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THEORETICAL AND EMPIRICAL STUDIES ON USING PROGRAM MUTATION
TO TEST THE FUNCTIONAL CORRECTNESS OF PROGRAMS

Timothy A. Budd (Yale), Richard A. DeMillo (Georgia Tech),
Richard J. Lipton (Berkeley), and Frederick G. Sayward (Yale)

1. Introduction

In testing for program correctness, the standard
approaches {11,13,21,22,23,24,34]) have centered on
finding data D, a finite subset of all possible
inputs to program P, such that

1) if for all x in D, P(x) = £(x),
then P* = ¢

where f is a partial recursive function that
specifies the intended behavior of the program and
P* is the function actually computed by program P.
A major stumbling block in such formalizations has
been that the conclusion of (1) is so strong that,
except for trivial classes of programs, (1) is
bound to be formally undecidable |23].

There is an undeniable tendency among
practitioners to consider program testing an ad hoc
human technigue: one creates test data that
intuitively seems to capture some aspect of the
program, observes the program in execution on it,
and then draws conclusions on the program's
correctness based on the observations. To augment
this undisciplined strategy, technigues have been
proposed that yield quantitative information on the
degree to which a program has been tested. (See
Goodenough {14] for a recent survey.) Thus the
tester is given an inductive basis for confidence
that (1) holds for the particular application.
Paralleling the undecidability of deductive testing
methods, the inductive methods all have had trivial
examples of failure [14,18,22,23],

These deductive and inductive approaches have
had a common theme: all have aimed at the strong
conclusion of (1). Program mutation (1,7.9,271, on
the other hand, is a testing technique that aims at
drawing a weaker, yet quite realistic, conclusion
of the following nature:

(2) if for all x in D, P(x) = f(x),
then P* = f OR P is "pathological.”

To paraphrase,
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3) if P is not pathological
and P(x) = f(x) for all x in D
then P* = £,

Below we will make precise what is meant by "P
is pathological"; for now it suffjces to say that P
not pathological means that P was written by a
competent programmer who had a good understanding
of the task to be performed. Therefore if P does
not realize f it is "close” to doing so. This
underlying hypothesis of program mutation has
become known as the competent programmer hypothesis:
either P* = f or some program Q "close" to P has the
property Q* = f,

To be more specific, program mutation is a
testing method that proposes the following version
of correctness testing:

Given that P was written by a competent programmer,
find test data D for which P(D) = £(D) implies
P* = £,

Our method of developing D, assuming either P or
some program close to P is correct, is by
eliminating the alternatives. Let ¢ be the set of
programs close to P. We restate the method as

follows:

Find test data D such that:
i) for all x in D P(x) = f(x) and
ii) for all Q in ¢
either Q% = pw
or for some x in D, Q(x) = P(x).
If test data D can be developed having properties
(1) and (ii), then we say that D differentiates P
from ¢, alternatively P passes the ¢ mutant test.

The goal of this paper is to study, from both
theoretical and experimental viewpoints, two basic
questions:

Question 1: If P is written by a competent
programmer and if P passes the ¢ mutant test with
test data D, does P* = f?

Note that, after formally defining ¢ for P in a
fixed programming language L, an affirmative answer
to question 1 reduces to showing that the competent
Programmer hypothesis holds for this L and ¢.

We have observed that under many natural
definitions of ¢ there is often a strong coupling
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between members of ¢ and a small subset u. That is,
often one can reduce the problem of finding test
data that differentiates P from ¢ to that of finding
test data that differentiates P from u. We will
call this subset p the mutants of P and the second
question we will study involves the so-called
coupling effect [9]:

Question 2 (Coupling Effect): If P passes the .
mutant test with data D, does P pass the ¢ mutant
test with data D?

Intuitively, one can think of . as representing the
programs that are "very close" to P.

In the next section we will present two types of
theoretical results concerning the two questiors
above: general results expressed in terms of
properties of the language class L, and specific
results for a class of decision table programs and
for a subset of LISP. Portions of the work on
decision tables and LISP have appeared elsewhere
[5,6], but the presentations given here are both
simpler and more unified. In the final section we
present a system for applying program mutation to
FORTRAN and we introduce a new type of software
experiment, called a "beat the system” experiment,
for evaluating how well our system approximates an
affirmative response to the program mutation
questions.

2. Theoretical Studies

Qur major interest in studying program mutation
from a theoretical viewpoint is to gain insight on
where and how to apply the method to real
programming languages. There are two possible
study approaches: (i) For fixed L define the
mutants of P in terms of syntactic and semantic
transformation rules that alter P's syntax and
interpretation in a way that formally captures the
notion of "closeness." (That is, reflect the
errors a competent programmer could have made in
producing P,) Here ¢ is a subset of L. (ii)
Simply let ¢ = L.

For these initial studies we choose the simpler
approach, (ii), in order to investigate the
questions in terms of properties of L. Immediately
we have the following:

Theorem l: 1f there is an automatic method to
generate data D that satisfies the mutation test
for P, then the equivalence of P and any program Q
in ¢ must be decidable,

The proof is trivial since we used the
equivalence property in defining what is meant by
"data that satisfies the mutation test.”
Furthermore, if we have such data, then to decide
equivalence we merely execute the two programs.
1f the results agree, they are equivalent; if not,
they obviously are not equivalent,

At first glance the result of this theorem
appears to cast serious doubt on our ability to
derive any interesting positive results, since the
equivalence problem is undecidable for most
interesting language classes. As will be seen in
the sequel, however, the implicatjon is that we
must carefully choose the set ¢ to capture some
very special properties of being "close" to the
original program P.

For the remainder of this section we will
consider two specific examples of program types.

e e ———

2,1 Decision Tables

A "decision table” is a highly structured way
of describing decision alternatives. Such tables
are chiefly used in business and data processing
applications [28,31], although they can also be
used to organize test data selection predicates
f13].

To form a decision table we have a set of
conditions, a set of actions, and a table composed
of two parts. Entries in the upper part are from
the set {YES, NO, DON'T CARE} (denoted Y, N, and
*); entries in the lower table are either DO or
DON'T DO (denoted X and 0). Each column in the
matrix is called a rule. An example is shown in
figure 1.

1 2 3 4
condition 1 Y YN ¢
condition 2 N * Y Y
condition 3 * Y Y N
condition 4 N Y * ¢
action 1 X X 0 X
action 2 X 0 0 0
action 3 0 0 X X

Figure 1: A typical decision table

To execute the program on soms input the
conditions are first simultanecusly evaluated,
forming a vector of YES-NO entries. This vector
is then compared to every rule. If the vector
matches any rule, the indicated actions are
performed. If for each possible data iteam there
is at least one rule that can be satisfied, we say
the decision table is complete, We say it is
consistent if there is at most one rule. We will
assume that the program under test is consistent.
We can also assume it is complete, since an
incomplete decision table can always be turned
into a complete one by adding further actions that
merely return an error flag and further rules that
are satisfied by the previously unmatched inputs.

