AD=A0B3 112

BOEING AEROSPACE CO SEATTLE WA BOEING MILITARY AIRPL-=ETC F/& 9/2
COMPUTER PROGRAM DEVELOPMENT SPECIFICATION FOR IDAMST OPERATION=-ETC(U)
7 :

N F33615~76~C=1099
SPEC=5B=4041 AFAL=TR=76-208-ADD-1

.
N Lk IRPRPIPFCRESCIRE . SRR

- AFAL-TR-76-208, Addendum #1 3 '
SPECIFICATION @
U 1 lEVF =

KD A o7 163

@MPUTER 0GRAM VELOPMENT ECIFICATION
& e IONAL PROGRAMS
A j o CUTIVE SO RE

thddm)

e Prepared by '2) | 157
THE BOEING AEROSPACE COMPANY .

BOEING MILITARY ATRPLANE DEVELOPMENT

TTLE, WASHINGTON
. ; b

¢qvv~

% Q/ssé,w To-t-1.019 [

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

PREPARED FOR

' AIR FORCE AVIONICS LABORATORY DTIC

e ONCTED STATES ALR FORCE ; ELECT b\

. E WRIGHT-PATTERSON AFB, OHIO 45433 APR 17 1980 '
8 B K
o E
— |
z - -
> 5 058
= 4103389 80 4 1 \ﬁé

|

PARAGRAFH
NUMBER
1.0
1.1
1.2
2.0
2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.2
3.0
3.7
3.1
3.1,
33170
2,712
3.7.1.1.3
2.0.0.1.4
37002
31020
3.1.1.2.2
3.1.1.2.3
3.1.1.2.4
3.1.1.2.5
3.1.1.2.6
3113
3.1.1.3.1
3.1.1.3.2
3.1.1.3.3
3.1.1.4
3.1.1.41
3.1.1.4.2
3.1.1.4.3
3.1.1.4.4
3.1.2
3.1.2.1
3.1.2.1.1
3.1.2.1.2
3.1.2.1.3
3.1.2.1.4
3.1.2.1.5
3.1.2.1.6
3.1.2.1.7
3.7.2.1.8

TABLE OF CONTENTS

TITLE

SCOPE
IDENTIFICATION
FUNCTIONAL SUMMARY

APPLICABLE DOCUMENTS

GOVERNMENT DOCUMENTS

APPENDICES TO CONTRACT F33615-76-C-1099
STATEMENT OF WORK (SOW)

DAIS DOCUMENTS (REFERENCE)

IDAMST DOCUMENTS (PROGRAM GENERATED)

IDAMST DOCUMENTS (REFERENCE)

NON-GOVERNMENT DOCUMENTS

REQUIREMENTS

PROGRAM DEFINITION

HARDWARE INTERFACES

THE DAIS MULTIPLEX SYSTEM
BUS WORDS

DATA BUS PROTCCOLS

THE BUS CONTROL INTERFACE UNIT
THE REMOTE TERMINAL (RT)
TDAMST PROCESSOR

VECTORED INTERRUPT SYSTEM
SPECIAL MEMORY LOCATIONS
ADDITIONAL STORAGE

INTERVAL TIMERS

STORAGE WRITE PROTECTION

ROM PROGRAMS

MASS MEMORY

MASS MEMORY COMMANDS

MASS MEMORY REMOTE TERMINAL INTERFACE
TAPE FORMAT

PROCESSOR CONTROL PANEL (PCP)
PHYSICAL FORMAT

RUN/HALT SWITCH

RESTART SWITCH

PROCESSOR STATUS LIGHTS
SOFTWARE INTERFACES
APPLICATION SOFTWARE

TASKS

€OMSUBS

COMPOOL BLOCKS

EVENTS

TIME

REAL TIME PSEUDO-DECLARATIONS
REAL TIME PSELUDO-STATEMENTS
MASTER EXECUTIVE INTERFACES

i1

CTDISERIGE T T

A} woved .
Ul o ‘

PAGE
NUMBER

1

— el

N —
NOdN H Ll wwnnn N Mo N

W W NN NN
OV YO

w W
N~

PARAGRAPH

NUMBER

AplwwwMro N
. DI « .
N Ny —

Voed e e et b ed D ed e and el pd e et) ——d rd e
. . .« . .
.
owro ~

e o e e a4 a4 s+ . T . . o .
Whrw s W wWmwWwwwwLwrPNNRND N A D
e s+ & e ® 4 2 s & a & e = e+ s s ¢ o & s

RSELSTARE ACE MG ST BN N SR R e e I
« e e v e e e P .
SN PR

—_— 2w —

d et e et d b b ek ke el))
. . .
w Mo

—~ OO N U BN

o

G) L Qo Ll L0 L G a2 G L G () () W) 0) 0 WD LD L) L L) 0 L0 G0 G G G Gad G G G0 G2) G0 G WD o L W W W w W w W
a s+ e & s 4 & & s 8 e % 8 e B w ® e e * & s s 4 ¥ = 2 e e ® s e € s T s x e s e s ® e s+ ° s s s
PR S S R S —)
Y

NN RN RN NN RN ORI PR NPPDN TN NP N -
s s 8 s 4 s s & a4 ® s s 4 s e s ® s & e s s ° e ¢ . . .

« & & 2 s s s = = . o . . « s & » . .
S B DLDPLWWWWWWWLwWioWwNMRINMN ! —) e
« o o « s ®» % e s & & & = « e . o« o o s

-
W -

TABLE OF CONTENTS

TITLE

JOVIAL J73/1 COMPILER

J73/1 HBC RUN TIME CONVENTIONS
J73/1 DEC-10 RUN TIME CONVENTIONS
SDVS

SLS

FDBS

PALEFAC

LOCAL EXECUTIVE TABLES

DAIS EXECUTIVE FUNCTIONAL DESCRIPTION
LOCAL EXECUTIVE

HARDWARE INTERFACE CONTROL FUNCTION
APPLICATION INTERFACE FUNCTION
LOCAL EXECUTIVE PROPER

LGCAL EXECJTIVE INITIALIZATION AND RECOVERY FUNCTION

MASTIR EXECUTIVE

MASTER INITIALIZATION FUNCTION
MASTER TIME CONTROL FUNCTION

MASTER SYNCHRONOUS CONTROL FUNCTION
MASTZR ASYNCHRONOUS CONTROL FUNCTION
MASTER ERRCR RECOVERY FUNCTION
MASTER RECONFIGURATION FUNCTION

MASS MEMORY CONTROL FUNCTION
OETAILED FUNCTION REQUIREMENTS

LOCAL EXZCuTIVE FUNCTIONS

HARDWARE INTERFACE CONTROL FUNCTION
INTERRUPT HANDLING FUNCTION
ASYNCHRONOUS RECEPTION FUNCTION
MINOR CYCLE RECEPTION FUNCTION
ASYNCARCNOUS TRANSMISSIOM FUNCTION
APPLICATION INTZRFACZ FUNCTION
EXECUTIVE ScRViCE RCUTINES
APPLICATION INTERFACE INTRINSIC FUNCTIONS
EXECUTIVE SERVICE RETURN FUNCTION
LOCAL ZXzCUTIVE PROPER

LOCAL =XoluTIVE CONTROL FUNCTION
MINOR ZYI.Z SETUP FuUNCTION

EVENT AANJUING FUNCTION

TASK JRZ0XING FUNCTION

TASK S0ACJULING FUNCTION

TASK TZIMINATION/CANCELLATION FUNCTION
WAIT FunCTiON

COMPCOL 3L0CK HANDLING FUNCTION
DISPATZS FUNCTION

I0 DEv.CE FUNCTION

INITIALCZATION AND RECOVERY FUNCTION

INITIALTZATION AND RE-INITIALIZATION FUNCTION

COCAL Z¥ZCZUTINE ERROR RECCVERY FUNCTION
POWER CJAN FUNCTION

109
110
17
118
118
118
120
120

soyp -

TABLE OF CONTENTS
PARAGRAPH

NUMBER TITLE

MASTER EXECUTIVE FUNCTIONS

MASTER INITIALIZATION

MASTER TIME CONTROL FUNCTION

TIMER B CONTROL FUNCTION

TIMER A CONTROL FUNCTION

MASTER TRIGGER FUNCTION

MASTER SYNCHRONOUS CONTROL FUNCTION
COMMAND LIST HANDLER FUNCTION

BCIU INTERFACE FUNCTION

MASTER ASYNCHRONOUS CONTROL FUNCTION
ADAPTATION

GENERAL ENVIRONMENT

SYSTEM PARAMETERS

SYSTEM CAPACITIES

.
w Ny —

RPN NN NN

e s 6 8 o e o v o

DAL WNIN NN —~—
« e e

. () . .
NN —O WWWWMNINNMNNIAN NN NN
« o . « s . v e e 8 & e s o o @

W N —

QUALITY ASSURANCE PROVISIONS
INTRODUCTION

COMPUTER PROGRAM VERIFICATION
PROGRAM ELEMENT TESTS

CPCI INTEGRATION TESTS

FORMAL SOFTWARE TESTING

S WWWWWLWWLLwLWwWwWwwWwww
e s s e o . . . e o o o DY

N -

—Eccession For
. [SE §
v
v TAB [ir
; Unannounced
Justificuation

By .]
- e
) Coriend
. Tt v Codes
! oo 1and/or
iDist cpecial

-

iv

PAGE
NUMBER

122
122
124
124
124
125
126
127
128
129
131
131
131
131

132
132
133
133
134
134

b e g

LIST OF FIGURES

PARAGRAPH PAGE
_NUMBER _ TITLE NUMBER
3.1.1.1.3.2.18-1 SOFTWARE INTERFACE WITH MODE COMMANDS 20
FOR BCIU AND REMOTE TERMINALS

3.1.1.1.4.2.3-1 COMPOSITION OF A BIT WORD 22

/ 3.1.1.2-1 IDAMST PRGCESSOR 1/0 ORGANIZATION 26
i 3.1.1.2.141 INTERRUPT STORAGE 27 ;
3.1.1.2.5-1 MEMORY PROTECT BLOCK DIAGRAM 31 ;

3.1.1.3.1-1 REMOTE TERMINAL/MTU INTERFACE 33

3.1.1.4.1-1 PHYSICAL FORMAT OF THE PCP 36

3.1.2.1.1-1 TASK STATEZS AND CONTROL 38

3.1.2.1.3-1 RELATIONSHIP OF REMOTE TERMINALS AND TASKS 40

‘ TO COMPOOLS

' 3.1.2.4.1.1-1 FORMAT OF A DMA POINTER BLOCK 52

3.1.3-1 SYNCHRONOUS PROCESSING IN REMOTE MODE 68

3.1.3-2 SYNCHRONOUS PROCESSING IN MASTER MODE 69

3.1.3-3 ASYNCHRONOUS PROCESSING IN REMOTE MODE 70

3.1.3-4 ASYNCHRONOUS PROCESSING IN MASTER MODE 71
3.1.3-5 MASTER-MONITOR-LOCAL EXECUTIVE PROCESSING 72 ,

3.1.3.1.1-1 INTERACTIONS OF THE HARDWARE INTERFACE 76

CONTROL FUNCTION IN REMOTE MODE i

3.1.3.1.1-2 INTERACTIONS OF THE r~ROWARE INTERFACE CONTROL 77
FUNCTION IN MASTER MCOE

3.1.3.1.3-1 INTERACTIONS OF THE LOCAL EXECUTIVE PROPER 79

3.1.3.2-1 . INTERRELATION OF THE MASTER EXECUTIVE FUNCTIONS 81
IN NORMAL OPERATION

3.2.1.1.2.1-1 EXAMPLE OF RECEPTION QUEUE 87

3.2.1.1.2.2-1 PROCESSING OF ASYNCHRONOUS RECEPTION FUNCTION
.2.1.1.4.01-1 EXAMPLES OF TRANSMISSION QUEUE

(#9)

—ape-

PARAGRAPH

NUMBER

3.2.1.1.4.2-7
3.2.1.2.2.241
3.2.1.3.1.241
3.2.1.3.2.241
3.2.1.3.3,241
3.2.1.3.4.2-1
3.2.1.3.5.2-1
3.2.1.3.7.2-1
3.2.1.3.8.2-1
3.2.1.3.8.2-1
3.2.1.3.8.2-3
3.2.1.3.8.2-4

(4 S
S

LIST OF FIGURES

TITLE

ASYNCHRONOUS TRANSMISSION

EXECUTIVE SERVICE RETURN PROCESSING

LOCAL EXECUTIVE CONTROL PROCESSING

MINOR CYCLE SYNCHRONIZATION

EVENT HANDLING PROCESSING

TASK CHECKING PROCESSING

TASK SCHEDULING PROCESSING

WAIT PROCESSING

COMPOOL BLOCK HANDLING

ASYNCHRONOUS COMPOOL BLOCK HANDLING

INTERNAL ASYNCHRONOUS COMPOOL BLOCK HANDL ING
EXTERNAL ASYNCHRONOUS COMPOOL BLOCK HANDLING

vi

et e ks A i

PAGE
NUMBER

93

98
100
103
105
106
108
m
13
114
115
16

LIST OF TABLES

PARAGRAPH . PAGE
NUMBER TITLE NUMBER
3.1.1.1.3.2-1 BCIU REGISTERS 8
3.1.1.1.3.2.18- BCIU MODE OPERATIONS 18
3.1.1.2.1-1 INTERRUPT DEFINITION TABLE 28
3.1.1.2.5 MEMORY PROTECT BLOCK DIAGRAM 31
3.7.1.3.1 REMOTE TERMINAL/MTU INTERFACE 33
3.0.2.1.34) CATEGORIES OF COMPOOL BLOCKS 42
3.1.2.6.1.3-1 TASK TABLE A 54
3.7.2.6.1.3-2 TASK TABLE B 54 ?
3.1.2.4.1.4- EVENT TABLE ENTRY 57 %
3.2.1.1.1.2-1 FUNCTIONS INVOKED BY THE INTERRUPT 84 |
HANDL ING FUNCTION
3.2.3.2.0.31 INPUTS TO EXECUTIVE SERVICE ROUTINES 95
3.2.1.2.1.3-1 FUNCTIONS INVOKED BY EXECUTIVE SERVICE 96
ROUTINES
3.2.1.3.1.3-1 FUNCTIONS INVOKED TO SERVICE ASYNCHRONOUS

RECZPTIONS

1.0 SCOPE

I IDENTIFICATION

This specification establishes the requirements for performance and design of
the E£xecutive Software for the Integrated Digital Avionics for a Medium Short
Takeoff and Landing Transport (IDAMST) system;/

1.2 FUNCTIONAL SUMMARY

“~The IDAMST Executive provides the system software services which are utilized
by tne IDAMST Application Software. These services provide for the execution
of real time applications, sharing of common data, interprocessor communication,
and communication with and between Remote Terminals required to coordinate
the operation of the core e1ements:<§:‘~

h 2.0 APPLICABLE DOCUMENTS
2.1 GOVERNMENT DOCUMENTS ,
2.1.1 Appendices to Contract F33615-76-C-1099.
a. Appendix A - "AMST Mission Profile and Scenario (Updated)”.
b. Appendix C - "System Architecture".
/ c. Appendix E - "DAIS Mission Software, OFP Applications (SA-201-303)",
17 June 1976,
d. Appendix F - "DAIS Mission Software, Executive (SA-201-320)",
26 December 1975,
* e. Appendix H - "Software Management Plan!
. f. Appendix M - "TRW System Backup and Recovery Strategy (TRW 6404-5-6-
06)", September 1975.
T 2.1.2 DAIS Documents (Reference)
a. ICD - Mission Operation Sequence: Pilot/Controls and Displays/Interface
‘ with Application Software (SA-803-200), 15 March 1976.
! b. Mission Software/Controls and Displays Interface (SA-802-301),
| 12 March 1976.
]
: c. DAIS System Control Procedures, (SA-100-101 Appendix A), 7 Nov. 1975.
2.1.3 IDAMST Documents (Program Generated)
a. Computer Program Development Specification, IDAMST OFP Applications
(SB 4040-42), July 1976.
* b. Computer Program Development Specification, IDAMST OFP Error Handling
and Recovery (SB 4040-43), July 1976.
¢. Computer Program Development Specifications, IDAMST Operational Test
Program (SB 4040-44), July 1976.
2.1.4 IDAMST Documents (Reference)
The following documents because of release dates serve only as reference documen-
tation for this specification; however, are considered prime to further definition
of the IDAMST system design.
\ a. System Specification for IDAMST, Type A (S1-1010), June 1976.
b. Prime Item Development Specification, IDAMST Processor, Type Bl
- (S1 4030), June 1976.
2
falieaitianne, e

T e e e R A N

2.2

Su

[0}

System Segment Specification, I[DAMST Control/Display Subsystem, Type A
(S1 5020), June 1976.

System Specification, IDAMST Information Transfer System, Type A
(SS 3020), May 1976.

Prime Item Development Specification, IDAMST Remote Terminal, Type Bl
(SS 3130), May 1976.

Prime Item Development Specification, IDAMST Bus Control Interface,
Type B1 {SS 3230), May 1976.

NON-GOVERNMENT DOCUMENTS

Computer Sciences Corporation: Jovial J73/1 Computer Programming Manual,
October 1975,

westinghouse tlectrical Corporation: DAIS Processor Instruction Set,
1 November 1975,

AIS Processor Orime Item Product Fabrication Specification (Preliminary)
33612-75-C-1154, December 1975.

DAIS Processor £ngineering Data for Interface Control F33615-75-C-1154,
March 1973,

C.S. Orager Laboratory: interface Control Document PALEFAC, Pre-Pro-
cessor/PALEFAC to Mission Software, January 1976.

(€]

3.0 REQUIREMENTS

The purpose of the IDAMST Executive is to isolate the physical aspects of the
IDAMST federated system from the Application Software. The Executive allows the
Application Software to reference time, Remote Terminals and information in

other processors on a logical Tevel. It masks the federated nature of the system,
so that Application Software can be written as if it were to execute in a single,
virtual machine. Finally, the IDAMST Executive controls the use of the Data

Bus and provides mechanisms for error recovery.

The IDAMST Executive Software consists of two parts: a Local Executive and a
Master Executive., Every processor in the IDAMST federated system contains a
Local Executive; on the other hand, only one Master Executive is in operation
at any given time. The Local Executive controls operations peculiar to a pro-
cessor, including control of the Application Software within the processor and
local participation in the I/0 processes through the Data Bus. The Master
Executive controls system-wide operations, including control of the Data Bus
and system-wide error recovery.

3.1 PROGRAM DEFINITION
3. 1.1 Hardware Interfaces

The IDAMST Executive interfaces with four elements of hardware: the IDAMST
Multiplex System, the IDAMST Processor, the Mass Memory, and the Processor
Control Panel.

3.1.1.1 The IDAMST Multiplex System

The IDAMST Multiplex System {commonly called the "Bus") is a series of hardware
devices which permit communication between the varicus computers, displays and
aircraft controls of the IDAMST system,

The Bus is dual redundant and consists of two twisted pairs. Messages may be
sent across either bus; the second bus is used as a backup in case the system
is unable to receive/transmit across the first.

The Bus rate is one megabit (i.e., it can transmit one miilion bits per second).
The manner in which bits are enceded on the Bus is described in SA-301-200A
(DAIS)Digita1, Command/Response, Time Division Multiplexing Data Bus; Section
2.1.b). -

3.1.1.1.1 Bus Words

The basic parcel of information on the Bus is the 20 bit word., The first three
bits are the SYNC bits. The SYNC bits serve two functions. SYNC bits inform the
hardware to start reading a word. SYNC bits describe the format of the word
which may be one of two types:

a. DATA Word
b. STATUS or COMMAND Word

The last bit is a parity bit. The rest of bits are information bits which
depend upon the type (STATUS, COMMAND or DATA) of the word.

4

w

e

Data words consist of sixtean information bits and have two potential uses:

a.
b.
3.1.1.0.0

-

terminat.

Of TranSkiiiits; mesSages OT.gr Than tne Masier 2rocessor,

The format or the STATUS &ora is:

The STATUS word s transmitieg ir response te any command received by a

OATA Words

They may be data which will be written into a processor's memory.

They may follow a MODE COMMAND and their use will depend upon the MODE
command, Only one or two data words wiil follow a MODE command.

.2 STATUS Words

Terminal in this case rofers to any device capable of receiving and/

i 1 ;
boAguress e : SLatus bOT/E M
L ! i . -
Nhele !
2. AQdeazs t: Tive 00TS contanaiag the address of tne arminagil returning
1S 5TATUS WOrc.
D. Me3iagl Lredr 18 set to ooz 1f tae Tast message sent was in ervor,
C. STatus 1S 7A@ DITS wATSN GesCriLe the internal stetul of the
terning. . Tne meaning oY these bits are terminal depi.aent.
d. T/F - oset wooLow u Thet Tne Mastor Procelidi should examine
the Cuitd in Test - v oavaisacie from this terminail.
LO.1.1.3 COMMAND Words
A COMMAND word s ;&Lt 103 oy une Master Processor whenever a terminal
is to send a mesiace, VO a MCShase, serform o special function or inform
the Master Processor of *ne ternira.'s status.

Tne format of tne CONMMAND sorc s
™ ! f : !
i Addrews DT/ 340 Aalrcuss © Word Count
i i H 1 _J
where:
a. Aadres. to Tive 0nTs Containing the adoress of the terminal to receive
TR1S message.
> T/R w oTrne € this bit 1s set the terminal
is to seng & o 'S not set, tne terminal is to
receive o
c. SUD FICvLi s 2 Yore oo Tie o ased 10 tdentiTy the message to he
SEPC LY MellaWEC. LT oo L Trla naw 4 vaiue of zero, tnen this s d
soac 0T L0 Cu. el & MODE command. 8 V0O command teils
tne 30Ul e JiE &CiGn other thar sena or receive d

Word count is a five bit field. For a command to send or receive
data this will be the number of words transmitted. A word count of
zero will be interpreted as a value of 32.

If the Command is a MODE COMMAND then this field contains the number
for the MODE command. A MODE command of zero is always a request for
Status. A MODE command may be followed by one or two data words which
provide additional information to the terminal.

3.1.1.1.2 Data Bus Protccols

3.1.1.1.2.1 Master Transmission to a Terminal

When the Master Processor wishes to send a message to a Terminal:

a.

b.

C.

The Master sends the terminal a Receive Command. The Receive Command
contains the number of data words and the subaddress identifying the
message being sent,

The Master sends the data words.

The Terminal transmits its status by sending a STATUS word.

3.1.1.1.2.2 Master Reception from a Terminal

When the Master Processor wishes to receive a message from a terminal:

a.

b.

c.

The Master Processor sends a Transmit Command to the Terminal. The
Transmit Command contains the number of data words and the subaddress

identifying the message to be sent.
The Terminal sends a Status Command.

The Terminal sends the required number of data words.

3.1.1.1.2.3 Terminal Transmitting to a Terminal

When the Master Processor determines that a message is to be sent from a Terminal
to a Terminal, the following actions are performed:

a.

The Master Processor sends the Terminal which is to receive the
message a Receive Command (as in 3.1.1.1.2.1),

The Master Processor sends the Terminal which is to transmit the
message a Transmit Command (as in 3.1.1.1.2.2).

The Terminal which is to transmit a message sends its status (as in
3.1.1.1.2.2).

The Terminal which is to transmit a message sends the appropriate
number of data words (as in 3.1.1.1.2.2)

cayp o

- ——

e. The Terminal wnich is to receive reads the data words (as in
3.1.1.1.2.7).

f. The Terminal which is to receive sends its Status {as in 3.1.7.1.2.1).

g. Only the Master Processor receives the status words and checks the
correct functioning of the terminals.

3.1.1.71.2.4 Terminal Desiring to Transmit or Receive

If a terminal wishes to transmit or receive a message, it sets the appropriate
bit in its Status Word.

The next time the Status Word is transmitted, the Master Processor will note
that a message is to be sent. When the Master Processor is ready, it will read
eitner the Activity Register ar tnhe Status Word of the Terminai to determine
which message the terminal wishes to send, and to whom the message wiil be
sent.

3.7.1.1.2.5 Time=0uts

when ejther Master Processor or a Terminal expect to receive data, there will
pe a wait of 75 microseconds. If within that time the Bus Interface has not
seen cata words on the Bus, then the Processor or Terminal Bus interface times-
out ana assumes that no data is going to be transmitted. At this time a
Terminal will respond with its STATUS word signalling a Message Error.

3.7.7.7.3 The Bus Control Interface Unit
3.1.1.1.3.1 Defiaition

The Bus Control Interface Unit {BCIU) shall provide tne interface control and
data transfer furciion requirec ta connect a Processor with two multiplexed
data ouses. The £Clu shall te directed to operate in a mode oy its interfacing
processor. The 7ollowing are the modes in wnich the BCIU shall be capable of
operating.

a. Remote Mode, providing transfer of data in poth directions between
the Processor and eitner of tae twe buses, nroviding status replies
on the aparoonriate bus in respors. to comands, and special internal
operat.crs and inverrupts to the associated processor upon receipt
of certain special commands 0n the data buses,

b. Master “Moce, pwovicaing contrdl 0T the data pus based upon instructions
fetchea fro.n the memory of the Processor through the Direct Memory
Access {lMn} Cnannel by tne BCIU.

This Yacter Contrdl moce shall result in:
1. 7= oCIU issuing Bus Commands to other aevices on the Data Buses.

2. Jar i
S oae
! Ko

~

v \
ates 1T

.

(@)

~~

4% nG in data transfers on the buses {when the instruction

PP e

ot r—— A

3. Checking status responses from devices on the data buses.

4, Checking formats of the data bus operation.

5. Reporting of error conditions to the processor.

At any time, there shall only be one BCIU in Master Mode.

3.1.1.1.3.2 BCIU Registers

The Regtsters of the BCIU control its mode of operation, provide information
for the Master Processor and provide information to its local processor,

BCIU registers are accessed through the PIO instruction (to be defined in the
IDAMST Processor Instruction Manual) by an address as given in Table 3.1.1.1.3.2-1. .
The meaning and format of each register is discussed in the Bus Control Interface

Unit B-1 Specification SA 3013008B.

PIO
ADDRESS

REGISTER

o

PROCESSOR CONTROL REGISTER {PCR)_

INTERNAL STATUS REGISTER (ISR)

BASE ADDRESS REGISTER (BAR)

INSTRUCTION ADDRESS REGISTER (IAR)

BUILT-IN-TEST REGISTER (BITR)

MODE DATA REGISTER (MDR)

LAST COMMAND REGISTER {(LCR)

STATUS CODE REGISTER (SCR)

O [~ (O U I o 1IN

MASTER FUNCTION REGISTER (MFR)

(V=4

POINTER REGISTER (PR)

10

DATA ADDRESS REGISTER (DAR)

11

WORD CQUNT REGISTER (WCR)

12

XMIT STATUS WORD REGISTER (XSWR)

13

RECV_STATUS WORD REGISTER (RSWR)

14

INSTRUCTION WORD REGISTER 1 (IWR1)

15

INSTRUCTION WORD REGISTER 2 (IWR2)

Table 3.1.1.1.3.2-1

BCIU REGISTERS (PIO ACCESSIBLE)

3.1.1.1.3.2.1 Processor Controi Register (PCR}

This register (format shown below) shall contain indicators which generally
control the BCIU actions and in certain instances reflect a particular BCIU
state.

At the time power is applied (including during a transient recovery), the BCIU
will clear the PCR (and also the ISR), perform a self test, and present a
power up interrupt (level 1) to the processor.

The format of the PCR is:

. 2 3 4 2 0 7 1 12 13 14 15 16

! ‘ 1 1
MASTER | GO | FATL | SPARE | SRX | STBYP | 8CIU ADDRESS | SPARE | READY | SPARE | BUSY | run
frer CONT,

a. Mastor- This bit shail pe set to logic 1 by the Processor, in con-
junction with the GO bit, to direct the BCIU to operate in Master
Moce. Conversely, the bit shall be set to logic 0 to indicate Remote
Mode.

b. Go - This bit shall be set to logic | by the Processor to indicate
the BCIU 1s to enter an operational mode. The bit shall be set to logic
0 by the Processor 0 indicate an operational mode is to be terminated.
The b7t shall be set to logic O by the BCIU (Master Mode only) after an
operational mcde is terminated by either a HALT instruction or an
unrecoverabie direct memory access error condition.

c. Faiil - This 21t shall De set to icgic 1 if the 8CIU detects an error
In self-test auring tne power-cn initialization. The REASY shall also
be set to icgic i. In Macter Moce, the BCIU shall set the FAIL bit

(level & Interrupt) 0 1ndicate a Failure.

d. Spare - This it shall ce @ jogic O and avaiiable for future use.

e. System Reset Acanow.ezafe - Tais bit shall pe set to logic 1 by the
Processor to inaicate acknowiedgement of the power-on-reset interrupt.

f. Self Test uy-2ass - Tris 53t shall ve <et to a logic i by the pro-
cessor to inlicate that tne BCIL s rot to perform self-test.

g. BCIY Addres, - Tnese 5 pits shali be set py the Processor, upon

T
Tnitially circciing the 5CiU to enter an operational mode, to indicate
the address oF tne 301U,
h. Spare - Tnis bit snail be a jogic C and available for future use.

