AQS3 086 GEORGIA INST OF TECH ATLANTA SCHOOL OF ELECTRICAL EN==EYC F/6 9/2
THE FEASIBILITY OF IMPLEMENTING MULTICOMMAND SOFTWARE FUNCTIONS-=ETC(U)
OCT 79 T P BARNWELLs J L HAMMOND» J H SCHLA& DAA629-7B-G-013
UNCLASSIFIED ARO=15900,1-A=EL

v r—— -y ==

" FINAL REPORT

Y TI-IE FEASIBILITY OF IMPLEMENTING
MULTICOMMAND SOFTWARE FUNCTIONS
ON A MICROCOMPUTER NETWORK "

o R S bl R i e

Principal Investigators:

T. P. Barnwell ' .

J. L. Hammond .
J. H. Schiag i

E. B. Wagstaff

ADA08304

Submitted To:
U. S. ARMY RESEARCH OFFICE
DTIC

NELECT: B
Grant Number: APR 161980
DAAG29-78-G—0139 o

E
Report Period Covering July 1, 1978 to September 30, 1979
" October 1979
ﬁOﬂGIA INSTITUTE OF TECHNOI.OGY
OF ELECTRICAL ENGINERRING

ATLANTA, GEORGIA 30332

-

> ON STK X
% Approved for public release;
() Distribution Unlimited
e

b

p= 80 4 15 020

¥

SECURITY CL ASSI

Uncluucified,
- FICATIONG iF Th§ PAGE (When Nalte Entered)

T REPORT NUMBER

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

2 SO0VY ACCESSION NOJ 3.

15900. 1-A-EL

RECIPIENT’S CATALOG NUMBER

TITLE rang Subltitle)

THE FEASIBILITY OF IMPLEMENTING MULTICOMMAND

TYPE OF REPORT & PERIOD COVERED

Final Report:

] Jul 78 - 30 Sep 79

SOFTWARE FUNCTIONS ON A MICROCOMPUTER NETWORK

6. PERFORMING ORG. REPORYT NUMBER

7.

AUTHOR(s)
T. P. Barnwell J. H. Schlag
J. L. Hammond E. B. Wagstaff

8. CONTRACT OR GRANT NUMBER(s)

/" DAAG29 78 G 0139

PERFORMING ORGANIZATION NAME AND ADDRESS 10.
Georgia Institute of Technology
Atlanta, Georgia 30332

PROGRAM ELE
AREA & WORK

MENT, PROJECT, TASK
UNIT NUMBERS

1t

REPCRKRT DATE

Oct 79

CONTROLLULING OFFICE NAME AND ADDRESS 12.
U. S. Army Research Office
F. 0. Bex 12211 13.

Research Triangle Park, ..C 27709

NUMBER OF PAGES

306

14

. MONITORING AGENCY NAME & ADCRESS(/f different from Controiling Ollice) 18,

SECURITY CL ASS. (of thie report)

Unclassified

1Sa.

DECL ASSIFIC
SCHEDULE

ATION/DOWNGRADING

. DISTRIBUTION STATEMENT (of thie Report)

Approved for putlic release; distributi~n unlimited.

DISTRIBUTION STATEMENT (ol the sbstract entered in Block 20, !! different from Report)

SUPPLEMENTARY NOTES

The view, pinicne, =z
auther(s) and shoul i 1t
pasition, peliny, -

i:~ision, unless sc

-i.or findirgs ceontained in this repcrt are those of the
be construed as an nfficial Department of the Army
lecignated by <ther documentation.

KEY WORDS rContinue on reverse side 1f necoasary and identily by block number)

microcomputers
computer networks
feasibility studies

distributed p

monitor systems

rocessing

20

ABSTRACT (Continue on reverse alde Il necesaary and identify by block number)

The ob

P This report presents the results of a study of design considerations for hybrid
monitor systems for distributed microcomputer networks.

jective of the

study was to determine the feasibility of such monitor systems and to look at

typical designs.

characteristics of existing monitor systems were established.
presents a conceptual design for a monitor system for distributed microcomputer

A Detailed survey of the literature was carried out and the

The report

(cont.g

FORM
DD 1 ,an 7)

nclassified

Y2 ¢

rPope

1473 EO0ITION OF 1 NOV 6515 OBSOLETE

FrAOMITY £ ASSLEICATIAN OF THIS BPAGE /Whan Dara Pararad)

- e s - it

et

Ly g

Upeinssiiied

SECURITY CLASSIZIC *TION CF THIS PAGE(Whan Data Entersd) 15900-A-EL
r——-————_—’——

20. ABGTRACT CONTINUED

networks obtained by adapting certain aspects of existing systems to the
specialized requirements of microcomputer networks. Several nove) features

are incorporated into the design to minimize overhead and enhance useability.

A typical implementation of the conceptual design using state-of-the-art

hardware is given and its operation on a specific monitoring task is considere
in detail. The implementation is recommended for use with the AIRMICS/GEORGIA

TECH Expertpental Network.

Unclassifieg

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entereqg)

OV

e

i e S e _ e
e |
|
b 1
!
% !/,- e
| , 2
- @)fw\L RLP.'I 1 AREK 74 =34
k- { A e "'"“"“‘" Ll
{
| 1 ‘é : THE _FEASIBILITY OF IMPLEMENTING MULTICOMMAND
:. 1 -\v \‘ - e 2
3 i ' §0FTWARE EUNCTIONS ON A '_.\AIICP.OC()?\IPU'I'ER NETWORK
2
u PRINCIPLE INVESTIGATORS
f ! 1oy 1. b, /JARNWI’;I,L
E N J. AMMOND
. J. H./’,SCHLA(‘.
; E. B.:WAGSTAFF
SUBMITTED TO
U, S. ARMY RESEARCH OFFICE
{‘" /—' R et , /K_‘\l PAN
: // / dumm ; L=l
- N SN
,i‘v /‘__w__ R
N ! - . ’
e VR ! 79 ARV
S %chool of I‘lec,trlcal Ingmecrln;,,
* GEORGIA INST¥PETE OF TECINGGERY
‘/
'3 Atlanta, §eorgia 30332
J
; PO Accession For
) . Y . NIIS GRA&I
VRrd /‘:" vt LM DDC TAB]
- Unanncunced ‘]
Justifric-tisn___ !
By ~______.'
N A
1 n s
iti‘:t R
, PR ’
! . | : |
- T —— »V_k

Y
Y,

il

!
1
i

FOREWORD

The wori reported herein was performed under a grant from the
U. S. Army Research Office in support of work for the U. S. Army
Computer System Command Institute for Research in Management Informa-
tion and Computer Sciences. The study was one task on a project
entitled "The Feasibility of Implementing Multicommand Software
Functions on a Microcomputer Network".

Principal investigators on the project are Dr's. T. P. Barnwell,
J. L. Hammond, J. H. Schlag and E. B. Wagstaff. Dr. J. H. Schlag is
the program manager.

Pandvl aREll

ABSTRACT

This report presents the results of a study of design
considerations for hybrid monitor systems for distributed micro-
computer networks. The objective of the study was to determine
the feasibility of such monitor systems and to look at typical
designs.

A detailed survey of the literature was carried out and the
characteristics of existing monitor systems were established.

The report presents a conceptual design for a monitor system
for distributed microcomputer networks obtained by adapting certain
aspects of existing systems to the specialized requirements of
microcomputer networks. Several novel features are incorporated
into the design to minimize overhead and enhance useability.

A typical implementation of the conceptual design using
state-of-the-art hardware is given and its operation on a specific
monitoring task is considered in detail. The implementation is
appropriate for use with the AIRMICS/GEORGIA TECH Experimental
Network and its use for this purpose is recommended.

< g e o-

FOREWORD
ABSTRACT

. . . .

LIST OF FIGURES,

LIST OF TABLES .,

1.

2-

INTRODUCTION
REVIEW OF THE LITERATURE

2.1
2.2

2.3

2.4

2.5

Existing Computer Networks

TABLE OF CONTENTS

. -

. -

Hardware Monitors and Software
Monitors for Stand-Alone Computers, , .

Hardware/Software Monitors and
Monitors for Computer Networks, ., , ., .

Parameters Measured by Monitoring

System,

- » 3 -

Commercial Monitoring Equipment , | | |

OVERALL DESIGN CONSIDERATIONS FOR HYBRID
MONITORS . .

3.1

3.2
3.3

General Requirements for a Monitor

System

. . - . . - . . . - e -

Specific Variables to be Monitored |

A Proposed Monitor System_,(., , . . ., .

Nature and Physical Location of
Monitor Components , , ., ., . , .
General Approach to the

Measurement Tasks

Communication Between the Parts
of the Monitor System

Control of the Monitor System

Identifying and Accounting for
Specific Jobs

i1
Xv

Xvi

10

lo

<o
146

FAV

TABLE OF CONTENTS

(Continued)

4. STUDY OF A TYPICAL IMPLEMENTATION OF A Page

HYBRID MONITOR SYSTEM+ « « .« « « . 29

4.1 An Implementation of the Monitor :
SYStemM . . . 4 v 4 e e e e e e e e e e e e e e e e e 29

b

4.1.1 General Operation « « « « « « + « 29

4.1.2 Specific Measurement Modules - . « 35

' 4.1.3 Representative Specific
Measurements « « +« ¢« +« o ¢« + o . o 40

4,2 Example Illustrating the Use of the
. Monitor System . . v ¢ v ¢ « ¢ ¢+ « o o o v e e o+ e o 45

, 4.2.1 Task Definitions ¢« ¢« « « - . . 44

7 4,2.2 Computer Network and
; Corresponding Monitor System
Lo Operation on Assigned Task. 45
L
X :
, 4.3 A Monitor Structure for the AIRMICS/ ;
‘ GEORGIA TECH Experimental Network , ., ., 49
f 5. EXPERIMENTAL NETWORK v v v v v v v v v v v . 52
;, 5.1 Communication Network Theory« . . . 52

5.2 The Microprocessor Network ., .,

5.3 Description of the Computer Network
Hardware , ., . , .

e+ o & s s+ & & & s s & & w . DS

5.4 Network Trafficking Experiments 2
5.4.1 Introduction. . ., , ., . . .
5.4,2 Traffic Routes . . , . . .
5.4.3 The First Traffic Experiment, o4
5.4.4 Single Host Traffic Test ©buo

5.4,5 Multiple Host Traffic Test, 07

iv

TABLE OF

(Continued)

5.4.6 Multiple looo Traffic Test

5.4.7 Network lest with Inventory
Control Proegram and Node

Traffickinege . ., .

CONTENTS

5.4.8 (C5-7Y Inventory Control Test

» . - . . .

5.4.9 Inventory Control Program Test

with Trafficking ,

ion

Conditions

5.5 General Characteristics of the Computer
4 Communication Network
L 6. NETWORK COBOL . . o o o o o v v o o . .
. 0.1 Introduction ¢« + .« .
4 0.2 Acknowledgement
f 0.3 Preface « v v v v 4 0 v e w e e e
X
‘ t.4 Creanization of Manual
'3 6.5 Command Syntax Notation
} 6.0 COLCL lLanguage Structure
;: 6.6,1 Introduction
H v.0,2 (haracter Set
b, 0.5 Cnaracters used for Punctuat
6.0.4 (haracters Used for Lditing
6.0.5 Characters Used for Relation
.7 Vords e e e

L.7.1 befinition and Application

0,7.2 bata-Name
0.,7.35 Procedurce-name , .

0.7.4 literal ,

-

Pace
68

60

70

70

S4
54

86

TABLE OF CONTINTS

(Continued)

6.7.5 Figurative-Constants . , . . .
6.7.6 Reserved Words ., .,
6.7.7 Key Words., .,
6.7.8 Optional Words ., ,

6.7.9 Connectives ,

Concept of Computer-Independent Data
Description . ., . . ,

Logical Record and File Concept . .

6.9.1 Physical Aspects of a File . .

6.9.2 Conceptual Characteristics of
aFile
6.9.3 Record Concepts.
6.9.4 Concept of Levels.
6.9.5 Level Numbers.
6.9.6 Initjal Values of Tables . . .

Algebraic Signs

Uniqueness of Dbata Reference . . .
Indexine ., L ...
Format Notation,
Reference Fermat
6.14.1 General Description.

6.14,2 Reference Format Representation

6.14.3 Continuation of Non-Numeric Literals

6.14.4 Division, Section, and Paragraph Formats

Vi

tage
. ol
. Y
93
u3
. Y4
94
.94
. 9d
. U5
U0
o
. Yo
Y7
. Yy
. uS
. Ua
Loo
. Llul
102
. lus
. 105
.oled

TABLE OF CONTENTS

(Continued)

! 6.14.5 DATA DIVISION Entries | , . , . . « v « « . ,E%%E
!) 6.15 COBOL Input/Output Processing, ., ., 100
- 6.15.,1 COBOL Files ., . . v v v v o o« ¢ « o« « « « » o 100
6.15.2 File Organization 1lU0

6.15.2.1 Indexed File Organization , ., , ., . 100

6.15.2.2 Sequential File Organization, ., , . 100

- 6.15.3 File ACCESS . « v + v 2 2 o v v o o o o o . . 100
6.15.3.1 Sequential Access ., luo

v.15.3.2 Random Access , ., . ., 107

Fo™ : 6.15.3.3 Dynamic Access l07

p 5 6.15.4 Record Keys . . . + v v v v v e e e e e . . U7

N 6.15.5 File-Handling Methods 1o
R 6.15.5.1 Sequential Access ., lus
™~

6.15.5.2 PRandom ACCESS « « .« . ., . + 10
0.15.6 Input/Output Processing Summary , , . , . . . 1lu9
6.16 IDENTIFICATION DIVISION & © v v v v o« o« o « o« 109

6.16.1 General Description , ., 109

6.16.2 Orpanization. ¢« « « « & « « + . o . 11U
6.16.3 PROGRAM-ID Paragraph l1lu
6.16.4 DATA-COMPILED Paragraph 110
6.17 ENVIRONMENT DIVISION ¢« v o v ¢« o & o o« » 113

6.17.1 General Description 113

8 TABLE OF CONTENTS

{(Continued)

6.17.2 Configuration Section , ., 111

©.17.2.1 SQURCE-COMPUTLR Paragraph , 114

. o
A 6.17.2.2 OBJECT-COMPUTER Paragraph 1l

i 6.17.3 The INPUT/QUTPUT Section., 1ih
| 6.17.3.1 File Control Paragraph Il.

6.17.3.1.1 SELECI Sentence for
M6800O COBOL ., 1I5

6.17.3.1.2 SLLLECT Sentence for
.o MICROSOFT Intel SU80
' coBorL . . o o . il

0,17.3.1,2.1 Sequential
Files ., . 11°

= 1
: 6,17.3.1.2.2 Indexed 4
Sequential :
Files , . 1li:
6.17.3.1.2.5 RECORD KEY i
Clause .1l
6.17.3.1.2.4 File Status
Reporting !
6.17.3.1.3 SELEC] Sentence for
Data General (€S-20. . . 1i:ll
6,17.3.1.53.1 Sequential
Select . L.2o {
6.17.5.1.53.2 Indexed i
SELLCT. . 125 i

6.17.3.2 1/0 CONTROL Paragranh ilo
6.18 DATA DIVISION + ¢ v v v v v v v v v v e v e e v e o Bl

6.18.1 General Description - -« « « . + « « 1o

Vi

TABLE OF CONTENTS

§ (Continued)

" Pagc
o a1 6.18.2 Physical and Logical Aspects of —==
i DATA DIVISION | ¢« ¢« ¢ v ¢ v o « « « 120
! 6.18.2.1 DATA DIVISION Organization , , , ., 12¢
! ‘ 6.18.2,2 DATA DIVISION Structure . . ., . . . 127
6.18.3 File Section« ¢« + & ¢ « o o « o« o o o 127

L : 6.18.4 Working-Storage Section 129

SRR 6.18.4.1 Noncontiguous Working-Storage . o 129
6.18.4.2 Working-Storage Records 13u
6.18.4.,3 Initial Values l>u

6.18.5 File Description - (Complete Entry

Skeleton30 k

i :‘ ' 6.18.5.1 LABEL RECORDS Clause , ., 1531 }
! 6.18.5.2 DATA RECORDS Clause 131 ;g
i_‘“ 6.18.6 Data Description Entries 152 ?
N 6.18.6.1 General Format 132 |

_ 6.18.6,2 Detailed Formats of Data Items , . 133 X
6.18.6.3 Alphanumeric Elementary Item . . . 134 j

6.18.6.4 Alphanumeric kdited Elementary :

Item+« ¢ ¢ o 0 . . . 15
} . 6.,18,.6.5 Numeric Edited Elementary Item . . i35 3

6.18.6.0 Alphabetic Elementary Item 135
0.18.0.7 ASCII Decimal Elementary Item . . . los¢ j
6.18.6.8 Packed Decimal Elementary Item . . 130

i
6.18.6.9 Index Item . . « « + ¢ « « « o« o« » 130 %

. .

B, et

6.19

TABLE OF CONTENTS

{Continued)

0.18.6.10
6.18.6.11
6.18.6.12
6.18.0.13
6.18.6.14
6.18.6.15

6.18.6.16

PROCEDURE DIVISION

6.19.1

6.19.2

6.19.5

6.19.4

REDLFINES Clause, .
PICTURE Clause
USAGE Clause« .
BLANK WHEN ZERO (Clause . .
JUSTIFIED Clause
VALUE Clause.

OCCURS Clause .« . « « +

. . - - . -

General Description

Procedure

6.19.2.1

6.19,2.2
6.19.2.3
6.19,2.4
6.19,2.5

Procedure

Division Llements
Statements e s e e s e e e

6.19.2.1.1 Compiler Directing
Statement . . .

6.19.2.1.2 Imperative Statement

0.19.2.1.3 Conditional Statement

Sentences « + - o+ o . .

Paragraphs =« « « « « « « . .
SECtiOonS s s o o s o o o o o
Paragraph and Section Naming -

Division Structures. . « . . .

Conditional Statements I I T S

6.19.4.1

6.19.4.2

Relations « « « ¢ ¢ « o o« o &

. 150

. 15¢

. 150

157

Logical Operators (AND, OR and NOTY) 158

6,19.5

0.19,6

TABLE OF CONTENTS

{Continued)

6.19.4.3 Other Condition Tests . « «
6.19.4.3.1 Sign Test + « .« =

6©,19.4.5.2 Class Test o o .

6.19.4.3.3 Comparison of Numeric

Items . ¢ o « o =«

6.19.4.3,4 Comparison of Non-
Numeric Items . .

©.19,4.4 Conditional Statement with
Exception Branches . « « « « &

6.19,4.5 Nested Conditional Statements
Input/Output Statements =« « « + o o « =«

6.19.5.1 OPEN Statement .

.
.
.
.
.
.
.

6.19.5.2 START Statement =« + - =+ =« =« =
6.19.5.3 READ Statement » « « = « - .+ =
6.19.5.4 WRITL Statement =« « « « ¢ ¢ =«
©.19.5.5 RLWRITL Statement =« « <« + » -
6.19.5.6 DLLLTE Statement « * + « ¢ o
0.19,5.7 CLOSE Siatement « =« » - « « =«

6.19,5.8 ACCLPT Statement « « + « + «

6.19,5.9 DISPLAY Statement
Arithmetic Statements =+ » « ¢ o ¢ ¢ o =
6,19,6.1 Rules for Arithmetic Verbs - -

0.19,0.,2 GIVING Option - « =« « « = + o

xi

Bt

. 159
. 159

. 159
. 161

. 161
. 162

. 163
. 163
. 165
., 169
. 170
. 170
. 171
. 171

1
TABLE OF CONTENTS
. (Continued)
' 6.19.6.3 ROUNDED Option , , ., ,B%%g
E 6.19.0.4 SIZE LRROR Option , , ., ., 174
‘: 6.19.0.5 ADD Statement , , , 175
; 6,19,0.60 SUBTRACT Statement , ., ., 177
! 0.19.6.7 SULTIPLY Staleaci. 178
) 6.19.6.8 DIVIDE Statement ., 180
06.19.7 Data Manipulation Statements , . . ., , 182
; * 6.19.7.1 MOVE Statements 182
6.19.7.1.1 Alphanumeric Moves , , , 183
6.19,7.1.2 Numeric Moves, 184
o ©.19.7.1.3 Editing184
. 6.19.7.2 INSPECT Statement . .,, . . . 180
‘j 6.19.8 Sequence Control Statements
N ©.19.8.1 Normal Sequence Control ., . , . . , 189
N 6.19.8.2 GO TO Statement 189
: 6.19.8.3 PERFORM Statement 191
i 6.19.8.4 "Nested" PLRFORM Statement 194
6.19.8.5 TIMES Cption. . . « « « & « 194
-, 6.19.8.6 UNTIL Option., « « 145
0.19.8.7 VARYING Option. « « ¢ « o « o o o . 195
6.19.8.8 STOpP Statement 198
©.19.8.9 EXIT Statement+ « « « « o+ o+ o 198
' Xii

TABLE OF CONTLENTS

(Continued)
6.19.8.10 IF Statement , |, , ., ., . .,Eﬁif
6,19.8.11 LEvaluation of the Condition , , , , 199
6.19.8.12 Nested Conditional Statements , , ., 199

6.19.8.13 Lvaluation of Nested IF
Statements , , , . ., o 200

6.19.9 Table-Handline Statements ., 201

7. DISCUSSION AND CONCLUSIONS |, . . v v ¢ o o o o o o o o s« o« « 203
7.1 Design Conclusions ., , ., . . . & v &« o« o o = o« o o+ « o« 203
7.2 Network Lxperimental Conclusions . , . . . ¢« ¢« . + o &« 205

8. BIBLIOGRAPHY | | | v v ¢ v o ¢ o o o o o o o o o « o 207
9. APPENDIX A . . v & v v i i e i v e v e e e e e e e e e e e . 213
100 APPENDIX B L L v b v v v v v v e e e e e e e e e e e e ... 221
11, APPENDIX € & v v v v v i v v v e e o o o o o o o o o o o « o 235
11,1 Introduction ., + v ¢« o o« o o o o o o« o o « 235

11,2 MeSSaBeS , . . v v v v o o o o o o o o o o 4 o s 4 & s 235
11.2.1 Data MESSATE€ ., ., . v & o o o o o o o s o o« + « 235

11.2.2 Source Acknowledgement . ., 235

11.2.53 Local Acknowledgenent .,+ ¢« « « + . . o 236

11.3 Message Handling ¢ v ¢ v o « o o o o o o o o o 236

11,4 Input/Outhut . . & . & & ¢« 4 o o & o o o o o o o s . o 240

11.5 tHeaders for the Three Message Types . + « « « « 240
11.5.1 Data MeSSAFC v v v o o o o o o o o o o o« o o o 240

11.5.2 Source Acknowledgement . . + . + &+ « & o o . . <41

11.5.3 lLocal Acknowledgement. . . + « « « o o« « o o . 241

xiii }

12,
13.

TAKLE OF CONTENTS

(Continucd)

11.6 Definitions . « « « « « o .
11.7 ELrror Detectine
APPENDIX D & v v ¢ 4 ¢ ¢ & o o o &

APPENDIX E . « . v v v v « ¢ o o .

a1V

A

D

2909

LIST OF FIGURES

A Distributed Microcomputer Network., . . .

A Typical Node in a Computer Network with
Associated Monitoring Equipment , , , , .

An Implementation of the Basic Nodal
Monitor Stations ., ., ¢ 4« . e o o &

Program for Carrying Out llost-Controlled
Resource Measurements ., v 4 o o &

Interval Counter, Event Counter and a Real
Time Clock . . . & . v v o ¢ v ¢ v ¢ o o

Histogram Generator, , ., « « + « &
Masked-Word Range Comparator , .,
Logic Combination Unit , « . . .
Schematic Representation of the Monitor
Functions at Node K for the Inventory
Control Problem. ¢ ¢« ¢« ¢« & «
Block Diagram of Complete Computer Network

The Intel Microcomputer System . . ., . . .

The Nova 820 Host Computer with Its Own
Network Processor Node , ., . « « v « o o &

S-20 SELECT Sentence Formats, , ,
Pata bivision Structure, , ,

PERFORM Statement (VARYING Optional) , , .

Data Message Transmission with Achnowledgements

All ACIA's Busy, Message is Queued , , , |,

Local Sequence Number Storage, , . ., . . .

XV

Page
17

LIST OF TABLES

| Table Pay,
E f 1 Parameters Measured by Monitoring Systems. 12
. i 2 Segmentation of Illustrative Task. . . . « + o« « « & « o » 40
?“: 3 Traffic Routes for the Microprocessor
! Communication System « « ¢« o o « o o o o o« o « o« o« 065
i T 4 File Manipulation Statements « + &+ « o o « o« « o o 111
s . S Various Data Description Entries Listing 135

6 Examples of Insertion (haracters . . « « « « « « + . « . o 144
7 Examples of Replacement Characters . . . « « « « « « - o » 147
' 8 Examples of Picture Editing. . . . « + « « ¢« ¢« « + o« « . o 148

9 Valid C1ass TeStS . v v v v o o o o o o o o s o o« . o o « o lou

10 Permissible Comparisons .« « « « « o v ¢ « « o o « o « o o . 102
11 Rounding or Truncation of Calculations « + « « « « « . . . 175
12 Permissible MOVES « « « v v v 4 o o o o o o o o o o« o o o o 18

Al. General Monitor System Functions: Initial N
Set Up for Complete Problem. . . +« « « o ¢« ¢« o &« = o « o o 213

A2. General Monitor System Functions: Periodic
MONitor FUNCLIONS v v v v v & & o & o o o o o o o o « « « o« 214

A3. General Monitor System Functions: Monitor
Functions at Problem Completion . . . + + + 4 &+ « o « « « o =15

Ad. Activities in Execution of Job 1 with
Corresponding Monitor System Readings . . . « « « + - . . . 210

A5. Activities in Execution of Job 2 with
Corresponding Monitor System Readings « + « .« +

xXvi

IR

1. INTRODUCTION

.

This report presents the results of a performance monitor
feasibility study performed as one task under a grant entitled
"The Feasibility of Implementing Multi-Command Software Functions
on a Microcomputer Network" from the United States Army Computer
Systems Command Institute for Research in Management Information

and Computer Sciences.

The objective of the study was to investigate the feasibility |
of using combined hardware/software monitors for distributed |
microcomputer networks.

The field of computers in general, and computer networks in
particular, is undergoing explosive growth, Extremely rapid
advances in hardware, such as the advent of the microprocessor,
have made possible designs for distributed computer systems which
could not have been cost effective even a few years ago.

To keep abreast of the rapidly changing state-of-the-art, AIR-
MICS is concerned with the potential applicability of distributed
database microcomputer networks to their data processing and
management information problems. The present grant provides funds
to study several aspects of microcomputer networks to assess their
applicability to these problems.

This report is concerned with a part of the overall study
directed toward monitor systems for distributed microcomputer

networks, Monitor requirements for distributed microcomputer

networks are developed using monitor systems for existing networks

B

as a guide. Feasible design approaches are developed to satisfy
the requirements.

Other parts of the study have indicated that packet switching,
as opposed to alternative approaches such as line switching, is
the most cost effective switching technique to use with the
microcomputer networks for the AIRMICS application. Thus when
aspects of the monitor system are impacted by such details, a
packet switching network is assumed.

The remainder of the report is divided into seven major parts:
Section 2, which gives a detailed survey of the literature on the
monitor problem; Section 3, which develops an overall design for
a hybrid monitor system for distributed microcomputer networks;
Section 4, which is a study of a specific implementation of such
a monitor system; Section 5, which is a description of the experi-

mental network; Section 6, which details Netwoirk Cobol; and

Section 7, Conclusion.

2. REVIEW OF THE LITERATURE

Section 8 of the report contains a bibliography of selected
papers under the headings: Hardware Monitors for Stand-Alone
Computers, Software Monitors for Stand-Alone Computers, Hardware/
Software Monitors for Computer Networks, Parameters to be Measured
for Monitoring, Existing Computer Networks, Analytic and Simulation
Models for Computer Networks, Measurements for Determining Param-
eters for use with Network Models, and Commercial Monitor Equipment.

The purpose of this section is to provide a concise guide to
this literature in several areas germane to the major thrust to

the study.

2.1 LIxisting Computer Networks

Specialized computer networks began to appear in the middle
and late 1960's and since the early 1970's have been implemented
for commercial service. As could be expected, there is a consid-
erable body of literature on all aspects of computer networks,

Computer networks can be classified in a number of ways using,
for example, application, type of hosts, geometry or method of
switching. The method of switching has a significant effect on
certain aspects of the monitoring problem and thus this classifi-
cation will be used to narrow the scope of the present survey.

Major types of switching for computer networks can be classi-
fied as nonswitched or lecased-circuit, circuit-switched, packet-

switched and multiple access. Halsey, et.al, (1979) (Ref. 35)*

*Numbers refer to Bibliography in Section 8.

3

surveys the public data networks world-wide in the first three
categories and enumerates fifteen networks of the leased-circuit
type and seventeen of the packet-switched type.

leased~circuit and circuit-switched networks were the first
types to be used and much existing theory and equipment were
developed for this type of network. As noted in the Introduction,
however, the interest in this study is in packet-switched networks
which are a more recent innovation. Wood (1975) (Ref. 34) surveys
eight packet-switching networks from countries around the world,
including the ARPANET, which is possibly the oldest and best
documented U.S. packet switching network. At the time of this
survey, the hosts in the networks examined were large computers.
The ARPANET, in particular, is well monitored and the equipment is
discussed in detail in the literature. See Kleinrock (1974) (Ref.
33).

Minicomputers are a recent innovation and thus the number of

papers describing minicomputer networks would be expected to be

relatively limited. Five papers describing reasonably general
purpose minicomputer networks were found in the literature. Three
of these papers, Fraser (1975) (Ref. 31), Aiso, et al. (1975)
(Ref. 29) and Kitazawa, et al. (1978) (Ref. 30), describe networks
which share a common bus controlled by a switching computer (or :
computers). Farber (1975) (Ref. 27) describes a network using
what he terms a '"communication ring" controlled by distributed
ring interfaces. Unfortunately, none of these four networks are

fel* to be an optimum choice for the present application since they

do not efficiently handle bursts of traffic between nodes as a
packet switched network would.

Labetoulle (1977) (Ref. 20) describes a network which is
o possibly the best suited to applications of the type of interest
! | in the present study. He gives attention to the bursty nature of
communications between nodes and considers packet switching as a
possibility. However, from considerations of the hardware costs
at the time of his study (before 1977), he chooses a communication
loop based on the Newhall-Tarmer protocol, rather than using

packet switching. Labetoulle does not consider the monitoring

problem.

2.2 Hardware Monitors and Software Monitors for Stand-Alone

Lomguters

i Hardware and software monitors for stand-alone computers have

been in use for a number of years and there is a considerable
amount of literature on the subject. The book by Svobodova (1976)
(Ref. 24) contains a section on hardware and software monitors and
an extensive bibliography. Typical of several earlier survev
papers with references 1is the one by Lucas (1971) (Ref. 10),

To a large extent, hardware and software monitors are comple-
r mentary in that they have access to different aspects of the com-
putation. There are some activities, however, such as CPU activity,
which are observable by both hardware and software.

A software monitor is a special program incorporated into the

) software of the system under test. Through use of commands, such

as interrupts, codes can be written to monitor many parameters of

the system.

flardware monitors are typically some sort of "black box"
which measures certain system parameters through direct wired-in
connections. A complete hardware monitor also requires control
logic, accumulators, and a recording unit.

As pointed out by Svobodova (Ref. 24), a software monitor
can observe hardware-related events only if they are accompanied
by a control transfer to an instruction at a known logical address
or if they store other identifving information.

On the other hand, a hardware monitor can sense software-
related events only when they arc accompanied by a control transfer
to a fixed absolute address. This is possible because hardware
monitors can normally monitor the state of any memory element.

Hardware monitors require no system overhead while software
monitors can be costly in the use of resources.

A hardware monitor is well suited to the task of counting or
timing the duration of events or combinations of events, where the
term event 1s used to denote any occurrence of significance to a
unit of work processed by the system. Cockrum and Crockett (Ref.
1) present a good study of the use of hardware monitors for cvent
monitoring. They list events which can be monitored by single
sensors under four headings: fourteen events for the Central Proc-
essor Unit, seven events for the Direct Access Storage levice, four
events for the Control Units and four events for Unit Record Ekquip-

ment. They also list five types of events which require multiple

sensors and comparators and provide examples of how to determine
the combined events.

One source of data that can be accessed by a hardware monitor
is the memory bus. Fryer (Ref. 8) discusses in some detail what
can be found on the memory bus and also gives details of the re-
quired monitors. He points out that the memory bus has three
types cof information, ramely: 1) address lines which specify
which memory location is to be accessed, 2) data lines carrying
the data read or to be written, and 3) control information which
includes a read/write line and sometimes a split c»cls line for
read-modify-write operations. Fryer states that measuring the
actual execution time of a section of code is easily accomplished
with a bus monitor.

Typical general software monitor tools which have been imple-
mented are the following:

metering packages for time spent in executing selectable
supervisor modules while the system is running other tasks

packages for obtaining the distribution of segment
utilizations

packages for counting the number of times specified
procedures are called

general event tracing packages.
Some software monitor systems have been tailored to give data
for use with specific analytic models. A software monitor for use

with a queueing theory multiprogramming model of an IBM 360/65

under OS/MFT using the HASP Execution Task Monitor is described by

-l

Wong and Strauss, (Ref, 14). This monitor system is composed of
two programs. The collection program which collects the required
data and dumps the information on magnetic tape and the analysis
program which processes the data collected. The collection pro-
gram periodically samples the 0S/360 system tables and control
blocks by disabling all I/0 interrupts, collecting the required
data, and then enabling the interrupts again., The data of interest
is CPU activity, the priority mapping of certain tasks, I/0 queue-
ing activity and I/O activity of the devices on the selector

channels.

2.3 Hardware/Software Monitors and Monitors for Computer Networks

The general design characteristics of a hybrid, or hardware/
software monitor, for a stand-alone computer are discussed by
Svobodova (Ref. 24). A specific design for an elaborate hybrid
monitor for computer networks is discussed in detail by Morgan and
his coworkers (Refs. 16, 17). The design of a monitor system for
a specific computer network is illustrated by the monitor system
for the ARPA network (Ref. 18).

Hybrid monitor systems attempt to exploit the desirable
features of both hardware and software monitors. Svobodova de-
scribes a two level hybrid monitor structure. One level consists
of software for detecting software-related events, for controlling
which events are monitored and for generating signals detectable
by an external hardware monitor. Another level consists of an

external hardware monitor which combines signals from the software

monitor with hardware probe signals and processes and outputs the
results. The interface between the software monitor and the
external hardware monitor is provided by an M-register (which is a

- set of hardware latches) set and reset by the software to providing

external connections for the hardware monitor.
Morgan and his coworkers developed the design of a system of
hardware and software devices for monitoring the behavior of a
computer network., The monitor system is distributed so that each
node in the computer network is provided with a "remote controlled
hybrid monitor" and a 'regional network measurement center".
Communication lines couple all of the regional network measurement
| centers to one "network monitor control".

] The remote controlled hybrid monitor is a general device
containing event detectors and time measuring modules as well as
data processing and storage equipment and communication modules.
The event detector can detect the following:

1. events defined in terms of data or address ranges

- 2. events defined in terms of Boolean functions of other
events

3. events defined as a sequence of other events
4. characters in bit-serial lines,
The time measuring modules contain four types of devices:
1. time stamp units
2. event times

3. interval times

4, a network clock synchronized with a standard reference
clock.

-e)

Although the gencral devices could be adopted to do so,
specific attention is not given to measuring features of a packet
switched network, such as message delay and traffic.

The monitor system for the ARPA network typifies a system
whose major function is to monitor the performance of a packet
switched computer network by measuring input traffic, line traffic
and message delays. The monitor is limited to determining the
behavior of the communication subnetwork which provides the mes-
sage service to the user-host system. The monitor functions are
implemented in software at the switching computers (IMPS) located
at each node in the network. All of the monitor equipment is
under program control and, upon request, data can be collected at
specific nodes and summarized in special measurement messages
which are sent to a specific collection Host,

Six measurement tools are implemented for the ARPA system,

A Trace tool allows messages to be ''traced" as they pass through
a sequence of IMPS. A trace block is generated for each marked
packet. The trace block contains time stamps which occur when:
(a) the last bit of the packet arrives, (b) the packet is put on
a queue, (c) the packet starts transmission and (d) the acknowl-
edgement is received.

Another measurement tool is the Accumulated Statistics mes-
sage which consists of several tables of data summarizing activity
at a network node over an interval of time. These statistics
include: (a) message size statistics such as histograms of packet

lengths in words for large packets, (b) a global traffic matrix

10

containing such data as the number of round-trips sent from a
probed site to each site, and (c) channel statistics for channels
connected to a probed site.

A Snapshot tool gives an instantaneous look at the operation
of an IMP. Snapshot data includes: several queue lengths, the
IMP's routing table, lost queue lengths, and data about storage
allocations,

An Artificial Message (Generation tool is a package built into
each IMP giving it the ability to generate artificial messages.
The two remaining tools are Status Reports and Control, Collection

and Analysis.

2.4 Parameters Measured by Monitoring Systems

In principle, it should be possible to identify a minimal set
of states, or parameters, which will completely describe a computer
system or computer network., Identification of such a set of pa-
rameters, however, has not been found in the literature and appar-
ently is beyond the state of the art at the present time,

Although a minimum set of parameters to be monitored is not
identified, several authors, including Svobodova (Ref. 24), Cox
(Ref. 20) and Morgan (Ref. 16) identify general sets of parameters
and the authors of the papers referenced in Sections 2.2 and 2.3
all identify the variables measured by their monitoring tools. A
compilation of the variables from these sources has been made., A
similar compilation made by Sutton and Morgan (Ref. 46) contains
essentially all of these variables and it is given with minor

additions in Table 1,

11

The parameters have been classified under the three general
headings of Computer Network Parameters, Workload Parameters and
Miscellaneous Items. The first category refers to those variables
internal to any part of the computer network. This category is
further subdivided into Utilization of Resources, Throughput, and
Response.

Workload Parameters are parameters associated with the exter-
nal load on the network, while the Miscellancous category includes

those parameters which do not fit into the first two categories.

TARLE 1, PARAMETERS MEASURED BY MONITORING SYSTEMS
(Adapted from Sutton and Morgan with minor additions)

1. COMPUTER NETWORK PARAMETERS

Utilization of Resources

a. Frcquency of

Specific software activity. This includes system
sof tware, utilities, and a part or whole of the
operating systems of nodes or hosts,

Processor activity

Line or Link activity

Channel or controller activity

Auxiliary or main storage device activity

Data set activity ’ 1
Data set structure activity
Processor states 4

Instruction execution.

b. Quantity of auxiliary or main storage space requested or
uscd. 4

12

| c. Quantity of data moved to or from specific devices.

Throughgut

; a. Time required to transmit/handle a message /packet through
a network node or other specific resource.

b. Number of messages, packets or jobs nandled by a node,
network or host.

c. Number of bits transmitted or received by a 1link, line
node, network or host,

d. Raw speed of a resource.

. e. Time between dispatch of packets, messages or jobs.

Resgonse

a. Time to set-up or disconnect a logical or physical path
through a network or node,

4 b. Time required to respond to a call for service.
| 2. WORKLOAD PARAMETERS.
- a. User response time (or think time).

I~

b. Time between arrivals of packets, messages or jobs.

c. Frequency and types of requests for service.
d. Reference pattern of software.

e. Size of packet, message or job in characters, lines or
cards.

f. Real time on the system.

g. Quantities and types of storage requested and used.

3. MISCELLANEQUS ITEMS.

. a. Time for the object system to detect, correct or recover

,‘ from trouble with data transmission; lines, nodes, hosts
or specific devices out of service; software errors, and
link problems.

13

A il = = - - .

- i o e . - . ——

L
bo
Lo
i~ .
f
'
F b, Time for the object system to detect saturation of lines
! . links, nodes, hosts or other devices.
c. Number of packets, messages or jobs within the system
_ and the number of jobs active,
L i d. Size of queue.
Eo, 2.5 Commercial Monitoring Equipment
C oy In the course of the literature survey the characteristics of
X
E ' general purpose commercial monitoring equipment were examined.

This task was facilitated by two survey papers, one by Stiefel
. (1979) (Ref. 52) concerned with network diagnostic tools and
another by lart, et.al. (1971) (Ref. 51) concerned with monitoring
host-controlled resources.
The paper by Stiefel summarizes the properties of thirty-
eight different pieces of test equipment ranging in price from
twenty-nine dollars to seventeen thousand dollars. This array of

equipment tests such things as modem performance, polling, response

time, and link quality. There are units to carry out software

S debugging, fault testing and related tasks. Other units provide

o an RS-232 status monitor and measurements to test computer terminals.
Most of the test instruments, however, are tailored for leased-

line or circuit switched networks. None of the applications list-

ed indicates measurement of packet-switched network paramcters such

s L iitastinlaing
R Y

as packet delay, queue length, etc. Thus, one must conclude that,
although some specific measurement techniques could be applicable,
none of the instruments described could serve, directly, the desired

network monitoring function.

il

rvr
[}

S

“

The instruments described by lart for measuring host-control-
led resources also cover a variety of costs and complexities. One
or another of the instruments would seem to provide all of the
types of measurements desired for host-controlled resources. The
problem with these instruments, however, is that of interfacing
and adapting a general purpose instrument to specific tasks. In
almost all cases, the general purpose instruments are tailored for
use with large scale, multiprocessing computers, whereas the present

application 1s concerned with microcomputers which perform essen-

tially one task at a time.

15

e A e e

el

3. OVERALL DESIGN CONSIDERATIONS FOR HYBRID MONITORS

3.1 General Requirements for a Monitor System

Section Two contained a summary of the parameters measured by
existing monitor systems and the monitoring tools used by certain
large scale computer networks. In the light of this information,
the problem of conceptual design of monitoring equipment for dis-
tributed microcomputer networks would seem to be one of adaption
to specialized properties and needs. This section of the report
presents general design considerations for a monitoring system
specifically tailored to a distributed microcomputer nectwork using
packet switching. The network is assumed to contain a relatively
small, but arbitrary, number of nodes distributed in space, as
indicated in Figure 3.1. The switching computers, which are small
scale versions of the ARPA IMPS, are located at each node and con-
trol the flow of packets into and out of the nodes over the con-
necting communication links.

From a consideration of their characteristics, several dis-
tinctive properties of microcomputer networks can be identified.
These properties translate into the following specific requirements
for a distributed microcomputer monitoring system.

1) The host microcomputers at each node perform essentially

one operation at a time under control of the CPU. Thus,

monitor equipment at cach node can be designed to monitor only
one operation at a time. Such monitor cquipment can be

simpler than that required to function in a multiprocessing

environment.

H40ML3N ¥3LNdw020¥IIN G3LNGIYLISIQ Vv L€ 3dNII14

1SOH B ELEIEED]

SIVHIHIIYIY

z - o~
2CcoO oco AHOn-
o v Nr.\. c HMJ 2000 >

o
300N
o
0
c
cen TN L] I Gl I
et 300N goN [N

SIYH INIM3d

SIVHIHAILId ﬁ 150H LSOM

i

2) Queueing theory models may be useful for describing micro
computer networks and data appropriate to such models should
be obtained.

3) In applications of microprocessor networks, it is desira-

ble to monitor total resource utilization for each job and

for each task of which the job is comprised.

4) Microprocessor equipment is evolving at a rapid rate.

Hybrid monitor systems should, therefore, be designed to take

advantage of what is currently feasible, such as having a

microprocessor as a part of the monitor equipment at each

node when this can be useful,

In addition to the specialized properties listed above, mon-
itor systems for distributed microcomputer networks have the fol-
lowing properties in common with other such systems:

5) The monitor system should be controlled from a central

location,

6) The monitor system should require a minimal overhead, and

7) Results from monitor measurements should be presented in

a form which is as useful as possible to the ultimate user of

the network.

Of course, specific implementations of monitor equipment must
be tailored to particular hardware and software for each computer

network.

3.2 Specific Variables to be Monitored

A consideration of the variables measured by monitor systems

18

reported in the literature and of the specialized requirements for

distributed microcomputer networks leads to the following choices
for variables to be monitored. The variables are listed on two
levels - the variables employed by the end user of the network, and
the more basic measured variables from which these are derived.

The variables desired by the user of the computer network are
those required to characterize job performance - typically total

resource utilization and total computing time on a per task or per

job basis. For an experimental network, it is also desirable to
measure a set of variables which will characterize the behavior of
the network in transmitting data between the host computers.

The basic measured variables for resource utilization involve
the total time devoted to each task or job by all of the host mi-
crocomputers, the host peripherals and the components of the net-
work. This translates into a measurement of the total time devoted
to each taskh by the following:

At each node i

host cpu

host disk
line printers
terminals

For the network

all links 1

all node cpu's

The total computing time is measured directly from sign-on to sign-

off at the appropriate terminal.

19

ke ==

o g

T

To characterize the network, it is necessary to determine the
behavior of packets in moving from node to node and waiting in
queues to be transmitted. The appropriate variables are random
with time and thus the basic measured data i1s used to construct
histograms or averaged to determine such statistics as the mean or
variance., The set of variables listed below has been chosen to
describe the network functions:

at each node

packets awaiting service
packets arriving per unit time

number of packets transmitted per unit time cver each
link

number of transmitted packets not acknowledged.

for the whole network

packet delay over cach path

number of packets in the network at a particular time.

In addition to the variables noted above, additional measure-
ments, such as time spent in executing portions of the software
package, may be rey:ired. Some provision for this type of measure-

ment will be made in the proposed monitor system,

3.3 A Proposcd Monitor System

A consideration of the general rcquirements listed in Section
3.1 and the specific variables to be monitored as listed in Scction
3.2 has led to the design of a general monitor structure and a

philosophy to accomplish the required task. The design centers on

TR

five specific types of problems; namely, a general approach to the

measurement tasks, nature and physical location of monitor compo-
nents, communication between the parts of the monitor system, con-

trol of the monitor system, and identifying and accounting for

specific jobs.

3.3.1 Nature and Physical Location of Monitor Components: The

proposed monitor system has a Monitor Control (MC) location at one
designated node and Monitor Stations (MS) at each of the other
nodes of the network. Each nodal monitor station contains a micro-
processor, memory, a serial port connecting to the node switching
computer and a collection of sensors interfacing with the host
computer at that node to measure the use of the resources control-
led by the host. The equipment at a typical node is shown in
Figure 3.2,

Each nodal monitor station will also share a two-port memory?*
with the switching computer to facilitate monitoring the network
resources, Appropriate data concerning the operation of the net-
work can be stored in this two-port memory by the switching com-
puter and accessed by the monitor system. By choosing the read-
write rate for the two-port memory to be twice the system clock
rate, the monitor will require effectively no overhead in this
operation.

Lach nodal monitor station will collect all necessary data
for its node {rom the host and its peripherals and also from the

switching computer. In cases where it is appropriate to do so,

*The idea for this type of sensor was originated by Drs. Barnwell
and Schlag.

21

b
m
2
ol
I
m
k.l
>
-
n
]
b
[=4

SERIAL
PORT

i
I
i
|
|

I
SERIAL
- TO NODE ¢ SERIAL popT [TO NODE k !
. 3 PORT o}) ’
g - i — i !
e ')
7 » | : i
: . ! ! SERIAL | !
3 ! fl PORT - |
E ' (! 1 |!
’ S v I
b) H
i ‘
IR N
.
, e — —~
. I
] 1 |
! cPU SERIAL !
‘=~ | PORT '
i i
! MEMORY ' ‘
! ‘ AND e - - -
: i SENSORS !
3 - | I‘—""_——_———‘ t
3 | |
; | MONITOR STATION !
\ FOR NODE n !
e e - e e et e ————— — — — 4

FIGURE 3.2 A TYPICAL NODE IN A COMPUTER NETWORK WITH ASSOCIATED
MONITORING EQUIPMENT

a!

preliminary data processing can take place at the node. For
example, the mean value of a set of data can be determined. At
periodic intervals, data from the nodal monitors will be transmit-

ted to the Monitor Control Location.

3.3.2 General Approach to the Measurement Tasks: The measurement

tasks will be treated in two parts, those associated with micro-
processor host controlled resources and those associated with net-
work resources,

The host-controlled resource activities at each node will be
monitored directly and assigned to the job on which fhey are used.
This is not a difficult task since a microcomputer CPU can control
only one task at a time, and hence the resource activities control-
led by such CPU's do not overlap.

