan}) uojssjwsuea] pajepdn
N3N NOILVNILS3O T08WAS 3WYN Viva
NOILINNA NOISSIWSNVYL 39VSSIW SNONOYHONASY WOYA Sindino I1IXx 318Vl
I - g)
it aucs - dinidlhe it

B s o L e ————— - o—— ""'w

3.2.1.9 Function Nine - Local Executive Initialization Function

This function is invoked by the system hardware, namely, the
ROM, upon system initialization on request from the pilot or on re-initiali-
zation as a recovery from a power-down condition.

Its purpose is to inftialize or re-initialize thé state of
the Local Executive and the BCIU associated with the Remote Processor.

3.2.1.9.1 Inputs to the Local Executive Initialization Function
The inputs to this function shall be as listed in Table
XXIV.

3.2.1.9.2 Processing of Local Executive Initialization Function

The pilot shall manually power-up the system and turn the
"processors on." The pilot shall have the capability to restart the system
and thus initialize a start-up sequence.

Each processor initiates operation under control of the
start-up program residing in its ROM, This start-up program shall determine
whether a normal start-up or a power-transient recovery is to be initiated.

For a normal start-up, the ROM shall perform a processor
self-test and initiate the BCIU self-test.

The Processor Control Panel (PCP) discretes shall be read
and the processor assignment determined. The BCIU shall be initialized by
loading the BCIU address into the PCR bits 7 - 11, setting the Master/Remote
(bit 1) bit in the PCR to agree with the processor's assignment and setting
the Go bit (bit 2) of the PCR to 1.

After the software has been loaded from mass memory the
local processor executive system tables are initialized and set up for a
minor cycle 0.
The Local Exec Initialization Processing Sequence {s
shown in Figure 29.

105

106

[aued [043U0) 40SSDI0AJ $3334951Q u:mE:mvmw< dd :
papeo-a4d aseg pieq uojleziie|ILu]
1 LommwuomQ bel4 umog-3nys 43mMod

(0 t3Aa7) 3dnausiu] uojjezileijul

Buj|puey 3dnauasju] .co-sozoa 40 uo}3uboday Coe
NI INN0S T08HAS IWYN vivd
.~ -
." NOILONAS NOILVZITVILINI 3AILNI3X3 W07 OL SLINdNI AIXX 378Vl

LOCAL EXEC.
INITIALIZATIO

[TF POWER 5653¢LFBOCAL
SHUT-DOWN EVE R
FLAG SET POWER TRANSIENT
7 | RECOVERY
PERFOR! PROCESSOR TR INITIALIZE
= NOT OPERATING BCIU
' (PCR READY BIT =
. PERFORM PROCESSOR/BCIY (B I
: INTERFACE TEST {DETERMINE_PROCESSOR
. ' ASSIGHMENT FROM
, IF FAILURE DISPLAY | <P DISCRETES
i PROCESSOR |
{ FATLURE RESTORE PROCESSOR
STATE PRIOR T0O
TOAD PCR WITH (RO}
O et POWER FAILURE
MASTER/REMOTE BIT
60 BIT
R IF REMOTE LOAD BCIU
g N TRITIALTZE PROCESSOR / e norr
) EXECUTIVE SYSTEMS POWER ON RESET
JABLES SIGNAL OTHER
SkocgaSORS
N POWER-
SET-UP FOR TRANSTENT RESET SYNCH
MINOR CYCLE COVERY COMPOOL
AAJ POINTERS
TRANSFER CONTROL INITIATE INOR
. zgn#ggfLFgﬁﬁc- CYCLE AT BEGINA
TROL PN 11 NING OF LAST | |SET BCIU
. (ref. P. 3.2.1.1) MINOR CYCLE PCR TO
IIGOH

FIGURE 29. LOCAL EXEC. INITIALIZATION PROCESSING

107

-— c e e e . - .
[y - -
it il AT Y

e . & M
e > :

Sk e AR T s e s e e - eian -

If a remote or monitor processor recovers from a successful
power-transient, an Event shall be signalled to start the power-recovery
operations.

If the local executive determines that its BCIU is not
operating (PCR "Ready" bit 1), it shall initialize the BCIU and tﬁrough the
PCP dfscretes determine the processor assignment. The local executive shall
initialize for power-transient recovery by signalling the Master Processor
about the power recovery through the BCIU bit register and setting the BCIU
synchronous compool pointers to "null" compools. The master processor,
upon receiving indication of a transient recovery, shall restart operation
at the end of the last successful minor cycle. Finally, the BCIU PCR shall
be set to "Go".

3.2.1.9.3 Qutputs from the Local Executive Initialization Function
The outputs from this function are listed in Table XXV.

108

|

el
saqel ysel
31qe] JUIA]

109

s493s463y nIog
sanpep jsel

san|eA JuaA]

NI

NOILVNILS3a

TOGWAS

IWVN Viva

NOILINNJ NOILVZITWILINI 3AILNJ3X3 vI0T WOYS S1NdLNG

AXX 378vVL

L Al

3.2.2 IDAMST Master Executive Functions

The Master Executive shall reside in the master processor
and in the monitor processor. Its main function is to manage and control
all data bus communication among the processors and remote terminals and
direct the initialization and start-up on the software system.