1. Ready - Tniw 530 shail be set to logic 1 by the BCIU after completing
its power-on initialization.

J. Spare - This bit snalil be a iogic U and available for future use.

k. Busy/Cont - In Remote Mode, the bit is set to logic 1 by the BCIU
after any interrupt is presented to the Processor in order to indi-
cate BCIU Busy State entered. The bit is set to 1 by the Remote
Processor to indicate BCIU is to enter Processor initiated Busy
State. It is set to logic 0 by BCIU after having been directed to

- Exit Busy State by the Remote Processor or via the Busy Override
Mode Command from the Master Processor.
In Master Mode, the bit is set to logic 1 by the Master Processor to
indicate to the Master BCIU that an interrupt has been processed
and the BCIU is to continue normal operation. The BCIU shall set
this bit to logic 0 prior to entering the Master Mode Pseudo Wait
State.
1. Run - This bit shall be set to logic 1 after Processor directs BCIU
* to enter an operational mode or upon exiting a Busy state. The bit
* shall be set to logic O by the BCIU after an operational mode has
: been terminated.
i 3.1.1.1.3.2.2 Internal Status Register (ISR} - This register shall contain
r indicators which are set only by the BCIU. These indicators shall generally
reflect any condition detected by the BCIU during the last bus or internal
, operation which warrants an interrupt to the associated Processor. The register
shall be cleared by BCIU prior to processing a new instruction/command.
The format of the ISR is:
1 16
H] PCI]1v1/SI] MDP] AXR] AMIMFTXSEXTRSEX[XSETRSE] NDRT 1cD[DPETTVD]OMA
Interrupt Level
Level Level 1 Level 2 Level 3 Level 4 5
The meaning of each bit is:
Bit Symbol Meaning
. 1 H Halt
2 PCI Program Controlled Interrupt
3 IVI/SI Invalid Instruction (Master Mode)
System Interrupt
4 MDP Mode Data Present
5 AXR Async Msg Int 0=RECV T=XMIT
i 6 AM Async Msg Int
| 7 MF Master Function (Remote only)
| 8 XSEX XMIT STATUS Exception
| 9 RSEX Recvy Status Exception
i 10 XSE XMIT Status Error
3 ki RSE Recv Status Error
12 NDR No Data Received
y } 13 1CD Incomplete Data
14 OPE Data Parity Error
15 IVD Invalid Data
16 DMA Direct Memory Access {Error)
v The above bits will only be set for given interrupts.
10
0 ‘
e — . o

The meaning of each bit is:

a. RALT {(H4) - This pit shall be set to logic 1, in Master Mode only, to
indicate tnat the BCIU nas processed a HALT instruction. The operation-
al mode (Master) snall be terminated.

/ p. Program Controlled Interrupt (PCI) - This bit shall be set to logic
T, 1n Master Mode onTy, after completion of 2 word instruction
operation in which PCI was requested (PCI=1).

C. irvaiid Instruction (iIVi; - In Master Mode only, this bit shall be
set to Jogic 1 1t the Device Address within the Receive field of the
Z-word instruction is equal to the Device Address within the Transmit
field.

d. Syster Interrupt (SI1} - In Remote Mode only, this bit shall be set
: to 10g9ic 1 upon recieving the System Interrupt Mode Command.

. e. Mode Jata Present [MDP) - Tnis bit shall be set to logic 1, in
Master Mode only, after successfully receiving the Data Word

A associatea witn Mode Operations (Interrupt results from mode operations |

r 3, 10, 11 and 33).

T e

T, Asyaznronous Message Xmit/Recv (AXR) - In Master or Remote Modes, this
‘T srta;, oe set in canjunction with Bit 6 (AM) to indicate whether
b the BClo was tne Receiver {AXR=0) or the Transmitter (AXR=1) of an
asynchronous ressage (Sub-Address=31).

G. Asyncrronous Messace (AN~ in Master or Remote Modes, this bit shall i

be set to i6gic i atter successful completion of an asynchronous bus
message operation (Sub-Address=31),

h. Master Fupnction (MF) - Tnis bit shall be set to logic 1, in Remote
Mode c¢ny, after receiving the Master Function Mode Command (usually
callea tne Minor Cycle cvent). ’

i, Trancnit Status Excepnict (XSEX) - This bit shall be set to logic 1, ‘
in Master Mode oniy, after receiving an excepted, valid status word ‘
associatea wit Remote device in Transmit Moae in which the Message

ailure, or Status Code is non-zero. The status word

n
Error, Terminai i
g intact witnin toe AMIT Status Word Register.

shall .¢ 5.ace
Jo Receive Sztatus Ixception (RSEA) - This bit shall be set to logic 1,
in Master Mcde oniy, after receiving an expected, valid status word
ass0C-ated Witnh a Remote device in Receive Mode in which the Message
Error, Terning. Failure, or Status Code is non-zerc. The status word
snall be placed intact within the Received Status Word Register,

k. Transmit Status Error (XSE) - This bit shall be set to logic 1, in
Master Moae oniy, if an expected status word associated with a Remote
Device in Receive moce, s not received, is received invalidly, is
recelvec veiiraly with bad parity, or 1s received validly with good
parity witn « Device Address tnat does not match the Receive Device
Address witnin tre 2-word instruction.

1

1. Receive Status Error (RSE)- This bit shall be set to logic 1, in
Master Mode only, 1t an expected status word associated with a Remote
Device in Receive mode, is not received, is received invalidly, is
received validly with bad parity, or is received validly with good
parity with a Device Address that does not match the Receive Device
Address within the 2-word instruction,

m. No Data Receive (NDR) - This bit shall be set to logic 1, in Master
Mode only, after commanding a Remote device to transmit one or more
data words and the first such data word has not arrived within 60
microseconds after status word reception.

n. Incomplete Data (ICD) - This bit shall be set to logic 1, in Master
Mode only, after receiving at least one expected data word and with
further data words expected, the next data word is not received within
60 microseconds after reception of the last data word.

o. Invalid Data (IVD) - This bit shall be set to logic 1, in Master
Mode only, after an expected data word was received with Parity Error
indicated. Data word reception continues.

p. Data Parity Error (DPE) - This bit shall be set to logic 1, in Master
Mode only, after an expected data word was received with Parity Error
indicated. Data word reception continues.

g. Direct Memory Access Error (DMA)}- This bit shall be set to logic 1,
in Master or Remote Mode, after an unrecoverable DMA Error is detected
while attempting to fetch an instruction word, a pointer word, or a
data word from main memory or while attempting to store a tag word or
a data word into main memory.

3.1.1.1.3.2.3Base Address Register (BAR)- This register shall be set only by

a Processor for the associated BCIU {Master/Remote) and shall contain the most
significant 10 bits of a pointer word address within main memory for a given
data transfer operation. The addressed pointer word shall contain the true data
block address.

3.71.1.1.3.2.4 Instruction Address Register (IAR)- This register shall be set only
by a Processor whose associated BCIU Ts to cperate in Master Mode. The register
shall contain the main memory address of the initial 2-word instruction is
executed, the BCIU shall modify the register in order to reflect the address

of the next instruction to be executed. The register shall be unused in Remote
Mode.

3.7.1.1.3.2.5Last Command Register (LCR) - This register shall be used only in
support of the Transmit Last Command Mode Command. In Remote mode, the BCIU
shall place commands which are received validly and directed to the particular
BCIU into this register. Exceptions shall be Transmit Status Word, Transmit
Bit Word, and the Transmit Last Command itself.

3.1.1.1.3.2.6 Built-In Test Word Register (BITR) - This register shall be used
to either maintain the Built-In Test Word (Remote Mode), or to temporarily hold
Terminal Failure or bus monitoring of own transmission information (Master Mode).
The format of a BCIU BIT word is shown in the figure below and described in the
following paragraphs. 12

|

e

oy

Lhﬁ_.TERMINAL FAILURE FIELD MESSAGE ERROR FIELD —»
i 2 3 4 5 6 10011 12 13 14 15 16
! FAILURE CODOE

‘ Ld

i % !

- 2 | & g o
il =138 &= Z
7) > | w o@X — < =
| o.:i:,‘xq xlgg;ou
580{0!2' ; &S] &< la|o
¥ r—leEccg :—t!uua.::
S S FoEw S ol o« lx =
=2) ooy =]c:c:b—>>
< [en] — e . =T o o o < =z =
c.c;micolc:i lezﬂv—tv—n

a. “ower-0r-Reset - This bit shall be set to logic 1 if the BCIU performs
Power-dn I[nitialization.

b. Power Supply Failure - This bit shall not be implemented for the
B8CIU (Set to Logic 0).

c. 5IM 1 Out - This bit shall be set to logic 1 by tha Remote Mode BCIU
after powering down Bus Interface Module (BIM) 1 as a result of
receiving a Remove Power BIM 1 Mode Command. The BIT shall indicate that
power has been removed from BIM 1.

d. BIM 2 Cut - This bit shall be set to ilogic 1 by the Remote ode BCIU
after ocowering down BIM 2 as a result of receiving a Remove Power
BIM 2 Mode Command. The bit shall indicate that power has been re-
moved Trom BIM 2.

e. DMA Errar - Tnis bit shall be set to logic 1 by the Remote Mode BCIU
after an unreccverable direct memory access error is detected while
fetching acata words fron or storing data words (excluding tag words)
into main memary.

f. Failurz “nce Itrors - The Failuve (ode snall be set for the following
REMOte se.d errors: 2IM Failurc, 3CM {Bus Control Module) ROM Parity
error, 3CM Data Flow error. The BCIU in master mode shall indicate
the ©.¥ and 3CM Data Fiow Codes.

g. No Data Received - This oit snall be set to logic 1 by the Remote
Mode BCIU at:cer having been directed to receive one or more data words
and the first such data word has not arrived within 75 microseconds
after comrand word reception.

h., Word Jount _ow -~ This bit shal. be set to logic 1 by the Remcte Moge

BCIT after naving been cdirected to receive two or more data words, at
least one sacn data word has arrivea, but the next expectec data
word coes not arrive within 60 microseconds of iast data word receptio

13

o

i. Word Count High - This bit shall be set to a logic 1 by the Remote
Mode BCIU after detecting another Data Word after the word count is
zero.

j. Data Parity Error - This bit shall be set to logic 1 by the Remote

BCIU after an expected data word was received with Parity Error
indicated. Data word reception continues.

k. Invalid Data - This bit shall be set to logic | by the Remote Mode
BCIU after an expected data word was received with RECY WORD INVALID
indicated. Data word reception continues.

Y. Invalid Command - This bit shall be set to logic 1 by the Remote
BCIU after receiving a mode command in which the mode code designates
an invalid operation for the BCIU.

- -

3.1.1.1.3.2,7 Status Code Register (SCR) - This register shall be used in Remote
Mode only and shail be set and reset by the Remote Mode Processor. The actual
status code shall be the nine (9) least significant bits of the register and
shall be merged into any status word prior to status word bus transmittal by the
Remote BCIU.

3.1.1.1.3.2.8 Master Function Register (MFR) - This register shall be used only
in support of the Master Function Mode Command. In Master Mode and in accordance
with Master Function processing, the contents of the register shall be transmitted
to the Remote device as a data word immediately following the command word. It
shall be the Master Processor's responsibility to set the register. In Remote
Mode, the Remote Mode BCIU shall place the received data word, in response to

the Master Function mode command, into the Master Function Register. It shall

be the Remote Processor's responsibility to then interpret the contents of the
register.

3.1,1.1.3.2.9 Instruction Word Register 1 (IWR1)} - This register shall be used
in Master Mode only to hold the first half of the current 32-bit instruction.

3.1,1.1.2.3.10 Instruction Word Register 2 (IWR2) - This register shall be
used in Master Mode only to hold the second half of the current 32-bit instruction.

3.1.1.1.3.2.11 Xmit Status Word Register (XSWR) - This register shall be used in
Master Mode only to hold any status word recelved from a Remote Device in
Transmit Mode, in which the Message Error, Terminal Failure, or Status Code
fields were non-zero.

3.1.1.1.3.2.12 Received Status Word Register (RSWR) - This register shall be

used in Master Mode only to hold any status word recieved from a Remote device
in Receive Mode, in which the Message Error, Terminal Failure, or Status Code

fields were non-zero.

3.1.1.1.3.2.13 Mode Data Register {(MDR) - In Master Mode, and only in accordance
with performing a certain class of mode commands, the contents of this register
shall be transmitted to the Remote device as a data word immediately following
the command word. The Master Processor shall be responsible for setting the
register.

In Remote Mode, the MDR shall be undef<ned for the Mode Operations defined.

14

- L e

Bits

Lt Y

3.1.1.1.3.2.14 Pointer Register {PR) - This register shall be set by a BCIU
operating in either Master or Remote mode and shall contain the initial data
area address for a given data bus operation involving main memory data transfers.
The register shall be used in Tag Word Operations.

3.1.1.1.3.2.15 Data Address Register (DAR) - This register shall be set by a
BCIU operating in either Master or Remote mode and shall be used to indicate
the main memory address of the next data word to be fetched/stored in support
of a given bus operation. The register shall be derived from the Pointer
Register and in all cases (Receive or Transmit) that value shall be initially
incremented by 1 to get over the Tag Word. This value then becomes the address
to fetch/store the first data word. As each word is fetched/stored, the BCIU
shall increment the register value by 1 to affect sequential data word fetch/
stores.

3.1.1.7.3.2.16 Word Count Register (WCR) - This register shall be derived from
the Bus Command and set by the BCIU in elther Master or Remote Mode. 1In Bus
Operations invoiving data wora transfers, it shall indicate the remaining number
of data words to bhe transferred. The register shall be decremented by 1, by the
3CIU, as each data word transfer is performed.

3.7.1.1.3.2.77 The 3CIu Command List - The Master Processor is the processor
attached to the BCIU which 1s operating 1in Master Mode. The Master Processor
75 tne oniy procassor which 1s capable of initiating message transmission. No '

other processcr, 8Ciu or RT sends messages until it has been t01d to do so by the i
[Mascter 3CIU and Master Processor.

Av

tach 8CiU command consists o7 two words in the following format:

M oS tase

|
i
) 2_3 a5 57 1112 6
(| — |
0P ! ; ! ReCEIVE I RECEIVE §
CODE | RETRY 'SPARE | I | DEVICE ! SUBADDRESS / MODE i
[i : - ADDRESS {
‘ !
L TRANSMIT TRANSMIT
WORD COUNT/MOJE CODE B DEVICE SUBADDRESS / MODE
' ADIRESS

tEacn Of the fieids r tne two word Instrulcion nave the following uses:

a. QP C03Z - Tnese two Sits determine the function of the command.
00 = Hait the BIIe. Tnis s a'ways the jast command in a list and
denotes tnat no oiher comnand 1s to be performed. When the

2Civ executes ths instruction the dalt bit is set in the
internal Status Register anc a BCIU Tevel 1 interrupt will be

generated. |
01 = \G JLeratton. Toas OF 00dE oy WO uses. The Sirst s to cancel
T8I SS A L thie Mdster 2r00ss0r e 10onger wishes the Master

PR

Slhee OO 0RTNTIYT .

sy

—
| oy

f.

g.

The second is to create a processor interrupt before the next
BCIU instruction is generated. A typical use of the latter
case is sending Mode Commands. The Mode Data Register must be
set before the command is sent. Thus, the interrupt causes

a BCIU pause which permits the Master Processor to set the
MDR and then set the Continue Bit in the PCR to resume BCIU
processing.

For this OP code only the interrupt field is examined. Al}l
other options are ignored.

11 = Bus Operation. For this operation the rest of the fields are
interpreted as reception or transmission across the Bus.

RETRY - If the transmission attempted by this instruction was not
successfully completed, and this field is not zero, then the
transmission will be retried up to three times.

SPARE ~This bit is not used.

I - If this bit is set, successful completion of this instruction
will cause an interrupt. The PCI bit in the ISR will be set.
The interrupt will be of level 1. The discussion accompanying
the No Operation Code explains the use of this bit, although
the bit may be used in any of the four instructions.

RECEIVE DEVICE ADDRESS - This field contains the address of the
terminal to receive the message. This field is only used for
BCIY instruction OP code “Bus Operation”. If the Receive
Device Address is not the address of the Master BCIU (as
contained in the BCIU address field of the PCR), then a
Receive Command will be formed by concatemating the Receive
Device Address Field, a bit denoting Receive, the Receive Sub-
address/Mode field, and the Word Count/Mode Code field. This
receive command will then be transmitted across the Bus.

If the Receive Device Address field is the address of this
BCIU and the Receive Subaddress/Mode field is not zero (i.e.,
this is not a Mode Command), then the Receive Subaddress field
will be used to Toad the Data Address Register (see Section
3.1.1.1.3.2.15) which will then determine where the received
message will be stored.

RECEIVE SUBADDRESS/MODE - This field describes the message to be
received. The use of this field is described in the Receive
Device Address field. If this address were zero it would
indicate that this is a Mode Command.

WORD COUNT/MODE CODE - For mode commands this field contains the
number of the command. For Receive/Transmit commands this
field contains the number of data words to be transmitted.
Mode commands are discussed in 2.1.1.1.3.2.18.

h. B - This field indicates which Bus will be used for data trans-
mission. If this bit is zero, Bus number one wili be used.
If this bit is one, Bus number two will be used.

i. TRANSMIT DEVICE ADDRESS - This field is sim*lar to the Receive Device
Address except that it is the address of the terminal which will
send the message.

If the address is not that of the Master BCIU, then Transmit
Command wil) be formed by concentrating the Transmit Device
Address fieid, the Transmit bit, the Transmit Subaddress/Mode
field ana the Word Count/Mode Code field.
. If the Transmit Device Address field is the address of this
terminal then the Data Address Register will be formed (see
Section 3.7.1.1.3.2.15) and the data will be written into the
Bus Trom that address.

} For Mode Commands the Transmit Device Address field is the
¢ address o7 this terminal then the Data Address Register will be
Formed (see Section 2.1.1.1.3.2.15) and the data will be written.
. intd tne Bus from that address. :

] For Mode Commancds the Transmit Device Address Tield is the
address of tne terminal 6 receive the Mode Command and the
Receive UJevice Address fieid is the address of the Master BCIU.

[T ¥3 an error for the Receive Device Address field and the
Transmit Device Aadress field to be the same device. This
error wiil cause an interrupt of level 1 and the IVI bit will
oe set in the Internal Status Register.

J. TRANSMIT SUSAJORESS/MOOE - The use of this field has been discussed
in the descristion of the Transmit Device Address field.
for mogde commangs, S0th the Transmit Subaddress and Receive
Sucaddress will de zero.
3.7.1.1.3.2.18 Mode Tgmmérds - Tne evailaple Mode Commands are described in the

table below. Moac Coamends oéyond these ace to be used for system expansion and
are presently undefinea, For tnese undefined Moae Commands, the only response of
the terminal is to transmit 1ts status word. The software interface is given in
Figure 3.1.7.71.3.2.78-1 for potr the 3CIU and remote terminals.

The BCIU determines whetrer a given Mode Command also requires data transmitted

to or received from a terminai. In the case that data should be transmitted the |
Mode Data register wiil oe written. In the case that it should be read the data {
received will be storec in the Mode Data register.

— ' R
MODE
CODE
NUMBER BCIU (REMOTE MODE) BCIU (MASTER MODE)
0 Invalid Invalid
] Transmit Status Word Transmit Status Word
2 Invalid Reset Status Code Field
3 Transmit BIT Word Transmit BIT Word
4 Remove Power Bus Interface 1 Remove Power Bus Interface 1
5 Remove Power Bus Interface 2 Remove Power Bus Interface 2
6 Shutdown QOverride Bus Interface 1 Shutdown QOverride Bus Interface 1
7 Shutdown Override Bus Interface 2 Shutdown Override Bus Interface 2
8 Invalid Initiate Terminal Self Test
9 Initialize Terminal Initialize Terminal
10 Transmit Last Command Transmit Last Command
1" Invalid Interrogate Activity Register
12 Invalid Reset Serial Input Channel
13 Invalid Interrogate Module Error Register
14 Invalid Initiate Serial Channel I/0
15 Invalid Word Masking
16 Invalid Bit Masking
17 No-op No-op
18 Master Function Interrupt Master Function Interrupt
19 Invalid Valid (Status)*
20 Busy Override Busy Override
2] System Interrupt System Interrupt
22 Invalid Valid (Status)*
23 Invalid Valid (Status)*
24 Invalid Valid (Status)*
25 Invalid Valid (Status)*
26 Invalid Valid (Status)*
27 Invalid Valid (Status)*
28 Invalid Valid (Status)*
29 Invalid Valid (Status)*
30 Invalid Valid (Status)*
31 Invalid Valid (Status)*

* Valid {Status) - BICU in Master Mode shall expect only
a Status Word Response fo- all undefined Mode Operations.

Table 3,1.1.1.3.2.18-1 BCIU Mode Operations

Numbers 22 through 31 are Undefined commands.

Details of the uses of each of these mode codes are described fully in the BCIU
Specification.

Mode Codes 0, 1, 2, 3, 8, 9, 10 and 17 are primarily used to test the correct
operation of the Bus and BCIU.

Mode Codes 4 through 7 are used to correct faults in Bus operation by manipulating
the Bus interface.

18

ey 2 .o e ———
Moge Cides aaotn ,ugn 15 are Jused Tor <e.ile Terminais and are nou of importance
e 3CIU operat o
Mode Coces of importance to remote 3CIU operation are: ;
. 1 - Transmit Status Word. The status word is transmitted to the
Master Processor BCIU.
. G - Initiaiize Terminal. This command initiates self test pro-
cedures s¢ tnat at a :ater *time the information may be trans-
mitted via & Transmit BIT WORD (Mode Command 3) commang.]
. W0 - Transmit cest Command reiuvyns the contentis or the rast

Commanc Register. This commanc 1< used to determine whetner &
command needs TO DE retranstitied.

18 - Mastir Function Interrupt. Tros 15 tae Minor (ycle
syacnronizaticn commandc. z.a wWGrd T0Yiowing tne command
and 1ndt TAG anr rioee 15 nlaced into the
naster - * 2r, The remnote processor s
thern int

. €6 - Cusy Qverrige. Tnid comtiand Sets ine Susy continue 33T in the
Rencte 2010 Processor Control RrRegister to OFF,
Tne Remote L0 normal cperation

Z7 - System coae causes the System Interrupt

noTneg

3.1.1.1.4 Tre renote Terminay (A7)

3.1.7.1.4 iralt 5, - The Remcte . (RT) provides the inter-
face oetween the STV D ea TysTEn &nc tne Lircrati Subsystems.

Tne TS provide 7o Lus COALWLAICAT CN witn tne IJAMST processors (as cescribed

in Section 3.1 i)

“re subaddress : T I xeoove Commang acts as @ message
icentiftier. The ressace oS GTThw DY UnC AT Torm corvect intertace with the
interface Modules & ; ./ \Or accepgt Tram) tne signails to the &..craft
Subsystems.,

The RT performs .\ The €070r Chedaild and setiing of error and status bits.

30000602 RT ¢ s - Trne 27 snall coniain ine registers, 10gic, cecagers,
DuTiers, COmparaisrs IrG IONTrol Seguences regquired to perform the foilowing
"-\AAIC\« ‘OﬂS

4 R Wa {ChTunl AdnCy TYOT thée Sus.
0. Detect Joihiane woves dhrectea o this RY
C. G Lol mhcL. TR0 TrE pus onE ¢i g Liao) 17 cirected o Go)
50 L L T IOTVCG COMGGnG wONa,
W9

FUNCTION MODE COMMAND

i Initialization 1 Transmit Status
"16,7 Shutdown Override, BIM
LS Initialize Terminal
Self Test (DITS) 8 Initiate Terminal Self
Test _
Request Message Error 1 Transmit Status
—— Analysis and Retry "2 Reset Status

[JO Transmit Last Command |

Transmit BIT

»5 Remove Power BIM
Initiate Terminal Self Test
Initialize Terminal

Fajlure Analysis |

SWITCH
A {Request —
r Type) Asynchronous 11 Interrogate Activity
—t Transmission > Register :
Setup J ;
- —— |
[Minor Cycle 1 18 Master Function Interrupt §
Synchronization >0 Busy Override ?
l AAJ 21 __ System Interrupt S
EppTication Software 12 Rese* Serial Input Channel
L_JRequests ‘14 Initiate Serial Channel 1/0
=115 Word Mask
| 06 BIT Mask]

Figure 3.1.1.1.3.2.18-1 Software Interface with Mode
Commands for BCIU and Remote Terminals

d. Transmit Data Words through the Bus to the data bus (one at a time)
if directed to do so by the received Command Word.

e. Transmit Status Words through the Bus to the data bus as directed
by the received Command Word.

f. Perform Mode Operations when and as directed by received Command -
Words.

g. Distribute received Data Words to the proper channels of the
proper IMs,

Rl

A

n. Iipul Jata words from the proper channels of the proper IMs for
transmission to the data bus.

1. Maintain the Status Word and the Built-In-Test (BIT) Word of the RT
by performing continuous and periodic self test functions within
the R7.

3. ¥Maintair ar Activity Word and Error Word for monitoring status of
serial digital IM's.

K. Maintain a (ast Command Register for verification of command receipt
'n the event of an invalid response.

Periorm 31t and Word Masking.

AL, ddla Sul Operations that the RT snall participate in shall be in the formats
devired in the Muiviplex Data Bus Specification, SA-301-200A.

N

5.0.7.1.4.2.1 Receive Data

Tne Command word directs tne RY to receive 1 to 32 data words with the number of
cete words invoived being specified by the word Count/Mcde Code field. Each word
0f tre receivec vessage shall be mapped to a subsystem output signal interface
line as specified oy the Subaddress/Mode and the Word Count/Mode Code fields.

[s3
<
0
5
|

3.7.1.1.4.2.2 Transmit Jata

A Transmit Command prepares the RT tc transfer from 1 to 32 Data Words, with the
number of Data Words defined by the Word Count/Mode Code field of the Command
Word. Each word of the message snai! be sampled from the proper IM subsystem
signal interface line in a predeternined order, using the Subaddress/Mode and
Word Count/Mode Code fields to define which predefined order.

3.1.1.1.4.2.3 R7-Jata 3us Mode Operations

when the Subaddress/Moae field in tiie Command Word is zeros, the Word Count/
Mode Code field is interpreted ¢s a Mode Code. The Mode Codes are listed 1in
Table 3.1,1.1.3.2-13-1, and an explanation of each one follows. Those Mode Codes
that are not defined here may be used by the system designer. Any codes that

are not used are deciared to be invaiid codes. The iwode code of ail zeros

will not be used. i7 a terminail receives an invalid mode code, the terminal shall
set the Invalid lorimana bit of the BIT word and, after the gap period, transmit
its Status Word wicn the Message Error Bit set.

a. Transm it Status Word

Upon receipt of a command to transmit the Status Word, the terminal
shall pause for the gap period and then transmit the Status Word. The
format o7 the status word is as specified in SA-301-200A. Bit ten

in the status code fiela shall indicate seriai channel activity. Bit
eleven 1 this field shall indicate serial channel parity error. The
remaining seven 0its of the status code field are undefined at this

21

ey

e e e

P——

time. The reception of the Transmit Status Mode Command shall not
modify the contents of the Last Command Register, Status Word or
BIT Word Register.

b, Reset Status Code Field
When the terminal receives the command for this mode operation, the
terminal shall clear the nine bit status code field of the Status
Word. After the field has been cleared, the Status Word shall be
transmitted.
c. Transmit BIT Word
Upon receipt of a command to transmit BIT Word, the terminal shall
pause for the gap period and then transmit the status word and then
the 21T Word., A BIT Word shall be comprised of a sync waveform, a
condition field, and a parity bit as shown in Figure 3.1.1.1.4.2.3-1
below. The reception of the Transmit BIT mode command shall not modify
the contents of the Last Command Register,
BIT TIMES: —CONDITION FIELD {
1 2131 415167 F8 9 110 {37 121 131 14{ 15116 {17 {18119} 20
BIT WORD: TERMINAL FATLURE MESSAGE ERROR
FIELD FIELD
.f
SPARES
" - ;
SYNC w3 o - o 1
= e Q! 4 2 e w >
=] o HEl21¢g =
| > || = Sl B = | wn =
“1g 13|38 Bl WE|B|C =
- | a v Bl I B
wi oy < | o) x o
w | M| O Q2 [« 4
— - N e« | O A] r=) e o
y | o | we] ome (Wl W o)) U R G =
w | w o | & A € | e« | <<
MEHEEHEBEREEBE =
Al |l ||zl 8151 = @
Figure 3.1.1.1.4.2.3-1 Composition of a BIT Word

22 Lj

The sixteen bits following the sync (bits 4-19) shall be utilized
to indicate condition. If any particular bit is a logic "0" that
condition is not true.