We will also assume that no two rules specify
exactly the same set of actions, We can do this
with little loss of generality since two such
rules can be combined with at most the addition of
one new condition.

Given a decision table program P, let ¢ be the
set of all consistent programs having the same
conditions and actions as P. This means that
members of ¢ differ from P only in the table
portions or the number of rules they contain.

The mutants (u) of P will be those members of ¢
that are formed by taking a single * entry and
changing it first into a Y and then into an N
entry. If P is congistent then all the mutants
will be consistent. Some of these mutants may be
equivalent to P. The mutant that changes position
j in rule i from a * to a Y can be squivalent to P
only if it is impossible for any input to satisty
rule i and not satisfy this condition.

There are at most two mutants for every table
entry in P. This means there are no more than 2mnm
mutants. Each mutant requires at most a single
test case to differentiate it from P, Therefore
even though there are potentially 2R different
inputs, an adequate mutation set need have only at
most 2@ inputs.
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We will make the following assumptions apply to
all of ¢:

1. The program P is both consistent and complete.

2. Given an example of input/output behavior, we
can determine which rule was applied to produce
the output from the input. 1In particular this
implies that no two rules specify exactly the
same set of actions.

3. There exists at least one input that satisfies
each rule,

4. We can decide the equivalence of P and any
member of u,

We will investigate the power of a set of inputs
that differentiates P from p; in particular, we
will show that this set in fact differentiates P
from ¢. Assume we have such a set D. We will
assume that every rule in P is exercised at least
once by some member of D, adding points if
necessary to meet this condition. We can initially
fail to meet this condition only if there are some
rules that do not contain *s. We will note without
further comment that we could have guaranteed this
condition with mutants if we also mutated the
action matrix, as was done in the original paper
L5]. It now seems that to do so causes an
unnecessary increase in the complexity of the proof
for such a small matter.

Given any Q in ¢, if for each x in D P(x) = Q(x)
then we will say Q tests equal to P. Since each
rule in P has a unique set of actions, by a simple
counting arqument we know that if Q tests equai to
P then for each rule in P there is a corresponding
rule in Q with exactly the same actions. Using
this fact, we can show the following:

Theorem 2: 1f D differentiates P from u and Q tests
equal to P, then for each rule in P the set of
inputs satisfying the correspomding rule in Q is
strictly larger than that of P.

Proof: First note that it is not possible for a
rule to have a Y entry in P and for the corres-
ponding rule in Q to have an N, or vice versa. If
this were so no data that satisfied the rxule in P
could satisfy the rule in (.

Now consider each * entry in P. There are two
cases. If the change that replaces this * by a ¥
(the same argument holds for N} is equivalent, this
means the conjunction of the other conditions
implies a YES in this position. 1In this case it
doesn't matter whether Q has a Y or a * (and these
are the only two possibilities) =-- this change
cannot contribute to decreasing the size of the sct
of inputs accepted by Q.

On the other hand if this change is not
equivalent, D contains points that while satisfying
the rule both satisfy and fail to satisfy this
particular condition. Both thege must bLe accepted
by the same rule in Q. Therefore Q must also have
& * in this position.

The only remaining possibality is that some rule
in P has a Y (or N) and the corresponding position
in Q has a *. This strictly increases the sizec of
the set of inputs accepted by this rule, giving our
result. |

Theorem 3: 1f D differentiates P from u then D
differentiates P from ¢.

Proof: Let P, be the set of inputs accepted by rule

o B -
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i in P, Since P is consistent, the P; are
disjoint. Since P is complete, they cover the
entire space of inputs. Each rule in Q must
accept at least the set accepted by the
corresponding rule in P, Since Q is consistent,
it can satisfy no more. [J

Recall that theorem 1 stated that we could
form an adequate mutation set only if we could
decide equivalence of P and each of its mutants.
Obviously there are some cases where this is
true, for example when all the conditions are
independent and therefore none of the mutants are
equivalent. We can easily find examples where
this is not true. This is the case whenever we
have two condiitions where the question of whether
the first condition implies the second is

undecidable.
condition 1 Y
condition 2 .

Figure 2: Example where equivalence is
undecidatle

We can replace the * in the condition 2 row with a
Y if and only if condition 1 always implies
condition 2. 1In this fashion using almost any
classic undecidable question [20] we can construct
a program with the property that the equivalence
question for it and one of its mutants is
undecidable.

The most restrictive assumption made in proving
theorem 3 seems to be that each rule must have a
distinct set of actions. To show that this
restriction cannot be eliminated altogether,
consider the two decision tables shown in figure
3. The two programs are not equivalent (they
process the input NNYN differently), yet they
agree on a set of test inputs {NNYY,6NYYN,YYNN,
YNNY,NNNN,NYNY,YYYY,YNYN}, which is sufficiant to
eliminate all the mutants of program 1.

Program 1 Program 2
N Y N Y * * " *
* L] * - N Y N Y
Y N N Y LR
t ] * L] " Y N N Y
X X 0 o0 X X 0 0
0 0 X X 0 0 x X

Figure 3: A casc not covered by the mutation tust

We do not know whether the restriction fo rules
having distinct actions can be replaced with a
weaker assumption, or whether there is any test
method that can be used to demonstrate correctness
in this case other than trying all 2P
possibilities.

2.2 LISP Programs

In this section we will consider programs
written in the subset of LISP containing the
functions CAR, CDR, and CONS and the predicate
ATOM. A similar class of programs has been
studied previously {17,32,33],

We will make the convention that all
S-expressions (we will use the less clumsy
locution points) have unique atoms. Certainly if
two programs agree on all such points they must




agree on all inputs; hence we do this without loss
of generality,

We will call a LISP progyram a selector program
if it is composed of just CAR and CDR. We will
inductively define a straight-line program as a
selector proyram or a program formed by the CONS
of two other straight-line programs,

2.2.1 Straight-line programs

We first note that the power of a selector
program is very weak.

Theorem 4: 1f two selector proyrams return
identical values on any input for which they a-e
both defined, they must compute identical valuus
on all points.

Proot: The only power of a selector program is to
choose a subtree out of its input and retuxn it.
We can view this process as selecting a position
in the complete CAR/CDR tree and returning the
subtree rooted at that position. Since thexe is a
unique path from the root to this position, there
is a unique predicate that selects it. Since
atoms are unique, by merely observing the output
we can infer the subtree that was selected. 9]

We will say that a straight~line program P(X)
1s well formed if for every occurrence of the
construction CONS(A,B) it is the case that A and B
do not share an immediate parent in X. The
intultive idea of the definition should be clear:
a program is well formed if it is not doing any
more work than it peeds to. Notice that being
well tormed 1s an observable property of programs,
tndejendent of testing.

