
IDAMST SOFTWARE MANAGEMENT PLAN. ADDENDUM 5.(U)

NOV 76 F33615-76-C-1099

UNCLASSIFIED SPEC-2-8aOO-IDAMST-21 AFAL-TR-76-20S-ADD-5 N

AFAL-TR-76-2O8, Addendum #5-

________ ~ LEVEL Xi_ __

/DMS 1. L2 OF'4ARE.LAo /IJ J d Ili

Prepared by

V THE BOEING AEROSPACE COMPANY
I I.(~AI~ E ING MILITARY AIRPLANE DEVELOPMENT

00 1. /71~/7A.EATE WASHIGTON

MNO 7

D -S

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

PREPARED FOR

AIR FORCE AVIONICS LABORATORY -rgr
AIR FORCE SYSTEM COMMAND D IC.
UNITED STATES AIR FORCE ELECTE

WRIGHT-PATTERSON AFB, OHIO 45433A
SAPR 17 1980~

1-5 06

FOREWORD

This document contains a Software Management Plan for IDAMST and has been
essentially derived from the software management plan provided by Appendix
H to the statement of work. The presented plan incorporates the changes
suggested to Appendix H as documented in the interim technical report.

This document was prepared by the Boeing Military Airplane Development
organization of the Boeing Aerospace Company, Seattle, Washington under
-Cbontract F33615-76-C-1099, "Specifications for IDAMST Software", and is
submitted in fulfillment of CDRL item 0001, sequence number 5. The work
was sponsored and administered by the Air Force Avionics Laboratory, Wright-
Patterson Air Force Base, Ohio 45433 by Mr. Lawrence Gutman, project engineer.

B

II

. , :' ; " (1 - - ''"-I

TABLE OF CONTENTS

1.0 INTRODUCTION 1

1.1 PURPOSE 1
1.2 SCOPE I
1.3 GENERAL DEFINITIONS 1

2.0 ORGANIZATION 3

2.1 CONTRACTOR CONFIGURATION MANAGEMENT RESPONSIBILITIES 3
2.2 IDAMST SOFTWARE DOCUMENTATION 4

3.0 CONFIGURATION IDENTIFICATION 5

3.1 MILESTONE MANAGEMENT 7

3.2 SPECIFICATION TYPE IDENTIFICATION 8

4.0 CONFIGURATION CONTROL 13

4.1 OBJECTIVES 13
4.2 END-ITEM MANAGEMENT - DELETED 13
4.3 INTERFACE CONTROL 13
4.4 INTERNAL CONTROL BOARD - DELETED 13

5.0 CONTRACT COMPLIANCE 14

5.1 CONTRACT CHANGE PROPOSALS 14
5.2 DEVIATIONS AND WAIVERS 14

6.0 CONFIGURATION STATUS ACCOUNTING 15

6.1 CHANGE STATUS LISTING AND REPORT 15

7.0 PROGRAM PHASING 16

7.1 MANAGEMENT PLAN 16

8.0 PROGRAM REVIEWS 19

8.1 IOAMST SYSTEM REVIEWS 19
8.2 IDAMST SOFTWARE DESIGN REVIEWS 21

, , .*

.*. lI

rh),

9.0 STRUCTURED PROGRAMMING STANDARDS 26

9.1 THE TOP-DOWN CONCEPT 26
9.2 A CASE FOR STRUCTURED PROGRAMMING 26
9.3 STRUCTURED FLOW CHARTS 30
9.4 PROGRAM STRUCTURING 32

10.0 SOFTWARE SYSTEM ARCHITECTURE 35

10.1 SYSTEM ARCHITECTURE 35
10.2 ARCHITECTURE REQUIREMENTS 35
10.3 EXECUTIVE SOFTWARE SYSTEM ARCHITECTURE 42
10.4 APPLICATIONS SOFTWARE ARCHITECTURE 43

N TS i L, ci

.... ," eci a lA.s 'j ca

*.1 _ _ _

.1.i

* '2p*.t

LIST OF FIGURES

3-1 IDAMST Chronological Documentation Tree 6

7-1 IDAMST Software Development Schedule 17

9-1 The Data Module 27

9-2 Structured Program Consisting of Sequential 28
Blocks of Code

9-3 IF ? THEN Xl ELSE X2 29

9 9-4 DO CASE L: Case L of (Xl; X2; ... Xn) 29

. 9-5 Repetitive HOL Statements 30

9-6 The Basic Unit of a Structured Flow Chart 31

9-7 Decision Statements 31

9-8 Basic Data Module Symbols 32

9-9 The Data Flow Performed by the Object of the CALL 33

or by the Object of the LABEL

10-1 DAIS Architecture 36

10-2 Applications Software Architecture 45

iv

iL

LIST OF TABLES

7-1 Software Development Milestones 18

Iv

IDAMST SOFTWARE MANAGEMENT PLAN

1.0 INTRODUCTION

This plan sets forth basic requirements for the conduct and application of
management disciplines to be applied to the development of IDAMST Mission
Software. Mission software includes all deliverable operationa- and support
computer programs. The minimum requirements for identifying, controlling,
accounting, and reviewing Mission Software elements during development and
documentation are specified herein.

1.1 ' PURPOSE

/ The purpose of this plan is to provide direction and guidance to participants
in the IDAMST Mission Software development effort, in order to become uni-
formly compliant with the disciplines specified. The extent to which the
details of this plan are applicable to each element of the Mission Software

* shall be identified in the initial planning of affected organizations. Pro-
, ject planners shall identify the methods and resources needed to implement

the management requirements of this plan; exceptions and deviations shall
also be specifically delineated.

1.2 SCOPE

'This plan establishes the practices required to maintain SPO management
visibility of the IDAMST Mission Software development effort. It is pri-
marily intended to provide coverage for the following areas:

a) Software identification, including milestone management and documen-
tation practices./

b) Configuration control, including change classification and change
processing.

c) Configuration status accounting. .

d) Configuration reviews and audits.

Additional subject material is included to provide guidance in areas which
impact the application of this plan.,.

1.3 GENERAL DEFINITIONS

IDAMST Software Management consists of directing the effort and administer-
ing the procedures and controls to futther development and test of deliver-
able Computer Program Configuration Items (CPCI's). The specific design
approach to be implemented is outlined in Section 9, following. The mana-
gement guidelines contained therein conform to the concept of hierarchial,
structured, top-down design principles. This methodology ensures that the
requirements which are formulated evolve top-down into more detailed design
specifications and, finally, verified code. Performance specification, in-
terface definition, logical formulation, code implementation, verification,
and documentation are all integral parts of the structured software develop-

.... "ow

ment process.

IDAMST Configuration Management applies the technical and administrative dis-
ciplines to establish the software design baseline and control change to its
approved configuration.

Software Identification is the process of labeling and describing each com-
puter program component to assure that each software element will be identi-
fied by its technical documentation, i.e., requirements, specification, add
other documents associated with the software developed. The recognition and
approval of this documentation establishes the configuration of the software
elements. Once this documentation is approved for release, it, plus all
subsequent approved changes thereto, constitutes the configuration identi-
fication.

Configuration Control provides the systematic evaluation, coordination, appro-
val or disapproval, and implementation of all approved additions or changes
to software elements.

Configuration Accounting provides for the recording and reporting of proposed
and approved changes to these elements.

2 .

2.0 ORGANIZATION

2.1 CONTRACTOR CONFIGURATION MANAGEMENT RESPONSIBILITIES

The Mission Software contractor shall establish a configuration management
function within its organication, in accordance with the requirements estab-
lished by the contractual documentation. The implementation of the configu-
ration management effort shall be guided by the requirements of this plan.
All significant exceptions or deviations to this plan shall be identified
and rationale shall be submitted to the Air Force AMST SPO for approval prior
to implementation.

2.1.1 Configuration Management Plan

The contractor shall prepare a plan for Air Force AMST SPO approval which
details the contractor's specific methods and procedures for implementing
the general requirements of this plan. The contractor's plan shall fully
delineate the organizational responsibilities, functions to be accomplished
and methods of implementation, and overall phasing of the configuration
management effort. This plan shall be prepared using MIL-STD-483, Appendix I
as a guidet for those areas specifically related to software configuration
management and control.

2.1.2 Documentation Control

The contractor shall be responsible for preparing and maintaining all re-
quired Mission Software documentation current with respect to released soft-
ware versions. Control of this documentation shall be a contractor configu-
ration management responsibility.

2.1.3 Configuration Identification

Configuration identification shall be accomplished in accordance with Section
3.0 of this plan.

2.1.4 Configuration Accounting

Configuration accounting shall be accomplished in accordance with Section
6.0 of this plan.

2.1.5 Policies/Directives

The contractor shall prepare command media establishing the necessary poli-
cies, procedures, and/or directives to implement the contractual configura-
tion management requirements and to meet the intent of this plan. All appli-
cable directives shall be delineated in the contractor's Configuration
Management Plan, Software or Computer Program Development Plan, or through
other appropriate media.

2.1.6 Software Assurance

IDAMST software assurance includes the development and maintenance of soft-
ware development standards and procedures, the enforcement of formal soft-

3

I-I , ___ -

ware development controls, and the monitoring and approval of software
qualification testing.

2.2 IDAMST SOFTWARE DOCUMENTATION

IDAMST software documentation assurance responsibilities shall include moni-
toring and controlling software development specifications and manuals, as
required, to keep them current with the software configuration. It shall
also cover maintaining and reporting software configuration status to the
Air Force as specified in this plan. All documentation produced under this
plan shall become the sole property of the Air Force. The contractor shall
ensure that the documentation evolves in a complete and correct manner from
the IDAMST Systems Requirements through the Software Requirements. Docu-
mentation shall be controlled and maintained in accordance with requirements
established by the CDRL; the provisions of the Statement of Work, and any
governing standards, specifications, or regulations cited therein.