1) Terminal Failure Field - The first six bits (bits 4-9) of the
Condition Field shall indicate failure conditions within the
terminal, and shall be set and cleared by the conditions or the
performance of self-test functions.

2) Message Error Field - The next four bits (bits 10-13) of the
Condition Field shall indicate error conditions in the last
data bus message that the Terminal participated in (excluding
mode operations requesting status or BIT Word). This field
is set to ail logic "0's" when the Terminal begins operating
on a new data bus message (again, excluding mode operations
requesting status or BIT Word).

Remove Power - BuS Interface #1

when the terminal receives this command it will no longer listen for
commands on the first wire of the Bus.

Remove Power - Bus Interface #2

Same &s above, except that it applies to the second wire. Note that
this means that not only does tne terminal not listen for commands on
that wire, but it does not send data or status words across that wire.
Removing power from botn Bus Interfaces removes the RT from the IDAMST
system.

Shutdown Override - Bus Interface #1

When this command is received, the RT will again Le able to receive
and transiiit across tne first wire of the Bus.

Shutdown Overriae - Bus Interface #2

When this commana is received, the RT will again be able to receive
and transmit across the second wire of the Bus.

Initiate Terminal Self Test

When this command is received, the terminal executes its self test
logic and reports any failures in the BIT Word.

Initiatize Terminal

Upon receipt of this command, the terminal shall assume its initiali-
zation state, and after the gap period, transmit its Status Word.

Transmit Last Command

When tre term.nal receives this command, tne termina® shall pause for
the gap peracd anc then wransmit the Status Word foilcwed by the con-

23

e M
i

L)

e e b L e AR At sma

o -

U PO,

A

tents of the Last Command Register. The following mode operations will
not be recorded in the register: Transmit Status Word, Transmit BIT
Word, and Transmit Last Command.

Interrogate Activity Register

When the terminal receives this command, the terminal shall disable
the activity bit in the status code field, transmit the Status Word,
and then transmit the contents of the Activity Register. A one in
the Activity Register shall indicate that a serial channel requests
service.

Reset Serial Input Channel

The command word is followed by a data word that has the module and
channel address. When the terminal receives this command, the terminal
shall reset the serial channel Lockout Line, transmit the Status Word,
and then reset the activity bit disable.

Interrogate Interface Module Error Register

When the terminal receives this command, the terminal shall disable
the IM Error bit in the status code field, transmit the Status Word,
and then transmit the contents of the IM Error Register. A one in
the IM Error Register shall indicate a parity error on a serial
channel,

Initiate Serial Channel Input/Qutput

The command word is followed by a data word that contains the Module
and Channel address. When the terminal receives this command, the
terminal shall reset the serial channel ERROR line, transmit the
Status Word, reset the IM Error bit disable, and then input or output
data to or from the subsystem.

Word Mask

Upon issuing this command, the BCIU shall follow with the transmission
of two mask words from the Mode Data Register and then monitor the
data bus for a status word response. A bit in the mask word set to
logic 0 will mask the corresponding data word in the following Receive
Message. The Word Mask QOperation shall remain in effect for the next
valid Receive Command received by the Remote Terminal. The word mask
shall not be destroyed by Transmit or Mode command operations to the
RT except the Initialize Terminal Mode Command shall cause the word
mask to be cleared.

Bit Mask
Upon issuing this command, the BCIU shall then monitor the data bus

for a status word response. The following receive message will consist
of alternating Bit Mask and Cata Words. A bit in the Bit Mask Word

24

set to Togic 0 will ingicate mask operation on the corresponding bit
in the following data word. Tre maximum number of data words trans-
ferred shail be 16. The word count field of the Receive Command Word
shall be the total of Bit Mask and Data Words. The Bit Mask Mode
Command shall remain in effect until a Remote Terminal Receive Opera-
tion or an Initialize Terminal is received by the Remote Terminal. [

q. No-op

Remote Mode - Upon receipt of this command the Remote Terminal shall
store the command in the Last Command Register and respond with a
status word.

Master Mode - Same as 3.2.1.1.1.3,10.

3.1.1.3 IDAMST Processor

The pertinent 1ntev*dces witn the IDAMST Processor are described in Sections
'.u,].h.l tnrough 3.1.1.2.5. The input/output organization is shown in Figure
O.1.2-3

W L

3.1.1.2.1 Vectored Interrupt System (See Figure 3.1.1.2.1-1 and Table 3.1.1.2.1-1

Sixteen ljevels of iwbervupt are provided for in nardware. The interrupt system
snall nave tne gapaa1¢1uy of handling eignht external and eight internal interrupt:
whicn alternate 1n priority rating with the highest being an internal interrupt.
These sixteer individual interrupt lines shall feed sixteen flip flops which
store the request. The four bits representing the interrupt number are used as
“our bDits of an address. The forrmat of tne address is {GOC0O0C0GO0T XXXXO).

This address is used to fetch the address of a table where the condition status
and instruction counter (iC) are to be stored. Upon interrupt, the present
condition and instriction counter are storecd at the fetched address. Further
interrupts are disépied until the enable, ENBL, instruction is executed.

e e g e e

Tne new IC valie s loaded from the iocation after the fetched address. The
program may 16sd anc store tne registers using LM and STM instructions. Return
from an interrupt service routine is accomplished by the exchange status, EXS,
instruction,

A1l interrupts, except oower down, can be disabled by the disable, DSBL, instru-
ction. Interruzts can De selectively masvad by using the set interrupt control,
SIC, iastructicn. The entire interrupt System will be automaticaily cleared
upon power up.

An interrupt recuest nlay occur at any time but the interrupt processing must
wait until an instruction is finished.

NOTE: The instructions move, MOV, move indirect, MOVI,
ana register shift instructions SLR, SAR, SCR,
DSLR, DSAR, and DSCR can take many miliiseconds.
it is the programmer's responsibility to keep the
count used by these instructions small enough to
alicw interrupts within a desired time,

25

d)
91 SN8 WWa
e] e —»
9L Sng NI viva < t ALT¥Yd
(=]
{1 Snaw ' _ L 04IN0) - 2
P 2
2 1081NOD B¢ .
2
N
&
L]
> o
[+ 4 S
o o
=
w o
Y /
oy 2 0YINOD INI = 8 SLNYYIINI TYNYILX3 —~
= = S~
<< [r, A o 3
o "
&S = i
w = Q
¢] »—t
& 91 sndia ol . 8 SLNdNT 31393510 Wy 2
[=) —
(-4 —
a. (72}
-
(o) <
— — o
4 4 S
o
— ~—
=]
[%2) (=] o~
D (&5] *
ca —
>< .
S -
— } o
L 090N/09 ~ 2| w
vy —» " 8|5
9 S1Nd1N0 31332S1a S
97 S8 0a > o " 1 ¥Hig .
e - — —»
v 04INOD SNg OId
Z I0¥LNOD 91 sha old
T |’
R | ALTYVd
{
S T * - - y
R
e ——— e o L

Ty

h -

INTERRUPT 1 ADORESS
NEW IC
INTERRUPT 2 ADDRESS
INTERRUPT 16 ADDRESS
NEW 1C
LD CS .[] <
! d
0Lb IC ? B
L B
1
0LD CS e
OLD iC
L

The format in storage for the condition

}

s

status upon interrupt, OLD CS,is:

TABLE OF ADDRESSES

2 WORD AREA IN MEMORY
FOR STORING CONDITIGON
STATUS AND INSTRUCTION
COUNTER.

Lx !t T i % X |
L i i]
1L zeRo DETECT BIT
. L— sIGN BIT
OVERFLOW B1T
Figure 3.7.3.2.1-1. Interrupt Storage

27

~ "w

INTERRUPT

NUMBER

0 ~N O O W N

d ed md A i —d
A W N = O W

DESCRIPTION

BCIU Interrupt #8

Spare

BCIU Interrupt #7
I1legal Operation Code
BCIU Interrupt #6
Boundary Alignment Error
BCIU Interrupt #5
Interval Timer #2

BCIU Interrupt #4
Interval Timer #]

BCIU Interrupt #3
Processor Parity Error
BCIU Interrupt #2
Processor Memory Protect
BCIU Interrupt #1

Power Down

TABLE
EXTERNAL PQINTER

EXT
INT
EXT
INT
EXT
INT
EXT
INT
ExT
INT
EXT
INT
EXT
INT
EXT
INT

20
22
24
26
28
2A
2C
2E
30
32
34
36
38
3A
3C
3t

N

Ic

EW

21
23
25
27
29
28
2D
2F
31
33
35
37
39
38
3D
3F

NOTE: Interrupt 16 is highest priority and interrupt 1 is
lowest priority. Interrupt 16 cannot be masked by
the set interrupt control, SIC, instruction. The

format of the table pointer address generated by the

interrupt hardware is shown below.

[0 00 000000 01

X X X X 0]
—J

NOTE: Interrupt 16, power down {a) cannot be masked, (b) is
not disabled by the disable interrupt instruction, and
(¢) is not disabled upon occurrence of another interrupt.
A minimum of 50 microseconds is available for processor
operation from the time power loss is sensed.
primary power comes up immediately, there will be a 7.2
msec delay before power up.

Table 3.1.1.2.1-1.

Interrupt Definition Table.

28

"

INTERRUPT - 1

If

smgon

3.1.1.2.2 Special Memory Locations

Location (dexadecimal) Use
0 The first instruction executed upon power coming up

starts at location zero.

20 through 3F These are the locations for table pointers and new IC
values for the vectored interrupts.

Instructions Located where the programmer or project desires.
Typically, this area is store protected.

Constants LOCateu where the programmer Or project desires.
Typicaiily, this area is store protected.

Scratch Storace Located where the programmer or project desires.
Not store protected.

Ay of core remory is preserved upon power down.

.1.1.2.3 Aaaitional Storage

Trere TS oadgitional storage that is not & part of main memory. This storage has
¢oecial wses ana 15 not edcressed as main memory. This storage i< integratea
cSircuit fhin floos, registers, & Ad rancom access storage. Upon power down and
then power up, the contents of This storage may be unknown. The additional stora

that software can influence are isted pelow:

16 registers 07 16 nits each (AD througn A’S)

4 pits 0 cConcitiOor Status fset to "zaro" status upon power up)
64 bits of orocessor storace protect RAM

64 Dits o7 IMA storage srotect RAM

16 bits of “rnteecrudt masks

16 interrunt ragquest Tip 71023

2 interny. tifers o7 o S1ts eacr

16-bit /0 G ong register

T6-bit insiruction counter (Cle&res undn power up)

3.1.1.2.4 Discrete irputs ana Outputs avd interval Tirers

Six Jiscrete Juliuls wniLL De proviced o trne BCIU. Software shall output six
01TS 10 @ nolong resicter whion feads tno dl ferentiaT arivers, Tre use of the:
0utputs are To5. DTant JTscrete [Aduts shasl be accepted from the BCIUL. Softwa.
27l InpuT @t eTont Dits simuicanedusty from a synchronizing register foilowi
e receiver ouiouis. WG interva, tuners are proviaed within the processor.)
The Liners are Sustlanl/ 6 b3t Courters, A Y is added to the least significan |

Dt of timer A ocvery 10 roorcseconds énd to timer Fooevery 100 microseconds. !

Joth timers can OC 10aces Loy CuipuIl instructions;. As a minimam, timer B
car be read by “npul instruction. An ointerrupt request 1s generated when the

cape-

o~
[—

timer increments from FFFF to 0000, if the proper mask register bit has been
enabled. If the timers are not loaded, an interrupt request is generated after
65,536 counts.

3.1.1.2.5 Storage Write Protection

Upon power up, all memory is write protected. Typically, a program begins with

instructions to load the storage protect RAM and then enables storage protect

based on the RAM content. The first 64 bits of the RAM provide processor write
protection. The next 64 bits provide DMA write protection. RAM addresses are

used in input and output instructions to read and write the RAM. A 1 1in the L
RAM provides write protection while a 0 in the RAM alTows writing into memory.
Each bit in the RAM applies to a 1024 word block of main memory. RAM address 0O
applies to locations 0 through 1023. RAM address ! apnlies to locations 1024
through 2047, ..., RAM address 63 applies to Tocations 64,512 through 65,535 for
processor write protection. RAM address 64 applies to locations 0 through 1023,
RAM address 65 applies t0 locations 1024 throuah 2047, ..., RAM address 127
applies to locations 64,512 through 65,535 for DAM write protection. Figure
3.1.1.2.5-1 shows a RAM which allows for expansion of access protection, which
could encompass read or execute protection as well as write protection.

3.1.1.2.6 ROM Programs

The IDAMST processor will include programs in Read Only Memory (ROM), to load
software upon system initialization and to perform self-test, The interface is
(TBS).

0

NER D weabeiq %o0ig 1093044 AdowdW |-G 2t i ¢ ounbLy
W3ILSAS
v .. |I‘,* ‘‘‘‘‘
1 tisenn 193104
e - .\ﬁ e e
b 21901
. hww%%w 1931044 319yN
J\.\‘ e e ——
L
X e L g -~ -
TOYLNOD AYOW3IW 0L TWNOIS 103104d L S LNdLAO
119
L | 123104d
S B
_ i /-1
OHOM ONVWRODY 45
- V\ N —
. — - I / L
W
LUt Lt Avthm\Mx:aan XTI
L X w9 L X 952 R I
yna * . 9L~ 1L i
404 10¥d WKW 0000 ! 001t R
—— Bl A -
Luee 1ol L Ly
_. X Q@ L.‘ - :—.. ;
40SS330dd) * D Y
Y04 10¥d W3W 0000 | 0001 w o .
T LLLL LL10 1 Todd S0) WO
1 X %9
0000 I GOt SR
Lt LL00 L ISTINd 3LIYM .
L X ¥9 a
e 1. 000G ! 0000 SR G e A R L
NOTLYI0T AYOW3W SSRGUY ! NDLI8 VY
))
L]
Y S)

3.1.1.3 Mass Memory

This section describes the functioning of the mass memory from which the IDAMST
system may:

a. Read the programs from which to IPL (Initial Proqram Load) the system,

b, Read different program confiqur.tions to reconfigure the software
during flight.

c. Write Digital Integrated Test System (DITS) results during the mission.

3.1.1.3.1 Mass Memory Commands

The tape drive shall receive the following commands through the control line as
depicted in Figure 3.1.1.3.1-1.

3.1.1.3.1.1 Read Record - shall command the tape drive to read a variable
Tength record {up te a limit such as 512 words), The record will be stored in a
random access memory (RAM) (e,g. 512 words). Then the drive will halt,

3.1.1.3.1.2 Write Record - shall command the tape drive to write a fixed length
record which 7s the size of the RAM. The record will be ascertained from the RAM,
The drive will halt at the completion of the record,

3.1.1.3.1.3 Search Record - shall command the tape drive to search until the
given record number has been established. The record number will be the initial
word in the record., Once the record has been found, it shall be read into the
buffer area.

3.1.1.3.1.4 Space Ahead/Back - shall command the tape drive to move to the
beginning of other records relative to the present record.

3.1.1.3.1.5 Rewind - shall command the tape drive to rewind the tape to the
beginning of tape marker.

3.1.1.3.1.6 Erase - shall command the tape drive to generate an interrecord
gap and to write a predefined bit pattern (e.g. all 1's) at the normal data
transfer rate.

3.1.1.3.1.7 Stop End Record - shall command the tape drive to stop at the end
of the current record,

3.1.1.3.1.8 Halt - shall command the tape drive to halt operation.
3.1.1.3.,2 Mass Memory - Remote Terminal Interface

The mass memory unit shall be attached to a Remote Terminal and be operated via
the commands defined above, An intermediate multiple message buffer memory will
be required. The buffer will allow several 32-word messages to be read into or
written out of the buffer at the mass memory rate and to be accumulated or
dispersed at the bus rate.

A buffer of 512 words would provide for an efficient packing of messages on a
magnetic tape by having 16-32 word messages packed in a single record.

32

H
|
|

PO

PIVAYIINT DLW/ IUNTHAL JLOW3Y
L-L'€° 1" L7 dunbyy

Sds8 Hdavians

33

} SIS IUCIVENS

|
_ y314ng
(4OM 216G T
_
]
| _
_ JAINA 3dYL | ﬁ
_ . wivd]
T 10N 1N0D
WLSASANS
NiW

HAH L0
o ViVA 111
-—— T04INOJ (LW
UNTWYAL
EJUNEL!

sy

The remote terminal to buffer interface is also depicted in Figure 3.1.1.3.1-1,
Two subaddresses provide the mechanism by which the 512 word buffer may he
sequentially accessed in 32 word segments. One subaddress will be used for
control and status information while the other subaddress is for data to and from
the data buffer.

The status shall indicate whether the tape drive is at the beginning of the taoe,
end of the tape or at the black mark, is ready, busy, idle or running, the

number of error retries that have occurred during that block transfer, and the
command to which the drive is responding,

3.1.1.3.3 Tape Format

3.1.1.3.3.1 Tape Record Type Definition - An absolute binary tape consists of
one or more records consisting of a Trecord separator' character followed by a
record number, followed by a single letter indicating the type of record which
follows. Where applicable, the data follows the record type identifier character.’
The types of records which may be contained cn an absolute binary tape are as
follows:

Record Type

Indicator Record Type Function
B Binary Data Actual binary data record
Header Iden:ification
Execution Address Loaded into Processor Instruction
Counter
G End of Tape Indicates physical end of tape.
End Load Indicates end of data loading which

may contain many files.

The followirg is a detailed descriotion of each of the record types and how they
are used. ”g" is used to denote the '"record separator" character,

3.1.1.3.3.2 Binary Data Record

(R’TRECORD TLOARD g T
I's

BINARY DATA BINARY DATA | CHECKSUM

| NUMBER| B JADDRESS WORD COUNT

A,

i
(.

LOAD ADDRESS 4 character code of the starting memory address where the
data is to be sequentially loaded. For loads into non-
contiguous memory lcocations, multipie Binary Data Records
must be used. The most significant digit appears first.

WORD COUNT 4 character code indicating the number of data words con-
tained in the record. The most significant digit appears
first,

DATA 4 character code for each 16 bit word of the processor., The k
most significant digit appears first. .

34

c—pe

£ g

it & Character code which represents the modulo 2 sum
texc usive OR) of the binary data contained in the LOAD
ADDRESS, WORD COUNT, and BINARY DATA FIELDS.

3.1.7.3.3.3 Header - Jptional Record

R RO T -

| ! I— s
S | auMger | D) HEADER TEXT

HZADZR TEXT Criracter string wnich allows identification and other
desired information to be associated with a tape or portion
of 11, The Header Text is terminated by the next 'record
separator' character.

3.7.0.3.3.4 Execution Acaress-0Optional Record

swuR - P oo | :
o TS D EXECUTION ADDRESS ! 5
S S e |)
X ICUTION L oCraracter code speciTying tne starting address to be ;
AJDRISS L0aGeg intTo the precessor instruction counter. The most
signiTicant digit appears first.
S...0.2.500 wna of Tape I

e e e ———— —

: o : UNUSED ¢+ aomepar | canc t
S | MMeER L O . Tapr .y UPTICAL LEADER

Indicates paysica: end oY tape. Tnhis is recquired because
tne clear leader at tre beginning and end of a tape does not :
Cadse any signa. to be generated from the tane cassette unit
Receipt of tnis record betore an End Load record signifies
that an incompiete rmultipie tape load condition exists, and
an apororriate message will be writien on a display. Normal
dnder tnese cirgumstances, the user would insert the next
Tapé 10 be read ang initiate a new tape reaa command, but tr
is ot manaatory. The IDAMST system wili require a single 1
Tape ito 1oac.

3.0.1.5.3.6 in

e oA

R T
LS | ONUMBER |

ndicacds the end of the set of records contained on a tape
or tapes.

!
)

C ok

3.1.1.4 Processor Control Panel (PCP)
3.1.1.4.71 Physical Format
The physical format of the PCP is shown in Figure 3.1.1.4.1-1 below. Air-

craft avionics power is supplied to the PCP when aircraft primary power or
ground power is present.

PROCESSOR CONTROL PANEL

POWER 1 [f
RUN 1 l 2 | 3

FAIL)

HALT
RUN

RESTART

Figure 3.1.1.4.1-1 Physical Format of the PCP

3.7.1.4.2 RUN/HALT Switch

The RUN/HALT switch is a three pole single throw guarded toggle switch,

When the RUN/HALT switch is moved tc the RUN position and normal aircraft
power available, each processor will be activated by a discrete signal. The
RUN discrete is reset by processor action. When the switch is moved to the
HALT position, each processor suspends operation,

3.1.1.4.3 RESTART Swtich

RESTART is a momentary operation pushbutton. Operation of the switch causes the
"RESTART' discrete signal to be sent to all mission processors in parallel.
'RESTART' discrete is reset by release of the RESTART button to normal position.

3.1.1.4.4 Processor Status Lights

One processor status 1ight is provided for each IDAMST mission processor.
These lights are capable of indicatina three processor states via three
distinct colors.

The processor status lamps assume nominal state one automatically when aircraft
avionics power is presented to the PCP and the output of the mission processor,
or associated memory or associated BCIU power supply voltage is not within N
tolerance (e.g. state one may indicate that a mission processor circuit breaker
has disconnected power from the processor).

States two and three are set in the PCP by discrete signals from the mission
processor. Absence of state two and three shall cause the processor status

36

- o v e s

lTamp to revert to state one. Svate two indicates normal operaticn of the
mission processor, memory and at least one channel of the redundant BCIU,
State three indicates BIT failures of the mission processor, memcry or all
redundant channels ¢f the BCIU.

3.1.2 Software Interfaces
The IDAMST Executive must interface with four other systems of software:

a. The Application Software

b. The Jovial J73/1 Compiler

€. “The Software Development and Verification System (SDVS)
d. PALEFAC

The Aoplication Software, together with tne RT's, constitute the totality of
the entities upon which the txecutive operates. In addition, most Executive
actions are initiated by Real Time Pseudo-Statements within the Application

Software.

Tne J73/1 cCompiler produces the object code for the Application Software and
most of tne object code of the fxecutive itseif. The txecutive must be
cognizant of and compatible with the calling sequences used by the Compiler.

In trhe initial stages of software development, the Executive will run under
tne SOVS. Tne Executive must be compatible with the SDVS facilities, including
the Statement Level Simulator and Functional Data Bus Simulator.

3.1.2.7 Anplication Software

The IDAMST Appiication Sof:iware consists of Tasks, Comsubs, Compool Blocks,
and Events.

Tasks and Comsuns are orocessing modules, containing executable code and local

cata. Compool Zhocks are data moduies usea for communication between Tasks.
Events are boolean vaiues uSed for control interactions between Tasks.

Tasks interact with trne £xecutive through Real Time Pseudo-Declarations,
and Real Time Pseudo-Stéatements,

3.1.2.1.7 Tasks

Tasks are the .rincuwoai components of tie (DAMST Application Software. Every
Task is a J73/. “roceaure, ceciared with no “"data allocator", with no
parameters or "-uaction resuit"

At any time, a3y Tana 11 tne IDAVST system has @ “state”. The possible states
of a task are snowr T4 figure 3.0.2.1.7-1. Mote that rot all states are
rutuaily exclusive, Thus, & Task wnich is "executing" is aiso dispatchabie,
active and invoxed,

mmediately Foolowint syLton “rittaiization, one Task, the Master Scheduler,
is Invoked by ire Lxolutive, 4nd ail ¢t

- -

See Joviav _7./7 (ompater 2roatatyring Manual, 29, 6-2 throough 6-8.

37

ner Tasks are in Uninvoked state. There-

PP T ORI WO

1043U0) puR $33V}S Sl |-1°1°g*1°E 24nbyi

(AL1¥OI¥d AS GI711041NOD)
ALITIGYTIVAY ¥0SS300¥d 0L 9HNIQH0IIY

] ONILNDIX3 Q30N3dSNS AQY 34 L
_ \\\\\\\\\\ 1IvM
319VHILYdS1a RN 9NILIVM
N~
IWIL
. ¥0 LN3A3
r \ LYNIWY3L
¥O ON3
anfLov 7 N 3IALLOWNI
N~
SINIA3
130NV
QINOANI)
~N
3IN0IHDS
WSVL V 40 SILVLS
PR - R S *

Q3IAOANINN

38

after, Tasks can pe put into Invoked state {Scheduled) or put into Uninvoked
state (Cancelied) only by Real-Time Pseuco-Statements executed within other
tasks.

immediately after being Scheduled, a Task is Inactive; however, it has the
potential to become Active, depending upon its Event Condition Set. The
Event Condition Set is a collection of Conditions, each of which may be
either "on" or "off". Fach Condition has a "desired" value. When all the
conditions in the Event Condition Set have their desired values, if the Task
is Inactive, the Executive will put it into Active state. A Task may have a
null Zvent Condition Set, in which case it can only be Inactive momentarily,

Facn Condition in an Event Conaition Set is associated with a set of Events.
wnen any of these Events is set on, the Condition is set on; when any of

tnese tvents is set off, the Condition is set off. One Event may be associated
with more tnan one Condition in an Event Condition Set., In addition, one Condi-
tion may be associated with a "Minor Cycie Event." These are Executive-
gere~atec fvents whicn are set “"on' at certain specified times (see 3.7.2.15)
ana are otherwise inaccessible to the Application Software. If a Condition

is associated with a Minor Cycle Event, it may not be associated with any other
tvent.

A Conditicn may oe eitrer Latchec or Unlatched. A Condition associated witn

a Minor Cyzie Event must be Unlatched. Tne sole difference between a Latched

and an tniatcrec Condition is that upon the Scheduling or Activation of a

Task, tne Un.atched Conditions are set to the undesired value. Thus, a Task

can on'y be Activated by an unilatched Condition when the value of thet condition
3s "hanged tG tne desired value subsequent to the Tast Scneduling or Activation
of the Tasx. By contrast, Latched Conditions ave changed oniy when one of

their associated Events is changec. Therefore, a Task with oniy Latched
Conditions in i<s Condition Set will be immediately Activated after it is
Scneduled if all the Conditions were satisfiea before the Schedule Statement.

A Task may return from Active to Inactive state from two causes: either because
it completes execution, or pecause it 1. forciply Terminated by another Task.
In either case, immedictely aTter it returns to Inactive state, the Event
Condition Set is evaiuated, and 77 all the Conditions have their desired
values, the Task is immeciately re-Activated.

When a Task is Activated, it is immediate’'y dut into Dispatchable state.

If, at any point curing its execution, & ~ask executes a Wait Statement, the
Executive wil® placs 1t into Wait state until the specified condition is
satisfied, upcn whacn the Task will again pecome Oispatchable.

AT1 Dispatchaz’e Tasks should theoretically be executed immediately. Fowever,
since there may e 0re than one Dispatchable Task at any time within any one
of the Processors, Tasks are ordered dy Priority to resolve possibie confiicts.
dhenever the Exeacuilive in any Processor is not calied upon for immediate action
it selects the nignest Priority Jispatchabie Task, and causes the Processor

to execute it.

tive but nas not yet been executed, it s said to pe Ready. f
tne pgrocess of execution, but has been interrupted by a higher
Tt 15 suid to be Suspended. If it is executing, it 15 said to

¥ a Tusk is Ac
it heés ceer in
riority Task,
oe cxecuting.

5
h

39

Any given Task may only be Scheduled by one Task, which is called its i
Controller. Two Tasks with a common Controiler are said to be "siblings." !
The Task Scheduled by any Task are said to be its “sons”. 1If a Task has ;
no sons, it is said to have no "descendents"; otherwise, its descendents 3
are its sons and all the descendents of its sons.

Only a Task's Controller may Cancel or Terminate it; however, when a Task
is Cancelled or Terminated, all of its descendents are Cancelled or
Terminated. If a Task attempts to Cancel or Terminate itself, it will
Cancel or Terminate all of its descendents, but will Teave its own state
unchanged.