We can define a measure of the complexity of
straight-line programs by their CONS-depth, where
VONS~-dupth is defined as follows:

1. The CONS-depth of a sclector program is zero.
2. The CONS-depth of a straight-line program

P(X) = CONS(PL{X),P2(X))
1s

L+ MAX(CONS-depth(PL(X)) ,CONS~depth(P2))) .

Theorem ~: 1f two well formed selector programs
computy 3duntically on any point for which they are
both defined, then they must have the same

CONS-depth.

Proot: Assume we have two programs Pl and P2 and

a point X such that Pl(X) = P2(X), yet the
CONS-duptn(bl) < CONS-depth(P2). This implies

that thexre 1s at least one subtree in the structure
of P2 that was produced by CONSing two straight-
line proyrams while the same subtree in Pl(X) was
produced 1y a selector. But then the objects P2
VONLed must have an immediate ancestor in X,
contradicting the fact that P2 is well formed. [}

Theorem 6: 1f two well formed straight-line
prejrams agrec on any point X for which they are
both defined, then they must agree on all points.

Froof: Tue proof will be by induction on the
CONs-depth, By theorem S5 any two programs that
agree un X must have the same CONS-depth, By
theorem 4 the theorem is true for programs of
CONS-depth zero. Hence we will assume it is true
for jroyrams of CONS-depth n and show the case for
nel.

1f program Pl has CONS-depth n+l then it must
be of the form CONS(P1ll,Pl2) where P11l and Pl2
have CONS-depth no greater than n, Assume we have
two programs Pl and P2 in this fashion. Then for
all v:

P1(Y) = P2(Y) IFF
CONsS(P11(Y) ,P12(Y)) = CONS(P21(Y),P22(Y}} 1IrFP
Pl1(Y) = P21(Y) and P12(Y) = p22(Y)

Hence by the induction hypothesis Pl and P2
must agree for all vy, [

We can easily generalize theorem 6 to the case
where we have multiple inputs. Recall that each
atom is unique; thecrefore given a vector of
arguments we can form them into a list and the
result will be a single point with unique atoms.
Similarly a program with multiple arguments can
be replaced by a program with a single argument
by assuming the inputs are delivered in the form
of a list, and replacing each occurrence of an
argument hame with a selector function accessing
the appropriate position in this list. Using
this construction one can verify that if theorem
6 did not hold in the case of multiple arguments,
one could construct two programs with single
arquments for which it did not hold, giving a
contradiction.

To summarize this section: for any well formed
straight-line program, any unique atomic point
for which the function is defined is adequate to
differentiate the program from all other well
formed straight-line programs.

2.2.2 Recursive programs

The type of programs we will study in this
section can be described as follows:

The input to the program will consist of
selector variables, denoted X),...,Xy, and
constructor variables, denoted Yieeros¥pe A
program will consist of a program body and a
recurser. A program body consists of n
statements, each statement composed of a predicate
of the form ATOM(t(xl)) where t is a selector
function and x; a selector variable, and a
straight-line output function over the selector
and constructor variables. A recurser is divided
into two parts. The constructor part is composed
of p assignment statements for each of the p
constructor variables where y; is assigned a
straight-line function over the selector variables
and yj. The selector part is composed of m
assignment statements for the m selector
variables where x; is assigned a selector function
of itself.

The example in figure 4 should give a more
intuitive picture of this class of programs.

Given such a program, execution proceeds as
follows: Each predicate is evaluated in turn. If
any predicate is undefined, so is the result of
the execution; otherwise if any predicate is TRUE
the result of execution is the associated output
function. Otherwise if no predicate evaluates
TRUE then the assignment statements in the
recurser and constructor are performed and
execution continues with these new values.

We will make the following restrictions on the
programs we will consider:




Program P(xl,....xm,yl,.s.lip) -
IF Pl(xil) THEN tl(Xl:-_-'o 'xurylr--'ly!))
ELSE IF pz(xiz) THEN fz(xl,...,xm.yl....,yp)

ELSE IF p;(x;,) THEN fn(xl,....xm,yl....,yp)
ELSE

Yy = 91(Y]_lx1:---lxm)

s

YP = gp(yp'xl""'xm)
x) = n)(x;)

Xy = Ny ()
P(“l:---lxm;YIi--"yP)
Figure 4: An example recursive program

1. All the recursion selector and recursion
constructor functions must be non-trivial.

2. Every selector variable must be tested by at
least one predicate.

3. There is at least one output function that is
not a constant.

4. (Freedom) For each l1<ksn and 220 there exists
at least one input that causes the program to
recurse % times before exiting with output
function k.

Let ¢ be the set of all programs with the same
number of selector and constructor variables as P,
the same number of predicates, and output functions
no deeper than some fixed limit olimit. Our goal
is to construct a set of test cases D that
differentiates P from all members of ¢. The set
of mutants u will be described in the course of the
proof, as they enter into the arguments. The proof
will proceed in several smaller steps:

In subsection 1 we give some basic definitions
and demonstrate some tools that we will use in
later sections. Subsection 2 shows how to use
testing to bound the depth of the selector
functions. In subsection 3 we narrow the form of
the selector functions still further, and
finally in subsection 4 show that they must
exactly match P. 1In subsection 5 we deal with the
points tested by the predicates, and in subsection
6 we give the main theorem. Subsection 7 concludes
with some comments on the difficulty of proving a
program correct in this manner and ways in which
the results here could be strengthened.

2.2.3 Definitions and tools

We will use capitol letters from the end of the
alphabet (X, Y, and Z) to represent vectors of
inputs. Hence we will refer to P(X) rather than
P(X)reoesXpo¥1reeorYp) - Similarly we will
abbreviate the aimulganeouc application of
constructor functions by C(X) and recursion-
selectors by R(X).

We will use letters from the start of the
alphabet to represent positions in a variable,
where a position is defined by a finite CAR-CDR
path from the root. When no confusion can arise
we will frequently refer to "position a in X,
whereby we mean position a in some x; or y; in X.
We will sometimes refer to position b relative to
position a, by which we mean to follow the path to

a and starting from that point follow the path to
b.

The depth of a position will be the number of
CARs or CDRs necessary to reach the position
starting from the root. Similarly the depth of a
straight-line function will be the deepest
position it references, relative to its inputs.
Let w be the maximum depth of any of the selector,
Lonstructor, recurser, or output functions in P.

The size of an input X will be the maximum
depth of any of the atoms in X.