4

3.0 CONFIGURATION IDENTIFICATION

Configuration identification for IDANST shall consist of the current author-
ized technical document package for each mission software item released,
as set forth in requirements, specifications, and other documents. The appro-
ved technical documents describing the configuration allocation and configu-
ration identification shall constitute a configuration baseline. Two mile-
stones for this baseline shall be established for IDAMST:

a) the requirements document (B5 specification)

b) the specification document (C5 specification).

Overall documentation of the software development process shall conform to
the requirements of the CDRL and other applicable sections of the IDAMST
Statement of Work.

The Documentation Tree in Figure 3-1 illustrates how project requirements
etolve In 6 steps (or milestones) to the lowest level of software specifi-

* cations. The Air Force shall provide the contractor with Mission Software
, Requirements for the Operation Systems Software, Applications Software

(Steps 1-5), and Error Handling and Recovery System (EHARS) Software. The
contractor shall review and provide recommendations and critique for impro-
ving these requirements. The contractor shall also develop requirements
for Mission Support and Test and Development software. After Air Force
approval, the contractor shall provide the remaining documentation in the
chronological order specified in the CDRL.

The Operating Systems Software shall contain the following types of Com-

puter Program Components (CPC's):

a) Master Executive (including Bus Control);

b) Local Executive;

c) Bus Interface.

The Application Software shall contain the following types of CPC's:

a) Controller or Sequencer modules;

b) Computational modules.

The EHARS software shall contain the following types of CPCs:

a) In-flight core element tests;

b) Subsystem sensor tests.

The Mission Support Software package shall possess at least the following
capabilities:

a) Mission tape build and verify functions;

b) Mission-dependent data file build and edit;

c) Post-mission DITS recording tape data reduction.

5

IL)AMST
STEP I PROJECT

ftEOU$REMENTS

STEP 2 EURMtT

STEP 3 Vkl

OPEORATINMjRI

HARDWARE SOTWARlESFWR

REQUIEMNTS I REOUIREMENTS f)

ST SINE CATON$ S- "-

SPECIFICATIONSPCPE

ERROR HANKW.IG & OM L TPAINAD
RECOVERY SYSTEM SFWR MS OTAEO(EI4ARS) SOFTWARE RE(Q.JIREMENTS
RE(1JIREMENTS

SPECC

?~~~~~~ &.WeiTQeioofe Tome

6

The Operation and Maintenance (O&M) Software will be provided, in part, as
GFE elements will include:

a) Ground support Computer Operating System;

b) Jovial Compiler

c) Linking Loader;

d) Data Base Management Utilities.

The software contractor is further required to identify any other develop-
ment and test support software item which will be generated during the nor-
mal course of HkAIST computer program implementation and qualification. The
contractor will similarly establish the need for, or desireability of, pro-
viding similar functional capability in addition to the basic O&M support
software elements listed above.

The software development contractor shall assess the probable usage levels
and areas of employment of all deliverable and potentially deliverable soft-
ware and specify hardware and facilities requirements for their use. The
analysis and support data shall be prepared as an input to the overall AMST
Integrated Logistics and Configuration Management planning efforts. The
schedule for delivery of this data shall be coordinated with the schedules
defined in this SOW and corresponding CDRL delivery and update require-
ments for the applicable documents.

3.1 MILESTONE MANAGEMENT

The IDAMST software development effort shall utilize milestone management
techniques as a means of facilitating configuration identification and
control. Under this concept, technical control points, or milestones,
shall be established for compiter program specification development
which are coordinated with overall AMST milestones and schedules. Evalu-
ation, coordination, and disposition of all proposed changes to these soft-
ware specification milestones shall be considered with respect to the con-
trolling documentation for that milestone at formally convened reviews. All
software milestone reviews and documentation schedules and data delivery re-
quirements shall be responsive to applicable paragraphs in the AMST State-
ment of Work, the Contract Data Requirements List and the following para-
graphs of this Software Management Plan document.

3.1.1 Software Requirements Milestone

The Software Requirements Milestone is accomplished by Steps 4 and 5 of
Figure 3-1. The process of defining the Computer Program Configuration r
Item requirements for this milestone is described in the Structured Re-
quirements Design Guidelines,Section 9. Requirements are documented in
the form of B5 specifications (as defined in Paragraph 3.2.1, below) and
are reviewed by the Air Force at the Preliminary Design Review (PDR).

3.1.2 Software Specification Milestone

This milestone is accomplished by Step 6 of Figure 3-1. The process of
defining the detailed software design for this milestone is described in

7

the Program Architecture Design Guidelines, Section 10. The design is docu-
mented primarily in the form of partial C5 specifications (as defined in
Paragraph 3.2.3, below). The milestone documentation is reviewed by the
Air Force at the Critical Design Review (CDR).

For this specification design milestone, the documentation of the require-
ments design is taken to a greater level of detail, maintaining the same
format and program structure, but with more information supplied. This
milestone is supported by performance analysis of algorithms (e.g., timing,
recovery, etc.) and architecture interfaces (e.g., data, control, etc.).
The analysis ensures that the software will function per allocated require-
ments and specifications over its designed-for range of data and control
inputs. The analysis shall further show that the effect of incorrect or
anomalous control states and input data shall not unacceptably degrade
software performance or shall result in predefined error responses suit-
able for the condition(s) encountered. Based on this analysis, the speci-
fication is either approved, and the design is implemented, or it is dis-

, approved, and the milestone is repeated with a redirection from the Air
Force reviewing agencies. The C5 specification is completed by inclusion
of the as-built code listings and flows.

3.2 SPECIFICATION TYPE IDENTIFICATION

3.2.1 B5 Type Specifications

All Mission Software modules developed by the contractor shall be documented
in accordance wibh MIL-STD-490 Type B5 specifications (as per MIL-STD-483).
Part I (Paragraph 60.4) entitled, "Detailed Instructions for the preparation
of computer program development specification," of Appendix VI, entitled,
"Computer Program Configuration Item Specification," of MIL-STD-483, shall
be strictly adhered to for the computer program development specification
with the exception of specific paragraphs which have been interpreted as in-
dicated below:

Paragraph 60.4.4 Section 4 Quality Assurance Provisions. Although,
in general, this paragraph is written to imply a "Bottom-Up" approach
to the qualification testing requirements, the IDAMST software con-
tractor shall develop the IDAMST qualification testing requirdment
specifications using a "top-down" approach for development testing
and software module integration prior to formal CPCI and software
subsystem verification testing (qualification).

Paragraph 60.4.4.1.5 Paragraph 4.1.5 Category II System Test Program.
This paragraph shall be interpreted to cover the Initial Operational
Test and Evaluation (IOT&E) phase of system test and shall, in gen-
eral, he the responsibility of the AMST prime (or integrating) con-
tractor.

3.2.2 Software Module Groups

Upon completion of the computer program development specifications (TYPE B5)
described above and the Preliminary Design Review (PDR) as described In
Section 8.2.1 of this Appendix, the contractor, with Air Force approval,

8

shall divide the Mission Software Modules into two groups for the prepara-

tion of computer program product specifications (TYPE C5) as per MIL-STD-490.

3.2.2.1 Application Modules

The first of these Mission Software Module groups is the Application Modules
group. All IDAMST Mission Software modules identified at the conclusion of
the PDR, which can be described or defined by existing and available algori-
thms of math flow, shall be placed in the Application Modules group. Modules
in this group shall include, but not be limited to, the following types:

a. Radar Cursor Acquisition

b. Navigation Acquisition

c. Flight Director Manual Heading and Automatic Navigation

d. Flight Director ILS

e. Flight Director TACAN

f. Air Data

g. Radar Beacon Offset Acquision

h. Radar Position Fix

I. Velocity Fix

J. Loran Velocity Aid

k. TACAN Fix

1. Manual Fix

m. Wind Velocity

n. Air Data Backup Navigation

o. Inertial Strapdown

p. Inertial Navigation

q. Strapdown IMU Navigation

r. Air Mass Navigation

s. IMlJ leveling

t. Navigation Kalman Filter

u. Along course, cross course distances

v. Radar and TACAN Fixes and Steering

w. Radar Seek/Track

x. Computed Air Release Point (CARP)

9

3.2.2.2 Control Modules

The second of these Mission Software Module groups is the Control Modules
group. All IDAMST Mission Software modules identified at the conclusion
of the PDR, which cannot be described or defined by existing and available
algorithms or math fiow, shall be placed in the Control Module group.
Modules in this group shall include, but not be limited to, the following
types:

A. Executive Software
A.l Master Executive

Data Bus Control
Systems Error Management
Configuration Management
Mass Memory Management

A.2 Local Executive
Process Control Iaterface
Event Control
Data Control
CPU Fresh Start, Restart

B. Application Software
Master Sequencer
Request Processor
Display Management Control
Configurator
Mission Operational Sequencers
Specialists Functions

C. Error Handling and Recovery System (EHARS) Software
Core Element Status
Subsystem Status
Reconfiguration Management

D. Operational Test Programs OTP)
Ground Test Program-i GTP-1)
Ground Test Program-2 (GTP-2)

3.2.3 Partial C5 Type Specifications

All Mission Software Modules shall be dooumented in accordance with MIL-STD-
490 Type C5 Specifications (as per MIL-STD-483). Part II (Paragraph 60.5)
entitled, "Detailed instructions for the preparation of computer program pro-
duct specification," of MIL-STD-483, shall be strictly adhered to for the
computer program product specification (Application Modules) with the ex-
ception of specific paragraphs which have been either deleted or rewritten
as shown below:

Paragraph 60.5.3 Section 3 Requirements (Technical Description)
This section shall specify the detailed configuration of the CPCI. It
shall contain a complete technical description of the CPCI structure,
functions, and the relationships between the individual Computer

10

Program Components (CPCs) and the CPCI with the Software Subsystem.
General and descriptive material may be included in the basic Section
3 lead paragraph.