There are two types of tasks, Privileged and Nominal. Privileged mode
shall be designated by a Privileged Mode bit in the Task Table B entry
for the task. The Normal tasks hav- the Privileged Mode bit set to 0.
When the Local Executive determines that a Privileged Mode Task is ready
for activation, it will directly call the task. When a Privileged Mode
Task executes, it will be in the privileged mode, and if it makes an
Executive Service Request or is interrupted, the Local Executive shall
return control directly to the Task. PALEFAC shall set the Privileged
Mode bit in the Task Table B entry for the task and will place all of
the Task Table entries for the Privileged Mode Tasks in a processor at
the end of the Task Table for that processor, so that when the Dispatcher
must search the Task Table the Privileged Mode Task Table entries will
be examined first.

3.1.2.1.2 Comsubs

In addition to Tasks, the IDAMST Application Software may include another
kind of processing module, known as the "Comsub". A Comsub is a Jovial
J73/1 based procedure declared external to any Tasks. A Comsub may be
called from many Tasks; there is a copy of each Comsub in any processor
containing a Task from which the Comsub may be called.

A Comsub communicates with a Task which calls it only through its para-
meters and/or function result. No Comsub may execute any Real-Time Pseudo-
Statements; however, one Comsub may call another.

When a Task calls a Comsub, the Task is considered to be executing within

the code of the Comsub. Thus, it is possible for one Task to be suspended
within the code of a Comsub at the same time that another Task is

executing within the same Comsub. In other words, a Comsub must be re-entrant.
To implement this, every Task has a Comsub Local Storage Area assigned by
PALEFAC for storage of Tocal data by the Comsubs which it calls. At any

time, there is a Comsub Stack Pointer which points to the area available for
storage to the next called Comsub., This Comsub Stack Pointer is considered

to be part of the process state of the Task, and is saved upon the occurrence
of an Interrupt,

3.1.2.1.3 Compool Blocks.

A11 communication of data between Tasks or between Tasks and the external
environment (RT's) is done by means of "Compool Blocks". No Task may

40

directly access a Compool Block unless & GLCBAL Copy is declared. Normally,
a Task references e "Local Copy" which has size and attributes :¢entical

to tne Compool Block. A Task may copy the Compool Bliock into its Local Copy
Oy a READ Statement, or copy the Local Copy into the Compool Block by a
WRITE or TRIGGER statement. From the point of view of the Application
Software, READs, WRITEs, and TRIGGERs occur instantaneously, so a Compool
3iock can never be read when it has been partially updated by a WRITE. If

a GLOBAL Copy has been declared, then the task in which the compool is
declared GLOBAL Cupy is allowed to access the GLOBAL Data Block directly,
rather than using Executive Read and lrite Requests into and out of local
copies of GLOBAL Data blocks. The Executive Read and Write Requests will
not actually move the data if the requesting task has declared the GLOBAL
data bicck as a GLOBAL COPY rather than as a LOCAL COPY. The GLOBAL COPY
provides tor the same central control of table formats as the LOCAL COPY does.

Compoo: Biocks are divided into three classes: Input, Output, and Inter-

task. Input Compool Blocks can only be accessed by Tasks in a READ statement.
Treir values are determined by RT’s. Qutput Compool Blocks can only be
accessea by Tasks in a WRITE or TRIGGER statement; their values are '"received"
arnly by R7's. Intertask Compcol Blocks are used solely for communication
betweer. Tasks.

Since a Cordoc: Block may be accessed in more than cne processcr and also,
possibly, in an RT, Compool Blocks may exist in multiple copies. Any processor
“n wnich a Compool 37cck is read has a Physical Copy of the Block; any RT
whicn references the Block, cr any processor which only WRITEs or TRIGGERS

the Compool Biock, is consicered to have a Virtual Copy of the Block. To
maintain consistency between the various copies of a Compool Block, the
Txecutive must send Compoal Update Messages across the Data 5Sus. Compool
Blocks are furtner classified according to when these Update Messages are

sent as: Synchronous, Asynchronous, and Critically Timed.

Synchronous Comzcol 3locks are updated from a single authoritative Copy,
whether in a processor or an RT, at a specified rate and phase (see 3.1.2.1.5).
A3Y copies of an Asynchronous Compool Block are updated wnen any of those
copies is chargea, eitner py the hardware of an RT or by a WRITE statement
within a processor. Criticaiiy Timed Compool Blocks are a special category
used only for Output. Tney may oriy be TRIGGERed within a Task. A TRIGGER
statement includes a "time 0 go". The Master Executive sends the Update

to the appropriate RT at tne specified time.

The various cetegories of Zompool Blocks are shown in Table 3.1.2.1.3-1,
aiong with tne ways whicn they may be referenced in a Task.

The first wora 7 each “hysical Copy of a Compaol Block is a "Minor Cycie
Time Tag" whicn indicates the last time the Pnysical Copy was updated.

See Figure 3.7.2.1.32-1 for the relationships of remote Terminals and Tasks
to Compools.

— . -

s¥d0(g (00dwo) jo saiachaze] |-g°L°2°l°€ algel

*sysej Auew uy *sysel Auew
peaa *syse} Auew uL pead “jsej auo
Ut ualjLumM 3q Aey Ul U9l LumM aq Aey ASVLIYILN]
o~
<t
*syse| Auew *syse] Auew *jse] auo
ur pasabbruay aq Aey Ul u3l)Ltum 8q Aey Ui U333 L4M 3q Aey 1ndIno
!
¥Se] 3uo uy *sysej Auew uy
OV3Y 3q Aey ul QV3Y 99 Aey 1ndNI
GINIL ATWIILIYD SNONOYHINASY SNONQYHINAS '

sy

(READ)

RT ——2 [NPJT COMPOOL —2 TASK
(WRITE TRIGGER)
RT €~—— (uTPUT COMPOOL «——— TASK
(READ)
TASK ——> INTERTASK COMPOOL ——» TASK

3-1 Reiaticnsnip of kemote Terminals and
Tasks to Compoois

cvernty Gre wsed Tor CONTTO ComnunTCation oeoween T&sks. An Event has two
50ssioie vatues: an anc otf, A Task ray read the value of an fvent, may
WAIT on an cvert ‘see 3.7.2.71.3) and an Ivent may appear in the Event

sses of fvents: Application Lvents end System
s cre set on and off explicitiy by Tasks. System

) u
SVENTS, ADD nldt z o
cvents are ol on andg o7f oy tne Ixeculive upon certain occurrences. The
Tnitial velee o7 ai i events is off

y U o
PR

ation tvent. Such an Event is
- off wrer the Task returns to
tvent associated with a Task

Any Task may rave a°
set dn when tro o
nactive or Urovoxe!s
must have the save

Any asynchronco T LT L o L. Tl . ueoetee Compoot vodate Event.
Sucn an Lvent Toas T T LiQlk TS upditec, either Sy @ Task
or an RT. The el with ¢ Compoct oiock must nave the

Sanme name as The

s
)

Minor Cycle Cvenio e Se a5 v tne cxelutive acoording to specified
rates and phaue, Lue o...l.0.5. . They may onuy be referenced in Event

Condition Sets.

[}

3.0.2.0005 T
The AapTicatier LT aate oy LrdlT WA Tuhe In We ways: i1 may
reference dbs.. .o " To, Or C 1 cay $pecify that certain occurrences should

sy

happen cyclically., Absolute time is measured in seconds from the initiali-
zation of the system. Cyclic time is maintained in terms of Minor Cycles
and Maior Frames.

A Minor Cycle is the shortest period of time at which a cyclic occurrence
may be specified. A Major Frame is the Tongest period of time at which a
cyclic occurrence may be specified. There are a ‘ixed number of Minor
Cycles to a Major Frame {currently 64, and each Major Frame has a fixed
duration (currently one second). Every Minor Zycle s numbered in order
of its occurrence within a Major Frave, starting with zero.

Cyclic occurrences are specified by period and ohase. Period is the number
of Minor Cycles between successive occurrences: phase is the Minor Cycle
number of the first cccurrence withir any Maior “rame, Tlearly, 0 £ phaseg
period < 64.

In practice, Minor Cycles will not always occur exact’y wher they theoretically
should, partly because the Data Bus may be overloadec “n any given Minor Cycle,
However, the Executive guarantees that these errors are not cumulative;

it will always generate the next Minor Cycle as close as possible to the
theoretical time, regardless of when the previous Minor Cycle occurred.

With one exception, the Minor Cycle is the finest qranularity of time
knowable with the IDAMST system. Thus, when a Task reads the abso’ute time,
it receives the theoretical %time of the last Minor Cycle. The sole exception
to this rule is the Critically Timed Zompool Blicck. When a Task TRIGGERs
such a Compool Block, the Executive will attempt to send the Update Message
to the RT at the precise time specified.

3.1.2.1.6 Real Time Pseudo-Declarations

Real Time Pseudo-Declarations are used to declare the real time entities
referred to with a Task. There are four kinds o¢ Rea! Time Pseudo-Declara-
tions:

Task Declarations,

Event Declarations,

Compool Block Dectarations, and
Comsub Declarations,

-

oo o

Task Declarations are used to declare Tasks referred to in Real-Time Pseudo
Statements. They create a reference to the Task Table A entry for the
appropriate Task.

Event Declarations are used to declare Events referred to in Real-Time Pseudo
Statements. They create a reference to the Event Table entry for the
appropriate Event. If the Event is a Compool Update or Task Activation
Event, it must be declared as such in this Declaration,

Compool Block Declarations are used *to declare any Compool Blocks referenced
in RCAD, WRITE or TRIGGER statements. They do two things:

44

sy

anerTT ~

.. Trey Create o reterence TS Tne Jate Jescripilor Biocck for tne
corpce. 3lock, anc

0. Tney access tne Compoc: within which tne Compoel Block is declarec,
and from it create a declaration for the Local Copy of the Compool

31ock.

4 Compooi Block Deciaration must indicate whether a Compool Block is read,

written, updated (both read ana written) or triggered within the Task.

Comsub Deciarations are usec 0 declare Comsubs caiied within the Task.
They simpiy generate thie appropriate no- PRGC declaration.

3.1.2.1.7 Real Time Pseudo-Statements
Tne Application Sofiwarce recuests the services of the Executive througn

Reat Time Pscudo-Statemernts. Tnere are 11 kinds of Real Time Pseudo-
Statements:

9 Scnecule Statements
hR Cancel Statenents

C. Terminate Statemer s
a. wait Statements

e. Signai Statements

‘. Read Scatements

3. e Staterent

. Gger Staterents
. mt Stetenent

] TonCiTIGs Ztatemeris
<. v Sl TErent:

Real Time Psewcg-Stitesents ol e as Calls to fxecutive rouitnes, £assing

the appropriaze information 4s pavaneters.

G200 701 0 Screguate Statements

[€9)

Scneduie STtatemcnis are .:G3 oy 602 143k o Scnedu'e another Task. A
Schedule Staterant a0 .dss tne Taiiowing information:
a. The ~ahe o7 tre ichedu el sk,
5. Tne »-fort iy of the Scheauitg Task,
c. Tne .tonec Conaliions, ST oany, o the Cvent Condition Set of
e T osa,
a. Tae .. atlned CCaatIiint, T Ly, Tn othe fvent londirtion Set of
tre T
<. TR LG LT LLue 0T s ¥Anor lycle ovent, 1T oany, in the
SVESTL LITGTUTIT tiel o7 otre Task
Ten LGTOTED 70 L Laticol et Tolme lonatithor Sens are cefined by
Svent eaprets NS L Tre LTty TLr LvenT o exaression sk
VUL L st Ll NS oA &aoroiiton AND <@vent expression»
< AR G - o T et seT>
RO S - S 3 L
Clia TR ““ il L g e \1"‘ LR
35

Fach <onditiom> in this expression corresponds to a Condition in the Event
Condition Set. The presence of a NO7 indicates that the desired value is
off; the absence indicates that the desirec value is on. The Events named
n the Levent set> are the Events associated with the Condition,

3.1.2.1.7.2 Cancel Statements

The Cancel Statement Is used by cne Task *o put another Task into Uninvokec
state. The Cancel Statemen<t inciudes *he name oF *he Tas< to he Cancelled,
This Task must cither ne the Tasik within whnich he Statement i3 executed,
or a son of that Tasx. I< z son is cance’lecd 271 the descendents of the
son are aisc cancelled automatically. If a Task attempis fo Cance? itsel’,
it will rot affect its own state, bu* will Cancel a’l ofi%s descencdents.

If a Task specifies itse’f in a Cance? S*tatement, it must be declared “n

a Task Declaration within itself.

. 3.1.2.1.7.3 Terminate Statements

The Terminate Statement functions identically to the Cancel Statement,
except that it returns a task to the scheduled state.

3.1.2.1.7.4 Wait Statements

sy

Wait Statements are used by Tasks to place themselves into Wait state
pending certain occurrences. There are four kinds of Wait statements:

Absolute Time Waits
Relative Time Waits
Latched Waits
Unltatched Waits

an oo

An Absolute Time Wait places the Task into Wait state until a specified absolute
time. If the specified time has already occurred, this statement is a No-Op.

A Relative Time Wait places the Task into Wait state for a specified period
of time. I€ the specified period is non-positive, this statement is a No-Op.

A Latched Wait places the Task into Wait state until a specified Event
reaches a specified "desired value." If the Event already has the desired
value, this statment is a No-0Op.

An Unlatched Wait places the Task into Wait state until the specified Event
is changed to the specified value. This statement isnever a No-Op.

3.1.2.1.7.5 Signal Statement

A Signal Statement sets a specified Event to a specified value,

' 3.1.2.1.7.6 Read Statement

A Pead Statement copies the value of a specified Compool Block into the
corresponding Local Copy. If the Compool Block is a GLOBAL Copy then no
c1ta transfer occurs.

4¢

A Trigger statement reGuests the Executive to send tnhe Local Copy of the
specitied Compool B8lock to the appropriate RT at a specified time. The
sseciftied time must be between two Minor Cycles and one Major Frame from
the time the Trigger Statement is executed.

5.7.2.1.7.5 tvent Statement

erent yie.ds the vaiase oF tne fvent wnicn has been passed as an
nis Zvent must have oeer previously dectlared in an Event Declaration.

5.7.2.1.7.10 Tasx Conaition Statement
Tre Task Zoncition Statement s appiied to a Task. This function yields the value
. TRUE 17 the task NVOKED, FALSC if it is not.
A
: C1tl signed integer signi-
&
3.1.2.1.8.2 Appincations Sys.ooo Zeror interface
Applicetions Sofrware car conaitions and cormunicate the conditions
10 re Subsystem ltatus Tne g ~1nary source of errors wili be the
Equips functions. “nes; wi. 1 cetermine any errant status with equip-
. ment and sensors anc G0 re errors to the Subsystem Status Monitor.
ne Subsystem Stut.s YoriTor > error anc gétners errdr statistics.
¥ tne last error wul vl *im2 or trere were TOO many Ssuch
errors, the Suos,;. MRS av the Confiurator. Thne (onticura-
} TOe WL carcal ot TUman L T AL TnS T Lol o7 Thag o evvors are of S.it A
; p 1n*'ude tO war~. "l rolhnT oL ; Or can invoxke the Recon-
i “iguration functios il e 0 3.2.°0.3.%00.
y
3

3.1.2.2 Jovial J73/1 Compi'er

Since certain portions of the Executive must be written in assembly language,
the Executive must be cognizant of and compatible with the calling conventions
used by the Jovial J73/1 compiler. For use uncer Software Development and
Verification System {SDVS} in the interpretive computer simulation (ICS) mode,
the Executive must use the calling conventions specified for the IDAMST
processor. In Statement Level Simulation {SLS) mode, the Zxecutive must use
the calling conventions specified for *he DEC 10.

3.7.2.2.1 J73/1 IDAMST Processor Run Time Conventions1
The procedure linkage convention is:

1. A parameter list is a series of parameter addresses, stored one
per word. A function has an additional compiler generated parameter,
described by the last entry in the parameter list, to receive the
function value.

: 2. An @ procedure PP has DSIZE(®P) stored in the word immediately pre-
ceding the procedure entry peint.

? 3 Register assignments are as follows:
0 - Volatile, i.e,, may be changed by called procedure. »5
~ . 2 ~ Contains procedure return address (set by JS instruction) 2
E - @ space pointer, set tc the called procedure's work space 2
address when the called procedure is an @ procedure.
F ~ Parameter 1ist pointer.
4, It is the responsibility of the called procedure to preserve the
contents of registers 3 through E.
. 3.1.2.2.2 J73/1 DEC-10 Run Time Conventions®

Procedure Linkage Conventions

The standard DEC-10 linkage convention is used by J73 object code. The conven-
tion used is as fcllows:

. R17 describes a 1inkage stack. The right half contains the address-1
/ of the next free stack word. The left half contains the complement |
; of the number of words-1 unused on the stack, i

R16 is used as a parameter list pointer. A parameter list is a series
of parameter addresses right justified and stored one per word. The

3
From Appendix E of the Jovial J73/1 Computer Programming Manual, Computer
Sciences Corporation, October 1675,

2From Aopendix D of the Jovial J73/1 Computer Programming Manual, Computer
Sciences Corporation, Qctoher 10775

48

Tett half of each parameter i:.t entry is zero., Preceaing the
sarameter 1ist 1s & parameter count word containing zerv in the right
T half and the negative of the sumber of parameters in the left half.

. RO 15 used as the function value return register for-calls to FDRTRAN
functions. Far J73 functions, an additional parameter \describeg by
the last entry in the paramatef Tist) i3 passed to veceive the - -
function result.

. Registers RO, R1, and R16 are considered to oe vqQlatile registers.
That is, their contents need not be preserved by the called procedure,
Registers RZ through Ri5 and R17 must be preserved bx the called.
procadure.

A call to a procedure Pl is dane as fot1lows:
MOVED R<6,’L ; GET PARAMETER LIST ADDRESS
PUSHS Ri7,P7 5 CALL PY
RN 3 RETYRN HERE

J73 Parameter Passing

373 procadure paraieters are passed using the standard DEC-iC parameter list
convent on. lach actual parameter is passed using a parameter 1ist worg as
o1 Tows:

. ¥iiue Tnout surameters - [T a tyne converston must be applied to the
wClug’ Zeranster or the agtua! paramater 1s not contained in storage
exact. ;s ay the Yermal parameger (stored in consegut.ve full words)
then “ic veiue of the actual naramezer, converted if necessary, is
assiared ¢ the temp before toe cati. If this tempassignment is done,
the aacress of tre temp s passed in the narameter list. Otherwise,

the zacress of tne actual perameter is passed in the parameter list.

The ca..ed “rocecure 9r0i03ue (the initial code for the procedure)

COPplin va ub “ndut Jaraneters dJsing the address speci ified in the

pararewe” 3T Lo the Tormal parameter.

Vaiue J.tunt Saratielers - ¥ & tspe converzion must de applied tc the

form:’ Zarancter sofore iU C3a so @ssitred to the actual darameier

of 17 Unc avtaal ang vermal Cacam@ter are not atiocated o the same
Tuli o woras, tne acaress Sf o temp which matches

15 Zassed in the pa“dmetef istT. Utherwise, the

NuTDe 57 Corisacetive
the “or7 L0 Larameter
ACTuc SuNL & aGO0es5s s PasLid 1t the sarameter 1ist. The catled
DrOCEaur: Cot L atue L Tre Code excauted itmeciately befors procequre
rameter using the aaares: specitied
NS LLrraG SNty DLTATeTer st entry, upon return from the
Broc. e Sual, o b LuUout value parareter Tor whicn a temp was
. durti wall Copy the vaiue contained in the
temy T3 LG SOMesninGiny alludl parameter,

VR - E - S m
ERIC, Jon el el Ve CUTuT Jdv

pd_;.\vn._ . T

. T T A VL W Lurs, Tme acaress of tne actuadl
PAra e’ Ty Sugsew of ThU Darareter 1ist. Tne c:lied procedure will
45

EPL\¢ASEISRESI1U\bTTYPRAGT1CABLB
Ri e GUE 2 b e 10 DO

sy

-~
L‘m_:_

3.1.2.3

use this actual parameter address for all access to the formal para-
meter in the procedure,

J73 function results - J73 function results are returned using a
compiier generated value output parameter as the final parameter. The
calling procedure supplies in the parameter 1ist the address of a

temp which will contain the function result value upon return,

Parameter procedures - The address of a two word packet is passed in
the parameter 1ist for parameter purposes. The format of the nacket

is as follows: _
PEP

PAP

where
PEP is the procedure entry point address
PAP is the procedure @ space pointer. This value will be placed
in R15 immediately before calling the procedure. It will
only be used by a procedure which is internal to an @ pro-
cedure to locate the procedure's local storage.
Parameter labels ~ The address of a two word packet is passed in the
parameter 1ist for parameter labels. The format of the packet is as
follows:
LADR

RPKT

where
LADR is the address of the label.

RPKT is the address of a two word register save packet which
contains values to load in registers R17 and R15 respecitvely.
[t is only valid to transfer to a label parameter if the
procedure containing the label is currently active. The
values for R17 and R15 are those established for the
registers in the containing procedure prologue.

SOVS

To be useful in the development stages of the Application Software, the Executive
must run under control of the Software Development and Verification System (SOVS).
In Interpretive Computer Simulatior mode, the Executive should be identical to

50

ey

ndat used on the IDAMST orocessor., However, the Executive musc also be able
0 interface witn the Statement Level Simulator (SLS) and the Functional Data
3us Simulator {FDBS).

3.1.2.3.1 StS

In SLS mode, those parts of the Executive which are written in assembly lanquage
must be written in DEC-10 assembly code. The SLS mode Executive must be com-
patible with the conventions used for the handling of simulated interrupts and
with the calling conventions used on the DEC-10,

5.1.2.3.2 FDBS

When the IJAMST Executive is running with the Functional Data Bus Simulator
{F08S), the 3CIU interface functions af tne Local and Master fxecutives will be
p“rfOf,ed oy the FDBS. The Executive must be able to interface with the con-

venticns of the FDB8S. Tnese conventions are currently undefined.
2.0.2.4 PALEFAC

PALCFAC atiocates and initializes the txecutive Tabies which drive the IDAMST
Executive., These taples cescribe the attributes and interreiaticns of the
varicus components of the IDAMST Appiication Software ir machine-readadble form.
Thnere ara twe categories of Executive Tables: Loca? Executive Tables, which are

eferencec 5y the Local Executive, and Master Executive Tables, which are
wef~renced oy tne Master Ixecutive.

S.0.2.5.0 Local Executive Taples

The Local Executive Tabies are used 7vor control of Tasks, tvents, Compool Blocks
and Comsubs, Tney aiso contain tne information necessary for all I/0 processing
other than the contro?! of the Master BCIU.

3.0.2.4.1.1 DMA Potnter 3Tocks

The Local Executive uses two G3-word D1ocks of pointers for DMA access by the
8CIU. The first OMA Poirnter 3loca is usco on even numbered Minor Cycles; the
second on odd, In each 2.0Ck scrne ZF “tne pointers are fixed and some are
dynamically s¢o op avery tine the DMA Pointer Biock is used. PALEFAC should
determine which nointers arc ¢ rematn Tived and which should oe maintained
dynamically. .7, Tor “asienco, fewer thuan 31 synchronous 1/0 biocks are
referenced by . Zrccesscr, tnen all the “ointers except the Asynchronous Pointer
may remain fixco.

The format of acrn OMAa corator Biock is shown in Figure 3.7.2.4.0.1-1. The
actual amount wnich 1s snown as “ixed is, of course, hypothetical.

fach dlock must begin 04 &n acerass Gi ble by o4

3.0.2.6.1.2 Syachronoes WSO Tudles

Tre SYyndhrond. 170 ln ot wsBC DY The Lonel JaeduTive T determing which
SYA PoinTers o oseT Wl Tn Tno dnwruuriate JMA Pointer 510lk on any given Minor
Cycie. There are wnree el oy wsed Tor this purpose:

51

Sokaiint

-

cape

A

l
|
FIXED

VARIASLE

FIXED

VARIABLE
!

.

Word

Unused

Fixed Pointers to Synchronous Compool
Blocks Received by Processor

Variable Pointers to Synchronous Compool
Blocks Received by Processor

Asynchronous Reception Pointer

Unused

Fixed Pointers to Synchronous Compool
Blocks Transmitted by Processor

Variable Pointers to Synchronous Compool
Blocks Transmitted by Processor

Asynchronous Transmission Pointer

Figure 3.1.2,4.1.1-1 Format of a DMA Pointer Block

52

e n e Yotchiam s arhe i h i e e o

cmpe

4, Tne Yyncargnaus Pointer (SYNPTR) Tanle

5. The SYNPTR Index Table

¢. The Pointer Block Descriptor ’
The SYNPTR Tabie contains two blocks of pointers for each Minor Cycle. One

contains the addresses of all compool blocks received during the Minor Cycle,
excluding the compool hlocks whose addresses are fixed within the appropriate
DMA Pointer Block., The other contains the addresses of all compool blocks
transmitted during the Minor Cycle, excluding the addresses fixed within the
appropriate OMA Pointer Block. Note that any one of these blocks of pointers
may be nu'l (if, for instance, all tne DMA pointers are fixed within the DMA
Pointer Blocks).

The blocks of paianters for two or more Minor Cycies may occupy the same physical
ioccation witnin the SYNPTR Table. For instance, iT no biocks are received on
Prases | or 33, Pericd 54 dand no blocks are received on Phase 1, Period 33,

then the cata receivec on Minor Cycles 1 and 33 wiil be identical, so the biocks
07 Receive Pointers far these Minor Cycles need not be duplicated witnin the
SYNPTR Tabie.

Furthermore, tne block of pointers for one Minor Cycle may be wholly contained
witnin the dlock of sointers for a different Minor Cycie., For instance, if no

. COMPOGT biccks are transmittec on Phase 18, Period 64, but two compooi blocks
are transmitted on Phase 17, Period 64, then the block of Transmit Pointers for
Minor Cycie 17 wiil be:

GG
-
noo |
§
. :
TAAnSmIT nointers f
. ? ‘.anu:.b pointers Tor
. ¢ MC 218
1)
+ m y; . .
n 4 Transmit pointers for
e oma) MC #17
1 Transmit pointers for
{ Period 1, Phase 17
n+ m+ 24
Tne SYNPTR Incues T2Zhe "¢ Lieq T G0late lne olocks of Receive and Transmit
2oanters witnir SYNPTR for any ¥inor (yi.e. It has one entry for each Minor
CycTe Number. Tre nformation in each entry is:
jtem JEs¢riation
“urnles L7 vartuDie synoarcnous Reccive rginters for this Minor Cycle.

ro -
)
—~h
3
-
c
)
:
>

Juceive Pointer Tn SYNPTR for this Minor Cycle.

¥ Numhe vortade Lyncnronous Transmit Pointers for this Minor Cycle.
“ AfF.eT o “ir.t Teaesuil Pointer n SYNPTR for this Minor Cycle,
Tha fPganten G SentTULG” 1y ased Dy Che L0C3 Lxecutive to cetermine which
Jurts OF tnhe ONMA LA I0” Ll GoNs ure Tiaed and wnich are variable. The Pointer
3T0ck Jescriptir ConTsini four woirds:s

33

sy

— e
Ll laaia s onn
Word Description

0 Address of first variable Receive Pointer in Block O
1 Address of first variable Transmit Pointer in Block 0
2 Address of first variable Receive Pointer in Block 1
3 Address of €irst variable Transmit Pointer in Block 7

Thus, for instance, the value of word 0 is LOC(DMA Pointer Block 0) + (number
of fixed Receive Pointers).

3.1.2.4.1.3 Task Tables

To control the state of the tasks within its processor, the Local Executive uses
two tables: Task Table A and Task Table B. Task Table B contains entries for
each task resident in the processor. Task Tabie A contains entries for each
resident task and for the controller and sons of such tasks, whether resident
or not.

Task Table A is ordered according to the invocation tree, according to the
following rules:

a. The controller of a task always precedes the task.
b. If Tasks A and B are siblings, if A precedes B, and A is not the
controller of B, then every sor of A precedes B.

The relative order of siblings is arbitrary. Note that this ordering extends
across tasks in all processors and must be followed within the Task Table A

of each processor, although no single Task Table A need contain entries for all
tasks.

Whenever a task is referenced by the Application Software or by the Local
Executive in another processor, the Task Table A entry for the task is referenced.

Task Table B is ordered according to priority, with the highest priority task
first,

The Task Table B entry for any task is used internal to the Local Ixecutive for
referencing the task.

Table 3.1.2.4,1.3-1 represents the various items to be found in each entry of
Task Table A. Within the Executive, entries in Task Table A are referenced by
entry number, starting with one. Within the application software, a task BB

is referenced by an REF TABLE T$BB, where LOC(T$BB} is the address of the Task
Table A entry for BB,

Item Description
T Non-resident bit

Processor #

Pointer to Task Table entry
l Non-resident bit for Controller

Processor # of Controller
Pointer to Task Table entry of Controller
Invoked/Uninvoked Bit

0 ~N O H»W N

i Number of Descendents
Table 3.1.2.4,1,3-17 Task Table A

cA

ey~

Item #1 1s on 17 the task is non-resident. If tne task is non-resident, Item #c
is the processor where it resides; if the task i3 resident, [tem #2 is zero.