A block diagram of its functions is shown in Figure 30.

3.2.2.1 Function Ten - Master Executive Initialization & Start-Up
Functions

The main objective of this function is to establish the
proper operational sequence to enter normal system operatfons.

Each processor in the IDAMST system will contain a basic
start-up program residing in a READ-Only-Memory (ROM) module which will con-
trol the initiation of operations within the processors.

This start-up program sequence is considered part of the
initialization function and as such is being described in the processing
description of this function (ref. para. 3.2.2.1.2).

3.2.2.1.1 Inputs to Master Executive Initialization & Start-Up
The inputs to this function are listed in Table XXVI.

3.2.2.1.2 Initialization & Start-Up Processing
This function processing is illustrated in Figure 31

and Figure 32.

The start-up procedure shall be initiated by the pilot going
through a sequence of actions using the Processor Control Panel (PCP). These
are:

a) Manually turning the power-on for the system. This action
shall set a "normal start-up" discrete.

110

el F
Do R 0% wiOEN s .

MASTER BCIU

S |
§ [l k%)
S g2 g8
) e @ =
- (<4 (8]

SYNC ASYNC START-UP
BUS BUS &
CONTROL CONTROL INIT.

A

2

o

—_

]

=

[

v
TIME s MASTER
CONTROL o EXECUTIVE

LOCAL EXECUTIVE

FIGURE 30 MASTER EXECUTIVE FUNCTIONS

m

L S
o

W

Iy

b s o .

ey

A e
PR

ddd

Kaowdy SSey

Aaoway ssey

$.40SS320dd

WOY
dad
did

$J40302 | pu]
UoySSiW ‘2-d19 ‘L-did

ejeq juapusdag-uojssii
UOESSIH *2-d19 ‘L-d19

1a4eM3 05 Wa3 SAS

mE:W AIBY)

IS :zbq INYS A3Mod

314 ,09. ¥

Ij0wsy /433 SeY

33340810 dn-34e3S [RUMON

N3N

32UN0S

T08UAS

IWVN Viva

NOILONNA dN-LYVLS ¥ NOILVZIWILINI °3°W OL SLNdNI

IAXX 318Vl

112

-

RSN

B T —

i
b
13
r

{-did
01 03110)
LEESSH LT

N

0501
HASHIIHD
Ny _AJ1¥3A

NOILVZITVILINI 3AILNJIXI YILSVW

41213003
LEIRY TR ATE

NO11VIIddV 340AN]

Y3IRIL WAYILNT 124D

YONIW 3Z1WILINI

Tt

viva
1N3QN3d3a HOLSSIN
QHY S¥3L3Lvivd

H31SAS av0

L ¥345nvui

]

¢-d19 01
041102

2-d19
A41¥3A
avy_ovo1f

SO\ A A4

o e+ =

EL ATEOS
1-d19 HLIn
SY0553204d

avol

1IN

$Y0SS3204d 17V NI
JYVYMLI0S NOISSIW
AJIY3A 3 QY01

ALISIQ ddd
2-d19 41

|

0341530}

3uynid0S
1-d19 J1

3s|a

UNTIVY

mM1Ivd
. F)|

13043y

.

SHOSSII0Ud 3L0t13d
HLIM 1531 NOILVIINOM:IOD
Sng 140Jy3d

3TIA) HONIW
INASSIINS LSV

40 GN3 LY NOILVY3dO
37940 YONTW ILVILINI

e

‘1€ N9I14

11x3

et

AY3A003Y

Y¥3M0d 1

VZIWVILIN
IALLNIIXI
¥3

13

START-UP
PROGRAM

IF SUCCESSFUL _

=% |

o bt AN an, mane. -

PRSI WYY . R R

then SIGHAL PO.'ER

POXER SHUT-DON?///

RECOVERY EVEWT

FOR MASTER EXECUTIVE

else

FOR lORMAL
START-UP

[SET DISCRETE

) IF NORMAL
: START-UP
DISCRETE SET

PERFORM PROCESSOR
AND BCIU SELF-TESTS,
PROCESSOR/3CIU
INTERFACE TEST

TRANSFER COHTROL
TO MASTER

. EXECUTIVE

IF TESTS then

NOT SECCESSfEE>//

FIGURE 32.

else

REPORT |
FAILURE |

HALT

READ PCP DISCRETE
ASSIGHMENTS AND
INITIALIZE GCIU

TOAD TASTER
EXECUTIVE FROM
MASS HEHORY

|
VERIFY LOAD
AND PERFORM
CHECKSUM

IF aor"ﬂ

REPORT

{ SATISFACTORY/

MASTER EXECUTIVE START-UP

114

HALT

FAILURE

I p—T——

b) Turning the power-on for every processor.
¢) Activating a "START" switch to initiate system start-up..

Upon the start-up program in the ROM taking control, it shall
check for a normal start-up sequence ("normal start-up" discrete). If this
discrete has not been set, the program will determine if a successful power
shut down was accomplished. If successful, the master executive shall sig-
nal the other processors of the necessary operation and initiate minor
cycle operation at the end of the last successful minor cycle. The Local
Executive shall execute its sequence as described in Function Nine, para-
graph 3.2.1.9. If the power shut-down was not accomplished successfully, a
normal start-up sequence shall be performed.