Paragraph 60.5.3.2 Paragraph 3.2 Functional Description. The indivi-
dual Computer Program Components (CPCs) shall be described in separate
paragraphs as required. This description shall be given at the level

of detail that will define the design and configuration of the CPC
sufficiently to allow for CPC modification and adaption in the opera-
tion phase. Each CPC shall be described in words and flow charts. In
addition, the internal interfaces (data and control) between this CPC
and other CPC's and the operational CPCI shall be completely defined (or
appropriately referenced) to the degree necessary to assess the impact
of changes, additions, or modifications to the component modules. The
basic Paragraph 3.2 shall contain the following lead phrase, "This
paragraph contains the detailed technical descriptions of the computer
program components identified in Paragraph 3.1 of this specification.
The following subparagraphs shall be repeated for each CPC."

Paragraph 60.5.3.2.1 Paragraph 3.2.1 Computer Program Component 1.
The basic paragraph shall Identify th PC by including, as a minimum,
the title, tag (symbolic code), and the CPC identification number. It
shall also include a brief abstract of the tasks of the CPC, and its
major functional interfaces. The CPC shall then be described in de-
tail in subparagraphs.

Paragraph 60.5.3.2.1.1. Subparagraph 3.2.1.1 CPC No. I Description.
This subparagraph shall describe in words, figures, equations and re-
ferences to the flow charts of Subparagraph 3.2.1.2, the operation and
design of the CPC. This paragraph shall contain, as appropriate, a
description of the program logic and data flow; equations to be solved;
algorithms used to solve these equations; timing and accuracy charac-
teristics; and any special conditions for operation of the CPC. The
description shall be sufficiently detailed to facilitate understanding
of, and modification to, the CPC. Equation derivations and numerical
analysis shall not be included herein, but may be included in Section
6 (Notes).

Paragraph 60.5.3.2.1.2 Subparagraph 3.2.1.2 CPC No. 1 Flow Chart.
This subparagraph shall graphically portray te operations performed
by the CPC. This shall be done by a (series of) flow chart(s) and/or
structured logic tree diagrams which depict the processing described
in Subparagraph 3.2.1.1, including the sequence of operations and
decision points in the CPC. The highest-level flow chart shall de-
pict on a single sheet the overall information flow of the CPC and
shall reference the flow charts in Paragraph 3.4 that identify the
CPC. In general, the lowest-level flow chart identifies all decision
points in the CPC and references higher level 'harts as appropriate.
All symbology used in the flow chart shall be in accordance with the
American Standard Flow Chart Symbols for Information Processinr,
X3.12-1970, or latest edition, unless deviations are approved by the
procuring activity.

11

NOTE: Numbers of flow charts and level of detail required should be
determined, based on the above, and defined further in specific terms
on the CDRL backup sheet in the contract for design and development of
each CPCI. In general, requirements for numbers and detail of flow
charts should be held to the minimum which are adequate to facilitate
understanding of the information flow, taking into account the intended
uses and making provisions for follow-on maintenance of the CPCI.

Paragraph 60.5.3.4 Paragraph 3.4 Computer Program Functional Flow Dia-
gram. To be covered in Paragraph 3.2.3.3 of this Appendix.

Paragraph 60.5.4 Section 4 Quality Assurance. Delete. However, the
following subparagraphs of MIL-STD-483, Part I (Paragraph 60.4) of
Appendix VI entitled, "Computer Program Configuration Item Specification"
shall be adhered to during the development of the partial C5 type speci-
fications for the Control Modules.

- Paragraph 60.4.4.1.4 Paragraph 4.1.4 Formal Qualification Tests.

, Paragraph 60.4.4.1.5 Paragraph 4.1.5 Category II Systems Test Program.

Paragraph 60.4.4.2 Paragraph 4.2 Test Requirements.

3.2.3.3 CPCI System Specifications

The Type C5 (MIL-STD-490) CPCI system specifications shall be documented
as per MIL-STD-483. Paragraph 3.4 and its subparagraphs under Section
60.5.3.4 (entitled, "Computer Program Functional Flow Diagram,") of Appendix
VI of MIL-STD-483, shall be strictly adhered to. The principal use of thesediagrams shall be to relate each of the IDAMST CPCI's and constituent CPC's

functional elements to requirements established in higher-level system speci-
fications.

12

. ,, , rn i ,A

4.0 CONFIGURATION CONTROL

4.1 OBJECTIVES

The development process for IDAMST software shall be carried out in accor-
dance with approved configuration management procedures to insure that the
final product fulfills its intended purpose and meets all specified design
and performance requirements. Implemented Computer Program Components (CPCs)
should be regulated with regard to their baseline configuration and the docu-
mentation which establishes the baseline design. At the same time, the de-
velopment process must not overly constrain the developers' creativeness.
Two prime goals are a good product and cost-effectiveness. The guidelines of
Section 9 describe some management control techniques for use in the develop-
ment of "structured" computer programs. The relationships most affected
during software development, and also the most difficult to control, are the
software-software and hardware-software interfaces. Initial integration of
the Computer Program Components and later changes to these components or to
related hardware components must be closely monitored and precisely coordi-
nated.

4.2 END-ITEM MANAGEMENT

4.2.1 Software Standards

Software end-items shall be developed and maintained in accordance with the
goals, control mechanisms, and procedures described in the Software Develop-
ment Guidelines, Section 9, and the Software Architecture specifications of
Section 10.

4.3 INTERFACE CONTROL

An Interface Control function shall be implemented to coordinate physical,
functional, and environmental interfaces which impact the IDAMST software
design. IDAMST interface requirements shall be defined, established, and
controlled through Interface Control Drawings (ICOs).

4.3.1 Interface Control Drawings

Interface Control Drawings (ICDs) shall be prepared and submitted for each
IDAMST software or software-hardware interface.

The ICD shall delineate configuration, interface data, and characteristics
which cannot be changed without affecting software design criteria in any
system. The ICDs shall be approved by the Air Force and, subsequent to
approval, the ICDs shall be formally released and become subject to change
control procedures applicable to the governing (referencing) specification
documents.

4.4 INTERNAL CONTROL BOARD - Deleted.

13

5.0 CONTRACT COMPLIANCE

The ILAMST contractor shall establish internal controls and procedures to
assure technical compliance with contract requirements. These controls are
to assure that all engineering tasks identified in the contract are accom-
plished on schedule, and not duplicated and that any efforts over and beyond
the contract requirements are precluded.

5.1 CONTRACT CHANGE PROPOSALS

All changes in contract obligations and/or contract documentation, such as
revisions to Statement of Work, but not including changes to specifications,
shall be processed using the Contract Change Proposal (CCP). Changes which
affect design or performance requirements set forth in approved specifica-
tions shall be processed using the Engineering Change Proposal (ECP). CCP's
and ECP's shall be processed in the same manner, per MIL-STD-480.

* 5.2 DEVIATIONS AND WAIVERS

, Requests for deviations and waivers shall be prepared based on the require-
ments and formats presented in MIL-STD-480. Major or critical deviations/

*waivers shall be subject to the same internal controls as those used for
ECP's (viz, defined by an ECM, presented to the interna, change board for
determination of effectivity and schedule impacts, costed by the finance or-
ganization, and subjected to management review) prior to submittal to the
Air Force.

14

6.0 CONFIGURATION STATUS ACCOUNTING

Configuration status accounting shall be established for IDAMST software de-
velopment in order to provide sufficient data to assure that the as-designed
configuration conforms to its technical description, i.e., specification
and other associated documentation. Status accounting shall be established
by developing and implementing the status records/documents described in
this section of this plan.

6.1 CHANGE STATUS LISTING AND REPORT

The change status listing shall be a compilation of all proposed changes to
the software specifications. It shall be used to make available current
status of the software and changes throughout software development. The
change status report shall be prepared from this listing and shall provide
a summary of change status.

15

7.0 PROGRAM PHASING

IDAMST software configuration management shall be phased to be compatible
with the IDAMST master scheduling and the development schedules for each of
the associated system elements. The IDAMST Mission Software contractor shall
develop the Mission Software phasing schedules to be compliant and compatible
with the AMST program schedules. Figure 7.1 identifies the basic program
milestones and their relationship to the contractor's IDAMST Mission, Mission
Support, and Operation and Maintenance Software development effort.

7.1 MANAGEMENT PLAN

The Software Management Plan utilizes the techniques and facilities des-
cribed in Section 9 and Section 10. The requirements of the Architecture
Specification (Section 10) shall be enfored and periodically audited during
the development of the software as indicated by the matrix shown in Table
7-1. Three categories shall be evaluated during this process:

a) Applications Software as a package of functions proposed to perform
various applications, including Error Handling and Recovery System
(EHARS).

b) Executive Software as a package of functions proposed to perform
various executive and input/output operations.

c) OTP software as a package of test functions proposed to functionally
test the IDAMST core elements and subsystem sensors.

Mission Support and O&M Software items shall be assessed with respect to their
functional relationship to Operational Mission Software interfaces and roles.
All categories begin with the requirements which are documented for Mile-
stone 1. These categories continue development as the Type B5 specifications
are added to the documentation for Milestone 2. The Type C5 specifications
complete with all interfaces and supporting engineering data, comprise the
final documentation for Milestone 3.