For resident tasks, Item #3 1s an index to the entry for the task in task lable

8. For non-resident tasks, Item #3 is an index into Task Table A in the {
appropriate processor.

items #4-#6 point to the controlier in the same way that Items #1-#3 point to tf
task. These items may prove unnecessary in the ultimate implementation.

Item #7 is on if the task is invoked, otherwise it is off,

ltem #8 is the total number of descerndents of this task with entries in this
processor's Task Table A. ‘"Descendents" includes sons, grandsons, great-grand- :
sons, etc.

Tabie 3.7.2.4.%.3-2 represents the various items to be found in Task Table B. 1
Task Table B has entrie:s oniy for resident tasks. Like Task Table A, it is
referanced oy entry numder starting witnh one. Thus, if Item #3 of Task Table A
Tor TASK has a value of N, the entry in Task Table B for TASK begins at LOC(Task
Table 2) + (N-1jlentry lengin for Task Table B).

{Eﬁeﬁi Description
|)y Task Status [urinvoked/inactive/waiting/dispatchable;

Z Present cvent Condition Set
O Jesired fvent Cendition Set

& Latcned/uniatened Mask
S5 Back Pointer for Wait Chain
| 6 3 Forwarc Pointer for wait Chain
VA Tine or Event Welted On
8 ; 5tariing Acaress oT Tesk
- iritia. vaiue for COMSUB Stack Pointer

10 Save Area for CCMSUB Stack Pointer
ﬂ?] save 4drea for Registers and PC
hZ ; Kestart Aadress
h3 ; 20Ny O Aloivation fvent
3"14 ' Irivileced Bit
s i Tauk Priority

Tepie 3.1.2.4.1.3-2 Task Table B
item =] is usel 10 "naicate ine state of tne task. The values for Item #1 are: !

y - T TIVOR O

i - naluive
7 N A
5 - ilslinalie :

55

campe

Item 42 is the Event Condition Set of the Task,
Item #3 is the Desired Event Condition Set.

Item #4 indicates which events in the Condition Set are unlatched; a "one" in
any bit position means that the corresponding position in the Condition Set is
for unlatched events. 4

Item #5-#7 are used to implement the WAIT statement,

The implementation of a timed response requires the establishment of a time queue.
This time queue will be defined in real time by the Back Pointer and Forwards !
Pointer within each task in the queue. The beginning and end of a queue are
marked by a null Back or Forwards Pointer. Since tasks are referenced starting
with one, zerc is an unambiguous "null" value.

If a task is waiting on time, Item #7 is time. Time, in the Executive, is]
measured in number of minor cycles from system injtialization, maintained as a :
31 bit unsigned integer.

[f a task s waiting on an Event or the complement of an Event, the "queue" defined
by the Back and Forwards Pointers will be used to identify all tasks waiting on

the same condition. In this case, the high bit of Item #7 is on, and the low

order bits point to the appropriate Event,

Item 48 is the address of the first executable statement in the task.

Item #9 is the address of the beginning of the Comsub Stack Area reserved for
this task. See "Comsub Local Storage Area" for further information (see
Section 3.1.2.4.1.8).

Item #10 is used to save the current value of the Comsub Stack Pointer when the
task is dispatchable but not executing.

Item #17 is a save area for all information which must be remembered during an
interrupt or a WAIT.

Item #12 is set, on task invocation, to the starting address of the task.
Thereafter, it is set to the address following the most recent WAIT statement
executed.

Item #13 is an offset from the beginning of the Event Table to the associated
Activation Event for this task. [f there is no such event, Item #13 is null

Item #14 is the flag to specify whether the task is to run as the highest
priority task, and therefore be called directly from the dispatcher and return
control without leaving privileged mode.

Item #15 is the priority assigned to the task and will be used to determine the
relative order in which dispatchable tasks will run.

56

Aati

Item Description
P Event Value
|
3 Initialization Value, State |
3 Initiatization Vaiue, State 2 Restart i
i 4 Initialization Value, State 3
f
* 5 Namber of Non-Local Copies
. !
) Number of Tasks Pointed to
b7 Pointer tc Task waiting on tvent ;
3 i3 Pointer to Task Waiting on Complement
r | |
9 Processor # of 1st Non-Local Copy :
. 10 tvent Table Index of 1st Non-Local Copy
|
P9 Brocessor # oF rnth Non-Local Copy :
i 10 Zvent Tadie ancex of nth Non-iocal Copy
i N 35T Position in Task 1
S 12 Task Tabie B Zntry Yor Task |1 ;
j |
i
. o .
| FT 210 POSTTI08 In Task m !
"] ~) _ H
12 TasK Tadle §orntry for Task AJ
Taole 2.0.2.4.7.5-1 Twvont Tabie Entry
item =1 is the va ue 7 e event
Ltems =2-84 are entitivesy ircidded as values for restarts. The subject of
restarts requives furiner study.
Tter =5 is the nurter 07 procesiors oirer tnan this one which reference the
same event, Tais item incicates the numper of items of types #9 and #10.
Ttem £6 18 Lhe rouoer oF TaSKS Wl TRIA NS processor which include this event
inoTheir avert condition S&Ts. Tnis item andicates the number of items of
iypes =11 anc <./
»
57
Y 1
-— ’)
. ——
— 4

PALEFAC will supply the number of entires in Task Table B as a single word
unsigned 1irteger.

3.1.2.4.7.4 The Event Table

The Event Table contains an entry for each Event referenced with the processor.
The information in each entry is shown in Table 3,1.2.4.1.4-1,

e

Item #7 points to a task waiting on this event. If there is no such task,
Item #7 is null.

Item #8 points to a tavk waitina on the complement of this event. If there is
no such task, Item #8 is null.

Items #9 and #10 point to Event Table entries for this event in other processors.
Item #9 is the number of the processor with such an entry. Item =#10Q is an
offset from the beginning of the Event Table in that processor to the entry

for this event.

Items #11 and #12 locate the position of this event within each event condition
set including this evert. Item #11 is the bit positior within the event condjtion
set, counting the leftmost bit as bit 0. Item #12 is the entry number of the

Task Table B entry for the task with this event in its condition set.

The concept of "copy of an event" requires further elucidation. If an event is
referenced by the same name in two different processors, the processors are
considered to contain copies of that event except in the following cases:

a. Minor Cycle Events
b. Compool Update Events

¢

' These events signify occurrences within the Local Executive; therefore, if the
"same" event is referenced in two processors, the two events are maintained
independently, and are not considered to be copies of each other,

. 3.1.2.4.1.5 Minor Cvcle Event Gereration Table
Each Local Execu*ive in IDAMST uses a Minor Cycle Event Generation Table (MC
EGen Table) to determine which Minor Cycle Events to signal on any given Minor
Cycle. The format of the MC EGen Table is modeled after that of the Synchronous
1/0 Tables.
The MC EGen Table is divided into two parts: the first part contains two items
for each Minor Cycle; a 4 bit count field and a 12 bit index field. The index
field is an offset to the beginning of the second part of the Table; it points
¢ to the beginning of a 1ist of Svent Table pointers which point to the appropriate
MC Event entries for the given Minor Cycle, If there are no MC Events for that
Minor Cycle, the entire word will be zero.
Assuming 64 Minor Cycles per Major Frame, the format of the Table would be:
MC EGen Table
Word 0 3 4 15
0 umber of
Fvents Tor First Event for MC O
co First Part
: KK 3 4 15
_ 63 umber of
Fvents for First Event for MC 63
C 63 1
58
M‘——'-‘ V .

e

U

MC EGen Tuble {Continued)
aCTd C 3 4 15
LI " o !
87 anx . Pointer to tvert Taole |
i |
. : Second Part
5 5 4 15
: 1
N B ank i Pointer to tvent Tadble
L A]

TrJis, Tor instance, tc determine which MC Events to gererate for Minor Cycle '3,
:he L0Cat Zxecutive wiii reference wora 13 of tre Table, and get a count C and
an ingex h Then woras 64N through o3+N+C of the Tabie are the pointers to the

Zvent Tabie entries cf the MC Zvents to be generated.

TipL e ~ay vary. Aote trat, in general, many distinct Minor Cycles wiil cause
ictivalton of gn dcertical

PO

Tre aCtua) arrangenent of Eve Table pointers within the seccnc part of the
i
T5UIACT VisTs faould pe Tar 7

st of Minor Cycie Events, so the total number of
fewer than o4,

)

LCaTION Jetween TESKS and ATs. and 310 communication between tasks,
. Tnrouch tne event and tasking mechanisms, must be accomplishedl
-y 0 © COmDG0. o.ocks,

The contents 07 & compool SioCx ey LB L0Gated (altered) by tne application
feware throudr ¢ u g - TRIGGIX stazement or >y an RT. The

G ouse 07 & wRITE o7 TR

contents of a Co° 400. b0k fdy be determined by tne applicaticn software

through the use o7 4 READ stetenent, Or they may be determined by an RT.

Any compool biocx potentiaily enists in mql“”1* copies. Any processor which
-\h‘ o

RZADS a COMPOCtT S10CK MWST nave o Ohys copy 0f that block. Any RT which
references a CImMooC: Ligcn, and any orocesso* whicn WRITEs or TRIGGERs a compoot
plock 1S considerec to nave a virtual copy of that block.

Compcol blocks «re Ciassi<ied accereiag %o itnhe method used to maintain consister
patween the various copies ds:

a Syrenmonde.
b. Asyncnraoncas
C

Criticelly Timea

SYNIATON0US CCHIC3. 2.07TAS tave ¢ 5.0G0Q duinoritative cony, etther in a grocess
oroan RT, frow w7 .00 &) Giner c0j1es are upcated by the Master BCIU according
to phase and peridl.

417 tae Coplien o7 oLt ol alrronsus oonoa0t 5iack are wodated whenever any of the
> Lhanged, ¢ Lot oAl e o ts Ay 3A0CESS0T Whiln Fas a physic
093y 6T d C0ULLT . LT ol s ot Upcate Cvent associated with

The L0TpeST T RS LT Qe GF Lhe COMpooi DIOCK s
crarnged, eithes Lo o7 TuothLl tasa OF ¢ Qate Dus message.

53

sy

A critically timed compool block has one virtual copy in an RT, one physical

copy in the Master Processor, and one virtual copy in the processor within

which it is TRIGGERed, unless it is TRIGGERed by a task in the Master Processor.
The copy in the Master is updated at the time the TRIGGER statement is executed;
the virtual copy is updated at a "trigger time" which is specified in the TRIGGER
statement.

A1l the physical copies of compool blocks existing within a processor are
allocated by PALEFAC in a single, contiquous Compool Area. The format of each
compool block is:

Synchronouz and Asynchronous Compool Blocks

Word | Description J
0 - Minor Cycle Tag Word f
1 ' Data 5

: { Dat
ata !
" |

3.1.2.4.1,7 DODB Areas
Every physical or virtual copy of a compool block within a processor has an
associated Data Descriptor Block (DDB). A1l references to compool blocks
except those within the Synchronous I/0 Tables are done through DDBs.
There are three types of DDBs:

a. Synchronous DDBs

b. Asynchronous DDBs

c. Master Critical Timing DDBs
Synchronous DDBs are used for Synchronous Compool Blocks,

Asynchronous DDBs are used for all Asynchronous Compool Blocks and for any
virtual copy of a Critical Timing Compcol Block.

Master Critical Timing DDBs are used only for physical copies of Critically
Timed Compool Blocks, i.e., copies existing within the Master Processor,

A1l Synchronous DDBs within a processor are contained in a single contiguous
Synchronous DDB area. A1l Asynchronous and Master Critical Timing DDBs within
a processor are contained in a single, contiguous Asynchronous DDB Area,

Synchronous DDBs

tem Description
i 1 1 Sync/Async Bit
! 2 © Number of Words ir Compool Block
| 3 | Address of Compocl Block !
i 4 ' Period - 1 ‘
i 5 ' Phace _J

60

ltern =l tné DB 13 syncnrerius.

(tent #5 15 tne starting address of the compool block, i.e., the address of the

4C Tag Word.

Item #4 1s the number of Minor Cycles between successive transmissions of this
item., rfor instance, for compool blocks transmitted every MC, this vaiue is
zero.

Ttem =5 is tne phase on which the compoci olock
from zero o the vaiue of Item #4.

transmitted. This may range

Asyncnroncus DDBs

—

“Tter Description |

) Sync/Async Bit

? Local Copy Bit

3 usgate ftvent 3it

4 AT Transmit Bit

5 Mumber of Non-Locai “nvsical Copies

& Number of Woras in Compoo' 3icck

73 Address of Local Llooy

'8 JTfset to Update Cvent

95 iequest Vector for T 7K
N (f7set te DDB of First Non-pLocal

rrysical Cop

P aaguess Vector Tor First Non-Local

L °nysica. Copy i

in some DUBS.

Ttem 21 is of” secause this i3 an Asynchronous D0D5.
o o#2 U5 00 T et InysiCan CCGPY 07 tats compool biock within this
DroCessey, Tnt. tlo. Th0 latel whneTner ttem #7 s present.

item =3 is on C323TL o zvenT Tor thts Compoct niock within the
Jrocessor. This wretn:ar LTl s 1S ooresert., Note that this iten

can be on only -7 tten =2 iy oor.

L JITOOIT 0L 0CK n an KT oandg
"0l TrTaonter anagicates
noe cenast block o oe

5.CCK 1S not writion

e LT RO
- stems of types #iG end

.
.- - <
Cle D a0er Od

Jtem o 1S Lhe Aun0er LU owird Te Cwlxal. Diook, rncluding the MC Tag wWord.
- - N 1
R AR N N = CaSU T allcesL a7 Tne Soca. wnystoal copy of the
- ‘
2000, 3 OCk
o

(
‘
i
0
4

Ttem #8, if present, is an offset from the beginning of the Event Table to the
entry for the Update Event associated with this compool block.

Item #9, if present, is the Request Vector for updating the virtual copy of this
compool block within an RT.

Items #10 if present, are offsets from the beginning of the DDB Area within
each processor with a physical copy of this compool block to the DDB for that
physical copy.

Items #11, if present, are the Request Vectors for sending updates for non-
local physical copies of this compoc? block.

DDBs for Critically Timed Compool Bliocks other than in the Master have Items
#2-44 off; Item #5-7, and Items #10 and #11 direct the update message to the
Master Copy of the compool block.

Master Critical Timing DDBs

{item Description Bits
1 | Master Critical Timing Code 8
12 1 Number of Words in Compool Block 8
'3 | Address of Compoo! Block 16
|4 2 Triggered Bit 1
15 1 Request Vector 15
|6 | Forward Pointer to DDB 16 |
{7 i Trigger Time 16 |

Ttem #1

octal 377 to identify this as a Master Critical Timing DDB.

Ttem #2 is the number of words in the compool block, excluding the MC Tag Word.
Item #3 is the starting address of the Master copy of the compool block.

Item #4 is on when the compool s waiting for the trigger time.

[tem #5 is the Request Vector fur sending the critically timed message to the
appropriate RT.

Item #6 is an offset to the DDB of the next critically timed message waiting
for a trigger time.

Item #7 is the time at which the message is to be sent to the RT7.

62

D . SE

sub Local Storage Area

¢
.
.
Cis
-
<€
3
v
<

Zalr Task must have a Stack Area for use by the Comsubs and Executive Services
Routines wnich it calls. The length of each Stack Area must be:

a. At least long enough to accommodate the local storage for any
Executive Service Routine, and

b. At least long enough to accommodate the local storage for the
iongest possible chain of Comsub calls initiated by the task.

3.7.2.4.7.9 RT Reception Tables

T Reception Tables are used by the LG al Executive to identify Asynchronous
messages receivea from an RT. These messages are preceded by a word containing
adress and subacdress Trom which the message was sent,

Jaddress s useo to incex into the Terminal Originalor ADdress Tabie
iteins an entry for each of the 32 possible RT addresses.
e folicwing information:

| Teem? Description
i i Number of possible Asynchronous messages
Trom this RT.

Entry 0 SNAKE for the first message from
iothis RT

~

The Subaddress MAime Keys (SMAKE) contains an entry for each possiple Asynchrono.
message from an RXT. AVl messages from a single RT are contiguous within the
SNAKE. Each eiitry <rn tne SNAKE contains the foliowing information:

e Description
i Subadcress from which message was sent. E
7 Uffset into Async ODB Area to DDB for tnis)
1 fes5age., B
3.0.2.6.00.000 0 oot a7 Fonessors

PALEFAC will —.3ii/ wne teita: numder OF processors in the (JAMST as an unsigneac
integer,

S.01.2.807 o LaElultve Tabhies
Tne VasTtes oo Ll . Lo L. W0C ysed oy the Master fxecutive to control the
OPETATIONS O Sl T .

._‘;~ [P sl o e v aDo
Lo 14 T TV . ST GREL TIovery L038T0Le Hrocessor to
EAVIVIELAVELVES C L AT S0 aoon pIOCh upGute messace. The Reguest Vectors

b3

_y
- ’

sy

are assigned starting at 16, and proceeding sequentially from there. Request
Vectors 1 through 15 are reserved for interprocessor Service Requests.,

The Master Evecutive uses the Master Request Decode Table to decode Request
Vectors. Request Vector N corresponds to entry N of the Table, counting entries
from one.

There are two types of entries in the Master Reguest Cecode Table: one for
transmissions involving no masking and one for trancmissions requiring either
bit or word maskina., For messages with no masking, the entry is simply the
Master Instruction Set to effect the transmission, For messages with hit or
word masking, the information ir the entrv is:

{ Ttem | ____Description
; 1 T Masking flaq = 0
: Z ! Index into Master Instruction
Supplement Table
3 Word Mask

Item #1 is zero, to indicate that this is not a Master Instruction Set.
Item #2 is an index into the Master Instruction Supplement Table {See 3.1.2.4.2.2).

Item #3 is the word mask, if the message requires wo'u masking. If the messaae
requires bit masking, this item is all ones.

3.1.2.4.2.2 Master Instruction Supplement Table

The Master Instruction Supplement Table (MIST) contains an entry for each
Asynchronous message which requires bit or word masking. The entry is located
by Item 42 in the Master Request Decode Table.

Each entry contains two Master Instruction Sets. The first js the Mode Command
to indicate the proper kind of masking: the second is the command which performs
the transmission.

3.1.2.4.2.3 Master Remote Terminal Request Tables

To decode asynchronous requests from Remote Terminals, the Master Executive
uses two tables, the Remote Asynchronous Table (RAT) and the Master INstruction
Keys (MINK).

RT asynchronous requests are identified by:

a. RT number, and
b. Bit position in the Activity Register

The RT number is used to index into the RAT. The RAT has 32 entries, one for
each possible RT number. The format of the RAT is:

64

e o v e -

—

rm SR

RAT.
- Ttem Description
0 Number of possible requests for j
! this RT |
iz ! Index to first MINK entry for this ;
| RT :

item #] s the total number of possible asynchronous requests which this RT !
may initiate.

Item #2 37s an index to the firs: entry in the MINK for an asynchronous request
which may 5e initiated by this RT.

. The MINK contains an entry for each possible RT request. A1l the requests for ar '
. given RT are contiguous within the tablie. The current format is:
+
T e, e
. Tten | Sescripiion

- T .

P Mask for Activity Register ;

{ 2 | Master Instruction Set B
Jtem #7 iy a mask for the Activity Register. It has one bit on, in the position

which signifies this particular asynchreonous request.

Item #2 is the Master Instruction Set to effect the necessary asynchronous
transmission.

3.1.2.4.2.4 Master Syancnconous 1/0 Tabies

The Master Synchronous 1/0 Tedbies are used by the Master f£xecutive to perform]
. the appropriate syncnronous Bus Transdactions every Minor Cycie. Two tables are ﬂ
used for this purpose: '

a. The Syrntnronous instruction List }
b. Thue nsisuction Lise 20 inier TaDé
Tne Synchronius Irstruction Cise onnains one block 0F Instructions for each t
phase and peris. Tor walln thaere ive syrchronous Bus trarsactions. Thus, 1t

contains up oo o MOy~ nlocks, where MO s tna number of Minor (ycles per

Major Frame. Jeco o5och contains one Master instruction Set for each synchrond

JuS transtiss o o oo werforred Tor thnet phase and period, plus @ Link Instruct

f Yair, The Lirs I7o2ruliion Jairs are dynamicaily set by tne Master Executive
to poIntT o tne alxy 2103k of "nstructions to pe oerformed during the current

1 : Minor Cycie. T-e 0. insielction ©of the 1ast anstruction biock is set to a
~alt InsTructicn Patre witiin the cacecutive.

sy

If any of the synchronous transactions require bit masking, the Master Instruction
Set which effects the transmission will be preceded by one to send the proper

Mode Command. If a transaction requires word masking, the transmission Instruction
Set will be preceded by two Instruction Pairs. The first will be a No-Op Instru-
ction with the interrupt bit set. The second will be the appropriate Mode Command.
The word mask will be contained in the second word of the No-Op Instruction.

Synchronous Instruction List

Word
0 Master Instruction Set
2 Master Instruction Set
block for phase = 0
period = 1
N Link Instruction Pair
M Master Instruction Set
block for phase = 63
period = 64
L Link Instruction Pair (if it exists)

The Instruction List Pointer Table is used by the Master Executive to set the
appropriate Link Instruction Pairs every Minor Cycle. It contains 2{MC)-1
entries, where MC is the number of Minor Cycles per Major Frame. There is one
entry for each phase and period. The entries are arranged in ascending sequence
first by phase and then by period, so that the entry for phase = PHASE and
period = PERIOD is entry number (PHASE + PERIOD), where the entries are counted
starting with one.

Instruction List Pointer Table

Item Description
1 First Word in Instruction Block
2 Last Word in Instruction Block

Items #1 and #2 are the absolute addresses of the last words of the instruction
block for the period and phase carresponding to the entry in the Table. Note that
item #2 points to the second word of a Link Instruction Set. If there is no
instruction block for this phase and period, items #1 and #2 are zero.

66

P il

A

. S

B e
.

smg o

3.1.3 IDAMST E£xecutive Functionai Description

Zvery processor in the IDAMST system contains Executive software. Executive
software consists of two parts: A Master Executive and a Local txecutive.
In general, the Master Executive provides system-wide services, such as data
bus management and system control functions, while the Local Executive
provides services to the Tasks located in a processor,

Each processor contains either a Local Executive or a Local and a Master
Executive. Specifically, the Master processor and the Monitor {backup
Master; processor contain a Master Executive, while the other processors do
not.

The code of ali Local Executives is identical. Etach Local Executive can
operate in either Remcte or Master Mode. In Master Mode, the Local Executive
supports the functions of & Master Executive, while in Remote Mode the

Loca: Executive is not cognizant of the Master Executive, even it is

present in the same processor.

The Local Executive i the Master Processor aiways operates in Master Mode;
The Loca: Executive in tne Monitor Processor operates in Remote Mode
exceost in tre case of keconfiguration. The Local txecutives in the Remote
processors always operate in Remote Mode.

Normay fiow o7 contre! and data for Synchroncus and Asynchronous processing
in Remcte anc Master Modes are shown in Figures 3.1.3-1 through 3.1.3-3.

&7

g

DATA BUS

>

- -
— 8%————35—35 2 - z||=
j =4 £ ﬁvg é o ENS
FORMULATE SYNCHRONOUS SYNCHRONOUS
NEW MINOR RECEPTION TRANSMISSION
CYCLE PROCESSING PROCESSING
SET 4P NEW
SET YP NEW
MINOR CYCLE Y mlm”—. DMA POINTERS
WIROR CYCLE SYRCHROROUS
EVENTS COMPOOL.
BLOCKS

Fisere 3.1.3-1 Syncwenous Processing {n Remete Mede

68

THIS PAGE IS BEST QUALITY PRACTICABLE
SROM CUE Y vURGI5:ED 10 DDC

et

/ DATA 8US]
) { S E "
> et -
— | — Fezsg — tig Sl — 512 Zie ™
2 Q z 1~ =) ZHo
= SE w <& et <
SYNCHRONOUS B
SET UP NEW | |OPERATIONS No7| | STNCHRONOUS SYNCHRONOUS ¢
MINOR CYCLE | [INVOLVING ‘ TRANSMISSION
AASTER PROCESSING U
. L I . —
' !
‘ ! 1 g i \
r 1 |
! SET »
Y FORMULATE T up | MASTER
T TR Newuinor el insTRUCTION MASTER v
R e CYCLE INSTRUC- | SET |
SNTER- ; TION SET |
(RI¥PT f i
L1 ~
, i
|
' |
sr ——
’ SET UP NEW , ‘
i ' LOCAL
| — . —
L ‘
‘ j
| f
g [
| K, ’
r , | MINOR CYCLE ! 2omroo APPLICATION |
}' i EVENTS ! : SOFTWARE
: o4 i

CFIGURS 3.3.3-2. SYNCHRONOUS PROCESSING IN MASTER MOGE
69

c—p

. At ol

R e

[_y
/ DATA BUS /
* —
a (=] wis
[t 1 L
— 5 o e =l B —
Flle £ wi S Bl = 8
o= é 8 245 wi| S ¥S
g = , gl
ASYNCHRONOUS VECTOR ASYNCHRONOUS N
TRANSMISS TON INTERRUPT RECEPTION BC
PROCESSING REGISTER PROCESS ING
\
F
L8l & g8 gl g5 —
A 2 ole - 4 —_—
— =il & EE 2 £
A g i
gl = T
1 \J 1
ASYNCHRONOUS ASYNCHRONOUS
TRANSMISSION <<~ RECEPTION
PROCESSING PROCESSING LOCAL -
{ " EXECUTIVE
{ ! =
EVENT TASK COMPOOL BLOCK
HANDLING HANDL ING HANDL ING
FUNCTION FUNCTION FUNCTION
H APPLICATION |
ASYNCHRONOUS SOFTWARE |
EVENTS TASKS COMPOOL. BLOC

|
|

Figwre 3.1.3-3 Asynchromous Processing fn Remote Mode

70

caye

— ——

a
=
i
=
=
«

| GENERAT 1 [asyNcHRONOUS | [ASYNCHRONOUS ASYNCHRONOUS 1
i REQUEST VECTOR [|PROCESSING NOT { | TRANSMISS ION RECEPTION | B¢ 3
' INTERRUPT INVOLVING . lpPROCE PROCESSING |
: L ‘ MACTER _JL lPRO(Z:.SSING r;_
ﬁ ~ s 4
=i) -)
2 .i !
- ‘ %* -
i — i ' t
; v | . |
i i i
o o ' — = = — ;
. | DZCODE REQUEST | | SEND MASTER N 2 g a ven
VECTOR -’: INSTRUCTION ‘ ai{ T N Ei ?QECLEJ:'?I H
! . JPAIR ; < Z = &l |
SR - B = = = i
A ~ = = =} i
|
'ASYNCHRONOUS | | ASYNCHRONOUS |
| [TRANSMISSTON | RECEPTION |
§ [PROCESS ING ?‘\\\\ | PROCESSING |
2 4 LOCAL
i i EXEQUT
!]
: i
| B o I BLOCK
! | even L sk || coMeooL
| ' 4ANSLING .| HANDLING L‘ﬁANDLING
E ‘ b |

A

pl - 1
<

i

COMPOOL BLOCKS ‘ SOFTWAR:

I
= - 7 i
. L
| .‘ : | '
‘ ; i r
. , i
r ; V ' ! ! ! ’
.] : |
N - | APPLICA i
i :
H]

¢
1

Figume 2.).5-6& Asynchronous Processing in Master Mode '

n

Lo

JjSet up tiew [‘Asynchro J
| | mnorpc!lc}e | nous/ syn-! MONITOR
k ' ! chronous | | 8CIU
‘ x’ trans- |
‘ Easter mode { _mission |
! | X
B T
| | |
|)
rrupt |{ Error]
Inte cqndition g:"““jat:; | 4 MONITOR
i | Timer | | ; o 13 EXECUTIVE
0 ! ¥) |
. ‘ Set Timer | fSet up minor !
l | cycle
‘; L '
| |
| T e e]
minor ———
; cycle | oma | Pointers ‘ EXECUTIVE
— Pointers———
.
!
r_———-}in—tmﬁ‘[r%m“t—eji] Master]‘{ MASTER
| 5 © . new minor © i command | | EXECUTIVE
| Timer | Set Timer! . cycle | set |
| |
| |
r A ;h !
synchro-| |
‘ z Set up nous/syn-{ | MASTER
minoy chtronous BCIU
rans-
t cycle | | mis'sfon
MASTER
» Setup Set up OMA LOCAL
minor new DMA ' Pointers EXECUTIVE
cycle 1 |
Figure 3.1.3-5 Master-Monitor-Local
fxecutive Processing
72 J

cmpe

¥

N

3.1.3.1 L0Cal txecutive

Tre 1DAMST Lcca) caecutive may bDe entered in two ways: through the execution
of a Real Time Pseuao-Statement in the application software, or through an
cxterna’l Service Request from the BCIU or the Master Executive. To avoid
re-entrancy and maintain proper sequencing, the processor may operate in any
one of the following modes:

a. Normai Mode
b. Privileged Mode
C. Uninterruptable Mode

Normai Moce 1< the mode of operctior for Application Software. In this mode,
any cxterna) Service Request received oy the 8CIL wiil cause immediate entry
10 trne txecutive to service tnat Request.