The ROM start-up program shall perform the processor and BCIU
self-tests, the processor/BCIU interface test and read the PCP assignment
discretes to initfalize the BCIU as per its Master/Remote bit and the device
address and setting the PCR "GO" bit. If the tests are satisfactory the
Master Executive shall be loaded from mass memory and a check sum performed
on the master executive.

The master executive will take control and perform a bus
communication test with the other processors.

If a failure occurs in any of the previous tests, i.e. pro-
cessor self-test, BCIU self-test, processor/BCIU Interface test, Master load
verification, Master load check sum, Remote/Master bus communication test,
the "Faf1" Light" for the respective processor shall be displayed. The pilot
shall reassfgn the processors, turn-off those that failed and restart the
system,

After successful testing, the master executive shall deter-
mine, from a discrete orfginating in the Processor Control Panel (PCP) which

application software to load and the desired configuration. If the discrete
indicates GTP-1, the GTP-1 software shall be loaded and verified from mass

memory. A check sum shall also be performed on each processor load.

115

Upon finishing the execution of GTP-1, GTP-2 may be indicated
through the PCP or else regular mission software is to be loaded from mass
memory. If there has not been a failure to load the mission software, the
system parameters and mission-dependent data shall be loaded from mass mem-
ory.

’

To initiate the normal system operation the minor cycle inter-
val timer shall be initiated and the application software master sequencer
{nvoked.

3.2.2.1.3 Outputs from M.E. Initialization & Start-Up Function

Upon exiting this function the IDAMST system shall have each
processor loaded with the proper executive and application software. One
processor shall contain master and local executives, another processor shall
contain only a local executive and the third processor shall contain a master
executive with monitoring functions and a local executive. The application
software shall be allocated as per the configuration management.

116

S g TR e RN T R

Oﬁb-

Coe e O o AR g -

3.2.2.2 Function Eleven - Master Synchronous Bus Communication Control

The master executive controls the transmission of synchronous
message data over tha BCIU each minor cycle. These data may be in the form
of minor cycle mode commands, actual synchronous messages and/or status word
polling messages. p

There are sixty-four minor cycles occurring per major cycle
where a major cycle is defined as occurring every second. Synchronous mes-
sages can be transmitted at different binary rates per major cycle, thus, the
possible schhronous data periods are:

1 Every Cycle

2 Every Other Cycle

4 Every Four Cycles

8 Evary Eight Cycles

16 Four Times a Major Cycle
32 Twice a Major Cycle
64 Once a Major Cycle

Synchronous messages, while perhaps on the same period as
described above, can be scheduled on the BCIU at different phases with
respect to the start of the major cycle. Thus every message has associated
with it a period and a phase. The phase of a message is its displacement
relative to the first minor cycle. A message with a period of two will have
jts first occurrence in minor cycle 0 or 1 with a phase of 0 or 1 accordingly
similarly for a period of four the message can have a phase of 0, 1, 2, or 3.
Messages transmitted each minor cycle always have a phase of 0 and a period
of 1.

A phase table, as illustrated in Figure 34 , identifies
the phases associated with the minor cycles with respect to the transmission
rates,

17

3.2.2.2.1 Inputs to Master Synchronous Control Function
The inputs to this function are listed in Table XXVII.
The input tables ars described below.

3.2,2.2.1.1 BCIU Instruction Formats ,

Each BCIU command consists of instruction pairs in the format
as illustrated in Figure 33. The BCIU sequentially interpret each
instruction pair to determine the action required. Depending on the OP Code
contained in the instruction pair, the BCIU will initiate a bus transmission,
transmit a masking mode command, perform any bus operations but will use the
second word of the instruction as the address of the next instruction pair.
The rest of the fields in the instruction pair are described in detail in
Section 3.1.1.1.

3.2.2.2.1.2 BCIU Synchronous Instruction List

The BCIU Instruction List contains an instruction pair for
each synchronous message that is transmitted on the data bus. If any of the
synchronous transmissions require bit or word masking, the instruction pair
that affects the transmission will be preceded by one to send the proper
Mode Command. A word mask will also require the loading of the BCIU Mode
Data Register with the desired word mask.

Since each message is not transmitted every minor cycle, the
instruction 1ist must be organized so that the proper instruction pairs can
be 1inked together at the start of each minor cycle to form the complete in-
struction list for that minor cycle. Thus, instruction pairs are organized
in instruction blocks. The Synchronous Instruction List will contain one
block of instructions for each phase and period for which there are synchro-
nous bus transmissions. The organization of these blocks is illustrated in
Figure 34. The last fnstruction pair in each instruction block is a
Link instruction. This link instruction pair is dynamically set by the
Master Executive to point to the next block of instructions to be performed
during the current minor cycle.