Milestone 3 contains all of the requirements for a specific application,
mission, etc. Thus, the Milestone 3 requirements are a collection of a speci-
fic, top-level structured design, plus all of the functions from Milestones
I and 2 "plugged" into the top-level structure. The task of designing Mile-
stone 3 is, therefore, that of designing a top-level structure for each appli-
cation, mission, etc., as well as collecting and integrating the required
documentation baseline into one complete product specification.

16

' FIGURE 7-1

IDAMST SOFTWARE DEVELOPMENT SCHEDULE

TO BE SUPPLIED

1

'7

* *0t

TABLE 7-1

SOFTWARE DEVELOPMENT MILESTONES

MILESTONE 1 MILESTONE 2 MILESTONE 3
MISSIONS & OSD'S TYPE B5 TYPE C5

APPLICATIONS Software Software B5 Software C5
SOFTWARE Requirements Specifications Specifications
PACKAGE Document Additions Additions

(A) (INCLUDES for Applications for Applications for Applications
EHARS) Function Functions Functions

EXECUTIVE Software Software B5 Software C5
SOFTWARE Requirements Specifications Specifications

(B) PACKAGE Document for Additiona Additions
Executive for Executive for Executive
Functions Functions Functions

OTP Software Software B5 Software C5
SOFTWARE Requirements Specifications Specifications

(C) PACKAGE Document for Additions Additions
Integrated for DITS for OPT
Tests Functions Functions
Functions

1.

18-

8.0 PROGRAM REVIEW

A system of contractor-internal and formal reviews and audits shall be estab-
listed and implemented in order to: provide visibility over the development
of IDAMST Mission, Mission Support, and Operation and Maintenance Software;
to obtain Air Force approval of the design approach; to assure configuration
conformance of software to design specifications; and to ensure that the soft-
ware meets the performance requirements of the avionics system and of the
mission. These reviews will support avionics system and AMST airborne seg-
ment program reviews of similar type. Software reviews may be held in con-
Junction with, or independently of, other program reviews, subject to prior
approval by the Air Force and subject to the requirement tc support overall
program schedules and delivery commitments.

8.1 IDAMST SYSTEM REVIEWS

IDAMST software design shall be an essential consideration in the IDAMST
avionics system designs. Therefore, an internal team headed by the contrac-

* tor's Chief Programmer shall assist in the performance of avionics system
engineering tasks to assure: (a) that system functions are properly allocated
to software, (b) that the optimal software and computing system partitions

* are selected, and (c) that all software considerations for system design are
assessed and evaluated prior to final system definition. To assure accomplish-
ment of these functions, the Chief Programmer will participate in the follow-
ing reviews:

a) System Requirements Review (SRR)

b) System Design Review (SDR)

8.1.1 System Requirements Review (SRR)

The objective of the SRR is to determine the adequacy of the definition of
system requirements. It shall be conducted after the system functional re-
quirements have been established. The particular concerns for the software
group in this review shall be as follows:

a) Adequacy of hardware and software trade-offs and studies.

b) Adequacy of definition of software requirements.

c) Cost effectiveness of the software allocations.

d) Software-to-system hardware interfaces.

e) Allocation of functions to software.

f) Reasonableness of performance limits for software allocated functions.
q) Initial timing and sizing estimates.

h) Correlation of software flight operational sequence diagrams to the
system level sequence diagrams.

19

8.1.1.1 General

The SRR's are in-process reviews conducted during the initial system defini-
tion effort. Such reviews shall be conducted after the accomplishment of
functional analysis and preliminary allocation of functional requirements to
end items, to determine initial direction and progress of the AMST Systems
Management effort in arrivina at a complete and consistent set of top-level
performance, design, and verification requirements.

8.1.1.2 Requirements

Representative items associated with the software desiqn to be reviewed In-
clude the following, as appropriate:

a) Application and Executive Requirement Analysis

b) Functional Structure Analysis and Design Validation

c) Functional Partitioning

d) BITE Trade Studies

, e) Specialty Discipline Studies

f) System Interface Studies

g) Generation of Specifications

h) Configuration Management

8.1.1.3 Other Considerations

Information which is useful to design analysis and available from the Procur-
ing agency shall be requested at this review.

8.1.2 System Design Review (SOR)

This review shall be conducted when the system definition effort has proceed-
ed to the point where system requirements and the design approach are pre-
cisely defined. The SDR is conducted in sufficient detail to insure a tech-
nical understanding for: (1) the system functions identified in the system
and mission specifications, and (2) the deliverable Mission, Mission Support
and O&M Software functions identified in the mission avionics system perfor-
ma nce.

8.1.2.1 General

lhe SUR shiall be conducted to evaluate the optimization traceability, corre-
ldtion, completeness, and the risk of the candidate system implementation in-
cluding the corresponding test requirements for fulfilling the System and
Mission requirements. The review encompasses the total system requirements,
including software. Also included shall be a summary review of the Systems
Management activities, (e.g., Mission Software requirements analysis, func-
tional structure analysis, functional partitioning, program risk analysis, Digi-
tal Integrated Test System (DITS), trade studies, intra- and intersystem in-
terface studies, integrated test planning, and Software Management) which pro-
duced the above system definition products.

20

A technical understanding shall be -eached or the validity and completeness
of the System. Mission, Software and other requirements with respect to the
system architectural design.

8.1.2.2 Purpose

An SDR shall be conducted as the initial full-scale development review be-
fore proceeding with the preliminary functional design of the system component
elements. The SDR is primarily concerned with the overall review of the opera-
tional/support requirements, updated/completed system specification require-
ments, allocated performance requirements, and the accomplishment of the
Systems Management activities to insure that the definition effort products
are "necessary and sufficient". The purpose of the SDR inlcudes assuring
that the updated/completed systems requirements are adequate, that the allo-
cated requirements represent a complete and optimal synthesis of the system
requirements, and that the technical program risks are identified, ranked,
avoided, and reduced. A system architecture is presented for evaluation. It
also assures adequate DITS design tradeoffs.

8.1.2.3 Content

The SDR shall include a summary review of results of significant trade studies
and the following Systems Management activities which relate to IDAMST soft-
ware development:

a) Applications or Executive Requirements Analysis

b) Functional Structure Analysis

c) Requirements Allocation

d) System Growth Capability

e) DITS Hardware/Software Trade Off

8.2 IDAMST SOFTWARE DESIGN REVIEWS

Two series of formal software design reviews shall be conducted between the
Air Force and the contractor. These software design reviews shall be sche-
duled by and conducted at times and locations established by program sche-
dules approved by the Air Force. The two sets of technical reviews shall
consist of a Prelir, inary Design Review (PDR) and a Critical Design Review
(CDR). The contractor shall be responsible for establishing the agenda for
the formal reviews and shall coordinate preparation of the review data with
the Air Force and the integrating contractor.

E.2.1 Preliminary Design Review (PDR)

A PDR shall be conducted for each of the IDAMST software deliverables, as
allocated from the System Mission Requirements. It shall be conducted prior
to the detailed design process, subsequent to submittal of the Software
Functional Requirements for Air Force approval. In general, at this point
the software design activity has progressed to the point where software func-
tions have been fully defined and where functional flow diagrams show the data
and control between the executive, structured functions, and external inter-

21

faces. (Type B5 specifications).

The PDR shall constitute an evaluation of the software design approach and
the initial design, prior to introducing implementation criteria (high order
language, etc.). The contractor shall not proceed with detailed software de-
sign until after Air Force approval of the Software Functional Requirements,
unless otherwise directed. Separate PDRs may be held for independent CPCI's
or groups of functionally-related CPCI's, subject to prior approval by the in-
tegrating contractor and the Air Force.

8.2.1.1 PDR Objectives

The PDR shall accomplish the following:

a) Final approval of the Software Functional Requirements to establish
the software design baseline, if not previously approved. The com-
patibility of the design approach with the requirements shall be es-
tablished by a presentation of functional flow diagrams, memory maps,

, control maps, timing estimates, descriptions of significant algorithms
* and other appropriate data and/or engineering documentation.

b) Evaluation of the progress and technical adequacy of the design approach.
rThis shall be supported by the presentation of algorithms, proposed

programming techniques, software standards and practices, and func-
tional and design simulation results, estimates of storage and timing
requirements, control and data structures, etc.

c) Establishment of the existence and compatibility of the physical and
functional interfaces between the computing system and the system opera-
tional hardware. This shall be accomplished by a presentation of the
proposed data formats, timing constraints, interface specifications
and drawings, the applicable system design data, and other appropriate
systems enoineering data and documents.

8.2.1.2 General

The PDR shall be a formal technical review of the basic design approach. It
shall be held after Air Force approval of the functional requirements and the
accomplishment of preliminary desiqn efforts, but prior to start of the de-
tail design. A collective PDR for a qroup of Mission, Mission Support, and
Operation and Maintenonce Software components, treating each individually,
may be held when such an approach is established as effective in terms of cost
savings, project schedules, o- other desiderata.

8.2.1.3 Items to be Reviewed

In general, the POR shall providp a review of the following:

a) Preliminary design synthesis of the approved functional requirements.

b) DITS trade-offs and design studies results.

c) Functional flows and r(eluirements allocated data.

22

d) Interface data, internal and external to the software.

e) Development schedule.

8.2.1.4 Software Components

The software PDR's shall be conducted for one or a group of software compo-
nents after approved functional requirements, including detailed interface
definitions, are available. The design approach shall be made available by
the contractor for review at the PDR. As a minimum, the following shall be
performed:

a) Review all detailed functional interfaces with AMST system hardware.
Review word types, message data, storage estimates available within
the computer, timing, and other considerations which were established
in the functional requirements. At this time, the interfaces be-
tween the software and hardware facilities shall be defined at a level
low enough to preclude subsequent definition at a lower level.

