
AD-A083 078 GEORGIA INST OF TECH ATLANTA SCHOOL OF INFORMATION A--ETC F/6 9/2

THEORETICAL AND EMPIRICAL STUDIES ON USING PROGRAM MUTATION TO --ETC(U)

FEB GO T A BUDD. R A DEMILLO. R J LIPTON N0014-79-C-0)231

UNCLASSFE G7 C 00 ARO-15950.5-A-EL NL



Unclassified
SECURITY CLASSIFICATION OF V641S PAGE -'%O Card A~ffe.,RA.ISTUTIN

REPOT DCUMNTATON AGEBEFORE COMPLETING FORM

~ jPTimth . bdd redric ACCSIOwar NO 3. RECIPIENT'~ CATA

EOi.CO RIT ICL ANDAMP IN ADD UDIRSESSIIN

Tiuth~~s n v>rt brensrck a fica )crren fteAm

copuerrgam rtiueiabiTycnlg

0 AtlaC nt, Ge orge., i de 30332 sv ~dietiyb bokrneO

DO ~ 473 E,~ONO 'NOSSISUnclassifiedfie

IS OECAAIFIATON/- -RAIN



GIT-ICS 80/01
THEORETICAL AND EMPIRICAL STUDIES ON USING

PROGRAM MUTATION TO TEST THE FUNCTIONAL

CORRECTNESS OF PROGRAMS

Timothy A. Buddt t
Richard A. DeMillot±,
Richard J. Lipton T
Frederick G. SaywardT

February 1980

This work was supported in part by Grant DAAG-29-78-G-0121 from ARO
and AIRMICS and by Grant N00014-79-C-0231 from ONR.

tYale University

ttGeorgia Institute of Technology

tttUniversity of California, Berkeley



THEORETICAL AND EMPIRICAL STUDIES ON USING PROGRAM MUTATION
TO TEST THE FUNCTIONAL CORRECTNESS OF PROGRAMS

Timothy A. Budd (Yale), Richard A. DeMillo (Georgia Tech),
Richard J. Lipton (Berkeley), and Frederick G. Sayward (Yale)

1. Introduction 3) if P is not pathological
and P(x) f(x) for all x in D

In testing for program correctness, the standard tn P
5 

= fx

approaches Lll.13.21.22,23,24.341 have centered on then P* f.

finding data D, a finite subset of all possible Below we will make precise what is meant by "P
inputs to program P, such that is pathological"; for now it suffice. to say that P

I) if for all x in D, P(x) - f(x), not pathological means that P was written by a
thn P

5 
= f competent programmer who had a good understanding

of the task to be performed. Therefore if P does
where f is a partial recursive function that not realize f it is "close" to doing so. This
specifies the intended behavior of the program and underlying hypothesis of program mutation has
P* is the function actually computed by program P. become known as the competent programmer hypothe'sis:
A major stumbling block in such formalizations has either P* = f or some program Q "close" to P has the
been that the conclusion of (1) is so strong that, property Q* - f.
except for trivial classes of programs, (1) is To be more specific, program mutation is
bound to be formally undecidable [23. testing method that proposes the following version

There is an undeniable tendency among of correctness testing:
practitioners to consider program testing an ad hoc Given that P was Written by a competent programmer,
human technique: one creates test data that
intuitively seems to capture some aspect of the p f.
program, observes the progras in execution on it,
an then draws conclusions on the program's Our method of developing D, assuming either P or
correctness based on the observations. To augment some program close to P is correct, is by
this undisciplined strategy, techniques have been eliminating the alternatives. Let 0 be the set of
proposed that yield quantitative information on the programs close to P. We restate the method as
degree to which a program has been tested. (See follows:
Goodenough [14] for a recent survey.) Thus the
tester is given an inductive basis for confidence i) for all x in D P(x) -f(X) end
that (1) holds for the particular application. ii) for all Q in D
Paralleling the undecidability of deductive testing
methods, the inductive methods all have had trivial either Q *
examples of failure [14,18,22,23]. or for some x in D, Q(x) 0 P(x).

These deductive and inductive approaches have If test data D can be developed having properties
had a common theme: all have aimed at the strong (i) and (ii), then we say that 0 differentiates P
conclusion of (I). Program mutation [1.7.9,27], on from 0. alternatively P passes the # mutant test.
the other hand, is a testing technique that aims at The goal of this paper is to study, from both
drawing a weaker, yet quite realistic, conclusion theoretical and experimental viewpoints, two basic
of the following nature: questions:

(2) if for all x in D, P(x) - f(x), Question 1: If P is written by a competent
than P* - f OR P is "pathological." programmer and if P passes the $ mutant test with

To paraphrase, test data D, does P* - f?

Note that, after formally defining # for P in a
fixed programming language L, an affirmative answer
to question I reduces to showing that the competent
programmer hypothesis holds for this L and *.

We have observed that under many natural
-' .' tdefinitions of t there is often a strong coupling

This work was supported in part by grant

DAAG-29-78-G-0121 from ARO and AIRMICS and by grant
NOVOI4-79-C-0231 from ONR.

-,, V . /

. ,."j



between members of * and a Rmall subset p. That is, 2.1 Decision Tables
often one can reduce the problem of finding test
data that differentiates P from f to that of finding A "decision table" is a highly structured way
test data that differentiates P from i. We will of describing decision alternatives. Such tables

call this subset V the mutants of P and the second are chiefly used in business and data processing

question we will study involves the so-called applications [28.31], although they can also be

coupling effect [93: used to organize test data selection predicates
[13).

Question 2 (Coupling Effect): If P passes the u
mutant test with data D, does P pass the 0 mutant To form a decision table we have a set of

test with data D? conditions, a set of actions, and a table composed
of two parts. Entries in the upper part are from

Intuitively, one can think of p as representing the the set (YES, NO, DON'T CARE) (denoted Y, N, and
programs that are "very close" to P. *); entries in the lower table are either DO or

In the next section we will present two types of DON'T DO (denoted X and 0). Each column in the

theoretical results concerning the two questio-; matrix is called a rule. An example is shown in

above: general results expressed in terms of figure 1.

properties of the language class L, and specific
results for a class of decision table programs and 1 2 3 4

for a subset of LISP. Portions of the work on condition 1 Y Y N &
decision tables and LISP have appeared elsewhere condition 2 N * Y Y
[5,6], but the presentations given here are both condition 3 * Y Y N
simpler and more unified. In the final sedtion we condition 4 N Y •
present a system for applying program mutation to
FORTRAN and we introduce a new type of software action I X X 0 X

experiment, called a "beat the system" experiment, action 2 X 0 0 0

for evaluating how well our system approximates an action 3 0 0 X X

affirmative response to the program mutation Figure 1: A typical decision table
questions.

To execute the program on moms input the
2. Theoretical Studies conditions are first simultaneously evaluated,

Our major interest in studying program mutation forming a vector of YES-NO entries. This vector

from a theoretical viewpoint is to gain insight on is then compared to every rule. If the vector

where and how to apply the method to real matches any rule, the indicated actions are

programming languages. There are two possible performed. If for each possible data item there

study approaches: i) For fixed L define the is at least one rule that can be satisfied, we say

mutants of P in terms of syntactic and semantic the decision table is complete. We say it is

transformation rules that alter P's syntax and consistent if there is at most one rule. We will

interpretation in a way that formally captures the assume that the program under test is consistent.
notion of "closeness." (That is, reflect the We can also assume it is complete, since an

errors a competent programmer could have made in incomplete decision table can always be turned

producing P.) Here * is a subset of L. (ii) into a complete one by adding further actions that

Simply let * = L. merely return an error flag and further rules that
are satisfied by the previously unmatched inputs.