118

»

ey .
ERCeE X o SO

e

alqe) 433u{0d IS} UOEIdNUISUL
1S} UOEIONAISU] SNOUDAYDUAS

81949 ~A0u |l

JINTY3IINY

3nn0s

JOSWAS

IWVN Viva

NOILINNS T04LINOD SNONOYHINAS ¥3ILSwW OL SINdNI

ITAXX 378Vl

. " s

19

L

.
L)

jJeuo4 uoj3onalsul NIo9 €€ JNdI4

(NOILONYLSNI ¥3d SITYLIY ITUHL 40 WNWIXWM)
NOILINYLSNI QYOM 2 SIHL A8 Q3MOTIV S3YILIY 40 HIGWAN 40 JWVMLE40S OL YOLVIIGNI = ALY

(405S3204d 0L [12d] LdN¥Y3LINI Q3ITI04INOD QIWWVYI0Ud SINISIYd L II907) “NOILwY3dO
SNg 3HL 40 NOIL3TdWOD INISSIIINS NOdN YOSSII0Ud IHL O1 LANYYILNI NV ¥3HLIHM 3LVIIGNI OL L1I8 = I

(2 W19 S19313S | 21901)
"NO 03W40443d 39 TIVHS NOILVY3dO SNG SIHL SNG HOIHM 3INI43Q OL 119 = 4

91 AR L 9 S L L siIg
3a00W/5S340avans $S3daay 8 3002 3001
LISNVYL 331A30 /1NNOD Q4OM
LIWSNWIL
300W/SS340avans $S3Yaay 3002
IAIIIY 301A30 L 34VdS 413y d0
| JAID3N S118
9l 2l 1l L9 S v £ ¢ 1
NOILVY3dO Sn8 = 1
(NOILONYLSNT QYOM 2 LX3IN OL 09) NOILVYIdO ON = O L
(NOILONYLSNI GYOM 2 LX3IN 40 SSIYaay SY GYOM GNOI3S 3SN) INIT = L O
N8 LWH = 00
1$3007 d0

120

NOILVZINVIYO XJ0719 NOILINYLSNI ve 3¥n914

) v *1SIX3 1ON $300 %2078
NOILONYISNI NV “3SVHd N3AI9 V NI G3LLINSNVYL LON
: 34V OTY¥3d WVINDILUYA V¥ 40 SIOVSSIW 41 S HONOWHL

it 3N 4me cmam: ot ————

*¥2078 NOILONYLSNI 9NIT104 H0SSI) 0 3SYHd 91 JAVH 91 00I¥3d 40 SIDYSSIH *I1dWvX3 404 q
-0dd 310WI¥ 3HL OL ¥NIT (ONOD3S Y3d 3ONO . °3ISYHd 3191SSOd HOVI 404 XD078 NOILIAULSNI NV 38 AV ‘
Q3LLTHSHVYL) ©9 Q0IY3d 40 SIVSSIW 1TV TUIHL b9 8 2€ 9L *8 ‘b *Z SOOIAIA IHL 40 HOVA ¥04 < o
= ¥IVd NOILIMYLSNI JNIT %3079 NOILINYLSNI
) ¥ SI %J078 HOV3 40 ¥Ivd NOILONYLSNI 151 <] ISL 40 SINILNOD HO04 g 914 335 <
_ 4
M 8 Q0143d
i _ 40 SIBVSSIH
=
¥ G01¥3d - \
4 40 9SS
Z 001¥3d
. 40 39VSSIW
%2078
NOLLONYLSNI SNITIOd Y0SS3004d 3L0HIY
'\ e
J
(9 2 *2¢ 91 SA0IY3d
40 SI9VYSSIW 404 SHI018 - .
= NOILONYLSNI ¥04 SINNILINOD) =
%3078 NOIL <
-ONYLSNI ONITI0d 3HL 40 LWVIS 3L OL <«
¥IV8 WNIT OL MIVd NOILONMLSNI XNIT < <

3.2.2.2.1.3 Instruction List Pointer Table

This table is used by the Master Executive to set the appro-
priate Link instruction pairs svery minor cycle. This table is 11lustrated
in Figure 35.

This table will contain an entry for each phase aﬁd period
in which a synchronous message appears. The entries are arranged in ascend-
ing sequence by phase and then by period. Thus, the entry for phase X and
period Y is entry (X + Y).

3.2.2.2.2 Processing by Master Synchronous Control Function
This function is initiated upon the occurrence of an interval
timer interrupt and its processing is illustrated in Figure 36.

Upon entering, this function shall first determine whether
error processing is under way. If this is so the error processing function
will be invoked. Otherwise; the function will determine if all minor cycle
transmissions have been completed. If they are not completed, the minor
cycle shall be extended for one more minor cycle period if the minor cycle
has not been extended before. If the minor cycle has besn extended before, .
a message shall be displayed and the master processor halted. This action
will cause the monitor proczssor to take over and manage any reconfiguration
request.

If the synchronous bus transmissions for the minor cycle have
been completed, the minor cycle number is incremented and loaded into Master
Function Register of the BCIU and the Minor Cycle pending bit is set in the
Master Processor. A minor cycle phase table shall be generated identifying
the phases applicable to all the period for this minor cycle as explained in
paragraph 3.2.2.2. Figure 36 i{1lustrates this table for three differ-

ent minor cycles.