* b) Review all functional interfaces between segments within the system.
(A more detailed review of these interfaces at a lower level is con-
ducted at the CDR).

c) Review the structure of the Mission, Mission Support, and O&M Software
as a whole, with emphasis on the following:

1) Allocation of software components to the functions delineated in
the functional flow diagrams.

2) Estimated memory requirements and allocation.

3) Software operating sequences and control.

4) Design of the common data bases.

5) Adherence to Design Standards.

6) Validation of structural interfaces, data and control.

d) Analyze critical timing requirements of the system as they apply to
the computer program to insure that the proposed design will satisfy
the timing requirements.

e) Review the computer program interactions with the user (pilot, operator,
etc.) requirements.

The following data shall be presented at the software PDR:

a) Functional Control Map - This structure identified all control inter-
faces between software functions in a hierarchical order. The type of
control is indicted (e.g., real-time) as are any dependencies in-
volved in this control (e.g., time, event).

b) Data Structure Maps - For each functional component in the control map,
this description i entifies data characteristics and the intersections
or common data for each components' subfunctions.

23 V

c) Functional Flow Diagrams - These structured diagrams depict the se-
quence and control of the function performed by each component identi-
fied on the control map.

The SOW shall be consulted to establish data to be presented at the PDR.

8.2.1.5 Post Review Action

After completing a PDR, the contractor shall publish and distribute copies of
the Review minutes as specified by the Contract Data Requirements List (CDRL).

8.2.2 Critical Design Reviews (CDR)

A CDR shall be conducted when the detailed design and development of software
modules are essentially completed and the documentation reflecting the soft-
ware design is ready for release. The CDR shall include a review of the de-
tailed design of the IDAMST software, based on preliminary design specifica-
tion documentation or other appropriate engineering design media.

* 8.2.2.1 Scheduling

Depending on the complexity of the Software System, one CDR may be conducted
for the entire Mission, Mission Support, or O&M Software package or a series
of CDR's may be scheduled covering various components of these packages.

8.2.2.2 CDR Objectives

The CDR shall accomplish the following:

a) Determination that the detailed software design satisfies the require-
ments established by the Software Functienal Requirements and the de-
sign approach established by the PDR. This shall be accomplished by
a presentation of the module design to the detailed flow diagram level.

b) Establishment of exact internal interface relationships among opera-
tional software modules, between these modules and the Executive and
jointly between all elements of the software sub-system. This shall
be accomplished by a presentation of the internal interface design for
the modules and the Executive, including data flows between all func-
tional elements of the IDAMST Mission Software. The presentation shall
also cover interface control drawings applicable to software.

8.2.2.3 General

The software CDR shall be a formal technical review of the design. The CDR
is normally accomplished for the purpose of establishing the integrity of
software design at the level of detailed flow diagrams. The primary product
of the CDR is formal identification of specific software documentation which
will be released for implementation and verification. By mutual agreement
between the contractor and the Air Force, CDR's may be scheduled con-
currently for two or more software components.

24

8.2.2.4 Items to be Reviewed

a) Adequacy of the detail design reflected in the specification in satis-
fying the functional requirements for the software component being re-
viewed.

b) Adequacy of the detailed design.

c) Control Structure Maps.

d) Design studies and analysis

) Data Scope Maps

f) DITS Design.

The following data shall be presented at the software CDR:

a) The complete specifications, excepting source code listings.

b) Supporting documentation describing results of studies and analyses.

* c) Software partitions or allocations among processors.

8.2.2.5 Detailed Evaluation

a) Detailed design diagrams shall be compared with control structure maps
to determine system compatibility

b) Establish compatibility and correlation of design with the Requirements.

c) Establish system design compatibility and review all interfaces between
software functional modules by analysis of detailed flow diagrams and
other descriptive documentation.

d) Establish design integrity by review of available analytical data in
the form of data scope maps and detailed flow diagrams for all pro-
gram components.

e) Review interfaces between the software and equipment items to insure
that changes, etc. have not affected compatibility.

8.2.2.6 Post Review Action

After completion of CDR, the contractor shall publish and distribute copies
of Review minutes.

25

9.0 STRUCTURED PROGRAMMING STANDARDS

9.1 THE TOP-DOWN CONCEPT

There are three basic principles to acquiring a top-down-structured program.
First, the program should be designed and implemented by top-down methods.
The second principle is to plan the software in a structured manner. This
requires rules and enforcement of these rules on the part of everyone in-
volved. The third principle is to program in a HOL which (1) enforces struc-
tured programming rules, (2) contains static and dynamic debug features, and
(3) automates designs in the software development process.

The concept of top-down can be thouqht of as planning each level of the pto-
gram and each level of the accompanying data modules from top to bottom com-
pletely.

When writing a paper or preparing a talk, one first jots down notes. Then an
outline is developed. After the outline is expanded by way of a few itera-

* tions, the paper is rewritten. Many revisions are usually necessary if the
, paper or speech is of any significance. A software program shouldn't be much

different in the way it is created. Better organized papers and speeches are,
of course, much easier to follow and understand than a paper or speech that
rambles back and forth. The same holds true for an individual program; even
more so for a whole softwdre system. However, an iterative process is necess-
ary, just as when writing a paper. Each iteration in the design of the soft-
ware system will bring the definition of each level closer to the best modu-
lar, top-to-bottom concept for the particular system in mind. During the
design process, it will become apparent that some modules on one level will be
applicable for use on another level; some data modules must be accessible to
more than one program module; and, in some instances, it will be important
that some data modules be inaccessible to particular program modules.

Top-down design is analagous to a tree where each level of planning is another
branch. Each branch in turn can be a node with branches of its own. But,
if one chooses any point at an outermost branch, it is always possible to re-
trace the growth of the tree and follow each mode back to the original trunk.
Likewise, one never lcses sight of the original problem by designing a soft-
ware system top-down.

At each level of planning the data modules are planned just as carefully as
the program modules. Top-down data module design will indicate the data
on the outer levels that must be available to the inner, or lower, levels;
and at the same time will indicate those data modules that require no inter-
faces. The "scope" of the data is therefore an important concept.

9.2 A CASE FOR STRUCTURED PROGRAMMING

In the past, a programmer's objective was to generate code as efficiently as
possible; there was not enough concern for those people who had to understand,
modify, and many times debug a program long after the original programmer
had disappeared from the programming effort. At present, it has not been
possible to be 100 sure that there are no errors in actively used software.
The task of proving any program correct by conventional means is expensive

26

and is not guaranteed to be reliable. This is mainly due to the older tech-
niques of generating and testing a program. The older method invariably shows
the presence of errors in the program, but in fact, there is no way that tes-
ting can detect the absence of errors.

New concepts In programming style make it possible to attempt to prove a pro-
gram is correct. The technique involves two basic steps. The first is to
prove certain programming constructs to be correct. The second is to allow
the programmer the luxury of using these constructs in the same manner that
one uses a mathematical theorem as a building block. By concatenating these
building blocks, a simple sequence for a structured program develops. Not
only can the entire sequence be proved correct, but the modularity of each
building block anticipates future program modification.

The modular building process encompasses the two basic modular types: data
modules and program modules.

9.2.1 Data Modules

* Data modules are structured by 1) the individual programmer when defining
non-local variables, or 3) by the language automatically.

ri
FUNCTION

Then

ORGANIZATION I

I Then

FLOCATION

FIGURE 9.1 The Data Module

The function of a data module is determined by program constraints, timing
constraints, data interface constraints, error recovery constraints or I/0
constraints. The organization of a data module is derived from its function
and specifies the data type (bit, integer, vector, matrix, character, scaler)
and the array and structural qualities. The size, specified in the organiza-
tion, and the function make it possible to define a block for the data module.
The location for each block can be a location such as the COMPOOL, can be
specified as outer level, or can be specified as local to a particular pro-
gram. In addition, this location can be an absolute location such as a
sensor known to the program via a particular I/O device.

27

9.2.2 Program Modules

A program module can be an open block, which is in-line (the IF construct) or
a closed block (the PROCEDURE). A module is characterized by the particular
function it performs. It has a single entrance, i.e., the single entry point
of a procedure or the first statement of an in-line block. It also has a
single exit in the sense of returning to the same place from which is was in-
voked, i.e., procedures return normally to the place from which they were
called and all in-line blocks exit only to the statement immediately follow-
ing the block.

The one entrance, one exit structure of module linkage assures the programmer
that the state of the program is always defined. That is, at any point of
execution a simple dump reveals the current state of the program in terms of
the set of active modules and their calling relationships. In the event a
dynamic error does occur, the simple sequenced structure makes it possible
to identify the error using the building blocks as coordinates of the pro-
gram.

The simplest construct to prove correct is a group of sequential statements
or blocks of code. These are nothing more than an ordered list in which all
possibilities are clearly visible by simply following the code.

X =A

Call Y

FIGURE 9.2 Structured Program Consisting of Sequential
Blocks of Code

A programming style which advocates the use of branching (GOTO) for the main
purpose of producing efficient code would produce a program difficult to under-
stand, modify, debug, or prove correct. One could not simply follow the code.
If a language contains the proper control statements, it is theoretically
possible to construct an efficient program with GOTO's. These control state-
ments are:

IFTHENELSE

DOUNTIL

DOWHILE

DOCASE

It is also true that these control statements can be proved correct from a
logical point of view.

28

The IFTHENELSE provides a simple choice between two possibilities. Since
this statement is always entered at the beginning and has a single EXIT, the
entire construct can be thought of as a single module whose internal struc-
ture is not relevant to the context in which it is used.