For these initial studies we choose the simpler
approach, (ii), in order to investigate the We will also assume that no two rules specify

questions in terms of properties of L. Immediately exactly the same set of actions. We can do this

we have the following: with little loss of generality since two such
rules can be combined with at most the addition of

Theorem I: If there is an automatic method to one new condition.
generate data D that satisfies the mutation test
for P, then the equivalence of P and any program Q Given a decision table program P, let I be the
in * must be decidable, set of all consistent programs having the same

conditions and actions as P. This means that
The proof is trivial since we used the members of 4 differ from P only in the table

equivalence property in defining what is meant by portions or the number of rules they contain.
"data that satisfies the mutation test."
Furthermore, if we have such data, then to decide The mutants (M) of P will be those members of *
equivalence we merely execute the two programs, that are formed by taking a single * entry and
If the results agree, they are equivalent; if not, changing it first into a Y and then into an N
they obviously are not equivalent, entry. If P is consistent then all the mutants

will be consistent. Some of these mutants amy be
At first glance the result of this theorem equivalent to P. The mutant that changes position

appears to cast serious doubt on our ability to j in rule i from a * to a Y can be equivalent to P
derive any interesting positive results, since the only if it is impossible for any input to satisfy
equivalence problem is undecidable for most rule i and not satisfy this condition.
interesting language classes. As will be seen in
the sequel, however, the implication is that we There are at most two mutants for every table
must carefully choose the set 9 to capture some entry in P. This means there are no more than 23m
very special properties of being "close" to the mutants. Each mutant requires at most a single
original program P. test case to differentiate it from P. Therefore

even though there are potentially 2
n different

For the remainder of this section we will Inputs, an adequate mutation aet need have only at
consider two specific examples of program types. most 2M inputs.



We will make the following assumptions apply to i in P. Since P is consistent, the Pi are
all of *: disjoint. Since P is complete, they cover the

entire space of inputs. Each rule in Q must1. The program P is both consistent and complete. e t a e s t acpte by the
2. Given an example of input/output behavior, we accept at least the set accepted by the

can determine which rule was applied to produce corresponding rule in P. Since Q in consistent,

the output from the input. In particular this it can satisfy no more.

implies that no two rules specify exactly the Recall that theorem 1 stated that we could
same set of actions. form an adequate mutation set only if we could

3. There exists at least one input that satisfies decide equivalence of P and each of its mutants.
each rule. obviously there are some cases where this is

4. We can decide the equivalence of P and any true, for example when all the conditions are
member of 4. independent and therefore none of the mutants are

will investigate the power of a set of inputs equivalent. We can easily find examples where
We this is not true. This is the case whenever we

that differentiates P from p; in particular, we
will show that this set in fact differentiates P have two conditions where the question of whether

from*. ssum wehevesuc a st 0 We illthe first condition implies the second isfrom #. Assume we have such a set D. We will udcdbe

assume that every rule in P is exercised at least
once by some member of D, adding points if condition 1 Y
necessary to meet this condition. We can initially condition 2 *

fail to meet this condition only if there are some
rules that do not contain *s. We will note without Figure 2: Example where equivalence is
further comment that we could have guaranteed this undecidable
condition with mutants if we also mutated the
action matrix, as was done in the original paper We can replace the * in the condition 2 row with a

L53. It now seems that to do so causes an Y if and only if condition 1 always implies
unnecessary increase in the complexity of the proof condition 2. In this fashion using almost any
for such a small matter, classic undecidable question [201 we can construct

a program with the property that the equivalence
Given any Q in *, if for each x in D P(x) =Q(x) question for it and one of it. mutants is

then we will say Q tests equal to P. Since each uesio t no s t
rule in P has a unique set of actions, by a simple
counting argument we know that if Q tests equai to The most restrictive assumption made in proving
P then for each rule in P there is a corresponding theorem 3 seems to be that each rule must have a
rule in Q with exactly the same actions. Using distinct set of actions. To show that this
this fact, we can show the following: restriction cannot be eliminated altogether,

consider the two decision tables shown in figureTheorem 2: If D differentiates P from ii and Q tests 3 h w rgasaenteuvln te,

equal to P, then for each rule in P the set of 3. The two programs are not equivalent (they

inputs satisfying the corresponding rule in Q is process the input NNYN differently), yet they

strictly larger than that of P. agree on a set of test inputs {NNYY,NYYN,YYNN,
YNNY,NNNN,NYNY,YYYYYNYN), which is sufficiant to

Proof: First note that it is not possible for a eliminate all the mutants of program 1.
rule to have a Y entry in P and for the corres-
ponding rule in Q to have an N, or vice versa. If Program I Program 2
this were so no data that satisfied the rule in P NY NY * * **
could satisfy the rule in Q. * * * * N Y N Y

Now consider each * entry in P. There are two Y N N Y * * * *
cases. If the change that replaces this * by a Y * * * * Y N N Y
(the same argument holds for N) is equivalent, this
means the conjunction of the other conditions 0 0 X X 0 0
implies a YES in this position. In this case it
doesn't matter whether Q has a Y or a * (and these Figure 3: A case not covered by the mutation test
are the only two possibilities) -- this change
cannot contribute to decreasing the size of the set We do not know whether the restriction to rules
of inputs accepted by Q. having distinct actions can be replaced with a

weaker assumption, or whether there is any test
method that cn be used to demonstrate correctness

equivalent, D contains points that while satisfying in this case other than trying all 2n
the rule both satisfy and fail to satisfy this possibilities.
particular condition. Both these must be accepted
by the same rule in Q. Therefore Q must also have 2.2 LISP Programs

a * in this position.
In this section we will consider programs

The only remaining possibility is that some rule In in t s e wflI coninin the

in P has a Y (or N) and the corresponding position funtin the sDs, of LIS a i the

in Q has a *. This strictly increases the size of functions CAR, CR, and CONS and the predicate

the set of inputs accepted by this rule, givinq our ATOM. A similar class of programs has been

result. 1 studied previously [17,32.331.

We will make the convention that all
e ffferentiates P from th S-expressions (we will use the less clumsy

locution points) have unique atoms. Certainly if

Proof: Let Pi be the set of inputs accepted by rule two programs agree on all such points they must



.... ... .. . . .... . . ..... . . . ...... . . . .. . . - ', ~ -
-  

_ , = . .

4

agree on all inputs; hence we do this without loss If program P1 has CONS-depth n+l then it must
of gelleraliLy. be of the form CONS(Pll,P2) where P11 and P12

have CONS-depth no greater than n. Assume we have
We will call a LISP program a selfctor program two programs P1 and P2 in this fashion. Then for

if it is composed of just CAR and CDR. We will all Y:

inductively define a straight-line program as a
selector program or a program formed by the CONS P1(Y) - P2(Y) IFF
of two other straight-line programs. CONS(Pll(Y),Pl2(Y)) - CONS(P21(Y),P22(Yy) IF

P11(Y) - P21(Y) and P12(Y) - P22(Y)
2.2.1 Straight-line programs

Hence by the induction hypothesis P1 and P2
We first note that the power of a selector must agree for all Y. 0

program is very weak.
We can easily generalize theorem 6 to the case

Theorem 4: If two selector programs return where we have multiple inputs. Recall that each
identical values on any input for which they a-, atom is unique; thurefore given a vector of
both defined, they must compute identical values arguments we can form them into a list and the
on all points, result will be a single point with unique atoms.

Proof: The only power of a selector program is to Similarly a program with multiple arguments can
choose a subtree out of its input and return it. be replaced by a program with a single argument
We can view this process as selecting a position by assuming the inputs are delivered in the form
in the complete CAR/CDR tree and returning the of a list, and replacing each occurrence of an
subtree rooted at that position. Since there is a argument name with a selector function accessing
unique path from the root to this position, there the appropriate position in this list. Using
is a unique predicate that selects it. Since this construction one can verify that if theores
atoms are unique, by merely observing the output 6 did not hold in the case of multiple arguments,
we can infer the subtree that was selected. 5 one could construct two programs with single

arguments for which it did not hold, giving a
We will say that a straight-line program P(X) contradiction.

is well formed if for every occurrence of the

construction CONS(A,B) it is the case that A and B To summarize this section: for any well formed
do not share an immediate parent in X. The straight-line program, any unique atomic point
intuitive idea of the definition should be clear: for which the function is defined is adequate to
a program is well formed if it is not doing any differentiate the program from all other well
nmre work than it needs to. Notice that being formed straight-line programs.
well tormed is an observable property of programs,

znd,,.ndent of testing. 2.2.2 Recursive programs

We can define a measure of the complexity of The type of programs we will study in this
straight-line programs by their CONS-depth, where section can be described as follows:

CONS-duth is defined as follows: The input to the program will consist of

I. The CONS-dpth of a selector program is zero. selector variables, denoted xl ,. ., Xm, and
2. The CONS-depth of a straight-line program constructor variables, denoted yl,...,yp. A

program will consist of a program body and a
VtX) = CONS(PI(X),P2(X)) recurser. A program body consists of n

Is statements, each statement composed of a predicate
of the form ATOM(t(xl)) where t is a !.elector

I- KA.CONS-de|,Lh(PI(X)),CONS-depth (P2))). function and xI a selector variable, and a
Theorem ',: If two well formed selector programs straight-line output function over the selector
com~utv identically on any point for which they are and constructor variables. A recurser is divided
both defined, then they must have the same into two parts. The constructor part is composed
CONS-dej ,th. of p assignment statements for each of the p

constructor variables where yi is assigned a
Pr'ot: Assume we have two programs PI and P2 and straight-line function over the selector variables
a point X such that P1(X) = P2(X), yet the and yi. The selector part is composed of m
CONS-dell(Pi) , CONS-depth(P2). This implies assignment statements for the m selector

that there As at least one subtree in the structure variables where xi is assigned a selector function
of P2 that was produced by CONSing two straight- of itself.

line proirams while the same subtree in P1(X) was
produced 1y a selector. But then the objects P2 The example in figure 4 should give a more
CoN~ed must have an immediate ancestor in X, intuitive picture of this class of programs.
con radicting the fact that P2 is well formed. .1 Given such a program, execution proceeds as
rheort-m 6: If two well formed straight-line follows: Each predicate is evaluated in turn. If
-rolrams agree on any point X for which they are any predicate is undefined, so is the result of
both defined, then they must agree on all points. the execution; otherwise if any predicate is TRUE
Sp lthe result of execution is the associated output!r:,of: 31L proof will be by induction on the function. Otherwise if no predicate evaluates
cotm,-d ith. By theorem 5 any two programs that TRUE then the assignment statements in the
Si ,kr ,n X must have the same CONS-depth. By recurser and constructor are performed and
theorem 4 U theorem is true for programs of execution continues with the. new values.

CONS-depth zero. Hence we will assume it is true

for ;r,,grams of CONS-depth n and show the case for We will make the following restrictions ofd the
n~l. programs we will consider:

_ .. .... ..



5 M

Program P(xl,....xm,Yl..&,.yp) - a and starting from that point follow the path to
:IF Pl{Xil) THEN fl(x 1 ,...,xm,yj,..yp) b
ELIF i THEN b.The depth of a position will be the number ofELSE IF P2 (xj 2 ) THEN f2 (xl, ... ,xmYl,...,Yp) CARS or CDRs necessary to reach the position

starting from the root. Similarly the depth of a
ELSE IF Pn(xin) THEN fn(xl,...,Xm,Y 1 , ... ,yp) straight-line function will be the deepest

ELSE position it references, relative to its inputs.

Tet w be the maximum depth of any of the selector,

y1 :" g (YXl•,..., 1xm) .nstructor, recurser, or output functions in P.

The size of an input x will be the maximum
yp:= gp(ypXl...,xm) depth of any of the atoms in X.

xl nl(x 1 )  We can extend the definition of 5 to the space

•... of inputs by saying X!5Y if and only if all the

XM nm(xm) selector variables in X are smaller than their

respective variables in Y, and similarly the
P(xI , •• ,xm,yI , •.•,yp) constructor variables.

Figure 4: An example recursive program We will say Y is X "pruned" at position a if Y

is the largest input less than or equal to X in
1. All the recursion selector and recursion which a is atomic. This process can be viewed as

constructor functions must be non-trivial, simply taking the subtree in X rooted at a and
2. Every selector variable must be tested by at replacing it by a unique atom.

least one predicate.
3. There is at least one output function that is If a position (relative to the original input)

not a constant, is tested by some predicate we will say that the

4. (Freedom) For each l< ks n and t O there exists position in question has been touched. Call the n

at least one input that causes the program to positions touched by the predicates of P without

recurse I times before exiting with output going into recursion the primary positions of P.

function k. The assumption of freedom asserts only the

Let * be the set of all programs with the same existence of inputs X that will cause the program

number of selector and constructor variables as P, to recurse a specific numer of times and exit by
the same number of predicates, and output functions a specific output function. Our first theorem

no deeper than some fixed limit olimit. Our goal shows that this can be made constructive.

is to construct a set of test cases D that Theorem 7: Given 1 -0 and l5i n we can construct
differentiates P from all members of *. The set an input X so that P(X) is defined and when given
of mutants p will be described in the course of the X as an input P recurses L times before exiting by
proof, as they enter into the arguments. The proof output function i.
will proceed in several smaller steps: Proof: Consider m+p infinite trees corresponding

In subsection 1 we give some basic definitions to the m+ p input variables. Mark in BLUE every
and demonstrate some tools that we will use in position that is touched by a predicate function
later sections. Subsection 2 shows how to use and found to be non-atomic in order for P to
testing to bound the depth of the selector recurse i times and reach the predicate i. Then
functions. In subsection 3 we narrow the form of mark in RED the point touched by predicate i after
the selector functions still further, and recursing X times.
finally in subsection 4 show that they must
exactly match P. In subsection 5 we deal with the The assumption of freedom implies that no blue
points tested by the predicates, and in subsection vertex can appear in the infinite subtree rooted

6 we give the main theorem. Subsection 7 concludes at the red vertex, and that the red vertex cannot
also be marked blue.

with some comments on the difficulty of proving a
program correct in this manner and ways in which Now mark in YELLOW all points that are used by
the results here could be strengthened. constructor functions in recursing t times, and

each position used by output function i after
2.2.3 Definitions and tools recursing t times. The assumption of freedom

We will use capitol letters from the end of the again tells us that no yellow vertex can appear in
the infinite subtree rooted at the red vertex.alphabet (X, Y, and Z} to represent vectors of Terdvre ahwvr lob ooe

inputs. Hence we will refer to P(X) rather than The red vertex may, however, also be colored

P(xl,...,xm,yl,...,y ). Similarly we will yellow, as may the blue vertices.

abbreviate the simultaneous application of it is a simple matter then to construct an
constructor functions by C(X) and recursion, input X so that

selectors by R(X). 1. all BLUE vertices are interior to X
We will use letters from the start of the (non-atomic),

alphabet to represent positions in a variable, 2. the RED vertex is atomic, and
where a position is defined by a finite CAR-CDR 3. all YELLOW vertices are contained in X (they
path from the root. When no confusion can arise may be atomic). 0
we will frequently refer to "position a in X, Notice that the procedure given in the proof of
We will sometimes refer to position b relative to theorem 7 allows one to find the smallest X such

We wll omeime reer o poitin breltiv to that the indicated conditions hold. If a is the
osition a, by which we mean to follow the path to ththeidcedontoshl.Ifanteposition in question, call this point the minimal a

L A.-



point. Freedom implies that no point can be twice 2.2.4 bounding the depth of the recursion and

touched; hence the minimal a point is a well predicate functions

defined concept. Our first set of test inputs uses the procedure

Given an input X such that P(X) is defined, let given in theorem 9 to demonstrate that each of the

FX(Z) be the straight-line function such that n primary positions in P are indeed touched.

FX(X) - P(X). Note that by theorem 6 FX is defined Next, for each selector variable, use the
by this sipgle point, procedure given in theorem 9 to show that the

Theorem 8: For any X for which P(X) is defined, we first n+l positions (by depth) must be touched.

can construct an input Y with the properties that Let. d be the maximum size of these m(n+l)
P(Y) is defined, Y 2 X and Fx t py. positions. (We will assume d is at least 3 and isPLY) i defied. YS and XSFY.larger than both 2w and olimit.) 3adi

Proof: Let L and i be the constants 
such that on

input X, P recurses t times before exiting by Theorem 10: If Q is a program in * that correctly
output function i. Let the predicate pi test processes these 2m(n+l) points, then the recursion
variable xi. selectors of Q have depth d or less.