Making use of this table and the Instruction List Pointer Table
(para. 3.2.2.1.3), the appropriate instruction blocks shall be linked creat--
ing a continuous instruction 1ist to control the BCIU's operation for the

122

.
L—“’-*

B 2ok

i
|

‘Q"“

B . j e
L vacnds. a0 RPRRETY K SO T 3 PR L I RN R o
FIRST WORD IN LAST WORD IN
RATE) PERIOD | PHASE INST. BLOCK INST. BLOCK
64 1 0 Absolute Addresses
32 2 0 of First Word in
32 2 1 Instruction Block
16 z ? Absolute
H ? Addresses of
16 4 3 Last Word in
Instruction
8 8 0 Block
8] oc
> N (Second Word of
- _ Link Instruction)
8 8 7
4 16 0
16 1
4 16 15
2 32 0
32 1
32 2
2 32 K}
1 64 0
1 64 63

Figure 35

Instruction List Pointer Table

ﬂ

b A A At et A M- adC L

R ST Ve A b o - L e

MINOR CYCLE 43 60 61
PERIOD PHASE PHASE PHASE

2 1 0 1

4 3 0 1

8 3 4 5

16 N 12 13

32 1" 28 29

64 42 60 61

Figure 36 Minor Cycle Phase Table

124

I1lustration

MASTER
SYNCHRONOUS
FUNCTION

HALT MASTER

PROCESSOR

EXTEND MINOR

IF ERROR IF MINOR
PROCESSING Y-r—j CYCLE S
EXTENDED once /-
SET BCIU PCR
60 BIT 10 0

DO WHILE BCIU
| "RUN" BIT 1S SE

L1 svnckronous

CYCLE

T

CALL ERROR
PROCESSING
FUNCTION

READ PCR
“RUN" BIT

TRANSMISSION .

FINISHED /

IF MINOR CYCL DISPLAY
HAS BEEN e MSG. TO

EXTENDED ON

F OPERATOR

INCREMENT MINOR
CYCLE HUMBER

—

LOAD MASTER
FUNCTION REGISTER

.

.

HALY
MASTER
PROCESSOR

SET MINOR CYCLE
PENDING FLAG IN
MASTER PROCESSOR

[

RESET

INTERVAL

<= TIMER:

EXTEND
CYCLE

GENERATE MINOR
CYCLE PHASE TABLE
(ref. Fig. 3.2.2.2-§

SET BCIU
PCR "G0" BIT]
70 1

LINK INSTRCTN
BLOCK FOR
THIS MINOR

CYCLE
l

FIGURE 37 MASTER SYNCH. CONTROL PROCESSING

125

LOAD BCIU IAR WITH
STARTING ADD - OF

BLOCK
1

SET BCIV
PCR “GO" BIT
T01

i Gk

——

current minor cycle.

The proper register in the BCIU are loaded and the synchroni- 3
zation commands are transmitted to the remote processors.

3.2.2.2.3 Qutputs from Master Synchronous Control Function
The outputs from this function are shown in Table XXVIII

' o 3.2.2.3 Function Twelve-Asynchronous Bus Communication Control
The responsibility of this function is to control all asyn-
chronous communication through the BCIU. Requests for asynchronous trans-

: ' mission can be received from the local executive resident in the remote pro-
i cessor or the local executive in the master processor. Requests for trans-
; mission are identified to the master executive by the Interrupt Request Vec-
f tor associated with 2ach asynchronous message.

The asynchronous transmission is formulated as described in
(the following paragraphs.

3.2.2.3.1 Inputs to Asynchronous Control Function
The inputs to this function are listed in Table XXIX

3.2.2.3.1.1 Request Vectors

The Request Vectors are 9-bits data fields associated with
the asynchronous messages existing in the system. Each request vector will
point to a particular message, thus a maximum of 512 asynchronous messages
can be provided for in the system.

A local executive located in a remote processor requests an
asynchronous message by loading the proper interrupt vector into the BCIU's
Status Code Register. The local executive located in the Master Processor
passes the associated interrupt vector to the master executive by loading it

126

—_—— -

e R

o~ el SRR D SN

vl nId8
nIdg

NOISSIWSNWYL 2 NOILd3J3Y
J9VSS3W SNONOYHIAS

ddW nIJ8

213018
NOILINYLSNI LSYI4 =~ SS3HaaY

$%3079 NOILONYLSNI

/
379VL 3SVYHd 371IAD YONIW

Y3SWNN 310AD YOMIW

JONIY343Y

NOILYNILS3a

T08HAS

JWVN viva

NOILONNA TOYLNOD SNONOYHINAS YILSVW WOY¥3 SiNdLNO

*TIAXX 376Vl

127

T TRERYCRYR LONV AR T ISR 8 NS oo

oy veabea a At

4

.
R e

papeo(-aid
papeo|-aud
papeo-aud
papeo|-add
popeo} -3ag
papeo|-add
papeo|-add
vmcapmmm-mpm

uoj3oung
3dnaaajui ELEN

a|qe] SA3y u0jIdINAISU] AIISPY
3{qel SNOuCAYIUASy IJoway
9lqel ajoursy
ajqe] 3ssnbay
[RUWAD] d30WTY A3ISEY
plgel juawa|ddng u0}3dnaISUl 433sey
3| qej 3apoaaq Isanbay 4vIsey
$40393) 3sanbay

J0SS32044 43358y Ul
3A}3NJ3X] |BI07 WOAy IsINnbay
405533044 9J0WBY W04y 3ISINLIAY

FINJYIIN

3NN0s

T08WAS

IWVN Viva

NOILONNA TOYINOD NOILVIINNWWOD SN SNONOYHINASY OL SiNdNI

XIXX 378v1

128

———— —_

into an interrupt vector stack. In efther case, the master executive uses
the interrupt vector as an index into the Master Request Decode Table des-
cribed in 3.2.2.3.1.2.