Privilegea Mode s *tne rorma: moce of operation for Executive routines.

it 1s marked by tne tact that the Privileged Mode Flag is on. In tnis mode,
any txternal Service Request received oy the BCIU will pe queued for
servicing at a iater date.

Jninterryntatle Moce "y uwsec Tor the Tmmediéte servicing of interrupts,
anG Tor Certeln oritical cperations within tne fxecutive. It is marked by
=he fact ftnat ail tnterrupts are disabled. In this mode, txternal Service
KeGUesTs are Ol recegns zed.
For puracies Sf modularitv, Tne Zaecutive 1S civiaed into four sections.

. The -artiward atertace Joaored Function

0. The ADILTCaTIOn LntesTLlie fuTtIuion

c. The _cza’ Zxecuz we Proper

d. The Locat Sxecutive in“tiatizetion and Recovery Function.

The dardware Interface Coniry' funltton responds to interrupts, and in
general supports ine “rntertace with the 3CIU. In MYaster Mode, the Master
Executive runs ,ncer tne navdware interface Control Function.

The Applicatios ‘nzerviZe Furction osrovides the interface between Reai Time
Pseudo-Stateme . ts 2xllu7C0 wilnin 10€ Apg.ication Software and the main
functions of s _ol¢. zavlulive,

~
Vi

TNE LOCaET ZXENw! ¢, Tl LTIy Ien L& aain ser
oo s

1ces of the Ldca: txecutive,
inciuding conTio. o Tacks, Vel s an /

-y

. 2. &

The Local Executive Initialization and Recovery Function is responsible for
initiaiization of the Local txecutive after the system is loaded and for
recovery or re-initialization in case of error conditions suzh as loss of
power or cother hardware-detected errors.

3.1.3.1.1 Hardware Interface Control Function

The purpose of the Hardware Interface Control Function ‘s to isclate the
hardware, i.e., the BCIU, the Timers and the precessor-cererated interrupts,
from the rest of the Execu*tive, so that hardware-related functions can be
performed without concerr for the physical cdetails.

The primary job of this Function is to supply the Local Executive Proper
with incoming Asynchronous messages ir a locical form, tc accept outgoing
Asynchronous messages from the local Executive Proner in a logical form,
and to worry about the physical details of receotion and transmission, such
as buffers and 3CIU registers.

The Hardware Interface Control Function processes all interrupts; therefore,
it is responsible for invoking the Local Executive Initialization and

Recovery Function in case of power failure, memory protection violation

and other hardware-detected errors. In Master Mode, this Function must also
invoke Master Executive services to respond to interrupts generated by

the Timers and the Master BCIU. This Function is not responsible for supplying
the BCIU with Master Instructions in Master Mode. However, this is done

by the Master Executive, which runs under the contrel of “his Function,

A general outline of the interactions of the Hardware Interface Control Function
is shown in Figures 3.71.3.1.7-1 and 3.7.3.1.1-2.

3.1.3.1.2 Application Interface Function

The purpose of the Application Interface Function is to integrate Real Time
Pseudo-Statements into the control structure of the Local Executive Proper,
The Applicatior Interface receives Rea! Time requests from the appliication
software in its processor as well as requests from local executives in the
other processors. The application Real Time requests fall intc three cate-
gories: events, tasks and compools. These categories are handled by different
modules of the Executive Proper. 1 the requests need to be transmitted to
other processors, the Local Fxecutive “roper requests the appropriate
asynchronous transmission.

A general outline of the interactions of the Applications Software Interface
is shown in Figure 3.1.3.1.2-1.

3.1.3.7.3 Local Executive Proper

The purpose of the Local Executive Proner is %o provide the essential Local
Executive services: control and procesiing of Tasks, Events and Compool
Blocks.

The Local Executive Proper accepts Asynchronous messages from the Hardware
Interface Controd Function and performs the services which they request., and

-
Jh

et

UOL@IUINLIAY BARINIGXF (220 —6A1INI3xXF (RG] "L -2 1°€°1°E unfity b

o~

EATRAR A SN :J._.<b:. 7 ~

3L

58::_ , D _
TLIdM .ﬂ:,\‘ v
llllll o T B : ,.. gt)€
BITONYH | BITONVH # B11ANVH ¢

[ATE FUIR D RS O:.(.\ ; .&&(

fémkco HOvHL ~Zw>w

H340Hd J3IXI VIO

e

. TIONVD
YIOSHLE 3 yNvy 3L W NDIS

IUBME T 33003108 ,_

’ o

U SURRSESRSI SR - | o EEREEEVE-2 S I BT DR
mu»umnmupz_uc/\fwu.z) _ ;w,:. | IEEN P

40&.200 w>.59§u A ot &w Wontd ;

e T 3 | |

“ O S SR
~ _. ..;..,::
f .

AONCEt S 10V |~
-
§
J
H

IDOVIUILNI WH) w r

e

T 1494 SAONOM HINASY | e e
« NO!Ld3038 SNONOYHINASY \ﬁ L R TN PR
__

1

!

OGNV D
- Lt

— v ———— — ——

U -

AN NS g T AV

GNA :::u
1A23Y a_ 0 d
SOAANGHHIONASY o ’ R

NG G
SUGYUHIN LY

e

—— e ——— ——

sy~

- - s .
THARDWARE] (
| DETECTED (g
i PROCESSOR l |
ERRORS | |
' i
} H
o
%
& &
e &
> o)
\vi o/
T .
‘ERROR |1 MINOR || ASYNCHRONOUS ASYNCHRONOUS |
IPROCESSING | oveee || RECEPTION nRANSMISSION .
|| GENERATION { | PROCESSING \PROCESS ING I
1 HARDWARE INTERFACE CONTROL FUNCTION | TINER |
| \\\\ ! PROCESSING
i
I
i J
‘ i / | |
LOCAL < | LocAL : '
R0}
EXECUTIVE : | EXECUTIVE Egg%&??vg
INITIALIZATION | PROPER
AND RECOVERY L

Figure 3.1.3.1.1-1

Interactions oY the Hardware
Interface Control Function in
Remote Mode

S

RAROAARE i | 3C1Y
INORMAL | ERROR
LOPERATION IOPERATIONAJ

m -
>< v

—

X

ATION

T -

/ |

&E: & / g L | \;)

s I ALDANA T Tac g
T PASYNCHRONOUS + JASYNCHRONOUS - TIMER
9%35254 NG LI TRANSMISSION , 'RECEPTION + - PROCESSING
GENERATION ; PROCLSSLNu : PROCE:SxNG P
o A B L
i h—__]k \\\\\ 4;/
. “ARDW ARE INTERFACE C TRCh
T
- LOCAL : , | MASTER -
CEXECUTIVE : ; | EXECUTIVE |
INITIALIZA- ! ‘ :
_.T'"N . CCﬁ B N Y l‘
AND RECOVERY ST “;Qéggi”“ :
FUNCTION SOV ;
. [E— 1 i
: \ X
| ! |
] | L 3
Figura 3.1.3.7.7-2 lnteractiors of the -araware Interface
Contrgl Function in Master Moge
77
1Y -

sy

=

accepts and processes service requests from the Application Interface

Function. [t formulates and sends to the Hardware Interface Control Function
Asynchronous messages requesting corresponding services in other processors ?
or RT's,

In addition, this Function responds to rew Minor Cycles by signalling Minor
Cycle Events and preparing new OMA Pointers for Synchronous I/90.

A general outline of the interactions of the Local Executive Proper is
shown in Figure 3.1.3.1.3-7.

3.1.3.1.4 Loca'! Executive Initialization and Recoverv Function

The Local txecutive Initialization and Recovery Function provides the
following services:

a. Initializes the Local Executive after it is loaded from mass
memory .

b. Terminates Executive operations on detection of a "power down"
condition.

c. Re-initializes the Local Executive upon power-up.

d. In case of hardware-detected processor errors, including illegal
operation code, boundary alignment error, processor pointer error
and processor memory protect, terminates Executive operations and
sends a failure message to the Master Executive.

e. Upon detection of a Power Down condition, attempts to save the
state of the processor prior to the failure.

3.1.3.2 Master Executive
The IDAMST Master Executive consists of the followina major functions:

Master Initialization Function
Master Time Control Function

Master Synchronous Control Function
Master Asynchronous Control Function
Master Error Recovery Function

Mass Memory Contro! Function

M QO T

The Master Injtialization Function provides for initialization; it loads the
Remote and Monitor processors from Mass Memory, and performs initial testing
of the system.

The Master Time Control Function keeps track of the passage of time, and
maintains proper synchronization of the various ILxecutive services.

The Master Synchronous Control Function controls the operation of the Master
BCIU in the transmission of Synchronous messages.

78

HARDWARE INTERFACE CONTROL
FUNCTICON

L

SNOI m,m;_mzﬁﬁ"

INASY

SHOILdTITY

JiAsy)

-

TSN =

S310AD HONIW

— — ——d

HILNIOd VWA

LOCAL EXECUTIVE PROPER

T04LNUD %2079 100dW0D

TOYLNOD INIA3

e S
HOMINOD Syt

e

e e e e Iysv

[;v

1.;;1;;141
=
(]
pANw il
59 VLS &%F
-5 ToLvLST e
. — r L e o 4
¢ i A e
-t O
O <
[« W PN
<
o=
=

O

ION SOFTWARE

-
|

APPLICA

]

the Loca:

~F

ons o7

racti
txecutive Proper

[

T
i

.S.A.S‘—I

Figure ».°

oy

sy~

The Master Asynchronous Control Function controls the operation of the
Master BCIU in the transmission of Asynchronous messages.

The Master Error Recovery Function responds to routine errors encountered
in the functioning of the Data Bus.

The interaction of the various functions of the Master Executive in normal
operation is shown in Figure 3.1.3.2-1.

3.1.3.2.1 Master Initialization Function

The Master Initialization Function is invoked immediately after the Master
Processor is loaded from Mass Memory., It is responsible for loading the
Remote and Monitor processors from Mass Memory and for performing initial
testing of all of the elements of the IDAMST federated system. If all
systems are operative, this Function initiates normal operations.

3.1.3.2.2 Master Time Control Function

The Master Time Control Function controls the two Timers in the Master
Processor. 1t uses Timer B to keep track of the passage of absolute time.
Timer A is used to provide interrupts for synchronizing time-critical opera-
tions, i.e., setting new Minor Cycles and transmitting Critically Timed
nessages (see Section 3.7.2.1.8.8).

3.1.3.2.3 Master Synchronous Control Function

The Master Synchronous Control Function controls the Master BCIU in all
operations which are performed repetitively rather than in response to
requests by the Application Software. At the beginning of each Minor Cycle,
it prepares the new Synchronous Instruction List (see 3.1.2.4.2.4) for that
Minor Cycle, and causes the BCIU to execute it. When the Synchronous
Instruction List is completely processed before the end of a Minor Cycle,
this Function may direct the BCIU to perform other activities, such as
polling for Asynchronous reguests or requesting self-tests by the Remote
BCIU's.

3.1.3.2.4 Master Asynchronous Control Function

The Master Asynchronous Control Function is invoked in response to Asynchro-
nous Request Vectors received either from the BCIU or from the Local Executive
in the Master processor. It directs the BCIU to perform the appropriate
Asynchronous transmission.

3.1.3.2.5 Master Error Recovery Function

The Master Error Recovery Function is invoked upon detection of an error in
the operation of the Multiplex System. According to the type of error, it
attempts one of various re-try schemes. If all re-tries of the erroneous
operation are unsuccessful, it invokes the Reconfiguration Function.
3.1.3.2.6 Mass Memory Control

The Mass Memory Control Equipment Function is used as a source of programs

durinag system initiali-zation, re-in‘tialization and reconfiguration. It is
also used to record Dicita’ Intearated Test System data (DITS),

80

T e A etk A AN e 1 -

MASTER BCIU

]

MANDS'
REQUEST
TVECTORS
ANDS
COMMANDSI

ERRORS

| : =
DX v
25 34 5 "
| | v | ¥
| [MASTER ! MASTER [MASTER
| SYNC | JASYNC {ERROR
 CONTROL CONTROL | RECOVERY
‘ (FUNCTION
_ | (

. ; lFJNCTION ; {FUNCTION
i

A

MINOR
CYCLES

™

.7 } MASTER

1T IME %
CONTROL
FUNCTION

]

REQULST VECTORS
CATASTROPHIC ERRORS

: | o v

RECONFIGURATION

Figure 3.1.3.2-1 interrelation of the Master Executive
Functions in Normal Operation !

a
-
=y

sy

This page left blank intentionally.

D A

3.2 DETAILED FUNCTION REQUIREMENTS

This section specifies the detailed functional requirements of each of the
functions and sub-functions of the IDAMST Executive.

3.2.1 Local Executive Functions
The Local Executive consists of four major functions:
a The Hardware Interface Control Function
b. The Application Interface Function
¢. The Local Executive Proper
d The Local Executive Initialization and Recovery Function

eneral purpose and interaction of these functions is described in Section

3.2.1.1 Hardware Interface Control Function

The Hardware Interface Control Function is divided into sub-functions as follows:

@. The Interrupt Hanaling Function

D. Tne Asynchronous Reception Function

C. The Mincr Cycle Reception Function

a. The Asynchronous Transmission Function

3.2.3.7.1 Interrupt Handiing Function

The Interrupt Handiing Function 1s always ana only entered upon the reception
of an Interrupt. Tne purpose of this routine is to:

Save the state of tne processor prior to the interrupt.
Identify the cause 0F the interrupt.

Invoke the proper Zxecutive function to service the interrupt.
Return to @ state of normal operation.

oo oo

3.2.1.1.1.1 Inputs to Interrupt Handling
The inputs to this runction are:

a. The interrunt number
b. The Internai Status Register (iSR; of the BCIU

C. The processor state pricr to the interrupt, i.e., registers condition
status /CS;, nstruction counter (IC), and Comsub Stack Pointer
(see 3.7.2.3.2).

d. The icdentity oF the last Task dispatched
e, The Priviieced Mode flag

83

sy

Lo i

TYPE OF INTERRUPT

FUNCTION INVOKED

Processor-Generated:

IT1egal op code
Boundary alignment
Processor parity

Loca’ Executive Error Recovery

|
Power down i Power down
Timer A } Master Time Control
Timer 8 . (Master Mode only)

BCIU-Generated (Master and Remote):

Async reception
Async transmission

DMA error

BCIU-Generated {Remote only):

Master Function

System Interrupt

BCIU-Generated (Master only):

Invalid Instruction

No Data
Incomplete Data
Invalid Data

Terminal Failure
Status Word Error
Status Word Exception
Program Controlled

Async Reception
Async Transmission

Local Exec. Error Recovery

Minor Cycle Reception

Local Exec. Error Recovery

Master Reconfiguration

Master Error Recovery

Master Reconfiguration
Master Error Recovery
Master Asynchronous Control
Master Synchronous Control

Table 3.2.1.1.1.2-1 Functions Invoked by the Interrupt
Handling Function

e

k

84

sy

3.2.1.7.1.2 Interrupt Handling Processing
The Interrupt Handiing Function performs the following actions:

a. If the Privileged Mode Flag is on, it saves the prior state of the
processor in a local Save Area; otherwise, it saves the prior state
in the Task Table B entry of the Task which was interrupted. _

b. It identifies the cause of the interrupt, reading the ISR of the '
BCIU if necessary,

C. It invokes the appropriate Executive function to service the interrupt.

d. it enables interrupts.

e. IT the Privileged Mode Flag is on, it returns to the state prior to
the interrupt; otherwise, it sets the Privileged Mode Flag and
Executive Control Function.

PSR

ive function invoked for each type of interrupt is shown in Table
-1

L~
)

.2.1.1.0.3 Outputs from Interrupt Handling

G

The outputs from this Function are:

1. Tne identity of the interrupt
o. The Seve Area in tre Task Table B entry of the interrupted Task
fsee 3.7.2.6.1.3).

5.2.%.1.2 Asynchronous Reception rfunction
The purpose of the Asynchrcacus Reception runction is t0 accept an incoming

Asyncnronous message vrom the 5llu, TO encueue tne message for processing by
the Local Executive Proper, and to prepare for a new reception.

In addition, this Function intercents messages requesting re-transmission of the
last transmitted message, and invokes the Asynchronous Transmission Function to
service them.

This Function is aiways and only invoked by the Interrupt Handling Function upen
the occurrence of an interrupt indicating completion of an Asynchronous reception.

3.2.1.1.2.7 InpueTs o Asyncnronous Receptizn
The sole input to Tnis runction is the Reception Queue. This Queue consists of:

a. A fixec cucper o 33 word buffers for receiving Asynchronous messages.

b. A poiater 1o tnhé first buffer in the Queue.

C. A pointer to tre iast puffer in the Queue,

d. The Reguest Pendirg Fiag.

rne Reception Queue s ¢ rirst dn First Out queue. Buffers are filled by the
{U, and removea Tron tne Gueac by the Local Ixecutive Control Function. The

ST Duttrer” Lonnisr Loind

1.e., the buffer c.icceeding tne tast one Tully processed by the Local Executive

Proper,

85

ey o

Normally, the "last buffer" pointer points to the last buffer filled by an
Asynchronous reception from the BCIU. However, when the Asynchronous Reception
Function is invoked, the buffer succeeding the one pointed to by the “lTast
buf€er” pointer has just been filled with an Asynchronous message.

If any of the buffers contains an Asynchronous messace which has not been
processed by the Executive Proper, the Request Pending Flag is on; otherwise

it is off.

The buffers are considered to be arranged cyclically. That is, the buffer

which is physically first is considered to succeed the buffer which is physically
last. A typical configuration of the Queue, a four-buffer system with two
messages in the Queue, is shown in Figure 3.2.1.7.2.1-1.

3.2.1.1.2.2 Asynchronous Reception ®rocessing

The processing of this Function is shown in Ficure 2.2.1.1.2.2-1.

Note that if all buffers are full, the Asynchronous Reception Function does not
reinstate bus operations,

3.2.1.1.2.3 OQutputs from Asynchronous Reception
The outputs from this Function are:

a. The updated Reception Queue (see 3.2.1.1.2.7).

b. The Continue Bit in the BCIU

c. Asynchronous Reception Pointers in the DMA Pointer Blocks

{See 2.7.2.4.1.1).

3.2.1.1.3 Minor Cycle Reception Functicn
The purpose of the Minor Cycle Reception Function is to accept and to encueue
new Minor Cycle numbers received from the BCIU. This Function is always and
only invoked by the Interrupt Handling Function upon an interrupt indicated by
the reception of a Minor Cycle Mode Command. In Master Mode, this Function does
not operate, Minor Cycles beina directly enqueued by the Master Executive.
3.2.1.1.3.1 Inputs to Minor Cycle Reception
The sole inptt to this Function is the Minor Cycle Register in the BCIU.
3.2.1.1.3.2 Minor Cycle Reception Processing

The Minor Cycle Reception Function performs the following operations:

a. It reads the new Minor Cycle rumber from the BCIU.
b, It sets the Minor Cycle Pending Flac on.

Note that this Function does not reinstate bus operations.

!

'MESSAGE #

i

i
] { <¢— "LAST BUFFER" PQOINTER

[

AVAILABLE -

|
i
1
t
i
1

BCIU

RST BUFFER™ PCINTER

"FI

30;-&-—

"MESSAGE

o

[¥9)
11,
i

s}

PENCING FLAG = ON

vy
i
jop]
r
W
(=4

xampie ¢f Reception Queue

2,11 ¢

a

C_
et by

e oo,

BN

r-
154}

Ol L. At i i

ASYNCHRONOUS

\ RECEPTION

IF MESSAGE
INDICATES
"RE-TRANSMIT"

THEN

RETURN

Figure 3,2,1.1.2.2-1

CALL i
ASYNCHRONOUS |
TRANSMISSION |

j

s

'

LELSE |

I

L

—
INCREMENT
"LAST BUFFER™®
POINTER

'

(
|
|

SET ASYNC
RECEPTION

POINTERS FOR
NEXT BUFFER

|

—
SET RECEPTION

|
PENDING FLAG |
ON }

IF NOT ALL
BUFFERS ARE
FULL

28

THEN

SET CONTINUE
BIT IN BCIU

Processing of Asynchronous Reception Function

._.n..

o giiienie L = ukoa

3.2.5.7.3.3 Jutputs from Miner Cycle Reception

Tne outputs from this Function are:

a. Tne new Minor Cycle number
0. The Minor Cycle Pending Flag

3.2.1.1.4 Asyrichronous Transmission Function

Tne purnose of The AsynCArcnous Trdismission rurciion s to accept outgoing
AS/NCrronous Messaces enguewed by the Local EZxecutive Proper and to prepare
tnen for transmission py tne B8CIdJ.

W]

Jhis Fuaction Can 0e 1nVvOoKed fTrom thnree places:

a. By ftre [aterrudt han functica upen completion py the 371U of
an AsynInroncus Tran for;

J. Sy tne Asyrchrongus R It UDOn recepricn ¢ a message
~eCuesTing re-transmioston message transmittec; or

C. >y brc L_oml Zxecutive Prope st initiation ¢f an asyncrronous

Rk

SCIU transaission,

1APUTS TC ASYACAroASLS Transmission

The Transmission :-QuL s Fi”“T nors
transmissions wni -~
/et discarded bv ‘J; &

Transmission funoni oo

nas beer completsc oy tre

fu

1 Tul gueeua, contelning &ii Asynchronous
s LocCe. ixerutwve ’rcper, but not

FunCLIoN. The Asynchronous

issien until thne next transmission

The Transmnissiorn (ucuc 0737575 o7

A S e - Y a a7 . - DO U SO
d. H Fi)(t;u a o Ly CELUY LG, L OCKE,
A s e - L A
D. A Las: Cf e SRR Whua iy d0ints tootne
desartLie s L oone o {te :
. PP - _)
- L VIV A RN oo ' <
SBSCrY ULt L. 00K 2T ‘ oy

L .]
“ ¥ “ .
VRIS R “Lna
Troper
. TR L y o 3
< SOTAS L Lo oe o s BT, wnion 00Tnts T0 g fos T ownen
Qra T .
’ [T L T AT VT A
‘ . Y O N Tl . L NI
LAl g

AD=A0B3 112

N
SPEC=SB-4041

F
AFAL=TR=-76=208~ADI

BOEING AERQSPACE CO SEATTLE WA BOEIN6 MILITARY AIRPL--ETC F/6 9/2
COMPUTER PROGRAM DEVELOPMENT SPECIFICATION FOR IDAMST OPERATION=-EYC(U)
76 33615~76=C=1099

D=1

-y

When the Asynchronous Transmission Function is invoked upon completion of an
Asynchronous transmission by the BCIU, the CTP points to the Descriptor Block
of the message just transmitted.

When the Transmission Queue is empty, that is, there are no messages waiting
for transmission, the LTP and the FTP both point to the Descriptor Block of
the last message transmitted, and the CTP points to the next Descriptor Block,
even though there is no message set up for BCIU transmission.

When the BCIU is set up for re-~transmission of a message previously transmitted,
CTP=LTP,

Each Message Descriptor Block consists of:

a, A Request Vector
b. An Asynchronous ID word
c. A pointer into the Transmission Buffer Area.

The Request Vector is the Request Code for transmission of the message.

The Asynchronous ID word is the word to be appended to the beginning of the
message to identify it to the receiving Local Executive. If this message is to
be sent to an RT, this word is octal 177777, and will not be appended to the
message.

h The buffer pointer points to a buffer allocated within the Transmission Buffer
— Area holding the data to be transmitted. The first two words of each buffer are
blank, to allow for the Minor Cycle Tag and the Async ID; the data begins on
the third word. If a message has no associated data, i.e., is an interprocessor
Service Regquest, the buffer pointer is zero and no buffer is allocated for the
message. It is possible for a series of messages to point to the same buffer,
as when a single compool block is sent to more than one processor.

The FUBP points to the first word of the Buffer Area that may not be used for
enqueuing new messages, i.e., that contain data that has either not yet been
transmitted by the BCIU or may have to be retransmitted by the BCIU. The FFBP
points to the first word of the Buffer Area that may be used for enqueuing
messages by the Local Executive Proper. FFBP+33 may never be outside of the
Buffer Area, and FFBP+33 £ FUBP at all times, since any message may be up to
33 words, including the Tag Word,

A typical configuration of the Transmission Queue is shown in Figure 3.2.1.1.4.1-1,
This system has eight Message Descriptor Blocks, six of which describe messages
pending transmission. Note that message #3 and message #4 share the same data,
while message #2 has no data, and hence, no buffer,

3.2.1.1.4.2 Asynchronous Transmission Processing

The Asynchronous Transmission Function performs the following actions:

a. If invoked to perform a re-transmission, it sets CTP to previous
message in Queue.

MESSAGE DESCRIPTQR BLOGKS

REQUEST VECTOR #4
——{ ASYNC ID #4
FTP | BUFFER POINTER #4

TRANSMISSION BUFFER AREA

BUFFER #2

REQUEST VECTOR #5
ASYNC ID #5
BUFFER PQINTER #5

AVAILABLE FOR
ENQUEING BY
LOCAL EXECUTIVE
PROPER

BUFFER #3

LTe

REQUEST VECTOR #0
ASYNC ID #0
BUFFER PCINTER #0

s

REQUEST VECTOR #1
ASYNC 1D #1
BUFFER POINTER #1

REQUEST VECTOR #2
ASYNC ID #2

NULL __J

REQUEST VECTOR #3
ASYNC ID #3
BUFFER POINTER #3

FFBP
AVAILABLE FOR
ENQUEING BY
LOCAL EXECUTIVE
PROPER
-‘“““"~—;JL
BUFFER #0
.
BUFFER A1 Fusp

1 -»
IO X
CICHEHSCHIOOOIOOCT)
OO OO K I OOC]
LICPOCCIOC X KO
QOO ICCICRIC N X]
0709, 00 000 8 6000600
0,9,8/0,070.2. 000009400

:

o

N »

b :

Figure 3,2.1,1.4.1-1 Example of Transmission Queue

91

Aol a8

[P Y S U

g o

[

C.

d.

1f invoked upon completion of Asynchronous transmission, it sets CTP
to the next message in the Queue, discards the previous message in the
Queue and sets the FUBP forward if a buffer has been discarded.

If there is a message in the Queue waiting for transmission, it copies
the Asynchronous Transmission Pointers in the DMA Pointer Blocks to
that buffer, and sends the appropriate Reguest Vector either to the
BCIU or, in Master Mode, the the Master Asynchronous Control Function.
Messages with a null Buffer Pointer in their Descriptor Blocks are
transmitted from a Jocal buffer.

If the BCIU is "busy"”, the Continue Bit in the BCIU is set.

The output of the processing is shown in Figure 3.2.1.1.4.2-1.

3.2.1.1.4.3 Qutline of Asynchronous Transmissions

The outputs from this Function are:

b’

C.
d.

The updated Transmission Queue (see 3.2.1.1.4.1).
The Asynchronous Transmission Pointers in the DMA Pointer Blocks
(see 3.1.2.4.1.1).

The Continue Bit in the BCIU,
A Request Vector (to the Status Code Register in Remote Mode; to the
Master Asynchronous Control Function in Master Mode).

-~

92

ASYNCHRONOUS
TRANSMISSION

REQUEST

IF ASYNCHRONOUS THEN | SUSPEND TASK
. BUFFER FULL

‘ WRITE ASYNCHRONOUS
L; . ID AND DATA INTO

ASYNCHRONGUS COMPOOL

PUT ASYNCHRONOUS ID'S
AND COMPOOL ADORESS

. INTO ASYNCHRONOUS
CONTROL BUFFER

IF ASYNCHRONOUS \ e g::g:gR:NSVENT
M ———
: T o TASK DISPATCH
. , REQUEST PENDING
s |

Figure 3,2.1,1.4.2-1 Asynchronous Transmission

93

bﬁb‘-

3.2.1.2 Application Interface Function

The Application Interface Function serves to save the processing state of the
invoking task, to change to the privileged state of the IDAMST processor, and

to invoke the specific Local Executive Function that was requested by the Real-
Time Pseudo-Statement from the Applications Task. The Applicaticn Interface
Function also does not save the Task statein the case of three specific Executive
Service Requests (ESR's). For those three Intrinsic functions, the request is
satisfied and control returned to the requesting Task.