There are two cases. First assume f is not a Proof: Study each selector variable separately.

constant function. Now it is possible that the At least one of the n+l points touched in that

1asition that would be tested by Pi after recursing variable must have been touched after Q had

t+l timeb is an interior position in X, but since X recursed at least once. If the recursion selector

is bounded there must be a smallest k> X such that had depth greater than d, the program could not

the predicate pi(R(xj)) is either true or possibly have touched the point in question. 0

undefined. Using theorem 7 we can find an input Z Theorem Ii: If Q 4E correctly processes these
that causes P to recurse k times before exiting by 2m(n+l) points, then none of the selector programs
output function i. Let Y be the union of X and Z. associated with the predicates can have a depth

Since Y Z, P must recurse at least as much on Y greater than d.
as it did on Z. Since the final point tested is
still atomic P(Y) will recurse k times before Proof: At least one of the inputs causes Q to

exiting by output function i. Since recurse at least once; hence all the predicates

.f(Rk must have evaluated FALSE and therefore were
fi

(R
MI
) ,R Y  ,

defined. If any of the predicates did have a

we have that FX9 Fy. depth greater than d, they would have been
undefined on this input.

The second case arises when fi 
is a constant

function. By assumption 3 there is at least one Since d> olimit we also know that d is a bound

output function that is not a constant function, on the output functions of Q.

Let fi be this function. Let the predicate Pi We are now in a position to make a comeent
test variable xj. The same argument as before concerning the size of the points computed by the
goes through with the exception that it may happen procedure given in theorem 9. Let 9 be the
by chance that P(Y) = P(X), i.e. P(Y) returns the maximum depth of the "relative root" (the current
constant value. In this case increment k by 1 and variable position relative to the original

perform the same process and it cannot h-rpen variable tree) at the time position a is touched.
again that P(Y) P(X). We know the minimal a tree is no larger than l+w.

Theorem 9: If P touches a locaticn a, then we can This being the case, to find an atomic or

construct two inputs X and Y with the properties undefined point (as in the procedure associated

that P(X) and P(Y) are defined. Then for any Q in with theorem 8) we will at worst have to recurs*

*, if P(X) - Q(X) and P(Y) = Q(Y), then Q must to a position l+w deep, but no more than l+w+d

touch a. deep. Hence neither of the two points constructed
in theorem 9 need be any larger than l+2w+d. This

Proof: Let Z be the minimal a point. Using fact will be of use in proving theorem 14.
theorem 8 we can construct an input X such that
P(X) is defined, X Z, and FX* FZ. Let Y be X 2.2.5 Narrowing the form of the recursion
pruned at a. selectors

We first assert that P(Y) is defined and We will say a selector function f factors a

Fy= FZ. To see this, note that every Point that selector function g if g is equivalent to f
was tested by P in computing P(Z) and found to be composed with itself some number of times. For
non-atomic is also non-atomic in Y. Position a is example, CADR factors CADADADR. We will say that
atomic in both, and if the output function was f is a simple factor of g if f factors g and no
defined on Z then it must be defined on Y, which function factors f other than f itself.
is strictly larger. Let us denote by si i-l,...,m the simple

Suppose given input Y a program Q recurses i factors of ri, the recursion selector functions.
times before exiting by output function i but does That is, for each variable i there is a constant
not touch position a. Since X is strictly larger i so that the recursion selector ri is si
than Y, on X Q must recurse at least as much and composed with itself 1i times. Let q be the

at least reach predicate i. Let the position in Y greatest common divisor of all the is. Hence the
that was touched by predicate i and found to be recursion selectors of P can be written as sq for
atomic be b. Since position b is not the same as some recursion selector S.
position a, position b is also atomic in X.

Therefore given input X, Q will recurse t times We now construct a second set of data points.in

and exit by output function i. But this implies the following fashion: For eacii selector variable
by theorem 6 that FX - Fy, a contradiction. D xi, let a be the first position touched with depth



7777M

greater than 2d
2 

in xi . Using ttfeorem 9, generate Fy- FZ * FX . But since Q touched a, FX - Fy, which

two points that demonstrate that position a must is a contradiction. IJ
be touched. Let DO be the set containing all the
(2n+ 2m(n+l)+ 2m) points computed so far. 2.2.6 Recursion selectors must be the same as P

Theorem 12: If Qc # computes correctly on Do then If Qe # executes correctly on Do , then from
recursion selector i of Q must be a power of si. theorem 13 we know the recursion selectors of Q

must be S for some constant r. From theorem 10Proof: Assume the recursion selector of xi in Q is we know the depth of S is no larger than d; hence
not a power of si . Recall that the depth of the there are at most d/(depth of S) choices. For
selector cannot be any greater than d. Once it each possible r (not equal to q), construct a
has recursed past the depth d, it will be in a mutant program P1, which is equal to P in all
totally different subtree from the path taken by respects but the mutant selectors, which are Sr.
the recursion selector of P.

In this section we will consider test cases asSince d •3, it is required that Q touch a point pairs of inputs, generated using the procedure
that has depth at least 3d. Q must therefore piso nus eeae sn h rcdr
tochths dpont at o leato 3d usto theee given in theorem 13, which return either the
touch this point prior to recursing to the depth value YES, saying they were generated by the same
d. By theorem 10 this is impossible. [] straight-line program, or the value NO, saying

We can, in fact, prove a slightly stronger they weren't. Other than this we will not be
result. concerned with the output of the mutants.

Theorem 13: If Qc 4 computes correctly on O0 then If each mutant touches a point that P does not,
there exists a constant r such that the recursion then construct two points (using theorem 14) to
selectors of Q are exactly S

r
. demonstrate this. If any mutant touches only

points that P itself touches, then we will say P
Proof: We know by theorem 12 that the recursion cannot be shown correct by this testing method.
selectors of Q must be powers of si. For each Call this set of test cases D1.
selector, construct the ratio of the power of si
in Q to that in P. Theorem 13 is equivalent to Theorem 15: If Qe 0 executes correctly on Do and

saying that all these ratios are the same. Assume Dl, then the recursion selectors of Q must be
they are different and let xi be the variable with exactly Sq.

the smallest ratio and x) the variable with the Proof: Assume not, and that the recursion
largest. selectors are Sr for some constant r 9q. No

Let X and Y be the two inputs that demonstrate matter what the primary positions of Q are, we
that a position a of depth greater than 2d

2 
in xi  know it must touch at some point the primary

is touched. Both P and Q must recurse at least 2d positions of P. It therefore must always touch
times on these inputs. In comparison to what P is the primary positions of P relative to the
doing, xj is gaining at least one level every time position it has recursed to. But therefore it
Q recurses. By the time xi is within range to must at least touch the points that the mutant

touch a, xj will have gone 2d leel s too far. associated with r does.
Since 2d > d+2w, xj will have run off the end of
its input; hence Q cannot have received the 2.2.7 Testing the primary positions of P
correct answer on X and Y. U Consider each primary position separately.

Theorem 9 gave us a method to demonstrate a Assume that in some program Q in 4 the position is
position is touched. We now give the opposite: a not primary, but that it is touched after having
way to demonstrate a position is not touched. recursed Z times. Let b be the position of arelative to Sq9. This means in Q that b is
Theorem 14: If Qc 4 computes correctly on all the rir o b c an n the t alon

testpoits o fr cnstuctd, henforanyprimary. Now b cannot even be touched (let alone
test points so far constructed, then for any be primary) in P because of the assumption of
position a not touched by P we can construct two freedom. Using the procedure given in theorem 14,
inputs X and Y so that if P(X)- Q(X) and construct two points that demonstrate that b is
P(Y) -Q(Y) then Q does not touch a. not touched, which demonstrates that a must be

Proof: Let position a be in variable xi . Let m be primary. Taken together, these test points
the smallest number such that after recursing m insure that the primary positions of P must be
times the recursion selector i is deeper than a. primary in all other programs.
Let I be the maximum depth of any recursion Notice carefully that we need to make no other
selectors at this point. Let X be the complete assumptions about the other primary positions in
tree of depth 1+2d pruned at a. Q; we can treat each of them independently. We

There are two cases: If P(X) is not defined, therefore have at most n(d/(depth of Sq)) mutant
assume Q touches a. The relative roots of Q cannot programs, hence at most twice this number of test
be deeper than l+d at the time when a is touched. points. Call this test set D2.
Hence the minimal a point is no deeper than l+2d. Theorem 16: If Q, 0 executes correctly onl Do, DI,
Since X is strictly larger than the minimal a and D2 then the primary positions of Q are exactly
point we know that Q(X) must be defined, which those of P.
contradicts the fact that Q(X) -P(X).