We can extend the definition of S to the space
of inputs by saying X< Y if and only if all the
selector variables in X are smaller than their
respective variables in Y, and similarly the
constructor variables,

We will say Y is X "pruned" at position a if Y
is the largest input less than or equal to X in
which a is atomic. This process can be viewed as
simply taking the subtree in X rooted at a and
replacing it by a unigue atom.

If a position (relative to the original input)
is tested by some predicate we will say that the
position in question has been touched. Call the n
positions touched by the predicates of P without
going into recursion the primary positions of P.

The assumption of freedom asserts only the
existence of inputs X that will cause the program
to recurse a specific number of times and exit by
a specific output function. Our first theorem
shows that this can be made constructive.

Theorem 7: Given £20 and 1<i<n we can construct
an input X so that P(x} is defined and when given

X as an input P recurses % times before exiting by
output function i.

Proof: Consider m+ p infinite trees corresponding
to the m+ p input variables. Mark in BLUE every
position that is touched by a predicate function
and found to be non-atomic in order for P to
recurse £ times and reach the predicate i. Then
mark in RED the point touched by predicate i after
recursing £ times.

The assumption of freedom implies that no blue
vertex can appear in the infinite subtree rooted
at the red vertex, and that the red vertex cannot
also be marked blue.

Now mark in YELLOW all points that are used by
constructor functions in recursing L times, and
each position used by output function i after
recursing £ times. The assumption of freedom
again tells us that no yellow vertex can appear in
the infinite subtree rooted at the red vertex.

The red vertex may, however, also be colored
yellow, as may the blue vertices.

It is a simple matter then to construct an
input X so that

1. all BLUE vertices are interior to X
(non-atomic),

2. the RED vertex is atomic, and

3, all YELLOW vertices are contained in X (they
may be atomic). 0

Notice that the procedure given in the proof of
theorem 7 allows one to find the smallest X such
that the indicated conditions hold. If a is the
position in question, call this point the minimal a




point. Freedom implies that no point can be twice
touched; hence the minimal a point is a well
defined concept.

Given an input X such that P(X) is defined, let
Fx(2) be the straight-line function such that
Fx(X) = P(X). Note that by theorem 6 Fy is defined
by this sipgle point.

Theorem 8: For any X for which P(X) is defined, we
can construct an input Y with the properties that
P(Y) is defined, Y2 X and Fy*Fy.

Proof: Let & and i be the constants such that on
input X, P recurses £ times before exiting by
output function i, Let the predicate p; test
variable x5.

There are two cases. First assume f is not a
constant function. Now it is possible that the
tvsition that would be tested by P; after recursing
+] times is an interior position in X, but since X
is bounded there must be a smallest k> £ such that
the predicate pj(R{xy)) is either true or
undefined. Using theorem 7 we can find an input 2
that causes P to recurse k times before exiting by
output function i. Let Y be the union of X and 2.
Since Y >Z, P must recurse at least as much on Y
as it did on 2. Since the final point tested is
still atomic P(Y) will recurse k times before
exiting by output function i. Since

£, RV 0L RV ) = £ (RR oL ckn)
we have that Fy# Fy.

The second case arises when f; is a constant
function., By assumption 3 there is at least one
output function that is not a constant function.
Let f; be this function. Let the predicate pj
test variable X5. The same argument as before
goes through with the exception that it may happen
by chance that P(Y) = P(X), i.e. P(Y) returns the
constant value. 1In this case increment k by 1 and
perform the same process and it cannot h-npen
again that P(Y) = P(x). [

Theorem 9: 1f P touches a location a, then we can
construct two inputs X and Y with the properties
that P(X) and P(Y) are defined. Then for any Q in
¢, if P(X) = Q(X) and P(Y) = Q(Y), then Q must
touch a.

Proof: Let Z be the minimal a point, Using
theorem 8 we can construct an input X such that
P(X) is defined, X 2 2, and Fx=Fp. Let Y be X
pruned at a.

We first assert that P(Y) is defined and
Fy=Fz. To see this, note that every point that
was tested by P in computing P(2) and found to be
non-atomic is also non-atomic in Y. Position a is
atomic in both, and if the output function was
defined on Z then it must be defined on Y, which
is strictly larger.

Suppose given input Y a program Q recurses {
times before exiting by output function i but does
not touch position a. Since X is strictly larger
than Y, on X Q must recurse at least as much and
at lcast reach predicate i. Let the position in Y
that was touched by predicate i and found to be
atomic be b, Since position b is not the same as
position a, position b is also atomic in X,
Therefore given input X, Q will recurse L times
and exit by output function i. But this implies
by theorem 6 that Fy=Fy, a contradiction. [J

2.2.4 Bounding the depth of the recursion apd
predicate functions

Our first set of test inputs uses the procedure
given in theorem 9 to demonstrate that each of the
n primary positions in P are indeed touched.

Next, for each selector variable, use the
procedure given in theorem 9 to show that the
first n+l positions (by depth) must be touched.
Let d be the maximum size of these m(n+l)
positions. (We will assume d is at least 3 and is
larger than both 2w and olimit.)

Theorem 10: 1f Q is a program in ¢ that correctly
processes these 2m(n+l) points, then the recursion
selectors of Q have depth d or less,.

Proof: Study each selector variable separately.

At least one of the n+l points touched in that
variable must have been touched after Q had
recursed at least once. If the recursion selector
had depth greater than d, the program could not
possibly have touched the point in question. 0

Theorem 11: 1f Q ¢ ¢ correctly processes these
2m(n+l) points, then none of the selector programs
associated with the predicates can have a depth
greater than d.

Proof: At least one of the inputs causes Q to
recurse at least once; hence all the predicates
must have evaluated FALSE and therefore were
defined. If any of the predicates did have a
depth greater than d, they would have been
undefined on this input. (J

Since d > olimit we also know that d is a bound
on the output functions of Q.

We are now in a position to make a comment
concerning the size of the points computed by the
procedure given in theorem 9. Let % be the
maximum depth of the "relative root" (the current
variable pogition relative to the original
variable tree) at the time position a is touched.
We know the minimal a tree is no larger than l+w.
This being the case, to find an atomic¢ or
undefined point (as in the procedure associated
with theorem 8) we will at worst have to recurse
to a position l+w deep, but no more than l+w+d
deep. Hence neither of the two points constructed
in theorem 9 need be any larger than l+2w+d. This
fact will be of use in proving theorem 14,

2.2.5 Narrowing the form of the recursion
selectors

We will say a selector function £ factors a
selector function g if g is equivalent to ¢
composed with itself some number of times. Porx
example, CADR factors CADADADR, We will say that
f is a simple factor of g if £ factors g and no
function factors f other than f itself.