The network functions are controlled by the CPU's of the
switching computers, and therefore, network activity can overlap
activity of the host controlled resources. Allocating the use of
every resource of the network directly to the specific job on
which it is used would be a difficult task. Therefore, it is
planned to monitor every network resource but to allocate the cost
to jobs on an average basis by measuring the number of packets
used per job, the particular node-pair links traversed by the
packets and the total traffic load at the time of transmission.

A calibration of the network will be made to give the average cost,
in terms of resource utilization, of transmitting packets over each

node-pair link as a function of total traffic load over that link.

23

i

TR e~ L - - — -—

It is felt that this approach will minimize implementation diffi-

culties while providing adequate accuracy.

3.3.3 Communication Between the Parts of the Monitor System: As

noted above, the monitor stations are distributed throughout the
network to facilitate collecting data at each node. This distri-
bution of the monitor components, while desirable, necessitates
transmitting data to the MC location by some means.

Onc method for data transmission which would not require over-
head is that of constructing a monitor communication network to
match that of the original computer network. This alternative was
discarded as too costly in equipment.

The approach which was chosen is that of transmitting monitor
data through the network in the same manner as data is exchanged
by the host computers - by packets. This choice requires overhead
since the monitor packets compete with the data packets for use of
the network. The exact amount of overhead required, however,
depends on the frequency of sending monitor packets and it is felt
that this frequency can be kept low. A desirable aspect of the
use of monitor packets is the fact that these packets can also be
used to collect data on packet delay, transit times and other
aspects of the operation of the network.

A scheme for generating monitor packets, called pickup packets,
could have the packets originate ecither at the MC location or at
the individual nodes. Generation at the MC location has tentatively

been chosen as the best alternative.

24

The pickup packets will contain a data field and addresses
structured in the same manner as other packets. The MC will dis-
patch the pickup packets at regular intervals, routing them so
that at least one packet will traverse each link in the network
before they all return to the MC. The routing details depend on
the structure of the network as well as the specific routing
strategies.

As each pickup packet arrives at a node, a real time measure-
ment will be made and the time of arrival will be entered into an
appropriate location in the data field of the pickup packet. A
similar measurement will be made when the packet leaves the node.
This data will be coded as to the pickup packet to which it applies,
stored and then transmitted in the data field of the next pickup
packet. The timing data collected by the pickup packets will
ultimately be processed by the host at the MC to determine average
packet delay and related parameters.

Whenever a pickup packet arrives at a node, all monitor data
awaiting transmission to the MC will be placed, appropriately coded,
into its data field., After traversing its portion of the network,
the pickup packet will return to the MC and deliver the monitor
data acquired in route. Thus the pickup packet will serve the dual
role of transmitting data from the monitor stations to the monitor
control and probing the network to determine packet delay and

related parameters.

3.3.4 Control of the Monitor System: <Control of the monitor system

25

will reside at the MC location. Final data processing and monito

data printout will take place at the MC and programs to control
the monitor equipment at the various nodes can also originate and
be distributed to the monitor stations through the MC,

Each nodal monitor station will contain an EPROM memory which
will contain subroutines appropriate to controlling the monitoring
equipment for any given task or job. These instructions will apply
to all sensors, including the dual-port memory at that node.

In setting up a particular experiment, desired measurements
will be specified as inputs to the MC. The MC host computer will
then determine what measurements must be carried out at cach node
to obtain the desired data and will prepare appropriate programs
for transmission to KAM memory at each node. The required program
will be transmitted from the MC via a preliminary set of pickup
packets.

With a small number of nodes in a central location, the RAMs
at each node could, alternately, be programmed through a terminal
at the node.

In addition to the task of setting up each experiment to be
monitored, the M(must collect, process and output all monitor
data. Instructions for doing this will be placed in EPROM memory
at the MC location.

Note that the programs placed in RAM memory to control partic-
ular expcriments will consist largely of calls to subroutines

stored in EPRM memory. Thus, such programs will be short and

easy to prepare.

3.3.5 Identifying and Accounting for Specific Jobs: The distri-

buted microcomputer network will typically be processing a number
of jobs concurrently. One requirement of the monitor system is
that it be able to determine the cost,in resources used, for each
job independently.

As noted above, host controlled resource use w.ll be assigned
directly to specific jobs, while network resource use will be as-
signed on an indirect basis. The accounting procedures are as
follows.

Requests for host-controlled resources at each node are as-
signed én ID number associated with each job. This number is
placed in a memory location accessed by the nodal monitor station,
such as one in the two-port memorvy, and it remains there as long
as the CPU controls a resource uscd on this job. The ID number
is changed when the CPU or its peripherals perform a task for
another job,

The monitor routines can be set up to use the ID number in
initiating and ending measurements and in determining the memory
locations for storing measured results. The procedure allows the
nodal monitor stations at different nodes to monitor the activities
associated with different jobs.

To allocate the network resources to various jobs, the job ID
number is recorded in an appropriate location on each packet asso-
ciated with carrying out the job. Monitor equipment is designed
to count the number of packets associated with each job and to

record the path traversed by each packet and the average traffic

load on the path at the time of transmission. This data, along
with a calibration of packet processing costs, can be used to

allocate network costs to specific jobs.

» ael

4. STUDY OF A TYPICAL IMPLEMENTATION OF A HYBRID MONITOR SYSTEM

The objective of the study is to assess the general problem
of hybrid monitors for distributed microcomputer networks. It is
felt, however, that no general desipgn study is complete without
putting design concepts to the test of at least one possible imple-
mentation., This section of the report presents an implementation
of a hybrid monitor system and an assessment of it in monitoring
a typical job assigned to the computer network. This section also
contains comments on a monitor structure for the AIRMICS/GEORGIA

TECH Experimental Network.

4.1 An Implementation of the Monitor System

The Nodal Monitor Station shown in Figure 3.2 can be implement-
ed with one of several appropriate microprocessor systems, Figure
4.1 shows a possible implementation with components from the Amer-
ican Microsystems S6800 family.

The operation of the Nodal Monitor Station is discussed under
three headings: General Operation, Specific Measurement Modules

and Representative Specific Measurements,

4.1.1 General Operation: The Nodal Monitor Station receives data

in three ways: by reading memory locations in the Dual-Port RAM,
through the Serial Communication Port and from the Data Gathering
system, The servicing of these inputs and the storing of data into
the RAM memory is carried out under the control of the microproces-

sor.

29

SNOILY.S GOLINOW T¥QON JISY8 3IHL 40 NOILWINIA3dWI tY L°v 3YN9l4

150K
. v 300N wWOd4
S3IB0Hd LNdNI

ANIWIBNSYIN

i

W3LSAS < ov89 e-v 80cz

ONI¥3HLVYYD VIVO HIWIL Wy Woud3

1
$31NCOW
1

>
e 3
.
1404
NOILVIINNWWOD 0589 < ¥OSSID0Hd
Dy wmoa - -ouom |
Tvig3s cow h
1vI¥3s
v 300N O1
%2012 WN 89
INIL Mv ¥3170M1NOD
3y LaNWYILNI
* < WYUS0ud Lanyw3im
wvy
18042
$NE v 00N
.
- . . - - - - - - - - - . s L4 - . \ - !
! .
L]

)
“re.. . a . 1 £

The EPROM contains the basic subroutines which control all of

the functions of the Monitor Station. Details of what data is

taken and in what sequence measurements are made need to be flexi-
» ble and read into the system for each particular experiment. This
is accomplished by storing, for each experiment, a program in the
RAM consisting largely of calls to the subroutines stored in the
EPROM. Experiments can be set up from the Monitor Control Location
using pickup packets sent out through the network to read in the
programs. Alternately, the RAM can be loaded locally through a
terminal associated with the local host.

As noted in Figure 4.1, the Nodal Monitor Station has a Data

Gathering System which collects data from probes into the Micro-

R Computer host. These probes provide data on such things as the
R status of devices and are used with the Timer, the Real Time Clock
! and several standard Measurement Modules to monitor the host-
controlled resources. The Measurement Modules are discussed below
~

in the section on specific modules.

The host-controlled resource measurements are carried out by
a program executed by the Monitor Microprocessor which uses specif-
ic software from RMM storage and general subroutines from the EPRMM.
The program, diagrammed in Figure 4.2, runs in an "infinite loop".
The program is designed to be interrupted by events associated with
the network, namely:

to read data from the Two-Port RAM
at regular intervals, and

to process data to and from pickup packets. i

31

GET JOB 1D
FROM NODE
n HOST

Jo8 K

INITIALIZE MODULES

| FOR MEASURING

| VARIABLES

ASSOCIATED WITH JOB K

'

GETY JOB D
FROM NODE n

i

|

|

|

) HOST

1D UNCHARGED >
| !

~ READ MODULE
QUTPUTS

'

STORE IN JOB K
LOCATIONS

FIGURE 4.2 PROGRAM FOR CARRYING OUT HOST-CONTROLLED RESOURCL
. MEASUREMENTS

32

éy

The network resources are monitored though data stored in

appropriate locations in the Two-Port RAM. This device is also
discussed in the section on specific modules.

Communication between the Monitor Control and the Nodal Mon-
itor Stations will take place using pickup packets. The EPROM
will have a basic routine which enables the CPU to communicate data
through the Serial Port. Thus, data can be transferred to or from
pickup packets which are in buffers at the node corresponding to
the nodal monitor station. Arriving pickup packets will cause an
interrupt in the monitor microprocessor program to ensure prompt

service of the pickup packets,

4.1.2 Specific Measurements Modules: The measurements of the

variables required to monitor a distributed microcomputer network
can be carried out using several basic types of measurement modules.
These modules include counters for time and events, a histogram
generator, a masked-word range comparator and a logic combination
device. The logical structure of these modules will be given in
this subsection. Subsection 4.1.3 discusses how a number of the
basic variables are measured using these modules. The Two-Port RAM
and a Real-Time Clock will be included as modules in this discus-
sion.

The real time clock and counters for time and events are shown
in Figure 4.3. One Real Time C(Clack is required at each monitor

station along with possibly one half dozen time counters and a

similar number of event counters.

%3070 IWIL TY3Y ¥V ANV ¥3IINNOD INIAI “¥ILNNOD YAYILND €°v FdN9Id

380¥d
1SOH WOH4 <
379WN3 378VN3 e}
¥3ILNNOD ¥31NNOD %2012
INIA TYAHILNI %9019 3WIL vy

* 1 T

AN
N Mﬂ # 1081NOD
\ % st3sqav
AL

YivQg

N8 WOLINOW

N T e e e

M

Ll 555

L]

The Real Time Clocks at all of the monitor stations must be
synchronized. Given this basic requirement, the <locks can be
addressed with software and commanded to output to the data bus a
digital number giving the appropriate time.

Both types of counters can be addressed from the monitor bus.
Once put in the proper state by the monitor software, they respond
to status signals obtained through probes from the host microcom-
puters. For example, if a disk status signal is high while the
~isk is operating, the Time Counter will turn on upon receipt of
this signal and continue counting until the signal reverses state,
causing the counter to turn off, At an appropriate time after the
counter is turned off, a signal indicating the time interval is
supplied to the data bus upon command from the monitor software.
The Event Counter works in a similar fashion, counting the occur-
rence of events in a status signal rather than a time interval.

Since most of the network variables are random in nature, it

willl be efficient to have several histogram generators at each

- monitor station to reduce the random data to histogram form before

transmission to the Monitor (ontrol Location.

A logic diagram of a histogram gencrator is given in Figure
4.4, The device takes any data signal and quantizes it into a set
of magnitude ranges for excitation of appropriate counters. The
counters, eight or possibly sixteen in number, are read by appro-
priate monitor software. The Data Valid Signal, which must be
present for the counters to function, is derived from the source

of the variable whose histogram is to be generated.

35

401 3IN39 1v¥90LSIH v P 34N9ld

-—
ainvA viva

¥3ILNNOD HWL

38044

¥3ZILNVNOD 1S0H WOHY4

M

d43INNCD

AN
\ 106LNOD

—d $S3INOCY
r y

viva

SN YOLINOW

A masked-word range comparator is uscd to mcasurc the time the
CPU spends executing a particular software region. This is accom-
plished by monitoring the occurrence of addresses between two
specific values,

An implementation of the Masked-Word Range Comparator is
shown in Figure 4.5. The 16-bit latches are loaded with the extreme
values of the address range to be monitored. Addresses from the
host probe are compared to the values stored in the latches in a
comparator. Address values in the appropriate range actuate a
counter which can be enabled by a signal from anotiher source. The
device can be set up and controlled completely with monitor soft-
ware.

An implementation of a Logic Combination Unit is given in
Figure 4.6. Its operation is much like that of the Masked-Word
Range Comparator. For this unit, the eight-bit latches can be
loaded with appropriate patterns for comparison to, say, the status
word of some device. Using the Logic Combination Unit, specific
patterns in the status word can be detected. If a counter is con-
nected to the output, the time the device spends in one of its
states can thus be measured.

The Two-Port RAM, which is a part of each monitor station, is

regarded for purposes of discussion as a measurement module. This

RMM permits non-intrusive access to data from the node switching

computer. This is accomplished by using a RAM with a read/write
rate of twice the clock rate of the node switching computer so

that data can be read into the RAM by the switching CPU and read

d0LY8Ydl0D 39NYY Celr-C3:ST 67y 3um9ld

Y

1d4NYHYILNI

HILNNOD

ailvA viva

1$NA SS3IHAAV LSOH)

3BOHd 1SOH WOY3

HOL1VHVINGD

1

l\nlJPP

!

N300

n

Al\m,lll
D e—

LA
H3IMOoY
HILYY
118-9t

1w
YiddN
HOLV
Lg-9eL

e
J

XX

P

I0WLN0D

$33000Y

$N8 WOLINOW

vivg

38

R MONITOR BUS

N
Y

ADDRESS
CONTROL \ }
. - .
o 8-BIT yl -
TC
o LATCH 7 COMPARATOR
[—“-4
e 8817 Y -
L] LaTeH / COMPARATOR 10
COUNTER
R OR
OTHER
DEVICE
! DATA 0/
V4
DATA VALID

FIGURE 4.6 LOGIC COMBINATION UNIT

39

out of the RAM by the monitor CPU in one period of the switching
CPU clock.

The Monitor Microprocessor and the Node Microprocessor will
be identical devices, Thus, all network data which must be moni-
tored can be stored in this RAM for access by the monitor CPU.

Job 1D number, pointers or other data on packet queues and packet
arrival times are typical of the data to be stored in the Two-Port

RAM.

4.1.3 Representative Specific Measurements: This subsection

indicates in general terms how representative variables are measured
with the Measurement Modules. More detail on some measurements

will be given in Section 4.2 in the discussion of the monitor oper-
ation for a particular cxample.

In Section 3.2 specific variables to be monitored were classi-
fied as pertaining to resource utilization, variables describing
the network operation and additional variables. Representative
variables from each of these categories will be discussed below.

The activity of host-controlled resources (disks, line prirters,
terminals, etc.), can all be monitored through use of status sig-
nals obtained through the probes connected to the host at each node.
A status signal is used as input to an Interval Counter such as
shown in Figure 4.3. When the Interval Counter 1s actuated by its
control signal, it will detect a resource active sienal and measure

the time the resource is in the active state.

40

‘ll-‘

The software program for carrying out host-controlled re-
source measurements is tailored to actuate the counter, through
an appropriate control signal, when the ID number of a particular
job is stored in the dual-port RAM by the host microcomputer con-
trolling the resource being monitored. When the ID number is
changed, indicating another job is being serviced, the software
program causes the counter to read out the measured time to a
storage location assigned to the particular job,.

The activity of a host CPU or a switching computer CPU can
be measured by determining when the CPU is executing instructions
located in memory outside the wait loop. This measurement can be
made using the Masked-Word Range Comparator of Figure 4.5, which
requires the appropriate CPU address bus as an input. Use time of
a host CPU will be allocated to a particular job in the same man-
ner as described for the CPU controlled resources. Use time of a
switching computer CPU will be totalled without allocation to
specific jobs.

Most of the mecasurements involving the network have to do with
measuring the parameters of the flow of packets. The proposed
monitoring system will determine the average parameters of packet
flow using measurements made on the normal data packets complement-
ed with measurements made with pickup packets. Both types of
measurements use the Two-Port RAM,

The normal data packets will all be labeled with a job number.
Whenever a packet is transmitted from a node, the switching CPU,

which controls the transmission, will store a count in the Two-Port

RAM in a storage location corresponding to the link over which the

packet was transmitted. Classification as to job as well as to

link can also be retained if desired.

- The monitor software will cause the Two-Port RAM storage

' location to be sampled at regular intervals and the increase in
the number of packets stored will be the number of packets trans-

b mitted over the particular link in the interval between samples.

Of course the count in the storage location must be set to zero in
initiating an experiment.

A similar procedure, storing a count for incoming packets,
; can give a measurement of the number of arriving packets per unit

time on each link. Summation of either type of count over all

links at a node gives the number of packets arriving at or leaving t
the node.

Several measurements, such as packets awaiting service, number
of packets not acknowledged, and the number of packets generated
at a particular node can be made by storing a count in an appropri-
ate location in the Two-Port RAM following specific actions con-
trolled by the switching computer CPU. The actions which can ini-
tiate a count to produce the above measurements are, respectively:
storing an incoming packet in the buffer for receiving packets,
retransmitting a packet, and transferring a packhet out of the buffer
in which it is generated. As with the other measurements noted, the

above measurements rely on access of the Two-Port RAM storage

locations to the monitor CPU.

Pickup packets will be used to measure packet delay. This

measurement will be implemented by giving a pickup packet a special
identification number which is read into a location in the Two-Port
RAM immediately after the pickup packet is received or transmitted
at a node. The monitor software monitors the RAM location and
produces an interrupt when a pickup packet ID is received. The
Real Time Clock is read following the interrupt and a "time stamp"
is recorded, either in the data field of an arriving pickup packet
or in storage for insertion in the field of the next pickup packet
if the packet is leaving the node.

The Monitor Control Location ultimately receives all of the
pickup packets and can extract the time of arrival and departure
from each node over each link., This data is adequate to determine
the profile of packet delays.

The network variables measured at each node are random, and
thus it may prove to be efficient to convert most of these into a
histogram before transmitting the data to the Monitor Control loca-
tion. The Histogram Generator shown in Figure 4.4 can be used to

generate the histogram if this option is used.

4,2 Example Illustrating the Use of the Monitor System

The purpose of this section is to define a typical task for the
computer network and discuss in detail the functioning of the mon-
itor system in monitoring the network as it performs this task. An

inventory type task is chosen, and for such an application it is

assumed that the Monitor Control Location is also the site of a

large data base containing complete inventory data. The other

nodes in the network have smaller data bases containing local

data.

4.2.1 Task Definition: The task is defined by the following

sequence of operations which could arise in a distributed computer

controlled inventory system.

a) A user signs on at a terminal located at Node K and re-

quests the restoration of a portion of his local data base

which has been
b) The Monitor
from 1ts large
¢) The user at

tory of item A

lost (say the Node Kk inventory of item A).
Control Location supplies the required data
data basec over the network.

Node K requests a search of the Node K inven-

for an item Aj. This item is found to be

absent from inventory.

d) The user requests a search of the local listing of the

item A inventory at other nodes to determine the number of

Aj items located at each node.

e} The user at

Node K requests that his needs for Aj be filled

from the supply at the node having the largest number of items

A;j. (Assume that this is Node L.) The request is granted.

f) Node K updates its inventory of items A,

g) Node K instructs the Monitor Control to update its inven-

tory listing of items A,

h) The Monitor

Control instructs all other nodes to update

their inventory listings of items A.

44

i) User signs off,

It is assumed that the inventory listing of items A is sub-
stantial so that a thousand or so packets of several hundred bytes
each would be rcquired to transmit it across the network. It is
also assumed that the network is operating with a background of

other tasks being executed.

4.2.2 (omputer Network and Corresponding Monitor System Operation

on Assigned Task: To illustrate properly the operation of the

monitor system, it is necessary to examine the details of monitor-
ing each activity of the computer network in carrying out a typical
task, such as that defined above.

Examination of the nine activities listed for the task defined
above indicates that they can be segmented into four distinct jobs,
as given in Table 2. The Table lists the resources required for
each job and 1t can be noted that Jobs 2 and 3 require only local
resources at Node K, while Jobs 1 and 4 require the resources of
the network and the resources at more than one node,.

A detailed activity study is made for Jobs 1 and 2, since the
requirements for these jobs illustrate all characteristics of the
computer network and monitor system operation. In the study the
computer network is assumed to operate in a specific manner. It

should be understood, however, that this operation is intended to

be typical and not that of a specific system.

A e

1
TABLE 2. Segmentation of Illustrative Task
Job R L
. Activities Principal Resources Used
Number
e 1 a, b Node K - ilost CPU, Node C(PU, Disk,
. Terminal
' MC Node - Host CPU, Node CPU, Disk
Links - K to MC and any alternatc 3
[F
2 c Node K - Host CPU, Disk, Line Printer,
Terminal
3 d Node K - Host CPU, Disk, Terminal
4 e, f, g, h, 1 Node K - Host CPU, Node CPU, Terminal
. Node L - Host CPU, Node CPU, Disk
Node K - Host CPU, Node CPU, Terminal
; Node I (all I) - Host CPU, Node CPU,
- Terminal
i MC Node - llost (PU, Node CPU, Disk
-
Links - MC to each node and alternate
The details of the Job and Job 2 activity, with the corre-
sponding function of the Monitor System are presented in an Appen-

? dix in Tables Al - AS. Tables Al - A3 list the general monitor
L system functions and Table 4 enumerates the activities associated
|

with Job 1 and Table 5 lists the activities associated with Job 2.

40

]
i

Mt

A summary indication of the functioning of the Monitor System

is presented in Figure 4.7, which is a schematic representation of
the monitor functions at one node, Node K. As each host-controlled
resource is used, the job ID is read into the appropriate memory
location in the Two-Port RAM. The software measurement program
senses the job ID and actuates an "infinite loop'" which allows
appropriate modules to measure the active time of the resources.
Concurrently, as packets are generated and transmitted, the Node
CPU increments the counts in the indicated memory locations in the
Two-Port RAM,

The software measurement program is interrupted at regular
intervals to allow the Monitor CPU to read the indicated Two-Port
RAM memory locations and transfer the readings to output locations
in the Two-Port RAM. The data stored in the output locations is
transferred to the data field of pickup packets when they arrive
periodically. The arrival (and departure) of pickup packets also
causes an interrupt to allow the Monitor CPU to read a Real Time
Clock and insert this '"time stamp data'" into the data field of the
pickup packets.,

The Monitor Stations at the other nodes in the network operate
in the same manner as at Node K. For this example, the final out-

put, printed out at the MC location, consists of the following:

Total time for the computer network to accomplish the task.

Total host-controlled resource utilization for the task as
compiled from the measured active time for each host-control-
led resource, segmented by jobs.

47

4
i
i

— e aa

1#31904d 0¥ LHOD A4OLNIANT 3HL 404

A 300N L1V SNOILIONNG WOLINOW 3HL 40 NOTLVIN3S3¥d3d JILYW3HIS

JUHUL

SNOILYIO0T
1N<4iNn0

- . Hrlg

— ai sor

$374WVS
21Q0IH3d

Q3903ITMONNIVY
1ON $13X0vd

Q3A13D3Y S1IOVd

L 9O 404 W OL X
GILLINSNY YL SL3XIVd

3IDIANIS ONILIVMY $LIXNIVd g

L 9OF GILVYWINID SL1INOVd

SNOILYDOT AMOWIN WYH LWOd—OMiL

Ndd Ad
a3170uL

L'y 380914

JWIL JAILDV
Xsia
v 3INAOW ;
A $SITANYS
IRIL IAILOV | um_w%x_w““
HILNIYD INIT s SIIMNOSIY AFTTOUANOD | o) o
€3 31NQ0W ! ~1SOH HO4 WYHOOHd
7 LINIWIBNSYIW IHYAMLIOS
i S1dNHYILNG
i
IWIL IAILDV)
IVNINGIL e
Z¥ 31NQOW '
:

JNEL JALLDV
142 L30H
LX IINOON

ANtL 3ALLIY

NdJ 300N
3 IINCOW

A2012

JINIL YN

and measurement system activities on typical parts of the task.
Examination of these details shows that the proposed measurement

system structure can be implemented in a feasible manner. 3

4.3

The tables in Appendix A give details of the computer network

A Monitor Structure for the AIRMICS/GEORGIA TECH Experimental

Total average network resource use determined from a ratio
of the count of packets generated on the task to total pack-
ets generated, allocating measured node CPU and link times
to the task on a pro rata basis accounting for differences
with respect to time and to links traversed.

s

Total task cost obtained by multiplying resource use time
by appropriate resource costs.

Average or histogram for packet delay time for each link,
with time as a parameter if appropriate, computed from the
data obtained by pickup packets.

Average or histogram for queue length at each node computed
from the count of packets awaiting service, with time as a
parameter if appropriate.

fverage or histogram for the number of packets not acknowl-
edged at each node, with time as a parameter if appropriate.

Statistics for traffic flow - average or histogram for total
packets arriving at each node, average or histogram for
packets arriving (and leaving) over each link both with time
as a parameter if appropriate.

this section of the report was chosen for its possible applicabil-
ity with the AIRMICS/GEORGIA TECH Experimental Network. Although
the long range plans for the Experimental Network have not been
specifically quantified, the monitor system described in Section
4,1 is very flexible and has most of the features which could be i

required by this network. In addition, the points of entry into

Network

The implementation of the hybrid monitor system discussed in

+

e Y, SR A Y,

49

TREWTEREY. T . e

I3
1
v
4
h
[

the Nodal Monitor Stations arc compatible with what is available
at the existing nodes of the Experimental Network.

As discussed in general terms for the monitor system, three
types of measurements are possible, namely: host-controlled re-
source mcasurements, network related measurements, and auxiliary
measurements, such as measurement of the execution time of specific
pieces of software. A choice of what, and how much monitor equip-
ment to install will depend in detail on the studies to be made
with the network. Some general comments can, however, be made.

Of course if resources are available, a complete monitor
system with ample equipment for all three types of measurecments
can be implemented. On the other hand, the following comments are
germane if the measurement system budget is limited.

It is felt that emphasis in studies made with the Experimenta’
Network will very likely be on characteristics of the network it-
self--its geometry, its routing algorithms, etc., rather than on
the efficiency of the microcomputer hosts. To the extent that this
is true, the network related measurements can be emphasized and
implemented completely, with less attention being given to the other
two categories,

At the present time, the [xperimental Network is distributed
over only two locations on the Georgia lech campus, As long as this
is the case, there is no need to use the complexity required by the
scheme for setting up experiments completely from the Monitor

Control location,.

Gf course there is the possibility that the Experimental
Network could be used to evaluate prototype equipment for measur-
' ing the efficiency, or monitoring the proper functioning, of micro-
E.., computer hosts. In such a case, the host-controlled and auxiliary

measurements can be emphasized and the others deemphasized.

5. EXPERIMENTAL NETWORK

5.1 The Communication Network Philosophy

A major facet of the current system is a packet switched micro-
processor based communications network. This network, which far
exceeds the requirements of the demonstration system, has error de-
tection and correction capability in addition to its communication
functions. The network is wholly package switched and all data and
internal communications are handled through a packet switched proto-
col. The protocol was deliberately made to be open ended so that
additional packet classes may be added to the network later. The
current network implements three packet classes: data packets,
which carry the host to host communication messages; local acknowl-
edgements, which acknowledge adjacent node communications; and
source acknowledgements, which acknowledge the final receipt of the
message at the destination node. Other classes of messages which
might be later implemented include data based request messages, re-
quests for distributing processing capability, and requests for
utility processing.

A message transmission scenario through the network can be de-
scribed as follows: A host initiates a data transfer to another host
on the network by transfering to its network node, in a very simple
protocol, the destination of the message and the contents of the
message. The network node, which we shall call the origination node,
takes two specific actions. First, it buffers the message as a safe-

guard against the errors in the communication process, It will

52

P

retain this buffered message until it receives a '"source acknowledge-
ment'" packet from the destination node indicating that the message
has been received at its final destination. Second, the origination
node forms a data transfer packet addressed to the destination node.
Once the packet is formed, the node will attempt to send the packet
across the primary route to the destination node. If this communi-
cation route is busy, the origination node will try a secondary
route. The system supports three possible alternate routings. If
any of the appropriate communications links are free, the message
will commence transmission immediately. If all of these communica-
tions links are busy, the message will be queued for later transmis-
sion on the primary link.

When the message is received at the first adjacent node in the
transfer path, this intermediate node takes two specific actions.
First, this intermediate node forms and transmits a local acknowl-
edge packet back to the origination node. This local acknowledge-
ment informs the origination node that an error free reception of
the message has occurred. This fact is noted in the origination
node, and the buffered message is marked as having been locally
achnowledged. If no local acknowledgement is forthcoming in a fixed
amount of time, the buffered message will be retransmitted. This
particular error correction technique allows the network to handle
all detected errors in a uniform fashion: by discarding and not
acknowledging the error packets, they will be automatically retrans-
mitted. The second action taken by the first adjacent node is to

retransmit the data packet forward towards its destination. The

53

procedure for doing this is identical to the data transfer procedur
described for the origination node.

The intermediate node also holds the data message until it re-
ceives a local acknowledgment. Unlike the origination node, how-
ever, all intermediate nodes discard the data message when the local
acknowledgment is received. The data message thus travels from node
to node through the network with local errors being corrected until
it reaches the destination node.

At the destination node, three specific actions occur. First,
as in all the intermediate nodes, a local acknowledgment is trans-
mitted to the adjacent node from which the message arrived. Second,
information as to the message's source and the message itself is
transmitted to the host. If the host communication link is busy,
this message is queued for later transmission., Third, the source
acknowledgement packet is formed and is transmitted to the originat
ing node. This source acknowledgement packet travels through the
network in a fashion identical to a data message packet until it
arrives at the origination node. Upon its arrival, the originating
node discards its buffered copy of the original message. If no
local achkhnowledgement is received within a fixed time constant, the
data message will be retransmitted from the origination node.

This network is implemented on network nodes of identical hard-
ware. The software which runs within each node is identical to the
software that runs on all the other nodes. Routing for this network
is originally setup by a predetermined network architecture, but may

be changed dynamically by host requests for reroutings. Hence this

54

network itay be recontivured during actual opecration, though this

feature was not used as part of the study.

The maximum packing length in this network is 256 bytes. 'The
maximum message lenvth 1s three packets. These parameters cannot
be dynamically confisured, thoush they can be chaneced by minor
programming, All communications links have switched selectable
baud rates, which may be chosen up to a maximum ratec of 19,2 Kilo-
btaud. The actual network development work, liowever, was done at
a settine of 120U baud. This results at a maximum node-throuch baud
rate of 19.2 kilobaud. Since this was an experimental network dec-
signed primarily to study networkine techniques, the network code
was not optimized for maximum communication througih-put., In fact,
all communication input-output is done throueh accumulator transfers.

This offers maximum {lexibility with some loss of speced.

5.2 The Microprocessor Network

The development of a packhet switcaned communicaticn networkh pre-
sents many special and unique programming debugging problems. It
is true that only one program is being developed; however, in an op-
cratine network this onc program runs simultaneously in many network
node processors. Within each network node (which are, of course,
computers in their own right), there is a separate and unique real
time environment. Errors whicin arc associated with the real time naturc
of the node prourams occur as a direct result of the network traffic.

buce to the asvnchrony of tue entire system, this means that in many

Instances errors which occur and arc detected cannot be repeated.

-

Another characteristic of the network debugging environment i
that often it is impossible to determine the source of an error.
Errors which are generated in one node processor may be transmitted
out of that node without the recognition of the node program itself,
Thus, when the error is detected it may be far away from its source.

The apparent statistical nature of the behavior of packets
within the communication network forces the programmer into using
techniques which are themselves somewhat statistical in nature.

Many of these techniques are not only appropriate for the debugging
of the network, but are also appropriate for the later testing and
measuring of the network performance. The most important of these
techniques which was used in this development was the use of a
"traffic generator." A tra%fic generator is a piece of hardware
whose task is to simulate the existence of a larger network than the
one which is really being tested. The type of traffic generators
used in this study were the so-called "constant load" traffic gener-
ators. This form of traffic generator forces an ambient condition

in the network in which a known number of messages are always present
within the operating nodes, Thus, for example, if the number of mes-
sages desired were five, the traffic generator would insert five mes-
sages into the network. Whenever one of the messages exits the net-
work by returning to the traff{ic generator, the traffic generator
would insert a new message in its place. In this way an approximate
load of five bogus messages is kept within the operating network.

The use of the traffic generator represents a Monte Carlo ap-

proach to the problem of network debugging. When a traffic generator

1s allowed to run for long periods of time, a large number of dif-

ferent real time network states are excited. Thus, the network's
operation may be checked over many operating conditions beyond the
scope of its original architecture.

Two different traffic generators were implemented as part of
this study. The first, called the "dummy load" traffic generator,
was implemented as the combination of a multi-task Fortran program
on the Nova 820 in the digital signal processing laboratory and a
modified version of the network node program on a network communica-
tion box.

This traffic generator operated in conjunction with a number of
dummy routes which were preassigned during network initialization.
The dummy routes always started in the traffic node, passed through
one or more other nodes in the network, and finally terminated in
the traffic node. The traffic generator initiates messages along
these dummy routes and receives the messages when they return. Thus,
from the view point of the ordinary network host, the network oper-
ates normally, but appears to be bearing communication traffic from
a larger outside network. %

The second traffic generator was the so-called '"host involvement"
traffic generator., This function was implemented entirely in the
Nova 820 and required no special modification of the network nodes.
During the operation of this traffic generator, all the network hosts
were dedicated to the testing procedures. Lach host ran a program
which returned an exact copy of the message it received to the source

of the message. The traffic generator sent a variety of messages to

57

L" - N - p— IJ |

the various hosts and waited for the message to return. lence, the
use of this traffic generator constituted a test which involved the
host's data transfer program as well as a multiple real time environ-

ment within the network itself.

5.3 Description of Computer Network Hardware

This section describes the specifications of the computer hard-
ware that was purchased in order to complete the proposed research
project.

Figure 5.1 shows a fundamental block diagram of the complete
computer network. In the computer network there are four host com-
puters--an Intel microcomputer system, a Data General computer sys-
tem, a Motorola microcomputer system, and an PDP 11/70 minicomputer
system. Associated with each computer host is a microprocessor com-
munications node. The microprocessor node has the responsibility o
handling all the network communications sent and is discussed in de-
tail in Appendix C.

Since the Intel and PDP 11/70 host computers are located at the
AIRMICS computer site, and the Motorola and Data General hosts are
located at the Electrical Engineering laboratory, the connection be-
tween the Intel and the Data General microprocessor host is accom-
plished by means of a standard telephone line and two Universal Data
System 1200 baud modems. The following sections will describe all
of the commercially available equipment in the computer networks
except the PDP 11/70 computer system which was an existing AIRMICS
facility and not purchased for the purpose of completing this partic-

ular project,

58

VYO MLIN -HTLNdWOD TLITAWOD 40 WYHOVIA NIOTd 1°S
NHOMLIN HILAdWOD

C =1 N = = | W ———
oW - N'd'W . ‘ -
] | !
|
— — _ —
ﬁ - ew - e J
— . . c—
1t W3IAoOWw W3Aaow
|
]
]
L - O — — L] a—— L2]
’ |
- o= o —' -—
[)
| w3gow " W3aow
_l - - -~ -t
)
|
|
/)
Qd ‘N'd'W ‘N'd'W 14D
oLl d ‘W
| I |
—/
- ot [<7 ! h

i . .
. o . .
i : " . . .
g - - - e . \.,VEILILFDY.LU U PP R R et

59

1) The Intel microcomputer system, illustrated in Figure 5.2,

is a standard Intel model 230 microcomputer system with an addition-
al Teletype 40 line printer. The computer system contains a central
processing unit, random access memory, read only memory, dual floppy
disk drives with controller, CRT with keyboard and controller, line
printer serial interface, and network serial interface.

2) The Intel central processing unit is a standard Intel
microprocessor with an §08VA microprocessor chip, 2.6 Miiz proces-
sor clock, system controller, multibus priority resolution circuits,

- multi-bus controlling data drivers, address drivers, system clock
generator, and I/0 board address decoder.

3) The random access memory is a 64 Kbyte memory used for storing
parts of the operating system, user programs, and data. The read-
only memory is used to hold the resident portion of the ISIS II

] ’ monitor, revision 1.2.

4) The complete ISIS Il operating system is stored on the floppy

. disk and is read in automatically from the read only memory portion
of the monitor. The dual floppy disk drives are housed in a separate

- cabinet and interfaced to a floppy disk controller in the central

processor unit cabinet. The disk will hold approximately 200 Kbytes
of data on each disk and handle double density cassettes,

S) The CRT is housed in an integral part of the central proces-
sor console and the CRT screen storage uses a section of memory to
store the characters that are being displayed. This means that a

character can be displayed on a CRT screen by storing the character

60

L,i, | | o ‘

- » -
.
*)

E‘ . A e e — BASIC. MOOEL 310 _7!4 AADES AND OF ——
4 EXTERNAL CRT, | 2SINGLE ON
: TELETYPEWRITER, 40OUBLE

FRONT PANEL | usER DENSITY
INTERRUPTS MARDWARE DAIVES
- MASTER IPBMEMORY l TWO BOARD
PROCESSOR SUBSVSTEM su:‘savlslytu f ”Kﬂ:m" {'Lﬁm‘c’;'s'a DISHETTE
SUBSYSTEM WK RAM, 24K ROM CONTROLLER

—— e
10 MULTIBUS
' J o rgnv CONNECTORS
— ———— — —— — — — AN
voront r— - INTERBUS
LOGIC

10C SLAVE KEYBOARD 3
P10 SLAVE) PROCESSOR 10C MEMORY DISKETTE AND cRY
PROCESSOA SUBSYSTEM SUBSYSTEM CONTROLLER KEYBOARD CONTAOLLER
] PROCESSOR
»o) l l
sus
) INTEGRAL INTEGRAL
| SINGLE CRT
PRINTER DENSITY
PERIPHERAL __4__ PAPER TAVE PUNCM OISKETTE
ORIVERS PAPER TAPE REAGER onrve
l PROM PROGRAMMER

——————d

FIGURE 5.2 THE INTLEL MICROCOMPUTER SYSTEM

0l

—d e _— - -l

in an appropriate memory location in random access memory. The line
Printer is interfaced through a standard RS232 EIA level interface
with baud rates adjustablc from 110 to 9000 baud. The baud rate is
programmable under software control, and is currently sct at 1200 baud.
6) The network interface is a standard RS232 LIA interface which
permits the system to talk to the computer system networh.
The Motorala and Data General microcomputer systems have equi-

valent hardware to the Intel system.

5.4 Network Trafficking Experiments

5.4.1 Introduction: Any rcasonably designed computer network will

transfer messages from one computer host to another, as does the
computer network described in this project. The transfering of mcs-
sages between a microcomputer host running CCB(L inventory programs
does not push the computer communication network to a point anywhere
close to its limits in order to test additional loading on the net-
work., The data General Nova 820 computer was added as an additional
host in the network with its own network processor node (shown in
Figure 5.3). Instead of running time consuming inventory jrograms to
send out messages through the nctwork, the Nova 820 sent messages in a
controlled manner such that a given number of messages would be kept in
the network at one given time, In this manner it was possible to sim-
ulate additional network traffic without the expense of adding costiy
host computer systems. The traffic generator system could, in effect,

simulate the cffect of many additional hosts on the network.

62

11/70

1 1
INTEL 3 c. |8 2 B 3
2]
! 1
MOT. J 3 A 2 2 0 3
A
e [}
9
L 2 3
1

NOVA 820

FIGURE 5.3 THE NOVA 820 HOST COMPUTER WITH ITS OWN

NETWORK PROCESSCR NODL

€S-20

5.4.2. Traffic Routes: In order to send messages through the sys

.

it was first necessary to establish particular message routes for
the traffic node to send messages through the network and back to
itself, The traffic generator would then send the message out to
the network on a given route, the message would trasel completely
through the network route and return to the MNova 820. When the
message returned, the message was compared character by character
with the transmitted message and any deviation in output to input
would be indicated on the Nova 820 main terminal. The Nova 82U also
kept track of lost messages, that is, messages that were sent out

to the computer networkh on a given route but were never returned to
the 820. The particular traf{ic routes that were set up in the
microprocessor communication system are tabulated in Table 3, and an

illustration of each route is shown 1in Appendix B.

5.4.53, The First Traffic Experiment: The first traffic experiment

was a simple two communication processor loop that sent messages

from one processor {(which acted as a traffic node) through one of

the other processors and returned. Traffic could be initiated
through any of the node ports and in this manner the hardware could
be checked for reliable operation. It was of particular interest to
verify that each of the four secrial ports on the processors were
operating reliably and that a reasonable error rate could be expected
between any two communicating ports. The single loop traffic

experiment was repcated with cach of the communication processors so

that the reliability of ecach processor could be verified. The

NAME
F
G

H

M

Q

l)

2

TABLE 3. TRAFFIC ROUTES

NODE
E--D--A--E
E--A--D--E
L--D--B--A--E
E--A--B--D--E
E--C--B--D--E
E--D--B--C--F
E--C--B--D--A--E
L--A--D--B--C--L
E--C--B--A--E
E--A--B--(--L

k--C--b--A--D--E

E~-D--A--B--C--L

e AN e

~.

result of the single traffic loop experiment were as follows:

1. A number of intermittent and hard failures werc foumd in the
serial I/C ports and repaired.

2. A number of hardware problems with the interrupt structure
were isolated and repaired.

3. A maintenance log was established on all the components of
the microprocessor nodes indicating any failure of any of the com-
ponents and the fact that the components had passed the single-loop
test,

4., The single-loop test proved that the processor node soft-
ware is a single-input/single-output process,

5. The single-loop traffic test provided us some burn in time
for the processor components, which was extremely important since
input mortality is one of the most important recliability problems ir

integrated circuit technology.

5.4.4 Single lost Traffic Test: In this test the Nova 820 communi-

cated with each microcomputer host through its microprocessor node.
Programs were written on each of the three microcomputers to receive
a message from the network and return the same message to its corigi-
nator. The Nova 820 would then send a message through its node to
the host node. The host would echo that message bach to the 820
where the 820 compared the return messagce with the transmitted mes-
sage to detect only errors. The Nova 820 could vary the number of
messages sent back to back, the length of each message and the char-

acter in the message.

(318

The results of thesc series of tests were as follows:

1. The test verificed the hardware protocol between cach host .
and its communication processor. ‘lhis hardware protocol included
tiie correct cabling and correct action and polarity of data termi-
nal ready, clear to scnd, Jata set ready and request to send.

4. Tiuese tests verificd the reliability of the host to commu-
Njication processor serial interface.

5. inese tests verified the operation of the communication
drivers in both the host computers and the microprocessor nodes.

4. The test produced necessary burn in and reliability time

on the microprocessor nodes.

5.4.5 Multiple Host Traf{ic Test: In the multipie host traffic

test, two or more microprocessor hosts with their communication |ro-
¢essors were hooked to the traffic communication processor and 820,
The 820 would send messages to both of the host microcomputer systems
throuch the microprocessor network. The microcomputer host would echo
the messaces back to the $20 where they were checked. In this test the
820 could vary the number of messaves bhack to back, the number of
Characters in each messave and the routes tihroueh the microprocessor
Network. This test was desiened primarily to check the ability of the
nodes to handle multidirectional traftic. Vith multidirectional
traffic, the nodes are forced to qucue messanes and queue local
acknowlcdgements, and the interrupt handler in thc nodes is forced to

sort and aqueuc messaces in different directions. The results of

o7

PP,

this test were as follows:
1. This test uncovered scveral subtle software crrors, such

as that the softwarce would handle sinele traftic patterns, but

b4
would fail when multiple-loop tests would force certain routines to
hbe used in a rec-entry manner.

2, The test validated the basic structure of the messa:e buf-

fers and queucine structurc uscd by the nodes to sort and store nulti-

ple messages.

5. This test pointed out several network characteristics that
w1ll be coverecd beclow in the section on ceneral nctwork cnaracteris-

tics,

5.4,0 Multiple loop Jraffic Test: tn this scries of tests the micro-

processor nodes of the network were connected without host computers
to the 820 trafiic noude. The 6§20 would senu messages through dif-
ferent routes in the networkh with the 820U selected as the final des-
tination of the messare. The 820 was prozrammed to maintain a4 cer-
tain number of messages running throush the network at any once time,
That is, the &2¢ would send out n-messages into tiie networh. As soon
as one message was returned from tine network, another messapge was
immediately scnt back to the network., In this manner, n-messages were
always kept runnine through the network. ‘1he 820 could control

the number of messaves in the network, the leneth and content of

cach messapge and the root for cach messave, This test was desivned

to operate the network in a controlled loading manner so that var-

0o

—_

ious network limits could be investigated. The result of this series
of tests are as f{ollows:

1. It was determined that the microprocessor nodes could send
multiple path messages at baud rates of 1200 baud or less.

2. It was determined in 10 hours of continuous testing that
the number of CRC errors, loss messages, lost local acknowledgements,
and incorrect messages was extremely small. The error rate was less
than one error per a million characters.

Additional network characteristics were determined, and will

be discussed in the section on general network characteristics.

5.4.7 Network Test with Inventory Control Program and Node Traffick-

ing: In this test the Intel microcomputer and the Motorola micro-
computer and PDP 11/70 minicomputers were connected as with their
microprocessor nodes as a standard network and each node of the in-
ventory control program was tested for correct operation of the pro-
grams as well as the network rvesponses. The (CS5-20 microcomputer was
eliminated from this test because the manufacturer, Data General,
would not give us proper information to properly modify the network
driver to operate further COBOL in the correct manner. In this test,
cach of the instructions for the inventory control program (as de-
scribed in the inventory control program section) was executed on
cach machine and verified., Operator initiated mecssages were sent
betwcen each pair of host computers and the received message verified.
Remote holding of data bases was tested and verified, as well as re-

mote transaction initiation., The results of this series of tests were

()

Ty

~u

as follows:

1. This test verified that basically the same COBOL program
could be used on the three host computer to correctly operate the
inventory control program,

2. This test verified that the COBCL programs could implement
the correct protocols to talk to the network and receive messages
from the network.

3. This test pointed out the sensitivity of the different
host computers to network protocols. These will be discussed in
detail in the section on host network characteristics.

4, The sensitivity of the host to the network protocol
emphasized the desirability of a communication processor whose host

protocol can be tailored to the host machine drivers.

5.4.8 (S-20 Inventory Control Test: In this test, thc software

inventory program tor the (5-20 was tested with a remote terminal
acting as the network. Even though the (CS-20 would not implement
the desired network protocol, the remote terminal was used to verify
that the inventory program would operate correctly with a modified
protocol. This verified the portability of the COBOL software even

though the network protocol could not be implemented.

5.4.9 Inventory Control Program Test with Trafficking: In this

series of tests, the full network was connected with the exception
of the CS-20 host computer. The (CS-20 communication processor was

included. The 820 computer was connccted to the network throuch a

traffic generator node as shown in Figure 5.3. The 820 generated

Ty

et oo

series of messages through different routes through the microproces-
sor communication network at the same time that the inventory con-

trol program was sending messages between host computers.

5.5 General Characteristics of the Computer Communication Network

The following section describes the characteristics of the com-
puter communication network as determined by the series of inventory
control programs and the traffic generator programs as described in
the previous section.

It was determined during the series of tests that the network
exhibited certain characteristic behaviors in particular situations,
and that the network was sensitive to certain types of situations.
None of these characteristics made the network unusable, but it is
important to understand these limitations as a step to improving
future network communication systems.

ITEM 1: Sensitivity of the network to host protocol. Because
the host computers were being operated from a higher level language
{ COBOL), there was very low flexibility in establishing a complex
protocol between the host and the microprocessor host. Therefore,
the following simple protocol was established for sending a message
from the host to the network:

a) The host starts a message by sending the letter of the
destination node proceeded by an open parenthesis. In this particu-
lar network, the nodes were lettered '"a'" through 'd'.

b) The host follows the destination code with a string of mes-

sage characters, These characters can be any eight bit code asking

for data.