Notice that by thuorem 6 this also gives us
The sucond case arises if P(X) is defined.

Using theorem 8 we construct an input Z f X such

that FX* Fz. Let Y be 7 pruned at a. Assume Q Theorem 17: Thc output functions of Q are exactly
touches a. Since Y aX, '(Y) must be defined, so those of P.

assume P(Y) is defined. by construction



8

2.2.8 Main theorem timesharing system need have no knowledge of how

Once we have the other elements fixed, te the operating system is implemented. This is the

direction we feel research in testing should
constructors are almost given to us. Remember one follow: finding mechanical methods that may be
of the assumptions made in the beginning was that difficult to verify, but that once verified give
each of the constructor variables appears in its
entirety in at least one of the output functions, an easy procedure for finding good test data.
All we need do is to construct P data points so 3. Empirical Studies
that data point i causes the program P to recurse
once and exit using an output function that A program mutation system, called EXPER [271,
contains the constructor variable i. Call this has been implemented to test ANSI FORTRAN

set D3. Using theorem 6 we then have programs. In building real testing tools for

Theorem 18: The recursion constructors of Q must real programming languages, the issues that mustTheoem 8: Te rcurson onstuctrs o Q ustbe considered are:

be exactly those of 
P.

The only remaining source of variation is the 1. What is the cost of performing the test?

order in which the primary Positions are tested. 2. What is gained from performing the test?

The only solution we have been able to find here Note that these two issues should trade off

(short of making more severe restrictions on 0) is somewhat as time and space trade off in
to try all possibilities. There are n1 of these, algorithms. But in addressing the first issue,
some of which may be equivalent to the original the system must at least be tractable.

program. Let D4 be a set of data points that Conceivably, given a FORTRAN program P having N

differentiates P from all non-equivalent members statements one could construct a mutant set p

of this set. having size exponential in N, each mutant being a

Putting all of this together gives us our main reasonable alternative to P. What is done in

theorem: EXPER, however, is to define W via a set of 23

Theorem 19: Given a program P in 0, if QE mutant operatos that, upor. analysis, result in
executes correctly on the test points constructed W's having size bounded roughly by the product of
execters crt on,16,and18 the n test poi stred the number of data references (constants, scalar
in theorems 10, 15, 16, and 18, then Q must be variables, and array references) times the number
equivalent to P.

of unique data references. Mutant operators are
Corollary: Either P is correct or no am in * very simple syntactic and semantic program
realizes the intended function, transformation rules that act on P in only a local

Corollary: If the competcnt programmei hypothesis way. For example, one mutant operator changes a

holds then P is correct, single occurrence of a binary operator in P to a

syntactically legr1 alternative operator in

2.3 Discussion forming a mutant identical to P in all but one
symbol. Another mutant operator changes the

We note that although the class of progra-,; semantics of a single DO loop to be interpreted

studied here is small, it is not vacuous. S.veral as a FOR loop. Here the mutant is syntacticall.y

of the examples studied previously [17.32.331 can identical to P but, unlike P, precisely one of

be expressed in our form. the mutant's k loop bodies might never be executed

We point out that even with the assumed bound in spite of the controlling DO statement being
onte pt oftaen t the outputafu nswedd od executed. A description of the exact nature of

on the depth of the output functions, we didn the other mutant operators has already been
bound the number of CONS functions they can pbihd[]

contain; hence there are an infinite number of published r7].
programs in the set *. This is true even after Although the complexity of the mutation system
we have bounded the depth of the recursion is now reasonable, one should question the

selectors and the predicate selectors in theorem effectiveness of applying program mutation with

T . only simple alternatives since the remaining wore

The most important aspect of this result is not complicated (but reasonable) alternatives are

the proof (which in fact has rather limited apparently overlooked. The coupling effectmentioned in section 1 indirectly addresses the
applicability) but the method of the proof. Once m on ed ternies addreses th

we have fixed the recursion selectors via test set more complicated alternatives of P: test data
w, he rthat causes all simple mutations of P to fail is
DO, the remainder of the arguments can be proved so sensitive that it implicitly causes all complex
by constructing a small set of alternative omiain o hmt al

programs (the mutants) and showing that test data

designed to distinguish these from the original We will illustrate a representative case of
actually will distinguish P from a much larger coupling in a FORTRAN program. The program is
class of programs. In all we constructed adapted from the IBM scientific subroutines
d(l/(depth of S) +n/(depth of Sq)) +p+ni mutants, package (253, a collection of statistical and
and we proved that test data that distinguished P scientific programs in fairly comnon use. The

from this set of mutants actually distinguished P error was artificially inserted in a study by
from the infinite set of programs in . Gould and Drongowski [15). The error occurs in

the line that reads
We note that although the proof of the result

given, here is rather long and tedious, the result 40 INN = UBO(3)
is a procedure for proving correctness that is

entirely mechanical. The user of such a procedure
need have no knowledge of the proof that was used 40 INN = UBw(2)
to validate the method, much as the user of a



SUBROUTINE TABI(A,NV,NO,NINT,S,UBO,FREQPCT,STATS)
INTEGER INTX
REAL TIP, SCNT, SINT

INTEGER INN, J, IJ
REAL VMAX, VMIN
INTEGER I, NOVAR
REAL WBO(3), STATS(5), PCT(NlNT), FREQ(NINT)
REAL UBO(3), S(NO)

INTEGER NINT, NO, NV
REAL A(600)
NOVAR - 5

DO 5 I-1, 3
5 WBO(I) - UBO(I)

VMIN - O.1000000000E+ll
VMAX - -O.1O000000OOE+ll
IJ - NO * (NOVAR - 1)
DO 30 J-1, NO
IJ - IJ + I
IF(S(J)) 10,30,10

10 IF(A(IJ) - VMIN) 15,20,20
15 VMIN - A(IJ)
20 IF(A(IJ) - VMAX) 30,30,25
25 VMAX - A(IJ)
30 CONTINUE

STATS(4) - VMIN
STATS(5) - VMAX
IF(UBO(I) - UBO(3)) 40,35,40

35 U80(1) - VMIN
UBO(3) - VMAX

40 INN - UBO(3)
DO 45 1-1, INN
FREQ(I) - 0.0000

45 PCT(I) - 0.0000
DO 50 1-1, 3

50 STATS(I) - 0.0000
SINT - ABS((UBO(3) - UBO(1)) I (UBO(2) - 2.0000))
SCNT - 0.0000
IJ - NO * (NOVAR 1)
DO 75 J-, NO
IJ - Ii + I
IF(S(J)) 55,75,55

55 SCNT - SCNT + 1.0000
STATS(1) - STATS(1) + A(IJ)
STATS(3) - STATS(3) + A(IJ) * A(IJ)
TEMP - UBO(1) - SINT
INTX - INN - I

Do 60 1-1, INTX
TEMP - TEMP + SINT

IF(A(IJ) - TEMP) 70,60,60
60 CONTINUE

IF(A(IJ) - TEMP) 75,65,65
65 FREQ(INN) - FREQ(INN) + 1.0000

OTO 75
70 FREQ(I) - FREQ(I) + 1.0000
75 CONTINUE

IF(SCNT) 79,105,79

79 DO 80 I-, INN
80 PCT(I) - (FREQ(I) * 100.0000) / SCNT

IF(SCNT - 1.0000) 85,85,90
85 STATS(2) - STATS(1)

STATS(3) - 0.0000
GOTO 95

90 STATS(2) - STATS(1) / SCNT
STATS(3) - SQRT(ABS((STATS(3) - (STATS(1) * STATS(1))

/ SCNT) / (SCNT - 1.0000)))
95 DO 100 1-1, 3
100 UBO(I) - WBO(1)
105 RETURN

END



10

Ther. are a number of mitarits that discover this which the highly skilled subject cannot beat the

error. Consider, for example, the one that changes system, then we have high confidence that these
the :,tatoment error types would be detected by any user of the

system. On the other hand, if there are error
IF (A(IJ) - TEMP) 7types for which the subject can consistently beat

to the system, then more investigation of mutant
IF (A(IJ) - 1.00U) , operators is needed -- the system might be weak