THEN ? ELSEI I
Xl X2

I J

FIGURE 9.3 If? Then Xl Else X2

* The DOCASE construct is just a selection process easily proven correct by
* enumerative reasoning and, again, has the characteristic of a single entry
* and exit.

rL" I

I I

II

FIGURE 9.4 00 CASE L: Case L of (XI; X2;... Xn)

Repetition via DOWHILE or DOUNTIL statements (Figure 9.5a) and REPEAT
(Figure 9.5b) can be proved correct by mathematical induction. Again, we
have a control statement with a single entry and exit. As long as we enforce
the rule that the loop variables of DOWHILE or DOUNTIL must be a local vari-
able (changed only within the realm of the DOWHILE or the DOUNTIL the loop will
not depend on an outside variable and the proof for correctness will not be
difficult. Imagine how difficult it would be to prove programming logic
correct where a GOTO depends on a non-local variable. In this case, branch-
ing via a GOTO could lead to an infinite repetition of a particular set of
statements.

29

" I

I I I I? x
II I I

I I I I
II I I
I I I I

I __ - - -

?I

(a) DO WHILE or DO FOR: (b) DO X UNTIL ?
while? do X

FIGURE 9.5 Repetitive HOL Statements

9.3 Structured Flow Charts

IDAMST software is to be characterized by a combination of two basic program-
ming styles: structured programming and top-down techniques. The structured
programminq concept is characterized by an ordered set of program instructions.
Accompanyino structured data modules directly convey the flow of data. The use
of top-down techniques results in program flow which can be compared to the
organization of a book: the "table of contents" specifies the entire program
flow on page one; each "chapter" is the expansion of a particular block. Con-
ventional flow chart techniques cannot adequately convey these organizations.
The block structure, the scope, and the data flow inherent in any structured
top-down proqram must be represented by a structured flow chart.

Structured flow charting is based on the premise that the functional flow of
a program incluues 1) decision statements based on program data, 2) CALLs to
sub-modules or other programs which manipulate data and 3) in-line equations,
which can be thought of as language supplied CALLs or "degenerate" CALLs which
manipulate data.

The functional representation of a program is the first page of the structured
flow chart. The complpte data module is represented on the second page. The
functional proqram is the third page. The succeeding pages expand the modules
found on page three. A urplete data module should accompany each PROCEDURE,
TASK, or furvtional block.

30

A complete data module, associated with a functional block, is defined as the
set of data referenced and assigned within a module. This set includes data re-
ferenced or assigned within each sub-module and each CALL to an outside program.
The complete data module is an inherent structure to any proqram module and
should, therefore, accompany the functional flow of the module.

The basic unit of a structured flow chart is the "block". A "block" is a module
which has a single entrance and a single exit. It will be represented as:

FIGURE 9.6 The Baisc Unit of a Structured Flowchart

0i

IF" TH,

O WHILE] >

Figure 9.7 Decision Statements

31

The functional flow of the proqram depends on the decision structure where
the object of that decision can be thought of as a sub-module to the de-
cision statement. The state:,ents used to make decisions are the basic struc-
;jred statements shown in Figure 9.7. Inherent in this representation is the
knowledge that any decision statement performs the required sub-module re-
sulting from the decision and immediately returns to the next statement in

the main program flow.

The basic symbols required to understanding a data module are

N. for input variables or
variables referenced

for output variables or
N. variables assigned

to indicate data modules
from sub-modules referenced

N. ["TFPNAL within the program called by

the main program

FIGURE 9.8 Basic Data Module Symbols

The notation shown in Figure 9.9 is to be used to specify location and organi-
zation tor data module elements. The loaction of a data sub-module is indi-
cated within the basic symbo described in Figure 9.8. The data elements,
with organization indicated, :ire listed within the block accompanying the
location notation.

The RETURN statement shall be represented as

FIGURE 9.10 The Structureh RETURN Symbol

to distinguish it fronm the decision statements.

9.4 Program Structurinq

The task of program structuring is of major importance; decisions made for
this task determine and dictate the total structure of the software both
statically and dynamically. Program structurino defines the building blocks, I
the control mechanisms and the interfaces of the software. It is in this
effort that the interrelationship of systems softwar, applications software
and data is entirely mapped out. In the same way that structured programs re-
quire rules and enforcement of these rules, the software system itself must be

32

CONS1 ANConstants ieferenced (all constants

T voill be in the COMPOCOLI

COWOOLCOML variables referenced.

SHAREDThese variables are also used by
other programs.

SESR Senors or /O devices read

P'rogram variables referenced Where
OUTE R the CALL vi to a PROCEDURE or the

> ~CALL is "degenerate' (a I-ABEL)

COMPOOLCOMPOOL variables referenced

EX*IJSFW > eclusively by this program

LOCALVariables referenced on a local level
> LCALarid only used on this l',al level

/' OiMP 77Z Y COMPOOL variables assigned. These
SHAIEDvariabes are also used in other programs.

Sensors or 1/0 devices written

Programn variables assigned where

(OUTI the CALL ,% u ar PROCEDURE or

<:H the CAL!' is "Degenerate' (a LABEL)

cnmrwtCOMPOOL variables assigned

1EXCLLGIVEexclusively by this program

Variabiles assigined on a loco!

LOCALlevel and only used on the<1 11 ti local level
"If program variables could be
static froqyi one program call to
arvother. this set of variables
would he static variables at the
program level

Flpre 9.9. 77e Dow Flow PnbWfoe by the Ob,,t of the CA L
or by the Ob1t of the LAUEL

33

structured according to rules and provision must be made for techniques to
enforce these rules. Software tools, including the language and the digital
simulator, act as automatic aids for correct software structure. Likewise,
the executive, including the systems software, can be an effective tool in the
dynamic enforcement of these rules.

Program structuring encompasses the definition of I) the software executive
structure (systems software), 2) modularity (including program and data
modules), 3) structure within each block, 4) the interface points between
levels and within levels, 5) the structure of the total program including
such considerations as timino, memory, priority, error recovery, etc., 6) the
requirements and interlaces of data modules common to more than one program
(COMPOOL), and 7) automatic sequencing and the constraints imposed on the
system due to non-automatic sequence.

There are many difficult problems in laying out software. One of the main
problems is that of defining modularity. One definition of a module is a
unit which performs a specific function. Tt has an internal structure and
local (private) variables which are unknnwn to the outside world. We all talk
about modularity, but are we tal inq about the same thinq? Both program and
data modules might be divided according to:

Mission phases

Mission functions

Blocks of memory

Divisions of software error recovery

Critical vs. non-critical mission phases

Subroutines

Control vs. cilulations routines

Data divisions

Compornrts of the asserpibly, e.g., systems vs. mission modules

Synchronous vs. asynchronous loqic

Instruction sets, e.g., DOCASI

Real time vs. non-real time logic

The system designers must determine the scope of the modules as well as deter-
mine which modules are assigneri to programs, procedures, tasks, functions,
etc. Section 10 of this Appendix is written to provide a baseline for the
IDAMST Software Systems Architecture.

34

10.0 SOFTWARE SYSTEM ARCHITECTURE

10.1 SYSTEM ARCHITECTURE

The architecture of a system implies a separation of functional components,
the control of one component over another, and a dependence of one component
on another. The DAIS system architectureis depicted in Figure 10.1-1 showing
the separation of hardware and software functions. The applications software is
functionally separated from the hardware by the executive software just as the
avionic subsystems are separated from the computers by the remote terminals and
data bus.

The executive system provides service functions to allow the applications soft-
ware to symbolically control the avionics system while the cxecutive retains
physical control over the entire hardware system (procesisnq, bus control inter-
face units, remote terminals, etc.). In this manner, changes to the hardware
system operation may be isolated in the executive system; functional changes to
the avionics systems affect only the application software, not the executive
conLrol system. Thus, the software system achieves virtually complete separation

* of functional and operational responsibilities.

10.1.1 Software Architecture

Software is separated into two basic functional components: Executive and appli-
cations. The executive masks the applications from the hardware system archi-
tecture, i.e. multiple computers and remote terminals configuration. The appli-
cations control the execution of all software functions by invoking the executive
to schedule tasks, events and I/0. The executive functions are created to
service application requests and are therefore dependent on what these requests are.

The local executive provides services to tasks for the computer in which it
resides. The master executive manages the multicomputer configuration and the
data bus traffic. The master executive coordinates the I/0 and service requests
from each computer through each computer's local executive. The master executive
itself uses the local executive in the master computer to invoke its operations
for bus control and configuration management and, as such, is a straight forward
extension of the local executive.

The applications software architecture consists of a master control program
(master sequencer), mission phase operational sequencers (OPS), specialist
mission functions (SPEC), display processes (DISP) and avionics equipment moding
programs (Equip). The master sequencer controls the major application system
functions which consist of mode requests monitors, subsystem failure detection
and an applications configurator.

10.2 ARCHITECTURE REQUIREMENTS

The following requirements have been devised to effect a high level of functional
sepdration and control. These requirements affect both the functions of the
executive system and the manner in which the applications software modules com-
municate with other application modules. The application software must adhere
to the program structure and data structure imposed by these requirements. For
applications software structuring purposes, all program modules appear as if
they reside in one large processor. The mechanics of inter-processor communica-
tions are discussed fully in Section 10.2, the executive software system, andare invisible to the application proqrams.