Let us denote by 8; i=1,...,m the simple
factors of rj, the recursion selector functions.
That is, for each variable i there is a constant
£i so that the recursion selector r; is s
composed with itself £; times. Let g be the
greatest common divisor of all the fs. Hence the
recursion selectors of P can be written as S9 for
some recursion selector S.

We now construct a second set of data points.in
the following fashion: For eacu selector variable
xi, let a be the first position touched with depth
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greater than 2d2 in x;. Using theorem 9, generate
two points that demonstrate that position a must
be touched. Let Dy be the set containing all the
(2n + 2m{n+1) + 2m)} points computed so far.

Theorem 12: 1f Q¢ ¢ computes correctly on Dy then
recursion selector i of Q must be a power of sj.

Proof: Assume the recursion selector of x; in Q is
not a power of sj. Recall that the depth of the
selector cannot be any greater than d. Once it
has recursed past the depth d, it will be in a
totally different subtree from the path taken by
the recursion selector of P.

Since d > 3, it is required that Q touch a point
that has depth at least 3d. Q must therefore
touch this point prior to recursing to the depth
d. By theorem 10 this is impossible. []

We can, in fact, prove a slightly stronger
result.

Theorem [3: If Q¢ ¢ computes correctly on Dy then
there exists a constant r such that the recursion
selectors of Q are exactly ST,

Proof: We know by theorem 12 that the recursion
selectors of Q must be powers of s;. For each
selector, construct the ratio of the power of s;
in Q to that in P, Theorem 13 is equivalent to
saying that all these ratios are the same. Assume
they are different and let x; be the variable with
the smallest ratio and x5 the variable with the
largest.

Let X and Y be the two inputs that demonstrate
that a position a of depth greater than 2d2 in X3
is touched. Both P and Q must recurse at least 2d
times on these inputs. In comparison to what P is
doing, xj is gaining at least one level every time
Q recurses. By the time x; is within range to
touch a, xj will have gone 2d levels too far.
Since 2d > d+2w, X3 will have run off the end of
its input; hence Q cannot have received the
correct answer on X and Y. [J

Theorem 9 gave us a method to demonstrate a
position is touched. We now give the opposite: a
way to demonstrate a position is not touched.

Theorem 14: If Qe ¢ computes correctly on all the
test points so far constructed, then for any
position a not touched by P we can construct two
inputs X and Y so that if P(X) = Q(X) and

P(Y) = Q(Y) then Q does not touch a.

Proof: Let position a be in variable Xi. Let m be
the smallest number such that after recursing m
times the recursion selector i is deeper than a.
Let £ be the maximum depth of any recursion
selectors at this point. Let X be the complete
tree of depth 1+2d pruned at a.

There are two cases: If P(X} is not defined,
assume Q touches a. The relative roots of Q cannot
be deeper than l+d at the time when a is touched.
Hence the minimal a point is no deeper than l+24.
Since X is strictly larger than the minimal a
point we know that Q(X) must be defined, which
contradicts the fact that Q(X) =P(X).

The svcond case arises if P(X) is defined.
Using theorem 8 we construct an input Z 2 X such
that Fy# F,. Let Y be 7 pruned at a. Assume Q
touches a. Since Y2 X, Q(Y) must be defined, so
assume P(Y) is defined. By construction

Fy=Fgz # Fy. But since Q touched a, Fx=Fy, which
is a contradiction. |l

2.2.6 Recursion selectors must be the same as P

If Qe ¢ executes correctly on Dy, then from
theorem 13 we know the recursion selectors of Q
must be § for some constant r. From theorem 10
we know the depth of S is no larger than d; hence
there are at most d/(depth of S) choices. For
each possible r (not equal to g), construct a
mutant program P', which is equal to P in all
respects but the mutant selectors, which are SY,

In this section we will consider test cases as
pairs of inputs, generated using the procedure
given in theorem 13, which return either the
value YES, saying they were generated by the same
straight~line program, or the value NO, saying
they weren't. Other than this we will not be
concerned with the output of the mutants.

If each mutant touches a point that P does not,
then construct two points (using theorem 14) to
demonstrate this. If any mutant touches only
points that P itself touches, then we will say P
cannot be shown correct by this testing method.
Call this set of test cases Dj.

Theorem 15: If Q¢ ¢ executes correctly on Dy and
Dy, then the recursion selectors of Q must be
exactly s9.

Proof: Assume not, and that the recursion
selectors are ST for some constant rzq. No
matter what the primary positions of Q are, we
know it must touch at some point the primary
positions of P, It therefore must always touch
the primary positions of P relative to the
position it has recursed to. But therefore it
must at least touch the points that the mutant
associated with r does. {J

2.2.7 Testing the primary positions of P

Consider each primary position separately.
Assume that in some program Q in ¢ the position is
not primary, but that it is touched after having
recursed £ times. Let b be the position of a
relative to S9t. This means in Q that b is
primary. Now b cannot even be touched (let alone
be primary) in P because of the assumption of
freedom. Using the procedure given in theorem 14,
construct two points that demonstrate that b is
not touched, which demonstrates that a must be
primary. Taken together, these test points
insure that the primary positions of P must be
primary in all other programs.

Notice carcfully that we need to make no other
assumptions about the other primary positions in
Q; we can treat each of them independently. We
therefore have at most n(d/(depth of $9)) mutant
programs, hence at most twice this number of test
points. Call this test set Dj.

Theorem 16: 1f Q. ¢ executes corrxectly on Dg, D},
and D; then the primary positions of Q are exactly
those of P,

Notice that by theorem 6 this also gives us
the following.

Theorem 17: The output functions of Q are exactly
those of P.




2.2.8 Main theorem

once we have the other vlements fixed, the
constructors are almost given to us. Remember one
of the assumptions made in the beginning was that
each of the constructor variables appears in its
entirety in at least one of the output functions.
All we need do is to construct P data points so
that data point i causes the program P to recurse
once and exit using an output function that
contains the constructor variable i. Call this
set D3. Using theorem & we then have

Theorem l8: The recursion constructors of Q must
be exactly those of P.

The only remaining source of variation is the
order 1n which the primary positions are tested.
The only solution we have been able to find here
(short of making more severe restrictions on ¢) is
to try all possibilities. There are n! of these,
some of which may be equivalent to the original
program. Let D4y be a set of data points that
differentiates P from all non-eyguivalent members
of this set.

Putting all of this together gives us our main
theorvm:

Thevrem l9: Given a program P in ¢, if Qe ¢
executes correctly on the test points constructed
in theorems 10, 15, 16, and 18, then Q must be
eguivalent to P.

Corollary: Either P is correct or no ‘am in ¢
realizes the intended function.