YT

c¢) The message string is terminated by sending an ACSII
exclamation point character. If an exclamation point is used as
part of the message string, it must be proceeded by an escape char-
acter so that the microprocessor node will not take it to be the end
of the message. An example of a typical message is given below:

(C THIS IS A TLST MESSAGE!

The protocol for messages from the microprocessor to the host
is similar except for the source of the message and the destination,
Neither the host nor the communication processor acknowledge any
messages and no vertical or longitudinal parity is checked.

Because this protocol is extremely simple, it makes it easy to
incorporate into high level languages such as COBCL, but this simple
protocol does not provide a means for checking the communications
between the host and the microcomputer or the microcomputer and the
host. Therefore, all communication errors between the host and micro-
computer will be undetected. If an error occurs 1in the message

string, the result would be an erroneous message at the destination,

but the network would be unaffected. One of the most serious pro-
blems would be the possibility of an error in the destination code

at the begining of the message. If this code were wrong, the network
would try to send the message to a different destination. This ?
would result in a host getting a wrong message, or if the destination
were not part of the network, the message would remain in the network
trying to be transmitted. If enough such messages were kept in the
network, the processor memory space could be exhausted, causing the

network to fail. If the exclamation point were communicated with

e

an error, the result would most likely be two messages packed to-

gether as one, which would be an error in the total communication,
but would not bother the action of the communication network,

ITEM 1I: Sensitivity of the network software to buffer over-
flows. The present network software is sensitive to possible over-
flow in buffer storage or queue sizes. The present network will try
to handle incoming data beyond its capacity. This is not a problem
with the normal function of the network, since its capacity is clear-
ly capable of handling the inventory control program without exceed-
ing buffer or queue sizes, but under the extreme condition where the
traffic generator is sending excessive traffic through the network,
the network can be caused to fail due to excessive traffic. An ex-
tremely straightforward method of handling this problem would be to
implement the 'clear" and '"send" lines between the microprocessor

nodes and the host. These lines could be used to stop the host

computer from putting more traffic on the network than the network
can accomodate. The hardware to implement this connection is cur-
rently in the network, but the software to support these lines 1is

not included in the present node software package.

ITEM III1: Sensitivity of the network to loss of local acknowl-
edgements. In the present network a fairly simple acknowledgement
scheme is used for verifying data transmission between two micropro-
cessor nodes. In this process, a packet is formed in one node and

sent to another node. The packet is checked for parity and CRC error,

and if both of these are correct, the message is acknowledged by

sending a local acknowledgement pachet back to the transmitting nod

If the parity or the CRC does not check, then the receiving node

does not send an acknowledgement at all and the transmitting node
will wait a given amount of time and then try re-sending the message.
This scheme, in effect, uses a time out for a negative acknowledge-
ment. Since there is no verification or chech of the local acknowl-
edgement package, some problems can arise from this technique 1if
errors occur in the transmission of local acknowledgement packets,
If, for instance, the receiving node receives a message packet and

it 1s correct, then it sends an acknowledgement to the transmitting
node. 1If there is an error in the transmission local acknowledgement,
the transmitting node will time out and re-send the message which the
receiving node will now take as a second valid messagc. A second,
but less likely possibility is that the transmitting node would re-
ceive a packet in error that it thinks is a valid local acknowledge-
ment and would clear its buffer of a packet that has not Leen cor-
rectly received. A third possibility is the reception of a local
acknowledgement packet with invalid information in 1t. ‘The local
acknowledgement packet contains information telling the transmitting
node which message has been correctly received and, therefore, to
clear its buffer of that particular message. If an acknowledgement
packet is received and taken to be valid, but has incorrect data con-
cerning which packet was being acknowledged, the transmitting node
would clear its Luffer of the wrong message and continue to re-trans-

mit the acknowledged message. If a sufficient number of erroneous

local acknowledgements are passed through the network, the network

could fail due to mis-sent and un-sent messages.

ITEM TV: Sensitivity of the network to messages with improper
destinations. One characteristic of the network that is an out-
growth of the time-out and re-transmit scheme for unachnowledged
messages is a problem with messages that enter the network with
improper destination. If a host sends a message to a microprocessor
node with an invalid destination, or the node receives a message
with an error in its destination, then the node might transmit a
message to a destination that does not exist. If the destination
does not exist, then the message can never be acknowledged. The
source node will then continue to re-transmit the message on a time-
out and re-transmit basis., Therefore, the message will forever be
re-transmitted by the source node. If enough messages with no proper
destination are put into the network, the network will start to de-
grade in performance as the false messages are being transmitted,
and then finally fail as the node buffers become overflowed with
messages with no destinations. One possible solution to this problem
without altering the time-out and re-transmit scheme would be to
add additional software functions to the node to check for messages
with invalid destinations and clcan them out of the node buffer.
This could be implemented as a table of valid destinations, or by
detcrmining that after a message has been rctransmitted a certain
number of times that it be declared an invalid destination. When an
invalid destination message is found, the message should be removed
from the buffer so that the buffer space can be returned for active

operation and some record should be kept of thc number of messages

removed.

ITEM V: Availability of network operational status. The pre-

. sent network is not equiped with a means of monitoring the present

operational status of the network, so that even detected errors that

] occur are not recorded on a real time operational basis. There is
also no implementation of correctional measures when error rates

. exceed certain values. Implementing routines to keep track of mis-

operation of the network would be an extensive task, but would be

an excellent extension of the network capability. There would be
two possible approaches to this extension. The first would be to
- handle network operational status on a local basis. That is, each
node would keep track of any network misoperation that it detected
and would relay that information to its host. Each host would then
be programmed to take any corrective actions required, and possibly
relay information about network operational status to the host oper-
ator. Another approach would be to dedicate a node of the network
and possibly a host computer to keep track of the totsl operational
~ basis of the network. Ia this scheme, any node that detected a mal-
. function in the network would form a packet to be sent to the status
node regarding the failure and the type of failure. The status node
would be responsible for collecting this information and performing
corrective actions. Once corrective action was determined, the
status mode would then send a packet bhack to the appropriate nodes
telling them to restructur the routing of the networhk to try to com-
pensate for networhk failures. This second techoique, though more

complex, has the alvantage that decisions about restructuring the

70

AO83 086 GEORGIA INST OF TECH ATLANTA SCHOOL OF ELECTRICAL EN~-=ETC F/6 9/2
THE FEASIBILITY OF IMPLEMENTING MULTICOMMAND SOFTWARE FUNCTIONS-=ETC(U)
OCT 79 T P BARNWELL: J L. HAMMOND:» J H SCHLA& DAAGZ9-7B-G-0139
UNCLASSIFIED ARO=15900,1=A=EL

% ‘; e

INSEEEEEEEEEEE
EEEEEEENEEEEE
IEEEEEEEREES

- s

PR

network could be made on status reports {rom all the nodes instead

of just local behavior,

Boans

77

6. NETWORK COBOL

6.1 Introduction

Because the Army uses multi-vendor machines, it is desirable
for the Army to have a language subset that is compatible with all
of its machines. Such a language subset could provide a single
program which would be exccuted by all the processors in the system.
This capability would greatly simplify life cycle management by
eliminating the need for different versions of thc same program to
run on several machines.

The following is a subset of M6800 COBOL, MICROSOFT CCBOL, Data
General (CS-20 COBOL, and DEC PDP-11 COBOL, called NETWCRK CObLCL.
NMETWORK COBOL has this important advantage of being compatible with
the INTEL, MCTORCLA, DATA GENERAL, and PDP 11/70 machines.

NETWORK COBOL has been tested and is the design language which
was used with the AIRMICS/GEORGIA TL(H microprocessor network to
develop a distributed data-base-management program.

Under the AIRMICS/GLORGIA TECH project, several things were
accomplished:

1. A common subset of the (OBOL versions available for the
INTEL 8080 MDS System, the M6800 based EXOTERM, the DATA GENLERAL C520
System, and the PDP 11/70 was generated. This subset is termed
NETWCRK COBCL.,

2. A demonstration distributed and duplicate data base manage-

ment program was developed to do simple inventory control.

78

S

3. Programs were developed to convert between the various
COBOL formats and also handle the hardware related differences be-
tween the CCBOL dialects,

4, Several other programs were developed to rectify isolated

differences in the various operating systems.

6.2 Acknowledgement

In compliance with the request of the Executive Committee of
the Conference on Data System Languages ((ODASYL), and specifically
the CODASYL COBOL Committee, the following acknowledgement is ex-

tracted from that contained in the publication COBCL, Edition 1974.

"Any organization interested in reproducing the COBOL report
and specifications*, in whole or in part, using ideas taken from
this report as the basis for an instruction manual or for any other
purpose is free to do so. However, all such organizations are re-
quested to reproduce this section as part of the introduction to the
document. Those using a short passage, as in a book review , are
requested to mention COBOL in acknowledgement of the source, but
need not quote this entire section.

“"COBOL is an industry language and is not the property of any
company cor group of companies, or of any organization or group of
organizations.

"No warranty, expressed or implied, is made by any contributor
or by the COBOL Committee as to the accuracy and functioning of the
programming system and language. Moreover, no responsibility is
assumed by any contributor, or by the Committee, in connection there-

with.

79

T

)

"Procedures have been established for the maintenance of CC.
Inquiries concerning the procedures for proposing changes should be
directed to the Executive Committee of the Conference on Data Systems
Languages (CODASYL).

“"The authors and copyright holders of the copyrighted material
used herein have specifically authorized the use of this material,
in whole or in part, in the COBOL specifications. Such authorization
extends to the reproduction and use of (OBOL specifications in pro-

gramming manuals or similar publications.”

*COBOL, Ldition 1965, produced by joint efforts of the CODASYL

COBOL Committee and the European Computer Manufacturers Association
(ECMA).

FLOK-MATIC (Trademark of Sperry Rand Corporation), Programming
for the Univac (R) I and II, Data Automation Systems copyrighted
1958, 1959 by Sperry Rand Corporation; IBM Commercial Translator
Form No. F 28-8013, copyrighted 1959 by IBM; FACT, DSI 27A5260-2700,
copyrighted 1960 by Minneapolis-Honeywell.

6.3 Preface

M6800 COBOL is based on the specification of the COBOL standard
published by the American National Standards Institute (formerly
known as the United States of America Standards Institute) and con-
tained in the publication USA Standard COBOL X3.23 - 1974.

As its name implies, COBOL ((Ommon Business Criented language)

is especially efficient in the processing of business problems. Such

80

=7

B it g "

problems typically involve relatively little algebraic or logical
processing; instead, thecy most often manipulate large files of
basically similar records in a relatively simple way. This means
that COBQL emphasizes mainly the description and handling of data
items and input/output records.

This publication explains NETWORK ANS COBCL which is a compat-
ible subset of American National Standard COBOL. The compiler sup-
ports the processing modules defined in the standard. These proces-
sing modules include the following:

NUCLEUS defines the permissible character set and the basic
elements of the language in each of the four (COBOL divisions: IDENTI-
FICATION DIVISION, ENVIRONMENT DIVISION, DATA DIVISION, PROCEDURE

DIVISION.
TABILLE HANDLING allows the definition of tables of contiguous

data items and accessing these items through subscripts.

SEQUENTIAL ACCESS allows the records of a file to be accessed

in an established sequence, It also provides for the specification
of rerun points and the sharing of memory area among files.

RANDOM ACCESS allows the records of a mass storage file to be

accessed in a random manner specified by the programmer. It also
provides for the specification of rerun points and the sharing of
memory area among files. Specifically defined keys, supplied by the
programmer, control successive references to the file.

LIBRARY allows the programmer to specify text that is to be
copied from a library. This feature is different on all machines and

so is not used in NETWORK COCBCL..

81

="

.

6.4 Organization of Manual

A COBOL source program consists of information in four divi-
sions: the IDENTIFICATION DIVISION, ENVIRONMENT DIVISION, DATA
DIVISION, and PROCEDURE DIVISION. Taken together, these divisions
constitute the total program (including a description of the con-
figuratioh needed, the forms of various data files, and the program-
ming steps necessary to perform these procedures), and are presented
to the processor for compilation into a corresponding object program,

In this manual, NETWORK COBOL is described as follows:

- Sections 6.6 and Sections 6.7 describe the COBOL language
structure. It presents the COBOL theory behind work for-
mation, the use of words to name clements in a program,
and a discussion of the syntax of the language.

- Sections 6.8 through Sections 6,15 contain a discussion
of the format and organization of data files, together
with methods used to remove data from, or place data into,
such files.

- Sections 6.16 through Sections 6.19 present a detailed
description of the IDENTIFICATION, ENVIRCONMENT, DATA, AND
PROCEDURE DIVISIONS, respectively.

Appendix E contains a composite list of COBCOL reserved words in

the NETWORK COBOL.

6.5 Command Syntax Notation

Notation conventions used in command specifications and examples

throughout this manual are listed below.

82

. s ——

T YR T

Notation

Description

lowercase letters

CAPITAL LETTERS

lowercase letters identify an element
that must be replaced with a user-select-
ed value.

CRndd could be entered as CRA03.

Capital letters must be entered as shown
for input, and will be printed as shown
in output.

DPndd means "enter DP followed by the
values for ndd."

An element inside brackets is optional.
Several elements placed one under the
other inside a pair of brackets means
that the user may select any one or none
of those elements.

[kEYM] means the term "KEYM" may be
entered.

Elements placed one under the other inside
a pair of braces identify a required
choice.

A
id means that either the letter A or
the value of id must be entered.

The horizontal ellipsis indicates that a
previous bracketed element may be repeat-
ed, or that elements have been omitted.

name ,name . . . means that one or
more values may be entered, with
a comma inserted between each name
value.

The vertical ellipsis indicates that com-
mands or instructions have been omitted.

83

e e b -——— o i o

e -

OPEN MASTER-FILE.
X . means that there
. are one or more

. statements omitted
CLOSE MASTER-FILE. between the two

commands.
Numbers and special Numbers that appear on the line (i.e.,
characters not subscripts), special symbols, and

punctuation marks other than dotted lines,
brackets, braces, and underlines appear

as shown in output messages and must be
entered as shown when input.

(value) means that the proper value
must be entered enclosed in
parentheses; e.g., (234).

subscripts Subscripts indicate a first, second, etc.,
representation of a parameter that has a
different value for each occurrence.

name;, name;, names means that three
successive values for name should be
entered, separated by commas.

6.6 COBOL language Structure

6.6.1 Introduction: (OBOL (the COmmon Business Oriented Program-

ming Language) consists of selected English words that impart Kkey
meanings to the COBOL compiler. The language is arranged into state-
ments, sentences, and paragraphs in a manner similar to written
English. The words of this language are selected English words
(called "reserved words" because they cannot be used in any other
context and are listed in Appendix E), names of data and procedures,
and numeric or non-numeric "literals'". Punctuation is permitted,

but the only meaningful punctuation symbol is the period.

84

COBOL words are arranged into

statements using the formats de-

scribed in this manual in the separate discussion of each statement,

One or more statements compose a sentence, which is terminated by

a period. One or more sentences,
which can be given a name so that
by referencing its name elsewhere

paragraphs make up a section that

in turn, constitute a paragraph,
control can pass to the paragraph
in the program, Similarly, several

can also have a name and, in addi-

tion, can be loaded as an "overlay'. Several sections constitute a

division. There are four divisions in a COBOL program, each describ-

ing a different, important part of the program.

Structural hierarchy of the COBOL programming language and the

purpose of each level therein are:

. The COBOL Program
. Division

. Section

. Paragraph

. Sentence

Contains all the information
required to perform a given task
on the computer.

Describes a specific category of
information essential to the
compiler; or, in the case of the
PROCEDURE DIVISICN, specifies
processing steps.

In the PROCEDURE DIVISION, defines
the smallest block of the program
that can be loaded at one time or
as an overlay, in other divisions,
groups a particular type of infor-
mation within a division.

Comprises one or more sentences
forming the smallest block of the
program that can be referenced by
name.

Consists of one or more statements
terminated by a period.

85

! . Statement Consists of a group of words that
i perform only one operation or
function in the program.

. . Word Consists of a group of characters
, and/or symbols that provide the
! structural basis of a statement.

6.6.2 Character Set: The complete character set for NETWORK ANS

COBOL consists of the 51 characters listed below:

Do Character Meaning
‘ 0-9 digits
A-Z letters .
;‘; space (blank)
.Ti + plus sign
.: - minus sign (hyphen)
? * asterisk
f;; / stroke (virgule, slash)
: = equals sign
$ currency sign
, comma (decimal point)]
; semicolon
. period (decimal point)
" double qguotation mark
(left parenthesis
) right parenthesis .
‘ > greater than sign
: 50 |

R D

< less than sign

' single quotation mark

0.0.3 Characters Used for Punctuation: The following characters

are used for punctuation:

Character Meaning
space
’ comma
; semicolon
. period

" quotation mark
(left parenthesis

) right parenthesis

The following general rules of punctuation apply in writing a
COBOL source program:

1. When any punctuation mark is indicated in a format in this
publication, it is required in the program.

2. At least one space must appear between two successive words
and/or parenthetical exp.essions and/or literals. Two or more suc-
cessive spaces are treated as a single space, except within nonnumer-
ic literals,

3. An arithmetic operator or an equal sign must be preceded by

a space and followed by a space. A unary operator may be preceded by

a left parenthesis.

4, A comma may be used as a separator between successive operands

87

P

e - - . e A it . - — s —

of a statement. An operand of a statement is shown in a format as
a lower-case word.,

5. In the procedure division, a semicolon may be used to
separate a series of clauses. An example: DATA RECORD IS TRANS-

ACTION; RLECORD CONTAINS 80 CHARACTLRS.

6.6.4 Characters Used for Editing: Editing characters are single

characters or specific two-character combinations belonging to the

following set:

Character Meaning
B space
0 zero
+ plus
- minus
CR credit (not verified)
DR debit (not verified)
yA zero suppression (not verified)
* check protection (not verified)
$ currency sign (not verified)
, comma (not verified)
. period (decimal point)

(not verified)
(For applications, see the discussion of alphanumeric edited and
numeric edited data items in "Data Division', Sections 0.18.0.4 and

6.18.0.5).

88

6,.6.5 Characters Used for Relation Conditions: A relation charac-

ter is a character that belongs to the following set:

Character Meaning
> greater than
<:: less than
= equal to

Relation characters are used in relation conditions (discussed
in "Procedure Division' Section 6.19.4.1). The word NOT may precede

the relation character.

6.7 Words

6.7.1 Definition and Application: The character set for words com-

prises 37 characters: the letters A through Z, the digits 0 through
9, and the hyphen. A word is composed of a combination of not more
than 30 such characters chosen from this set with the following excep-
tions:

1. A word cannot begin or end with a hyphen,

2. The space (blank) is not an allowable character in a word
and is used as a word separator. Where a space (blank) is required,
more than one may be used except for the restrictions stated in Sec-
tion 0.14, "Reference Format". A word is ended by a space, period,
right parenthesis, comma, or semicolon.

Rules for using punctuation characters in connection with words

are:

1, If ANS-68 compatibility is desired, a space should follow a

89

period, comma, or semicolon when one of these punctuation characters
is used to terminate a word, and a space should not immediately
follow a left parenthesis or immediately precede a right parenthesis.
2. A space must not immediately follow a beginning quotation
mark or precede an ending quotation mark unless a space is desired

in the literal (which is enclosed in quotation marks).

6.7.2 Data-Name: A data-name 1is a word with at least onc¢ non-

numeric character that names a data item in the DATA DIVISION. A
space (blank) is not allowed within a data-name, and ANS COBOL
reserved words must not be used. (See appendix E, "NETWORK ANS

COBOL Reserved Words'".)

6.7.3 Procedure-Name: A procedure-name is either a paragraph-name

or a section-name. A procedure-name may be composed solely of numeric
characters. However, two numeric procedure-names are equivalent
only when they are composed of the same number of digits and have the

same value: for example, 0023 is not equivalent to 23.

6.7.4 Literal: A literal is a string of characters whose value is

defined by the set of characters composing the literal. Lvery literal
is one of two types: non-numeric or numeric.

A non-numeric literal is a string of any allowable ASCII
characters (including reserved words, but excluding the quotation
mark character) up to 120 characters in length, bounded by quotation

marks. The double quotation mark (") is used. The value of a non-

numeric literal is the string of characters itself, excluding the

quotation marks. Any spaces enclosed in the quotation marks are
part of the literal and therefore part of the value. All non-
numeric literals are classed as alphanumeric,

A numeric literal is a string of characters selected from digits
0 through 9 (to a maximum of 15 digits), the plus sign, minus sign,
and decimal point. The value of a numeric literal is the algebraic
quantity represented by the characters in the literal. Lvery numeric
literal is classed as numeric.

Rules for the formation of numeric literals are:

1. The literal must contain at least one digit,

2. The literal must not contain more than one sign character.
If a sign is used, it must appear as the leftmost character of the
literal. If the literal is unsigned, it is positive,

3. The literal must not contain more than one decimal point.
If the literal contains no decimal point, it is an integer.

If a literal conforms to the rules for formation of numeric
literals but is enclosed in quotation marks, it is a non-numeric

literal, i.e., alphanumeric, and is treated as such by the compiler.

6.7.5 Figurative-Constants: Figurative-constants are certain

constants to which fixed data-names are assigned. Such data-nanmes
must not be bounded by quotation marks when used as figurative-
constants. Singular and plural forms of figurative-constants are
equivalent and may be used interchangeably.

Fixed data-names and their meanings:

ZERO-eecvrmercccccrccmccccrccae Represents the value 0, or one or
ZEROS more of the character 0, depending
ZEROQES on context.

91

SPACE-=--cccmcmcmccmcccccmccenas Represents one or more blank
SPACES spaces
HIGH-VALUE---~-=c-cccccecacennna- Represents one or more charact-
HIGH-VALUES

ers that have the highest value
in the ASCII collating scquence.
NOTLE: All machines except Intel
use 8 bit characters. Intel
uses 7 bit characters.

LOW-VALUE--------"ceccececcconnmn Represents one or morc characters
LOW-VALUES that have the lowest value in
the ASCII collating sequence.
QUOTE-=-------ceccccrcccccccot-- Represents one or morc occurrences
QUOTES of the quotation mark character.
The word QUOTE cannot be used in
place of a quotation mark in a
source program to bound a non-
numeric literal.
ALL literal---=--=~cc-scmececcaon-- Represents one or more of the

When a figurative-constant repre
characters, the compiler determines t
context in accordance with the follow

1. When a figurative-constant i

string of characters comprising
the literals. The literal must
be either a non-numeric literal
or a figurative-constant other
than ALL literal. When a figur-
ative —constant is used, the

word ALL is redundant and is used
for readability only.

sents a string of one or more
he length of the string from
ing rules:

s associated with another data

item, that is, when the figurative-constant is moved to or compared

with another data item, the string of

characters specified by the

figurative-constant is repeated--character by character on the right

--until the size of the resultant str

ing is equal to the size (in

characters) of the associated data item.

92

ey

2. When a figurative-~-constant is not associated with another

data item, that is, when the figurative-constant appears in a
DISPLAY or STOP statement, the length of the string is one character,.

The figurative-constant ALL literal may not be used with DISPLAY or

STOP.

A figurative-constant can be used wherever a literal appears in

the format, except that whenever the literal is restricted to having

only numeric characters.

6.7.6 Reserved Words: Reserved words are used for syntactical

purposes and cannot appear as user-defined words. (See Appendix E,
"NETWORK ANS (OBOL Reserved Words.") The three types of reserved

words are key words, optional words, and connectives,

6.7.7 Key Words: A key word is required when the format in which

the word appears is used in a source program. Within each format

such words are uppercase and underlined. The three types of key

words are:
1. Verbs such as ADD, READ, and PLRFORM.

2. Required words (in statement and entry formats) such as TO

and GIVING.
3. Words that have a specific functional meaning such as NUMERIC,

and SECTION,

6.7.8 Optional Words: Within each format, uppercase words that are

not underlined are called optional words and can appear at user

discretion. The prescnce or absence of each optional word within a

93

format does not alter compiler translation., Misspelling an optional

word or its replacement by another word of any kind is not allowed.

6.7.9 Connectives: The two types of connectives are:

1. Qualifier connectives (used to associate a data-name or a
Paragraph-name with its qualifier) such as OF and IN.
2. Logical connectives (used in the formation of conditions)

such as AND, OR, AND NOT, and OR NOT.

6.8 Concept of Computer-Independent Data Description

To make data as computer independent as possible, characteristics
or properties of the data are described in relation to a Standard
bata Format rather than an equipment orientated format. This Standard
Data Format is oriented to general data processing applications; it
uses the decimal system to represent numbers (regardless of the radix
used by the computer) and the remaining characters in the COBOL
character set to describe non-numeric data items.

6.9 Logical Record and File Concept

The following discussion defines file information by distinguish-
ing between the physical aspects of the file and the conceptual

characteristics of the data contained within the file.

6.9.1 Physical Aspects of a File: The physical aspects of a file

describe data as it appears on the input or output media and include
such features as:
1. The mode in which the data (ile is recorded on the external

medium,

i e

—~ 2. The grouping of logical records within the physical limita-
tions of the file medium,

3. Means by which the file can be identified.

6.9.2 Conceptual Characteristics of a File: The conceptual charac-

teristics of a file are the explicit definition of each logical enti-
ty within the file itself. In a COBOL program, the input or output
statements refer to one logical rvrecord.

It is important to distinguish between a logical record and a
physical record. A ((BOL logical record is a group of related infor-
mation, uniquely identifiable and treated as a unit. A physical
record is a physical unit of information whose size and recording
mode is convenient to a particular computer for the storage of data
on an input or output device. The size of a physical record is hard-
ware-dependent and bears no direct relationship to the size of the
file contained on a device,

A logiceol record can be containced within a single physical unit
or it may require more than one physical unit to contain it. There
are scveral sourcn language methods available for describing the
relationship betwecen logical records and physical units. O(nce the
relationship is established, control of accessibility of logical re-
cords as rclated to the paysical unit is the respousibility of the
object program. In this manual, references to records are to logical
records unless tuc frerm "physical record" is specified.

The concept of a logical record is not restricted to file data

but applies also to tie definition of workhing-storage and linkage

s

s datac Aot

T

Ty

section. Thus, worhing-storage and linkage section items may be
grouped into logical records and defined by a series of Record De-

scription entrics.

6.9.3 Record Concepts: The Record Description entry consists of a

set of Data Description entries that describe the characteristics of
a particular record. Lach Data Description entry comprises a level-
number followed by a data-name (if required) and a series of inde-

rendent clauses (as required).

6.9.4 Concept of levels: A level concept is inherent in the struc-

ture of a logical record. This concept arises from the need to
specify sub-divisions of a reccord for the purpose of data reference.
(nce a subdivision is specified, it may be sub-divided further to
permit more detailed data referencing.

The most bhasic subdivisions of a record - that is, those not
further sub-divided - arc called elementary items; conscquently, a
record consists of a sequence of elementary items, or the record it-
self may be an elementary item,

For case of reference, a sct of elementary items is combined in-
to a group. Each group consists of a named sequence of onc or more
elementary items. These groups, in turn, may be combined into mul-

tiples of two or more, thus, an elementary item may belong to more

than one group.

6.9.5 level-Numbers: A system of level-numbers shows the organiza-

tion of elementary items and croup items. Since records are the most

inclusive data items, level-numbers for records start at 01. less
inclusive data items are assigned higher (not necessarily successive)
level-numbers to a maximum of 15. Special level-number 77, is an
exception to this rule (sce below). Separate cntrics are written in
the source program for each level-number used.

A group includes all group and elementary items following it
until a level-number less than or equal to the level-number of that
group is encourntered. The level-number of an item (either an elemen-
tary or a group item) immediately following tlie last eclementary item
of the previous group must be the same as that of one of the groups
to which the prior clcmentary item belongs.

Noncontiguous working-storage and linkage section items that are
not sub-divisions of other items and are not themselves subdivided

arc assigned the special level-number 77,

6.9.6 Initial Values of Tables: In the WORKING-STORAGE SECTION,

initial values of elements within tables are specified in the follow-
ing way:

The table may be described as a record by a set of contiguous
Data Description entries, each of which specifies the "value" of an
element, or part of an element, of the table. In defining the record
and its element any [lata Description clause (USAGE, PICTURL, etc.)
may be used to complete the definition, where required. This form
is necessary when the clements of the table require separate handling.
The hierarchical structure of the table is then shown by the use of

the RLDIFINES entry and its associated subordinate entries; these

subordinate entries, which arc repeated duc to CCWRS clauses, must

not contain VALUE clauses,

6.10 Algebraic Signs

Algebraic signs are used (1) to show whether the valuce of an
item involved in an operation is positive or negative, and (2) to
identify the value of an item as positive or negative on an edited
report for external use.

Most forms of representation have a standard or normal manner
of depicting an operational sign. Thus, an indication that an oper-
ational sign is associated with an item is usually sufficient. Since
some forms of representation allow alternative methods for depicting
operational sieons, it is possible to describe certain types of opera-
tional sisns that deviate from the normal method. Editing sign con-
trol characters are used to display the sign of an item and arc not
operational signs. These editing characters are available only

threocugh the use of the PICIURE clause.

6.11 Unigueness of Data Reference

Every name used in a CCBCL source program must be unique, that

is, no other name may have the identical spelling.

0.12 Indexing

References can be made to individual elements within a table of

like elements by specifying indexing for that reference. An index
is assigned to that level of the table by using the INDEXLD KY clause

in the definition of a table. A name given by the INDLXLED BY clause

98

e

is known as an index-name and is used to refer to the assigned index.

An index-name must be initialized by a SET statement before it is
used as a table reference. (See "Table-llandling Statements', Section
6.19,9)

The index can be represented by a numeric literal that is an
integer or by an index-name. The lowest permissible index value 1is
1. The highest permissible index value in any particular case is
the number of maximum occurrences of the item as specified in the
OCCURS clause.

The indices, or set of indices, that identifies the table ele-
ment is enclosed in parentheses immediately following the table ele-
ment data-name. The table element data-name appended with a sub-
script is called a subscripted data-name or an identifier. When more
than one subscript appears within a pair of parentheses, the sub-
scripts must be separated by commas.

The composite format of a subscripted data-name is:

data-name (suhscript-l Esubscript-z [;subscript-.'sﬂ)
The composite format of a subscript is:

integer-1
index-name-1

The following are the restrictions on indexing and subscripting.
Tables may have one, two, or threec dimensions. Therefore, references
to an element in a table may require up to three subscripts or index-
es.

An index can bhe modified only by the SET, SEARCH, and PLERFORM

statements. Data items described by the USAGE IS INDEX clause permit

ae)

storage of the values of the index-names as data without conversion;

such data items are called index data items.

6.13 Format MNotation

The format of a COBOL statement is described in this manual
using the uniform notations itemized below. (See also Command Syntax
Notation, Section 0.5)

1. A COBOL reserved wora, printed entirely in capital letters,
is a word that i1s assigned specific meaning in the COBOL system., It
must not be used in any context or position other than that shown in
the format description. SUBTRACT, FROM and ROUNDLD in the cxample
below are reserved words.

2. One or more COBOL elements vertically stacked and enclosed
in a set of square brackets indicate that this portion of the syntax
is optional and may be included or omitted at the discretion of the
programmer.

3. A pair of braces is used to enclose vertically stacked COBOL
elements when one, and only one, of the clements is required; the
others are to be omitted. Refer to the example below,

4, The ellipsis . . . denotes a succession of operands of re-
peated CORCL elements that may be used in the samc particular state-
ment, even though the operands or elements are omitted in the text.
An ellipsis is associated with the last complete element preceding it,
i.e., if a group of operands and key words are enclosed within brack-
ets and the right bracket is followed by tne ellipsis, the proup (and

not mecrely the last operand) may be repeated in its cntirety.

S

4.“;

5. An underlined word is required unless the part of the for-

mat containing it is itself optional (enclosed in brackets). 1If a
required word is omitted or incorrectly spelled, it causes an error
in the interpretation of the program.

. All (COUBOL words that are optional words (not underlined)
may be included or omitted at the option of the programmer. These
words are used only for the sake of readability; misspelling, how-
ever, constitutes an error.

7. lowercase words represent information that is supplied by
the programmer. The nature of the information required is indicated
in each case. In most instances the programmer is required to pro-
vide an appropriate data-name, procedure-rame, literal, etc. Refer
to the example below,

8. The period is the only required punctuation. Other punc-
tuation, where shown, is optional,

9. Special characters (such as the equal sign) are essential
where shown, although they may not be underlined.

10. The notation A indicates the position of an assumed decimal
point in an item. 1
11. A numeric character with a plus or minus sign above it (%)
indicates that the value of the item has an operational sign that is
stored in combination with the numeric character. X
12. Character positions in storage are shown by boxesb’ C
An empty box means an unpredictable result.

15, The symbol A indicates a space (blank). b

101]

The following examplce shows a typical COBOL statement and use

] of the notation described above,
Ry A identifier-1 ,identifier-2 . S
SUBTRACT literal-1 ‘literal-2 .. .FROM ldentifier-m

o = [R (U.\'DL-‘DI

6.14 Reference Format

6.14.1 General Description: The reference format, which provides a ?

method for describing COBOL source programs, is described in terms
. of character positions or columns on a CRT line. The line may be up
to 80 characters in length. Rules for spacing eiven in the discus-

sion of the reference format take precedence over all other rules

for spacing. Division of a source program is ordered as follows:
the IDENTITICATION DIVISICN, then the ENVIRONMENT DIVISICN, then the
DATA DIVISTCON, then the PROCEDURE DIVISION., Fach division must bDe

written accordine to the rules for the reference format.

. The standard CCRCL line format is as follows:
Colunns 1-0 six digit sequence number
- Column 7 continuation area
Columns 38-11 area A 1
Columns 12-72 area B
Columns 73-80 identification area

The MICROSOFT COKOL uses this format. The Data General COBC(L
may use this card format, but the preferred format, called (RT format,

eliminates the scquence number tield ond uses free format for the

| remaining ficlds:

L Column 1 Area A, Continuation (hyphen

? character), comment indicator (%*).
Columns 2-80 Area BR.

L - The M6800 COROL programs use the format:

_ ' Columns 1-4 four digit line number

! Column 6 continuation area

E , Columns 7-~-10 area A

‘ Columns 11-71 area B

S Conversion programs between these formats have been written and

are available.

6.14.2 Reference Format Representation:

- Margin L designates the line number area.
Margin C represents the continuation column. An *
-t {asterisk) in margin C causes the compiler to

treat the entire line as a comment line. A /
! (slash) in Margin C will cause the compiler to
start printing the source program on the top
. of a new page. The remainder of the line is
T~ treated as a comment. A - (hyphen) in Margin C
is used to continue a non-numeric literal from
one line to the next.

Margin A represents the first column in the coding area.
or

Area A

Margin B represents the second area in coding portion of
or the line,

Area B

0.14,3 Continuation of Non-Numeric Literals: When a non-numeric

litecral is continued from one line to another, a hyphen is placed in
Margin C of the continuation line and a quotation mark is placed in

Area E following the hyphen. All spaces at the end of the continued

103

rrmnl nmms L

line and any spaces following the quotation markh of the continuation
line and preceding the final quotation mark of the literal are
considered part of the literal. Note that each line in this system
is terminated by a carriage return. If it is desired that additional
spaces are to be included at the cnd of the continued line, they

must actually be typed in.

©.14.4 Division, Section, and Paragraph Formats:

Division Header. The division header must be the first line of

a division reference format. The division header starts in Margin

A with the division-name followed by a space, the word DIVISION, and
a period. No other text may appear on the same line as the division
header.

Section Header. The section header begins on any line except

the first line of a division reference format. The section header
starts in Area A with the section-namc followed by a space, the
word SECTICN, and a period followed by a rpace. No other text may
appear on the same line as the section header.

A section consists of paragraphs in the ENVIRONMENT and PROCEDURL
DIVISION, and bata Description entries in the DATA DIVISION. Paragraph-
names but not section-names are permitted in the IUDENTIFICATION
DIVISION,

Paragraph-Name and Paragraphs. The name of a paragraph starts

in Area A of any line following the first line of a division reference
format (or section header if sections are used) and ends with a period

followed by a space.

104

P

A paragraph consists of one or more successive sentences. The
first sentence in a paragraph begins in Area B of either the same
line as the paragraph-name or the line immediately following.
Successive sentences begin either in Area B of the same line as the
Preceding sentence or in Area B of the next line.

A sentcence consists of one or more statements followed by a

neriod and a space. When the sentences of a paragraph require more

than one line, they may be continued on successive lines,

6.14.5 DATA DIVISION Entries: Each DATA DIVISION entry begins with

a level indieator or a level-number followed by at least one space,
the name of a data item, and a sequence of independent clauses ;
describing the data. The last clause of an entry is always terminated ;
by a period followed by a space. }
There are two types of DATA DIVISION entries: those that begin
with a level indicator and thosc that begin with a level-number.
FD is a level indicator. In DATA DIVISION entries that begin
with a level indicator, the level indicator begins in Area A,
followed by its associated file-name and appropriate descriptive
information in Area B.
DATA DIVISION entries that begin with level-numbers are called
Data Description entries. A level-number may be one of the following
set: 1 through 15, 77. Level-numbers less than 10 are written as
zero followed by a digit. At least one space must separate a level-
number (rom thc word succeeding it. In DATA DIVISION cntries that

begin with a Data Description cntry, the first Data Description entry

105

starts with a level-number in Area A, followed by the descriptive

information in Area B.

6.15 COBOL Input/Output Processing

0©.15.1 (OBOL Files: NETWORK ANS COBOL supports scquential and

indexed sequential file organizations and all access methods appropri-

ate for these organizations.

6.15.2 File Organization:

0.15.2.1 Indexed File COrganization: Indexed files are those in

which each record is associated with an identifying key. Indexed
files may be accessed directly or sequentially; however, they must
be assigned to input/output devices capable of direct access. Indexed
file organization is indicated in the COBOL language by tiic statement

ORGANIZATION IS INDLXED in the FILE-CONTROL paragraph of the LNVIRON-

MENT DIVISION.

6.15.2.2 Sequential File Organization: A sequential file is one

whose records are organized in a consecutive manner. There is no
identifying key associated with each record; therefore, records can
be accessed sequentially only. Consecutive files may be assigned to
any type of input/output device. Consecutive file organization is

indicated when CRGANIZATICN IS SEQUENTIAL is written or when the

CRGANTZATION clause is omitted altogether.

6.15,3 File Access: The three methods of accessing files are

sequential, random, and dynamic.

6.15.3.1 Sequential Access: Sequential access is the technique

100

of referencing records serially within a file. The order in which
records are read or written is determined implicitly by relative phys-
ical position within the file, This access method is specified by

the ACCESS MODL IS SEOUENTIAL clause or it is implied by the omission
of that clause.

6.15.3.2 Random Access: Random access is the tecchnique of

reading and writing records of a file in an order dictated by the
programmer. It may only be used with ORGANIZATION IS INDEXED files.
The record to be referenced is indicated by the value of a key at
the time that the input/output command is issued. This access
method is specified by the ACCESS MODE IS RANDOM clause. The RLCCRD
KEY clause specifies tiie key.

6.15.3.3 Dynamic Access: Dynamic access mode allows the file

to be accessed either sequentially or randomly depending upon the 1I/0
statement. It may only be used with files having ORGANIZATION IS
INDEXED. This access mode is specified by the ACCESS IS DYNAMIC

clause. The RECORD KEY clause is also required.

6.15.4 Record Keys: Files having an indexed organization may access

their records both sequentially and by a user specified key. The
variable used as the key is specified by the RECORD KEY clause. The

format of this clause is:
RECORD KEY IS data-name-1

where data-name-1 is an alphanumeric data item with no more than 8

characters, If uata-name-l has fewer than 8 characters, it should be

107

oo

-l

followed by a filler data item with enough characters such that the
number of characters in the filler and data-name-1 sum to 8. This
restriction is entirely the result of the M68UU file management

system.

6.15.5 File-Handling Methods: A file-handling method is the effect

of the combination of access technique, file organization, and the

manner in which the file is opened.

6.15.5.1 Sequential Access:

1. OFLN OUTPUT. This combination creates a consecutive [ile,
The new records replace any previous contents of the file.

2, CPEN EXTEND. New records will be added to the cnd of a
consecutive file.

3. CPEN INPUT. If the file organization is sequential, READ
statements obtain records serially in the order in whicn they were
originally written. If the filc organization is indexed, REAY
statements obtain records serially in key value order (not necessarily

in the order in which they were written).

0.15,5.2 Random Access:

1. CFLN OGUTPUT. This combination creates an indexed file. A
RECORD KLY must be specified and its contents consulted upon cach
WRITE statement.

2. OFEN INPUT, COrganization of the file must be indexcu. A

RECORD KLY must be specified and the contents consulted for eacn a

READ statement to locate the desired record within the file.]

3. OPEN INPUT-CUTPUT. The sole essential difference between
OPEN INPUT and OPEN INPUT-(UTPUT is that the latter permits the file
; to be updated instead of merely referenced; thus, WRITF statements

v | are allowed to address the file.

6.15.6 Input/Output Processing Summary: Table 4 surmarizes the

. COEOL language file manipulation statements. LEach file must be named
in an ENVIRONMENT DIVISION SELECT sentence and defined by an FD entry
in the DATA DIVISION. Lach of the langcuage elements concerned is

described fully in succeeding chapters of this manual.

0.10 IDENTIFICATICON DIVISION

6.16.1 General Description: The format of the IDENTIFICATION

DIVISION is:

IDENTIFICATION DIVISION,

PROGRAM-IU., program-name.
AUTHOR. comment-sentences.

INSTALLATION. comment-sentences.

DATE-WRITTEN. comment-sentences.

DATL-COMPILED. comment-scntences.

SECURITY. comment-sentences.

The IDENTIFICATION DIVISICON specifies information essential to
identification such as the name of the program, the date the program
‘ was written, programmer's name, security, etc. The listing contains

all information specified in this division, but the specified infor-

Rk adh 1o e RSN ibiiet
A3

T

mation in no way affects the object prosram. Allowable information
is presented in seven separate paragraphs: one mandatory, the others
optional. If the opticnal paragraphs are included in the program,

they must be in the order indicated above.

6,.16,2 Organization: The IDENTIFICATION DIVISION header is always

the first line in a source program and appears as shown above, in-
cluding the punctuation. This header and thke fixed paragraph-name(s)
must conform to COBOL Codinn Sheet specifications, Only the PROGRAM-
ID paragraph is mandatory; all others are optional. (Comment-sentences

for the optional paragraphs consist of any sentence or eroup of sen-

tences.

6.16.3 PROGRAM-10) Paragraph: ‘The PROGRAM-1D paragraph must always

appear as the first paragraph in the IDENTIFICATION DIVISION. This
paragraph permits the programmer to declare the name of the source

program.

0.16.{ DATE-COMPILED Paragraph: The DATE-COMPILED paragraph should
be used to provide the compilation data in the source program listing.
Lxample: The IDENTIFICATION DIVISION of a typical program might
be written:

IDENTIFICATION DIVISION

PROGRAM-ID., Inventory

AUTHOR. John Smith

DATE-WRITTEN. (ctober 15, 1977,

DATE-COMPILED. November 1, 1977,

110

REMARKS., This program prints the inventory report.
Table 4. File Manipulation Statements
type of RECORD
File ACCESS CPLN PERMISSIBLE KLY
Organization [MODL IS STATEMENT |I/0 Statement Required
INPUT READ. . .
AT END No
Sequential SEQUENTTAL WRITE, . .
(or unspe-}{ CUTPUT BEFOPE
cified) AFTER ADVANCING No
EXTEND WRITL., No
START. INVALID
REY
INPUT READ . . . Yes
AT TND
SEQUENTIAL
Indexed (or unspe- | QUTPUT WRITE. . INVALID Yes
cified) KEY
/0 START., . . VALID
KEY
READ. ., . AT END
WRITHE, . INVALID Yes
Y
REWRTTE, . INVALID
KEY
DELETE. . . INVALID
KEY

111

Table 4. ((ontinued)
Type of RECORD
File ACCESS OPEN PLERMISSIBLE KLY
Creanization |MODF IS STATEMENT |I/0 Statement Reauired
INPUT READ. .INVALID KEY Yes
OUTPUT WRITE .INVALID KEY Yes
Indexed RANDOM READ, .INVALID FLY
WRITE JINVALID KLY
I1/0 Yes
REWRITE .INVALID KLY
DELETE. .INVALID KEY
INPUT START .INVALID KEY
READ. .INVALID KLY Yes
READ NEXT. (AT END
Indexed DYNAMIC
OUTPUT WRITE .INVALID KEY Yes
START JINVALID KFY
READ. JINVALID KEY
READ NEXT, (AT LEND
I/¢C WRITE .INVALID KLY Yes

REWRITE .INVALID KLY

DELETE. INVALID KLY

112

6.17 ENVIRONMENT DIVISION

; 6.17.1 General Description: The format of the ENVIRONMENT DIVISION

! is:

1 . ENVIRONMENT DIVISION.

CONFIGURATION SECTION,

SQURCE-COMPUTER, source-computer entry.

OBJECT-COMPUTER. object-computer entry.

INPUT-OQUTPUT SECTION.

: FILE-CONTROL. file-control entry.

I-0-CONTROL. input/output control entry.

The ENVIRONMENT DIVISION describes those aspects of the data
processing program that depend on the physical characteristics of a
. specific computer. The information presented in this division en-
) ables the compiler to link the operations indicated in the DATA and

PROCEDURE DIVISIONs to the physical aspects of computer hardware and '
the executive system that is to execute the object program. Thus, H
the ENVIRONMENT DIVISION is entirely computer-oriented and changes
for each of the machines on the network.

The ENVIRONMENT DIVISION is divided into the CONFIGURATION
SECTIUN and the INPUT-QUTPUT SECTION.

The CONFIGURATICN SECTICN deals with the characteristics of the
computing system on which the source program is to be compiled and on
which the object program is to operate. This section is divided into
two paragraphs: the SQURCE-COMPUTER paragraph describing the computer

t on which the CCBOL compiler is to run and the OBJECT-COMPUTER para-

113

graph defining the computer on which the translatcd program is to run.

The INPUT-TPUT SECTION provides inférmution needed to control
transmission and handling of data betwcen external media and the ob-
ject program. There are two {ixed paragrapnh names in this scction:
the FILE-CONTRCL paragraph, naming and associating the files with
external media and the I/0 CONTROL paragraph specifying certain other

file information.

6.17.2 Configuration Section:

0.17.2.1 SOURCE-COMPUTER Paragsraph: The format of this para-

graph is:

SOURCL-COMPUTER, computer name.

The SOURCE-COMPUTER paragraph cnables the programmer to describe
to the compiler the computing system on which source program transla-

tion is to take place. The rules for computer-name are:

MACHINE COMPUTER-NAME ENTRY
M6300 Treated as comment., M6800 recommend-
ed
Intel MICROSOFT Treated as comment. Intel 8080
recommended.
bata Genecral CS-2U €S-20 :
6.17.2.2 CBJECT- C(MPUTIR Paragraph: The format of this para- W
graph is:

OBJECT-CMPUTER

computer-name (MEMORY SIZL integer CHARACTERS)

. ael

The rules for the contents of the OBJECT-COMPUTER paragraph are

the same as for the SOURCE-COMPUTER paragraph.

6.17.3 The INPUT/OUTPUT Section:

The INPUT-OQUTPUT section consists of the FILE-CONTROL and 1/C
CONTRCL paragraphs.

©.17.3.1 File Control Paragraph: The format of the File (ontrol

paragrapn is:

FILE-CONTROL.

SLLECT sentences

The format and meaning of the SELECT sentence varies among the

machines.

6,17.3.1.1 SELECT Sentence for M6300 COBOL:

SELECT file-name-1 (ASSIGN-clause (CRGANIZATION-clause
(ASSIGN-clause)l Y RECCRD-KEY-clause)

Each file defined in the FILE SECTION of the DATA DIVISION
must be named once and only once as file-name-1l in a SELLECT sentence.
Lach select file must have a File Description entry in the DATA]
DIVISICN,

The following clau;es that compose the SELECT sentence are
all optional; except for the ASSIGN clause, they may be written in
any order,

ASSIGN Clause. The format of this required clause is:

(ASSICN TO implementor-name-1)
The ASSIGN clause permits a file to be associated with a

Particular type of harduare device,

115

Acceptuble implementor-names are:

PRINTER
DISK diskid:number
Where: diskhid--represents an eiecht character dishk file.

identification number--represents the file number
for the suffix for the diskid.