35

I.L
ujC

IL -
5a

L'I UI

LiiI
-j-L

3k9.-IO 3M1I* JL.J'n33X'
(A 0 36

10.2.1 Program Structure

All applications software programs consist of modules that are either proce-
dures or in-line functional blocks. A procedure is a compliable unit which
is either a task or a comsub. A task is a program module unit that accom-
plishes a single function, whether tn control sub-modules, or to perform a
calculation under control of a parent-task. A comsub is a re-entrant pro-
gram module unit used only for specific calculation purposes. An in-line
block is a HOL assiqnment statement or a qroup of such statements within
a begin-end construct which performs a single function within a procedure.
Control over procedures is established by their positions within the pro-
gram's hierarchical control structure. Communication is established by de-
clared common data between the communicating modules. Procedures all have
a single entry and a single exit point. Procedures cannot be nested for
compilation purposes since it is then not possible to fully specify the inter-
face structure of the nested procedures.

A task can reside in any one processor; a comsub is duplicated in another
processor if a task in that processor requires use of the comsub.

10.2.2 Data Structure

10.2.2.1 Internal Data

All task data interfaces are declared in unique common data pools that exist

for each nodal family. For example, a data pool is declared in module A for
the nodal family A-B-C; one in module C for the C-D-E-F nodal family. Data
blocks exist for each communicating set of modules within the nodal family.
These data blocks are completely distinct portions of the common data pool
for the nodal family. A data variable is uniquely known in a data block of
a common data pool. For example, data blocks exist for A-B, B-C, A-C and
A-B-C, all part of the A-B-C nodal compool.

Module

A

MODULE MODULE

B C

MODULE MODULE MODULE

D E F

37

10.2.2.2 External Data

All data external to the applications software structure (sensor, controls,
displays, etc.) is declared in common program data peols. All procedures
requiring access to an external data compool are not restricted to a nodal
family. The organization of the external data compools is on a data bus
message basis, i.e. one bus message, one compool message bundling, i.e. the
grouping of several disparate data variables into one bus message, is mirror-
ed in the block organization of the compool such that unbundling of a message
is performed automatically by block access.

10.2.3 Communication Between Modules

Communication is established between two modules in the manner one module
controls the other, and with the passing of data from one to the other.
Control is established by the relative position of the modules on the hie-
rarchical control structure. Data commun 4cation is provided through the
structure of data pools.

10.2.3.1 Control Communication

A task is activated by the local Executive when a set of events associated
with the task reaches a desired, predetermined conf quration, and the task's
controller has, at some time in the past, invoked the task. The events can
be set by other tasks (e.g. when an altitude is reached) or by the Execu-

tive (e.g. when bus minor cycle No. 2 is recognized). See Section 10.2.3.2.1.).

A task can be either invoked by only one other task. The invoking task is
the parent and is one level higher in the hierarchical control structure.
A comsub can only be called in a conventional fashion. It cannot be scheduled.
A comsub appears in the hierarchical control structure for each task or
other comsub calling it. A comsub can in no manner invoke any task, but it
may invoke another comsub. A comsub has no access to any Executive services.

Invocation of a task is accomplished when an invoke statement is encounted in
the controlling task. Every task in the system is either a schedulable task
or a callable task. The designation is specified at linkage editing time and
does not change during system execution. Invocation of each type results
in different actions:

1) Call Task - the action of invoking a call task causes suspension of
execution of the parent task until the call task terminates. The
call task is immediately set to tne active state and may run when its
priority is highest in the computer. Under normal circumstances,
since the priority of the call task is one less than the priority of
the parent, the call task will run immediately. This need not be the
case for the invocation of a call task in a different computer.

2) Scheduled Task - invocation of a scheduled task does not suspend exe-
cution of the parent. The scheduled task will then become active
whenever a set of events, specified for the task reaches a pre-
determined configuration. Scheduled tasks have two sub-categories:

38

BA

A) Sequential - A scheduled task is sequential if it is not allowed
to execute during the times its parent is in the active state.

B) Concurrent - A scheduled task is concurrent if it is allowed to
execute while its parent is active.

The definition of sequential and concurrent are not dependent on procedure
partitioning.

Invocation of a comsub is a convential call and, as such, is invisible to
the executive. Tasks can be directly terminated (de-activated) or cancelled
(de-activated and de-invoked) by only the module invoking it. If a task is
terminated, it is de-activated. All scheduled tasks invoked by it are termi-
nated, and all called tasks invoked by it are cancelled. If a task is can-
celled, the task and all its invoked tasks are cancelled.

Priorities are globally and uniquely assigned to each task. Once a program
module is activated, it competes for execution with all other activated
program modules in the same processor on a priority basis.

10.2.3.2 Data Communication

Data communicated between modules falls into three areas: real-time events,
shared variables in common data pools and explicit parameter passing.

10.2.3.2.1 Events

Events are elementary data variables with numeric value of 1 or 0. Evnts
are associated with:

a) arrival of asynchronous messages over the data bus;

b) interrupts from the data bus interface unit;

c) certain local executive services, and

d) encountering a signal-event statement in the procedure code during
execution. Multiple events may be signalled with one whole state-
ment.

The desired event condition configuration is pre-determined and fixed at the
time the system is linkage edited (by the PALEFAC suDport software). A task
is activated when a set of events, associated with the task, reaches a de-
sired, configuration. The set of events act to enable the task's execution
when they read the desired state. Events are either latched or unlatched
with respect to a individual task. Latched events remain fixed at a value
until explicitly changed by action of the applications software. Unlatched
events are reset for the task when that task becomes active. Any number of
the conditioning events can be declared as unlatched. The latched events
associated with the task may be set whether the task is scheduled or not.

Events are classified as global, nodal or control events. The classification I,
reflects the scope of the event.

39

1) Global events can be known to any task. This category includes only
those events which originate external to the computers; plus the minor
cycle event.

2) A nodal event is known only by the tasks of one nodal family. Such
an event is used for purposes of real-time sequencing among the mem-
bers of the nodal family.

3) A controlled event car be:

a) signaled only by the offspring of one nodal family.

b) known by one task acting in a controlled capacity, which
is reachable by traveling only upward from the signaling
task of the control hierarchy.

Control events are used in real-time to explicitly obtain the decision making
capability of a controller. An event classification naming convention will
be adopted for the mission software. The classifications will be incorporated
by PALEFAC toenforce event scope.

* 10.2.3.2.2 Compool Data

Date variables are classed as either:

1) External - External data is available to all tasks. This is I/0
data to the computer system from the environment, or to the environ-
ment from the computer system. Examples are:

a) pilot input

b) displays

c) sensor data

d) IMU data

2) Inter-Task Data - This is data which is supplied by one task to
another task. It is part of the interface specification for a task.
Inter-task data is know, by the name to only one nodal family. The
same data can be known in a nodal family and a nodal family on the
next lower level only by explicit transfer from one compool to another
by the controller of the lower nodal family.

3) Local - Local data is known only to a specific task. Local data must
always be either initialized by the task at the start of execution
or assigned as a specific function of compool data acquired through
a read statement. This is a guarantee restartability of the task.

Data is further classified as synchronous or asynchronous. This classifica-
tion is specified to the linkage editor (PALEFAC). PALEFAC uses this infor-
mation in the construction of a data descriptor block to be associated with
the data. The executive takes different action depending on the classifi-
cation.

The classification, the effect on PALEFAC, and the effect on the executive
are not pxplicitlv vis;ble to the mission software.

40

10.2.3.2.3 Compool Purpose

Compools exist to identify blocks of data for explicitly defined functions.
They are classed as:

1) Synchronous external data - I/O into or out of synchronous external
data compools proceeds without Executive service.

2) Asynchronous external data - I/O data requires Executive service to
route data and, for some situations, to activate tasks that have
been invoked on the reception of the asynchronous data block.

3) Inter-Task Data (Asynchronous) data - There is one inter-task data
compool for each nodal family.

No distinction as to classification is made within a compool itself. All such
information is used by PALEFAC in the construction of data descriptor blocks
and executives tables.

10.2.3.2.4 Compool Organization and Operation

* Comools are organized into blocks of variables. Blocks are entirely read
or entirely written by a program module.

rA HOL syntax could be:

READ (X,Y);

Write (X,Y).

Here X is assumed to be a compool block name and Y is a local data area of
equivalent size to X. Read and write is performed on a block level.

a) Organization of variables into compool blocks is prescribed so that
no information, extraneous to a module, is communicated in a compool
read or write.

b) Any compool block may have copies in several processors as required
by partitioning. A write statement, referencing a block in one pro-
cessor, will automatically cause an update to be performed on copies
in other processors.

c) Except for copies required by partitioning, a compool variable appears
in only one compool block.

d) Synchronous I/O is directly into and out of compools.

e) Each program module maintains its own local copy (using local names)
of compool blocks referenced by the module.

f) A program module may not both read and write the same compool block.

g) All inter-task compool blocks utilized by a nodal family are gathered
into a single compool. This is the only inter-task compool associa-
ted with the nodal family,

h) Each external compool comprises a single bus messdge. The external
compool is divided into blocks which reflect the collection of dis-

tinct data variables into a single transmission message (bundling).

41

Particular organization of the blocks is constrained by a) above.

The values of a compool variable can be assigned in more than one program
rindule if and only if:

a) there is no nore than one such module on any one control branch, and;

b) the program modules are mutually exclusive, i.e., absolutely non-
concurrent in real time.

10.2.3.2.3 Parameter Passing

Passing of parameters occurs only between a program module calling a com-
sub. The calling task or comsub explicitly declares the parameters to be
passed to the called comsub. Being re-entrant, comsubs require parameter

and do not have access to compools. There is no parameter passing
when a task is called or scheduled; all data on the interface between the in-
voking task and the invoked task is declared in their compool.

10.2.3.3 External Communication

External communication is that communication involving system components out-
side of a processor. There are two types of external communication:

1) Intertask communcation across partition boundaries. Because of fea-
tures built into both the local executive and the PALEFAC, intertask
communication, control and data, between processors is completely
invisible to the applications software.