Corollary: Lf the competent programmer hypothesis
holds then P is correct.

2.3 Discussion

We note that although the class of progra-s
studied here is small, it iIs not vacuous. Scveral
of the examples studied previously [17.32,33] can
be expressed in our form.

We point out that even with the assumed bound
on the depth of the output functions, we did not
bound the number of CONS functions they can
contain; hence there are an infinite number of
programs in the set ¢. This is true even after
we have bounded the depth of the recursion
selectors and the predicate selectors in theorem
11.

The most important aspect of this result is not
the proof (which in fact has rather limited
applicability) but the method of the proof. Once
we have fixed the recursion selectors via test set
Dg, the remainder of the arguments can be proved
by constructing a small set of alternative
programs (the mutants) and showing that test data
designed to distinguish these from the original
actually will distinguish P from a much larger
class of programs. In all we constructed
d(1/(depth of S) + n/(depth of s9)) + p + nf mutants,
and we proved that test data that distinguished P
from this set of mutants actually distinguished P
from the i1nfinite set of programs in ¢.

wWe note that although the proof of the result
given here is rather long and tedious, the result
is a procedurce for proving correctness that is
entirely mechanical. The user of such a procedure
need have no knowledge of the proof that was used
to validate the method, much as the user of a

timesharing system need have no knowledge of how
the operating system is implemented. This is the
direction we feel research in testing should
follow: finding mechanical methods that may be
difficult to verify, but that once verified give
an easy procedure for finding good test data.

3. Empirical Studies

A program mutation system, called EXPER [27],
has been implemented to test ANSI FORTRAN
programs. In building real testing tools for
real programming languages, the issues that must
be considered are:

1. What is the cost of performing the test?
2. What is gained from performing the test?

Note that these two issues should trade off
somewhat as time and space trade off in
algorithms. But in addressing the first issue,
the system must at least be tractable.

Conceivably, given a FORTRAN program P having N
statements one could construct a mutant set u
having size exponential in N, each mutant being a
reasonable alternative to P. What is done in
EXPER, however, is to define uy via a set of 23
mutant operators that, upor analysis, result in
u's having size bounded roughly by the product of
the number of data references (constants, scalar
variables, and array references) times the number
of unique data references. Mutant operators are
very simple syntactic and semantic program
transformation rules that act on P in only a local
way. For example, one mutant operator changes a
single occurrence of a binary operator in P to a
syntactically legal alternative operator in
forming a mutant identical to P in all but one
symbol, Another mutant operator changes the
semantics of & single DO loop to be interpreted
as a FOR loop. Here the mutant is syntactical.y
identical to P but, unlike P, precisely one of
the mutant's k loop bodies might never be executed
in spite of the controlling DO statement being
executed. A description of the exact nature of
the other mutant operators has already been
published [7].

Although the complexity of the mutation system
is now reasonable, one should question the
effectiveness of applying program mutation with
only simple alternatives since the remaining more
complicated (but reasonable) alternatives are
apparently overlooked. The coupling effect
mentioned in section 1 indirectly addresses the
more complicated alternatives of P: test data
that causes all simple mutations of P to fail is
so sensitive that it implicitly causes all complex
combinations of them to fail.

We will illustrate a representative case of
coupling in a FORTRAN program. The program is
adapted from the IBM scientific subroutines
package [25], a collection of statistical and
scientific programs in fairly common use. The
error was artificially inserted in a study by
Gould and Drongowski (15}, The error occurs in
the line that reads

40 INN = UBO(3)
but should read

40 INN = UBO(2)
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SUBROUTINE TABI(A,NV,NO,NINT,S,UBO,FREQ,PCT,STATS)

INTEGER INTX

REAL TEMP, SCNT, SINT

INTEGER INN, J, 1J

REAL VMAX, VMIN

INTEGER I, NOVAR

REAL WBO(3), STATS(5), PCT(NINT), FREQ(NINT)

REAL UBO(3), S(NO)

INTEGER NINT, NO, NV

REAL A(600)

NOVAR = 5

DO 5 I=1, 3

WBO(1) = UBO(I)

VMIN = 0.1000000000E+11

VMAX = -~0.1000000000E+11

1J = NO * (NOVAR ~ )

DO 30 J=1, NO

1J = 1J + 1

IF(S(J)) 10,30,10

IF(ACLJ) - VMIN) 15,20,20

VMIN = A(1J)

IF(A(IJ) - WVMAX) 30,30,25

VMAX = A(1J)

CONTINUE

STATS(4) = VMIN

STATS(5) = VMAX

IF(UBO(1) - UBO(3)) 40,35,40

UBO(1) = VMIN

UBO(3) = VMAX

INN = UBO(3)

DO 45 I=1, INN

FREQ(I) = 0.0000

PCT(I) = 0.0000

DO 50 I=1, 3

STATS(1) = 0.0000

SINT = ABS((UBO(3) - UBO(1)) / (UBO(2) - 2.0000))

SCNT = 0.0000

1J = NO * (NOVAR - 1)

DO 75 J=1, NO

1J = 1J + 1

1F(S(J)) 55,75,55

SCNT = SCNT + 1.0000

STATS(1) = STATS(1) + A(1J)

STATS(3) = STATS(3) + A(IJ) * A(1J)

TEMP = UBO(1) - SINT

INTX = INN ~ 1

DO 60 Is=l, INTX

TEMP = TEMP + SINT

IF(A(1J) - TEMP) 70,60,60

CONTINUE

IF(A(IJ) - TEMP) 75,65,65

FREQ(INN) = FREQ(INN) + 1.0000

GOTO 75

FREQ(I) = FREQ(I) + 1.0000

CONTINUE

IF(SCNT) 79,105,79

DO 80 I=1, INN

PCT(I) = (FREQ(I) * 100,0000) / SCNT

IF(SCNT ~ 1.0000) 85,85,90

STATS(2) = STATS(1)

STATS(3) = 0.0000

GOTO 95

STATS(2) = STATS(1) / SCNT

STATS(3) = SQRT(ABS((STATS(3) - (STATS(1) * STATS(1))
/ SCNT) / (SCNT - 1.0000)))

DO 100 I~}, 3

100 UBO(1) = WBO(I)
105 RETURN
END




There are a number of mitants that discover this

vrror. Consider, for example, the one that changes
the statement

IF (A(LJ) - TEMP) 75,05,0%
to

IF (A{1J) - 1.000) 75,00, 0%

Control reaches this point oanly if A(1J) is bigger
than TEMP, 50 control always passes to 65, By
tracing the flow of controul we can discover that
TEMP 1% equal to the value of the 1nput parameter
UBO{3) at this point. To eliminate this mutant,
then, we must find a value wiiere A{IJ) is less than
one but larger than “BO(3). Therefore UBO(3) must
be less than one. Ticre is nothing in the
specifications that rules out UBG{3)'s being less
than onv, but the error causes UBO(3) to be
assiguea to the integer variavle INN.  All the
feasible paths that go through the mutated
statement also go through label 65, which
refervnces FREQ(INN) .  Since INN is less than or
equal to zero, this is out of bounds, and the error
1s discouvered.