{Refer to the COBCL operations reference manual for an
explanation of the meaning of diskid: number as related to different
disk types.)

GRGANIZATION Clause. The format of this clause is:

Sh%UhNTIAL
ACCLESS MODLE _I__b_ N})

DYNAMIC

SEQUENTIAL denotes that records are obtained or placed
equentially: that is, the next logical record is available from
the file on a RLEAD statement execution, or a specific logical record
is placed in the next position in the file on a WRITL statement
execution,

If RANDM or DYNAMIC is specified, the RLCORD KLY clause
{see below) must also be specified and the filc must be assigned to
a direct-access device. In this case, the specified logical record
(located using RECCRD KEY data-name contents) 1s made available from
the file on a READ statement execution, or is placed in a specific
location on the file (located usine RECCRL KLY data-name contents)

on a WRITE statement exccution. DYNAMIC access mode differs from

RANDM access mode in that tae file may be accessed sequentially or
Tandomly, depending on the 1/0 statement. ‘That is, after a record
is located by a random read, the records following it can be read
sequentially. Another random read can then be issued to switch back
to random access.

Sequential access is assumed when these clauses are omitted.

RECORD KLY clause, The format of this clause is:

RLCORD KLY IS data-name WITh UDUPLICATES

The RECORD KLY clause must be specificd if INDEALD organ-
ization is specified; it is not meaningful to SLQULNIIAL organization.
Data-name must be contailned within the record. In addition, it nust
conform to the rules for the file management system outlined in the
COBOL operations reference manual.

The contents of data-name are used by the READ and WRITL
statements to locate a specific record in a mass storage file. The
symbolic identity of tie reccord to be read or written must be placed
in data-name before the appropriate input/output statement is executed

The optional WITL DUPLICATLS clause specifies that records

with duplicate keys are to be permitted in the file.

6.17.5.1.2 SLILECT Sentence MICROSOFT Inte' 8080 (CbLCL:

0.17.5.1.2.1 Sequential Files: For each file having

recorus described in the bata bivision's File {cction, a Sentence-
Entry (beginning with the reserved word SELECT) is required in the

FILL-CONTROL paragraph., The format of a Select Sentence-Lkutry for

e A i iy — -

a sequential file is:

SLLLCT file-namec ASSICN TO DISK I: PRINTER
(RESTRVYE integer AREAS I ARLA)
(F1LL STATUS 1S data-name-1)

(ACCLSS MODL IS SEQUENTIAL) (ORGANIZATICN IS
STOULNTTAL) .

A1l phrases after "SELLCT file-name'" can be in anyv
order. uoth the ACCESS and ORGANIZATICN clauses are optional for
Sequential input-output processine. For Indexed or Relative files,
alternatc formats are available for this section, and are explained
in the sections on Indexed and Relative files (06.12-6.14),

If the RISERVL clausec is not present, the compiler
assigns buffer arcas. An integer number of buffers specifiecu by the
Keserve clause may be from 1 to 7, but any number over 2 is treateu
as 2.

In the FILL STATUS entry, data-name-1 must refer to
a two-character horking-Storage or Linkage item of category alpha-
numeric into which the run-time data manacement facility places status
information after an 1/0 statement. The left-hand character of data-

name-1 assumes tne values:

'o0' for successful completion

'1' for unu-of-IFile condition

12" for Invalid key (only for Indexed and Relative files)
'3' for a non-recoverable (I/C) error

'4' for implementor-related errors (sce User's Guiue)

118

The right-hand character of data-name-1 is set to '0!
if no further status information exists for the previous I/0 opera-
tion., The following combinations of values are possible:

File Status left File Status Right Meaning

: N o 0-K.
"1 1o EQF
| '3 o Permanent error
| '5! T4 Disk space full
- For values of status-right when status-left has a

value of '2', see the Sections on Indexed or Relative files (o0.12-
0.14).

0.17.3.1.2.2 Indexed Scquential Files: For an Index-

ed {ile organization, the SELECT entry must specify ORGANIZATION IS

INDEXED, and the ACCESS clause format is:

ACCLSS MODL IS SEQULENTIAL RAND(M DYNMIC
T~
A file whosc organization is indexeua can be accessed
- either sequentially, dynamically or randomly.

Scquential access provides access to data records in
ascending order of RIECCRD KLY values.

In the random access mode, the order of access to
records is controlled by the programmer. Lach record desired is ac-
cessed by placing the value of its key in a hey udata item prior to
an access statement,

1 In the dynamic access mode, the programmer's logic may

' 119

change from secuential access to random access, and vice versa, at

will.

6.17.5.1.2.3 RLCCRD KLY Clause: The general tormat

of this clause, when required, 1s:

KFCCRD KLY 1S data-name-1
where data-name-1 is an item defined within the record descriptions
of the associated file description, and is a croup item, an clemen-
tary alphanumeric item or a decimal field. A decimal key must have
no P characters in its PICTURL, and it may not have a SEPARATL sign,
No record key may be subscripted,

If random access mode is specitied, the value of data-
name-1 designates the record to be accessed by the noxt DELFTL, R1 ADb,
REWRITE or WRITYE statement. Lach record must have a unique record

key value.

6.17.5.1,2 .4 File Status Reportina: Il a FILL STAIUS

clause appears in the LNVIRCONMENT DIVISICN for an Indexcd orcanization
file, the designated two-character data item is set after every I/0

statement. The following table summarizes the possible scttings.

Status Data Status Data Item RIGIHT Character

Item LYFT No Further Sequence Duplicate Ne Record TDisk Space

Character Pescription frror Key Found Full
(0) (1) (2) (3) (4)

Successful

Completion (0) X

At End (1) X

Invalid
key (2) X X X X

Permanent
Error (3) X

Sequence error arises if access mode is sequential
when WRITLs do not occur in ascending sequence for an Indexed file,
or the key is altered prior to REWRITF or an unsuccessful READ pre-
ceded a DELETE or REWRITE. The other settings are self-explanatory.
The left character may also be '9' for implementor-defined errors;
see the User's Guide for an explanation of these.

Note that 'Disk Space Full' occurs with Invalid Key
(2) for Indexed and Relative file handling, whercas it occurred witn
"Permanent Error" (3) for sequential files.

If an error occurs at cxecution time and no AT END or
INVALID KLY statcments arc eiven and no appropriate declarative
FERROR section is supplied and no FILE STATUS is specified, the error
will be displayed on the €onsole and the program will terminate.

6.17.35.1.3 SELECT Sentence for bata General (S$-20: SELECT

Names internal program files and associates each one with a given
hardware device and external file name. Also, logical file organiza-
tion, access method, I/C status and keys may be defined if required
hy the program. Refer to Fipure 6,1 for examples of the SELL(CT statec-
ment.

If the external file-name option is omitted from the SELECT

statement, the system file-names are supplied by default. Refer to

121

the following table for a list of the default filc-names.

i
SYSTEM FILE-NAMLS
. Device File-name
. et PRINTER SLPT
. PRINTER-1 $SSLPT1
; Terminal KEYBOARD $TT1
i Terminal DISPLAY $TTO
DISK The first ten characters of the

internal (COBOL) file-name with
"-" deleted,

o ™

122

6.17.3.1,3.1 Sequential SELECT:

SELECT file-name ASSIGN TO DISK
PRINTLR

PRINTER-1 {.id-1it)

—

(; ORGANIZATION IS SE%UENTIAL)
(3 ACCESS MODE IS SEQUENTTAL
(GFITE STATUS IS data-name
(;DATA SIZE IS integer).

6.17.3.1.3.2 Indexed SELECT:

} SELECT file-name ASSIGN TO DISK(.id-1it)
' s ORGANIZATION IS INDLXED

(ACCESS MQODE IS SEQUENTTAL

o)
ER DYNAMTIC)
T, ; RECORD KEY IS data-name
) (+FILE STATUS IS data-name)
i (3 INDEX SIZE IS integer)
(;DATA SIZE IS integer)

FIGURE 6.1 (S-20 SELECT SENTENCL FORMATS

T VT SO

LXAMPLLES OF THE SELECT STATEMENT:

(SELECT for a randomly allocated indexed file)

SELECT (FILE ASSIGN TO DISK,"DP1}:CFILED";
ORGANIZATION IS INDEXED;

ACCESS MCDL IS DYNMMIC;

RECORD KEY IS C-KEY;

FILE STATUS IS CFSTAT.

(SELECT for a contiruously allocated indexed file)

SELECT CFILE ASSIGN TO DISK,EX-FILL-NAME;
ORGANIZATICN IS INDEXED;

ACCESS MODE IS RANDOM;

RECORD KEY 1S C-EKEY;

FILL STATUS IS CFSTAT;

INDEX SIZL IS 20;

DATA SIZE IS 105.

6,17.5.1.3.3 Rules for use: Lxternal (System) File

Specification--the "id-1it" following the file device type in the
SELECT statements is an Interactive COBOL extension. It allows
specification of a program external file name. Also, if the device
is a disk, an optional device specifier may be used to associate the
external file name with a particular disk drive.

An external file-name for an indexed file must not
have an extension.

If a data-name is used for the external file-name, tihe
full value of the data-name must be a valid file-name or the file-name
must be left justified in the data-item and terminated by a null (1OW-
VALULE).

When the external file-name is omitted, file-names are
supplied by default. Refer to the following table for a list of these

system file-namces,

124

[t

i W
™

SYSTEM FILE-NAMES

Device File-name
PRINTER $LPT
PRINTER-1 S$SLPT1
Terminal DISPLAY $TTO
Terminal KEYBOARD S$TT1
DISK The first ten characters of the
internal ((OBOL) file-name with
"S" replacing "-".

The FILL STATUS item must be described as a two char-
acter alphanumeric item.

Record keys must be alphanumeric and may be a maximum
of 100 characters long.

The DUPLICATES phrase specifies that the value of the
associated alternate record key may be duplicated within any of the
records in the file. Further, (S interactive CCLOL phrase is not
specified.

INDEX SI1ZE specifies the number of 512-byte hlocks of
contiguous disk storage space to be rescrved for the data portion
of a sequential, indcxed, or relative file when the file is created.

The file device names DISK, PRINTER, DISPLAY, and
KEYROARD are reserved words. :

Files assigned to PRINTER or DISPLAY must be sequential
and opened in OUTPUT or EXTEND mode only.]

Files assigned to KEYLBOARD must be sequential and openeu

in INPUT mode only.

©.17.5.2 TI/0 (ONTRCL Paragraph: The format of this paragraph is:

125

(SAME AREA FOR file-name-1 (,fite-name-2)y)

Where the format of the SAME AREA clause i1s the same for all
machines.

When SAME AREA is written, the data areas for all of the files
mentioned overlap. Thus, only one of the list of files may be open
at the same timec. More than one SAML ARLA clause may appear in a

CCECL prosram, but no one file-name may appear in more than one such

clause.

6.18 DAIA DIVISIOA

6.18.1 General Description: The DATA DIVISION describes data that

the object program accepts as input in oruder to manipulate, create,
or produce output. [llata to be processed fulls into three categories:
1. Data that is contained in files and enters or leaves the
internal memory of the computer from a specified area or areas.
2. Data that is developed internally and placeud into intcrmedi-
ate or working storage, or into specif{ic format for output recporting
purposes.

3. Constants that arc defined by the usc.

0.18.2 Physical and logical Aspects ot lata Description:

6.15.2.1 DATA DIVISI(N Crganization: The DATA DIVISICN is sub-

divided into tie FILL, and WORKING-STORAGL SECTIONS.
The FI1LL SLCTIGN defines the contents of data files stored on an
external medium. lach [ile is defined by a {ile description followed

by a record description or a series of recorud descriptions,

—
[)
<

ael

The WORKING-STORAGLE SLCTION describes records and noncontiguous
data items that are not part of external data files but are developed
and processed internally.

6.18.2.2 DATA DIVISION Structure: The DATA DIVISICN is identi-

fied by and must begin with the header:

DATA DIVISICN.

tach of the sections of the DATA DIVISIONS (except the WORKING-
STCRAGL SECTION) is optional and may be omitted from the source pro-
gram, The fixed names of thesec sections in their required order of

appearance as section hcaders in tne DATA DIVISION are:

FILL SLCTIGN,

WORKING-STOKAGE SECTION.

Section headers for the FILE SECYICN aw followed by one or more
sets of entries composed of file clauses, followed by associated
Record bescription entries. W(RKING-STORAGL SLCTION headers are
followed by Data bDescription entries for noncontipuous itcems, foliowed

by Record bescription cntries. See Figure 0.2,

v.lo.o l'ile Scetiont In a LGLCL program the lile Description (Fu)

entry represents the highest level of organization in the FILL SECTTON,

Tne FILL SLCPION is coumposed of the section hecader FILE SECTION and a
period, followed by a File Description entry consisting of a level
indicator (FD), a data-name, and a series of independent clauses.

These clauses specify the size of the physical records, and the names

DATA

LIVELS DIVISION

WORKRTNL -
STCRAGL
SECT1A
FILE S

SLALe SECTICA

FI1Lt
SLCTION

-~

Section

File bescription

% Record Record Record

File
FD
-
bescrinticn Pescriptioen lescrirtioun
Record
[orour] [Groun]
Llementar l [7klcmcnta1\] [ﬁllemcntarlj[4}lemcntar;][glcmcntarvf
-
! FILL SECTION WCRRING-ST UK AGL SECHTCY
— —
~ DATA DIVISICN

FILL SECTION t
Sections of the DATA
DIVISION, if present,
appear in the source
program in the order W-S SLCTION
shown rcading from
top to botton.

FICURL 6.2 DATA DIVISION Structurce

of the data records and reports that compose the file. The entry

itself is terminated by a period. Tor the Intel 8080 MICROSCFT COBOL,

the File Description (FDP) Fntry also specifies the name of the file
- as needed by the operating system,

Record Description Structure. A record description consists of

a set of Data Description entries that describe the characteristics

of a particular record. Yach Data Description entry consists of a
level-number f{ollowed by a data-name, followed by a series of inde-
pendent clauses, as required. A record description has a hierarchical
structure; therefore, the clauses used with an entry may vary consid-
erably, depending upon whether or not it is followed by subordinate
entries. The structure of a record description is defined in "(Concep-
ts of Levels" in Section 0.9.4;- elements allowed in a record descrip-
- tion are specified in 'Data Description Intries" later in this section

(Section 0.18.6).

™ 6.16.4 WORKRING-STORACLE SECTTON: The WCRKING-STORAGEL SECTION is com-

posed of the section header WORKING-STORAGE SECTICN and a period,
followed by hata bescription cntries for noncontiguous werking-storage
items and Record Description entries (in that order).

0.18.4.1 Noncontiguous horking-Storage: Items in workinu-storage

that bear no relationship to one another need not lLie grouped into
records provided thev do not need to be further subdivided; instead,
they are classified and defined as noncontiguous elementary items.
Fach of these items is defined in a separate Data Description entry

that bhepins with the special level-number 77,

129

PEINPE

For

Data clauses required in each Data Description entry arec:
1. Level-number.
Z, Data-name.
3. The PICTURE clause.
Other record description clauses are optional and can be used
to complete the description of the item if necessary.

6.18.4.2 Working-Storage Records: Data elements in wor'ing-

storage that bear a definite relationship to one another must te
grouped into records according to the rules for formation of record
description. All clauses that are used in normal input or output
record descriptions can be used in a workina-storage record descrip-

tion,

0.18.4.5 Initial Valucs: The initial value of any i1tem in the

WORKING-STCORAGL SECTICN except an index data item is specitied by
using the VALUE clausc of the record description. Tie initial value

of any index data item is determined at compiiation tiwuc.

6.18.5 File bescription-Complete LIntry Skeleton: The veneral format

of this entry is:

' file-name

[AREL JRECORD 1S STANDARD
RECORDS ARFE MTITTED

) RLCOPD 15 data-name-7 |data-name-4§
D AT A RTCORDS N‘.)E} a-name [a a-name]
150

- Cem A e L . - —

The File Description entry furnishes information concerning the
physical structure, identification, and record names pertaining to a
given file,

0.18.5.1 LABLEL RECOPDS Clause: The format of tuis clause 1s:

LABEL RECORU IS STANDARD
RECORDS AREL OMITTED

The OMITTED option specifies that no explicit labels exist for
the file or the device to which the file is assigned,

The STANDARD option specifies that standard system labels exist
for the file or the device to whaich the file is assigned. Such labels
are written when the file is opened for output and checked automatical-
ly by the operating system when the file is opened for input or
input/output.

For disk files, the LABEL RECORDS clause varics depending on the
machine. TFor the M0SGO COBOL the TABLEL RECORDS clause is optional,
and if present is treated as a comment. For the Intel 8080 MICROSCFT
CCBOL and the Dhata General (S-20 CCHhOL, LABEL RECORDS are standard.

6.15.5.2 DATA RECORDS Clause: The format of this clause is:

RECCGRD IS
DAT A data-name-7 (data-name-3) .
RECORDS ARL
The DATA RECORDS clause cross-references the description of data

records with their assoctiated file description., Fach logical record

in the file may be named in this clause; the order in which they are

LN e e e e AL o A

s) Slashs s ¥

listed in the clause is not important. It must be remembered tnat
no two records of the same {ile are available for processiny at the
same time; in other words, 1{ one record is read from a {ilc and
then another record is read from the same file, the second recoru

rcplaces the first,

0.18.6 Data Description Lntries:

©.18.0.1 General Format:

Level-number })data-name (REDEFINES-clause) (COPY statement)

FILLER

(PICTURE-clause) (USAGE-clause)
{BLANK-~clause) (JUSTIFIED-clause)
(VALUE~clause) (OCCURS-clause)

A hata Description entry (see Table 4) describes characteristics
of each item within a data record. kach item is accorded a scparate
entry that must appear in the order in which the item occurs in the
record, since the rclative location of cach entry is communicated to
the compiler by its position in the record description. Lkach entry
consists of a level-number, data-name, and seriecs of clauses terminat-
ed by a period.

The reserved word FILLER mav be substituted for a proprammer-
defined data-namec when an unused portion of a logical record or data
item that is not referenced directly is defined.

Specific formats tor individual tyvpes of data i1tems arc shown

below. In ecach of these formats, clauses that do not appear are

categorically forbidden in that data type, while clauses that are
mandatory are depicted without brackets.

6.18.06.2 Detailed Formats of bata Items:

Group Item

Level-number {hata-namé} [RLUEFINES-clause] [CLCURS-clause]
FILLER

[USAGE-clause]

[VALUE is non-numeric-literal].

Ixample:
S 01 GROUP-ITEM.
K 02 FIELDO1 PICTURE X.
! 02 FIELD-2 PICTURE X.
o~ TABLE 5 VARIOUS DATA DESCRIPTION ENTRIES LISTING

01 VARTWIS-DATA-DESC,
02 ALPHABETIC-TYPES.

05 Al PICTURE AAAAAAAA.

03 AZ REDEFINLS Al PICTURE A(8).

03 A3 PICTURE A(4) CCCURS 4 TIMES.

03 A4 PICTURE A(b) VALUE IS 'XYZ A',

03 A5 PICTURL A[2) USAGE IS DISPLAY,

03 Ao PICTURE A(8).

03 A7 REDEFINES po PICTURE A(2) USAGE DISPLAY
OCCURS 4 TIMES.

02 ALPHANUMLRIC-TYPES KEDLEFINLS ALPHABETIC-TYPLS.
‘ 03 AN1 CCCURS 8 TIMES PICTURE IS X9A.

05 ANZ PICTURE X(106) USAGL IS DISPLAY.
03 AN3 REDEFINLES ANZ PICTURE X(4) OCCURS 4 TIMES,

02 ALPHA-EDITYD-TYPES.
03 ALl PICTURL XXEXXEXX,
- 03 AL2 PIC IS XXXXBXXY9ECOBXXX.
. 03 AE3 REDEFINES ALZ PIC X(10)BUYAAX DISPLAY.
U2 NUMLRIC-LEDITED-TYPLS,
03 NE1 PICTURE 1S 22,999+,
03 NEZ REDEFINES MNE1L PICTURL **% %%g-
: 03 NES3 OCCURS 4 TIMES PICTURL Z2Z9.
02 NUMERIC-TYPE,
03 N1 PICTURE 9999 OCCURS S TIMES USAGE DISPLAY.

03 N2 PIC S9999 VAIUE IS -1234,
05 N3 REDEFINES N2 PICTURE S99Vv99,

6.18.6,3 Alphanumeric llementary Item:

level-number {aatﬂ'“amei pnnLrlnns-clause] [ocrURs-clausd

FILLIR
o) :
%%{125£$ 1S on-type [USAGE 1S DISPLAY]
?
[VALUE IS non-numeric-litoraﬂ %%ﬁ%%ktl&gi RIGHT
Ixample:
2 02 CUST-NAME TTICTURL X(21) DISPLAY
02 CUST-ADR PIC X (45)
6.18.6.4 Alphanunmeric Ldited Llementary Iten :
level-number Jdata-name [thEFINES-clausc] {O(runs-clausq
FTLLER
PICTURE
{T"I%L‘} IS ae-tyre [lJSA(;la IS hISI‘l.AY]

.

[VALLE 1S non-numeric-literal {%%g%lﬁi@g}

RIGUT
Example:
02 DATE PICTURE XXBXXXBXXXX VALUE '15 DEC 1977°'.

6.18.6.5 Numeric Edited Llementary ltem:

ol data-name T . . _
Level-number g%ILLER } [RLDLFINES clausﬂ [OLLURS clausﬂ

P ne-type BLANK WLEN ZEROQ

{PICTURE} s {numeric-type BLANK WHEN ZERO}

[usact 1S DISPLAY].

Cxample:
02 DEPT-NO PYIC 272099,

02 GROSS-SALLS PICTURE $2,222,227,222.99-.

6.156.0.0 Alphabetic Llementary Item:

_ data-name YEDLETVEG. T RG
level-number %ILLH{ } [H.DLFINLS clause] [OL(URb clause]

—

PICTURE
{F}-L—I—U—I—} Is alpha-type [USAGE IS DISPLAY]

VALUE 18 non-numeric-litcraq

Lxample:

02 COUNTY-NAME PICTURE A(35) USACE IS DISPLAY.

0.18.6.7 ASCII Decimal Llementary Item:

revel-number data-name [RLULFINLS~clausc] [UL(URb-cluusu]
FILLLR

C

PICTURL. : . SAGE 1S :
{Fr—} IS numeric-type [USAGE 1S vISPLAY |

[VALUF 1S numeric-]iteral].

Example:
02 COST PIC 999V9Y9 VALJULE 10,30,

0.18.6.8 Packed vecimul Llementary Item:

FILLER

level-number {Aata-namé} [RLHMF!RES-clau5u] [(((URS-clausc]

COMP

PICTURE
PIC IS numeric-type USAGL IS{CUMPUTATIUN[

[VAlUL IS numeric-literal].

02 TOTAL-RECORDS PIC 9(4) COMPUTATIONAL.

0©.18.0,9 Index Item:

77 index-name USAGL IS INDEX,

Kxamglo:
77 X 1 INDLX

6.18.0.10 REDEFINES Clause: The format of this clause is:

1350

Level-number data-name-1 REDEFINLS data-name-2

The REDEFINES clause overlaps items in storage (allocates the
same storage space for different items at different times) or
provides an alternate grouping or description of the same data
(redefines an elementary item or a group item.)

The level-numbers of data-name-1 and data-name-2 must be identical.

The REULFINLS clause 1s not used at the record 01 level in the
FILE SECTICON. The DATA RECORDS clause in the FD entry indicates the
existence of more than one type of record; thus, an implied redefin-
ition exists at the 01 level.

Redefinition begins at data-name-~2 and continues until a level-
number whose value is equal to or less than data-name-Z. is encountered;
therefore, between data-names-1 and -2 there must not be a level-
number lower than that of data-names-1 and -2. pata-name-1 must
follow data-name-2 such that, 1if data-name-Z is a group entry, tie
entry for data-namc-1 must appear immcdiately after the entries for
all items 1in that group. liowever, additional entries that redefine
the samec area may intervene.

Data-name-1 may bec a group or an elementary item irrespective of
the nature of the data-name-2 item. If it is a group, the data-namne-2
cutry is tollowed by ail the entries in that group, siuce such cntries
arc part of the redefinition; if it is an clementary item, it completely
redefines data-name-2. A LEDEFINES clause may be specified for an

1tem within the scope of an arca being redefined; that is, REDEFINFS

clauses may be specified for items subordinate to items containing

REDEFINLS clauses.

When the RLEDEFINES clause is used with certain other clauses,
entries (except for condition-name entries) containing or subordinate
to the REDEFINES clause must not contain VALLL clauses,

When one area is redefined in three or more wavs, differcnces
among the COLOL versions exist. I{ A, R, ¢ and) arc all to refer
to the same arca, the Mo300 COROL and the Intel S080 MICROSOFT COPOL
require that the following sequential structure he used:

Define A

B redefines A

C redefines B
D redefines €

The Data General (5-20 CCEOL requires that the structure be:
Define A

B redefines A

C redefines A

D redefines A

when an areas is redefined, all descriptions of that arca remain
in effect for the entire program. The one that is selected depends
on the particular reference made to the arca. Tor example, if items
Aand B oshare the same arca, MOVE X TO A moves XN to the arca according
to the description of A, MOVE Y TC k moves Y to the same area accordine
to the description of B. Thesc statements could be exccuted anywhere
in a progsram; tinal contents of the area depend on the order in which
they are cxecuted. A table of constant i1tems is redefined so that
any item in the table can be referenced bv position rather than by
individual name. This does not redefine the area according to differ-

ent patterns, but simply permits the same pattern of items to be

138

[P P

3
}
!
i

- sl

considered in a different way.

6.18.6.11 PICITURE Clause: The format of this clause is:

PICTURE
PIC IS character-string

The PICTURE clause describes the general characteristics and

cditing requirements of elementary items.

The character-string consists of certain allowable combinations
of characters in the COBQL character set used as symbols. These
allowable comvinations determine the category of the item. The

five categories of data that can be described with a PICTURE clause

are:
1. Alphabetic
2 Alphanuneric
3. Numeric

4, Alphanumeric Edited
5. Numeric Idited
The following rules apply to the use of the PICTURE clause:

1. GENERAL: The number of occurrences of any of the characters

indicates the size of an item described by the PICTURE clause. The
size may be indicated either by repeatine the character or, in a ﬁ
shorthand way, by writing the character once and putting the number
of its occurrences in parentheses. Thus, 2 (10)9(2) is equivalent
to 228222222299, A maximum of 30 characters is allowed in a PICTURL
clause, This limit does not refer to the number of characters in the

item itself, but only to the number of characters (including paren-

theses) used in the PICTURL specifying the item. For example, the
same item may be described by a PICTURL containing 12 characters,
or by a PILTURL containing only 9 characters, z(10)9(2). In cither
case, the actual size of the item is 12 characters. An item contain-
ing 75 alphabectic characters may be swnecified by the PICTURL A(7S5),
which uses only 5 characters, but the same item may not be specified
by a PICTURE in which A is repeated 75 times, The size of an alpha-
betic or alphanumeric item described by the PICTURL 1s limited to a
maximum of 255 characters cxcept for numeric display items, which are
limited to 15 digits. The size of an entire Croup Item is also limit-
ed to 4095 characters.

2. Categories of Data

a. Alphabetic (alpha-type): The PICTURE of an alphabetic
item contains only the character A. The number of A's in the chara
er-strine denotes the size of the data item, and each A represents
one character that at execution time may contain one of the twenty-
six letters of the lknglish alphabet or the spacce character.

b. Alphanumeric (an-type): The PICTURL of an alphanumeric
item may contain only the Character X or a combination of the charact-
ers X, A, and ¢, An X indicates that the corresponding charuacter
position of the data item may contain any one of the characters in
the ASCII sct. When the PICTURL 1s described with a combination ot
characters, each character is treated as though it wcre an X, since
no examination of the data placed in the item is made at execution
time. Thus, this type of PICIURL description mayv have documentary

significance only to the programmer.

140

c. Numeric (numeric-type): The PICTURE of a numeric data
item may contain only the characters 9, S, and V. p

The character 9 represents a digit position containing a
numeral and is counted in the sizc of the item.

The character S indicates the presence of an operational
sign and must be written as the lcftmost character in the PICTURE.

The character V indicates the position of the assumed

decimal point and may occur only once in the character-string. The

V does not represent a digit position and therefore is not counted
in the size of the item. When a V is written as the last {rightmost)
character in the PICTURE, it is redundant.

. Alphanumeric fidited (ac-type): The PICTURL of an
alphanumeric edited item contains any combination of the characters

X, A, and 9 together with one or more occurrences of the insertion

’
characters 0 (zero) or B. Lach 0 represents a character position
into which the character 0 is to be inserted; ecach b represents a
character position into which the space character is to be inserted.
Thus, an alphanumeric edited field is one that contains certain char-
acter positions into which insertion characters are forced whenever
data is stored in the item at execution time,.

€. Numeric Ldited (ne-type): hditing alters the format

and punctuation of data in an item; characters can be suppressed or

addeu. FEditing is accomplished by moving a data item to an item
described as containing editing symbols. Movement may be direct or

indirect: The programmer can specify a MOVL statement or arithmetic

141

statement in which the result of computation is stored in such an
item.

Characters that may be used in a PICIURL of a numeric culteud

. item are

9V S +- . , 0k / CR DB 2L %

The characters 4% and V oare discussed above: thneir use 1s
exactly the same as in numeric items. The remainder are insertion
and replacemeni. characters (sce below).

3. Insertion Characters: Khen an insertion cl.aracter is specif-
ied in the PICTURL, it appears: in the editeu data item; therefore, tihe
size of the item must reflect these additional characters. Insertion
characters and their characteristics are:
3 When a single doliar sign 1s specified as the leftmost sym-
bol, it appears as the leftmost character in the size of the item.
+ When a plus sign 1is specified as the tfirst or last synmbol,
a plus sign 1s inserted in tie indicated character position ol tie
¢uiteu data itcem providea the vata is positive (contalns a positive
operational sign) or is unsigned. I{ the watu is negative, a minhus
sign is inscrted in the inuicated Character pusftion. Tinis sign is
counted in the size of the item.
- Wnen a minus sign is specified as the tirst or last symbol,
a minus sign is inserted in the indicated character position of tac
edited data item provided the data is necgative (contains a negative
operational sign). If the data is not negative, a blank is inserted
in the indicated character position. This sign or blanl 1s counted

in the size of the item,

T o

. —— - .l e~ - - - —

. The period character rcpresents an actual decimal point
as differentiated from an assumed decimal point. When used, a decimal
point appears in the cdited data item as a character in the indicated
character position; thereforc, the decimal point is counted in the
size of the item. A PICIURE can never contain more than one decimal
joint, actual or assumed.

, When a comma is used, a comma is inserted in the correspond-
ing character position of thec edited data item, It is counted in the
size of the iten.

0 When a zero is used, a zero is inserted in the correspond-
ing character position in the edited data item. Tt is counted in the
size ol the item.

B When a character B is used, a space is inserted in the cor-
respondine character nosition in the edited data item. It is counted
in the size of the item.

/ When the slasn character is used, a slash character is in-
serted 1n the corresponding character position in thc edited data
item. Tt is counted in the size of the item.

CR The credit svmbol CR may be specified only at the right end
of the PICTURE character-string, It is inserted in the last two
character nositions of the edited data item provided the valuc of the
data is negative; if the data is positive or unsigned, these last
two character positions are set to spaces. Since this symbol always
results in two characters ((R or spaces), it is included as two char-

acters in the size of the item.

143

.r
Table 6: [Lxamples of Insertion Characters
Source Data Editing PICTURL Ldited Ttem ——1
~ 4 8 €99 S 48
. 48434 $99.99 €48 .34
4834 9,009y 4,834
292 +690 + 292
293 +999 + 29 2
. 2y 2 +999 - 292
2072 -999 - 292
292 999- 292 -
2 9 2 999 - 29240
h 243421 $EE00Y, 00 SAN 293 L 2 |
243421 $00999, 99 S 002453 .20
’ 11453 4 99.99CR 11. 34 CR
114534 ~99,99CR 11. 344040
23476 ' 99.99DB 23 .7 60D b
25476 90, 99DR 13 .7 0404
123456 99/99/99 12/54/56

DR The debit symbol DB may be specified only at the right end
of the PICTURE, It functions in the same manner as the credit symhol.

4. Replacement Characters: A replacement character suppresses
leading zeros in data and replaces them with other characters in the
edited Jata item. Only one replacement character may be used in a
PICIURLE, although Z or * may be¢ used with any one of the insertion
characters. Replacement characters and their characteristics are:

VA One character Z 1is specified at the left end of the PICTURE
character string for ecach leading zero that is to be suppressed and
replaced by blanks in the edited data item. Z's may be preceded by
one of the insertion characters § + or - and interspersed with any .f
the . , 0 or R insertion characters.

Only the leading zeros that occupy a position specified by
Z are suppressed and replaced with blanks. No zecros are suppressed
to the rieht of the first non zero dieit whether or not a Z is pre-
sent, nor are any zeros to the right of an assumed or actual decimal
point suppressed unless the value of the data is zero and all the
character positions in the item are described by a Z, In this special
case, even an actual decimal point is suppresscd and the edited item
consists of all blanks.

If a § + or -~ is present precedine the 7's, it is inserted
in the far left character positon of the item cven if succeeding
zeros in the item are suppressed. In the special case where the value
of the data is zcro and all the character positions [ollowing the
the $ + or - is replaced by a blank.

§ + or - are specitficd by I's,

-
4=
W

¥
!

S8k Mmooy

s

ST,

If a 0 or B or , in the PICTURE is encountered before zero

supnression terminates, the character 1s not inserted in the cdited

data item but is suppresscd, and a blank inserted in its place. F
'
* The asterisk replaces the leading zeros it ecdits by an
asterisk instead of a blank. It is specified in the same way as the *

editing character Z and follows the same rules, except that an actual

e

BREA R b s ceoiig Sl @

decimal point is never replaced.

) when the dollar sign is used as a replacement character to 1

suppress leading zeros, it acts as a floatineg dollar sign and is in-

R e A -

serted directly preceding the first nonsuppressed character. One

more dollar sign must be specified than the number of zeros to be
suppresscd. This dollar siyn is always present in the edited data
whether or not any zero suppression occurs. The remaining dollar
K siens act in the same way as Z to effect the suppression of lcadineg

: zeros, No otner editing character may precede the initial dollar sign.

o . Each dollar sign specified in a PICIURE is counted in determining the
- _ size of the report item.
+ When a plus sien is used as a replacement character, it is

a floating plus sign. The plus sign is specified one more time than

the number of leadine zeros to be suppressed. It functions in the

same way as the floating dollar sign: a plus sign is placed directly

precedineg the first nonsuppressed character if the edited data is
positive or unsicned, and a minus sicen 1s placed in this position 1if

the edited data is negative,.

- When a minus sien 1s used as a renlacement character, it is

140

Table 7: Ixamples of Replacement Characters

Source bata Editineg PTCTURL dited JTtem
00923 22999 Ado 23
00923 22799 AA9 23
0000 g 00 2222.99 AAAAN. OO
009,23 $x%%_99 $ * *x9 273
. 00038)24 $$$$9.99 AA A S8 . 24
ousAZB ---9,99 AA-5. 20
32 Ao 5 $$%.99 $32 .65
i
| i
147

.,

29

Examples of PICTURE Editing

DATA to be Edited PICTURE of Edited 1tem

Report Item
012345 2272,999,99 Al 2,345,000
G 01234 299,999,499 Aoo, vl 2 34
000123 $222,229.99 SAAAMNAANAL . 23
0 0uvo1l2 $222,222.99 S AAAD .12
001234 $xx%x k%9 09 $ k% 1 0234 U0
123456 SrE% wkx 09 $1253,450.00
1 234 5 6 §r*%k k% 09 $ % & x kX x k] 23
Goool1 2 +999, 099 000, 012
00001 2 -212,221 AA A aAAN L2
123456 $222,229.99CR $1253,450. 0
ooot12 3 §C2L,079.9900 SAAMAAAA T . 2
GoUl23s4 $(4),$89.99 AAAA s 1 25 . 4
000000 $(4),%8%.99 AAANAAA S . 0
000012 ceee,-==.99 AdAbpapan -, 12
00001 2 s, --=99 AAAAAAAA .12
0 000UV 1L 48,$22.99 l11legal PICTURL

148

a floating minus sign. The minus sign is specified one more time
than the number of leading zeros to be suppressed. It functions in
the samc way as the floating plus sipn, except that a blank is plac-
ed directly preceding the first nonsuppressed character if the edit-~
ed data is positive or unsigned.

5. Summary:

a. OUnly one of the characters of the set 2 * § + and -
can be used within a single PI{TURE as a replacement character, al-
though it may be specified more than once.

b. If one of the replacement characters Z or * is used
with one of the insertion characters § + or -, the plus or minus
signs may be specified as either the leftmost or rightmost character
in the PICTURE.

c. A plus sign and a minus sign may not be included in
the same PICTURE.

d. A leftmost plus sign and a dollar sign may not te in-
cluded in the same PICIUREL.

e. A leftmost minus sign and a dollar sign may not be in-
cluded in the same PICTURE.

f. The character 9 may not be specified to the left of a
replacement character.

g. Symbols that may appear only once are V S . (R and vb.

h. The decimal point may not be the rightmost character in
a PICTURE.

6.18.6.12 USAGE (Clause: The format of this clausc is:

149

pade. w01

ey

DISPLAY

USAGE IS OMPUTAT I (N AL
. COMP]
INDEX

The USAGE clause specifies the form in which data is represecnted
in the computer. It can be written at any level. If the USACL clause
is written at a group level, it applies to each elementary item in the
group in addition, the USAGL clause df an elcmentary item cannot con-
tradict the USAGE clause of a group to which the item belongs.

This clause specifies the manner in which a data item is repre-
sented in the storage of the computer. It does not affect the use of
the data item, although the specifications for some statements in the
PRO(EDURE DIVISICN may restrict the USAGE clause of the referent
operands,

DISPLAY denotes that the item is carried in the ASCII format.
DISPLAY mode is assumed when a USAGL clause is not written. One char-
acter is stored in each byte of the item; if the item is numeric, the
leftmost byte can contuain an operational sign in addition to a digit.

COMPUTATIONAL defines a packed decimal data item whose length is
specified by the accompanying PICTURE clause.

INDEX defines an item that is called an index data item and will
contain a value that corresponds to an occurrance number of a table
element. JIndex data items must he elementary data items. Since USAGL
1S INDEX totally defines the internal representation of the data, a
PICTURE clause is not used with an index data item. he VALULE IS

clause may not be used with a USAGE IS index data item.

150

0.18.6.15 BLANK WHEN ZERO Clause: The format of this clause is:

BLANK WHEN ZEROQ

The BLANK WHEN ZEPO clause may be supplied only in conjunction
with a numeric edited item. It specifies that when the source item
has a value of zero, the edited data item is to contain all spaces.

0.18.0.14 JUSTIFILED Clause: The format of this clause is:

JUSTIFIED
—_— GHT
{ JUST } RIGHT

This clause is applicable only to alphabetic or alphanumeric
items. Normally, when data is moved into an alphabetic or alphanumeric
field, the source data is aligned at the leftmost character position
of the receiving data item and moved with space fill or truncation on
the right.

When the receiving data item is described with the JUSTIFIED
clause and the sending data item is larger than the receiving data
item, the leftmost charactcrs arc truncated. When the receiving Jata
item is described with the JUSTIFIED clause and is larger than the
sending data item, the data is aligned at the richtmost character
position in the data item with other characters spacc-filled.

0.18.06.15 VAIUE Clause. The format of this clause is:

Value IS literal

The VALUE clause defines the value of constants, or the imitial

151

i - - - - - - .

;
value of workinv-storage items. This clause must not conflict with
3 other clauses in the data description ot the item or in tne data
i description within the hierarchy of the form. ‘The tfollowine rules
1 apply:
s -+
. 1. General
S a, 1If the categcory of the item is numeric, the literal is
h" ‘ aligned according to the alignment rules except that the literal must
3

not have a value requiring truncation of digits.
b. If the catccory of the item is alphabetic or alphanumer-

ic the literal in the VALUE clause must be a nonnumeric literal. The

literal is alisned according to the alignment rules excejt that the
number of characters in the literal must not exceed the size of the
item.

¢. The numeric literal in a VALUE clause of an item must
have a value within the range of values indicated by the USAGE or
PICTURE clause.

d. The function of any editing clauses or editing charact-
ers in a PICTURE clause is ignored in determining the initial appear-
ance of the item described. Ilowever, editing characters are included
in determining the size of the item.

2. Data Description Lntries
a. Rules governing the use of the VALUL clausce differ with

the respective section of tne DATA DIVIST(N:

} (1) In the F1Lk SLCTICN, the VALUL clause is not

3 allowed.

-~

——

(2) In the WORKRING-STORAGE the VALUL clause may be

useu to specily the initial value of any data item. It causes tie

item to assume the specified value at the start of tne object

program. Irf the VALUL clause is not useu in an item wuescription,

tiue initial value may be unpreuictable,

b. The VAIUL clause nust not be stated in a Recoru
bescription entry containinecan GC(URS clause or in an cntry sub-
ordinate to an entry containing an OCURS clause.

€. The VALUL clause must not be stated in a Record

Description entry containing a REDEFINLS clause or in an entry sub-

ordinate to an entry containing a REDEFINES clause. This rule does

not apply to condition-name entries.

d. The VALUE clause may not be used in an entry at the

aroup level.

e. The VALUE clanse mav not be used with a USAGE IS Index

data itoem.

6.18.0,16 OQCCURS Clause: The f{ormat of this clause is:

CC(URS integer-1 TIMES

INDEXED BY index-name-1 [,index-name-Z] . . J

The NCCURS clause eliminates the necd for separate entries of

reneated data and supnlies information required for the application of

subscripts.

The GCCURS clause is used in defining tables and other homogen-

cous scts of repeated data; when it is used, the data-name that is
the subject of this entry must cither be subscripted whenever it is

153

T OWET) s o T
L

referenced in a statement. [Furthermore, if the subject of this entr
is the name of ua o¢roup item, all data-pnames belongine to the aroup
must be subscripted whenever they are used as operands.

The data description clauses associated with an item whose
description includes an OCCURS clause apply to each recpetition of
the item described. Also the VAIUL clause must not be stated 1n a
data description entry that contains an OCCURS clause or in an entry
that is subordinate to an entry containing an CCCURS clausec.

An INOEXFD BY clause is reauired if the subject of this entry,
or an item within it if it is a aroup item, is to be referenced by
indexing. The index-name identified by this clausc is not defined
clsewherc; the compiler allocates storace {or it unassociated with

any data hierarchy.

6.19% PROCEDURE DIVISTON

6.19.1 Ceneral Description: The PROCEDURL DIVISION of a COBRCL

source procram specifies the procedures--the precise scquence of
processing operations--needed to solve a given problem. These
operations (computations, logical decisions, input/output, etc.)

are expressed in meaningful statements, similar to Lnglish.

6.19.2 Procedure Division Llements:

6.19.2.1 Statements: A statement consists of a COBOL verl

followed by appropriate operands (data-names or literals) and reserved

words. The thrce tyjpes of statements arc:

1. Compiler directing

154

.-

2. Imperative

3. Conditional

6.10,2.,1.1 Compiler Directing Statement: A Compiler

Directing statement airects the compiler to tahe certain actions at
compilation time. Compiler Directing statements are: CCPY. This
statement is not in NETWCRK COKCL,

0.19.2.1.2 Imperative Statement: An imperative statement

specifies an action to be taken unconditionally by the object program.
An imperative statement may consist of a series of imperative state-
ments.

6.19.2.1.3 Conditional Statement: A conditional statement

describes a condition that is tested to determine which of alternate
paths of programmed processing flow is to be taken. Conditional state-
ments are:

1. READ and RETURN statements that have the AT END or
INVALID KEY options.

2. WRITE statements with the INVALID KEY option.

3. Arithmetic statements with the SIZk ERROR option.

4, IF statements.

6.19.2.2 Sentences: A sentence is a single statement or series

of statements terminated by a period. A single semicolon may be used
as a separator between statements within a sentence.

0.19,2.3 Paragraphs: A paragraph consists of one or more sen-

tences identified by a beginning paragraph-name,

6.19.2.4 Sections: A section comprises one or more successive

~u

paragraphs, and must begin with a section header. A scction necader
Consists of a section-name followed by the word SECTION and a perioc

0.19.2.5 Paragraph and Section Naming: Lvery naraceraph or

section has a programmer-supplicd name that is given in the header
entrv, This namc is used for reference (as, for example, when

specifying a GO TO paraeraph-name or a (O 10 section-name.)

6.19.3 Procedure vivision Structure: The formats of the PRCCLDUREL

DIVISICN are:
Format 1:

PROCEDURE DIVISION

%cction-namc SECTION}
Faruuruph—numo. %cntcncc} .. } . . .} e

Format 2:

PROCEDURE DIVISION

{parngrapn-name. sentcnce% . . .I . e

Execution of tne provram begins at the first statement of tne {irst

section.

6.19.4 (Conditional Statements: A conditional statement descrives a

condition that is tested to determine selection of altcrnate paths of
proerammed processing flow. The procrammer can accomplish this

branchine usinv the following tvpes of statements:

i. The ¢ TC . . . DEPENDING ON . . ., which branches to one of

156

AN

several procedure-~-namces.

2 Statements with exception branches: AT END, INVALID KtY,

ana ON SIZE ERROK,

3. The IF, and PERFORM, in which the condition is explicitly

Stated.

6.19.4.1 Relations: Relational-operators in the COBOL language

s [NUT] {bkhATLn THAN
LESS THAN

Is (ot (‘;~‘.~
(<

15 [NOT] LEQUAL TO

are:

LOUALS

Underlined words in the above list must be present when the re-
latjional-operator is usecd. florus not underlined may be omitted if
the programmer desires, with no effect on the meaning of the relation-

al-operator.

Pelational-operators are combined with identifiers or literals

to create relation conditions., The peneral format is:
identifier-1 identifier-2
literal-1 {rclational-operator literal-<Z

aritihmetic-

arithietic-
expression

expression

157

R - -

6.19.4.2 logicul Operators {(AND, OR und NOT): The three

logical operators are AND, OR, and NOT, AND and (R arc used to

Create a '"'compound condition” when two or more tests arc specified in
the same expression. NCT is used to specif{y the negation of a
condicion. NCTL: Compound conditions must be enclosed in parenthescs
if they are to work correctly. The MICROSCFT COECL will flag this

as an error but generate the correct code. Consider the followine

cxample :
IF Q(ﬂni IS ZLERO AND AT NOT GREATER T AN z]) A A Toe b

Notice how AND and NCOT are used to augment the two basic tests.
Because the tests are connected by AND, they bLoth must be true for
A to be added to L.

Consider the followina:
Ir GTﬁHE IS NOT ZFRO OR AGL GRLEATER TIHAN 29 Ablv ¢ To D,

This time the loeical operator OR svecifies that € Is to be added to
D 1f either or both conditions uare fulfilled.

NOT can be used in two ways with a simple relational condition:
in the relational-operator as in AGE NOT GREATIR THAN 21, or precedine
the entire condition as in NOT AGE GPEATER THAN 21. AGL NOT GREATIR
THAN 21 and NOT AGL GREATER TEAN 21 are exactly cquivalent in
meanine. If NOT precedes a simple relational condition that contains
MT dn the relational-operator, a double negative results and causes
an error.

0,19.4.3 Otaer Conuition Tests:

160

6.19,4.3.1 Sign Test: The format of this test 1is:

data-name POSITIVE
IF 1S [NOT' ZERC
arithmetic-expression NECATIVE

The sign test is also effectively a special case of relation
testing equivalent to testing whether an expression i1s GREATER TiHAN,
LESS THAN, or EQUAL TO ZERO. The data-name nmust be a numeric value
that, if unsigned and not equal to zero is assumed to be positive,

The value zerc is considered neither positive nor negative. 'the
statement GROSS 1S NLGATIVE is cquivalent to GROSS 1S LESS ThAN
GRUSS IS POSITIVE is cquivalent to GRGSS 1S GREATER Ti:AN 0. Any
condition that can be expressed as a sign condition can be cxpressed
as a simple relational condition; the sign condition is merely a
convenient way of ecxpressing certain situations.