Control reaches this JoLnt only if A(IJ) is bigger in detecting those error types.

tlian TEMP, so control awes a,:;ts tr 61,. by The beat the system experiment is an example of
tracing the flow of control w,- can discover that worst-case analysis, in that we attempt to find
TEMP is equal to the valuL of the input parameter out how the system will perform under the worst
UBO(3) at this point. To elminate this mutant, possible circumstances. We note that the beat the
then, we must find a valu,- wiere A(IJ) is less than syStem experiment is an extension of the
one but larger than 1;O(3). T1,.-r,-fore UBO(3) must reliability studies done previously [36.23].
be less than one. 'iuer is nothing in the Thise earlier studies, however, were directed at
specifications that rules out (JBC)(3) 's being less ,(iparing two or more competing methodologies and
than one, 1it thL error cause . Uo(3) to be deriving statistical information of the form "On

assigncu to thu integer varicle INN. All the the following samples of programs, method A
feasible paths that go through the mutated discovered X% of the errors and method B discovered
statement also go through label 65, which Y%." In the beat the system experiments we are
referLices FRLQ(INN). Since INN is less than or much less concerned with the number of errors
equal to zero, this is out of bounds, and the error caught and much more concerned with the type of
is disc ,vered. errors missed. Furthermore this information is not

W, :,hall not directly addri ss the coupling used to compare two mwthods but is designed to

effect furtnher here -- evidence for it has been evaluate th, mutation analysis system (EXPER) and

pruviously reported in many sources ( 7,8,9.7,30 i to direct the search for new mutant operators that

-- but instead will report on experiments aimed at will improve the system.
evaluating issue (2) above. For example, several of the programs we studied

The ultimate evaluation of any program testing in early experiments revealed that a significant
system involves examining the following question: number of errors in FORTRAN are caused by

Are there incorrect programs that pass the system programmers' treating the DO statement as if it
Arthe nwere an ALGOL FOR statement, forgetting that no
ti st? matter what the limits are a DO statement will

Since, as was argued above, the answer will always always (perhaps erroneously) loop at least once.
Le yes for any system that te3ts real programls, a The way we chose to detect these errors was to

more Interesting question is: introduce a mutant that changed a DO statement
into a FOR statement, bringing this fact to the

What types of errors are always detected by the programmer's attention and forcing him to derive

At ~ ~ ~ ~ ~ ~ rgrme' attention thes forcingi- call onl bederiveoetilifalsystem, arid what error types might be overlooked? data that indicated he had knowledge of this

At j~reseri.t these questions can only be studied potential pitfall.

uml irically because of the lack of any widely So far we have conducted beat the system
acceptud formal models of programming errors, experiments on 11 programs, all of which have been

The ideal vxperiment for evaluating a program previously studied in the testing literature. (We
mutation system would bt. the classic double-blind wish to express our gratitude to Robert Hess, who
experim, nt. Tie exlertmenter ::as N subjects with was the subject in most of these experiments.)
varyinj levels of programnirtg and testing skill and The appendix contains the appropriate references
M lrograms that have zero or mere errors known and further details on the programs and their
only by the experimenter, and -a2:: sul)ject reports errors.
on th, .rroru detected in try:i. to j'-ss the mutant It is difficult to construct a classification
test. Classical statistical t>:.inlques are the-n scheme for error types that is neither so specific
used to evoluate the re.ults. mnf rtunately, the that eacii error forms its own type nor so general
higJh cost of perfurming surh -n? rolled N-subjvct that impertant patterns cannot be detected. If

*xie-rime:t:; makes them u,.fn: I-.. the classification is based on logical mistakes,

we have, however, d..si4n-J ij,,i ipn formed a then it is often hard to relate errors to mistakes

single-subject experiment, whie., we claim gives in the code. On the other hand, it seems difficult
signiifl.ant results in vvaluat :.j the FORTRAN to base a scheme lust on mistakes in the code,
mutation !;yst, m. We call suc:t: in experiment a since often a single logical mistake will be
be.it the system experlm,.nt. .::. single subject responsible for changes in several locations in the
i, som:orie having a very ih I-vel of programnminq program. Goedenough and Gerhart [ 1 3i and Howden
ex1,prtue arid much famil 4 1 it', with the conce(ts of [22 , among others, have attempted to construct a
pr-ojramming mutation in general -0rd the FORTRAN qnerally applicable system. Neither of their
mutation syctm in particular. 'ifho M programs now systems, to our minds, gives a sufficiently

rave on-, or more errors, and turtiiermore the intuitive picture of the errors in any particular
sunuL t row nas c'omplete knowledge of what tue clas,. Threfore we have chosen to group the
errors al2. Tne subje,;t tries to heat the mutation errors in these eleven programs into the following
syst~r. -- ti, (ass the mutation test withi air categories:

incorrect 1rogram by de.veloping test data on which Missing path errors: These are errors where a
the 1,r-,liam is c:orrect buit onz wbiich all mutants oftie 'ram fail.If corretitn i a l muror t ts of whole sequence of computations that should be

performed in special circumstances is omitted.

s..... 

-o 

pas 
t 

l iiii o ......... 

"it a'' 

categories 

:!



11

Incorrect predicate errors: These are errors that implies that the type of results we would like to
arise when all important paths are contained in the prove do indeed hold in the real world. Both
program, but a predicate that determined whih [path types of results are useful and important in
to follow is incorrect, understanding the nature of program testing.

Incorrect computation statement: These are errors Although our specific results have dealt solely
that arise from a computation statement that is with program testing, we feel that the potential
incorrect in some respect. for developing other software methodologies that

try to exploit some facet of the programming
Missing computation statement, process, as illustrated by our use of the
Missing clause in predicate: This is a special competent programmer hypothesis, should not be
case of an incorrect predicate error, but since it overlooked.
is so hard to detect we give it special treatment. Finally, we. feel that the type of experiments

The 25 errors in these 11 programs range from comparable to our beat the system approach are an
simple to extremely subtle errors. Because of the example of experimental computer science adaptable
worst-case nature of the experiment, the fact that to many other testing methodologies.
5 errors are not discovered does not mean that
these errors would always remain undiscovered if References
mutation analysis was used in a ncrmal debugging I1 A. T. Acree, R. A. DeMillo, T. A. Bud!, R. J.
situation. We merely cannot guarantee their Lipton, and F. G. Sayward. "Mutation
discovery. Table 5 gives the number of errors analysis." Technical Report GIT-ICS-79/08,
detected by error type. Of these 25 errors, only Georgia Institute of Technology, 1979.
8 would be caught using branch analysis.

21 R. S. Boyer, B. Elspas, and K. N. Levitt.
Number Cauit "SELECT: A formal system for testing anddebugging programs by symbolic execution."

Missing path error 6 5 SIU;PLAN Notices 10(6):234-245, June 197'.
Incorrect predicate error 3 2
Incorrect computation statement 12 11 3 Gordon I. Bradley. "Algorithm and bound for
Missing computation statement 3 2 the greatest common divisor of n integers."
Missing clause in predicate 1 0 Communications of the ACM 13(7)-:433-436, July

1970.
Figure 5: Number of errors detected by error type

J 3. R. Brown and M. Lipow. "Testing; for
Oi:e can notic, that in three of these cat 'gories software ruliability." Proceedin,'i ot the

the errors are caused by the lack of certain 1975 International Conference on Reliable
constructs in the program. Since- the testing Software (IEEE catalog number 75 CHIO 440-
method is being askeu to guess at somethinq that is 7CSR), pages 518-527. IEEE, 1975.
not in the program, we should really be surprised I Timothy A. Buid and Richard J. Lipton.
that it does as well as indicated. Nonetheless, "Mutation analysis of decision table prograi:ns."
missing path errors and missing clauses in Proceedings of the 1978 Conferenc, on
predicates are probably the most difficult errors Information Sciences and Systems, pages
for any testing method to discover. 346-349. The Johns Hopkins University, 1978.