2) Tasks that depend on subsystems at remote terminals must communicate
with the subsystems. The executive system commands transmission
between processor and remote terminal, either on a periodic basis
or asynchronously The data sent or received is therefore known to
be externally communicated data and is declared as such to the exe-
cutive. The applications software has no specific knowledge that
this data is external as opposed to intertask. The applications
software reads and writes compool data in the usual manner. The
executive performs the chores necessary to communicate this data to 4

or from the outside world. Discrete signals which are communicated
to and from a remote terminal are bundled and unbundled by the com-
pool organization.

10.3 EXECUTIVE SOFTWARE SYSTEM ARCHICTECTURE

10.3.1 MASTER EXECUTIVE

The master executive manages the avionics operating configuration and includes:

a) Data Bus Control - allocates time segments on data bus for syn-
chronous processor-remote terminal communication and for asyn-
chronous processor-processor messages.

b) System Error Manaqement - Monitoring and analyzing errors related
to avionics corfiquration.

42

c) Configuration Management - initializes multiple computer system at
startup and after severe system errors.

d) Mass Memory Management - provides the retrieving of information from
mass memory.

10.3.2 Local Executive

The local executive, responsible for only those activities within its CPU,
is dependent only on characteristics of that CPU. The local executive exists
to provide specific functions for application software and for the master
executive. Therefore, its architecture isolates these executive functions
from each other so that an application process uses only those functions
necessary for its current operation.

Each avionics processor is to have it own local executive. It is the same
for all processors, and it manages all activities occurring within a pro-
cessor. These activities include:

a) Process Control Interface - Uses a task table to activate and de-
activate periodic or non-periodic tasks when appropriate conditions
have been met. These conditions are based on a logical setting of
real-time events.

b) Event Control - uses a table of real-time events to communicate condi-
tions signalled between processors.

c) Data Control - guarantees interlocks between shared data, provides
mechanism for data bus transmission/reception, prepares message for-
mats for transmission and decodes messages received.

d) CPU Fresh Start/Restart - used to initialize CPU, to recover from
transient CPU failures and to perform self-test.

10.4 APPLICATIONS SOFTWARE ARCHITECTURE

The applications software architecture is based on hierarchical control struc-
ture principles listed in Paragraph 10.4.1 and the requirements to facilitate
maintenance and growth. The highest level of this structure is determined
by the controlling factors involved in operating an avionics system. The are:

Inputs - External Request Processor

- Failure Detection

Outputs - Pilot Display Control

- Device Control

Processing - Mission Mode Control Sequencing

- Mission Functions

43

10.4.1 Functional Definitions

Mission functions are divided into three categories:

1) Mission operation sequencers (OPS) - Phases of a mission scenario
(e.g., preflight, waypoint steer, weapon delivery, landing, etc.).
Only one OPS is active at one time.

OPS correspond to mission phases that perform the operations for
mission scenarios. Some OPS are used for all scenarios while others
are used only for particular mission situatinns as required. Way-
point steering and weapon delivery are sequences in these categories.

2) Specialist Mission Functions (SPECS) - Supporting functions that an
OPS requires or the pilot desires (e.g., navigation, system tests,
weapon stores setup, failure recovery sequence, etc.). More than one
spec can be active at one time, depending on certain allowable criter-
ia.

Spec functions agument or support the operations being performed by
an OPS. Spec sequences are suitable for tasks which are not always
required, or which may be required ad hoc, not being synchronized
with identifiable points in any OPS sequence. Stores setup and navi-
gation control are tasks in the SPEC category. Although they are re-
quired by one or more OPS sequences, they can be invoked at any time
within the OPS sequences to change operating modes.

3) Equipment Moders (EQUIP) - Functions that mode the avionics equipment
(inertial, air data, communication, etc.). These device moding func-
tions are associated with each piece of the avionics equipment set.
These functions are selected by the master sequencer when requests
are made by the pilot, from other mission software tasks (i.e., OPS
or SPEC functions), or from the failure detection functions (sub-
system status).

4) Display Processes (DISP) - Calculators for pilot text message con-
struction and mission parameters and symbol positions which are to
be placed on the cockpit display devices.

The master sequencer allows only one OPS to be active at one time,
but provides facility to automatically sequence from one OPS to
another (e.g., enter waypoint steer after weapon delivery phase
completed).

Requests to select an OPS, SPEC or EQUIP come from external and

internal sources. External requests are detected by the request
processor and the subsystem status program. The configurator func-
tion determines for the master sequencer what SPEC and EQUIP
functions are allowed to be invoked concurrent with OPS and other
SPFC and EQUIP functions.

When a detecte6 failure has a high severity, the subsystem status
proqram causes the configurator to take the appropriate corrective

44

Based on present status and input. rom an external request or from a detected
failure, the mission mode control and sequencer invokes mission "unctions that
generate information for display for controlling avionics devices.

To invoke the proper application functions, the master sequencer must be able
to interpret requests or detect failures. It must be able to configure the
avionics software functions based on present conditions as well as new requests.
The configurator performs this processing function. The basic structure shown
in Figure 10.4-1, then, is the highest level of the applications software
architecture.

SYSTEMS PROGRAMS

MASTER SEQUENCER
* PILOT REQUEST MONITOR

SUBSYSTEM STATUS
MON I TOR

CONFIGURATOR

PHASE FUNCTIONS MODERS PROCESSORSSEP SNCERS

Figure 10-2 Application Software Architecture

i

45

action. The subsystem status program maintains the status of avionics
equipment modes as well a. monitor for equipment failures.

Processing for display devices is handled for each device separately.
Display information is computed from OPS and SPEC data and is made
available to the CRT display programs. Both OPS and SPEC can request
new CRT formats, but SPEC requests take precedence over concurrent OPS
requests if the formats requested are not compatible. The OPS and

SPEC display requests are compatible when their data can be displayed
on the same format template.

10.4.2 Hierarchical Control Structure Principles

All possibilities of control over software functions can be represented as a
hierarchical tree structure. Each node (and all of its dependents represent
a unique tree structure.

A function is expressed as output elements resulting from input elements,
where the elements can be in the form of variables or real-time flags (signals).
In order to execute a function, there must be a controller. The controller
exists at the node just immediately higher on the tree relative to the func-
tion it controls.

Therefore, each member of a requirements hierarchical control structure is
either a controller function or a calculator function. Based on its inputs
the controller sets up the appropriate functions to be executed, whether
another controller or a calculator. This implies a control hierarchy as well
as a functional hierarchy. A lower level function cannot be invoked without
having been set up by its controller.

The controller has the responsibility to perform a function. For that pur-
pose, the controller has direct control over other functions only on the
immediate lower level. This is done by invocations (call or schedule), by
the determination of ordering (sequence, priority, etc.) the functions on
that level. Since every function receives input from and produces output for
its controller, controllers and calculators are relative definitions; the
upper level is a controller with respect to its immediate lower level func-
tions. The lower levels of any tree contains no controllers; the highest
level of the tree is only a controller.

Application software is dependent on avionics functions (i.e. sensors, air-
craft class, display device, etc.). The architecture is designed so that
controller functions are dependent on its subfunctions - a subfunction cannot
be removed from the tree structure without affecting its controller.

The following list of principles has been used to set up the architecture
requirements and structure the functions defined in Sections 10.2 and 10.3.

1) Every decision necessary within a module is directly related to
the module's function.

2) Fach module is singular in purpose. If a module can be removed
from the structure without also changina its controller's input
or output, the function is not npc's',y for the controller's

functional purpose.

3) A module can only invoke modules on its next lower level, not on the
same level, and not itself.

4) Two formulations of the same function can be inter-changed only if
the input-output relationships remain the same.

5) Modules have no information about their controller.

6) A module can receive input from either its controller, another module
with the same controller, or a read request.

7) A module's output can either be an input to another module with the
same controller, an output from its controller or a write request.

8) A module cannot receive data from another module unless the data it
receives is "known" by its controller.

9) A controller assigns the access rights to variables of only its
immediate lower level modules; the controller cannot assign access
rights to its own I/O.

10) The priority of a process is higher than the priority of any process
on its most immediate lower level.

11) If two processes have the same controller such that the first has a
' lower priority than the second, then all processes in the control tree

of the first are of lower priority than the processes in the control
of the second.

12) The ordering between members of any given process tree cannot be
alterted by an interrupt.

13) A module controls the priority relationships of those processes on
the immediate - and only the immediate - lower level.

14) An explicit priority relationship exists among each Pair of processes
at the same level which branch from the same most immediate higher
level node.

15) If a process can interrupt another process, the control tree of the
first can interrupt the second and any member of the second's control
tree.

16) Since a module controls the priority relationships of a set of pro-
cesses, then the module itself cannot interrupt any member of the
set of processes.

17) A process cannot interrupt itself nor can a process put itself into
a wait state.

') A process cannot interrupt its controller.

19) A process that can interrupt another process also affects its absolute
time loss.

20) There can be no decisions within a module that are made with respect
to real-time. Controlling functions with respect to real-time is
handled by invokation the function through the executive on a time
maintained by the executive.

47

. i-Ii

21) If a function is invoked by a call or a schedule, its controller can

invoke another function by a call.

22) The scheduling of two proce'ses can occur in any order; the calling
of two functions cannot.

23) If a function is invoked by a call, it cannot schedule a process.

24) A schedule must always cause the processes invoked to be dependent
so that the hicher level maintains control at all times.

25) The maximum time for a cycle of a process to be completed or delayed
can be determined so that static time analysis is possible.

26) A module cannot modify its own input.

4i

48