6.19.4.5.2 Class Test: The format of this tes* is:

1F data-name 1S [NO’[‘] NUMERI C
- - ALPTARETIC

The data-name must be defined in the DATA DIVISION as

USAGE DISTEAY, Table 9 lists cases where the class test is valid)
and meaning of the results. .
GL19,4,5.5 Comparisca of Mumeric Items: lor numeric items a w
P . . - - . . S
reiagtion test determines that the value of one of several items is v
less than, cqual to, or greater than the others, regaraless of tne
lvicith, Numeric items are conmpared aleebraically after alisnment of P
+
. - . . . N ¢
hiral points, Zero is considered a unique value regardless ol)

Valid

Table 9.

(Class Tests

PICTURE

Must May
Contain Contain | Allowable Characters Valid Tests Meanine
A B AMlphabetic (A-Z and | [ner] ALpna- | (Not) only
space) BETTC characters
A-Z and
space appear
| [Ner] ALpiA- | (Not) only
A9 X B O Alphanuneric (any BETIC characters
X A9 B U character) A-Z and
! space appear
|
| [vor] Nwikk- | (Not) only
| Ic characters
0-Y appear
S 4 0V P |Zoned decimal with [xo1] NumER- (Not) onl
ioperational sign 1C character:
-9 appear
in all pos-
ition, which
can contain
zone bit.
a 0OV I |Zoned decimal with- | [Nct] NuMER- | (not) only
out sign IC characters
U-9% appear.

160

Rrae o

——

length, sign, or implied decimal-point location of an item,

0.19.3.4 Comparison of Non-Numeric Ttems: For non-numecric items

a comparison determines that one of the items is less than, equal to
Oor greater than the other with respect to the binary collating sequence
of characters in tine ASCII character set. If the non-numeric items
are of equal lenpth, the comparison proceceds by comparing characters
in corresponding character positions starting from the high-order
position and continuine until either a pair of unequal characters or
the low-order position of the item is compared. If the non-numeric
items are of uncqual length, comparison procecds as describea for
items of equal lengtih. If this process exhausts tie characters of tne
shorter item, the shorter item is less than the longer unless tie
remainder of thec longer item consists solely of spaces, in which case
the items are cqual.

Table 10 indicatces characteristics of the compared itews and the
tvpe of comparison made.

U.19.4d.4 Conditional Statements with Lxcception Lrancuces: ihe

format of these stutements is:

NOEAND
INVALTH KLY
T G121 TRRO

%mperativc-statcmcnts .« e

The KLALL, RETURN, LRITH, RLWVRLTE, DELLETL, ADL, SUBTRACT, JLTTELY,
ana DINVIOL verbs specify the exception vranch as citaer an optiondi or
dorequired part of trwe statement, When the eaxceptlion branch is prescent,
thie verh in wauose Jormal it is written is consldered to be a condition-

al statement, Normally, control bypasses the exception branch to the

lol

. e ——— ,,J’

[PSR

Table 10 Permissible Comparisons

Item Characteristics GR X \D
Group Item GR A A A

Alphabetic,

Alphanumeric,

and Edited X A A A

Numeric Display ND A A 9

A. Alphanumeric or byte comparison, byte-by-byte [rom left to
right,

9, Numeric comparison.

first statement in the next sentence or the first statement beyond tht
next ELSE (within an IT stuatement), but when the exception condition is
ret, control is ¢iven to the imperative-statement following the AT

END, TNVALID KEY, or SIZE ERROR., None of the staterents up to the
next period or LLSE (within an 1F statement) may be a conditional

Statement: thus '"nesting'" of cxcention branches is not allowed.

b.1¢,1,5 Nested Conditional Statements: ‘lThe IF statement may

aave conditional statements in cither of the branches taken bpecause
of the outcome of the condition test. Furthermore, tne conditional
statement can be another IF, thus it is possible to "nest'" IPs (in
other words, IIFs mav be contained within [FsY., Refer to the "It

“tatcement™ discussion (Sectien 0.10,.8.10),

162

6.19,5 Tnput/Output Statements:

6.19.5.1 OPEN Statement: The general format of this statement

CPEN INPU {filc-namc] . e

EXTEND [flle nnme]

L y
[(ruT [filc-nnme] .o .]
[FXTEAD]

]

[1-c [filc-name] . .

The OPEN statement initiates processing of the files named in
the statement,

(ne of the INPUT, QUTPUT, EXTEND or I-0 options must be specifi-
ed. The I-0 option pertains only to files on direct access media
used when ACCESS IS PRANDOM is specified.

The EXTEND option means that the file is to be opened for output
and that new reccords are to be added after the last record currently
in the file.

An OPEN statement must be executed prior to any other input/
output statement. A sccond OPEN statement for a given file cannot
be executed prior to the exccution of a CLOSE statement for that file.
The OPEN statement itself does not obtain or dispatch data; a READ or
WRITF statement must execute to obtain or release, respectively, the
first data record.

0.19.5.2 START Statement: The START statement provides a means

for lorical positioning within an indexed file for subsequent sequen-

tial retricval of records,

.

.

Format:

EQUAIL TO

START file-name [KEY IS GREATER THAN data-name]

LESS THAN

{INVALIU KLY impcratjve-statcment]

- When the START statement 1s exccuted, the associated {ile must
be open in INPUT or I-C mode.

File-name must name an indexed file with sequential or dJdynamic

access. File-name must be defined in an F" entry in the Data Division.

When the KEY option is not svecified, tiie FEQUAL TC relational
operator is implied. When the START statement is executed, the EQUAL
TC comparison is made between the current value in the RECORD KLY and
the correspondine key field in the file's records. The Current Record
Pointer is positioned to the logical record in the [ile whose hey
ficld satisfics the comparison.

When the KLY option is specitied, data-name may be either:
- The RECORD KLEY for this file, or

- Anv alphanumeric data item subordinate to tne RLCURD

104

e e

KEY whose leftmost character position corresponds to the leftmost

ﬁ 3 character position of the RLCORD KLY (that is, a gcneric key).
1 When the START statement is executed, the comparison specified
P

in the KEY relationa2l operator is made between data-name and the key

: field in the file's records. The Current Record Pointer is position-
ed to the first logical record in the file whose key fielu satisfies
the comparison.

If the comparison is not satisf{ied by any record in the file, an
- INVALID KEY condition exists, and the position of the Current Record
Pointer is undefined.

6.19.5.3 READ Statement: For sequential access, the READ state-

ment makes available the next logical record from file. For random

access, the READ statement makes available a specified record from a

file.
The formats of this statement are:

T Format 1:
_ READ file-name [ﬁﬁﬁlj RECORD[lﬁIQ identificr]
[AT END imperative-stntcmenﬂ
Format ¢Z:

READ file-name RECGRD [INTO identifieq; INVALID KEY

imperative-statement

Functions of the READ verb are:

105

. N N e J

1, Sequential file processing (lFormat 1) makes available the
next logical record from an input file and allows execution of a
specified series of imperative-statements when the cnd-of-file is
detected.

2. Random file processine (Format 2) makes available a specific
record from an indexed file and allows execution of a specified
series of imperative-statements if the contents of the uassociated
RECORD KLY data item are found to be invalid.

When the RLAD statement is cxecuted, the associatced file must be
open in INPUT or I-¢ mode.

File-name must be defined in an FD entry in the Data Division.

Format 1: When ACCESS MODLE SEQUFNTTAL is specified or assumed
for a file, this format must be uscd. For such files the statenent
makes available the next lorical record from the file. lor indexed
files, the NEX1 option need not be specified; for sequential files,
the NEXT option nust not be specified.

Witcn ACCESS MODEL DYNAMIC is specified for indexed files, the
NEXT ortion must bé specified for scquential retrieval. For such
files, the READ NI'XT statement makes available the next lovical re-
cord from the tile.

before « lbormat 1 READ statement is exccuted, tie Current Record
Pointer must be positioned by the successful prior execution of an
OPEN, START, or RuAl statement. When the Format 1 RLAU statement 1is
exccuted the recoru indicated by the Current Record Pointer 1s made

available. VFor scquential files, the next record is tne succeeding

record in logical sequence. Tor a scquentially accessed indexed
file, the next record is that one havino the next higher RLCORD KEY
in collating sequence,

FFormat 2: This format must be used for indexed files in random
access mode, and for random record retrieval in the dynamic access
mode.,

Execution of a Format 2 READ statement causes the value in tae
RECCRD KEY to be compared with the values contained in the correspond-
ing key fieid in the file's records until a record having an eqgual
value i; found. The Current Record Pointer is positioned to this
record, which 1s then made available.

If no record can be so identified, an INVALID KEY condition
exists, and cxecution of the READ statement is unsuccessful.

[mnediatecly {ollowing exccution of a READ statcment, the next
logical record in the file is accessible in the logical record area
associated with the file as defined by the Record Description entry.
Whep multiple record descriptions follow a File Description (FU)
entry, it is the responsibility of the programmer to recognize which
recoru is present in the area at any given time. The record is avail-
able in the logical record area until another RLAD statement or a
CLOSE statement for that file is cxccuted.

The INTO option is cquivalent to a READ statement {ollowed by a
MOVE, and results in the vecord obtained by excecution of the READ
becoming available in both the record arca for the file and in tne

location indicated by the identifier. The record is moved {rom the

lo7

S

ittt i ottt . i RT— ‘“‘ﬂ-nﬁﬂﬂnmhluﬂii'

record area into the identifier in accordance with the rules for the
MOVL statement.

In the casc where the file contains records of varying lengths,
the size of the lonrpest record is assumed for the input record for
the purpose of executing the M(VI,

The Al END clause is required for files that are accessed se-
quentially. The statements introduced by this clause are cxecuted
wihen end-of-file is encountered,

For files with SEQUENTIAL orcanization, when thie AT END condition
has been recognized, a RLEAD statement for this file must not be exe-
cuted until a successful CLCSE statement followed by a successful
OPEN statement has been executed for this tile,

For files with INDEXED organization, when the AT END condition
is recognized, a Format 1 READ statement for this file must not be

executed until one of the followine has been successfully executed:
- A CLOSE statement followed by an (PEN statement
- A Format 2 RLAD statement (dynamic acccess)
- A STAKT statement

The INVALID KEY clause must be written for files for which ACLLSS
IS RANDGY 1s specificd. ‘Ine imperative-statements are cxecuted if a
record corresponding to the contents of the RLEUCRD KLY c~nnot be
located in the file.

The contents of the RECORD KLY data item must be appropriately

cstablished prior to execution of the RLEAD statement itself.

108

6.19.5.4 WRITE Statement: The formats of this statement are:

Format 1:
WRITE record-name FR(M idcntifier-ﬂ {{bEFURt ALVANCING
AFTLER

identifier-2 LINES

integer-1 LINES

PAGE

Format 2:
WRITL record-name [Eiﬂ! iuentifier-l]; INVALID KLY

imperative statenent

The WRITL statement releascs a logical record to an output file,
For random access files the statement also allows execution of a
specified series of imperative-statements if the contents of the
associated RECCORD KREY data item are found invalid.

An (PEN CUTPUT, OPLMN EXTQND, or OPEN INPUT-CQUTPUT must be execut-
cu before a WRITLE statement can be executed for a {file. (nce the
WRITY is executed there is no guarantee that the logical record re-

leased thereby still exists in the logical record arca for the file.

A WETITE statement bearineg the FROM option is equivalent teo a MOVE

identifier-1 70 record-name statement followed Ly WRITLE record-name.

Movine tiakes place in accordance with rules for the [CVE statement.
[ormat 1 reclates to liles opencd for sequential access. The

ADVARNCING option applics to f{ilecs containing output destined to be

printed. Integer~1 should Le an unsigned inteuver, and identifier-2,

similarly, sioulu contain a non-negative intepger. The linc is print- ;
ed BLFORE or AFTLR the specified number of lines is spaced,
Format 2 is used for mass storage files. Statements following :
b o the INVALID KEY clause are cxecuted when: &
: 1. No spuace exists on the file media to accommodate Lhe record.
2. The tfile is open for (UTPLT or I-0 and a record correspond-
lug to the contents of tixe RLCORD KLY already exists in the file. k
0.19.5.5 RIGRITL Statement: The format of this statcement 1s:
E:
) RiABITE record-name [Eﬁgﬂ iaentifier-l]; INVALLD KiY
imperative-statement
The Riwialil statement rewrites a previousiy read lowical record §
h te the output tileo The statoment also gllows exccution oy o speclii-
) cu scrics ol drperative-statencnts i the contents of the assoclatad
f RECCRD LY wata tten are found invalild. |

. AL CPLY 1-¢ must be executea bLefore a REWRITE statement can be

executed for a file. Once the REWRITE is exccuted there is no guar-
antee that the locical record rewritten still exists in the logical
record area for the file,

The stotements following the INVALTR KLY clause are ecxecuted when
the record corresponding to the contents of the RECORD KLY clause was

not previously road.

6L10.5.0 DELLTE Statement: The format of tnis staterment i1s:

DETETE fire-name; ISVALTD KDY dmperative-statement

The DILETL statement deletes a locical record from the output
file. The statement also allows execution of o specified sceries of
imperative-statements if the contents of the associated RECOPD KLY
data item are found invalid.

An CPEN I-0 must be executed before a DELETE statement can be
cxecuted for o file,

The statements following the INVALID KEY clause are cxecuted
when tie record corresvonding to the contents of the RLCORD KRY

clause is not found in the file,

06.19,5.7 (CLOSE Statement: The format of this statement 1S:

CLOSE [file-name] [wiThoprien] oo

- The CLOSE statement terminates thc nrocessins of files, ftxecu-
tion of a CLOSE statement causcs the standard closine procedures to
be carried out on the file named. An OPEN statement must be executed
before a CLOSIL can be honored for a file; once closed, a file may not
be referenced again until another OPEN statement is executed for that
file.

If the DELETE option is specificd, all records in the file will

be deleted.

6.19,5.8 ACCEPT Statement: The tormat of this statement is:
ACCEPT 1dentifier-1 [, idontificr-l] . e

The ACCLEPT staterment specifies acceptance of data from the CRT.

It is normally used to rcad unprotected CRT ficlds,

The identifier must be an unedited DISPLAY data item or 2 oroug
item. Refer to the opevraticns manual {or additional information on
reading unprotected fields f{rom the CRT,

6.19.5.9 DISPLAY Statement: The format of this statement is:

PISP LAY identifier-1 jdentitier-2 .

literal-1 (litcrnl-z

The DISPLAY statement cnables data to be written to the CRT.

* khien a DISPLAY statement contains mcere than one operand, tne char-
acters comprisine the items named and any literals specifled 1n tne
statement arc displayced consecutively, with no snaces between cnar
acters unless specified,

fay remainine positions on a line at the end of the data trap--
fer are left unchanced. Anv nurnber of literals or data names muav be
specified. The data-name may be that ol a rsroup or an elementury
~ item and mav also be subscioypted. literal in a DISEFLAY statement
1

mav be numcric or non-numeric and may be a hexadecimal censtant to

specify (R1T or -ield attributes.

Fxannle:

DISPLAY PRINT-LINE,

o V.0 ARTIANMETTIUC Statements: Phe basic artthoectic operations are

snecified by the Cour verbs ADD, SUFTRAUT, MOTTIPD S, oond DIV,

u.luitel Fules tor drithnetic Verhs: Phe tollowine: ceneral

i rules apply to all arithmetic verbs:

AD83 086 GEORGIA INST OF TECH ATLANTA SCHOOL OF ELECTRICAL EN~-ETC F/6 972
THE FEASIBILITY OF IMPLEMENTING MULTICOMMAND SOFTWARE FUNCTIONS==ETC(U)
OCT 79 T P BARNWELL» J L HAMMOND+ J H SCHLAG DAA629-7B-6-0139

UNCLASSIFIED ARO=15900,1=A-EL

AN EEEEEEE

SN EEEEEE
IEEEEEENEEEEE
-

1. All literals specified in arithmetic statcments must be
numeric.
An identifier used in an arithmetic statement must be an
elementary item and must be numeric.
2. The maximum size of an operand is 15 decimal digits. 1If the

entry for an operand in the DATA DIVISION specifies a size greater

than 15 digits or if a literal contains more than 15 digits, an error

is inaicated at compilation time,

3. The items in an arithmetic statement may be mixed sizes as
long as they are all numeric. Any necessary decimal-point alignment
is supplied automatically throughout computations.

4., No item used in computations may contain editing symbols.

If such an item is used, a compilation-time diagnostic results. Cper-
ational signs and assumed decimal points are not editing symbols. An
item used to receive results may contain editing symbols if it is not
used in subsequent computations as an operant., When an item used to
receive results contains editing symbols, the result is edited accord-
ing to editing specifications before it is moved to the item.

ROUNDED, GIVING and SIZE ERRCR options apply to all arithmetic
statements.

0.19.6.2 GIVING (ption: If the GIVING option is written, the

value of the identifier that follows the word GIVING is made equal to
the calculated result of the arithmetic operation.
1f the GIVINC option is not written, each operand following the

words TO, FROM, RY, and INTO in the ADD, SUBTRACT, MULTIPLY, ana

[R S N o

DIVIDL statcments, respectively, must be an identifier (not a literal’
Each identifier is used in the computation, and also receives the

Tesult,

6.19.6,3 RWNDEU Option: If the ROUNLED option is not specified,

truncation occurs when the number of places calculated (after decimal -

-point alignment) for the result is greater than the number ol pluaces
in the data item that is to be set equal to tiie calculated result,
When the ROUNDLD option is specified, the least significant uigit of
the rcsultant data-name increases in value by 1 whenever the most
sipnificant digit of tne cxcess is greater than or cqual to 5.

Rounding of a computed negative result is performed by rounding
the absolute value of the computed result and then making the final
result negative.

Table 11 illustrates the relationship between a calculated result
and the value stored in an item that is to receive the calculated
result,

0.19,6.4 SIZE LRikOR Option: An arithmetic statement, if written

with a SIZE FRPOK option, is not an imperative-statement. Rataer,
it 1s a conditional statement and is prohibitcd in contexts wuere only
iriperative-statcments are allowed.

Whenever tue number of intceger places in the caleulateu result
cxceeds the number of intecger places specificd for the resultant item,
a size error conuition arises. If the SIZL LRRCR option is specifieu
and a size crror condition arises, the value of the resultant item is

not altered and the series of inmperative-statcments specified {or the

174

TV T TR YT T e - ey r""-:f'vv‘iwm-1—x;: .

e

e e s et e i e

Table 11. Rounding or Truncation of Calculations

CALCULATED VALUE AFTER VALUE AFTER
RESULT PICTURE ROUNDING TRUNCATING
12.36 S99VY -12.4 -12.3

8.452 9V 8.4 8.4

35.0 99Vv9 35.6 35.6

65.6 99V 66 65

0.0055 V999 0.0006 0.005

condition is executed.

If the SIZE ERROR option is not specified and a size error con-
dition arises, no assumaption should be made about the corrcctness of

the (inal result even thoush the prosram flow is not interrupted.

0.19.0.5 ADD Statemcnt: The formats of this statement are:

Format 1:

ADD identifier-~1 ,identifier-2
literal-1 ,literal-2 e e ey

[rOuNDED] [ON SIZE ERROR imperative-statenent]

Egrmnt 2

ADD {ulentifjcr-l} [idcntifier-z]

litcral-1 , literal-2 . o IC

[Reurnin] [oN SIZE TRROR imperative-statement]

175

identifier-n

identifier-m

Format 3:

‘ ADD {idcntificr-l , identilier-2 , identifier-3
i literal-1 literal-2 ,literal-3 ..

x| GIVING identifier-m [ROUNDhH] [ON SIZE ERRCR imperative-
3 i statcment]

5: i The ADD statement sums the values of two or more numeric items

i and/or literals and sets one or several items equal to the resultant
. value, Operands used in an ADD statement must conform to '"Rules for
; Arithmetic Verbs" (Section 6.19.6.1) in addition to specific rules

. . applving to this individual statement. Use of the SIZE ERRCR and

‘ ROUNDED options is also discussed in the referenced paragraph.

. When Format 1 is used the values of all the operands including
. i identifier-n arc addcd tocether and the result is stored as thc new
'#l value of identifier-n, the resultant-identifier.
'1 Example: Given the statcment ADD A, B, C, the values of A, b,
} and C before and after execution are:
\ A B C
T Lefore 5 6 8

After 5 (& 19

2 Note that the value of A and B do mot change as the result of

the addition.

Format 2 adds the values of the operands (identificer-l or literal-
1 and identifier-2 or literal-2) preceding the reserved word TG,
and this intermcdiate result is added to the data items specified by

identifier-m, identificr-n, etc.

170

Fe \IY b

- ietd s o+ aomm o

-

Ixample: Given the statement ADD W, X, Y to Z, the values of

W, X, Y and Z before and after execution are:

[} X Y A
ke fore 2 7 8 12
After 2 7 8 29

Note that the value of all operands participates in the addition.

Format 3 adds the values of the operands (identifier-1 or liter-
al-1 and identifier-Z or literal-2, etc.) preceding the reserved word
CTIVING, and this intermediate result is placed in identifier-m, iden-

tifier-n, etc.

Ixample: Given the statement ADD A, B, C, GIVING D, the values

of A, B, C, and D before and after execution are:

A B C D
Lefore 1 2 3 S
After 1 2 3 [

Note that the intermediate result replaces

not added to D,

the value of D and is

6.19.6,.6 SUBTRACT Statement: The formats of this statement are:
Format 1:
SUBTRACT identifier-1 , identifier-2
literal-1 , literal-2
FR (M

identifier-m [R(UNDE])] [(}N SI1ZI ERR(R imperative-

stntemcnt]

177

PRPFPUDUSERPUESIR F

Format 2:

literal-1

SURTRACT identifier-l} , identifier-2) . . . FRM
literal-2

identifier-m GIVING identifier-n [ROUNDLD]
literal-m

[ON SIZE T'RROR imperative-statement]

The SUBTRA(T statement subtracts the value of a numeric item
from another item and stores the result in a third item.

Format 1 subtracts the opcrands preceding the word FROM from
identifier-m placing the result in identifier-m.

Format 2 subtracts the operands preceding the word FROM from
identifier-m (literal-m) without changing the contents of identifier-

m, placing the result in the item following GIVING.

Example: Given the statement SUBTRACT A FROM L GIVING C the
————

values of the operands before and after execcution are:

A B C
Eefore 10 80 a0
After 10 80 70

0.19.60.7 MUILTIPLY Statement: The formats of this statement are:

Format 1:

MULTIPLY {ldentifier-i} LY identifier-2 [ROUNDED]
literal-1

[ON SIZE ERROR imperativc-statement]

e

ATV

T T g

t—

e

Format 2:
MULTIPLY {identifier-l} BY identifier-2 GIVING

literal-1 literal-2

identifier-3 [ROUNDED]

The MULTIPLY statement can be used to multinly two items with
the value of a third item being set to the product. Operands used in
a MULTIPLY statement must conform to '"Rules for Arithmetic Verbs'",

Bection 6.19,6.1), in which the SIZE FRRCR and NOUNDED options are

also discussed,

Format 1 allows the multiplicand (identifier-1l or literal-1) to
be multiplied by the multiplier (identifier-2) and the value of

identifier-2 to be set to the product. A literal cannot be used in

IMlace of identifier-2.

Example: Given the statement MULTIPLY A BY b the values of the

operands before and after execution are:

A B
Before 10 20
After 10 200

Note that the values of operand B chanre to reflect the multiplication.

Format 2 aliows the multiplicand (identifier-1 or literal-1) to

be multiplied by the multiplier (identifier-2 or literal-2).

anmnle: Given the statement MULTIPLY A kY F GIVING C the values

of tnc Operands before ana after execution are:

179 !

C o e by o ot ol

R

A | C
Refore 5 10 20
After 5 10 50

Note that the values of operands A and B remain the same, while the

value of operand C changes. '

6.19,6,8 DIVIDE Statement: The formats of this statement are:

Format 1:
DIVIDE {identifier-l} INTO identifier-2 [uuununu]
literal-1l

[VN SIZLE ERROR imperative-statement]

Format 2:
PIVIDE {idcntifier-l INTO {identifier-z} GIVING
literal-1 literal-2

identifier-3 [R(UNDLD] [CN SIZE ERRCR imperativc-statemenq

Format 3:
DIVIDL {identifier-l} BY {identifier-z} GIVING
literal-1 literal-2

identifier-3 [R(DNDED] [ON'Slzh LRROR imperative~statcmcnt]

The DIVIDL statcment divides the value of one numeric item into
the value of one or more numcric items and sets the value of onc or
more items to the quotient. Operands used i1n a DIVIDE statement must
conform to '"Rules for Arithmetic Verbs', Section 0,1Y.6.1, in audition

to specific rules applying only to this individual statement., Use of

the S1ZE ERROR and R(UNDED options is also discussed in the reference
paragraprh.

Format 1 allows one division, with the quotients stored as the
value of the item followine INTO, The dividend (identifier-2) divided
by the divisor (identifier-1 or literal-1) and the valuc of the
dividend set to the value of the associated quoticnt. literals
cannot be used in place of identifiers-2. The size error condition
results when the Jdivisor is zero or the quotient contains more integer

positions than are available.

LExample: (Given the statement DIVIDL A INTC b the values of tie

operands before and after cxecution are:

l\ b
sclore 5 10
After 5 2

Format 2 allows the single quoticnt resulting from a division to
be stored in a third item. I{ Format 2 is used, the dividend (ident-
ifier-2 or literal-2) is divided by the divisor (identifier-1 or
literal-1), and the value of the resultant quotient becomes the new

value of identifiers-3,

kxample: Given the statement DIVIDE A INTO E GIVING C the values

of the operands before and after execution are:

A b C
ffefore 5 10 158
After 5 10 2

PR -
L
i
i
'

P

o pata Uanipnd ot

1
Cororpat o of this statoaent jss
!
:
: . .o) o -
; teaent e her-. ! Jdertrirer-n)

re-stotenent)

m—

'
i
: o M CUatoiet ROV cata brovs g i for oo oot
[}
- A [SEECIN N A SRR Sl olrnseris e ten U rey D IO U B
: ye [SREN SIS AN LR R L0Vl TON,
¢
. -
1 H i v h ! i ' N N
.
' ! ' \ vl - i ‘ ! R 3 NS ' .
. ' AR R T RN S S T B U :
B
fw Lot ' i . Lo] Yoaal o ot
LAY . N \ ! [T
“ . [N : .
. R 1 R - -
i N oo ayaodna ! Jat in Lontiirer-ioaer
- . R ; T ARSI AN SRR AR o Cr o droovetel iy Ui
R
.
Tt N f R ST UL A v, [I IO R T [
¥
J [[. [B RSO I | Tens Gt ooty o
»
i A N ; I . the Y00 tatervent, a trteval 1s
N M N N 3 i v . H) N e
i o o Coatlory Tt ‘ vner o in wvhiconh the Tty s
. Vi ot . TR PTG BT E N S O A A S O
- . + i]
a0 . s it [N .
]
S O S SRS N AP SR T AR P 1 : s ! ORI F !
et e et e Ve S Bl v ant ypars Teye o nen-hlans or e e s g
. 4 N - N 1 . I
. . [N ot ' IR \ A N i 1 bbbt { !

.“““'““‘-““-—-—-—uu-....u.-____‘_u___““~ , e —

The types of MOVL statements are discussed in the following

Parasraphs,

0.1Y.7.1.1 Alphanumcric Moves: Source data is stored

left-justified in the receivine area. If tne receiving area is not
completely filled by data, remaining positions arc filled with
sSPhaces, If the receiving 1tem is alphabetic, it is trcated as alpha-

numeric,

Examples:
Plulurl of
Source lata keceiving lten keceiving Item
tals e o] A(4) or A(4) [(AIoTCID)

CaluTcl] A(5) or A(5) (A6 [] U]
Lale Tl olaTaTs] xes Lals el 1]2]3]a]
X(8) Lafo]s]a] aJa]4fa]
Lalw] [A(3) or X(J)

If the receiving item is alphanumeric, the literal may be

any Jiteral or figurative-constant. If the figurative-constant takes

the form of ALL any-literal, the literal must be enclosed in quotation

marks and is considerced an alphanumeric item. lne size of an ALl
any-literal item is determined by the size of the receiving item, with

Ccharacters repeated from left to right.

Lxamples:
_ PICTURE of
Source pata Receiving Iten Receiving [tem

"ALCH? N(4) LAl oo
125" A (5)

183

.
1
|
4
Editine occurs after decimal point alienment. Lditino symbols in f
the receivine item (currency siens, commas, ctc.), make this item i
Alvhanumeric; if it is subsequently referenced as a source item in
L a MOVE statement, it is moved in accordance with the rules for
! alphanrumeric items.
t‘ : Examples:
- ‘ PICTURL of o ;
. Source pata Receiving Item Receiviny Ttem 3
Lidzl5Tas] s#x0.09 LedaT 25T .T 4] 5]
(112] 3Jals] o009 BREBERNE
- [ToToTaTe] semov0y HEERNRE
If the receiving item is numeric or numeric edited, the j

literal can he any numcric literal . The point location and size of

the literal arc determined by the actual literal in the source

statenent. Further cexamples of cditing are eiven in "PICTURE Clause"

T~ under "DATA DIVISION Structure" in Section 0.18.0.11.

Fxamnrles:

PICIURE of
Source bata Receiving Item Receivine Item

[
N
it

+1.,23 Sevo9

'
H
H

g‘ +1.25 SOvV9

' 123 9(5) Lol of 1] 2173]

] +37 S990V 00 Lol sl o] o] 2]

% 03757.3 SE*%0, 0 HEEEENRE
|

7 185

2= R - - ’l‘ﬂ' - .. P e
talb-le 12, lermiss:b]e Moves

Source ltenm

s
i

Group N

b I ERRIRE o
' AT
Vet Literad
‘
' T ‘» Ptoegal
;
S B L o\ vt
i R
T v i I)\’
R N
: - . ~
; .o 1 Pov gg 1o

AR N £ W
K : . CC N

PHIS PAGE 15 BT QUALITY PRACILCABLR
FROM COFY FURNISHED TODDC e

flic

PO

cceivine Fioeld

.
A
1
PR
1 ,\l
i

I)
.
AR AR Treld

INGDPT O

Calrse

statenent

U TO

POV iae

>

tive

e m

R SO LR

B T

Identifier-1 must refercnce either a sroup item or any catecory
of an elementary item, described imnlicitly or explicitly as USAGE
IS DISPLAY. Identifier-2 throuah identifier-3 must reference a one
byte clementary alphabetic, alphanumeric, or numeric item described
implicitly or explicitly as USAGE IS DISPLAY. literals must be non-
numeric and may be any figurative constant except ALL,

Rules Applicable to All Formats: Inspection begins at the

leftmost position of the data referenced by identifier-1, regardless

of its class, and proceeds on a character-by-character basis to the
richtmost character position, The contents of the data item referenced
by identifier-1 is treated subject to whether the identifier is

discribed as alnhanumeric, unsipned numeric, or si¢oned numeric:

1. Alphanumeric - identifier treated as a character strine,
2. Unsigned numeric - inspected as though it had been redefined

as alphanumeric and the INSPECT statement had becen written to reference
the redefined data.

3. Sirned numeric - inspected as though the data item had been 3
moved to an unsignea numeric data item of the same length, subject i
to the rules sct forth above.

4, The rules for replacement are as follows: !

a. When literai-1 is a figcurative-constant, each character ?
in the data referenced by identifier-1 that is ecqual to the fiQurative-;
constant is replaced by the single character referenced by literal-2
or identifier-3.

b, Vhen literal-2 is a figurative-constant, cacli character

]
~
Pour Y

l H
| i

in Uie dats o rerorenced Byvordentitier-1l ot ors ool oto e Conrnoter

' Teferencee by diteral-1 or ddentivier-2 10 reniaced by the Charoct. s
; reverenced oo the Yrsurative-constant.,
1 .
; 9. Lo Uoquired wores Lo, BrARTAG D ana LIS are adLedctive s
; .
aal ‘
taat o aprdly to the sacccedian Y phrase:
] PNV E Lot ey e vi-la arve te o be reslaced, tons
g Ane o oldiine T the renlacenoent rtuies snpoeditiicd inoavaeraon b
4 ! . . f ! RIS P b s O [T O U A AP S E U A
! |
. e RS re ' woopv Literal ooy ddentitior-loare ro- i
3
E 1
]
.. . R AR ' Loy M B i
s t
! M N ! (SRR : T Pty v v .
’ i et L
; T [i X ¢
. r b
™
Co :
4
V1 R t (I BN N AT R . oot 1
\ i . N 1 CHE N ML HIYRIR I O i
~~
. |
;
oot oot Teodooaat ., !
)
-k - [bl vl y/’\x Syt ‘
\
. : s L L R A S N N N USRI I 1
)
. e e -SSR L AC TN L A A B
; S | O A S IS B SN Sty w b ! - .
2 o i ! ' ; (
‘ ! Lot Lt I U T B VR U SR

AETS PR 13 REST QUALITY ERAQRICABIN | .,

l""j)il SUL LD Lt ;,:'3&; TDWQ . o

|

e e

are executed :

1. GO TO permanently releases control to the first statement
in the procedure named,

2. PLERFORM causcs statements in a remote procedure to be
executed and control returns to the statement followine the PERFCR.

5. SToP allows the program to terminate in an orderly manner.

4, IF causes control to branch into ecither a '"true'" or '"false"
Path, depending on the outcome of a condition test written in the
progran, The paths rejoin at the beginning of the next sentence
unless a GG TO branch is used in one or both paths.

5. EXIT mercly declares that the paragraph in which it is
contained is a transf{er point that may be referenced by other sequence
control statements,

v.19.5.1 Normal Scquence Control: The starting location for

the program is at the first statcment of the PROCLDURLE DIVISION.
(ontrol then procecds to subsequent successive statements until the
end of tic paragraph or section is reached. Unless the paragraph or
section is executed under control of a PERFORM statement, control
then passes to the first statement in the next paragraph or section.

Execution of a sequence control statement, of course, alters tne
nNormal sequence of control.

6.19,8,2 GO TO Statement: ‘The format of this statement is:

Format 1:

GO TO [procedure-name-l]

169

it
. ' o
" v
1Y .
I N 1 ') o , i . L
o rocy
[
Nl) -)
' ! N
1 3
s
. ,
' .
N (S
. ; oo o
. : .
,
P it
L s .
vl 1N by Tocoaure
‘ Cron e)
A ‘ P N

THIS PAGE 1S BEST QUALITY PRACTICABLE
SHED TODDC ..

FROM COt Y FURMNI

passes to the next statement following the GO TO statement. A

maximum of 16 procedure-names may be used in one GO TO statement.

Example:
GO TO FEDERAL-TAX, STATE-TAX, LOCAL-TAX DEPENDING ON GROSS-
SALARY-CODE,

6.19.8.3 PERFORM Statement: The formats of this statement are:

Format 1:

PERFORM procedure-name-1 [THRU procedure-name-Z]

Format 2 :
PERFORM procedure-name-1 [Iﬂgg procedure-name-ﬂ
{;dentifier-lj TIMES
integer-1
Format 3:
PERFORM procedure-name-1 [IHBE procedure-name-Z]

UNTIL condition-1

Format 4:

PERFORM procedure-name-1 [THRU procedure~name-2] VARY ING

identifier-1 identifier-2 literal-3

{index-name-%} FROM {index-name-z BY gidentifier~si
literal-2

UNTIL condition-1

identifier-4 identifier-5 -

AFTER {index-name-AE FROM index-name-5 BY
literal-5

191

§
be
P
P
k‘
-
!.
i identificr-ol UNTIL condition-2
E literal-o |
AFTER zlndox—numo~7 index-name-8 Y
P! identificr~7 FFROM identifier-3
3 ! —— .
L | \ literal-8 3
b o
3 1 identifier-9 UNTIL condition—ﬂ
S literal-4
| !
4 i
o The PERFORM statement causes a departure and return fron normil
. ;
| . procodures execution to another part ot the programn Lo oxedutoe oLe or
i . . . :
' more procedures. these prococdures are exeauted g predeternaned num-
o ner of times or until oo specified condition ls satisfied, after whics
nornal nrocedures exveoution resunes, In o its sinplest formnt toce
PEREFORM provides a branch, execution ol the procedure, and a rotarng
in the more cew-lex fermats o branch is made, but the aunmber of
executions 1S cnntinrent upon a condition controlled and tested by
the statement. Tuus, the PLRPORM statement pernits repetitive

,
execution or looping usine one statement; that is, 1t initialioes

and maintains foop criterion {variable), tests the criterion ina petrs
torme operations.

The return point for the PEREORM statement i1s determinced by
whether the procedure to which it branches is a paraeraph or scctien,
When the instructions compiled from a PERFORM Statement are exceouted,
thev transter controil to the first statement of the speciticd proce-
dure. Instructicns that provide return to the statement followii
PERTORM are sct up as follows:

1. 11 proccduare-nane~} 1< a pavazraph-nane and a jroceguro-nnre-

2 ds not srecitiad, contrel is returned after the last staterent ot

THIS PAGE IS BEST QUALITY PRACTICABLE po
PRUM COF Y FULiv 5i.ew 10 UDC

the procedure-name-1 paragraph.

2. If procedure-name-1 is a section and a procedure-name-2 1is
not specified, control is returned after the last statement of the
last paragraph of the procedure-name-1 section.

3. If procedure-name-2 is specified and is a paragraph-name,
control is returned after the last statement of the procedure-name-2
paragraph.

4, If procedure-name-2 is specified and is a section-name, con-

trol is returned after the last statement of the last paragraph of

the procedure-name-2 section,

Note : The "last statement' referenced in each of the above
cases must not be an unconditional GO TO statement.

When procedure-name-2 is specified, the only required relation-
ship between procedure-name-1 and procedure-name-2 is that of logical
sequence, that is, execution sequence must proceed from procedure-
name-1 to the last statement of the procedure-name-2Z paragraph or
section. GC TO statements and other PERFORM statements are permitted
between procedure-name-1 and the last statement of procedure-name-2
provided that the sequence ultimately returns to the final statement
of procedure-name-2.

If the logic of a procedure requires a conditional branch prior
to the final sentence, the EXIT statement may be used to satisfy the
foregoing requirements. In this case, procedure-name-2 must be the
name of a paragraph consisting solely of the EXIT statement; all paths

must eventually lead to this point. (See the "EXIT Statement' discus-

198

sion, Section ©.19.8.Y)

It is not necessary for procedures to bhe referenced by o PERTCRY
statement betore thev can be executed, Procedures can also be execut-
ed 1n normal seauence from the preceding statement, in whiclh casc
return of control does not apply after execution of the last sentence
in a particular procedure.

6H.19,8.4 "Nested" PERFORM Statement: 10 a scequence of state-

ments referred to by a PERFORM statement includes another I'LIFORM
Statement, the sequence of vrocedures associated with the included

AR fog

PRI mast optselt e edther tetally included in, or totallv ex-
Sihinted Urom o the cocpcal segirence reterved to by the tirst PLRPORN
i, an a.toa - PLad iU statement whose execation roint pesins witiin
the ranve o G the s 7HEDCRM miust nol contain within its ranoce tiie

exX1t point of the other active PERTORM statenmnent,

CLlULELL VIMES COption: In Vormat 2, the procedure is executed

repetitively a certain number of times. The nurber of exocutiens min

be snecificd explicit]y as an intecer or implicitly as the value o
Al erementary data ttem,

[f an identifier is used it may be of any numeric usace, and 1t
may be subscripted. when this option is incluaed, a counter is set
up with a value equal to tie value of the identifier-! item or intcuver
L. Betore each execution of the specified procedure, the counter is
tested to see 1f 1t 18 necative or zcero. 1f 1t 1s neither neeative
nor cero, the procedure is executed and tne value of the counter de-

Sredased by oone; wiien the value ot the counter is neeative or cere, the

procedure is executed and the value of the counter decreased by one;
when the value of the counter is negative or zero, the procedure has
been executed the specific number of times and control transfers

to the statement following the PERFORM statement,

6.19,9.6 UNTIL Option: In Format 3, the number of times the

procedure is executed is dependent on the truth or falsity of a con-
dition (condition-1) rather than a stated value. Condition-1 can be
any simple or compound conditional expression that is evaluated before
the specified procedure is executed. If it is found to be false, the
procedure is executed and the expression is evaluated again (values
of the items may be altered by execution of the procedure) and tested
for truth or falsity, this process is repeated until the conditional
expression is found to be true, at which point control transfers to
the statement following the PERFORM statement. If the conditional
expression is found to be true when the PERFORM statement is first
encountered, the specified procedure is not executed. (Refer to
"Conditional Statements'", Section 6,19.4).

6.19,8.7 VARYING Option: In Format 4 the VARYING option makes

it possible to PERFORM a procedure repetitively, increasing or de-
creasing the value of one to three data items once for each execution
until one to three conditional expressions are satisfied.

The flowcharts in Figure 6-3 illustrate the logic of the PERFORM
Statement when one, two, or three identifiers are varied. Let

1, Lach d; represent an identifier or index-name.

Z. Each 1; represent a literal.

195

3. Each ¢, represent a condition.

4, Lach p; represent a procedurc-name.

Examnle: To help clarify use of the VAKRYING subscript-name
option, assume that a rate table 1is employed in a billing procedurec
and that the table recuires periodic updatine., This hvpotheticai
rate table is three-dimensional: Jdivided into five regions, cach of
which includes ten states, cach of which ¢nntains rates for twelve
cities. It is assumed fnrther that an acpronriate rate-updating pro-

+

cedure is available elsewhere in the proeram. Such a procedure micnt
appear as
RATE-0Pa T ING. MUTTIPLY RATE (RECTON, STATL, CITYY LY Abjaet.
FACTOR GIVING RATE (REGION, STATE, Cl1Y).
Tt is desired to exccute this RATE-UPDATING procedure once tor

cacn ity of each state 1n each reeilon, usine the current rate for a

clven ¢ity and producing an adjusted rate for that city., Accordinely,

the procramier enploys a PERFORM statement varyine these items:

PERTORM RATE-UPDATING VARYING RLGICN FROM 1 KY 1 ONT1L REGTON
FS GREANTES THAN S5 AFTER STATE FROM 1 BY 1 UNTIL STATL [oitis
11T AFTER CITY FROM L BY 1 UNTIL CITY IS GREATER THAN 12.

When the UEREFOR 1s executed at object time, the RATL-UP0ATIN
procedure is executed for the first city o the {irst state in tae
First recion, then tor the next city, ctc. The PERFORM is complete
when the procedure is executed for the twelfth city of the tenth
statce of the (ifth recion, by wiich time the procedurce has Loen

exXecuted bt imes,

190

il

: ‘ FOET ORI ’

Set
!‘, t (.'7 (e 1)

Erecute
1 pl o, p:'

}

— Y ——

Aanene oy

"1 Ly x:,J(‘\. 1_,')

PLLEOren)

Set
o Iud (eu 1)y
d fo d [Q)

N‘\U'k
2’/ A) an\,Jl\ 0,

Initiutic.

dytnd, (o 17
!

- ———

—_JAugmena
d I>y (l (m 1.)
AW HIRICA)
c—— 3
Set
. dl tod, (01)
d, tod] (ml
. d,lud (wl)
S ‘|"’/\y‘;‘ r [ilu)
s
N [
{ \' ' ’
c >~ anm. . Ayminenr
. 2 Py dotods to 10 g Ty o1y
LN --_ T
) [(nv,uu .‘-" Asgment
el S [hop T by d tw 10
Kl "o Dy Weewn ", d, by d o
\/ e L I
L AR
- ‘l

. nitiehoe
“, tod, et o

‘ FIGURE 6.3 PERFCRM Statement (VARYING Cption)

197

oy n.,.u

o, l)d (u,.)‘

S

O,1Y.5.0

Sldb

statement @ The

NPED

literal
kU

tormat of

tihils statement 1s:

The STCP statement permanently suspends execution of tiae object

nrovram,

that terminates

fow Jiteral, i
Ay Trteral may
vl
2 vl
RN
~tar e T .

Cadllvaient o

siat

MR
i v ' U
R Y A A
[l (O A I S
4 y . ¢ !
! 1 i I

ocnerates

ybtntcmcnt—i]
ML SEATINOL

cient o causes altoernate

v Taise when tho o wats 1S
taen by

condition,

comdrtlon 15 true.

L Terailens o Lo onertor
vs lale,

REGIVERVE) PN O

Y, dernending on o wihiether the descerintion of

the

The

PO G

o

o

an end-of-prooram ¢exlit to tune lonitor

Frocram execution permapent iy, NS R sl
piteral as Uyped out o enedntion S s i,
Lo used,
Statenent: feotoereat o Lne Tolenent 1w
i .
Plen et o cnus Qo Proedtre o e Coled it e .

e [N Tl Tl A S :
parsorach Wit ono o sentoeoces amd o oeneratoes oo Coue,
Lo ntniaments P tormnto o this stotonentl is

r

operativis tc

data condition

cvaluateo. I S E R T

GUtions Lo Do Lo

LOT G L ray

i

i

The conditiou may be a simple conuition as presented by the

format below or a compound condition as described under "(onditional

Statements", Section 0.,19.4, The format of a simple condition is:

! GREATER TEHAN

identiflier-1 —— identifier-2
literal-1 IS [NOT LESS THAN literal-2
formula-1 - formula-2
LQUAL TCQ
* identifier-3 PCSITIVE
1s [nor] KEGATIVE
formula-3 7ERC
[identifier-4] 1S [NOT] NUMERIC
. " ALPIIABETIC

6.19.,8.11 Evaluation of the Condition: The condition is evalua-

ted before any action is taken. If the condition is true, eitner

- statenent-1 or NEXT SENTENCE is executed. When NEXT SENTENCE is spe-
cified, control is transfered to the next sentence, and the LLSE part
of the statement is ignored. I the condition is false, either state-
ment-2 or NEXT SENTENCE is executed. C(ontrol is transferred to the
Succeeding scntence when NFXT SENTENCE is specified. Statement-1 or
statement-Z may be a series of statements anl each may be terminated
by a period of ELSE,

6,19,8,12 Nested Conditional Statements: Statements-1 and -2

can be imperativc-statements or imperative-statements followed by a

f conditional statement. When either statement-1 or statement-2 or both

contain a conditional statement, the conditional statement becomes
nested. Nested conditienal statements pav also contain conditional
statements, Nested conditional staterments are analocous to the use
of parentheses for combining subordinate arithnetic-expressions so

that the exnressions hecome part of a larger arithmetic unit,

6.19,8.13 Ftvaluation of khested TF Statements: Conditienal

statements contained within conditional stateowents (IFe within Ifs?
must be considered as paired TP and PISE combinations, proceeding
from lett to rient. Therefore, anyv IISE enceountercd applies to the
imreliately rrecedine TIF that is not alread. paired with an L1Si.

In essence, tie nunber of occurrences of LSE 1n any conditional

Statement must he equal to the number of occurrences of IF, rersardless

of the complexity caused by nestine, with the following exception:
when EILSE or NEXT SENTENCE directly precedes the terminal periow of
a4 sentence, the entire phrase may be omitted and the period svecitied

at the end of the previous phrase, This rode s extended to resulitim

sentences, ete., Por ecach ELSE, the associated statement is executed
only when the conditional expression in the corresponding IV is {ound
to be talse. If there arc wore TFs tunan EISES 1n a statement, 1t 1S
assumed that 1 LSF NEXT SENTLENCI phrases at the end of the sentence

are omitted,

Ixample @ The sentence in the followine parusraph contains twe

indenendent nests of conditional statements. The first nest ends

after the statcment PERECR™ procedurce~-name-23 the sccond nest consists
b4

of the remainder of the sentence and has an implied bIsE NEXT SENTRNOE

ono

e

T——

P O - — o —

before the period. Each upper-case letter of the alphabet corres~
ponds to a conditional expression,
IF A IF B PERFORM procedure-name-1 ELSE NEXT SENTENCE ELSE
I¥ C NEXT SENTENCE ELSE PERF ORM
procedure-name-2 IF I PERFORM procedure-name-3 IF E PERFORM
procedure-name-4 IF F PERFORM procedure-name-5 ELSLE PERFORM

procedure-name-6 ELSE STOP RUN.

6.19.9 Table-llandline Statements: The structure of a table is de-

fined by the use of an OC(URS clause (refer to "OCCURS clause' Section
6.18.6.16). Entries in a table may be referenced by a subscript or
index, which identifies a particular element within a table.

Indexing has the advantage in efficiency that no address computa-
tion is involved; an index contains a direct pointer to an individual
element in a table rather than a mere occurrence number. The SET
statement facilitates the correct setting of indexes.