The failure of the LXPER system to detect these 6 Timothy A. Budd and Richard J. Lipton.
5 errors is really not an indication of a weakness "Proving LISP programs using test data."
in the method per se; rather it reflects on our Digest foi the Wrkshop on Software Testing
choice, of mutant operator s. It is quite possible ,and Test Documentation, pages 374-403, 1978.
that with another set of mutant operators many of
these errors would be caught. We are constantly 71 Timothy A. Budd. Mutation AnalysiS; of Program

looking for latterns in the types of errors Test Data. PhD thesis, Yale University, in

overlooked in order to discover new mutant preparation.
operators that would aid in the detection of these 4) if. Y. Chang. Fault Diagnosis of Digital
errors. Systems. Wiley- Interscience, 1970.

4. Concludiznj Remarks '1] Richard A. beMillo, Richard J. lipton, and
Frederick G. Sayward. "Hints on test data

A framework for studying the program iutation selection: Help for the practicing programmer."
testing method from both theoretical and empirical Computer 11(4):34-43, April 1978.
vLewpints has been presented. The initial
results indicate that program tpsting, when 10 1 K. Foster. "Error sensitive test cases."

studi-i inder assumptions in addition to the Digest for the Workshop on Software Testing
standard "P is correct on test data D," is a and Test Documentation, pages 206-225, 1978.
fertile area for both theoretical and empirical 11 M. Geller. "Test data as an aid in proving
research, program correctness." Communications of the

* We remark that there is a very real trade-off ACM 21(5):368-375, May 1978.
in 0..- two types of research we have presented. We 12 usan L. Gerhart and Lawrence Yelowitz.
can [rov theorems that allow perfect t, stlng of "Observations of fallibility in applications
pro 1ram:; for very limited languages, languages of modern programming methodologies." IEEE
that ,iotrinrters would find rather unnatural. Trans.,ct ions orn Software Engineering SE-2 (3)
But undeci:dability stands in the way of general- 195-207, September 1976.
izing these to real programming languages. Given
this, we hay," gathered empirical evidence that 131 John B. Goodenough and S. L. Gerhart.



12

"Towards a theory oft est data slection.' Harrison. Decision Tables: Theory and Pracf ice.
IEEE~. t'os. o S. I so re Enq il 'ri nq -;.jJohn Wi ley and Soni:; , 1971.

* ~ ~ ~ ~ ~ ~ ~ , 1) .1 1 ue1~h 2 . E. Shaw, W. K. SwartoUt, and C. C. Green.

12] J . .;,od.~nouqhi. "A sirvvy (if p(oljrAml testinq "Inferring LISP programs from examplus."
issu,s. ' ]in P. iicprn'r, editor, Re.rurolr Proc'eedings ,I the Fourth Int,,inational Joint
1222.22on III2 0 50twdl cliiiqj paqo-s 3mt- L'2)otCr21cL O1n Aitfi il !lntell igence, pages
340. MIl' i'r.'s!, 1179. 26 0--16 7 . field in Tbjilisi, Getorgia, USSR, 1975.

151 J01111 1). Gould 111, ijoLl :r- ikijow!;ki "Aii Phiulip D~ale Su2Immurs. Przo-raim Constructijon from
exploratory Study otf compjutxr 1id'nlraill vxaimpi vs. Pil tUit-i s Yale Univrsity, 1975.
dbklqyjilg." 11umtl May.lz: it.(.o3.

7 7  
'd i.. .. White, F:. 1. wohen, and B. Chandrasekaran.

1,04. A lx,2n,'in Siitatotq tar Computer Program Te-stiny.

1, Richard tHae1t. "_rti ju. of t,,Iia,o 12ty 'cria Report uSU-CISI -Tk-7H-4 * Ohio State
Li sory. Digejst loi tho W':zrcsh, 'p oit ,ot tw re th22Ve15isty' 1 )7i.
Tost in.; and2 Ttnt v. rnct. totion, paqg .76's N. Wi rth . 'L.,,:A proqramming language for

I thw 160 cortpute-r ." Journal of the ACM 15,

1iSlev..2i 11i2dy . )I~ :iiis:,,2 .Sf 1ro.jr~lmi 37-74, 1908.
fro-m cxamnjos. " Pr '.ic,'dinq~s ot the Fuuz th

T!I :0 !; o rqce ia , S.12 .Iid , I 1 .'21: appendix O'.ri.;thle 11 programts studied
2 * .. urjioISP)lit2 iie "boeat tile, sy ;t_,_i" experiments.

1. Ilt'ld-,22,1 .2nd 2;. .O;-kw1 In. "Ari texp'.ri: 0 i2t! L first proqjrorr is written in an ALGOL
2k ,trutut'1 1lr.1l112ij.' l~l 12 31-'., Ijn1.t .ind inlitiall1y appu.jediL2 ii a paper by

Hl'i I ;,n a112d inowdi-n 1 161. Its intent is to read
1 . A. i-_ Hoa,12,. "I r. ,t of I I ro.Jrar: ,n15. p2211'occss a stri ni of coiaracters that represent

II:22r .2 .Oso! 2.2I,' ACM 14 (1) : 3L-4',. 1,lU'2 of telc'Irai'.s , wher,! a telegram is any
'l.ki2,iol y 1,171. I222 illj Lsttliinated I1y till: keywords "ZZZZ ZZ2Z."

221 aid f I. p'ior2r -%calls for j,,rd1s longer thlan a fixed
.1; 0. erot 2., .12.'Ie 1). Ullman2. li21122 arnd isolates and plrints each telegram along

hI 2 .. 222.2.J~12.2.1 It:: I~12t 1'121,1with. a counrt of toe rumor of wordI: it contain,

w :II I. :1 I.. iwderi. "lo1 1..1g' ,r 1120 ov-r-1vipit1 words . '1', proq3ratl Itai, also been
.:2.122of pr.'jrtai L,,(. .lat-a." IEEE st-udie' i22 Ludgart .> .'. ad Go!rhart arnd Vvlowitz

r- 0.o, t20 ion,1:i C.'Ipj t, -r 5; 2-( it Y1:- '01:, May 1 . i. The proraat2 .2,121.22 12 tile following loop,

hoeh is jrntended to 22250r(. that blank characters

SAillik !_ 02: .. owd,,n . "Ali e.1/222.2 1ion of tih, Lire ski p2 d an~d that tol lowing the loop' the

.22 oC2e, S.f .21 ;012..ll t2.15i22." Slt2,'.2,, vtltc L'lTEUR coiitains a3 non22.lan2k character.

*1 in Expe Ii215~r 1.'2: 3221-3 o7, 1 782. WIIILf: ipUt eJtt212AND l"2,'IST2'int)

., ilii . 20.523.2. "HeiI.211I12y of the' patl2.12(UI R:i2iu21

IFFF lanTict ,t:i FIRST (i in)'ut I
.0111 7 24.2P IIn 25012 L-(3) :2:10-214

:.Ij L 12I'dC. i7%. The' Wili 1, J11 t1'rluijt 1.; ,I ther ti2l .222 empty str 22213

T. . Iuaq. Aliqv-i~ Loprqr02, 022 ,2 rtoriil aik cllaract,,r . If it terminrates o22

.2 .. tu~iq. Ar .2',-;) :113.1 2,~ l tll 52122' .221ity 221 2:222. aid tile first chiaracte.r iir the
* 220.21 f':,.'C1 ,1:12-1,SeenlrI~ulfo 1 laded by tile R Al) ins5truction is blank,

1 .7 - .IX21l14 can2 con2tain2 a P lank clnsract,'r.
III' 222 ! :lt"12.121:i2e1 . 0 iIUS5'tl2.1 WIll thit 'Ieo~jram inti rslatud into F'ORTRAN and

1,-ritifl,~~~~ ~ ~ ~ ,aouii jA;,.IM'Xecutvd vi2 thle EXPLR syi~tem tile error is not
li .ti I 2 itram32 12-1l2 114,1.. r2.ce12..rily cakiqlit . PIle reason for this failure