We shall not directly address the coupling
etftect further here for it has been
previously reported in many sources {7,8,3,27,35;
-- but instead will report on experiments aimed at
evaluating lssue (2) above.

-~ evidence

The ultimate evaluation of any program testing
system involves examining the following question:

Are there incorrect programs that pass the system's
teste?

Since, as was argued above, the answer will always
be yes for any system that tests real programs, a
more lRteresting guestion 1s:

what types of errors are always detected by the
system, and what error types might be overlooked?

At present these questions can only be studied
emp-irically because of the lack of any widely
accejpted formal models of programming errors,

The ideal experament for evaluating a program
mutation system would be the classic double-blind
experiment, The exparimenter has N subjects with
varyiny levels of programming and testing skill and
M jrograms that have Zero or more errors known
only by the experimenter, and cach subject reports

on the wrroru detected 1n tryiny; to pass the mutant
test,  Classical statistrical technigues are then
used L0 evaluate the results. Unfortunately, the

high cust of performing such controlled N-subject
experiments makes them unfeasi e,

We have, however, prrformed a
single-gubject experiment, whici, wo clawm gives
siynificant results in evaludtiig the FORTRAN
mutation system, We calil such an experiment g
beat the system experiment. e single subject
15 someone having a very hagh level of programming
expertioe and much familiarity with the concepts of
programming mutation in general and the FORTRAN
mytation syctem in particular. ‘ihe M programs now
nave onee or more errors, and turtnermore the
sulL ject row nas complete knowledye of what the
crrors are. The subjoct tries to beat the mytation
syster, -- to pass the mutation test with an
incorrect frogram by developling test data on which
tiie progyram i1s correct but on which all mutants of
the program fairl. If there are error types for

dreesiygned and
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which the highly skilled subject cannot beat the
system, then we have high confidence that these
error types would be detected by any user of the
system., On the other hand, if there are error
types for which the subject can consistently bheat
the system, then morc investigation of mutant
operators is needed -- the system might be weak
in detecting those error types.

The beat the system experiment is an example of
worst-case analysis, in that we attempt to find
out how the system will perform under thie worst
pussible circumstances. We note that the beat the
system experiment 15 an extension of the
reliability studies done previously (16,237,
These earlier studies, however, were directed at
comparing two or more competing methodologies and
deriving statistical information of the form “On
the following samples of programs, method A
discovered %% of the errors and method B discovered
Y8." In the bea*t *he system experiments we are
much less concerned with the number of errors
caught and much more concerned with the tyne of
crrors missed. Furthermore this information is not
used to compare two methods but is designed to
cvaluate the mutation analysis system (EXPER) and
to direct the search for new mutant operators that
will improve the system.

Por example, several of the programs we studied
in early experiments revealed that a significant
number of errors in FORTRAN are caused by
programmers' treating the DO statement as if it
were an ALGOL FOR statement, forgetting that no
matter what the limits are a DO statement will
always (perhaps erroneously) loop at least once.
The way we chose to detect these errors was to
introduce a mutant that changed a DO statement
into a FOR statement, bringing this fact to the
programmer's attention and forcing him to derive
data that indicated he had knowledge of this
potential pitfall.

So far we have conducted beat the system
experiments on 1l programs, all of which have been
previously studied in the testing literature. (We
wish to express our gratitude to Robert Hess, who
was the subject in most of these experiments.)

The appendix contains the appropriate references
and further details on the programs and their
errors.

It is difficult to construct a classification
scheme for error types that is neither so specific
that cach error forms 1ts own type nor so general
that impertant patterns cannot be detected. If
the classification is based on logical mistakes,
then 1t is often hard to relatc errors to mistakes
in the code. On the other hand, it seems difficult
to base a scheme just on mistakes in the code,
since often a single logical mistake will be
responsible for changes in several locations in the
program. Gocdenough and Gerhart (13| and Howden
| 221, among others, have attcempted to construct a
generally applicable system. Neither of their
systems, to our minds, gives a sufficiently
intuitive picture of the crrors in any particular
class. Therefore we have chosen to group the
crrors 1n these eleven programs into the following
categories:

Missing path errors: These are errors where a

whole scyuence of computations that should be
performed in special circumstances i1s omitted.
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Incorrect jredicate errors: These are errors that implies that the type of results we would like to
arise when all important paths are contained in the prove do indeed hold in the real world. Both
program, but a predicate that determined which path types of results arc usceful and important in

to follow is incorrect. understanding the nature of program testing.
Incorrect computation statement: These are errors Although our specific results have dealt solely
that arise from a computation statement that is with program testing, we feel that the potential
incorrect in some respect. for developing other software methodologies that

try to exploit some facet of the programming

Missing computati ment . i
9 P ion statement process, as illustrated by our use of the

Missing clause in predicate: This 1s a special compctent programmer hypothesis, should not be

case of an incorrect predicate error, but since it overlocked.

is so hard to detect we give it special treatment. Finally, we feel that the type of experiments
The 25 errors in these 1l programs range from comparable to our beat the system approach are an

simple to extremely subtle errors. Because of the example of experimental computer science adaptable

worst-case nature of the experiment, the fact that to many other testing methodologies.
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Appendix
This appendix describes the 11 programs studied
1 the "beat the systom" experiments.

‘he first program 1s written in an ALGOL
dialect and Imitaally appeared in a paper by
Hend tson and Snowden [ 18], [ts intent is to read
and process a string of characters that represent
a soequence of telegrams, where a telegram is any
string terminated by tne keywords "2222 2222."
The proyram scans for words longer than a fixed
Limit and isolates and prants each telegram along
with a count of thue rumber of words it contains,
lus an indication of the prescnce or absence of
over-length words.  The program has also been i
studied in Ledgart {00 § and Gerhart and Yelowitz ]
[ 1. . The program contains tie following loop,
which 1s intended to in=ure that blank characters
are skipped and that tollowing the loop the
vartable LETTER contains a non-blank character.