The formats of the SET statement are:

Format 1:
SET index-name-1 TO index-name-2
identifier-1 identifier-2
literal-1
Format 2:
SET index-name-3 UP BY identifier-3
DOWN BY literal-2
201

.i;"'.

The SET statement establishes refercence points for table-handl-

ing operations by sctting index-names associated with table clements.

All identifiers must be cither index data items or numeric ele- ‘
mentary items dcscribed without any positions to the rieht of tae
assumed decimal point, except that identifier-3 must not be an index ;
data item, When a literal is used, 1t must he a positive inteper.
Index-names are considered related to a given tablc and are defined
by specification in the INDEXED BY clause.
In Format 1 the following action occurs:
1. Index-name-1 is set to a value corresponding to the samc
cccurrence number to which either index-name-2, identifier-2 or lit-
eral-1 corresponds., If identifier-2 1s an index data item or it linde-
)

nane-. is reitatod to the same table as index-name-1l, no conveorsion

takes place.

2. If identifier-1 is an index data item, it may Dbe set equal

to either the contents of index-name-2 or identifier-2 where the
latter is also an index data item; literal-1l cannot be used.

5. If identifier-1 is not an index data item, it may be set
only to an occurrecnce number correspondine to the value of index-name-
-23 neither identifier-2 ner literal-1 can be usca,

In Format 2 the value of i1ndex-name-3 18 incrementced (1P BY) or

decrenented (DORN bBY) by a value cerresponding to the number of

-

occurrences represented by tie value of literal-2 or identiticr-5.

7. DISCUSSION & CONCLUSIONS

7.1 Design Conclusions

e i] An examination of the variables in computer networks indicates
that these variables can be classified either as host-controlled re-
source variables or as network variables. Obviously, the former are
determined by the nature of the hosts and the latter by the nature
of the network.

Two distinctive aspects of distributed microcomputer networks
are the facts that the hosts, being microprocessors, can control
only one operation at a time and that'packet-switching has been

chosen for the network. Further considerations for the monitor

3 uh- . J
A

system is the desire to require a minimal overhead for the monitor
. system and to acquire it for a cost comparable to that of the (inex-
vi pensive) microcomputers.
. - The review of the literature indicates that the quantities to
.

. be measured for microcomputer networks can, in fact, be a subset of
the variables measured for larger networks and computers, A partic-
ular set of variables, which are felt to be sufficient, is listed
in Section 3.

j - With respect to measuring the desired variables, the host-con-
trolled resource variables can be measured in the same manner as de-
scribed in the literature for large computers with some simplification
due to the limited flexibility of microcomputer hosts. The problems

here are interfacing with specific equipment and achieving an inte-

203

Lt s T
) [}
+

grated monitor system with convenient user access.

With respect to measuring network variables, there is limited
discussion in the literature of monitor systems for packet-switching
networks, Monitoring for the ARPANET is, of course, discussed in
considerable detail. This network, however, differs from thosce
being considered in significant respects such as scale and age, to
mention only two. No monitoring system for recently designed pachet-
switching mini or microcomputer nctworks was found discussed 1in the
literature.

With this background, the nced was felt to adapt existing mon-
itor strategics to the characteristics of distributed microcomputer
networks and design a complete menitor svstem structure for such
networks. The design is discussed in Section 3,

The low overhead tor the meonitor svstem is felt to be especially
attractive, The host-controlled resources are monitored without the
use ot software and hence, require no overhead. The use of the Two-
Port RAM's at each node provides data on the networkh operation, alsce
without overhead. The pichkup packets, which probe packet delay and
convey information between the Monitor Stations and the Moniter (on-
trol, are the only aspccts of the monitor system which require over-
head. Such overhead is determined by the ratio of the number of
pickup pachets to the total number of pachets in the network over
some reference time interval.

By processing data at each node anud storing, for example, his-

toerams or random variables, the nceed for frequent communication

between the Monitor Stations and Monitor Control is minimized. Thus,
the 1imiting factor in pickup packet overhead would seem to be the
frequency with which packet delays need to be sampled. This fre-
quency will, éf course, depend on the use of the monitor system.

With respect to this point, it is likel. that packet delay will
be of significant importance in studies for improving the network
design, On the other hand, in an operating network, where efficiency
is important, frequent measurement of packet delay may not be neces-
sary and hence the number of pichup packets can be kept small,

An implementation of the general monitor system design is given
in Section 4. The implementation is chosen to be compatible with
the AIRMICS/GEORGIA TECH Experimental Network and thus it has the
potential of being used with that network. This point is discussed
in Section 4.3,

An example of a typical use of the distributed microcomputer
network is formulated in Section 4.2. For this example, the monitor
system is studied on a step-by-step basis. As indicated by detailed
activity tables in Appendix A, the proposed monitor system can ap-

parently function properly for this test case.

7.2 Network Experimental Conclusions

The results of the Inventory Control Program Test with Traffick-
ing serics of tests are as follows:
1. It was possible to overload the network and cause it to fail

by trafficking nodes that were also receiving large bursts of data

from the host computers.

2. The communication network was more lihely to reorder mes-
sages during a traffic situation than with no traffic.
5. These tests helped point out some of the characteristics
!
; of the network that are described in detail in the section of network
oo oo}

characteristics.

f 4, The test helped point out characteristics of the inventory

control problem that are detailed in the section on inventory control

y . program characteristics.

8. BIBLIOGRAPHY

I. HARDWARE MONITORS

1)

! : 2)

3)
4)

5)

6)

| .

9)

10)

J. S. Cockrum, E. D. Crockett, "Interpreting the Results of a
Hardware Systems Monitor", AFIPS Proc., SJCC, 1971, pp. 23-28.

G. Estrin, D. Hopkins, B. Coggan, S. D. Crocker, "“SNUPER COMPUTER,
A Computer in Instrumentation Automation", AFIPS Proc., SJCC 1967,
pp. 645-636.

R. W. Murphy, "The System Logic and Usage Recorder", AFIPS Proc.,
FJCC, 1969, pp. 219-229.

R. Aschenbrenner, L. Amiot, N. K. Natarajan, "The Neurotron Monitor
System", AFIPS Proc., FJCC, 1971, pp. 31-37.

F. Schulman, "Hardware Measurement Device for IBM System /360 Time
Sharing Evaluation", Proc. of the 22nd ACM Nat. Conf., Aug. 1967,
pp. 163-199.

J. Noe, "Acquiring and Using a Hardware Monitor", Datamation,
April, 1974, pp. 89-95.

L. Svobodova, "Computer Systems Measurability", Computer, May/June,
1976, pp. 9-17.

R. E. Fryer, "The Memory Bus Monitor - A New Device for Developing
Real-Time Systems", AFIPS Conf. Proc., 1973, NCC, pp. 75-79.

F. Arnolt, G. M. Oliver, "Hardware Monitoring of Real-Time Computer
Systems Performance", Computer, July/Aug., 1972, pp. 25-29.

H. C. Lucas, "Performance Evaluation and Monitoring”, Computing
Surveys, V. 3, No. 3, Sept. 1971, pp. 79-91.

IT. SOFTWARE MONITORS

1)

12)

Y. Bard, "The VM/370 Performance Predictor", Computing Surveys,
V. 10, No. 3, September 1978, pp. 333-341.

P. Balcom, G. Cranson, "USACSC Software Computer System Performance
Monitor: SHERLOCK.", Proc. of the 8th Meeting of CPEUG, Sept. 1974,
pp. 37-43.

207

IT.

Il

SOFTWARE MONITORS {cont'd)

13, R. Castlg'Performance Measurenent of USACSC", Proc. of &ih

Meeting of CPEUG, September 1974, pp. 55-62.

14) K. Wong, J. C. Strauss, "Use of a Software Monitur in Ui
Validation of an Analytical Computer System Model", Softwarc-

.

Practice and Experience, Vol. 4, 1974, pp. £55-203.

15) J. €. Strauss, "An Analytic Model of the Hasp Exccution Task
Moriitor", Comsunications of the ACM, Dec. 1974, Voil. 1/, hLo.
Dp. 679-685.

HARDWARE/ 50F TWARE MONITORS FOR COMPUTER NETWORKS

te) D, b Moragan, W. Banks, U. Goodspeed, R. Kolanky, "/A Cotgate:

Network Momitering Uystew®, Trans, on Suftware inginecr o,

e

Yoi, -1, September 1975, pu. 2UG-300.
V7 Lo o0 Morcan, w. Banke, U, Suttun, W. Calvin, "A Performance

“

Measurcnent Sysiem for Computer Retworks', Proc. DF(P 0 Congy

R I T PO

) L. Kieinrock, W. E. haylor, "On Measurcd Behavior of e ARPA
Network™, AFIPS. Proc. NCC, 1974, Vol. 43, pu. 76G7-750.

19) S0 KFatarsawe, f. Saked, "Pertfornance cvaluation o ohe Vuineae!

computer Network", Computer Communications, Vol. [, 'w.

June 10, op. 149-155

PARAMETERS MEASLURED BY MONITORING SYSTEMS
20) 5. W. Cox, "Interpretive Analysis of Computer Systui Pocsion
ACM Performance fvaluation Review, Vol. 2, Ho. 4, ‘oo

pp. 140-155,

21) (. A. Rose, "A Measurement Procedure for Queueinag Huetwore Moo

of Computer Systems", Computing Surveys, Vol. 10, Ho. =. o
pp. 263-275.

ro
r~e
~

Measurement for a COC Cyber 74 Computer System”, 12 n Mocian,

the CPEUS, NBS Special Publication 500-15, pp. 39-6/.

L0

a

. Bear, 7. Reeves, "Workload Characterization amd rertor e

wel

Iv.

PARAMETERS MEASURED BY MONITORING SYSTEMS (cont'd)

23) D. C. Wood, E. H. Forman, "Throughput Measurement Using a
Synthetic Job Stream", AFIPS Proc. FJCC, 1971, pp. 51-55.

GENERAL REFERENCE ITEMS I-IV

24) L. Svobodova, Computer Performance Measurements and Evaluation

Methods: Analysis and Applications, Elsevier, North Holland,
1976.

EXISTING COMPUTER NETWORKS

25) E. Manning, R. W. Peebles, "A Homogeneous Network for Data Sharing
Communications", Computer Networks, 1977, pp. 211-224.

26) J. Labetoulle, E. G. Manning, R. W. Peebles, "A Homogeneous
Computer Network”, Computer Networks I, (1977), pp. 225-240.

27) D. J. Farber, "A Ring Network", Datamation, Feb. 1975, pp. 45-46.

28) J. McQuillan, W. R. Crowther, B. P. Cosell, D. C. Walden,
"Improvements in the Design and Performance of the ARPA Network",
AFIPS Proc. FJCC, 1972, pp. 741-754.

29) H. Aiso, Y. Matsushita, et.al., "A Minicomputer Complex - KOCOS",
IEEE/ACM Fourth Data Communications Symposium - Quebec City,
Oct. 1975, pp. 5-7 to 5-12.

30) Kitazawa, "Performance Evaluation of KUIPNET Computer Network",
Computer Communications, Vol. 1, No. 3, June, 1978.

31) A. G. Fraser, "A Virtual Channel Network", Datamation, Vol. 21,
No. 2, 1975, pp. 51-56.

32) D. L. Mills, "An Overview of the Distributed Computer Metwork",
AFIPS National Computer Conference Proceedings, Vol. 45, 1976,
pp. 523-531.

33) L. Kleinrock, W. Naylor, "On Measured Behavior of the ARPA Network".
National Computer Conf., 1974, pp. 767-780.

34) David C. Wood, "A Survey of the Capabilities of 8 Packet Switchiny
Networks", Computer Neiworks: Trends and Applications, June 1975,
pp. 1-7.

209

vI.

EXISTING COMPUTER NETWORKS (cont'd)

35)

J. R. Haisey, L. E. Hardy, L. F. Powning, "Public Data Networks:
Their Evolution, Interfaces and Status", IBM Systems J., Vol. &,
No. 2, Nov. 1979, pp. 223-243.

ANALYTIC AND SIMULATION MODELS FOR COMPUTER NETWORKS

36)

37)

38)

39)

40)

a1)

42)

43)

a4)

45)

S. R. Kimbleton, "A Heuristic Approach to Computer Systeri
Performance Improvement. [- A Fast Performance Prediction Tool",
AFIPS NCC, 1975, pp. 839-845.

J. W. Boyse, D. R. Warn, "A Straight-Forward Model for Computer
Performance Prediction", Computer Surveys, Vol. 7, No. 2, Junc Y75,
pp. 73-93.

K. M. Chandy, U. Herzog, L. Woo, "Approximate Analysis of Gencrai
Queueing Networks", I1BM Journal Research & Development, Jan. 19770,
pp. 43-49.

F. Baskett, X. M. Chandy, R. Muntz, F. G. Palacios, "Open, Closcd.
and Mixed Networks of Queues with Different Classes of Customers",
J. of the ACM, Vol. 27, No. 2, April 1975, pp. 248-260.

M. Reiser, "Interactive Modeling of Computer Systems", ILM System
Journal, No. 4, 1976, pp. 309-327.
P. J. Denning, J. P. Buzen, "The Operational Analysis of Queucing

Networks Models", Computing Surveys, Vol. 10, No. 3, Sept. 1974,
pp. £25-261. ’

J. W. Wong, "Queueing Network Modeling of Computer Comiiunication
Networks", Computling Surveys, Vol. 10, No. 3, Sept. 1873,
pp. 343-351.

M. Irland, "Queueing Analysis of a Buffer Allocation Scheme tor a
Packet Switch”, National Telecommunications Conf. Record, 1U7/u,
pp. 24-8 through 24-13.

F. A. Tobaygi, M. Gerla, R. W. Peebles, E. G. Manniny, "Mudel iy
and Measurement Techniques in Packet Communication Networks"
Proc. of IEEE, Vol. 66, No. 11, Nov. 1978, pp. 14J3-1447. 7

L. Kleinrock, Queueing Systems, Volume Il: Computer Applications,

New York, Siley Interscience, 1976.
210

VII.

VIII.

MEASUREMENTS FOR DETERMINING PARAMETERS FOR USE WITH NETWORK MODELS

46)

47)

48)

49)

50)

D. Sutton, D. Morgan, "The Monitoring of Computer Systems and
Networks: A Summary and Proposal", University of Waterloo
Computer Communications, Network Group Report, E-22, May, 1974.

F. Tobagi, et al., "On the Measurement Facilities in Packet
Radio Systems", Nat. Computer Conf. Proc. {(New York), June 1976.

S. A. Mamrak, S. R. Kimbleton, "Comparing Equivalent Network
Services Through Dynamic Processing Time Prediction”, AFIPS Nat.
Cump. Conf., 1977, pp. 455-460.

F. Tobagi, S. Lieberson, L. Kleinrock, "On Measurement Facilities
in Packet Radio Systems", AFIPS Proc. NCC, 1976, pp. 589-596.

G. Estrin, L. Kleinrock, "Measures, Models and Measurements in
Time-Shared Computer Utilities", Proc. ACM Nat. Meeting, 1967,
pp. 85-96.

COMMERCIAL MONITOR EQUIPMENT

51)

52)

L. E. Hart, G. J. Lipovich, "Choosing a System Stethoscope",
Computer Decisions, Nov. 1971, pp. 20-23.

M. L. Stiefel, "Network Diagnostic Tools", Mini-Micro Systems,
March 1979, pp. 62-76.

211

PSR S - -

f— i e — S

et

FRECEDING PAGE ELANK~NOT F11lMED

- - [P

3. APPENDIX A

TABLES GIVING COMPUTER NETWORK AND MONITOR SYSTEM
ACTIVITY FOR INVENTORY CONTROL EXAMPLE

TABLE Al. General Monitor System Functions:

Initial Set Up for Complete Problem

Set up Masked-Word Range Comparators to record the activity of
the Host CPU at Node K (Module K1) and the Host CPU at the MC
Node (Module MC1). (Other modules are required for Jobs 3 and 4.)

Set up Interval Counters to record the activity of the Terminal,
the Line Printer and the Disk at Node K (Modules K2, K3, and K4)
and the Disk at the MC Node (Module MC2). (Other modules are
required for Jobs 3 and 4.)

Initialize the modules for monitoring the Node CPU activity of
each node. Modules K5 and MC3 are used with Jobs 1 and 2. Other
modules are required for activities associated with Jobs 3 and 4
and with possible alternate routing‘uSed in Job 1.

Initialize the count in all Two-Port RAM Counter locations at each
node.

Set the Job ID numbers to zero in the Two-Port RAM at each node.

Identify Two-Port RAM memory locations for data to be transmitted
to the MC Node (for this example, assume all memory locations fall
in this category).

Identify Two-Port RAM memory locations for variables from which
histograms will be generated.

Activate total problem time counter.

213

TABLE AZ. General Monitor Syste : Functions:

Perjodic Monitor Functions

° Transmit pickup packets from MC Node.

° Sample all Two-Port RAM counter locations and store the values read
along with the time in appropriate Two-Port RAM memory locations for

periodic transfer to the MC Node and/or input certain vaiues to
Histogram Generators.

Discussion: Tre pickup packets cause the following activitics to take

place.

At each node the ID of the pickup packet is read by the Node CPU,
an interrupt is generated, the Node CPU causes the Real Time Clock to ue
read, the resulting number is recorded in the data field of the pickup
packet.

Data from specific Two-Port RAM memory lucations and from vudules
is read into the data field of the pickup packet to be transmitted Lo
the MC Node.

As each pickup packet is transmitted from a node, an interrupt is

generated and a time value is read into a storage location identified wity

the departing pickup packet number.

214

TABLE A3. General Monitor System Functions:

Monitor Functions at Problem Completion

e Stop total problem line counter.

° Transmit pickup packets to all nodes.

Read data fields of returning pickup packets at MC Node.
Compute all desired functions of accumualted data.

° Qutput all desired data from MC Node Host.

Discussion: As an example of a desired function of the accumulated data

at the MC Node, the total number of packets transmitted from K to MC in a
short time interval can be computed and divided into the Node CPU and
communication channel costs for this interval to obtain the cost per
packet over this path during the time interval. The resulting number

can be multiplied by the number of Job 1 packets transmitted from K to

MC to give the network cost to be used with Job 1 in the same time interval.

N ket o

TILN0D 01 STTRED Gy JNPCK “y SYLALIDY 1D Lud SUY iy

BUD AT

1LN0D ,301A43S BuLILEMe $330Pd, 3uT S3ISEIUTAD 147 i IpoM

"1 qOQ JOJ WYY 24C4-CMl AUF UL uDLIRTO[SHPACIS LI)
xcwau_sm:mxgmuwxumazmsp:wucaou@m@;Opwngu;mooz

"IUN0D 03 S3SB3D [Y ILNPOW £ A3LALITY 40 Pud Ayl 1Y .

"d3 M 3PCN 40 AtALde
3wty 03 suibaq gy aynpoy ‘¢ A3LaLidoy ;0 ButuuiBag syl 1y

*,32LAU3S Buljieme s3ayoed, 40 uoLIeIO|
3y} UL JUNOD 3u0 pue ,JUN0d pajesausb siayded, [qop
04 UDLDRI0L i\ 3404-OM| DU Ul 3UNOD 3U0 $3403S NId) N 9poK .

433ng Sphy 343 01 | 13%TE4

SA83SURAY Yy IPOK 1 Nd) IPON 2ul ¢

"L qOp 40 | Jaqunu 1ayoed *3pON JW Y3 O3 passadppe 3ayoed e
Se patLjLIuspi SL 9PON I 34yl C1 passasppe 1a¥zed 3yy $33843U3b ¥ POy 3@ (1d) 3504 Syl

(SN}

“{RULWIB] ¥ 3PON 34} 40 AILALIDR BY} SAWLI Iy 3LNPOW ,
"NdD 1SOH ¥ 2PON 3yl ;O AILALIOR By3 3wy 03 suibag (y ainpoy |

"M puR oy ‘23 U sainpow s3zL|Rljiul pue gl gol dy3
$1038%0p weaboud S2uaWSANSPIW IDUN0SIY PO [OAFIUDS-3SO0H Y]

*AA0WBY 140d-0M]

9yl Ut uoiilend] abeu0ls e 03 3404 |PL4BS YT ybnouul
DAIRILUMMNCY S1 Jatunu gol YL | qOp Se 3aseq el1ep ¥ IPOy
Y3 40 UOLIPUCISAU 42, 3153NnbAU SUBSN 3YJ S9LFLIUIPL N47 1504

TSUGLIONUGSLL

o indul speas y IPON 1e Nd) 3504 ﬂ

J3gquny
W83SAS 4CLLUOK N40MI3Y 493ndw0) £3iriay

53545 uorunw Buipuodsauioy YIim [QOp 4O UOLINDAax] ul SaliiAiidy -y 318y

2l

*A3LAL300 ys1g 3unod 03 sutbaq yotym zoK "e1ep A403UBAUL 3] B4] uLeIGO

3| Npoy Aq Ppa3d333p SL ASLQ JW Y3 40j |eubLS Sn3e3s aALIdy uy . 03 3YSLQ SIL S355S3D0@ 3SOH 7 ot

*AILALIOR 14D 3SOH 3unod 03 suLbaq (Jy 3|NPOY
"PaZL|RLILUL 34B 2JW puR {JW SILNPOW
‘WYY 3404-0M] Ul papuodad St uaqunu Q] ,

“qayoed 8y} UL 43GuNu QO[By} WLy "1 39%0Rd
| QOp 40 34Bd B SB 351AJ3S pa3Sanbau 3y3 S8LHLIUBPL ISOH JW 3Y) o4y SUOL3IINAJSUL SPead ISOH I 6
*auo Aq
Unod ,331AJ48S Buljteme sjaxoed, 3yl SISBBUD8P (1d) 3PON W AUl .

3PON JW 3uUN0d 03 S3S3J €JW 2(NPOW ‘8 AILALIOY 4O pud 8y3 3y , 383ded SU93SURLI Nd) SPON IW Byl 8
. r~
-juawabpa | mouyoe o~

*£3LALIOR NdD) SPON 3UNOD 03 S8SEID GY 3[NPOW , 3Y3 S8AL3D34 N1d) N SPpON /

‘Y 9poN 03 3uswabpa|mouyoe
*AILALIOR N1d) N 9pON 3unod 03 suibaq gy 3| nNpoW . ue SILWSURA} NidJ APON IW dul 9

‘U0L3ed0| JDRU0IS
,321A43S BuLjleme s3ayded, ul JUNOD SUC S3U0IS (1d) PON INW o

"WYY§ 340d-0M] Y3

40 UOLIRIO| ,P9AL8Ia4 533%08d, UL JUNOD JUO SIU03IS d) 3PON IW o ©S43}4NQq SIL Ojut
"A3LAL19R NgD IPON JUN0D 03 SuLbIq €OW BLNPON . | 33)D8d SIALIDAL Nd) IPON DN M} S
Jaquny
W33SAS 403 LUOW ¥4 OMIIN 4d33ndwo) A3taL3oy

sbutpeay Wa3SAS 403 LUON DULPUOdSedUA0) YILM | GO 40 UOLINIIXI UL SaLILALIY (P,3u0)) oy 318Vl

— A i -

"pa13LusSuURLIaL 1840Pd AudAa U404
Lpabpamouyse J0u s3ay2ed, UL JUNOD B $3401S NdJ % IPON aul

"W puR Gy sa|npoy
AQ papJ0l34 3JB S3WLY DALIDR 1d) 3PON I Pue 3 3| NPOW

I BUY AQ PITILUSURLT SL TuBl

-abpamouyoe ue “3ayoed fusAd a0y

o

€l

‘pajusawsudoul A)ejeradoadde st ¥ 03 JW p3liwsuealy
syaord ul 3unod 3yl ‘paslnbas st Burinoa ajeudsre 41

"€IW 3LNPOW AQ Pap40d34 SL BWLY 3ALIDR NdD BPON IW LY

‘po33lwsuedl St 3a4oed ydes Se sud Aq
JUNOD 3DLAJ4IS Burjieme saayoed 3yl S$9SEUI3IP N1d) 2PON IW ¥l

‘pa31jiwsuedy 3aqoed AUSA3 y3M 3unod
N 03 JW P3i3twsuedl siayded 8y3 SIUBWIAIUL Nd) SPON W Sl

‘PRU03S

° a4e A9Yy3 YDdLYM Ul 43pJ0 3y3 ul
© 43j)Ng 3PON 9y wody s3yayoed ay3
SLWSUBAY 1d) SPON il dY3 ‘Syul}
uoL3edLuUnumod JOo A3t |LgeiieArUn

o 01 anp sAe(s8p JUSFLUWABIUL YILM

¢l

iy

*3JUn0d aLdyl asead (A3LAL3oe ysiqg pue

ISOH) 2 pue [JW S3(NPOW °“paiedausb aue siaqdoed [(@ uayM
+J3}4ng apoN Y3 UL pa403s SL 33jded ydea se Junod

49ILAL8S Buljleme siaxoed, 9yl SJUBWRADUL NdD SPON W 9yl
"A31AL30R d) apeN IW

3unod 03 suibaq goW ALNPOW ‘1L AILALIOY 30 Buluuibag a3 3y
"] QOp U0 2uN0Y pajeJIudd

s3ayoed Wyy 3404-OML 3yl SIUANRAOUL NdD IPON JW I “S4333ng
IPON Ji{ 3yl 0JUL PILL44SueL] pue pajesaudb st 13xoed yoes sy

's4944ng SPON JW

3yl ul paJoils pue pajredsuab ade
s13)oed pasinbada 1@ ‘(LN due
SJ3}4Ng B9PON JW 3yl uaym °skeysp
4933y sqol 43yjo pue | qOp wouj

o S33y2ed YILM p3||L} 4B SA344ng
ay3 [L3un burnuijuod suaayyng

° JpON JW 9Y3 UL S33Noed 33 SaU03S
NdD 3PON JK 343 y3tm pue s3Ixoed
Sutieaausld sutrdoq 1SOH W Iyl

=]

H

I

Wa3SAS L0 LUOHK

%FA0MIAN J3Indwo)

Jaquiny
RILAL3Y

sButpedy wa1sAS 407 tuoy buLpuodsSaddo) YiiM [GO[JO u0L3INdIX3] UL SalILALIdY (P,3u0)) sy 318V)

"pL AILALIDY JO DU By3 3e
S3pN1ouod AJLALIOR | GOQ }O 3un0d 3yl *a403343y3 4aqunu Qf
Mau © A4uRd [|LM %SLQ 40 3SOH 3 SPpON 404 3S3anbaa mau Auy

*2391dwod sy | qop
*3SLQ ¥ 3pON 3yl 03Ul pead usaq
sey uoLjeumoiut 33yded {8 49314y

*1SOH) 9PON 8U3J 03 padUdISURAT St 3axyded Y3 uaym umop
pIIU3WS4oUL pUP S43))ng Y SPON 8y} Ojul PaALIJ3A 39yoed AiaAl
y3itm dn pajusweddul SL ,3uncd 33LA43S Buriteme siayaed, ayjf

*3uno3l
LP3ALBO34 S33YoRd, Y SPON Y sjudwIUOuL 3 ded BulArase Ausng

"A3LALIO® 34S1Q PUR N1d) ISOH Ll peaJ salnpoul 3say)
“p)Y pue) SLNPOW d3RALIIR 03 UOLILI0| AAOW3W (] 3A04-OM)
3yl 03Ul pead SL s3ayoed BuLAtsdR Y] wWoui Jequnu qol ayjl

"A31AL308 (1d) PON LB SP40D34 GY ?(NPOW

o

[+

"¥StQ s3It uo

1S0H 9yl Aq paJols si s3ayoed

8yl wa4j elep syl pue 3ISOH X

BpON 3yl 03 J3y4nq Indut ¥ Ipoy
Y] WOUJ PIJJIJSURL] IR Y IPON
10 paALIBJd (1034400 s3axoed |

141

Wa3sAS J03Luoy

Jaquny

AAOMIIN 433NdwoY fItaL3oy

sbuipedy wa3sAS u0jLuoy DuiLpuOdsaLA0) YILM | QOf JO UOLINDIXT UL SILILALIDY (P,3u03) "¢y 318V1

- AA0JUDAUL UL Fu3saud

SL p AILALIOY UBYM JUNOD SIL SSIPULWADY LY 3|NPON , 3de 'y swalL OU 3RYI UOLIBULIOJUL

“43jULAd SULT 3Yl 40 AILALIOR BUY SAWLY £X 3LNPON 5 Y3 $INdIn0 Nd) ISOH N} 3PON BUl

.w< SWalt 40) Adowaw O ydueas

*£ILALIOR (1) ISOH 3 SPON WL} 03 SBNULIUOD () 3|NPOW ® IN0 $3144@D Nd) ISOH M 3PON 3yl

* KAOWaR

JaA0 S1 31 L13UN A3LAL3OR §SLp SBULT YOLUM ‘py apnpoy O3 1SI0 WOV USIL U0 BLL FAEP

£q Pa39313p SL YS1Q 9y} WoUy LBuBLS ,SNIBIS BALIIR, UY o 3UI S4B4SUBAI 4D 4SOH X 3PON 3ul

“|RULUM3] ¥ 3PON 3u} 30 A3LALIOR By3 Sawl} Z) 3LMPOK
"Nd) 1SOH X 2PON 3y3 $0 A3LALIOR By3 awil 03 sutbaq (¥ 3LnpoW

"pX pue ‘gY ‘2 ‘Y S3LNPON sIzL|eijLul pue Q] qol
3y} $32919p Wedb04d JUBWSANSEAY 3I4N0S3Y P3| 043u0)-3SOY

"2 qor
Se AUOJUIAUL K IPON UL SWoIL w< 40} 4d4edS S31)L13UBPE ISOH J3SN SPRAL N1dD ISOH ¥ IPON

*SUOL1ONAgSUL 3ndul

AQuINy
WaSAS 403 LUOH NA0MIaN 433ndwo) A3LALIDY

sburpeay We1sAS 403LUO DULPUOdSa440) Y3tM 2 GO[40 UOLINO3IX3 Ul SaLItALIDY Sy 318Vl

i ; : 10. APPENDIX B--TRAFFIC ROUTES

; e

PRECEDING PAGE ELANKsNOT FILMED

P
i — i oA g

- mel

1]
INTEL 3 c) 2 B 3 1/170
2 f
b
q
N |
1 1
. {
.\“ :_‘_ . *
' Mol . 3 A ? ? D C5-20
| j t
Y |
[|
- [9
l#_—:] 0
2 3
1
-
3
NOVA 820

TRAFFIC ROUTL F

[—‘—"——1
I 11rig
[J
P

(

&
-

™ o~
= — — el Snpeaiir -
S (R S — e = i
— = i
|)
- -
o~ &~ © el
| o)
o =
o < P
> .
=) S]
Zz ot
[
ﬂ~ o~ M
o~ o
-
S < -
- ~ ~ e ———

INTEL
0T

fem O .

2 1/70 ‘
INTEL 3 c Lo _] /70y
—
2
P
1 rm
} els 1
Mot . Jﬁ 3 A 2 ? 0 } C5-21
| |
—_—
m L——:]___a g
2 3
) =1
1 3
NOYA 820

TRAFFIC ROUTE H

[2%
[9]
L

1

NOVA 820

TRAFFIC ROUTL

W—*”I—_—m

|
INTEL C | n 2 | B
I
1
|
— |
i
f
2 2 l
MOT. A - D
L L
‘ [0 ﬂl
L——‘.. —2 £ :ﬁ
]
l 3
NOVA 820
TRAFFIC ROUTE J
227

S

A

S i el 3

L .]
: NTEL 3 c |0 2 8 3 SVEUE
1 1 = |
SR]
2 9
N
.~ V F |
! 1 \ 1 \
B]
1 |
; ' Mot - A 2 2 D 3 boocs-oe
v. ! 1
] -
p () 9
. ¢
3
{ N - ¢ 7
r] = :
: L
l 3
4
NOVA 820

TRAFFIC R(UTL k

~4

e T T e

Laat

MoT.

11770

3 ¢ | 9 2 8 3
— |
-_2_l ﬂ
/\
v
1 1
3 A 2 2 0 3
p L= 9
P
2 E
ra 1
3
NOVA 820

TRAFFIC ROUTE L

229

T R bty VT WY SRS ¢ JESR P PP SEC N WIS "Ry

NOVA 820

TRAFFIC ROUTE M

INTEL

. L.

MuT.

11770

€s-20

2
¢ |2
2
<
3
A 2 2
[}
L_:z:] P
2 £
i
3
NOVA 820

TRAFFIC ROUTE N

-

- . e WX - R . - _

INTEL 3 c. ? 2 B 3 11770

]]
|
MT. 3 A 2 2 0 3 _ s-20 I
| |
L
@ u—~———s-r~———~1)
']
2 3
7
3
NOVA 820

TRAFFIC RQUTL ©

t.
o1
[9]

INTEL

NOVA 820
TRAFFIC ROUTE P

2353

11770

3 €s5-20

!

INTEL
|

MoT.

i
2 £ -___J

p—

NOVA 820

TRAFFIC ROUTE Q

re
(72
Fes

I c Lo 2 8 3 11/70
2) ‘
M
-
1)
!
P A 2 2 D LA __! Cs-20 |
W . J | ‘

11. APPENDIX C

11.1 Introduction

This appendix attempts to explain as clearly as possible the
S communications control software. It assumes little knowledge of ;
Mo80U0 microprocessor code, but does assume a knowledge of the
general configuration of the network. 1Tt is presented in five

parts: 1) Explanation of the different types of messages, 2) short

description of the method of error detecting being used, 3) the
general message handling process, 4) a description of important
buffers that the program uses, and 5) a flowchart that shows much

of the program detail,

11.2 Messages

Essentially there are three types of messages: 1) Data, 2)
Source Acknowledgement, and 3) Local Acknowledgement. The first is
of prime importance to the system, and the second two nsure the

error free transmission of the first,.

11,2.1 Data Message: Any communication between two elements in the

network is done with a data message. After a data message is sent

out from its origin, it remains stored in the origin's RAM until it

has been received at its destination, This is when a source
acknowledgement should be received by the origin from the destination

to indicate safe arrival of the data message.

11.2.2 Source Acknowlcdsement: The source acknowledgement, as just

mentioned, is to indicate to the original sender that a messace
has reached its destination error free., After receiving this
acknowledgement, the message stored in the source's buffers can be

cleared,

11.2.3 Local Acknowledgement: The local acknowledgement is one of

the steps along the way to an eventual sourcc acknowledgement. If
an element in a network is part of the path of a message from the
source to the destination, it must receive the message, report to
who sent it that the transmission was error free, and send this
message back out alomg its way. This is done through the local
acknowledgement. If this local acknowledgement is not received by
the sender after a certain peried of time, the data message is

retransmitted. I{ the local acknowledgement is received properly,

the message can be cleared from the buffers of the intermediate

nandler. See Figure (.1. .;

11.3 Message landling

The way in which a message is processed will be described in an]
attempt to become more detailed in the discussion of the total system,

The reader is referred to Flowchart C.1. 1

Essentially, the steps are as follows:

1. A message is put in through an interrupt routine that will ﬂ
input one word at a time. This is done to take advantape of the
relative speed that the central processing unit possesses comparcd
to the speed of serial data transmission. This interrupt [10 schemc

will be discussed in more detail later.

e ael

“lessage is transmitted to first link of its path . Local Ack.

rFrount Gl 4

An example of data messace transmission with aclkinowledgemecats:

l.ocal Ack., Link l.ink

P
(1) |Terminal 9]@ ,!@ [@’H 'l‘crminalJ

Messace

is sent by (2) to (1), safc arrival. (1) still waits for a
*]
source ackh., !
L.ocal Ack.
®)

—_——

Messaoce

(2) (Yerminal{€> @ 3) |€>/ Terninal

essave tropsaitted to (3)
(2) Clears nessa_ o ror its osufiers after local ack. is receiveud,
(1} Still waitine (or =ource acl.

LLocal Ack.

{3) l Terrina 1(9@ @ < @

Source Aclk.

(3) Transmits source ack. for message
{2} Sends (3) a local ack, for the source ack, (3) clears tac

source aclh.,

(1) still watts
l.ocal Acik.

—_ |
(1) {lerminal 9@ . @ ©) (6—9 Terminal '

Source Ack, from (3)

2. The messape is classed as either a data message, local ac-
knowledgement, or as a source acknowledgement

If the message 1is a data message, it must be distinguished
between a message that has reached its destination and one that
needs to be put back out into the network. If the data message
is still in the network, a local acknowledgement must be sent to
the last node that held the message so that it can clcar its buffer,
and then the message must be put back into the network to continue
towards its destination,

If the message needs to go back out into the system, 1t 1s sent
to an ACIA for output. If the ACIA is busy, this being the proper
ACIA, the message is sent to an ACIA that is linked to the proper
one for output. If output is not possible after all the links are
tried, the message is to be placed in a queue for output at a more
convenient time. (See Figure C.2)

If the data message is at its destination, a local acknowledge-
ment must be sent to the last node that held the message so that it
can be cleared from the buffer, and a source acknowledgement must be
sent to the message's source to acknowledge the completion of the
transfer of information.

If the message is a local acknowledgement, the receiving node
knows that the message was rececived error-free and that its buffer
can be cleared.

If the message is a source acknowledgement, the origination node

knows that the message was rececived error-frece and that its buffer

- el

iy

Data
Message

BN

ACIA 1

FIGURE C.2:

25

Message

QUE

ALL ACIA's BUSY, MESSAGE 1S QUEUED

. - . - -

can also be cleared.

-

3. Data Transmission Complete.

11.4 Input/OQutput

The input and output routines are called in the interrupt por-
tion of the program. A message 1s outputted one word at a time.
After each word is sent to an ACIA for output the program continues
to perform its normal process of processing message until output of
word is completed, at that time another word is sent to the ACIA and
program excecutions resumes agaln like normal.

In the input case, the inputting ACIA will interrupt normal
program flow to input o a buffer one word after completely receiving
the word. After each input normal program execution can continue.

Reintrant RAM is used primarily to achieve input and output to
the proper buffers in this intcrrupt scheme. (See next section.)

Note: The input/output flowchart will help this description

greatly.

11.5 Headers tor the Three Message Types]

At the beginning of cach message is a header telling the receiver

how to treat the message.

11.5.1 Data Message:

00 Message (lass

01 Number of Buffers

02 Number of Words in Last Buffer
03 Origin

04 Destination

05 Message Number

Bt Sl SOCE

11.5.

00 Sequence Number
07 lLocal Sequence Number

2 Source Acknowledgement:

11.5.

00 Class

01 Destination FIGURE C.3
02 Message Number

053 Local Sequence Number

35 Local Acknowledgement:

11.6

00 Class

Note: The Local Acknowledgement message only contains
this header and a local sequence number.

Definitions

Message (Class - Each message can be classed according to the

type of information in its bits. The three types of
message classes are: 1) source acknowledgements, 2)
local acknowledgements, and 3) data messages.

Number of Buffers - This is the number of buffers the message

is sent in, Maximum buffer length is 255 words including
the Cyclic Redundancy Code (CRC) and the header.

Number of Words in the Last Buffer - This provides a means of

quickly finding the (CRC which is located in the last two
words of the message. (See Error Detecting, Section 11.7).
Origin - The origin is where the message orginated. It tells

which ACIA should get a source acknowledpgement. FEach

Jd

P

element of the network is assigned a number.

Destination - This is where the message 1s going.
Message Number - This is the name of the first buffer where a

message 1s stored in the source, Used for source acknowl-
edgement purposes,

' Sequence Number - The sequence number 1s the packet number of

the message. Presently, a message may be three pachets
long., Secquence number is used because of the necessity
to receive packets in order.

Local Sequence Number - This is the name of the first buffer

where a source acknowledgement or a data message is stored

1in a link. See Figure (.3,

11.7 Error bVetecting

The end of each message contains the CR(. The primary concern
of the nectwork is data routing and transmission, btut accuracy is
also a major concern. The CRC is simply a check-sum of all the words
contained in the message.

- A CRC 1s on tiec message, but is also used for comparison when a
message 1s input. Unfavorable comparison results in the message
being discarded and retransmitted.

The MC0850 also performs an error chech of cach word input. It

checks for framing errors, rcceiver overrun, and proper parity. The

reader is referred to the MCO850 SPLC shect.

11.8

Buffer Definitions

of 1

“ial

NEAC

The upper

rein
of s
data
put

Aoty
like

o)
U]
"2
05
g
05
(S8
07
[N
Ry
ua
0
e
0y

Certain data

nformation

fers" are explainca

BUFFER -

portion of
trant RA'l consists
pace {for storing

to input and out-
a messace,
pyical buffer looks
tnis:

aul ‘L)
i.hl

Input
lllivll‘

First
Number of
Present TInput
L.ocation 1in Present
t -~ Input

Hioh Order CR(
Low Order CRC
ACIA {ligh Crder
ACIA Low Order
szumber of Output bu
“umber ol VWorus in
sufler
Presciit

Present
location in
FoCutput

arravs

nceeded to

Calculated

Address
Address

are usced
process

here.,

Reintrant RAM

Sce igurc.

lers

tulfer

Suler

lLeft
nulfer

ffers
l.ast

sulrer

ANPREY

s our

nte
g e
Crom

oot e UV s navoe
[IEER R IR A I
tie
routines tor

coilvine

k‘d 'Ll\
rriuogt

S5, ¢ or re
data sturare

[RTR S SN R
storin.

a ressane
pullers.

a bl fer

~ bhutfer
cuatut

R Y

P

nessagves,

livut

hocuien

Tt

Section

for the temporary

These

319

AU

storayce

so callec

Cacta i1

MOTA 72

ACTA #4

‘essase
ll” for
\(IA /1 :

"Joocal Ack.|
ol for |
LA
i ter w
of last (
{logal ack.!
sent :
l.Links to
other
ACTA'S W,
| M
1
I
|

QU Vor
ACTA #]

\
i
|

Ul {or
ACIA %2

|
l
Ut for
N PO AT
|

g ey Y

R

The nexi sortion ol reincrant AT
is the YT, oo it Tor lecal ack-

cowledeenents or tor data messages., 1 umber of First Buffen
(See Fiesure) tach ACIA also has 11 XNunmber of uifers
associated witin it a Ui, hescribed 40 [hunber of Loras in
as it 1s in the [irure. Locations Last juffer
di-15 are the uwessace QUE., Two oo i# oof Pirst uiter
- ressaves can be placed in the QUL 1V 7 of dutfers
' for a varticular ACIA, Locations 406-4° 45 |# of Vords in Last
are for local achknowledeements., Thev haffer
: contain all taat 1s necded for the Jo [Local Scequence # 1st
sendine of a local acknowledvement, thue AcKk.
. location ol the messave in tace scieer, 47 J1Local Sequence ¢ 2nd

T lers so it can ue clearca {row there, Ack.
(22 local acknovledgenment scetion) 43 1Local Segquence # 5rd
lLocation 4C, the buffer nurnber of the Ack.,
Iast local acinowledpement sent is used 49 [Local Sequence # Gth
so tiat this local ach. messape may be Ack.,

“ * clearea. Location 41 contains a constant; 447

‘ vihien onerated on will reveal the linaced 41
ACTA's that »rovide an alternate route 4C |Buffer # of Last Aci.

X tor scending a4 messane. sent

‘ 4 [Links to Other ACTA's

BEGSTR BUFFER
‘ The input section of reintrant RAM

will be transferred to a Begstr 00 [Location of the VFirst bufter
after the message has been totally 01 {Number of buffers
received. Also wien the output of 02 |Number of VWords in Last hutfier
1 messace 1s started. Beestr is 03 |Processine Status

, - transferrcd to the outnut of 04 filieh Order CRC Calculated

" . reintrant RAM. The purpose of ti5 {Low Order (RO

Feestr is to provide a means of
finline a messare when the tine
nas come for 1t to he processcd.

- The processing scatus of a messacc
con be any of the followine:

e

Q (V)Y Tesseece Tol Processced
(1) Processe. S TR S S SN
(2) tome Messace Not Processcd
(3) ‘ione Tessace Processcd Yo

lLocal Ack.
(4) Lore Yessiee Processed ut
Yoo Sgurcoe M.

i Liach 1Casid e aTrocenscu nads a peestr assocrated witn 1t

gt

R e TP . . P

BEGBUF BUFFER

sepbul contains an array of buffer
names and the A(CTA that 1s presently
usine them, A uveneral description
of eebuf is presented in Fisure k.
1iie acia using buffer word is called
the "kev" word.

XDIREC BUFFER

The directory is an arrav uscd to
determine the srover A(TIA {for the
outrut of a messase., The low order
address for the uilrectors neinter,
coints to an clement that has in it
an address of anp ACIA So 1§ the
destination is bLnown, tuac vroger
acia can he gotten by placing this
destination in the low order address
of the direcctors pointer, XDIREC.,

ZZ BUFFLR

7L is the acinowledocnent nceded
LJl, When a message is outputted,
its first buffer number is placed

in tiris OUID so when an acknowledoece-
ment comes, a yuick location ol the
wessace and subscquent incrementine
G 1ts rro:c¢ssine status is achicved.
“lso wnen a messare 1s outputted, the
time of ocutput is recorded in IZZ, so
1f too much itime has progressed and
a2 local ack, has not been received,
the messace can be retransmitted,

t.
-

e~

suffer
same

LLGRUFF

ACIA using F¢
Ig

ACIA using F1l
F1

ACIA using F2
F2

ACIA using FF
FF

FIGURE X

HOMEREC BUFFER

liomerec is uscd tor processin: 0o fessaze Nauber

home messaves reccived fron Ul Orisin

thie network. It keeps track 62 i of last Pachket keceived
cf the inconine packets and 63 location of Pacict 1
where they are stored in RAY, 04 Location of Packet !
ifomerec nay be better under- 05 SPGSTR location of 1st
stood when 1t is viewed in Packet

its proper cointext in the [low 06 Tow Crder LLGSTN Aduress
chart.

11.9 Flow Charts

The Clew diarran tnat rnakes up the rest of tals
paper is intended te tell) in real woras, tlie orocess
trat is taking . laced for tnts reason, 1t may not
he vord Tor word correstondine to tne srosran listine,

Also, one level decper in wetall could have been
aone,

240

LOCAL ACKNOWLEDGEMENT

INPUT A

MESSAGE

OVER AN
ACIA.

|

FIND THE MESSAGE
THIS LOCAL ACK.
IS FOR AND
CLEAR IT, IF IT
IS NOT A HOME
MESSAGE.

YES

——

RECEIVE ALL
PACKETS OF THIS
MESSAGE, SEND
A SOURCE ACK.
FOR IT.

OUTPUT THIS
MESSAGE
TO THE

HOST OVER
AN ACIA

DETERMINL

SOURCE ACKNOWLEDGEMENT

THE CLASS OF
THE MESSAGE

SEND A
LOCAL
ACK. FOR
THIS
MESSAGE

IS THIS
THE DESTINATION
FOR THIS
MESSAGE

18
THERE A

FREE ACIA
FOR OUTPUT
OF THIS
MsG

YES

OUTPUT THIS
MESSAGE TO

TOWARDS ITS
DESTINATION

DATA MESSAGE

NO

OUTPUT THIS
SQURCE 4CK.
TOWARD ITS
D .

TRY Tu OUTPUT
VER ANOTEIR
lACIA, IF NOT
POSSIBLE
STORE THE

FS, IN QUE.

WAIT FOR THE
PROPER ACKNOW-
LEDGEMENTS FOR

THIS MESSAGE

IF ACK.'ED PROPERLY
CLEAR THE MSG.

FLOWCHART

.1

t
-—
~1

MESSACL

SEND A
LOCAL
ACK. FOR
THIS
MESSAGE

IS THIS
THE DESTINATION
OF THIS
SOURCE
ACK.

FIND THE
MESGAGT Tis
SOURCE ACK. 1§

FOR, AND

CLEAR IT.

BANDEING

NORMAL ROUTINE

FLOWCHART
i
. |
MAIN]
CLASS A __Yes [Datams i
DATA MESSAGE? ' 2 1
.. | ;
! PROCESS A ¢

DATA MESSAGE

ANY
MESSAGES
TC SEND?

NO

IS THE

CLASS A

LOCAL ACKNOW- ACKLOC :

LEDGEMENT? 4 :

E- i
L PROCESS A
LOCAL ACK.

FIND A MESSAGE
IN BEGSTR THAT
NEEDS TO BE
PROCESSED

IS THE
CLASS A
SOQURCE ACKNOW-
LEDGEMENT?