3.2.2.3.1.2 Master Request Decode Table ,

The Master Request Decode Table contains an entry for every
processor-to-processor and processor-to-RT asynchronous compool block update
message. The interrupt vectors are used to index into this table, thus, the
entries will be numbered in ascending, consecutive order. Messages origina-
ting in an RT are defined using a different set of tables, Master Remote
Terminal Request Tables. There are two different types of entries in this
table: one for transmissions involving no masking and one for transmissions
involving bit or word masking. For messages with no masking, the entry is a
master instruction set to effect the transmission. Messages that entail bit
or word masking will have for entry several items relating to the mask des-
cription.

Item #1 will be zero to indicate that it is not a master
instruction set.

Item #2 will be a pointer to a second table, Master Instruc-
tion Supplement Table, describing the bit or word masking.

Item #3 is the word mask that will appear in the bus message.
If it is a bit masking, item #3 will be all ones.

3.2.2.3.1.3 Master Instruction Supplement Table
This table will contain an entry generated for any asynchron-
ous message that has word or bit masking and originates at a processor.

Each entry contains two master instruction sets. The first
is the Mode command indicating the proper masking; the second is the command

which performs the BCIU transmission.

129

b
oy

3.2.2.3.1.4 Remote Asynchronous Table

If the asynchronous message received by the Master Processor
has originated at a Remote Terminal (RT), the Master Executive will make use
of its Remote Terminal Request Tables.

The Remote Asynchronous Table will contain an entﬁy for each
of the 32 possible remote terminals. These entries will be indexed by a
Remote Terminal identification number.

Item #1 will contain the total number of asynchronous mes-
sages transmitted from this RT.

Item #2 will contain an index pointing to this RT's entry
ifn the Remote Terminals Master Instruction Keys Table.

3.2.2.3.1.5 Remote Terminals Master Instruction Keys Table

This table will have an entry for all asynchronous messages
originated by a Remote Terminal. A1l the messages associated with an RT will
be contiguous within the table.

The entries to this table are accessed by item #2 of the
Remote Asynchronous Table described in 3.2.2.3.1.4.

~ Item #1 contains a mask associated with the RT Activity Reg-
ister. This mask's value will identify the particular asynchronous request.
Item #2 contains the Instruction Set necessary to satisfy the
RT request.

3.2.2.3.2 Asynchronous Control Function Processing

Asynchronous Processing is performed whenever: (a) Master
BCIU receives a status word from a remote processor containing an interrupt
vector with an octal value of 001 through 776. This condition shall generate

a level 3 interrupt indicating the reception of a valid status word.

130

“an
a > -

- . . T et BN o i PR et e e L] s TF W e R e N

(b) The local executive located in the Master Processor pas-
ses an interrupt vector to the master executive through the interrupt vector
stack as described in Function Seven.

This function shall fetch the top interrupt request vector
(the oldest) and use it to index into the Master Request Decode Table describ-
ed in paragraph 3.2.2.3.1. If this table indicates bit-or-word-maksing mes-
sage, the Master Instruction Supplement Table will be utilized. As indicated
in paragraph 3.2.2.3.1, if the request for transmission comes from a Remote
Terminal, the Master Remote Terminal Request Tables shall be used instead.

If the status word received indicates a status word error,
the error processing function shall be invoked instead.

The processing performed by this function is illustrated in

Figure 38
3.2,2.3.3 Outputs from Asynchronous Control Function

The outputs from this function are listed in Table XXX
3.2.3 Function Thirteen - Monitor Control Functions

The monitor control functions will be performed by the Master
Executive residing in the Monitor Processor only. 1Its functions are:

a. To receive and process asynchronous messages from the
master processor updating its bus control data base.

b. To monitor the master processor for minor cycle synchroni-
zation operation.

c. To assume control of the system {f any processor/BCIU
fails,

In the event of the Master Processor or its BCIU's failure,
the monftor control function shall assume control of the system automatically.

131

uoL3IoUN (O0JIUO) SNOUCLYIUASY 8¢ oaunbyy

Al

IR ZRN
’

L =118 .09,
d3d NIJ9 13S

.

ek v o

¥4 ¥3d NnIog 1SI1 SN OLNI L3S
%93H) I1IHK 0G NOILONYLSNI ANIT
i
PR 0 0L LIg .09, ‘\\\\\ o# NNY,
m ¥3d 135 < ¥3d AI99 41 S
35 NOILOMYLSNI
“HINASY HO134 0L
, YOLIIA 1SINDIY
_ sn
ONISSII0Ud
H0uY3 ’ 40¥Y3 QUOM
oa SALVLS 41
1
i “INN3
w 104.LNOD
i *HINASY
,v | _ - i " - |
m v L 4 - llr hd — 7.:\ f” -

.
»

e ol 2 BT

3
|) abessaw snouodydsukse
_ 199 . 403 sajed u0JIINAISUL NIIE
. 199 . SLIS ¥)d NI128
L
. NS NOILVNILS3d 08WAS 3WVN VIVO
w ~
L NOILONN4 TO¥INOD SNONOUHONASY WOY3 SLNALNO XXX 378V1

133

If a remote processor/BCIU fails, the master executive in the master proces-
sor shall confirm the failure and relinquish control to the monitor proces-
sor.