The three specific ESR's contained in the Application Interface Function are
EREAD, INVOKED, and TIME.

3.2.1.3.1 Executive Service Routines

There are fifteen Executive Service Routines, one for each type of Real Time
Pseudo-St?tements, inciuding the four separate types of Wait Statements (see
3.1.2.1.8).

3.3.1.2.1.1 Inputs to Executive Service Routines.

The inputs to the various Executive Service Routines are shown in Table
3.2.1.2.1.1-1,

3.2.1.2.1.2 Executive Service Routine Processing
Each Executive Service Routine performs the following actions:

a. It sets the Privileged Mode Flag

b. It saves the state of the invoking Task in the Task Table B.

c. It calls the appropriate Function in the Local Executive Proper.
The Function invoked by each Executive Service Routine, and the parameters passed
to it, are shown in Table 3.2.1.2.1.2-1. The interfaces and some of the support-
ind data are shown in Table 3.2.1.2.,1.2-2.
3.2.1.2.1.3 OQutputs from Executive Service Routines
The output from each Executive Service Routine is the updated status of the
Application Software requested by the corresponding Pseudo-Statement. See
3.1.2.1.8 for details.
3.2.1.2.2 Application Interface - Intrinsic Functions
Application Interface contained Functions are short functions which can index

into the data structures used by the Local Executive Proper routines discussed
in 3.2.1.3.

94

arok.n

A e u ao

ROUTINE

INPUTS

Schedule

L Cancel
Terminate

Wait:

Absclute Time
. Relative Time
E “ Latched

Unlatched

i i
Signal

L Read

Write

Trigger

{ERead

Invoke

r 10 vevice

Hime

Task Table A entry of Task to be
Scheduled

Task Table A entry of Task to be
Cancelled

Task Vable A entry of Task to be
Terminated

Absolute Time

Relative Time

Event Table entry of Event to be waited
on; desired value

Event Table entry of Event to be waited
on; desired value

Event Table entry of Event to be
signalled; desired value

DDB for Compool Block to be Read;
Local Copy to be read into

DDB for Compool Block to be Written;
Local Copy to be written from

DDB for Compool Block to be Triggered;
Local Copy to be written from;
time to go

Event number

Task ID

Number of device to be manipulated; off
or on state desired, reconfiguration
flag.

Nuil

! Table 3.2.1.2.1.1-1

Inputs to Executive Service Routines

oy o~

vy

ROUTINE

FUNCTION INVOKED

PARAMETERS

Schedule
Cancel

Terminate

wWait:

Relative Time

Latched
Unlatched

Absolute Time }

Signal

Read -
Write

Trigger

10 Device

ERead

Invoked

Time

Schedule
Cancel/Terminate

Cancel/Terminate

Wait

Wait

Event Handling

Compool Block Handling

Compool Block Handling

10 Device

Application Interface

Application Interface

Application Interface

1) Task Table A entry

1) Task Table A entry
) Cancel/Terminate
Flag = Cancel

1) Task Table A entry
) Cancel/Terminate
Flag = Terminate

Absolute time to go

Event Table entry

Internal/External
Flag = Internal

)

)

)

)

) Latched/Unlatched Flag
)

% Event Table entry

)

Internal/External
Flag = Internal

2) Trigger Flag = off
3) DDB

4) Local Copy

1) Internal/External
Flag = Internal

2) Trigger Flag = on

3) DDB

4) Local Copy

5) Time to go

1) Device number
2) Flag = ON/OFF

3) Reconfiguration Flag

1) ERead/Time/Invoked
Flag = ERead
2) Value of Event

1) ERead/Time/Invoked
Flag = Invoked

2) Task Table A entry

3) Value of Invoked

1) ERead/Time/ Invoked
Flag = Time
2) Time value

Table 3.2.1.2.1.2-1

Functions Invoked by Executive

Service Routines

96

Time/Event Flag = Time

Time/Event Flag = Event

Desired value of Event

Desired value of Event

caye-

3.2.1.2.2.1 ERead

ERead interrogates and returns the value of a specific event, This function
properly belongs with the event handler function, but is separated from the
event handler because of efficiency requirements. The inputs are described in
Table 3.2.1.2.1.2-1.

3.2.1.2.2.2 Invoked

Invoked interrogates and returns the status of a specified task. This function
properly belongs as part of a task handling function such as Checker (3.2.1.3.4),
which determines the status of a task, but is separated because of efficiency
considerations. The inputs are described in Table 3.2.1.2.1.2-1.

3.2.1.2.2.3 Time

Time is a function that returns the elapsed time since system initialization.
There are no input parameters; the processing is a readout of the processor
clock register and appending that value to the cumulative value since system
initiaiization. The output of Time is the cumulative time since system
initialization.

2,2.1.2.3 Executive Service Return Function

The Executive Service Return Function is called by all Executive Service Routines
immediately before they relinquish control. The purpse of this Function is to
determine whether there is a need to perform additional Local Executive Functions,
either as a result of Asynchronous messages or Minor Cycles received while in
Privileged Mode or because the Service itself requested further Services. If
there are further services to perform, this Function generates & pseudo-interrupt;
otherwise, it resets the Privileged Mode Flag and returns to its caller.

3.2.1.2.3.1 Inputs to Executive Service Return

The inputs to this Function are:

a. The Reception Pending Bit (see 3.2.1.1.2.1)

b. The Minor Cycle Pending Bit (see 3.2.1.1.3.1)
c. The Event Queue (see 3.2.1.3.1.1)

d. The identity of the last Task dispatched

3.2.1.2.3.2 Executive Service Return Processing

The processing of the Executive Service Return Function is shown in Figure
3.2.1.2.3.2-1.

3.2.1.2.3.3 Qutputs from Executive Service Return

The so]e'output 6f this Function is the Save Area of the last Task dispatched

(see 3.,1.2.4.1.74).
97 EJ#

-y o

EXECUTIVE
SERVICE
RETURN

DISABLE
INTERRUPTS

l

IF EVENT,
RECEPTION
OR MINOR
CYCLE
PENDING

N\ o
>

l

RESET
PRIVILEGED
MODE FLAG

I

ENABLE
INTERRUPTS

[il

FIGURE 3.20‘ .2.3-2"‘-

ENABLE
INTERRUPTS

CALL LOCAL
EXECUTIVE
CONTROL
FUNCTION

EXECUTIVE SERVICE RETURN PROCESSING

98

aia 0.

e

oy

3.2.1.3 Local Executive Proper
The Local Executive Proper consists of ten subfunctions:

Local Executive Comtrol Function
Minor Cycle Setup Function

Event Handling Function 3
Task Checking Function

Task Scheduling Function

Task Termination/Cancellation Function

Wait Function

Compool Block Handling Function i
Dispatch Function
10 Dev.ce Function

Co—a. W) -“Hh D OO TN

3.2.1.3.1 Local Executive Control Function

The Local Executive Control Function maintans the proper sequencing of the
subfunctions of the Local Executive Proper. This Function is called either by
the Application Interface Function after a Real Time Pseudo-Statement has been
serviced, or by the Hardware Interface Function after an interrupt has been
serviced. The Loca) Executive will return control directly to the calling or
interrupted task if none of the following is true:

There s a Minor Cycle pending.

Thre is an Asynchronous Message Pending,

¢. The Event Queue is non-zero.

d. The highest priority dispatchable task is higher priority than the
last dispatched task. Privileged tasks are considered to be highest
priority tasks.

o

when a Normal task makes an Executive Service Request or is interrupted, and
any of the conditions shown abuve are true, the Local Executive will service
the condition and then call the Dispatcher.

The Event Queue is .sec by the subfunctions of the Local Executive Proper when
they wish to set an fvernt to a certain value. It is necessary to enqueue the
Tvert and its des ~.o ve'ua rather than directly calling the Event Handling
CLTLfi0n o aveild ~ouutuiln. Tne Lvent Queue is serviced on a Last In First Out
basis, Lacn item -t e Qqueue contains:

a G nter -0 tne tvent Tacle entry of an Event, and
5. the desirea vaiue 0F the tvent.
e ol Locs. Zaecutive Control Processing

A qjeneral outilne -¢ the processing of the Local Executive Control Function is

LnQwno v Figare 5., X0 20,

99

| TF MINOR CYCLE

DO FOREVER
PENDING

CALL MINOR CYCLE

SETUP

IF EVENT PENDING

DEQUEUE EVENT

v

cag -

CALL EVENT
HANDLING
FUNCTION

4

IF RECEPTION
PENDING

DECODE ASYNC 1D

v

CALL . DISPATCH
FUNCTION

CALL PROPER
FUNCTION

v

DEQUEUE ITEM
FROM

RECEPTION QUEUE

100

Figure 3.2.1.3.1,2-1 Local Executive Control Processing

sy

Note that an Event must be dequeued before it is processed, because the Event
Queue is Last In First Out, whereas an Asynchronous reception must be dequeued
after it is processed because the information in the buffer in the Reception Queue
may be used in the course of processing the reception.

After the Local Executive Control Function dequeues an Event from the Event
Queue, it passes the following parameters to the Event Handling Function:

a. Internal/External Fiag = Internal
b. Pointer to Event Table entry for ELvent
c. Desired value of Event

Tne Asyncnronous ID which this Function uses to determine the type of each
Asyrichronous message in the Reception Queue may be either a Transmit Word,
indicating that the message was sent by an RT, or a “true" Asynchronous iD
croduced by the Local Executive which sent the message. If it is a Transmit
word, the Local Executive Control Function uses the TOAD and the SNAKE (see
3.1.2.4.%) to determine the DDB associated with the message, and calls the
Compool Bliock Handling Function. Otherwise, it determines the type of message
from the OP Code field of the Async ID, and determines the parameters to pass
to the specified function by the Parameter field of the ID. The types of
Asyrnc I3's, tne runctions invoked to service them, and the parameters passed
tS those Functions are shown in Table 3.2.1.2.1.2-1.

3.2.1.3.1.3 Qutputs Trem wocar Executive Control

-t

This Function has ns cutputs, since it is never exited.

3.2.1.3.2 Minor Cycie Setup Function
The Minor Cycle Setup Function performs the processing necessary to set up the

environment of a new Minor Cycle. This Function is always and only invoked by
the Local Executive Controi Function upon detection of a pending Minor Cycle.

101

b Al

3.2.1.3.2.

1 Inputs to Minor Cycle Setup

The inputs to this Function are:

a. The new Minor Cycle Number
b. The SYNPTR and SYNPTR Index Table (see 3.1.2.4.2)
¢. The Minor Cycle Event Generation Table (see 3.1.2.4,1.5)
d. The Chain of Tasks waiting on time (see 3.2.1.3.7.2)
3.2.1.3.2.2 Minor Cycle Setup Processing
The Minor Cycle Setup Function performs the following actions:
a. If new Minor Cycle Number is out of sequence, call -the Error Recovery !
Function. i
b. Set Minor Cycle Number to new value.
c. Set Base Address Register to appropriate DMA Pointer Block.
d. Set Continue Bit in BCIU.
e. Set up DMA Pointer Block for next Minor Cycle using the SYNPTR and
SYNPTR Index Table.
f. Enqueue the appropriate Minor Cycle Events, using the Minor Cycle

Event Generation Table.

g. Look at the first Task waiting on time. If it is to go on this
Minor Cycle, take it out of the Chain and make it Dispatchable,

h. Repeat Step g until there are no Tasks waiting on this Minor Cycle.

The outline of these functions is given in Figure 3.2.1.3.2.2-1. 1

3.2.1.3.2.3 Qutputs from Minor Cycle Setup

The outputs from this Function are:

a. The Minor Cycle Number
b. The new DMA Pointer Blocks (see 3.1.2.4.1.1)
¢. The Base Address Register in the BCIU
d. The Continue Bit in the BCIU
e. The Event Queue with the appropriate Minor Cycle Events enqueued.
f. The updated Task Table B entries of all Tasks which were waiting
for this Minor Cycle.
3.2.1.3.3 Event Handling Function

The event handling function will be called for regular event signalling, block

update, or task completion events declared by tasks in the processor. This

Function may be invoked "internally" either by the Application Interface

Function or by the Local Executive Control Function, to service an Event Signal
request emanating from within the processor. Or it may be invoked "externally"

by the Local Executive Control Function to service an Event Signal request from :
another processor.

3.2.1.3.3.1 Inputs to Event Handling

The inputs to this Function are:

102

ey

v

SN

READ MINOR CYCLE
NUMBER FROM BCIU

.

IF MINOR CYCLE
NUMBER IS NOT TH
EXPECTED NUMBE

v

[
SET MINOR CYCLE !

}TO NEW NUMBER _J

%

BASE ADDRESS
F POINTER TABLE
INTC BCIU BASE |
DDRESS REGISTER,
ET CONTINUE BIT
IN BCTU.

Y

SET (P DMA !
BLOCK FOR NEXT
MINOR CYCLE

v

ACTIVATE ALL
TASKS WAITING ON
GIVEN MINCR
CYCLE NUMSER

Figure 3.2.1.3.2,2-1

Minor Cycle Synchronization

103

SIGNAL EVENT
FOR MINOR CYCLE
SYNCHRONIZATION

ERRCR
v

SET UP DMA BLOCK
FOR GIVEN MINOR
CYCLE NUMBER

a. The Internal/External Flag
b. The Event Table entry of an Event
¢. The desired value of that Event

3.2.1.3.3.2 Event Handling Processing

The Event Handling Function sets the value of an Event in the Event Table,
formulates and enqueues Asynchronous messages to other processors to set their
copies of that Event, sets the Conditions in the Task Table E entries of Tasks
with the Event in their Condition Set, and invokes the Task Check Function to
check the status of those Tasks. The processing of the Event Handling Function
is shown in Figure 3.2.1.3.3.2-1.

3.2.1.3.3.3 OQutputs from Event Handling
The outputs from this Function are:

a. The Transmission Queue, with requests to other processors to set
their copies of this Event.

b. The updated Event Table entry of the Event.

c. The updated Task Table B entry of each Task with this Event in its
condition set.

d. The updated Task Table B entry of all Tasks waiting on the current
value of the Event.

3.2.1.3.4 Task Checking Function

The purpose of the Task Checking Function is to check whether a Task should be
changed from Inactive to Active State, and if so, to change its State and
perform all associated actions.

This Function is invoked in the following circumstances:

a. When a Task is Scheduled.
b. When an Event in the Task's Condition Set is Signalled.
c. When a Task either ends or is forcibly Terminated.

3.2.1.3.4.1 inputs to Task Checking

The sole input to this Function is the Task Table 8 entry of the Task to be
checked.

3.2.1.3.4.2 Task Checking Processing

Task checker interrogates Task B table to determine whether the specific task
has been scheduled. If the task has been scheduled then the event set is
calculated to determine whether the conditions are met to dispatch the task.
If the conditions are met then the Task B table entry for Task status is
updated from “Scheduled” to "Dispatched” and any associated activation event
is queued on the event queue. Unlatched events are returned to their negated
state. The processing of this Function is shown in Figure 3.2.1.3.4.2-1.

104

athith 4 il

o i s, e

PPN

EVENT
HANDL ING

SET VALUE IN
EVENT TABLE

v

IF INTERNAL/
EXTERNAL FLAG =
INTERNAL

v
-
| FOR ALL

{ASSOCIATED TASKS

!
{

L J

IF ANY TASKS

FOR ALL
NON-LOCAL
COPIES

ENQUEUE
TRANSMISSION TO
SIGNAL COPY

v

SET CONDITION IN
TASK TABLE B

v

CALL TASK
CHECK FUNCTION

FOR ALL SUCH

WAITING ON
CURRENT VALUE ////
OF EVENT

{

TASKS
v

CLEAR WAIT CHAIN

Figure 3.2,1.3.3.2-1, Event Handling Processing

105

CALL ASYNCHRONOUS
TRANSMISSION
FUNCTION

SET STATE TO
DISPATCHABLE

TASK
CHECKING

IF TASK IS 1F ALL CHANGE STATE TO
INVOKED BuT [— CONDITIONS ARE ACTIVE AND
INACTIVE SATISFIED DISPATCHABLE
COMPLEMENT
m UNLATCHED
CONDITIONS

IF ASSOCTATED
ACTIVATION
EVENT

ENQUEUE IT IN
EVENT QUEVE

Figure 3,2.1.3.4.2-1 Task Checking Processing

106

3.2.1.3.4.3 Outputs from Task Checking
The outputs from this Function are:

a. The updated Task Table B entry.
b. The Event Queue, with a request to set the Activation Event, if any,
associated with the Task.

3.2.1.3.5 Task Scheduling Function

The Task Scheduling Function is invoked to Schedule a Task, either as the result
of the execution of a Schedule Statement within the processor or as the result
of a Schedule request received from another processor.

3.2.1.3.5.1 Inputs to Task Scheduling

The sole input to this Function is the Task Table A entry of the Task to be
scheduled.

3.2.1.3.5.2 Task Scheauling Processing

The Scheduier uses Task Tabie A entry to determine if the task is resident in
its processor. If the task is resident then Task Table A entry points to the
appropriate Task Table B entry which can be set to "scheduled" ("invoked").
The unlatched conditions are reset to the negative of the desired values for
dispatching. 1€ the Task table A entry indicates that the task is in another
processor then an asynchronous Scnedule Request for that task must be built
anG sudmitted for asyncnronous transmission, The processing of this Function
is shown in Figure 3.2.7.3.5.2-1.

3.2.1.3.5.3 Output from Task Scheduling
Tre output from this Function is:
If the Tasx resides in this processor, the updated Task Table B
entry; otnerwise, the Transmission Queue, with a Schedule request
to the processor where the Task resides.
3.2.1.3.6 Task Termination/Cancellation Function
The purpose of the Task Termination/Canceiiation Function is to Cancel or
Terminate forcibly a specified Task and all of its descendants. if the
specified Task is the last dispatched Task, this Function will only affect the
Task's descendan:s, not tre Task itself. An additional function is to determine
the status of a specific task.
3.2.1.3.6.1 Inputs to Task Termination/Cancellation

The inputs to this runction are:

a. irne Tasan Tadle A entry of the Task.
b. The icoentity of the last dispatched Task,
c. Tre Carcei/7erminate/Invoked Flag.

107

IF THIS TASK \\\LA
RESIDES IN THIS

PROCESSOR /

THEN

ELSE

SET STATE IN
TASK TABLE B

TO INVOKED

v

SET UNLATCHED

CONDITIONS TO
UNDESTRED VALUE

.

CALL TASK
CHECKING
FUNCTION

ENQUEUE SCHEDULE
REQUEST IN TX
QUEUE

Fifgure 3.2.7,3.5.2-1 Task Scheduling Processing

108

i

» >

XS

3.2.1.3.6.2 Task Termination/Cancellation Processing
The Task Termination/Cancellation performs the following actions:

a. If the specified Task is not in this processor, it enqueues a Cancel
or Terminate request in the Transmission Queue and returns,

b. If the specified Task is not the last dispatched Task, it Cancels or
Terminates the specified Task.

c. It searches for all descendants of the specified Task whose controllers
are in the processor.

d. For each Task found in Step c, if the Task is resident, it Cancels
or Terminates it; if the Task is not resident, it enqueues a request
to Cancel or Terminate it in the Transmission Queue.

Whern a Task is Cancelled, its State is set to Uninvoked in Task Tables A and B,

When a Task is Terminated, it is first set Inactive in Task Table B, and then
the Task Checking Function is invoked to determine whether to re-Activate the
Task. If the Terminated Task has an Activation Event, this Function engueues
a request in the Event Queue to signal the Activation Event off,

In either case, if the Task to be Cance'led or Terminated is in Wait state, it
is removed from its Wait chain (see 3.2.1.3.7.2). If the request is to examine
the state of a specific task, then the Task Table B Task State entry is returned
as a value.

3.2.1.3.6.3 Outputs from Task Termination/Cancellation
The outputs from this Function are:
a. The updated Task Table A and B entries of all Tasks Cancelled or
Terminated.
b. The Transmission Queue, with messages to Cancel or Terminate non-
local Tasks.
c. Value of tne Task State of Execution.
3.2.1.3.7 Wait Function
The Wait Function is used to put a Dispatchabie Task into Wait State until a
specified time occurs or a specified Event rcaches a specified value, See
3.1.2.1.8.4 for furtner details.

This Function is only invoked by the Application Interface Function.

109

e

f o '—.-."-'.".'.-Illlnl--r'l-l.lll-lll!II-I!.!Il'.lﬂunn-unu-'“.‘

3.2.1.3.7.1 Inputs to Wait

The inputs to this function are:

a. Time/Event Flag
b. Latched/Unlatched Flag

c. Event table entry or time to go

i
i
|
!
!

d. Desired value of event
3.2.1.3.7.2 Wait Processing

The wait conditions are checked to determine whether they have been
satisfied and need not wait. Otherwise the Task is placed on either the
time wait chain or an event wait chain and the task state in Task Table B
is set to wait,

e i =

A Wait Chain is a chain of Tasks all waiting for the same type of condition.
There is one Wait Chain for Tasks waiting on time, one Wait Chain for each
Event waited on, and one Wait Chain for each Event whose complement is
waited on.

R R s st

A1l Tasks in the same Wait Chain are tied together by the forward and back

pointers in their Task Table B entries {see 3,1.2.4,1.14). The Wait Chain
o on time is ordered by time; all other Wait Chains are ordered arbitrarily.

The first Task in a Chain waiting on an Event or the complement of an Event

is located by a pointer in the Event Table entry for the Event (see

3.1.2.4.1.3). The identity of the first Task waiting on time is maintained !

internal to the local Executive,

b

The processing of this Function is shown in Figure 3.2,1.3.7.2-1.

3.2.1.3.7.3 Outputs from Wait X
The outputs from this function are:
a. The Wait Chain into which the Task is put.
b. The updated Task Table B entry of the Task,
3.2.1.3.8 Compool Block Handlinq Function }

This function is responsible for all processing involving Compool Blocks,
including: 4

a. Servicing Read, Write and Trigger Pseudo-Statements,

b. Accepting Asynchronous Compool Block Undates from RT's “
and other processors, v

4
110 {

| LT PLACE TASK IN
| JTHEN J IF SPECIFIED THEN TIME WAIT CHAIN;
l TIME > CURRENT REMOVE FROM
! | TIME DISPATCHED QUEUE
i |
b [IF TIME/EVENT SET TASK STATE
| l FLAG = TIME TO WAIT
; L
T i
PLACE TASK IN P
RETURN IF UNLATCHED OR HEN EXE?T N:EIJOVE P
ELSE N; }
L==2Zh EVENT # DESIRED FROM DISPATCHED o
VALUE QUEUE ;
! !
SET TASK I
TO WAIT :

Figure 3.2,1.3.7.2-1 Wait Processing

m -

s e

c. Formulating and enqueuing Asynchronous Messages to update
non-local copies of Compool Blocks,

d. Enqueuing Compoo] Block Update Events to be signalied,

e. In Master Mode, invoking the Master Trigger Function to
enqueue Critically Timed Update Messages,

3.2.1.3.8.1 Inputs to Compool Block Handling
The inputs to this Function are:

a. Internal/External Flag

b. Trigger Flag

c. DDB of Compool Block to be processed

d. Compool Block to be processed

e. Llocal Copy to be processed

f. Time (for Trigger only)
3.2.1.3.8.2 Compool Block Handling Processing
Compool processing involves time dependent compool transmissions as well as
normal local-to-global and global-to-local copy transfers, which can involve
transfer of compools between processors. The different types of compools
are discusced in 3.1.2.1.3.
If the compool is critically timed, then the compool data descriptor block
must be updated with the desired transmission time. If the compool is not
in the Master Processor then a message must be sent to the master executive
requesting transmission at the appropriate time.
If the compool is not critically timed, then local copies must update the
global copy upon "write compool" requests and the global compools must
update local copies upon "read compool” requests. If compool has been
declared as a Global Copy, then there are no local copies in any tasks,
i.e., the tasks share the same copy and read and write requests are null
functions.
The processing of this function is shown in Figures 3.2.1.3.8.2-1,-2,-3,-4.
3.2.1.3.8.3 Outputs from Compool Block Handling
The outputs from this function are:

a. Compool Block

b. Local Copy of Compool Block

112

oy

CCMPOOL 8LOCK
HANDLING

IF DDB IS
| "MASTER CRITICAL
TIMING"

r
|
|
1
|
)
i
!

IF -D0B IS
*SYNCHRONOUS™

RETURN

Figure 3.2.71.3.8,2-1

IF TRIGGER BIT
OFF AND TIME

TO GO > CURRENT
TIME

SET TRIGGER BIT
AND TIMZ TO GO
IN DDB

y

COPY DATA
INTO COMPOOL

.]

-

>

1
P

DO SYNC
PROCESSING

[

BLOCK

CALL MASTER®
TRIGGER FUNCTION

i
ELSE
—

IF INTERNAL/
EXTERNAL FLAG =
INTERNAL

D0 INTERNAL
ASYNC
PROCESSING

DO EXTERNAL
ASYNC
PROCESSING

Compool Block Handling

b o el

SYNC
PROCESSING
IF PHASE/PERIOS\\&

IN DDB = CURRENT
PHASE/PERIOD ///

'

IF READ/WRITE
FLAG = READ AND

COMPOOL NOT
GLOBAL

v

IF PHASE/PERIOD

RESET CONTINUE
BIT IN BCIU

THEN >

COPY COMPOOL
BLOCK INTO
LOCAL copY

ELSE

IN DDOB = CURRENT
PHASE/PERIOD ////

RETURN

COPY LOCAL
COPY INTO
COMPOOL BLOCK

SET CONTINUE BIT
IN BCIU

Figure 3.2.1.3.8.2-2 Asynchronous Compool Block Handling

114

_’W—‘H'—:’M R L Rt ",'»z-'r"“.‘—’-"‘wr‘"rwmm

/7INTERNAL O\

4 ASYNS

[

e —
IF LOMP00L<—7ﬁ\\\ THEN :

NOT GLOBAL BLOCK INTO
‘ LOCAL COMPOOL

—

| COPY LOCAL COPY

| IF READ/WRITE
' FLAG = READ

L

——d

I OANY .
NON-LOCAL COPIES INTO TRANSMISSION
. : 'BUFFER
f L.
| T
; |
: iIF RIGGER COPY TIME 70O GO
i -
FLAG IS ON INTO TRANSMISS ION
BUFFER
{ ~)
| ror ALL ENQUEUE UPDATE
% | NON-LOCAL MESSAGE IN TX
i : COPIES { QUEUE j
{ L
[rF COPY OF . COPY LOCAL I
| COMPOOL BLOCK |7 conoa INTO COMPOOL |
| IN THIS - NOT GLOBAL BLOCK
| PROCESSOR ; ;J
¥ '

t
' ENQUEUE T IN

| |
\ EmR EYF UPDATE EVENT f
a - | EVENT QUEUE
L L f

Figure 3.2.7.2.:,2-3 Internal Asynchroncus Compool Siock Handling

r

g

EXTERNAL
ASYNCHRONOUS

COPY BUFFER

INTO COMPOOL

BLOCK

IF UPDATE ENQUEUE IT IN
EVENT EXISTS EVENT QUEUE

Figure 3.2.1.3.8.2~4 External Asynchronous Compool Block Handling

116

e e

B 2P

c. Transmission Queue with engueued Update messages for copies of Compool
Block in otner processors.

d. Transmission Queue with enqueued request for Transmission of the
critically timed compool at the specified time,

e. Updated DDB (fc, Master Critical Timing DDB's only)

3.2.1.3.9 Dispatch Function

The Dispatch Function is always and only called by the Local Executive Control
Function when the Reception Pending Bit and Minor Cycle Bit are off and the
Event Queue s empty. The Dispatch Function searches for the highest priority
Dispatchable Application Task and, if it finds one, transfers control of it.

3.2.1.3.9.1 inputs to Dispatch

The inputs to tnhis Function are:

a. Task tadie b

0. The Reception Pending Bit 1
c. The Minor Cycle Pending Bit 1
a The Event Queue i

3.2.1.3.9.2 Dispatch Function Processing

Wnen the Local Executive performs any services it keeps track of the Highest
Pricrity task made Dispatchable since the last Dispatch. When the Dispatcher
is calied it commences scanning of the task table starting with the Highest i
Priority Dispatchable task. If the last Dispatched task is still the Highest
Priority task, then control will be returned to the original task. Otherwise,
control will be given to a new task, The only time that the Dispatcher actually
~ searches the task table is when a task ends, and it was the Highest Priority
Dispatchable task, or when the Highest Priority Dispatchable task becomes non-
dispatchable during the recovery of a condition. i

oo

——— s

The Dispatch Function performs the following specific actions:

a. When a Privileged Mode Task makes an Executive Service Request, or is
interrupted, the Local Executive will always return control directly
to that task.

b. It searches Task Table B for the highest priority Dispatchable Task.