PROCE!
A SUUR.
ALk,

PROCESSING STATUS

OF THE MESSAGE
NO, THE CLASS ISN'T

} 1S '0' OR '2°
S i SEE *BEGSTR' RETURN ONE OF THE THREE ;
HI FROM THAT WE SHOULD i
L MESSAGE “CLASS" HAVE RECEIVED :
. TO PROCESS SUBRUUTINE i
] FOUND? .
1
' :
1 ’ ’ NO !
. INCREMENT ANY MORE ;
S PROCESSING MESSAGES TO CONTINUE THE
i STATUS OF PROCESS SEARCH IN
. | MESSAGE BEGSTR
|
- !
|
‘ FIND ANOTHER
] TAKE INFORMATION MESSAGE T0
! DESCRIBING MESSAGE PROCESS
| AND PUT IT IN
1 ASAU VARIABLFS. THIS —
l IS DONE MORE OR LESS FOR
. ! CONVENIENCE.
i [MAINC
!
|
i NO 1S THERE
L A MESSAGE

FOR HOME

t

IS THIS
THE FIRST
PACKET OF THE
MESSAGE?

NO

FIND THE
HOMEREC
FOR THIS

LOOK FOR A MESSAGE

LOCATION IN

MEMORY FOR

SETTING UP

A HOME REC.

1IF THE HOME

REC WAS NOT
FOUND, SOMETHING
IS WRONG, CLEAR
THIS MESSAGE

& WAIT FOR

IT TO BE SENT
AGAIN,

RETURN
FROM
CLASS

WAS

HOMEREC FOR
TH1S MESSAGE
FOUND

YES
1IF THE PACKETS
ARE OUT OF

QRDER CLEAR
THE MESSAGE

ARE
THE PACKETS
COMING IN
THE RIGHT
SEQUENCE?

l YES

UPDATE BEGSTR
AND "ASAU"
VARIABLES WITH
NEW PACKET
INFO

RTN
FROM
CLASS

THE INDICATION FOR

A HOME BOUND MESSAGE
1S AN H °FF' IN

THE PROCESSING
STATUS OF THE
MESSAGE'S BEGSTR

244

NO

"END OF
MESSAGE"
RECU'D

CLEAR HOMEREC
INDICATE IN
BEGSTR THAT TH1S
HOME BOUND MSC
INC., HOMEREC

SEND TH
SOURCE
ACKNOWLEIN £~
MENT

D1D THE
MESSAGE

P

L

|

I

i

I

i

L.
[T A
oo
[wUd'S
Wl N [[LB
. S CIRES 7Y
b N BFUBUY Clev h

CLEAR THE

RECEIVED EROS
BECSTIR AND BROELE

SCARCH

ste BEGSTR FOR

SRCHE 5 THE ACK'ED
UESSAGE

MESSACE
FUUND?

SUURCE

MESSAVE

. STATLS,
SR, THAT
A SUURCE AUK.
1S NFRDED.

LOCAL ZUK, M ate

el
H

SR
BLUSHR b
[T

250

;oo

&

e

15
LRC UF
THL ACFSoR
M DK

L

\

d

\ FOLND?

TP A
Tor AL ACK.
RN

Mu

“H).

[3

TR OANY

i, THE ACK'TD
el

BRGSF

il i

ARE

THERE ANY NO

RETURN

FROM
QAZ

HERE

ACK'S TO
SEND

"ACLACK"

SEARCH FOR
FREE ACIA!

IF ANY ARE
FREE, THEIR
LOCAL ACK QUE
WILL BE
PROCESSED

$4C CONTAINS

SUBRUUTINE YES BUFFER # OF LAST
T LOCAL ACK. SENT
QAZ OUT. SEE REAC

CHECK 4C
OF REAC

HAS A
LOCAL ACK
BEEN SENT

YES

LOOK FOR ACR’S
ON THE FREE
ACIA.

26

SUB-
ROUTINE SEARCH
TYMOUT THE ACK.

NEEDED
QUE FOR
TIME EXPIRED
ACKNOWLEDG E-
MENTS,

4C 1S USED TO KEY
SRCHES. AFTER THE
MESSAGE IS FOUND IT
1S CLEARED FROM
BEGSTR AND BEGBUF.

(POSSIBLE 4MSGS ON
EACH ACIA)

MSG
FOUND FOR
THIS ACIA?

NQ

YES

INCREMENT
TO NEXT
ACIA.

t

TO FORM A LOCAL
ACKNOWLEDG EMENT
MESSAGE. ONE 1S
GOTTEN THROUGH
THE USE OF
SUBROUTINE BUFALO

BUFFER
AVAILABLE?

RELGAII LOCAL
SEQUENCE NUMBER

HACK IN THE
SET UP REINTRANT QUE
RAM FOR THIS
MESSAGE OUTPUT
STORE LOCAL SEQ.
& CLASS IN
OUTPUT BUFFER
RETURN
FROM
QAzZ

DECREMENT

ACKMES - ACKMES - IS A VARIABLE WHOSE VALUE
EQUALS THE NUMBER OF ACK'S TO SEND
GO TO OUTDES
ROUTINE TO
OUTPUT THIS
MESSAGE.

25

THF AClA

1 THAT THE

MESSACE

BEING ACK'ED

CAME 1IN

ON IS

. GOTTEN FROM
BEGBUF. BY
ACIAEG, THIS
SO CALLED
KEY WORD
ACIAEG RETURNS
WITH IS DECODED
BY REINE6
""QUEACK"

s

REFER Tu
REAC.
~ i FOR HELP
1N UNDER-
STANDING
- THIS
PRUCESS

WAS
THERE ROON
IN THE QUE?

YES

RTN
FROM
LOCALP

THE LOCAL ACK IS

NOT SENT IMMEDIATELY,
1T SENT WHEN SCHEDULING
PREDICTS. FOR NOW
PROVISTONS FOR A

LOCAL ACK. ARE STURE

IN THE LOCAL ACK.

QUE OF AN ACIA.

SO REINE6
WILL GIVE US
THE PROFER
ACIA TO SET
UP THIS LOCAL
ACK. ON.

STORE THE
LOCAL SEQUENCE
NUMBER IN THE
ACK. QUE ON
THIS AClA

NO

NOTHING WE
CAN DO BUT TRY
AGAIN LATER
THE MESSAGE
WILL PROBABLY
SENT AGAIN.

WITH THE DESTINATION
LOOK IN THE DIREC-
TORY FOR THE ACIA
FUR THAT DEST-

INATION,

Is
THAT ACIA
BEING USED?

4 NO R2D3

ROUTINE OUTPUT
THE REST OF

SET REAC UP
FOR OUTPUT.

1s

THE MESSAGE
A SOURCE ACK
OR DATA
M3G?

PUT THE MSG
IN THE NEED

NO

™ ACK. QUE.

S

OUTPUT
START OF
HEADER,
LET INT.

THE MSG.

DETERMINE
LINKS TO OTHER
ACIA'S.
(COUNTER SET UP
TO CHECK & LINKS)

]

NO

IS THIS
ACIA BUSY?

NO

HAVE
ALL PUSSIBLE
LINKS BEEN
CHECKED?

YES

QUE THIS MESE

TRY TO
QUE THE
MESSAGE
SET UP FOR ON LINK'S J ves
SEARCH FOR QUE
NEXT LINK
STORE IN THE
QUE, # OF
BUFFERS, # OF
"o ANY WORDS IN LAST
ROOM N BUFFER,
LINK'S QUE FIRST BUFFER
MUMBER
Y.
i
INDICATE THAT
PLACE
THE MESSAGE :
WAS NOT PROCESSED sc IN RETURN
IN BEGSTR LINKTS FROM
QUE. QUE

L

3]
' THE DIREC- FIND THE ACIA
TORY 1S THAT MSC BEING
1 USED HERE. SOURCE ACK'ED CAME DECREMENT
IN ON. THIS 1§ PROCESSING
4 THE ACIA THAT WE STATUS OF MSG
WANT TO SEND SORAC (NO SOURCE
QUT ON IF ACK SENT)
1 POSSIBLE.
-
INCREMENT IK MLS.
USE SUBROUTINE RTN
BUFALO TO FIND FROM
A MESSAGE CLASS
TO FORM suB
?(kau: ACK, BUFALU

27

NO
BUFFER —
AVATLABLE?
l YES
FORM THE
SOURCE ACK CRC 15 CALCULATED AND
MESSAGE. INCLUDED IN THE MESSAGE

QUTDES

[

THIS ROUTINE PERFURMS
A QUE SEARCH FOR MESSAGES.

ARE

THERE ANY NO

MESSAGES IN MALNC
' QUE 1
(QUE MES. 1S CHECKED,
ITS VALUE EQUALS
THE NUMBER OF
MESSAGES IN
THE QUE)
CALL SUB
ACIACK
TO FIND
ANY ACIA'S
THAT ARE
NOT BUSY.
.
SUBKOUTINE
nqMI”
SEARCH FOR
QUE'D MESSACE
¢ IN ACIA'S QUE.

REINTRANT RAM

‘ |

M(;
. FOUND YES
IN THIS ACIA'S
QUE? !

o INC;E)}(ENT SET P NOTE: THE

N REINTRANT HEADEK 1S
e RAM WITH ALREADY FURME::

THIS MESSAGE AN ALL TH
NEEDED INFUK-

MATION FOR
SETTING UP
REINTRANT

1S HERE

IN THE QUE.

i

Jot

INTERRUPT
ROUTINE

‘ INTRUP

. |

DETERMINE
WHICH ACIA
INTERRUPTED

YES _J

NO

OUTPUT

WAS
< THERE A N —
DATA RECEPTION
ERROR
THY - .. FRRORS
CUVKET FOR: l YES
(1) FRAMING ERRUR THE READER 1§
REVERRED TU THE
(2) RECEIVER OVERRUN ""SPEC" SHEET FOR
THE MC 68%" ACIA.
(3) PARITY ERROR M6800 M7 . COMPUTER

|
|
|
M

SYSTEM ©S. N

MANUAL

CLEAR
FOR THIL
FREE BU
[WAS

REAL

5 MSu
FFERS
USING

N

N

INPUTA
16

RETURN
FROM

INTRUP

OUTPUT

INPUT

SOMETHING'S
WRONG,
T0Ss THIS MSG.

THERE 1S A
POSSIBILITY OF A
GLITCH ON THE
INTERRUPT LINE
OR SOME OTHER
UNFORESEEN
CAUSE OF AN
INTERRUPT, IF
THIS IS THE
CASE, SIMPLY
DISREGARD 1IT.

INPUT
A WORD FROM
THE ACIA
(SUB.

INPUT1)

HAS A
BUFFER BEEN
ALLOCATED FOR
THIS MsSG?

N

NO

INPUT & OLTPL]
TG HOML OR

SPECIAL CASES,
ALTHUUUH VERY

SIMILAE TO
1/0 TG OTHUR
ACIA'S.

SUBReUTINL
INPUT

13
THINS WoR:
THE STAR1
OF HEADER !/

:
4
%
YES '
1
IN]
© ;
'

THEN THIS SHOULD
BF THE FIRST
WORD OF THE

MESSAGE (L1E :
START OF HEADER)

F-INPUT IS USED TO
PERMIT AND END-OF-TEXT
SYMBOL AS PART OF

THE MESSAGE, IF AN ESCAPE
CHARACTER 1S SENT
IMMEDIATELY BEFORE.

HAS
ESCAPE

CHARACTER BEEN
SENT!

GET A BUFFER WHEN ESC. 1S SENT,
' FOR THIS MSG. F-INPUT 1S SET TO
SUB. BUFALO" 1. F-INPUT IS CLEAR
27 THEN CLEARED AT F INPUT
. THE RECEIPT OF
: THE NEXT WORD.

18
THIS WORD INCREMENT
AN ESCAPE FINPUT
‘ CHARACTER?
BUFFER Fig:
. AVAILABLE? SORRY, NO NTRUP @
ROOM
TOSS MSG.

STORE BUFFER REFER TO
NAME IN DISCUSSION OF
- FIRST INPUT REINTRANT t
s BUFFER AND PRECEDING THIS
PRESENT BUFFER FLOWCHART . L__ NOTE: THIS
OF REAC. _ NO SITUATION
. MAKES 1T
| NECESSARY TO
. SEND THE ESCAFE
~ &61?3:; CHARACTER TWICH
eRe FOK I1 Tu BL |
" INCLUDED 1N THE
MESSAGE
\L
STUKE
WORD IN
3 PRESENT
. BUFFER
INCREMENT
LOCATION
IN BUFFER
¥ S ——
— -
. ARE WE
FIND A AT THE END
BEGSTR OF PRESENT
BUFFER BUFFER

‘ FIND
LELONS ANOTHER
N“HKC‘P‘\ :ﬂ:\\N No BECGSTR BUFFER
BN , kt '
MADE, FOR AVAILABLE BUFALO
| THIS CASE.
i [THE TAST
‘ | BEGSTR
] WILIL BE
USED FOR
‘ THIS MSG.

s o e

¥F1LL BEGSTR

BUFFER e WITH DATA
AVAILABLE] FROM RET
INTRANT RAM :
MESSAGE CAN .
NOT BE TAKEN, l '
TOSS MESSAGE !
CLEAR REAL
1
INDICATE IN '
BEGBUF THAT
LINK PRESENT THE BUFFERS (i.v. INDICATE .
BUFFER TO BEING USED THERE STATLS |
NEXT BUFFER BY THIS ACIA TG SHOW THAT :
UPDATE REAC TO ARE NO LONGER MESSAGE 1S :
REFLECT NEW GOING TO BE FULLY RECEIVED)
BUFFER INPUTTED INTO
(i.e. CHANGE L——————
LOCATIONS 01-02
OF KIAC)

RTN

FROM
INTRUP

THIS FLOWCHART OF THE OUTPUT ROUTINE
DIFFFRS WITH THE WAY THE PROGRAM LISTING READS.
THIS SECTION OF CODE 1S EXPLAINED IN A CLEARER WAY.

(OuTPUT

1s
F-OUTPUT
SET?

YE-
B R
{ ‘i:futl’: Ffff‘”‘i ! F-OU PPUT PROVIDES THE SAME CAPABILITY
Soovired Titk AS F-INPUT IN THE OUTPUT SENSE.
ESUAPE CHARACTE .11 ALLOWS AN END-0F-TEXT CHARACTER
L OUTRUT THE | Te BF INCLUDED IN THE OUTPUT MESSAGE.
 NEXT WokD | WMEN F-ONTPUT 1S SET, THE NEXT
OF THE MESSACE] CHARACTER IS NOT TO BE INTERPRETED
AS AND IN OF TEXT.
R ——

1S THIS
THE LAST
BUFFER

Nt

ARE WE

NO

AT THE END FROM
OF THE INTRUP
MESSAGE?

ARE AT
THE END OF
THE CURRENT
BUFFER

WAS
THE LAST
CHARACTER OQUTPUTTED

AN ETX?
CLEAR REINTRANT LINK TO THE
RAM, CITEAR NEXT BUFFER,
THE MESSAGE REFLECT IN
FROM MEMORY REAC THAT WE'VE
OUTPUT IF IT 1S GOING STARTED ON
THE | OUT TO HOME ANOTHER BUFFER
ETX
CHARACTER

1S THIS
OUTPUT
TO HOMF?

RTN
FROM
INTRUP

BUFFER
AVAILABLE?

SET UP LINKS

TO THIS BUFFER :

. FROM PREVIOUS i
ONE. i

b)

FIND
BEGSTR NOTE: IF NO
RS FOR st BEGSTR AVAILABLE
. PACKET THERE IS A PROBLEM.
OF MSG

TRANSFER
REAU TU :
BEGSTR,

CLEAK REAC ;
i

SET UP HEADER -
FOR SECUND
PACKET,
NOW WE ARE
READY To CUONTINGE
INPUT

| S

i
|

OUTPUTA

1 YES

HOST 8

NO

OUTPUTA ACCOMPLISHES
THE OUTPUT TO HOME.
WITH A FEW EXCEPTIONS
IT RESEMBLES VERY
CLOSELY THE REGULAR
QU1TPUT ROUTINE, TH1S
FLOWCHART 1S NOT
COMPLETE.

D man ik,

PP

FROM THE 'ASAU'
VARIABLE, FIND
THE MESSAGE
USING THE FIRST
BUFFER NUMBER

SUBTRACT THE
LOCAL SER. # WE
ARE GOING TO PLACE
ON THE MESSAGE
FROM THE
PREVIOLS ONE

[R

THE PURPOSE OF CHANGE 1S TO
RECALCULATE THE CRC

PLACED WITH THE MESSAGE

T0 REFLECT THE NEW

LOCAL SEQUENCE NUMBER
PLACED WITH THE MESSAGE.

THIS CHANGE TAKES PLACE IN
THE ASAU VARIABLES.

SUBTRACT
THE
DIFFERENCE
FROM THE
CRC

-
~bo

PRESENT LOCATION
1S TOP OF BEGSTR

IS THIS
BEGSTR
BEING USED

LOOK - THIS SUBROUTINE PERFORMS
A SEARCH OF BEGSTR'S TO
FIND MESSAGES THAT NEED
TO BE PROCESSED. THE PROCES-
SING STATUS PROVIDES THE
KEY. WHEN IT RETURNS,
THE ADDRESS OF BEGSTR
IS IN THE X REGISTER.

BY A
MESSAGE

YES

RTN

FROM

LOOK

INCREMENT
TO 'THE
NEXT

BEGSTR

INCREMENT
TO NEXT
BEGSTR

LOOK1

PRESENT LOCATION IN BUFFERS IS
AT X1 WHEN SUBROUTINE
1S ENTERED AT LOOK2

DOES
THE MESSAGE
USING THIS
BEGSTR NEED
PROCESSING

SAVE THE
PRESENT
LOCATION OF
BEGSTR (X1)
RTN WITH
BEGSTR LOADED
IN X

ma g

TAKES: TAKES A BEGSTR
FROM RAM AND
STORES 1T 1IN
ASAU VARIABLES.

(1

—

(2)
(3

N
- =

S

-~

(6)
7)

LOCATION OF FIRST
BUFFER FAKE YX
FIRST INPUT BUFFER
UPPER ASA VO
NUMBER OF BUFFERS
ASA V1
OF WORDS IN LAST
BUFFER ASAV2
PROCESSING STATUS
ASA V3
HIGH ORDER CRC
ASA V4
LOW ORDER CRC
ASA V5

RETURN

IN X

RTN
(FROM
TAKE S

RTN
"ROM
PUTOUT

WE WANT TG
OUT EVERYTHING
IN THE MESSAGE
BUT THE ACIA

THE

W/ BEGSTR
LOCATION

PUTOUT

IS HOME
ACla BUSS?

H1 - THIS FINDS A
HOME BOUND
MESSAGE BY
SEARCHING THROUGH
BEGSTRS

PRESENT LOCATION
15 TUP OF BEGLSIR

1S THIS
A HOME BOUND
MESSAGE

YES

INCREMENT
TO THE
NEXT

BEGSTR

IS THIS
THE LAST
BEGSTR

PUTOUT - WILL
OUTPUT A HOME MESSAGE
OVER THE HOME ACIA IF
IT 1S NOT BUSY.

FROM BEGSTR
SET REAC
FOR OUTPUT
OVER THE
HOME ACIA.

!

OUTPUT THE
FIRST WORD
TO THE HOME
ACIA, LET THE
REST OF THE
MESSAGE BE
OUTPUTTED BY
INTERUPT

RTN
FROM
PUTOUT

SRCHOM -
THIS SUBROUTINE PERFORMS
A SEARCH THROUGH
MEMORY FOR A
HOMEREC NOT
BEING USED

PRESENT LOCATION
IS AT THE FIRST

HOMEREC
1S THIS
HOME REC NO
FREE FOR

OUR USE

SUBROUTINE RETURNS
MWITH HOMEREC
LOCATION IN X

INCREMENT

TO THE
NEXT

HOMEREC

NOTICE HERE THAT

NO PROVISION HAS

BEEN MADE FOR

NOT FINDING A HOMEREC.

r ' SRC4
- PRESENT
LOCATION 1S
AT FIRST

SRC4 - THIS SUBROUTINE FINDS A HOMEREC
THAT CONTAINS THE MESSAGE CURRENTLY
BEING PROCESSED.

MESSAGE NUMBER AND ORIGIN ARE KEY IN
FINDING A MESSAGE. SEE HOMEREC
DESCRIPTION.

i’ HOMEREC

DO THE
HMESSAGE #'S
MATCH?

DO THE
ORIGINS
MATUH?

WITH X CONTAINING
THE LOCATION OF
HOMEREC

NO
-]
M
No YES INCREMENT
NOT T0 THE
FOUND NEXT
HOMEREC

WITH A BEING A FLAG
INDICATING MESSAGE
NOT FOUND.

200

CRCLK & CRCCK BOTH WILL BE
DIAGRAMMED HERE.

THERE PURPUSE 1S TO FIND A
MESSAGE'S CRC AND CHECK

IT WITH THE ONE CALCULATED
WHEN THE MESSAGE WAS INPUTTED

oo
IS THIS NO
. THE LAST BUFFER — EXAMPLE OF BUFFER LINKAGE
OF MESSAGE l AND LOCATION OF CRC
b’ []
LINK .
b ' TO THE BUFFER 3 BUFFER
. LAST FIRST MESSAGE
1 BUFFER BUFFER Fl
LOC. F1FF F 2
.
1 : USE NUMBER
OF WORDS IN LINK
LAST BUFFER TO
: FIND CRC.
PUT POINTER
(ACCR) AT THIS
CRC LOCATION BUFFER
F2 <«
ITEF F 3]
RTN LOC. F2FF
FROM
CRCLK !
I LINK
BUFFER
e (—‘]
(—_ LOC'S F3Fa CRCL
COMPARE CRC FIFF CRCL
ON MESSAGE
WITH CRC
CALCULATED
SET THE
FLAG (ACCB)
FOR ERROR
IN CRC
DO THE
TWO NUMBERS .
EQUAL EACH

OTHER

FIND THE
CRC AND

CHECK IT.

YES

ACKNAC CLEARS THE LOCAL
ACKNOWLEDGEMENT MESSAGE
FROM BEGSTR & BEGBLF,

GO TO THE MESSAGE
FIND THE MESSAGE
BEING ACK'FD
PUT IN VARIABLE
BUF. POINT X TO
BEGSTR.

|

J

CLEAR LOCAL
ACK. FROM
BEGSTR &

BEGBUF

CLEAR THE
LoCAL
ACK

MESSAGE

RTN
FROM
ACKNAC1

et

e i

PRESENT LOC.
s AT THE
TOP OF 22

DOES B
EQUAL PRESENT
MESSAGE

CLRZZ CLEARS A MESSAGE
FROM THE ACK.
NEEDED QUE (ZZ)

WHEN CLRZZ 1S CALLED
THE MESSAGE BEING
ACK'ED 1S IN
ACCUMULATOR B

NO

INCREMENT
TO NEXT
MESSAGE
CLEAR IN 22
PRESENT
; MESSAGE
! FROM
2z
ARE WE
—< AT BOTTOM OF
22?
W
PULL
BUFFER
TO CLEAR
OFF OF
THE STACK

PR

WHEN CALLED, X
CONTRINT THE LOCA-
TION OF A BEGSTR
TO CLEAR, CLEAR
THIS BEGSTR.

SUB
CLRES

HOW
MANY BUIFEKS?
T CLFAR?

PUSH ALL THE
BUFFERS ¢
CLEAR ON TO
THE MEMORY
STACK,

CLRE> -"CLEARS'
A BELSTR

CLRE6 - CLEAR>

THE BUFFER

IN USE FLAG

FROM BEGBUY

WHEN CALLED

'B' CONTAINS FIRST
INPUT BUFFERS

'A' CONTAINS

NUMBER OF BUFFERS. -1

BUFALOQ - BUFFER ALLOCATION
SUBRCOUTINE, THIS
SUBRUUTINt SEARCHES
BEGBUE FOR A

FREL BUFFER AND
ASSIGNS 1T TO AN
ACLA. WHEN BUFALL
1S CALLED ACC 'B'
CONTAINS THE Kt
WORD SPECIFYING
WHC WILL USE THE
BUFFER.

PUT POINTER
AT TOP OF
BEGBUF

IS THIS NO
BUFFER IN

USE?

ARE
WE AT THE
END OF
BEGBUF?

A ZER:IN
ACCA INDICATES
THAT NOT A
BUFEER WAS

INCREMENT Founn

TO THE

NEXT
BUFFER
IN BEGBUF

*NOTE ACCA - ACCUMULATOR ‘A’

PUT THE

AGS3 086

UNCLASSIFIED

GEORGIA INST OF TECH ATLANTA SCHOOL OF ELECTRICAL EN==ETC F/6 9/2

THE FEASIBILITY OF IMPLEMENTING MULTICOMMAND SOFTWARE FUNCTIONS==ETC(U)

OCYT 79 T P BARNWELL» J L HAMMONDs J H SCHLAG DAAGZ%T!-G-0139
ARO=~15900.1=A~EL

[P

s
R g

¥

PRESENT
LOCATION
1S TOP OF
BEGBUF

ACIAE6 -
THIS SUBROUTINE

ACTAES WILL FIND THE
KEY WORD, OF
A BUFFER.
KEY WORD
WILL BE
USED TO SET
UP THE LOCAL
ACK.

COMPARE
1st BUFFER
TO PRESENT

BUFFER IN

BEGBUF

TWO BUFFER

ARE THE

NAMES THE
SAME

SHIFT KEY WORD
LEFT ONE AND
DECREMENT IT

TO GET THE LOWER
ADDRESS OF
REINTRANT
RAM FOR QUE
IN THE LOCAL ACK.

RTN
FROM
REINE6

PUT THE
KEY WORD
IN ACCA
INPUT TO
NEXT
BUFFER
IN BEGBUF
RTN
FROM PRESENT
ACIAE6 LOCATION 1S
AT TOP OF
LOCAL ACK.
QUE FOR
AN ACIA
IS THIS
YES LOCATION FREE?
(CAN WE QUE A
LOCAL HERE?)
y
STORE THE
LOCAL SEQUENCE
NUMBER HERE
LAST
POSSIBLE

REINE6 -
TAKES
THE KEY
WORD AND
INTERPRETS |
IT INTO

A LOCATION
IN REINTRANT
RAM

QUEACK WILL
SEARCH IN THE
LOCAL ACK.

QUE FOR A

FREE SPACE

AND STORE

THE LOCAL SEQUENCE
NUMBER THERE.

SEE REINTRANT RAM.

INCREMENT
TO NEXT
LOCATION

LOCATION?

YES

ACCUMULATOR
WILL REFLECT
THAT MES. NOT
STORED.
RTN
FROM
QUEACK

) s it m SN

o

LOCATION OF POINTER
PRESENTLY AT

TOP OF REINTRANT
RAM,

IS THIS

ACIA PRESENLY No

ACIACK - PERFORMS A SEARCH
FOR AN ACIA NOT
CURRENTLY BEING USED
FOR OUTPUT.

BEING USED?

CLEAR
FLAG. FOR
NOT
FINDING

FREE

ACIA

INCREMENT
TO NEXT

i

SET FLAG FOR
FINDING ACIA
WILL POINT
TO THIS ACIA
IN REINTRANT
RAM

ACIA IN
REINTRANT
RAM

RIN
FROM
ACIACK

PRESENT LOCATION
IS AT THE FIRST

SRCHES ~ PERFORMS A

—— s . . e Dk it e %0

BEGSTR

DOES THE
FIRST BUFFER

SEARCH OF BEGSTR'S
WITH THE FIRST BUFFER
NUMBER, ELEMENT

ONE KEYING THE
SEARCH

WHEN CALLED, ACCB CONTAINS
THE FIRST BUFFER # OF MESSAGE.

NUMBER
MATCH
ACCB

X CONTAINS

THE LOCATION RTR
OF THE FROM
BEGSTR SRCHES

INCREMENT
TO THE
NEXT
BEGSTR

CLEAR ACC
B TO INDICATE
BEGSTR NOT
FOUND

RIN
FROM
SRCHES

272

~y

DOES ACC'B
EQUAL KEY
WORD OF THIS
BUFFER?

INCREMENT
TO NEXT
BUFFER

IN
BEGBUF

LAST
BUFFER?

YES

PRESENT
LOCATION 1S
AT TOP OF
BEGBUF.

ECHO - THIS SUBROUTINE ECHOBS THE INPUTTED
CHARACTER BACK TO THE HOST.
THE FLOWCHART OF THIS SUBROUTINE
1S NOT COMPLETE.

FREBUF - THIS SUBROUTINE FREES
A BUFFER FOR USE BY OTHER
ACIA'S. WHEN CALLED THE KEY
WORD OF THE BUFFER TO BE
FREED IS IN THE 'B' ACCUMULATOR.

BUFFER FOR
SOMEONE
ELSE'S USE

CLEAR
THIS

RTN
FROM
FREBUF

Mo

[9X]

:
!
a
}
i
1
1

i

PRSI,

[SRS

B SR

SET Up
LOCAL ACK.
FOR Tiis
MSG. IN
THE LOCAL
ACK., Qi

RECALCULATE
THE CRC WITH
THE NIW 1OCAL
SEQ). NUMBER

OUTPLT

THIS MESSACE
TO ITS
DESTINATION

IN THE LETWORK.

s n
.'.',l“
i FISp A
SUB l
H1
22
. RO iR
INDICAT 5 BoMp-
BULND. PG
THF MESSGE TU
THE 4037, IF THE
HOST ACIA IS
MAIN \ GO BACK TO THE
1 MAIN ROUTINE.
THIS ROUTINE
PROCESSES A
DATA MESSAGE
STORE LOCAL
THE 'ASAaU.' SEQUENCE “I"™MBER
VARIABLES I PAC. I
GOTTEN STORE ORIGIN IN "ORIGIN"
IN ‘TAKES' STORE DESTINATION
PROVICE IN “DESTIN"
THIS INFOR- STORE MFSSAGE CLEAR THE
MATION. IN “ME MESSAGE FROM
STORE SEQU E# BEGBUF §
IN "SEQN BEGSTR.

FIND THE

20 AND
(722000 G & 98
FoThinr I8 A v
S SR ik
SHOULEY N 1 v
BE KFPT. 15 WiLL
o LiT e T aAN L TR
CRC ~ - i

~ LRROR? /
\ \T//

Ny — e a

274

i
'

MLSHOM
3

1

e ———

- e cmm—

R o A g+ v

APPENDIX D--COBOL PROGRAM

12.

T e s vty o gty e - - .

{

SO

M e e B)

—

MICROSOFT COBOL-80 V2.8... DEMO COB 10/24/78 10:08:00 PAGE 1
1
2
3 IDENTIFICATION DIVISION.
4 PROGRAM-1D.
5 INVENTORY-DEMO~PROG .
6 DATE-WRITTEN. ORIGINALLY 7 FEB 1979
? COMPLETED APPROXIMATELY 20 JUL 1979,
8
9 ENVIRONMENT DIVISION.
10 CONFIGURATION SECTION,
11 SOURCE~COMPUTER.
12 INTEL 8#8¢.
13 OBJECT-COMPUTER.
14 INTEL 8ese.
15 INPUT-OUTPUT SECTION.
16 FILE-CONTROL.
17 SELECT DATA-FILE1 ASSIGN TO DISK
18 ORGANIZATION IS INDEXED ACCESS MODE IS DYNAMIC
19 RECORD IEY IS PRTNO.
20 DATA DIVISION.
21 JILE SECTION.
22 9] DATA-TILE]
23 LABEL RECORDS ARE STANDARD
24 DATA RECORD IS DATA-BASE
25 VALUE OF FILE-ID 1S ":F@:DATA1.IND".
26 21 DATA-BASE.
27 85 PRTNO PIC X(3),
28 85 BLANK] PIC X(5).
29 25 PT-NM PIC X(6).
30 05 STOCK1 PIC 999.
31 25 ON-ORDER1 PIC 999,
32 25 THRESBOLD1 PIC 999,
33 . 25 ORDER-SIZE1 PIC 989.
34
35 *FD NETWORK-IN
36 * ABOVE FOR CS-28°S BENEFIT ONLY
37 *¥D NETWORK-OUT
38 * ABOVE FOR C5-2€ ONLY SO IGNORE
39 *7D AUDIT-FILE
40 - ABOVE FOR PDP-11 AUDIT TRAIL FILE
41 *
42 VORKING~STORAGE SECTION.
43 *91 COMMUNICATIONS-STORAGE.
44 €1 MICRO-FLAG PIC 9.
45 €1 MESSAGE-SEND-LENGTH USAGE IS INDEX.
46 21 MESSAGE-LENGTH USAGE IS INDEX.
47 €1 MESSAGE-BUFFER. o
48 ©5 SOURCE-DESTINATION PIC X.
49 85 MESSAGE-CONTROL.
1] 16 MESSAGE-CLASS PIC X.
51 16 LAST-OP-MESSAGE PIC X.
52 16 TILLER PIC X(5).
53 85 MESSAGE-DATA PIC X{(72).
54 #5 MESSAGE~DATAZ REDEFINES MESSAGE~DATA.
55 16 MESSAGE-DATAL PIC X OCCURS 72 TIMES

277 {

T TR
i\ e sl o . st o

T R T P Y e L s e
i andh - L en

MICROSOFT COBOL-86 ¥2.8... DEMO COB 16/2¢4/78 10:08:00 PAGE 2

56

1

81
o1
o1
[)}

21

o1

el

o1

o

INDEXED BY MES-INDEX.
#5 FILLER PIC X(8).
MESSAGE-BU? REDEPINES MESSAGE-BUFFER.

#5 MESSAGE~BUFF PIC X(70).

#5 TFILLIR PIC ¥(18).
LOCAL~FLAG PIC X VALUE
M6886-CODE PIC X VALUE
PDP11-CODE PIC X VALUE
INTEL-CODE PIC X VALUE
¢S-28-CODE PIC X VALUE
RETURN~ADDRESS PIC X.
RIMOTE-COMMAND PIC X.
REMOTE-ADDRESS PIC IX.
VAIT-FOR-ANSWER PIC X.
COM-FUNCTION PIC X.

DUM-DUM-TABLE.
#3 DUM-DUM PIC X OCCURS 2 TIMES.
COMMAND-STRING,

#5 MAX-LENGTE USAGE IS INDEX.
#5 PART-STRING1.

16 FIRST-CHARACTBR PIC X.

16 REST-COMMAND PIC X OCCURS 20 TIMES.
#5 PART-STRING REDEFINES PART-STRING1.

D0 b e

16 PART-NUM PIC X(13).

16 DIGITS REDEFINES PART-NUM.
15 DIGIT-3 PIC X(3).
15 FILLER PIC X(1e).

1¢ TFILLIR PIC X(17).

#5 OUT-COMMAND REDEFINES PART-STRING.
1¢ COMMAND-OUT PIC XI OCCURS 3¢ TIMES INDEXED BY 13,

95 PART-NUMBER REDBFINES OUT-COMMAND PIC X OCCURS 38 TIMES

INDEXED BY Il, AACTUAL.

STRINGB.
#5 MAXB USAGE IS INDEX.
85 STRINGZ PIC X OCCURS 18 TIMES INDEXED BY I2,
DEBUG PIC X VALUE "N, _
STOP-PLAG PIC X VALUE "Y".
CURRENT-DATE PIC X(8).
LIST.
#5 MAX1 USAGE IS INDEX. .
#5 TFILLER PIC X(18) VALUE "LIST .
INITIALIZE.
BS MAX USAGE IS INDEX. .
#5 TFILLER PIC X(18) VALUE "INITIALIZE".

UPDATE,

85 MAX2 USAGE IS INDEX. .
#5 PILLER PIC X(18) VALUE "UPDATE .
STOCK.

©5 MAX3 USAGE IS INDEX. .
#5 FILLER PIC X(16) VALUE "STOCK .
ON-ORDIR,

€5 HMAXI4 USAGE IS INDEX. “
#5 PFILLER PIC X(16) VALUE ONORDER .
THRESHOLD.

o —— - s e D st . it

MICROSOFT COBOL-8# V2.8... DEMO COB 18/24/78 18:68:00

111
112
113
114
1185
116
117
118
119
120
121
122
123
124
12%
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
15¢
151

152
153
154
155
156
157
168
159
160
161

162
163
164
165

ol

o1

91

21
81
g1
o1
21
o1

21
[2%
o1

1

o1

#5 MAX5 USAGE IS INDEX.

#5 FILLER PIC X(18) VALUE "TERESBOLD °

ORDER-SIZE.

#5 MAX6 USAGE IS INDEX. - .

#5 FILLER PIC X(1#) VALUE "ORDERSIZE ".

COMMAND.

#5 ACTION PIC I.

#5 EENTRY PIC X.

#5 QUANTITY-SIGN PIC X VALUE

#5 QUANTITY PIC 999. .

B5 PARTNO PIC X(13) VALUE

85 PART-NAME PIC X(28) VALUE ~

PLAGS. .

#5 ACTION-FLAG PIC X VALUE "N",

#5 REPEAT-FLAG PIC X.

©5 ERROR-FLAG PIC X.

DUMMY~FLAG PIC X.

TRANS-FLAG PIC X.

SAME-FLAG PIC X.

NEV-BUFPER PIC I.

NO-INPUT-FLAG PIC I VALUE "N".

BUFFEB-EMPTY PIC X VALUE 'N™.

EMPTY-LINE PIC X.

T3S PIC X VALUE 1"."

NONO PIC X VALUE "N

PARTNO-STORAGE.

#5 DUMMY-ARBAY PIC X OCCURS 100 TIMES
INDEXED BT I.

#5 TEM PIC X.

DATA-BUFPER.
85 PART-NUMB PIC X(3).
85 BLANK-BUF PIC IX(5).

25 PRT-NME PIC X(6).
85 STCK PIC 999.
05 ON-ORDR PIC 999.

£5 THRESELD PIC 9959.

e85 ORDR-SIZE PIC 999.
BEADING-LINE.
#5 TFILLER PIC X(11) VALUE PART NUMBER™ .
65 FILLER PIC XXX VALUE
#5 PILLER PIC X(9) VALUE 'PABT NAME".
€5 YILLER PIC X(4) VALUE
5 TFILLER PIC X(5) VALUE STOCK .

#5 TFILLER PIC I VALUE
5 TFILLER PIC X(8) VALUE *ON ORDER".
65 JFILLER PIC X VALUE
5 PILLER PIC X(9) VALUE TBRESHOLD .
#5 TFILLER PIC I VALUE
€5 TILLER PIC X(18) VALUI "ORDER SIZE".

81 PRINT-LINE.

#5 PART-NUM-0UT PIC X(13).
#5 FILLER PIC X VALUE = .
85 PART-NAME-0UT PIC X(12),

05 TFILLER PIC XII VALUE .

PAGE

3

MICROSOFT COBOL-8€6 V2.0... DEMO COB

18/24/78

10:00:08 PAGE ¢

PART NUMBER ~.
IS NOT IN THE DATA BASE",

PART NUMBER .

® HAS BEEN DELETED".

PART NUMBER".
HAS BEEN ADDED".
PART NUMEER".

IS ALREADY PRESENT",
IN THE DATA BASE™.

INTERNAL ERROR. ENTRY=",

INTERNAL ERROR. COMMAND=".

- 999 USED".

X OCCURS 7p TIMES

INDEXED BY TEM-PTR, PTR, TPTR.

ADD .

DELETE "

i 166 65 STOCK-0UT PIC 999. '
167 #5 TILLER PIC X(4) VALUE

: 168 5 ON-ORDER-0OUT PIC 999.

i 169 ¢c FILLER PIC X(7?) VALUE

17¢ ¢¢ THRESEOLD-OUT PIC 99S.

! 171 2% FILLER PIC X(7) VALUE "

172 #5 ORDER-SIZE-OUT PIC 999.
‘J 173 €1 ERROR-LINE.
: 174 #5 FILLER PIC X(12) VALUE "
1 175 25 ERROR-PRINT PIC X{13).
176 9 TFILLER PIC X(24) VALUE "
i 177 #1 DELETE-LINE.

' 178 €5 TFILLER PIC X(12) VALUE "

i 179 25 DELETE-PRINT PIC X(13).

: 186 #5 FILLER PIC X(17) VALUE

, 181 #1 ACD-LINE.

182 #5 FPILLER PIC X(12) VALUE °
183 £5 ADD-PRINT PIC X(13). .

A 184 €= TFILLER PIC X(15) VALUE ~

- 185 1 PRESENT-LINE.

' 186 @5 TPILLER PIC X(12) VALUE ~
. 187 #5 DATA-PRES-PRINT PIC X(13).
! 188 #= TFILLER PIC X(19) VALUE _
o 189 ¢5 FILLER PIC X(16) VALUE

196 €1 INTERNAL-ERROR-ENTRY.

. 191 5 FILLER PIC X(22) VALUE ©

g 192 @5 ENTRY-ERROR PIC X.

: 193 €1 INTERNAL-BRROR-COMMAND,

- 194 #5 TFILLER PIC I(24) VALUE "
b 195 ©5 COMMAND-ERROR PIC X.
s 196 #1 VALUE-TO0-BIG PIC X(26)
- 197 VALUE "VALUE T00 LARGE
K 198 £1 MISCELLANEOUS.
| 199 #5 ERROR1-FLAG PIC X.
i 200 #5 TEMP PIC 999.
201 £1 INDEI-CONSTANTS.
202 #5 ONE USAGE IS INDEX.

~. 203 €5 FOUR USAGE IS INDEX.
"~ 204 5 EIGHTY USAGE IS INDEX.

. 205 #1 D-I-P-F PIC X.

» 206 o1 M-D-BR-F PIC X.

B 207 61 COMMAND-SPACE.

208 #5 COMMAND-LINE.
L 209 16 COMMAND-BUFFER PIC

: 2160

211 ¢ TFILLER PIC X(18).
212 #1 BUPFER-LENGTE USAGE IS INDEX.
213 #1 ADDIT.
214 ©5 MAX? USAGE IS INDEX.
. 215% 5 PILLER PIC X{10) VALUE
r 216 #1 DELETE-IT.
; 217 €5 MAX8 USAGE IS INDEX.
; 218 #5 TILLER PIC X(18) VALUE
219 #1 STOP-IT.
220 #5 MAX9 USAGE IS INDEX.

280

. 221

! 222

) 223
! 224
, 225
i 226

) 227

i : 228
- 229
v 23¢
: 231

, 232
233

: 234

) 23%
236

i 237
1 - 238
! 239
240

241

, 242

: 243

: 244
{ 245
246
247
: 248

‘ 249

T 258
‘ 251
252

: 253

.. 254

» 255
N 256
R 257

- 258
259

261
262
263
264
265
266
267
268
269
2760
271
272
273
274
275

MICROSOFT COBOL-8¢ V2.8... DEMO COB

#5 FILLER PIC X(10) VALUE "STOP

18/24/78 18:80:00

PAGE 5

#1 HELP.
#5 MAX16 USAGE IS INDEX. w
#5 FILLER PIC X(1#) VALUE "HELP .
#1 REMOTE-NAME.
£5 MAX11 USAGE IS INDEIX. .
#5 FILLER PIC X(18) VALUE "REMOTE .
€1 SEND-IT.
05 MAX16 USAGE IS INDEX. .
#5 FILLER PIC X(18) VALUE "SEND .
e1 Méesee.
85 MAX12 USAGE IS INDEX. .
g5 TFILLER PIC X(19) VALUE "MS&¢e .
#1 PDPii.
@5 MAX13 USAGE IS INDEX. _
@5 TFILLER PIC X(1&) VALUE "PDP11 ",
€1 INTEL.
PE MAX14 USAGE IS INDEX.
25 FILLER PIC X(1@) VALUE "INTEL .
#1 cSsz2e.
25 MAX15 USAGE IS INDEX.)
g% TILLER PIC X(1e) VALUE "CS-~2¢ ",
21 FIRST-TIME-THERO PIC © VALUE 1.
: END OF WOREING STORAGE SECTION.
PROCEDURF DIVISION.
MAIN-PROGFRAM.
PERFORM INITIALIZE-FOR-DAY.
PERFORM COMMAND-PROCESS UNTIL STOP-FLAZ = YES.
PFRFORM END-DAY.
STOP RUN.
*
COMMUNICATE.
® THIS PARAGRAPH IS A SUBROUTINE THAT IS SPECIFIC TO EACH
* COMPUTER IT HANDLES THE INTERFACE WITH THE NETWORE.
* LOCAL-FLAG INDICATES WHETHER A TRANSACTION COMES FROM
* THIS MACHINE.
* COM-FUNCTION TELLS WHETHER TO SEND RECEIVE OR INITIALIZE.
* MESSAGE~BUFFER CONTAINS TEHE DATA TO BE TRANSFERRED
: MESSAGE LENGTE 15 THE NUMBER OF CHARACTERS TRANSFERRED.
17 DEBUG = YES .
DISPLAY "NETWORK CALLED” COM=-FUNCTION
ELSE
PERFORM COM~DUMMY.
COM=DUMMY ,

IF COM-FUNCTION = "I"

PERFORM NETWORK-INITIALIZE
ELSE .
I? COM=PUNCTION = “§"

PERFORM NETWORK-SEND
BLSE .
IF COM=FUNCTION = "R

PERPORM NETWORX-RECEIVE
ELSE

-

gl

Y-

e

MICROSOFT COBOL-8¢ V2.2... DEMO COB 10/24/78 1p:08:08 PAGE 6

276
277
278
279
280
281
282
283
284
285
286
287
288
289
298
291
292
293
294
295
296
297
298
299
3¢
301
382
303
304
385
386
387
368
309
316
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
32€
327
328
329
330

DISPLAY "ILLEGAL COMMAND TO COMMUNICATE™ COM~FUNCTION
- STOP RUN.

NETWORK-INITALIZE.
DISPLAY "INITIALIZE THE NETWORK".
SET MESSAGE-LENGTE 10 4.
* USE MESSAGE-LENGTE TO PASS A REQUEST FOR 12e# BAUD.
. CALL "INITIALIZE" USING MESSAGE~LENGTE.
NETWORK-SEND.
SET MESSAGE-SEND-LENGTE TO MBSSAGE-LENGTE.
CALL "SENDMESSAGE’
. USING MESSAGE-BUFFER MESSAGE-SEND-LENGTE.
NETWORK-RECEIVE.
MOVE SPACES TO MESSAGE-BUFFER.
CALL "RECEIVEMESSAGE"
. USING MESSAGE-BUFFER MESSAGE-LENGTH.
INITIALIZE-FOR=DAT.
SET I T0 1.
SET ONE TO I.
SET 1 70 3.
SET MAX? TO I.
SET I 10 4.
SET MAX1 T0 I.
SET MAX9 TO I.
SET MAX1e 70 I.
SET MAX16 TO I.
SET FOUR TO I.
SET 1 70 5.
SET MAX3 TO I.
SET MAX12 70 I.
SET MAX13 10 I.
SET MAX14 TO I.
SET MAX15 T0 I.
SET 1 T0 6.
SET MAX2 TO I.
SET MAI8 TO I,
SET MAX11 T0 I.
SET I 10 7.
SET MAX4 TO 1.
SET 1 70 ©.
SET MAIS TO 1.
SET MAX6 TO I.
SET 1 T0 10.
SET MAX TO I.
SET 1 TO 38.
SET MAX-LENGTH 70 I.
SET I 10 8e.
SET_EIGHTY TO I.
MOVE SPACES TO BLANE-BUF.
MOVE NONO TO REMOTE-COMMAND.
MOVE NONQ TO WAIT-POR-ANSYIR. .
DISPLAY "INVENTORY PROGRAM VIRSION 1.8".

S o

MICROSOFT COBOL-88 V2.8... DEMO COB 16/24/78 10:60:08 PAGE 7
331 DISPLAY "ENTER DATE (DD/MM/YY)". 1
332 ACCEPT CURRENT-DATE.

333 PERFORM OPEN-AUDIT-FILE.

334 MOYE 1" TO COM-FUNCTION.

335 PERFORM COMMUNICATE.

336 * ABOVE HAS INITIALIZED TEE NETWORK PORT.