*~~ ~ ~~ . I2 , 222."[le .Sl2 r1,1t srl...vlircd 12 12 11 ,tMuch a3 failure of mutati, it testing as it

2.22h2.. 111: 121:-1-',7, 12)73. i s o f J kr'RAN. ALGOL treats strings as a basic

* I.'.!if tP.22 arnd 2I -.:.21w.2r.. "Th, 12tt.2 type, whereas in F'oRkAN they are simulated by
1 .1 "nI'lqT.rl Iluttiol." o? rrdy~s of liteler:;. Tihe fact that strings are

2.l '.2. 11 2.2.25r tiliq 22. i n.2 hx.,? to32 C 122IL means ?fiat if we were constructing

~ 1; r 5,15,2' tilt, 21. .1 7,. 2Mutation Lsystem for ALGOL irlsteaI of FoRTRAN we
.2 .'1,0.22212, .'2'' 2 2l, 7B.would have to zornsider a different Set of mutant

N I. '10222.212I I221 ;,, , .P, i V F11Ilo.. Sc Ienrce o ,-':)r ts . A na.tural operator one would consider
1-.1t2-. A'. I iat L!1., I -4. -IlkIi, io 0x111'212d b~y noting that hlatiks play a role

211 '1lvinq1 poct-ssiny jpriorams analogjous to that
5.222 "22.Ii.:n'1 : :1 ' .... 11122 lunsrs 2.1'cd by zero in nui.l2ers. Hence we might

1: po1the0size a "blank p~ush" operator similar to the
.2 1.2w. i1 u. 1 1-. 1. 2,1,5, K. zvro push operator ir, LXPER. If we had such an

"I, xiw.12<-, witi :AVI. , A I 0
1
1.RAN 121.3222 ,i orator, a322 attempt tio force the expression

.. :,, I -, .' ' ltI'i .:. ho I I- A~I'l' VIRS'l'(iriput) to blan2k would certainly reveal the
N.I't .2 jo ikMj~ut.f( 211 '2,(,, ,)-e 2

1
12 I, .r,r ,I

Thu e 5cond program appears in a paper by Wirth
I_ V.1. ol jac:k, If. 1P. 111 and , 222. 01 1~escrxbhinq div languale PL-36l [3 *,I) It is

intended to take a vector of N numtbers and sort

THIS PAGE IS BEiST QUALITI PMUC31A1'"1

MH" hmsa oW



13

them into decreasing order. It was also studied by divisible by 100. In the incorrect prLdiate,
Gerhart and Yvlowitz [121. As the outer loop is therefore, the second part of the OR clauie is
incremented over the list of elements, the inner true if and only if YEAR REM 400 is true. If a
loop is designed to find th, maximwu of the remain- branch analysis method attempts to follow all the
ing elements and set register R3 to the index of "hidden paths" (91, the error will be discovered
thin maximum. If the position set in the oute, when an attempt is made to make YEAR REM 400 true
loop is indeed the maximum, then R3 will have an and YEAR REM 100 false. With mutation analysis
incorrect value and the three assignment statements the error is discovered when we replace YEAR REM
ending the loop will give erroneous results. 100 with TRUE.

Sort(R4) The fifth program computes the Euclidean
For RI - U by 4 to N begin greatest common divisor of a vector of integers.

RO :- a(sl) It appeared in an article by Bradley in the
for R2 - RI + 4 by 4 to N begin Communications of the ACM [3]. The program

if a(R2) RO then begin contains the following four errors: (1) If the
RO a(R2) last input number is the only r n-zero number and
R3 k2 it is negative, then the greatest common divisor

end returned is negative. (2) If the greatest common
end divisor is not I, then a loop index is used after
R2 :- a(RI) the loop has completed normally, which is an error
a(RI) : RO according to the FORTRAN standard. (3,4) There
a(R3) : R2 are two DO loops for which it is possible to

There are three mutants that cannot be eliminated construct data so that the upper limit is less
than the lower limit, which causes the program towithout discovering this error. The first two

change the Statement HO :- A(Rl) into HO :- A()-l produce incorrect results since FORTRAN do loops

an th Asa(ment The thiARd muntR0 cn A()- always execute at least once. None of the errorsand R0 :- -ABS(A(Rl)). The third mutant changesisauhuinbrnhaays.A reagh

the tatmen int ACi) A(3) .We eav ~tis caught using branch analysis. All are caughtthe statement into A(R1) := A(R3). We leave it aswi h m t io an l s .
an exercise to verify that none of these Mutants with mutation analysis.
can be eliminated without discovering the error. The next three programs are adapted from the

The third program is written in FORTRAN and IBM Scientific Subroutines Package (25). In each

computes the total, average, minimum, maximum, and program three errors were artificially inserted

standard deviation for each variable in an in a study conducted by Could and Drongowskj [U15.
observation matrix. The program is adapted from The first program computes the first four
the IBM scientific subroutines package 1.]. It moments of a vector of observations. One of the
was analyzed and three artificial errors were errors would be detected using branch analysis,
inserted in a study by Gould and Drongowski [I']. the other two can be overlooked. All three
As in the study by Howden [22I we considered only errors would be discovered using mutation
one of these errors. It occurs in a loop that analysis.
computes standard deviations. The program has thestat ement Tihe second progjram computes statistici from an

observation table. Aqain, one error would be

SD(1) - S.)T(ABS((SD(I) - (TtTAL(I)*T0TAL(T));SCNT) discovered using branch analysis but all three
,S NT - I errors are discovered with mutation analysis.

A pair of Parentheses has been left off the final The third program computes correlation
SCNT- I expression. Let X stand for the quantity coefficient:;. Two of the errors are detected

ABs(qD(I) - (TcrAL(r)*TrrAL(If'SCN) with branch analysis; all three are detected with

mutation analysis.
The correct standard deviation is SQRT(X/(bCNT-1)). The next program takes three sides of a
The only way this can be made zero is for X to he triangle and decides whether it is isosceles,
zero. But the program containing the error ;calene, or equilateral. It first appeared ii. a
com|,utes the standard deviation as SQRT{-X/SCNT). paper by Brown and Lipoyw 14 1. Lipton and Sayward
If X is zero this quantity is 1; hence the (27) describe a bug where two occurrences of the
standard deviation is wrong. Or if the incorrect constant 2 are replaced with the variable k.
expression is forced to be zero, then the correctstanarddevatio shuldhe reatr tan ne.This bug is very Subtle, but it can be detectedstandard deviation should he greater than one, with the test case 6,3,3. Neither branch
Hence by forcing the standard deviation in thi; analysis nor mutation analysis would force the
line to be zero the error is easily revealed, discovery of this error.

The fourth program appeared in an article by The tenth program is the FIND program from anGeller in the CommuniLcations of the ACM 1 1 1. The article by C. A. R. floare [10). The bug has been
program contains a predicate that decides whether studied by the group developing the SELECT
a year is a leap year. In the paper this symbolic execution system (2]. The bug is very
predicate is given as subtle and neither branch analysis nor mutation

((YEAR REM 4 - 0) OR analysis would guarantee its discovery. This(YEAR REM 100 0 AND YEAR REM 400 - 0)) bug was, however, easily discovered by mutation

when the correct predicate is analysis (in the normal debugging situation)
during some early experiments on the coupling

((YEAR REM 4 - 0 AND YEAR REM I00 9 0) OR effect l0).
(YEAR REM 400 = 0)) The last program, also written in ALGOL.

If YEAR is divisible by 400 then it must also 1,e appeared in a paper by Naur [2q1 and has also



14

bvi stud.ied widely 1 10 1'. 1 4 . The proijian 1,
Ikvkt to read a strincl of c:haractirs c~nslstinq

ot words, suparated by blanaks ,r newline cihdr.icters
,)I bojtti and to output as inatty words as 11 ib Ic
wi t.h aI blank between v y paiL of words. Tvit-rv
i:. a tixud limit onl the ,I etachi output l ine,
,and no word can lie brokr i-tw,en two lines. The
v-rsi,<' studied here is tihat of Gerhart and
YLIOWiLZ f 121, cuntadini,j fivc rrors. Tlirov uf
Uivbu (1, 3, and 4 in their nwb-rinq) are catight
by mutatIon analysis.