C. If none is found, it returns to the Local Executive Control Function.

d. It disables interrupts, and resets the Privileged Mode Flap.

e. [f the Tasa s in Suspernded State, it restores the registers, condition ¢
status and Comsud Stack Pointer from the Task's Save Area, enables
interrupts, and branches to tne point where the Task was interrupted.

f. Otherwise, it initializes the Comsub Stack Pointer and calls the Task.]

- - . N . 3

g. On return frow the Task, it sets the Privileged Mode Flag,

h. It sets the Tas< inactive. i

i. If the Tus. nas an Activation Event, it enqueues a request in the ‘
Event (uuvue to sigrat the Event off.

Je Tt calls tnc Tase Jhecking Furction to determine whether the Task
should tu re-aciivated. \

k. It return: Lo tne Local bxecutive Lontro) Function, b

17

3.2.1.3.9.3 Qutputs from Dispatch Function
The outputs from this Function are:
a. Indication of the last Task Dispatched.
b. The Task Table B entry of a Task after it returns to this Function.

c. The Event Queue with a request enqueued to signal the Activation
Event of the above Task, if any, off.

3.2.1.3.10 10 Device Function

The 10 Device Function provides an interface with the Master Executive. Devices

may need to be turned off or be turned on during a particular mission phase.
Equipment failures may also require that a malfunctioning unit be shutdown.

3.2.1.3.10.1 Inputs to I0 Device Function
The inputs to this function include:

a. Device Number
b. On-0ff Flag
c. Reconfiguration Flag

3.2.1.3.10.2 10 Device Processing

The processing consists of the formulation of a message to the Master Executive
with the same contents as the inputs. If the appiication task is in the master
processor then a call to the Command List Handler.

3.2.1.3.10.3 Outputs from I0 Device
The output is the message formulated in the processing.
3.2.1.4 Initialization and Recovery Function

The Initialization and Recovery Function is divided into the following subfunctions:

a. The Initialization and Re-Initialization Function
b. The Local Executive Error Recovery Function
c. The Power Down Function

3.2.1.4.1 Initialization and Re-Initialization Function

The Initialization and Re-Initialjzation Function is automatically invoked by
the hardware upon system initialization or recovery from a power failure. It
is responsible for initializing of re-initializing the state of the Local
Executive.

3.2.1.4.1.1 Inputs to Initialization and Re-Initialization
The inputs to this Function are:

a. The Power Down Flag
b. The prior state of the system

The Power Down Flag, if on, indicates that a successful Power Down has been
accomplished.

118

7 4
v
.

3.2.1.4.1.2 Initialization and Re-Initialization Processing

The Initialization and Re-Initialization Function performs the following
steps:

a. If the Power Down Flag is on, it restores the state prior to the
power faijlure.

b. Otherwise, it examines the state of the system and determines what
to initialize or re-initialize.

The BCIU initialization sequence and interaction with the processor are
described below. At the time that power is applied (cold start or transient
recovery), the Bus Control Module shall clear the Processor Control Resister
(PCR) and its Internal Status Register (ISR) and perform any other initial-
ization required. The BCM shall then perform its power-on self-test and

set the READY BIT within the PCR to logic 1 and present the Power-On
initialization Interrupt (Level 1 with ISR zero) to the Processor. The FAIL
Bit within the PCR shall be set according to the self-test results. A logic
) shall indicate that the self-test failed. In either case, the BCM shall
segin to monitor the GO Bit within the PCR. When the BCM detects that the
GO Bit has been set to logic 1 by the Processor, the BCM shall assume that
tne Processor has lcaded the BCIU Address into the PCR Bits 7-11. This
adaress shall be saved in a non-PI0 accessible register and shall be the
8CIU's Address.

Tre B8CM shall tken enter the Quiescent Mode. This shall be the normal entry

point froir eitner Master or Remote Mode. When the BCM detects that the GO Bit

of tne PCR has been set to 1 by the Processor, the BCM shall set the Run Bit
of the PCR to 1 anc examine the Master bit of the PCR. If the Master bit of
the PCR is 1, the BCM shall proceed to operate in the Master Mode. If the
Master bit is 0, tne BCM shali proceed to operate in the Remote Mode. If,
during the course of operating in either mode, the BCM discovers the GO bit
of PCR has been set to 0 by the Processor, the BCM shall compiete the bus

operation that it is presently performing (if any) and return to the Quiescent

Mode entry point.
After initjalization or re-initialization, the following should be true:

a. The BCIU should nave the proper Terminal Address, and should be
running.

b. The Receptiion, Event, Minor Cycle and Transmission Queues should
all be empiy.

¢. DMA Pointer Biock O snoulc be set up for Minor Cycle 0.
d. The Minor Cyc’e A\umber = 3.

e. The various dreas o< core should be Write Protected properly.

-4

ATT givow. sardtieter., suln o3 tre number of processors, should be
initia: zes.

- S N A T4

o

-

o Ead

After the system is fully initialized, this Function transfers control to
the Local Executive Control Function.

3.2.1.4.1.3 Outputs from Initialization and Re-Initialization
The outputs from this Function are:

a. Global Executive parameters

b. The state of the BCIU
3.2.1.4.2 Local Executive Error Recovery Function

This Function is invoked upon detection by the hardware or the Local Executive
of an unrecoverable error within the processor or BCIU.

3.2.1.4.2.1 Inputs to Local Executive Error Recovery

The sole input to this Function is indication of the condition causing the
failure. These conditions shall include at least:

a. Illegal operation code
b. Boundary alignment error
¢. Processor parity error
d. Processor memory protect
e. DMA parity error
3.2.1.4,2.2 Local Executive Error Recovery Processing

The Local Executive goes into the halt state after setting the status register
in the BCIU.

3.2.1.4.2.2 Outputs from Local Executive Error Recovery

The sole output from this function is a status code to the BCIU indicating
processor failure.

3.2.1.4.3 Power Down Function

This Function is invoked upon detection of a power failure. It attempts to
save the state of the processor prior to total failure.

3.2.1.4.3.1 Inputs to Power Down

The input to this Function is the state of the processor at the time of the
power down interrupt.

120

"

3.2.1.4.3.2 Power Down Processing

This Function attempts to save the registers at the time of the power down
interrupt. If it is successful, it then sets the Power Down Flag.

3.2.1.4.3.3 Outputs from Power Down
The outputs from this Function are:
a. The state of the processor at the time of failure

b. The Power Down Flag

4
i

3.2.2 Master Executive Functions
The Master Executive includes the following major functions:

Master Initialization Function
Master Time Control Function

Master Synchronous Control Function
Master Asynchronous Control Function
Master Error Recovery Function

Mass Memory Control Function

- P o 0 o o

3.2.2.1 Master Initialization

The Master Initialization Function provides for initialization of the IDAMST
System. It loads the Remcte and Monitor Processor from Mass Memory and per-
forms initial testing of the system,

3.2.2.1.1 Inputs to Master Initialization
The Inputs to Master Initialization are:
a. The Initial Program Load performed by the hardware bootstrap procedure.
This contains all the executive tables created as part of compiling
and loading the system.

b. The number of the processor containing the Master Executive. This is
supplied by a hardware discrete which can be attached to the processor.

c. The Mass Memory containing the object modules for this mission.
3.2.2.1.2 Master Initialization Processing
3.2.2.1.2.1 Inijtial Step
The Master Processor is determined by a discrete which indicates no time delay
before attempting to load. The remaining processors will have different lengths
of time to wait before attempting to load as the master processor.

After the Master Processor is loaded and has started execution, the Master
Processor:

a. Determines its Processor Number. This number indicates the number
of processors that failed to load and can be eliminated from the load
sequence.

b. Sets its BCIU to Master Mode and sets its BCIU number.
c. Attempts to communicate with the next processor or the Master Pro-
cessor may be unable to communicate with any other processor, in

which case the Master Processor will load the Monitor Processor Sys-
tem into the same processor in which the Master resides,

122

- o M

The Master may be able to communicate with at least one other processor,
in which case this processor is designated as Monitor. The Monitor System
is loaded into this processor.

If the Master is able to communicate with the other two processors, each
processor is loaded with its appropriate software (Local Executive and
applications routines).

As part of the communication, the Master Executive indicates to the other
processors that they should not try to load on the Master Executive,

3.2.2.1.2.2 Normal Start-Up

Normal Start<Up commences if all three processors are participating in the
system.

The Master sends the Monitor a System Interrupt Command. This causes the i
Monitor to be initialized. The Master then sends the first Minor Cycle Event
(Master Function Mode Command) to each processor. This awakens each Local i
Executive and causes the Local Executive to perform initialization and prepare ‘
for receiving/transmitting data for the first minor cycle. When the Local
Execuative has completed this function, it invokes the Master Executive to
schedule the Master Sequencer which starts all the Application Tasks.

3.2.2.1.2.3 Abnormal Start-Up With Less Than 3 Processors

The Master Processor is loaded for the three processor configuration, After
loading, the Master is able to determine the available complement of processing
elements, If the full complement is not available, then the Master must search
the Mass Memory to find the appropriate configuration to load. The Master pro-
cessor is then reloaded with the proper Master Processor memory. The Normal
Startup procedure for loading and starting the remaining processor (if there is
one) is followed.

3.2.2.1.3 Outputs of Master Initialization

The outputs of Master Initialization are:

a. The Master Processor containing the Master Executive, a Local Execu-
tive, and some applications software.

b. The Monitcr Processor loaded with the Monitor, a Local Executive, some
] ’ Applications Software, and the applications modules needed for a limited
mission.

¢. The Remote Processor loaded with Local Executive and the applications
software for the mission,

v

.‘

d. The scheduling of the Master Sequencer.
3.2.2.2 Master Time Control Function
The Master Time Control Function consists of three subfunctions:

a. Timer B Control Function

b. Timer A Control Function

c. Master Trigger Function
3.2.2.2.1 Timer B Control Functior
This function is involked upon an interrupt by Timer B (see 3.1.1.2.4). This
indicates that Timer B has reached the value of zero. Since Timer B is a 16~
bit count, incremented every 100 microseconds, and is never set after system
initialization, this Function is invoked every 6.5536 seconds.
The sole purpose of this Function is to keep track of the passage of absolute
time. At any point, absolute time is defined as one hundred microseconds
times the value of Timer B plus the time since the last timer B interrupt.
3.2.2.2.1.1 Inputs to Timer B Control
The inputs to this Function are:

a. The Timer B interrupt

b. The time of the last Timer B interrupt

¢. Current Timer B value
3.2.2.2.1.2 Timer B Control Processing
The Timer B Control Function adds 6.5536 seconds to "time of Tast Timer B
interrupt.” If invoked by a request for elapsed time, the value of the
timer is added to the cumulative value.

3.2.2.2.1.3 Outputs from Timer B Control

The sole output from this Function is the updated time of the last Timer B
interrupt.

3.2.2.2.2 Timer A Control Function

The Timer A Control Function is invoked upon an interrupt by Timer A. This
indicates the expiration of an interval of time determined by the previous
invocation of the Timer A Control Function. This interval will have been set
to expire upon either or both of the following conditions:

a. Time for a new Minor Cycle
b. Time to send a Critically Timed message

124

ekt

r'lw."ll'lllllI-I---------------n--u-u-!-u-um-f e T TR

3.2.2.2.2.1 Inputs to Timer A Control
The inputs to this Function are:

a. The Timer A interrupt

b. Absolute time (see 3.2.2.2.1)
c. The Critically Timed Message Queue (see 3.2.2.2.3.1)
d. The status of Synchronous operations (see 3.2.2.3.3)
e. The previous theoretical Minor Cycle number
Mote that this Function maintains only the theoretical Minor Cycle number.
The actual Miror Cycle number is set by the Master Synchrorous Control Function,
and may 1ag behind the theoretical Minor Cycle number due to an exceptionally
. heavy Bus loading.
. 3.2.2.2.2.2 Timer A Contro! Processing

The Tuner A Controi Function performs the following actions:

a. it checks the Critically Timed Message Queue to see if there are
any Critically Timed Messages ready to transmit.

5. if so, it sends them.

C. It crecks to see whether any Critically Timed Messages should be
sent pefcre tne next Minor Cycle. If so, it sets Timer A to expire
at the time to send the next Critically Timed Message; if not, it
sets Timer A to expire at the time for the next Minor Cycle,

d. It invokes Syncnronous Control of time for a minor cycle has expired.

3.2.2.2.2.3 Qutputs from T:mer A Control
The cutputs from this Function are:
a. The updatea Critically Timea Message Queue
b, Any Cric ca’l’y Ti0:d “essszes set e o at tnis time

C. The new vaiue for Timer A

3.2.2.2.3 Master Triogger runction

Tne Master Trigger “.nCt.on processes tritica’ly Timed Messages detected by
the Compooi BIoCk mu.3iirc “unvtion isee 3.2.1.3.3). It encueues them in the
Critically Timed Message cueue for processing by the Timer A Control Function.

£ 4

AR . e att

sy

3.2.2.2.3.1 Inputs to Master Trigger
The inputs to this Function are:

a. The Critically Timed Message

b. Time to send the Critically Timed Message

c. The Critically Timed Message Queue
The Critically Timed Message Queue contains all Critically Timed Messages
which have been Triggered but not yet sent to the aporonriate 27, The Queue
is arranged in order of the time at which the messages are to be sent. The
items in the Queue are Master Critical Timing JDBs (see 3.1.2.4,1.7). They

are linked together by item #6, "Forward Pointer to DDB." The identity of
the first DDB in the Queue is maintained local to the Master Executive.

3.2.2.2.3.2 Master Trigger Processing

The Master Trigger Function inserts the new Critically Timed messaqge into the
proper place in the Critically Timed Message Queue.

3.2.2.2.3.3 Qutputs from Master Trigger

The sole output from this Function is the updated Critically Timed Message
Queue.

3.2.2.3 Master Synchronous Control Function
The Master Synchronous Control Function controls the Synchronous operations of
the Master BCIU. It may be invoked either by the Timer A Control Function at
the time for a new Minor Cycle, or by a Program controlled Interrupt generated
by the BCIU when it has finished processing the Synchronous Command List.
3.2.2.3.1 Inputs to Master Synchronous Control
The inputs to this Function are:

a. The actual Minor Cycle number

b. The theoretical Minor Cycle number

¢. The prior state of Synchronous operations

d. Current state of Synchronous operations
3.2.2.3.2 Master Synchronous Control Processing
The Master Synchronous Control Function performs the following actions:

a. If invoked by the Timer A Control Function and all synchronous

operations are complete, then increment the theoretical Minor Cycle
and go to step 'e.'

126

cay-

3.2

‘ Tne

3.2.

The
the
off
cyc

3.2

t. if invoked by the Timer A Control Function and all synchronous
aperations are not complete, then increment the theoretical Minor
Cycie Number and return.

If invoked because of the BCIU interrupt which indicates the end of
synchronous processing and the theoretical Minor Cycle = actual

Minor Cycie, then begin processing asynchronous transmission list, if
non-empty.

(@]

d. If invoked because of the BCIU interrupt which indicates the end of
synchronous processing and the theoretical Minor Cycle is greater
tnan tne actual Minor Cycle, then go to step 'e.’

e. It increments the actual Minor Cycle number by one, and sets the
Minor Cycie Pending Bit in the Master processor (see 3.2.1.1.3).

<. It links tcgether the oroper blocks of Instructions in the Synchron-
Sus Commarcg List for the new Minor Cycle via the Command List
nandier {see 3.2.2.4y.

. .t sends Master r.unctiorn Mode Commands to tne Remote processors to
inform tnaem of tne new Minor Cycle.

n. It sets the Masier BCIU to the beainning of the Synchronous
Instructicn List via the BCIU Interface Function {see 3.2.2.5).
2.2.3.3 Jutsuts from Master Syncnronous Control

.

Jutputs from this FunCtion are:

a. The new Mincr Cycie numoer

b. The thegretica. Minor lycle

¢, The current state 07 Syncnronous operations
2.4 Commar d List iirdier Function

o

Command List randier s responsible for the contro! and modification of
command 1ist tnait cortrols the BCIU. Tnose functions include turning on/
communication *o und from devices, setting the cormands to match the minor

le number, and “rsert SynChronous messacsy nto the command list.

2.4 Corenc List Aandler Inpute

Inputs to the Comranc List mandler inciude:

a. Jevice rwus.oer
b. whether Comcanication with the device should be turned on or off

C. whether tne Jummand 1ist sh0uld be modified because of reconfigura-
tion

Ye7

d. minor cycle number

e. asynchronous message DDB

f. append/insert/In-Out/Link List Flag
3.2.2.4.2 Processing

Four processing subfurcticns are identified as part of the major functions:
In/Qut, Link List, Inser* Messaye, and Append Message of communication with a
device is to be altereg, *ther the (pmmancd List Handler in the form of sub-
function In/Out must determine the l'ocation of the device in all of the command
lists,

A device operation needing alteration may orly require one change in the command
1ist or, in the case of the bus, every command may require alteration to indicate
a change in bus operation. Reconfiguration to a one processor system requires i
that the master processor command list be shortened to the minimal communication]
list. ;
i

[f the command 1ist must be changed because of the beginning of a new minor
cycle, then the BCIU pointer to the appropriate command 1ist must be altered.
Command Handler in the form of Link List must match the minor cycle number to
the appropriate command list, and then present the request to change the BCIU
pointer to the BCIU interface.

If an asynchronous message must be sent the message can either be inserted into p
the message list for immediate transmission or the message can be postponed
until the end of the synchronous transmissions. The Command Handler in the
form of Insert message and Append Message is responsible for the manipulation
of these lists.

3.2.2.4.3 Command List Qutputs
The output will be an updated command list.

3.2.2.5 BCIU Interface Function

The BCIU Interface module is responsible for setting and reading the BCIU
registers via the programmed [/0 operations. These functions serve as the
interface between the hardware unit and the Master Executive Software.

3.2.2.5.) BCIU Interface Inputs

Inputs to this module will consist of requests to read a particular BCIU
register or to write a register, along with the value to be written into the
register {see 3.1.1.1.3.2). An additional input is the interrupt level for a
BCIU generated interrupt.

3.2.2.5.2 BCIU Interface Processing

The BCIU Interface will generate the PIQ operation to any specific register
accessible by the processor. If an interrupt level is presented to the BCIU
Interface, then the Interface module will interrogate the specific BCIU
registers to determine the precise meaning of the interrupt and call the

128

{
approgriate service module (e.§., Error Recovery).
- 3.2.2.5.3 BCIU Interface OQutputs
Outputs of BCIU Interface will be the values of the BCIU registers that are
requested to be changed or to be read.
3.2.2.6 Master Asynchronous Control Function]
Tne Master Asynchronous Control Function responds to Asyncnronous Request
Vectors received elther from other processors over the Data Bus or from tne]
tocal cxecutive within the Master Processor.
3.2.2.6.1 Inputs to Master Asynchronous Contrci
) Tne inputs to tnis Function are:
. g. The Request Vector 1
1
} 5. Tre Master Request Decode Table (see 3.1.2.4.2.7%) 1
c. The status of Synchronous aperations
5.2.2.8.2 Master Asynchronous Control “rocessing
Trne YusTer Asyachronous Contro: function cetermines which commend 10 senc to
the Master BCIU oy using Tohe reguestT Leldor o aiex nu0 the Miiiler Request
Decode Table. The Masier Reguest DeCCCe Table Wi . indicate wnetrner tne message
wiil be sent out ‘mmeciately ¢~ de cueued Tor transmission following the
compietion of the Syncnronous Command List. IF tre BLiU is procossing
Synchronous Commands and the request is for ‘mmediate transmission, this Function
iinks the Asynchronous Instruaction into tne Syrchronous Inssruction List; if the
BCIL has completea the Syrcinronous List, it simply sends the Instruction to the
BCIU.
L
If the request vor transmission comes €rom an R7T, this Function wiil perform
tne same actions &s described apove, except nat 1t will use the Master Remote
Terminal Request Teales [sce 3.1.2.4.2.3) retner than the Master Request decoae
Tacle to identity ine reguest.
3.2.2.6.3 CuTwuly Trom o Master Asynchroncud Lonirod
The outputs from Tats FuUniluion are coamends to the Master 5lio via the Command
List Handler,
23
e

This page left blank intentionaily.

T

g

3.3 ABAPTATION

This section summarizes the IDAMST Executive requirements with respect to the
operating facility, system parameters, and the internal capacities of the
system itself.

3.3 General Environment

Tne IDAMST Executive must be able to run in two environments:

a. DEC-10 Mode (SLS)
b. TIDAMST Processor Mode (ICS, STS and ITB)

In IDAMST Processor Mode, the Executi o will execute native code, and communi-

cate with real or simulated Remote Terminals over a real or simulated Data Bus.

In DEC-10 Mode, on the other hand, the Executive will execute PDP-10 code, and
the operations of thc Data Bus, RTs, Timers and interrupts will have to be
replaced by logically parallel simulated constructs compatible with the con-
ventions of the DEC-10.

3.3.2 System Parameters

Tnere are two constant referenced by the IDAMST Executive which may change
according to operation needs:

a. The number of processors
b. The rates of the Minor Cycle and Major Frame

The number of processors in the IDAMST federated system may vary from one to
sixteen. The IDAMST System must inciude enough processors to supply the com-
puting power necessary to support the desired application. On the other hand,
the overhead associated with intertask communication tends to increase as
Tasks are partitioned into more processors.

The Minor Cycle rate and number of Minor Cycles per Major Frame may be changed
to suit the requirements of the peripheral equipment and the computational
algorithms. Currertly, it is anticipated that there will be one Major Frame
per second and 64 Minor Cycies per Major Frame.

3.3.3 System Capacities

Since all Application Software entities are controlled from table entries pre-
allocated by PALCZFAC, tne capacity of the IDAMST Executive is essentially
1imited only by avaiiap.e memory. The sole exception to this is tne three
queues used by ta2 LcoCai Zxecutive: Tne Transmission Queue, the Reception
Queue, ana the [ven: Quede and the one gueue of the Master Zxecutive: the

Postponed Asyncnrorous Transmission Queue. When any of these queues becomes full

the system degraces. Tnerefore, it is necessary that these gqueues be allocated
iong enough to ranale the maximum expected loading.

137

-

<

4.0 QUALITY ASSURANCE PRCYISIONS

This section identifies the basic method for accomolishing software verifica-
tion.

4.1 Introduction

IDAMST CPCls will incorporate top-down, structured concepts, described brief-
1y below:

Structured Program

A structured program is a computer program constructed of a basic set of con-
trol logic figures which provide at least the following: Sequence of two or
more operations, conditional branch to one of two operations and return
repetition of an operation. A structured proaram has only one entry and one
exit point. A path will exist from the entry to each node ani from each noda2
to the exit. In addition, certain practices are associated, such as indenta-
tion of source code to represent logic levels, use of intelligent data names
and descriptive commentary.

Top-Down Programming

Top-down programming is tne concept of performing in hierarchical sequence a
detailed design, code, integration and test as concurrent operations.

Top-Down Structured Programs

A top-down structured program is a structurcd program with the additioral
characteristics of the source code being logically but not physically seg-
mented in a hierarchical manner and only dependent on code already written.
Control of execution between segments is restricted to transfers between
vertically adjacent hierarchical segments.

Top-down coding and verification is an ordering of system development which
allows for continual integration of the system parts as they are developed
and provides for interfaces prior to the parts being developed. At each
stage, the code already tested drives the new code, and only external data
is required. .

In top-down programming, the system is organized into a tree structure of
segments. The top segments contain the highest level of control legic and
decisions within the program, and either passes control to the next level
segments or identifies the next level segments for in-lin2 inclusions., The
next level may include stubs. Stubs which are to be replaced eventually with
running code may contain a "no operation” instruction or pcssibly a display
statement to the effect that control has been received. The process at
replacement of successively lower level stubs with operational code continues
until all functions within a system are coded and verified.

In top-down coding and verification, the highest level element is coded first.
Coding, checkout, and integration proceed down the hierarchy until the lowest
levels have been inteqrated. This does not imply that all elements at a

given Tevel are developed in parallel. Some branches will intentionally be

132

Py

developed early, e.g., to permit early training and early development of
critical functions or hardware/software integration.

Many systems interfaces occur through the data base defintion in addition to
calling sequence parameters. Top-down programming requires that sufficient
data definition statements be coded and that data records be generated before
exercising any segment which references them. ldeally, this leads to a sinale
set of definitions serving all the programs in a given application.

This approach provides the ahility to evolve the product in a manner that
maintains the characteristic of always being operable, extremely modular and
always available for successive levels of testing that accompany the corres-
ponding levels of implementation. Exception to the top-down coding and integ-
ration approach will be considered on a case-by-case basis.

Each computer program will be coded in a higher order language. Use of
assembly or machine lanquage will be restricted to coding of certain executive
functions where the higher order language cannot be used.

Real Time Structured Programs ,

An additional complexity in the IDAMST system is the Real Time, asynchronous
cormunication of structured programs as tasks. Tasks are also orqanized as a
hierarchy. Each task has a Controller Task which is the only task permitted
to schedule or cancel the lower level task. However, any task is permitted
to activate any other task in IDAMST.

4.2 Computer Program Verification

Computer grogram verification is the process of determining whether the
results of executing a computer program in a test environment agree with the
specification requirements. Verification is usually only concerned with the
Togical correctness of the computer program (i.e., satisfying the functional/ :
performance requirements) and may be a manual or a computer-based process .
(i.e., testing software by executing it on a computer).

e e o Sy @

The use of top-down structured programming techniques provide certain prograw
characteristics that may lead to a simplification of the computer orogram
verification process. Top-down integration of the proaram elements in a CPCi
minimizes the use of complex driver routines and replaces them witn actual
program elements and simple program stubs. It also provides a system in
which the computer program is continually being tested as successivelv lower
levels of program clements are integrated and the interfaces between program
elements are verifiea prior to the integration of the next lower level.

4.2.1 Program Element Tests

Program elements are coded in the sequence required for top-down integration.
When coding and coe review are completed, each program element shall be
Functionally tested in a stand-alone confiouration by the proarammer to
assure that the =leront can be executed and that the specified functions are
performec., Since crogram elements are small and are restricted to one entry
point and one exit puint, the test environment is relatively simple.

133

. _

cay o

A o

>

4.2.2 CPCI Integration Tests

Following successful completion of the Program Element Tests, the program
elements are entered into the Computer Program Library where they are cubjected
to configuration control procedures. Controlled program elements are compiled/
assembled, link-edited and the current CPCI version is made available for
integration testing. Integration tests are dynamic tests designed to verify
program functions and interfaces between program elements and with the data
base. The result is a complete CPCI for which all design features have been
verified.

The integration of program elements or tasks into the complete computer pro-
gram shall be accomplished in a top-down sequence. The highest level elements
which contain the highest Tevel controller tasks shall be tested and inteqrated
first. These tasks are the Master Sequencer, Configurator, Request Processor,
and Subsystem Status Monitor. Testing and integration shall proceed down the
hierarchy until alil program elements ?e.g., equipment interface functions),
have been integrated and the design completely verified.

An important aspect of integration testing of IDAMST will be the invocation
and synchronization of the tasks, since these functions do not fall under the
structured programming rules.

4.2.3 Formal Software Testing

The purpose of formal testing is to confirm that the computer program performs
the functions and satisfies the performance requirement contained in the soft-
ware requirements specification. Formal testing consists of Preliminary
Qualification Testc (PQT) and Formal Qualificaticn Teste (FWT), and are con
ducted in accordance with Air force approved test plans.

Pre-Qualification Testing (PqT)

PQT is an incremental process which provides visibility and control of the
CPC2 development during the time period between the Critical Design Review
and Formal Qualification Testing.

PQT consists of functional level tests, conducted at the development facility,
and using Air Force approved test plans. These tests will use documented pro-
cedures, completed by the contractor, and submitted to the Air Force Sufficient-
lg in advance of the scheduled test session to permit review and analysis.

They will typically use controlled inputs specifically prepared for the test
purpose.

A Pre-Qualification test will generally be conducted for each CPC! function.

If a test's cost or time consumption estimates are significantly high, the
test will be deferred to FQT unless it is time-critical or performance-critical
to the development of the CICI.

134

DA Atk e
IS

e v At i e

-
ol
‘ll

J-I-I-I-lIIIIlllII-llIlIIIIlI-!ll-l-lI-ﬂ'-F!II!F!!-'..-IIII-l-'-'-H-"!‘

E