The monitor processor shall contain also a local executive
system as described in Section 3.2.1. While in monitor mode, the subset of
tasks and events residing in the monitor processor shall be updated as per
request from the other processors. No data, command or signal transmission
shall be generated from the monitor processor while in the monitor mode.

3.2.3.1 Inputs to Monitor Control Function

Inputs to the Monitor Control Function are listed in Table
XXX1
3.2.3.2 Monitor Control Processing

The main purpose of the Monitor Executive function is to
monitor the performance of the master processor and its BCIU and to assume
control of the operating system upon recognizing the master failure.

Upon assuming control, the operator (pilot) shall be informed
of the failure and the Monitor Processor shall continue in control of the
processing system until reconfiguration is established.

The monitor executive monitors the master processor by moni-
toring the issuance of minor cycle commands. Upon recognizing the lack of
minor cycle reception for N minor cycle lengths, the monitor shall assume
system control.

The processing performed by this function 1s illustrated in
Figure 39

3.2.3.3 Outputs from Monitor Control Function
The outputs from this function are listed in Table xxxII

134

135

L U SN

! J10SS95044 4dISeY e3eq S4n|je4 wWalsAs ;
40SS33044 433SeY " pueuwo) 3[9K3 Jouiy :

_ IINYIIN 3%4N0S T08KAS IWYN ViV

! NOILONNS T0YLINOD YOLINOW OL SLINdNI IXXX 378Vl m

L

NITOR
CONTROL
FUNCTION

ASYNCHRONOUSLY

IF ANY FAILURE
INFORMATION IS

MODIFY MASTER
SYNCH. INSTRUCTION LIST

RECEIVED

IF RECEIPTION OF
MINOR CYCLE COMMAND

AND MASTER REQUEST
DECODE TABLES

SET PCR IN
MONITOR BCIU

HAS LAPSED FOR 3
MINOR CYCLE LENGTE}//,

Figure 39

TO 'MASTER', 'GO°

LOAD BCIU 1AR
WITH ADDRESS FOR FIRST
BCIU INSTRUCTION

l

TRANSMIT ASYNCH.
MESSAGE TURNING OFF
MASTER & REMOVE BCIU'S
AND SIGNAL EVENT TO
START MISSION CRITICAL
APPLICATION TASKS

DISPLAY FAILURE
TO PILOTY

INITIALIZE MINOR
CYCLE COUNT TO
BEGINNING OF LAST
COMMANDED MINOR CYCLE

170 SIGNAL ANY LAPSE l

SERVICE ANY EVENT
AND/OR TASK UPDATE AS

Monftor Control Processing

136

INITIALIZE INTERVAL TIMER

i
|
1
|

E L,

e e 2 —— . ——

.
AN . il W OG- 85 A o 4
Pty

P ORI ot

LA

a|qe) apodag : . uo3ed iy Lpon
. 3sanbay J483sey sabessaly SNOUCLYIUASy

35§17 UOLIONUISUL SNOUOLYIUAS UO§3e9}4 1POY)
. _Jsyseq 3517 UOJIINAISU] “YIuAS
| nIog s4335 4634 198

aunijed Jo Bujsiapy
sAedsiq . 30114 03 abessay

Eu ENEEEL

NOILVNI1S3a TOBUAS IWVYN Viva

NOILONN4 TOYLNOD HOLINOW WOYd SINdLNO ITXXX u4m<H

137

4.0 QUALITY ASSURANCE PROVISIONS

4.1 Introduction

Tests and evaluations shall be conducted to verify that the
performance and design of the OFP-Executive shall meet or exceed the require-
ments specified in Section 3.0. The test category, verification method, and
test requirements for performance/design requirements are specified in the
Verification Cross-Reference Index (VCRI), Table xxXIII. The requirements
delineated shall be the basis for the test plan and test procedure which
shall be written. The four methods given in Table XXXIII of verifying in-
dividual requirements are explained as follows:

a. Inspection - Formal verification of a performance of a
desfgn requirement by examination of the assembled CPCI at the time and place
of qualification testing. Inspection is not often specified as a formal
means of verification for a requirement. One set of requirements that might
be verified by inspection are the data base requirements, which can be veri-
fied by comparing the data base documentation with a system tape listing.

b. Analysis - Formal verification of a performance or design
requirement by examination of the constituent elements of a CPCI component.
For example, a weapons guidance equation or a coordinate conversion equation
might be verified by analysis.

¢. Demonstration - Formal verification of a performance or
design requirement by observation of a demonstration test. For example,
visual demonstration might be used to verify that the displays generated by
the CPCI are in the format necessary to satisfy human performance require-
ments.

d. Review of Test Data - Formal verification of a perfor-
mance or design requirement by examining the data output after operation of
a CPCI component when selected input data are processed. For example, a re-
view of hardcopy printout test data might be used to verify that the content
of a specific told-in message is correctly processed. This method is the

138

1}
!
L——Ll

TABLE XXXIII

VERIFICATION CROSS REFERENCE INDEX

Method Legend:

BWN -
| I |

Inspection
Analysis

NA Not Applicable

Demonstration
Review of Test Data

A - Computer Program Test and
Evaluation

B - Preliminary Qualification Test

C - Formal Qualification Test

Il - Category II Test

: RE

SECTION 3
QUIREMENT
REFERENCE

METHOD

TEST CATEGORY

NA

1 12 |3

4 1A

B

c

IT

VERIFICATION
REQUIREMENT

3.2.