337 MOVE 'C_ TO ACTION.

338 MOVE "1" 10 EENTRY.

339 MOVE # TO QUANTITY.

340 PERFORM THANSACTION-PROCESSOR.

341 MOVE NONO TO STOP-FLAG. .

342 DISPLAY "ENTER HELP FOR A LIST OF CURRENT CAPABILITIES™.

343 *

344 OPEN-AUDIT-FILE. i
345 PERFORM DO-NOTHING.]
346 * FOR MICRO THIS IS A DUMMY PARAGRAPE

347 *

348 END-DAY.

349 MOVE C_ TO ACTION.

358 MOYE "E” TO EENTRY.

351 PERFORM TRANSACTION-PROCESSOR. .

352 DISPLAY "END OF DAY PLEASE REMOVE DISKETTE".

353 *

354 COMMAND-PROCESS . . .

355 IF DEBUG = YES DISPLAY "COMMAND PROCESS ENTERED".

356 SET MESSAGE-LENGTE TO FOUR.

357 PERFORM PROCESS-MESSAGE UNTIL MESSAGE-LENGTH < ONE.

358 1Y WAIT-FOR-ANSWER = NONO

359 PERFORM ASK-FOR-INPUT.

360 *

361 ASE-FOR-INPUT. .

362 DISPLAY "ENTER PART NUMBER OR COMMAND".

363 MOVE YES TO LOCAL-FLAG.

364 MOVE YES TO NEW-BUFFER.

365 PERFORM READ-INPUT.

366 1P PIRST-CHARACTER 1S NOT ALPHABETIC i
367 PERFORM PART-NUMBER~PROCESSOR j
368 ELSE

369 PEEFORM COMMAND-PROCESSOR.

378 *

371 PROCESSENESSAGE.

372 MOVE "7 TO COM-FUNCTION.

373 PERFORM COMMUNICATE.

374 IF MESSAGE-LENGTH NOT < ONE 3
375 1¥ MESSAGE-CLASS = "¢

376 PERFORM APPLY-COMMAND

377 ELSE o

378 1F MESSAGE-CLASS = "D

379 PERFORM DISPLAY~COMMAND

380 ELSE .

381 IT MESSAGE-CLASS = A

382 PERFORM AUDIT-COMMAND

383 ELSF

384 DISPLAY SOURCE-DESTINATION MESSAGE~CONTRCL

385

DISPLAY MESSAGE-DATA.

MICROSOFT COBOL-8# V2.8... DEMO COB 10/24/78 10:00:00 PAGE &
386 *
387 DISPLAY-COMMAND,
388 DISPLAY MESSAGE-DATA.
389 IF LAST-OF-MESSAGE = YES
3ot . MOVE NONO TO WAIT-FOR-ANSWER.
91
392 APPLY-COMMAND.
393 MOVE NONO T0 LOCAL-FLAG.
294 MOVE SOURCE-DESTINATION TO RETURN-ADDRESS.
395 MOVE MESSAGE-DATA TO COMMAND.
396 PERFORM TRANSACTION-PROCESSOR.
397 MCVE YES TO LOCAL-FLAG.
398 ®
399 AUDIT-COMMAND. .
409 DISPLAY "AUDIT TRAIL MESSAGE —-",
401 DISPLAY SOURCE-DESTINATION MESSAGE-CONTROL.
482 DISPLAY MESSAGE~DATA.
403 *
404 PART-NUMBER-PROCESSOR. . .
485 17 DEBUG = YES DISPLAT "PART NUMBER PROCESSOR ENTERED".
406 MOVE NONO TO ERROR-FLAG.
a0? MOVE © TO PARTNO.
48 MOVE "L 10 ACTION.
409 MOVE " " 70 EENTRY.
419 MOVE “+" TO QUANTITY-SIGN.
411 MOVE € TO QUANTITY. .
412 MOVE TO PART-NAME.
413 PERFORM PARTNO-CBECK.
414 IP ERROR-FLAG = NONO
415 . PERFORM CBECK-OTHER-FIELDS.
416
417 CHECK-OTEER-FIELDS .
418 MOVE YES TO REPEAT-FLAG.
419 MOVE NONO TO ERROR-FLAG.
420 PERYORM ACTION-CHECK UNTIL REPEAT-FLAG = NONO.
421 I¥ ACTION-FLAG = YES
422 MOVE YES TO REPEAT-FLAG
423 MOVE NONO TO ERROR-FLAG
424 PERFORM ENTRY-CHECK UNTIL REPEAT-FLAG = NONO
425 MOVE YES TO BEPEAT-FLAG
426 MOVE NONO TO ERROR-FLAG
427 PERFORM VALUE-CEECK UNTIL REPEAT-FLAG = NONO.
4289 PERYORM TRANSACTION-PROCESSOR.
429
430 PARTNO-CHECK . . .
431 IF DEBUG = YES DISPLAY "PARTNO CHECK ENTERED".
432 MOVE NONO TO ERROR-FLAG.
433 PERFORM DIGIT-CHECK
43¢ VARYING I1 PROM 1 BY 1
435 UNTIL (I1 > 13 OR BRROR-FLAG = YES).
436 IF ERROR-FLAG = NONO
437 MOVE PART-NUM TO PARTNO
438 BLSE i .
439 DISPLAY "PART-NUMBERS CONTAIN ONLY DIGITS.”.
440 *

284

.
b

JESTLY

£ SRS PR

k- ;

E
o ol

it s e s 2 e St A il

s 0
e il

e

— -

MICROSOPT COBOL-80 V2.8... DEMO COB 10/24/78 18:00:00 PAGE 9
441 DIGIT-CEECK.

442 MOVE PART-NUMBER(I1) TO TEM, .

443 I} TEM IS NUMERIC OR TEM =

444 NEXT SENTENCE

445 SE

446 MOVE YES TO ERROR~FLAG.

447 *

448 READ-DATA.,

449 MOVE YES TO NEW~BUFPFER.

458 MOVE YES TO NO-INPUT-PLAG.

451 PERFORM READ-INPUT.

452 *

453 ACTION-CEECK. . .
454 IF DEBUG = YES DISPLAY "ACTION CHECK ENTERED".
455 I¥ ERROR-FLAG = NONO

456 MOVE NONO TO NEW-BUFFEER

457 PERFORM READ-INPUT.

458 IF (NO-INPUT-FLAG = TES OR ERROR~FLAG = YES) .
459 DISPLAY "ENTER ACTION - LIST,UPDATE OR INITIALIZE
460 PERFORM BEAD-DATA.

461 MOVE NONO TO REPEAT-FLAG.

462 MOVE LIST TO STRINGB.

453 PERFORM RECOGNIZE.

464 I SAME-FLAG = YES

465 MOVE "L" TO ACTION

466 MOVE NONO TO ACTION-FLAG

467 ELSE

468 MOVE UPDATE TO STRINGB

469 PERFORM BRECOGNIZE

470 1P SAME-FLAG = YES

a1 MOVE "U TO ACTION

472 MOVE YES TO ACTION-FLAG

473 ELSE

474 PERFORM ACTION-CEECK1.

475 ACTION-CHECK1.

476 MOVE INITIALIZE TO STRINGB

477 PERFORM RECOGNIZE

478 17 SAME-FLAG = YES

479 MOVE "I 70 ACTION

480 MOVE YES TO ACTION-FLAG

481 BLSE . .

482 DISPLAY "ILEGAL ACTION CODE = RE-BNTER

483 MOVE YES TO REPEAT-FLAG

484 MOVE YES TO ERROR-FLAG.

485 *

486 ENTRY-CHECK. .)
487 I DBBUG = YES DISPLAY "ENTRY CHECK ENTERED".
488 IF ERROB-FLAG = NONO

489 MOVE NONO TO NEW-BUFFER

490 PRRFORM READ-INPUT.

491 I7 (NO-INPUT-FLAG = TES OR BRROR-PLAG = YBS)
492 DISPLAY "ENTER CODE POR ENTRY T0 BE CHANGED)
493 DISPLAY STOCK, ON ORDER, THRESHOLD OB ORDER S1z§"
494 PERFORM READ-DATA.

495 MOVE NONO TO REPRAT-FLAG.

285

i
:
!
B
A
g MICROSOFT COBOL-8€ V2.8... DEMO COEB 18/24/78 18:00:00 PAGE 1@
! 496 MOVE STGCK TO STRINGB.
: 497 PERFORM RECOGNIZE.
on 498 IF SAME-FiAG = TE
! 499 MOV 20 BENTRY
Ol 500 ELSE
L 501 MOVE ON-ORDER TO STRINGE
i 502 PERFORM RECOGNIZE
' 503 IF (SAME-FLAG = YES AND AACTUAL > 1)
v 504 MOVE "0” TO EENTRY
\ 505 ELSE
506 PERFORM ENTRY-CHECKI.
! 507 *
: 508 ENTRY-CHECK1.
509 MOVE TERESHOLD TO STRINGB
510 PERPORM RECOGNIZE
511 IF SAME-PLAG = TES
e 512 MOVE "T" 70 EENTRY
L 513 ELSE
‘ 514 MOVE ORDER-SIZE TO STRINGB
- 515 PERFORM RECOCNIZE
516 IF (SAME-PLAG = YES AND AACTUAL > 1)
: 517 MOVE "z TO EENTRY
: 518 ELSE .)
L 519 DISPLAY "ILLEGAL ENTRY CODE
e 526 MOVE YES TO REPEAT-FLAG
py - 521 MOVE YES TO ERROR~FLAG.
- 522 *
. 523 VALUE-CHECK.
- 524 IF DEBUG = YES DISPLAY "VALUE CHECE ENTERED".
. 525 17 ERROR-FLAG = NONO
i 526 MOVE NONO 20 NEW-BUFFER
: 527 PERYORM EBAD-INPUT.
. 528 IF (NO-INPUT-FLAG = YES OR ERROR-FLAG = IES)
- 529 DISPLAY "ENTER THE NUMBER OF ITEMS
> 538 PERFORM READ-DATA, _ o
. 531 IF (PART-NUMBER(1) = ~+" OR PART-NUMBER(1) = "=")
: se%® PUNCT?
532 * THIS CODE ASSUMES 3 DIGIT PART QUANTITIES
533 MOVE PART-NUMBER(1) TO QUANTITI-SICN
534 MOVE PART-NUMBER(2) TO PART-NUMBER(1)
535 MOVE PART-NUMBER(3) TO PART-NUMBER(2) :
536 MOVE PART-NUMBER(4) TO PART-NUMBER(3) 1
537 SET AACTUAL DOWN BY 1. ,
538 IP AACTUAL > 3 SET AACTUAL T0 3 :
539 I? AACTUAL < 1]
- 540 SET AACTUAL 20 1 \
: 541 MOVE "A" 0 PART-NUMBER(1). i
542 MOYE NONO TO BRROR-FLAC.
543 PERFORM DIGIT-CHECK
544 VARTING I1 FROM 1 BY 1
545 ONTIL (11 > AACTUAL OR ERROR-FLAG = YES).
546 17 BRROR-FLAG = NONO
547 PERPOEM RIGHET-JUSTIFY-8-PILL
548 MOVE DIGIT-3 TO QUANTITY

9 549 MOVE NONO TO REPEAT-FLAG

MICROSOFT COBOL-80 V2.p... DEMO COB 10/24/78 10:060:08 PAGE 11

558
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
872
573
574
575
576
577
578
579
sae

582
583
584
585

587
588
589
590
591
592
593
594
59¢&
596
597
598
599
6oe
o1
682
683
604

L
*®

LSE
DISPLAY "ENTER NUMBERS ONLY".

RIGHT~JUSTIFY-®-FILL,

*
.

MOVE PART-NUMBER(AACTUAL) TO PART-NUMBER(3).
I SACTUAL = 2

MOVE PART-NUMBEE 1) 10 PART-NUMBER(2)

MOVE “@" TO PART-NUMBER(1)
ELSE
I¥ AACTUAL = 1

MOVE_'@" 70 PART-NUMBER(2)

MOVE "8~ TO PART-NUMBER(1).

TRANSACTION-PROCESSOR.

I} DEBUG = TES .
DISPLAY "TRANSACTION PROCESSOR ENTERED
DISPLAY COMMAND.

MOYE "S~ TO COM-FUNCTION.

MOVE SPACES TO MESSAGE-BUFFER.

SET MESSAGE-LENGTH TO BIGETY.

IF REMOTE-COMMAND = YES

syt TRTORM SEND-ODT-COHMAND

SE
PERFORM TRANSACTION-PROCESSOR1.

SERD-QUT-COMMAND.

MOVE REMOTE-ADDRESS TO SOURCE-DESTINATION.
MOVE 'C TO MESSAGE-CLASS.

MOVE YES TO LAST-OF-MESSAGE.

MOVE COMMAND T0 MESSAGE-DATA.

MOVE YES TO WAIT-FOR-ANSWER.

MOVE NONO TO REMOTE-COMMAND.

PERFORM COMMUNICATE.

* A MESSAGE ASKING IF WE SHOULD WaAlT FOR RESULTS WOULD BR NICE.

]

DISPLAY "YOUR REQUEST HAS BEEN SENT. WAIT FOR RESULTS™.

TRANSACTION-PROCESSOR1.

MOVE PDP11~CODE TO SOURCE-DESTINATION,
MOVE A TO0 MESSAGE-CLASS.
MOVE YES TO LAST~OF-MESSAGE.
MOVE COMMAND TO MESSAGE-DATA.
MOVE NONO TO ERROR1-FLAG.
MOVE YES TO TRANS-FLAG.
I? ACTION = C
PERFORM DO-COMMAND
ELSE
PERTORM PIND-PART
IT ERROR1-FPLAG = NONO
PERFORM EXECUTE-TRANSACTION
ELSE
CLOSE DATA-FILE1
MOVE PARTNO TO ERROR-PRINT
17 LOCAL-PLAG = YRS

i ‘l
¥
o\
i
A
.
K MICROSOFT COBOL-88 V2.8.., DEMO COB 18/24/78 18:00:00 PAGE 12
! 685 DISPLAY BRROR-LINE
| 605 ELSE
‘ 607 PERFOEM SETUP-TO-DISPLAY
| 608 MOVE ERROR-LINE TO MESSAGE-DATA
609 PERFORM COMMUNICATE.
| 6180 *
! 611 SETUP-TO-DISPLAY.
4 ! 612 MOVE RETURN-ADDRESS TO SOURCE-DESTINATION.
. - 613 MOVE "D” TO MESSAGE-CLASS.
-y 614 MOVE YES TO LAST-OF-MESSAGE.
! 615 MOYE SPACES T0 MESSACE-DATA.
. 616 .
{ 617 EIECUTE-TRANSACTION.
o, 618 IF ACTION NOT = "L
! 619 PERPORM PROCESS-PART. .
‘ 620 1F (TRANS~FLAG = YES AND ACTION NOT = "L7)
; ssss PUNCT?
621 * SEND OUT THE AUDIT TRAIL
' 622 PERTORM COMMUNICATE.
; 623 I? TRANS-PLAG = YBS
: 624 PERYORM PRINT-LINE-TO-DATA-BASE
2 e 625 IF LOCAL-PLAC = YES
' 626 DISPLAY HEADING-LINE
627 DISPLAY PRINT-LINE
! 628 ELSE
629 PERPORM SETUP-TO-DISPLAY
; 638 MOVE NONO TO LAST-OF-MESSAGE
: 631 MOVE BEADING-LINE TO MESSAGE~DATA
- 632 PERFORM COMMUNICATE
. 633 PERFORM SETUP-TO-DISPLAY
- P 634 MOVE PRINT-LINE TO MESSAGE-DATA
i 635 PERTORM COMMUNICATE
. 636 ILSE
-t 637 MOVE EENTEY TO ENTRY-ERROR
2 638 I¥ LOCAL-FLAG = YES
i 639 DISPLAY INTERNAL-ERROR-ENTRY
: 640 ELSE
o 641 PERYORM SETUP-TO-DISPLAY
- 642 MOVE INTEENAL-ERROR-ENTRY TO MESSAGE-DATA §
. = 643 PERPORM COMMUNICATE.
- 644 CLOSE DATA-FILEL.
¥ 645 *
646 FIND~PART.
647 OPEN 1-0 DATA-FILEL.
648 MOVE PARTNO TO PRTNO.
649 STAET DATA-FILE1l KEY EQUAL PRTNO
658 INVALID KEY MOVE YES TO BRROR1-FLAG. 1
651 READ DATA~FILE1l INVALID KBY MOVE YES TO BRROR1-FLAG.
652 PERFYORM MOVE-TO-PRINT-LINK.
3 653 »
- 654 MOVE-TO-PRINT~LINE.
655 MOVE PRTNO TO PART-NUM-OUT.
656 HMOVE PT-NM TO PART-NAME—OUT.
657 MOVE STOCK1 T0 STOCK-0UT.
658 MOYE ON-ORDER1 TO ON-ORDER-OUT.

288

!
e !
K
;
1
i
: MICROSOPT COBOL—88 V2.8... DEMO COB 18/24/78 18:00:80 PAGE 13
1 659 MOVE THRESEOLD1 TO THRESEOLD-0UT.
| 666 , TOVE ORDER-SIZEL 7O ORDER-51ZR-OUT.
: 661
L 662 PROCRSS-PART. . .
- . 663 1¥ DEBUG = YES DISPLAY "PROCESS PART ENTRRED".
. 664 17 EENTRY = °§
1 665 MOVE STOCK~OUT TO TEMP
. 666 PERFORM PEOCESS-TEMP
! 667 MOVE TEMP 70 STOCK-OUT
: 668 LLSE .
i 669 1Y EENTRY = T
' 670 MOVE THRESHOLD-OUT TO TEMP
. 671 PERFORM PROCESS-TEMP
: 672 MOVE TEMP 170 THRESHOLD-0UT
s 673 ELSE o
i 674 I¥ EENTRY = "0
' 675 MOVE ON-ORDER-OUT TO TEMP
s 676 PERFORM PROCESS~TEMP
X 677 MOVE TEMP TO ON-ORDER-OUT
678 BLSE .
: 679 I¥ BENTRY = "2
68# MOVE ORDER-SIZE-OUT TO TEMP
681 PERFORM PROCESS-TEMP
682 MOVE TEMP T0 ORDER-SIZE-OUT
683 ELSE
ol 684 MOYE NONO TO TRANS-PLAG.
P 685 *
686 PROCESS-TEMP,
687 I? ACTION = "I
. 688 MOVE ® 70 TEMP.
] 689 1Y QUANTITY-SIGN = "+
i €98 ADD QUANTITY 70 TEMP
. 691 ON SIZE ERROR
692 MOVE 999 T0 TEMP
. 693 IF LOCAL-PLAG = TYES
FN 694 DISPLAY VALUE-TOO-BIG
, 695 ELSE
z 696 PERFORM SETUP-TO-DISPLAY
697 MOVE VALUE-TOO-BIG TO MESSAGE-DATA
698 MOVE NONO TO LAST-OF-MESSAGE
699 PIRFORM COMMUNICATE
700 ELSE
701 IF QUANTITY > TEMP
782 MOVE © TO TEMP
703 BLSE
704 SUBTRACT QUANTITY FROM TEMP,
785 *
706 PRINT-LINE~TO-DATA-BASE.
787 MOVE STOCX-OUT TO STOCK1.
708 MOVE THRESEOLD-OUT 1O THRESEOLD1.
709 MOVE ON-ORDER-OUT YO ON-ORDER1.
710 MOVE ORDER-SIZE-OUT 70 ORDER-SIZE1.
711 REVRITE DATA-BASE;
712 INVALID KEY MOVE YES TO DUMMY-FLAG.
713 »
!
289

e e o e

‘ MICROSOFT COBOL-8¢ V2.8... DEMO COB 18/24/78 18:00:080 PAGE 14
; 714 DO-COMMAND. . .
; 715 I¥ DEBUG = YES_DISPLAY "DO COMMAND ENTERED".
716 I7 RENTRY =
' 717 PERFORM LIST-PARTS
| 718 ELSE
719 17 LOCAL-PLAG NOT = YES
! 7280 PERFORM SETUP-TO~DISPLAY _
) 721 MOVE "REMOTE COMMAND ERROR™ T0 MESSAGE-DATA
r _ | 722 PERPORM COMMUNICATE
¥, 723 BLSE
L | 724 PERFORM LOCAL-COMMAND,
2 725 *
| 726 LOCAL-COMMAND. _
' 727 17 EENTRY = "D
S 728 PERFORM DELBTE-PART
r 729 ELSE .
‘ 738 I? EENTRY =
! 731 PERPORM ADD-PART
o 732 ELSE .
: 733 I? EENTRY =
! 734 PERFORM INIT
L 735 ELSE .
ey 736 IF EENTRY = "B
o 737 PERPORM TERMINATE-RUN
L 738 ELSE
‘ 739 MOVE COMMAND TO COMMAND-ERROR
. 748 . DISPLAY INTERNAL-ERROR-COMMAND.
’ 741
: 742 TERMINATE-RUN.
. 743 PERFORM_COMMUNICATE. .
2w 744 . DISPLAY “END OF DAY - SAVE THE DATA-BASE™.
- 74§
p 746 INIT,
K 747 PERFORM COMMUNICATE.
; 748 OPEN INPUT DATA-FILE1.
i 749 READ DATA-FILE1 NEXIT AT END MOVE NONO TO M-D-R-F.
, 7560 CLOSE DATA-FILE1. .
’ 751 , DISPLAT "INITIALIZE THE DATA BASE'.
- 752
. 753 LIST-PARTS.
-+ 754 IF LOCAL-FLAG = YES
- 755 DISPLAY HEADING-LINE
3 756 ELSE
757 PERFORM SETUP-TO-DISPLAY
758 MOVE NONO TO LAST-OF-MESSAGE
759 MOVE HEADING-LINE TO MESSAGE-DATA
766 PERFORM COMMONICATE.
761 OPEN INPUT DATA-FILE1.
762 MOVE YES TO M-D-R-7.
763 PERYORM LST-PRTS UNTIL M-D-R-F = NONO.
764 CLOSE DATA-PILE1.
765 IF LOCAL-FLAC NOT = YES
766 PERFORM SETUP-TO-DISPLAY
767 . PERYORM COMMUNICATE.
68

290

MICROSOFT COBOL-86 V2.6... DEMO COB 10/24/78 10:00:0¢0 PAGE 15

769
770
771
772
773
774
775
776
777
778
779
788
781
782
783
784
785
786
787
788
789
798
791
792
793
794
795
796
797
798
799
T
ge1
802
803
864
865
806
ge?
8es
809
a1e
811
812
813
814
815
816
817
818
819
ez
821
822
823

LST-PRTS.
READ DATA-FILE1 NEXT AT END MOVE NONO TO M-D-R-7.
IF M~D-B-F NOT = NONO
PERFORM PRINT-A-LINE1.
*
PRINT-A-LINE1.
PERFORM MOVE-TO~PRINT~LINE.
IF LOCAL-FLAG = YES
DISPLAY PRINT-LINE
BLSE
PERFORM SETUP-TO-DISPLAY
MOVE NONO TO LAST~OF~MESSAGE
MOVE PRINT-LINE TO MESSAGE~DATA
PERFORM COMMUNICATE.
*
PRINT-A-LINE. .
IF PRTNO NOT =
PERFORM MOVE-TO~PRINT-LINE
DISPLAY PRINT-LINK.

*
DELETE-PART.
PERFORM FIND-PART.
IF ERROR1-FLAG = NONO
PERFORM DELETE-RECORD
ELSE
MOYE PARTNO TO LRROR~PRINT
CLOSE DATA-FPILEL
DISPLAY ERROR-LINE.
L]
DELETE-RECORD.
DELETE DATA-FILE1; .)
INVALID XEY DISPLAY "INTERNAL ERROR DELETE
CLOSE DATA-FILE1
STOP RUN.
PERFORM COMMUNICATE.
MOVE PARTNO 70 DELETE~PRINT.
CLOSE DATA-PILE1,
DISPLAY DELETE-LINE.

ADD-PART.
* IN THIS SECTION
* D-1-P-F ABREVIATES DATA-IS ALREADY-PRESENT-FLAG.
PIRFORM COMMUNICATE.
PERYORM SET-BUFP.
OPEN 1-0 DATA-FILEl.
MOVE NONO TO D-1-P~¥.
WEITE DATA-EASE FROM DATA-BUFFER;
INVALID KEY MOVE YE§ TO D~1-P-7. -
1Y DEBUG = YES DISPLAY "MID ADD PART " D-I-P-F.
IF D=1-P-7 = YIS
LSlPlR!OBH VALUE-1S~PRESENT

HMOVE PARTNO TO ADD-PRINT
DISPLAY ADD-LINE.
CLOSE DATA-TILEL.

.-

! MICROSOFT COBOL-B® V2.8... DEMO COB 18/24/78 16:00:80 PAGE 16

1

; 824 »

825 VALUE-IS-PRESENT.
1 826 MOVE PARTNO TO DATA-PRES-PRINT.
| 827 DISPLAY PRESENT-LINE.
828 »
| 829 SET-BUFF.
! 830 MOVE PARTNO TO PART-NUMB.
2 831 MOVE PART-NAME TO PRT-NME.

; 832 MOVE "eee” T0 STCK.

i e33 MOVE €88 TO ON-ORDA.

! 834 MOVE “@68 T0 THRESELD.
| 835 MOVE "p#¢” TO ORDE-SIZE.

836 »
i 837 *
A 838 READ-INPUT.
- 839 17 NEV-BUFFER = YIS
. a4e MOVE YES TO BUFFER-EMPTY
o 841 PERPORM GET-NEW-BUFFER UNTIL BUFFER-EMPTY = NONO.
: 842 17 DEBUG = YES
- 843 DISPLAT COMMAND-LINE.
844 MOVE BUPFER-EMPTY TO NO-INPUT-FLAG.
S 845 I¥ BUPFER-EMPTY = NONO
o 846 . PERFORM DELETR-PIRST-FIELD.
" 847
848 GET-NEV-BUFFER. . .
849 17 DEBUG = YES DISPLAY "TEST GET NEV BUFFER™.
850 MOVE SPACES TO COMMAND-LINE.

: 851 ACCEPT COMMAND-LINE. e
- 852 INSPECT COMMAND-LINE REPLACING ALL ~," BY "/".
PN 853 SET TPTR TO ONE.

854 PBRYORM CLEANUP-LINE.
o 855 IF BUFFER-EMPTY = YES .
“ 856 DISPLAY "RE-ENTER LAST LINE.”.

i 857 .

i 858 DELETE-FIRST-PILLD. . .

) 859 17 DEBUG = YES DISPLAY “DELETE FIRST FIELD ENTERED™.

: 868 MOVE SPACES TO OUT~COMMAND.

L 861 PERPORM MOVE-FPIRST-FIELD
"~ 862 VARYING PTR FROM 1 BY 1 o
‘ 863 UNTIL (COMMAND-BUFFER(PTR) = "/" OR PTR = 38).
% 864 17 COMMAND-BUFFIR(PTR) = '/

865 SET_I3 70 PTR

866 MOVE TO COMMAND-OUT(13)
' 867 SET AACTUAL TO PTR

868 SET AACTUAL DOWN BY 1

869 BLSE

87¢ SET AACTUAL 70 PTR

871 PERFORM DO-NOTHING

872 TARTING PTR FROM AACTUAL BY 1 .
: 873 UNTIL COMMAND-BUFFER(PTR) = "/,
. 874 SIT PTR UP BY 1.

875 SET TPTR 10 PTA.

876 PERFORM CLEANUP-LINE.

877 *

878 CLEANUP-LINE.

292

>

MICROSOPT COBOL-86 V2.8... DEMO COB 18/24/78 10:08:06 PACE 17
879 SET TEM-PTR TO ONE.
88e PERYPORM REMOVE-BLANKS—AND-PACK
881 VARTING PTR FROM TPTR BY 1 UNTIL PTR > 78.
882 PERYORM BLANK-REST-OF-LINE
883 VARYING PTR FROM TEM-PTE BY 1 UNTIL PTR > 7e.
884 IF TEM-PTR = ONE
885 MOVE YES TO BUFFER-EMPTY
886 ELSE
87 MOVE NONO TO BUFFER~EMPTY
888 SET TEM-PTR DOWN BT 1
889 SET BUFFER-LENGTH TO TEM-PTR .
89e IF COMMAND-BUFFER(TEM-PTR) NOT = "/
891 SET TEM-PTR UP BT 1
892 SET BUFFER-LENGTE 70 TEM-PTR
893 . MOVE "/~ T0 COMMAND-BUFFER(TEM-PTR).
895 REMOVE-BLANKS~-AND-PACK . .
896 I7 COMMAND-BUFFER(PTR) NOT =
897 MOVE COMMAND-BUFFER(PTR) TO COMMAND-BUFFER(TEM~PTR)
898 SET TEM-PTR UP BY 1.
899 *
o0 MOVE-FIRST-PIELD.
991 SIT 13 T0 PTR.
ge2 ., MOVE COMMAND-BUFFER(PTR) 20 COMMAND-OUT(I3).
3
op4 BLANK-REST-QP-LINE.
985 MOVE TO COMMAND-BUFFER (PTR).
906 *
997 DO-NOTEING .
908 SET PTR T0 PTR.
909 *
018 *
911 RECOGNIZE.
912 MOVE YES 70 SAME-FLAG. ~
913 PERFORM COMPARE ‘
914 VARYING I2 FROM 1 BY 1
a1 . UNTIL (SAME-FLAG = NONO OR I2 > AACTUAL OR I2 > MAIB).
6
917 COMPARE.
918 SET I1 70 I2.
919 17 PART-NUMBER(I1) NOT = STRING2(I2)
920 MOVE NONO TO SAME-FLAG.
921 *
922 *
923 COMMAND-PROCESSOR . . .
924 IF DEBUG = YES DISPLAY "COMMAND PROCESSOR ENTERED".
925 MOVE _ T0 PARTNO.
926 MOYE ~ © TO-ACTION.
927 MOVE _ . 70 BENTRY.
928 MOYE "+ TO QUANTITY-SIGN.
929 MOVE "e08” TO QUANTI?Y.
930 HOVE TO PART-NAME.
931 * TBE FOLLOVING IS A CASE STATEMENT ON THE COMMAND NAMES.
932 MOVE LIST TO STRINGB.
933 PERYORM RECOGNIZE.
293

MICROSOF? COBOL-88 V2.#... DEMO COB 18/24/78 18:00:00 PAGE 18

034

: 935
[936
937

) 938

! 939

| 048

! o941
; 942
et 043
944
945
046
o047
_ 948
i 049
950

) 951
952

' 953

‘ 954

) 855
! 956
o 957
958

' 959
968

p 961
962

863

ol 964
N 865
966

067

e 268
o 969

i o978

. 971
972

- 973
“~ 974
k4]

g o976
977

978

o779

gee

ey

981

982

2983

o84

985

986

987

*
LIST-PROCESS.

PUNCT?

*
CBECK-OTHERS.

*

17 SAMI-FLAG = YXS
PERFORM LIST-PROCESS
RLSE
MOVE STOP~IT TO STRINGB
PIRFORM RECOGNIZE
IT? SAME-FLAG = IES
MOVE YES TO STOP-FLAC
ELSE
MOVE ADDIT TO STRINGE
PERPORM RECOCNIZE
I¥ SAME-PLAG = YES
PERTORM ADD-PROCESS
ELSE
MOVE DELBTE-IT T0 STRINGB
PERFORM RECOGNIZE
I SAMI-PLAG = IBS
PERFORM DELETE-PROCESS

1S3
PREYORM CHECK~OTHERS.

MOVE HELP TO STRINGB.
PERFORM RECOGNIZE.
IF SAME-PLAG = YES

PERTORM HELP-PROCESS
ELSE
MOVE REMOTE-NAME TO STRINGB
PERFOEM RECOGNIZE
I1¥ SAME-TLAG = TXS

PERYORM REMOTE-PROCESS
ELSE
MOVE SEND-IT TO STRINGB
PERPORM RECOCNIZE
IF SAME-PLAG = TEBS

PERPORM SEND-PROCESS
RBISE

PERPORM ILLEGAL~COMMAND.

ILLECAL-COMMAND.

DISPLAY "ILLEGAL COMMAND - ENTER HELP POR HELP".

MOVE -C” TO ACTION.

MOVE "L” TO BENTRY.

MOVE NONO 10 NEW-BUFFER.

PERFORM READ-INPUT, .
IF (NO-INPUT-FLAG = NONO AND PART-NUMBER(1) = "A")

MO¥E "A” TO QUANTITY-SIGN.
PERFORM TRANSACTION-PROCESSOR.

ADD-PROCRSS .

MOVE "C TO ACTION.
MOVE "A" TO BENTRY.
MOVE YES TO REPEAT-TFLAG.

294

MICROSOFT COBOL-8® V2.8... DEMO COB 10/24/78 10:00:80 PAGE 19

988 MOVE NONO TO ERROR-FLAG.
989 PERFORM GET-PART-NUMBER UNTIL REPEAT-FLAG = NONO.
f 998 MOVE YES TO REPEAT-FLAG.
: 991 MOVE NONO TO ERROR-FLAG.
. 992 PERFORM GET-PART-NAME UNTIL REPEAT-PLAG = NONO.
. 993 PERFOBM TRANSACTION-PROCESSOR.
1 994 I? TRANS-TLAGC = NONO)
! 995 . DISPLAY "DATA BASE FULL. PART NOT ADDED.".
i 996
’ 997 CET-PART-NUMBER.
i 998 17 BRROR-PLAC = NONO
999 MOVE NONO TO NEW-BUPFER.
, 1000 PERPORM READ-INPUT.
1081 17 (NO-INPUT-FLAG = YES OR ERBOR-FLAG = YES)
1002 DISPLAY "ENTER PART NUMBER™
1003 PERPORM READ-DATA.
1004 MOVE NONO TO ERROR-FLAG.
10€5 PERTORM DIGIT2-CHECK
S 1006 VARYING I1 FROM 1 BY 1
' 1087 UNTIL (I1 > AACTUAL OR ERROR-FLAG = YES).
, 1008 I? BRROR-FLAG = NONO
1009 MOVE PART-NUM TO PARTNO
1010 MOYE NONO TO REPEAT-FLAG
_ 1811 BLSE
‘ 1012 MOVE YES _TO REPEAT-FLAC i
. 1013 DISPLAY "PART NUMBERS CONTAIN ONLY DIGITS".
= 1014 .
: 1015 DIGIT2-CHECK.
: 1016 IF PART-NUMBER(I1) IS NOT NUMERIC
R 1017 MOVE YES TO ERROR-FLAG.
: 1018 *
i 1619 GET-PART-NAME.
! 1020 IT ERROR-FLAG = NONO
: 1021 MOVE NONO TO NEW-BUFFER
- 1€22 PERFORM READ-INPUT.
- 1823 IF (NO~INPUT-FLAG = YES OR ERROR-FLAG = YES)
1024 DISPLAY "ENTER PART NAME'
. 1025 PERYORM READ~DATA.
: 1926 MOVE PART-STRING TO PART-NAME.
1027 MOVE NONO TO REPEAT-FLAG.
1828 *
1029 DELETE~PROCESS.
1030 MOYE "C’ T0 ACTION.
1031 MOVE "D" T0 RENTRY.
1632 MOVE YES TO REPEAT-FLAG.
1033 MOYE NONO TO BRROR-FLAG.
1034 PERFORM GET-PART-NUMBER UNTIL REPEAT-PLAG = NONO.
1635 PERFORM TRANSACTION-PROCESSOR.
1836 *
1037 EELP-PROCESS,
1038 DISPLAY "SEPRRATORS ARE EITHER COMMAS OR SLASES (, OR /)",
1039 DISPLAY "=momeeeme
1846 DISPLAY " TEL FOLLOWING COMMANDS ARE IMPLIMENTED: .
1041 DISPLAY © HELP - PRINTS THIS LISTING
1042 DISPLAY © LIST - DISPLAYS THE DATA IASE .

295

MICROSOIT COBOL-8¢ V¥2.0... DEMO COB 10/24/78 18:80:00 PAGE 20

' 1043 DISPLAY : ST0? - TERMINATES THEE PROGRAM™
1044 DISPLAY _ DELETE ,PART NUMBER - .
1045 DISPLAY REMOVES AN ITEM FROM TEE DATA BASE™.
1046 DISPLAY ADD/PART NUMBER/PART NAME -
1047 DISPLAY ADDS AN ITEM TO THR DATA BAS! .
. 1848 DISPLAY ALL QUANTITIES ARE SBET 70
; 1849 DISPLA!'u nEnOTlIDlSTINATION/COHHAND ~ SEND COHHAND T0". ,
P 1858 DISPLAY) DESTINATION MACEINE AND AVAITS RISPQNSE'.
1851 DISPLAY _ SEND/DESTINATION/MESSAGE ~ SEND MESSAGE T0 .
N 1052 DISPLAY _ - DESTINATION MACBINE .
1853 DISPLAY ——==e-
! 1854 DISPLAY tO HODIP! THE QUANTITIES POR ANY ITEM ENTER .
) 1855 DISPLAY PART NUMBER/ACTION/ENTRY/SIGNED QUANTITY".
: 1056 DISPLAY "WEERE". .
1857 DISPLAY PART WUMBER IS A STRING OF DIGITS”. R
! 1058 DISPLAY ACTION IS LIST,UPDATE OR INITIALIZE TEX ITEM s
1859 . DISPLAY RNTRY IS STOCK,ON ORDER,THRESHOLD, ORDER SIZE .
1060
1061 REBMOTR-PROCESS.
1062 MOYE YES TO REMOTE-COMMAND.
) . 1863 MOVE YES T0 REPEAT-FLAG.
. 1064 MOVYE NONO TO ERROR~FLAG.
1865 PERYORM GET-DESYINATION UNTIL REPEAT-FLAG = NONO.
' 10866 MOVE NONO TO NEW-BUFIERER.
1867 PERFORM READ-INPUT.
1868 1T NO~INPUT-PLAG = TES .
1869 DISPLAY "ENTER PART NUMBER OR COMMAND FOR REMOTE COMMAND
_ 1078 MOVE YES TO NEV-BUFFIR
Co 1071 PERPORM READ-INPUT.
P 1872 IF PIRST~CHARACTER IS NOT ALPHAMETIC
) 1873 PERFORM PART-NUMBER-PROCESSOR
1874 ELSE
. 1875 MOVE LIST T0O STRINGB
E 1876 PERFOEM RECOGNIZE
t 1e77 I? SAME~FLAG = YES
. 1e78 PERPORM LIST-PROCRSS
1079 BLSE . .
L ip8¢ DISPLAY ILLEGAL REMOTE COMMAND .
~ 1¢81 *
1082 CET-DESTINATION,
1083 1¥ ERROR-FLAG = NONO
1084 MOYE NONO TO NEW-BUFFER
\ 1e85 PERPORM READ-INPUT.
1086 1r (NO-INPUT:ILAG = YES OR ERROR-TLAG = "5).
1887 DISPLAY "ENTER DESTINATION MACHINE CODE.
1088 PERPORM READ-DATA.
1889 MOYE NONO TO REBPEAT-FLAG.
199¢ MOYE M6868 TO STRINGB.
1p91 PRRFORM RECOGNIZE.
1092 I? SAME-PLAG = YES
1093 MOVE MG88E-CODE TO RBMOTE-ADDRESS
1094 BLSE
1095 MOYE PDP11 TO STRINGB
1096 PERFORM RECOGHIZE,
1e97 1¥ SAMB-FLAGC = YES

296

at N
x I

MICROSOFT COBOL-88 V2.8... DEMO COB 18/24/78 10:08:80 PAGE 21
1098 MOVE PDP11-CODE TO REMOTE-~ADDRESS

1099 BLSE

1109 MOVE INTEL TO STRINGB

1181 PERFORM RECOGNIZE

1162 I¥ SAME-FLAG = YES

1163 MOVE INTEL-CODE TO REMOTE~ADDRESS

1104 ELSE

1105 MOVE CS28 TO STRINGB

1186 PERFORM RECOGNIZE

11e7 IP SAME~FLAG = TES

1168 MOVE CS-26-CODE TO REMOTE~ADDRESS

1169 1S3

11190 PERFORM BAD-DEST-CODE.

1111 *

1112 BAD-DEST-CODE.

1113 DISPLAY 'ILLEGAL DESTINATION CODE.”

1114 DISPLAY USE M68#@, PDP11, INTEL, OR CS-28"
1115 MOVE YES TO REPEAT-PLLG

1116 MOVE YES TO RRROR-FLAG.

1117 *

1118 SEND-PROCESS.

1119 MOVE YES TO REPEAT-FLAG.

1120 MOVE NONO TO ERROR-FLAG.

1121 PERFORM GET-DESTINATION UNTIL BREPEAT-FLAG = NONO,
1122 DISPLAY "ENTER TEXT - EMPTY LINE WILL TERMINATE. .
1123 MOVE TES TO REPEAT-FLAG.

1124 . PERFORM SEND-TEXT UNTIL REPEAT-FLAG = NONO,

1125

1126 SEND-TEIXT.

1127 MOVE SPACES TO MESSAGE~-BUFFER.

1128 ACCEPT MESSAGE-DATA.

1129 MOVE YES TO EMPTY-LINE.

1138 PERYTORM CHECK-EMPTY-LINE

1131 VARYING MES-INDEX FROM 1 BY 1 UNTIL MES-INDEX > 7@.
1132 MOVE REMOTE-ACDRESS TO SOURCE~DESTINATION.

1133 MOVE D TO MESSAGE-~CLASS.

1134 MOVE NONO TO LAST-OF-MESSAGE.

1135 IP EMPTY-LINE = YBS

1136 MOVE YES TO LAST-OF-MESSAGE

1137 MOVE NONO TO REPEAT-FLAG.

1138 SET MESSAGE-LENGTH TO EIGHTY.

1139 MOVE “S™ TO COM-FUNCTION.

1148 PERFORM COMMUNICATE.

1141 *

1142 CHECE~EMPTY-LINE. ,

1143 I? MESSAGE-DATAL(MES--INDEX) NOT =

1144 MOVE NONO TO EMPTY-LINE.

297

. .
e A e o

4
e .
L]
FRECEDING PAGE BLANK-NOT FILMED
13. APPENDIX E--NETWORK COBOL RESERVED WORDS
]
]

PR . y -

PRECEDING PAGE ELAMK-NOT ¥1LMED

- e

13. APPENUDIX E

NETWORK COBOL RESERVED WORDS

o ACCEPT AUTHOR CF
, ACCESS AUTO CHANNEL?
ACCESSABILITY BACKWARD CHARACTER
ACTUAL BLEP CHARACTERS
ADD BLFORE CINT
. ADDRESS BEG INNING CIOC
ADVANCING BELL CLOCK-UNITS
AFTER BIT CLOSE
. ALL BLANK Q10D
) ALPHABETIC BLINK COBOL
i ALSO BLOCK CODE
. ALTER BOTTOM CODE-SET
= ALTERNATE BREAK-KEY COLLATING
-~ AND BY COLUMN
APPROXIMATE C-300 COMMA
ARE CALL COMMUNICATION
- AREA CAM COMP
AREAS CANCEL COMP-1
ASCENDING CCNL COMP-2
ASCII Cb COMP-3
‘ | ASSIGN CDAC COMPRESSION
AT CDIS COMPUTATIONAL

Lt

COMPUTATIONAL-1
COMPUTATIONAL-2
COMPUTATIONAL-3
COMPUTE
CONFIGURATION
CONSOLE
CONTAINS
CCONTIGUOUS
CONTLOL
CONTROLS

COPY

CORR
CORRESPONDING
COUNT

CR

CRCV

CREATE

CS-20

CS-40

CS-60

CSND

CURRENCY

DATA
DATA-SENSITIVE

DATL

DATE-COMPILED
DATE-WRITTEN
DAY

DE
DLBUG-CCONTENTS
DEBUG-ITEM
DEBUG-LINE
DEBUG-NAME
DEBUG-SUB-1
DEBUG-SUB-2
DEBUG-SUB-3
DEBUG-SUR1
DEBUG-SUB2
DEBUG-SUB3
DEBUGGING
DECIMAL-PCINT
DECLARATIVES
DEF INL

DELETE
DELIMITED
DELIMITER
DEPENDING
DESCENDING
DESTINATION

DETAIL

302

DISABLL
DISK
DISPLAY
DIVIDE
DIVISION
DOWN
DUPLICATES
DYNAMIC
EBCDIC
ECLIPSE
EGI ELSE
EMI

ENABLE

END

END-OF -PAGL
ENDING
ENTLR
ENVIRONMENT
EQUAL
EQUALS
ERROR

ESI

EVEN

EVERY

EXCEPTION

EXCLUDE
EXCLUSIVE
LXHIBIT
EXPIRATION
EXPUNGE
EXTEND

FD
FLEDBACK
FIELD
FIELDS
FILE
FILE~-CONTROL
FILE-1ID
FILE-LIMIT
FILE- LIMITS
FILLER
FINAL
FIRST
FIXED
FOOTING
FOR
FORWARD
FROM
GENERATE
GENERATION

———— ‘ll..-..——‘ .-

GENERIC
GIVING
GLOBAL

GO

GREATER
GROUP
HEADER
HEALING
HIERARCHICAL
HIGH
HIGH-VALUE
HIGH-VALUES
I1-0
I-0-CONTROL
ID
IDENTIFICATION
IF
IMMEDIATE
IN

INDEX
INDEXED
INDICATE
INFOS
INITIAL

INITIALIZATION

303

INITIATE
INPUT
INPUT-OQUTPUT
INSPECT
INSTALLATION
INTO
INVALID
INVERTED
IS

JUST
JUSTIFIED
KEY
KEYBOARD
KEYS
LABEL
LABELS
LAST
LEADING
LEFT
LENGTH
LESS
LEVELS
LIBRARY
LIMIT
LIMITS

LINAGE
LINAGE-COUNTER
LINE
LINE-COUNTER
LINES
LINK
LINKAGE
LOCAL
LOCK
LOGICAL
LOW-VALUE
LOW-VALUES
LRU

MANAGEMENT

MAXIMUM

MEMORY

MERGE

MERIT
MESSAGE
MODE
MODULES
MOVE
MULTIPLE
MULTIPLY
NAMED

NATIVE
NEGATIVE
NEXT

NO

NODE

NOT
NUMBER
NUMERIC
OBJECT-CQUNTER
OCCURANCE
OCCURS
oDD

OF

OFF
OFFSET

OH
OMITTED
ON

ONLY

OPEN
OPTIONAL
OR
ORGANIZATION
OUTPUT

ov

OVERFLOW
OWNER

PAD

PAGE
PAGE-CCUNTER
PARITY
PARTIAL
PERFORM

PF

PH
PHYSICAL
PIC
PICTURE
PLUS
POINTER
POSITION
POSITIVE
PRINTER
PRINTING
PRCCEDURE
PROCEDURES
PROCEED
PROCESSING
PROGRAM
PROGRAM-1ID

P

QUEUE
QUOTE
QUOTES
RANDOM

RD

READ
READY
RECEIVE
RECORD
RECORDING
RECORDS
REDEF INES
REEL
REFERENCES
RELATIVE
RELEASE
REMAINDER
REMARKS
REMOVAL
RENAMES
REPLACING
REPORT
REPORT ING
REPORTS
RERUN

RESERVE
RESET
RETAIN
RETRIEVE
RETURN
REVERSED
REWIND
REWRITE
RF

RH

RIGUHT
ROOT
ROUNDED
RUN

SAME

SAVE

SCREEN

SD

SEARCH
SECTION
SECURE
SECURITY

SEEK
SEGMENT-LIMIT
SELECT

305

SELECTED
SEND
SENTENCE
SEPARATE
SEQUENCE
SEQUENTIAL
SET

SIGN

SIZE

SORT
SORT-MERGE
SQURCE
SOURCE-COMPUTER
SPACE
SPACES
SPECIAL-NAMES
STANDARD
STANDARD-1
STANDARD- 2
STAND ARD- 3
START
STATIC
STATUS
STOP
STRING

- e e D i il

i oo

SUB-INDEX
SUB-QUEUE-1
SUB-QUEUE-2
SUB-QUEUE-3
SUBTRACT
SUM
SUPPRESS
SWITCH
SYMBOLIC
SYNC
SYNCHRONIZED
TABLE

TALLY
TALLYING
TAPE
TEMPORARY
TEMINAGE
TERMINAL
TERMINATE
TEXT

THAN

THEN
THROUGH
THRU

TIME

TIMES
TO

TOP
TRACE
TRAILER
TRAILING
TRUNCATE
TYPL
UNDEFINED
UNDELETE
UNIT
UNLOCK
UNSTRING
UNTIL

up

UPON
USAGE
USE

USER
USING
VALUE
VALUES
VARIABLE
VARYING
VERIFY

VOLUMN
WAIT
WHEN
WITH
WORDS
WORKING-STORAGE
WRITE
XECS
XMOD
XNMT
XPND
XTRN
ZERO
ZEROES
ZEROS