WHILE wtnput 2 emptystring AND FIKST (1npuat)
DO 1ngut 7 RESTOinput)

IF input = emptystring THEN input READ ¢+ " Y,

LETTER FIRST (1nprut);

The WHLLE Joop terminpates cither on an empty string
or on a non-blank character. If jt terminates on
an empty string and the first character in the
fuffer loaded by the READ 1nstruction 1s blank,
LETTER can contain a tlank character.,

when this program is translated into FORTRAN and
executoed on the EXPER system the error 1s not
necessarily caught.  Uhe reason for this failure
1s not so much a failure of mutatacn testing as 1t
15 of FORTRAN., ALGCL treats strings as a4 basic
type, whereds in FORTRAN they are simulated by
arrays of 1hitegers,  The fact that strings are
basie to ALGOL means that if we were constructing
a mutation system for ALGOL instead of FURTRAN we
would have to consider a different set of mutant
operators. A hatural operator one would consider
van boe explained by noting that hlanks play a role
1N Strling processing programs analogous to that
played by zero in numbors,  lence we might
hypothuesize a “blank push" operator similar to the
sero push operator in EXPER. If we had such an
cierator, an attempt to force the expression
FIRST (anput) to blank would curtainly reveal the
vryror,

The second program appears in a paper by Wirth
describing the language PL-360 (3%), 1t is
intended to take a vector of N numbers and sort
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them into decreasing order. It was also studied by
Gerhart and Yelowitz [12]. As the outer loop is
incremented over the list of clements, the inner
loop is designed to find the maximum of the remain-
ing elements and set register R3 to the index of
this maximum, If the position set in the oute:
loop 18 1indeed the maximum, then R3 will have an
incorrect value and the three assignment statements
ending the loop will give erroneous results.

Sort (R4)
For Rl = 0 by 4 to N begin
RO := a(nl)
for R2 = RL + 4 by 4 to N begin
if a(R2) > RO then begin
RO := a(R2)
R3 := R2
end
end
R2 := a(Rl)
a{Rl) := RO
a(R}) := R2

There are three mutants that cannot be eliminated
without discovering this error. The first two
change the statement RO := A(Rl) into RO := A(Rl)-l
and RO := -ABS(A(R1)). The third mutant changes
the statement into A(RL) := A(R3). We leave it as
an exercise to verify that none of these mutants
can be eliminated without discovering the error.

The third program is written in FORTRAN and
computes the total, average, minimum, maximum, and
standard deviation for each variable in an
observation matrix. The proyram is adapted from
the 1BM scientific subroutines package [ 75]. 1t
was analyzed and threc artificial errors werc
inserted in a study by Gould and Drongowski [1°].
As in the study by Howden [.)?] we considered only
one of these errors. It occurs in a loop that
computes standard deviations. The program has the
statement

SD(1} = SORT(ABS((SD(1) - (TUOTAL (1) *TOTAL (1)) /SCNT)
SSUNT = 1

A pair of parentheses has been left off the final

SCNT - 1 expression. Let X stand for the quantity

ABS (SD(I) - (TOTAL(I)*TC:TAL(1)),/SCNT)

The correct standard deviation is SQRT (X, (SCNT-1)) .
The only way this can be made zero is for X to bu
zero. But the program countaining the error
computes the standard deviation as SQRT(1-~X/SUNT) .
If X 1s zero this quantity is 1; hence the
standard deviation is wrong. Or if the 1ncorrect
expression is forced to be zero, then the correct
standard deviation should be greater than one.
Hence by foruving the standard deviation ih this
line to be zero the error is easily revealed.

The fourth program appeared in an article by
Geller in the Communications of the ACM [11]. The
program contains a predicate that decides whether
a year is a leap year. In the paper this
predicate is given as

((YEAR REM 4 =~ 0) OR
(YEAR REM 100 = 0 AND YEAR REM 400 = 0))

when the correct predicate is

((YEAR REM 4 = 0 AND YEAR REM 100 2 0) OR
(YEAR REM 400 = 0))

If YEAR 1s divisible by 400 then it must also be
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divisible by 100. 1In the incorrect prudicate,
thercfore, the sccond part of the OR clause 1s
truc if and only 1f YEAR REM 400 18 true. 1If a
branch analysis method attempts to follow all the
"hidden paths* (9], the error will be discovcred
when an attempt is made to make YEAR REM 400 true
and YEAR REM 100 false. With mutation analysis
the error is discovered when we replace YEAR REM
100 with TRUE,

The fifth program computces the Euclidean
greatest common divisor of a vector of integers.
1t appeared in an article by Bradley in the
Communications of the ACM [3]. The proyram
containg the following four errors: (1) If the
last input number is the only r n-zero number and
it is negative, then the greatest common divisor
returned is negative. (2) 1f the greatest common
divisor is not 1, then a loap index is used after
the loop has completed normally, which is an error
according to the FORTRAN standard. (3,4) There
are two DO loops for which it is possible to
construct data so that the upper limit 1is less
than the lower limit, which causes the program to
produce incorrect results since FORTRAN do loops
always execute at least once, None of the errors !
is caught using branch analysis. All are caught B
with mutation analysis. :

The next three programs are adapted from the
IBM Scientific Subroutines Package {25]. 1In each
program three errors were artificially inserted
in a study conducted by Gould and Drongowski [1%}.

The first program computes the first four
moments of a vector of observations. One of the
errors would be detected using branch analysis,
the other two can be overlooked. All thrcee
errors would be discovered using mutation
analysis.

The second program computes statistics from an
observation table. Again, one error would be
discovered using branch analysis but all three
errors are discovered with mutation analysais,

The third program computes correlation
coefficient::. Two of the errors are dcetected
with branch analysis; all three are detected with
mutation analysis.

The next program takes three sides of a
triangle and decides whether it is isosceles,
scalene, or equilateral. It first appearcd i1i a
paper by Brown and Lipow [4]. Lipton and Sayward
[27) describe a buyg where two occurrences of the
constant 2 are replaced with the variable k.,

This bug is very subtle, but it can be detected
with the test case 6,3,3. Neither branch
analysis nor mutation analysis would force the
dascovery of this errox.

The tenth program is the FIND program from an
article by C. A. R. Hoare [19}. The bug has been
studied by the group developing the SELECT
symbolic exccution system (2]. The bug is very
subtle and neither branch analysis nor mutation
analysis would guarantee its discovery. This
buy was, however, casily discovered by mutation
analysis (in the normal debugging situation)
during some carly experiments on the coupling
effect (9],

The last program, also written in ALGOL,
appeared in a paper by Naur [29) and has also
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been studied widely 10,300,131, The program 1s
intended to read a string of characters consisting
ot words sceparated by blanks or newline characters
a1 both, and to output das many words as possible
with a blank between every pair of words,  Ther
1n a faixed limit on the sive ot each outjut line,
and no word can be broken boetween two lines. The
versice studied here 1s that of Gerhart and
Yelowitz [12), containing five errors.  Three of
these (1, 3, and 4 an thelir numbering) are caught
by mutation analysis.

1

=