3.2.1.1
3.2.1.2
3.2.1.3
3.2.1.4
3.2.1.5
3.2.1.6
3.2.1.7
3.2.1.8
3.2.1.9
3.2.2

3.2.2.1
3.2.2.2
3.2.2.3
3.2.3

M > DX XX > X > d>¢ X

> > > >

M D D D€ D D DX X X
M > XX DX XX > > > X

X > > X
> > > >

D D¢ > > XX > > > X

> > > X

4.2.2, 4.2.3, 4.2.4

[

4.2.2, 4.2.3, 4.2.4

T T

s Ve u "

I o A
-
!

139

one 1ikely to be used for the majority of qualification testing.

Narrative data pertaining to test categories, amplifying the
tabular content of the VCRI are specified in subparagraphs below. Test re-
quirements referenced in the VCRI are specified in 4.2 and subparagraphs
thereto.)

4.1.1 Category I Test
Category I testing is subdivided into the following broad

types:

a. Computer Program Test and Evaluation - Tests conducted
prior to and in parallel with preliminary or formal qualification tests.
These tests are oriented primarily to support the design and development
process.

b. Preliminary Qualification Tests - Formal tests oriented
primarily towards verifying portions of the CPCI prior to integrated testing/
formal qualification tests of the complete CPCI (sea paragraph 4.1.3 below).
These tests will typically be conducted by the contractor's design and de-
velopment facilities.

c. Formal Qualification Tests - Formal tests oriented pri-
marily towards testing of the integrated CPCI, normally using operationally
configured equipment at the category II site prior to the beginning of cate-
gory II testing. This testing will emphasize those aspects of the CPCI per-
formance which were not verified by preliminary tests. The testing require-
ments which cannot be verified during category I test shall be specified in
paragraph 4.1.5.

Qualification of this CPCI shall be accomplished during
qualification testing to the maximum extent possible, as a result of prelim-
inary qualification tests (PQT) and formal qualification test (FQP) conducted

by the contractor and witnessed/verified by the procuring activity.

140

shn n

4.1.2 Computer Programming Test and Evaluation
Programming test and evaluation which apply satisfy one or
both of the following criteria:

(1) They are intended to be the only source of data to
qualify specific requirements in Section 3.

(2) They must be accomplished as part of an integrated test
program involving other systems/equipment/computer programs.

4,1.3 Preliminary Qualification Tests

These tests will directly support the top-down implementa-
tion and verification. Method of verification shall be as specified in
Table XXXIII. The following three levels of qualification shall be
performed.

a. Unit Design Qualifications shall apply to each module,
At this level the characteristics which are of primary interest are the
internal workings of the module; logical flow control, numerical results,
convergence, scaling, and range.

b. Module Design Qualifications shall apply to each module
after it is interfaced with its environment. These tests are basically in-
terface tests; correct internal operations are assumed. The object is to
verify that two or more modules work together. To comply with the top-down
approach the interfacing tests shall be sequenced from the top to the bottom.

c. System Design Qualifications shall apply to the completely
assembled CPCI. This level requires a totally integrated computer program.
Such testing discloses errors due to conflicts introduced by data sharing
convention violations, improper range of input values, sequencing require-
ments and communications and control. The internal working of the CPCI is
of primary concern with the interfaces of the CPCI with the external environ-

4]

A bl e et e St

|

oy

2

-

.
Bl . : s i s s el - e e a1 ARG AR s AB ettt me <

ment deferred to the Formal Qualification Tests.

4.1.4 Formal Qualification Tests (Specified in the Part 11
Specifications)

4.1.5 Category 11 Tests (Specified in the Part II Speéffications)
4,2 Verification Requirements

This paragraph specifies in greater detail the method used
to verify the individual requirements given in Table xxx111. (This table
cross-references the sub-paragraphs of 4.2 which apply).

4.2.1 Performance
The spacified function shall be verified with respect to
one of the following performance criteria.

a. Accuracy which may be affected by {nput precision, input
frequency, input accuracy, or number of iterations.

b. Execution time

¢. Storage used

d. Response time

e. Long term degradation

f. Stability

4.2.2 Priority/Timing

The specified function shall be verified with respect to
one of the following priority/timing criteria:

a. Interrupt and return

b. Frequency |

¢. Consistancy in events

d. Order of processing

e. Scheduling/cancelling consistency

f. Job stacking

142

4,2.3 Interfaces
The specified function shall be verified with respect to -
one of the following interface parameters:

} a. Data locks

b. Range .
¢. Consistency

d. Initialization

e. Data organization

f. Human command/response

g. External procedures

. - 4.2.4 Logic Paths
! The specified function shall be verified with respect to
[the correctness of the logic paths by exercising the computer program in
operation.
4.2.5 0ff-Nominal Conditions

The specified function shal) be verified with raspect to
off-nominal conditions such as:

a. Error detection
b. Error recovery
c. Limitations

143

