
7 3 G EORGIA T OF TECH ATLANTA SCHOOL OF ELECTRICAL EN-ETC F/B 9/2
THE FEASIBILITY OF IMPLEMENTING MULTICOMMANO SOFTWARE FUNCTIONS--ETC(U)
OCT 79 T P BARNWELL, J L HAMMOND, J H SCHLA6 DAA62978-6-0139

JNCLASSIFIED ARO-15900.1-A-EL

mmnmmmmmmnmhm
-EEEEEllllEEI

-II.--IIImlllM

[WNAL REPORTlE L$ I
q) THE FEASIBILITY OF IMPLEMENTING

SMULTICOMMAND SOFTWARE FUNCTIONS
< ON A MICROCOMPUTER NETWORK

Principal Investigators:
T. P. Bamwdl
J. L. Hammond

<C J. H. Schlag
E. E. Wagstelf

aibmitd To:
U. S. ARMY RESEARCH OFFICE DTIC

ELECT!
Grant Number: APR 15 1980,
DAAG29-78-G-0139 e E

Q 4E

Report Period Covering July 1, 1978 to September 30, 1979

October 1979

,IEORGEA INSTITUTE OF TECHNOLOGY
ATLANTAt GEORGIA 60831

I Aprov for public mrsoIw.,
80)Dlb0 0n Unlimited

1:80 4 15 020

Urc';ifile
SECURITY CLASSIFICATOC4 ;F Tb,# PAGE (1014. fleE. F. '... d)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

. Ep T NUMBER 2 OVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

i ' 15900. I-A-EL

' r4 T)TLC tof Subtitle) ' S. TYPE OF REPORT I PERIOD COVERED

THE FEASIBILITY OF IMPLEMENTING MULTICOMMAND Final Report:
1 Jul 78 - 30 SeD 79SOFTWARE FUNCTIONS ON A MI CROCOMPUTER NETWORK 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(*) B. CONTRACT OR GRANT NUMBER(@)

T. P. Barnwell J. H. Schlag p DAAG29 78 G 0139
J. L. Hammond E. B. Wagstaff

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRA ELEMENT. PROJECT. TASK

Georgia Institute of Technology A O

Atlanta, Georgia 30332

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPCrT DATE

U. S. Army Research Office Oct 79
P. 0. Bcx 12211 13. NUMe-:R OF PAGES
Research Triangle Park, .C 27709 3o6

14. MONITORING AGENCY NAME & ADORESS(If differeit from Centrollng Office) IS. SECURITY CLASS. (of this report)

Unclassi fied
IS-. DECL AcSI FI CATION/ DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

Appr-ved f,-.r public reease; distributi-n unlimlted.

17 DISTRIBUTION STATEMENT rot the abstract entered In Block 20, It different from Report)

IS SUPPLEMENTARY NOTES

The view, pinicn, a:x., r findir.ns c'ntanre in this repcrt are those of the
author(s) ard sh'>a' be construed as an official Pcpartmpn of the Arny
poziti)n., r V'sion, unless so 1,'cgFnated by -1ther docuentation.

19 KEY WOODS (Continue on reverse side it necess.,v wd Identify b) block number)

microcomputers monitor systems
computer networks distributed processing
feasibility studies

20 ABSTRACT fConllnuo on revete &Ide it necessary and Identify by block number)

'This report presents the results of a study of design considerations for hybrid

monitor systems for distributed microcomputer networks. The objective of the
study was to determine the feasibility of such monitor systems and to look at
typical designs. A Detailed survey of the literature was carried out and the
characteristics of existing monitor systems were established. The report
presents a conceptual design for a monitor system for distributed microcomputer

ic~
D N ,, 1473 EDITION OF I NOV 6SIS OBSOLETE classified:' ._j p.. .. ' - tt-A.stI.EfI f U ,M i Pf F rI)e.. fe,. r..*..EI

.... " I n ot..-... . . .

:' ~(,ntif tl; S I 1] *.€

%acuftiTYCLASS9c22.C(THIS PAGE(Whon Dots Entwed) I5900-A-EL

20. ABSTRACT CONTINUED

networks obtained by adapting certain aspects of existing systems to the

specialized requirements of microcomputer networks. Several novel features

are incorporated into the design to minimize overhead and enhance useability.

A typical implementation of the conceptual design using state-of-the-art

hardware is given and its operation on a specific monitoring task is considere

-- in detail. The implementation is recommended for use with the AIRMICS/GEORGIA

TECH Experi ental Network.

N

Ur Ic I Sc le,1
SECURITY CLASSIFICATION OF THIS PAGE("On Dat fEM-9dI3e)

i ~~~~~~~'J INAL REPGIT,, ,' >-.- , , ,)

6 T "ILE FEASIBILITY OF IMPLiMIEN'IING MU LTICOMMANID

SOFTWARE FUNCTIONS ON A MI CROCO", iTER NLTORK,

PRINCIPLE INVESTIGATORS

Srl' T. P.]BARNWIEIL

J: L. IfAMMOND
',, J. 11. .SCIILAG

F E. B. :WAGSTAFF

SUBMITTED) TO

U. S. ARMY RESIARCII OFFICE

-p -. -, - . 7 -

" School of Electrical Engineering,

GEORGIA INSTM1:E OF EIT I C lf

Atlantat Heurgia 30332

" "h, Accession For
* / UTIS GRA&I

, - DDC TAB
Unanncunced
Justific'j. _

By -

, I" ' ,-,

4!'

FOREWORD

The i:orl. rported herein '.-.as performed under a grant from the

U. S. Army Research Office in support of work for the U. S. Army

Computer System Command Institute for Research in Management Informa-
tion and Computer Sciences. The study was one task on a project

bentitled "The Feasibility of Implementing Multicommand Software

Functions on a Microcomputer Network".

* Principal investigators on the project are Dr's. T. P. Barnwell,

J. L. Hammond, J. H. Schlag and E. B. Wagstaff. Dr. J. H. Schlag is

the program manager.

ii

I

ABSTRACT

This report presents the results of a study of design

considerations for hybrid monitor systems for distributed micro-

computer networks. The objective of the study was to determine

the feasibility of such monitor systems and to look at typical

designs.

A detailed survey of the literature was carried out and the

characteristics of existing monitor systems were established.

The report presents a conceptual design for a monitor system

for distributed microcomputer networks obtained by adapting certain

aspects of existing systems to the specialized requirements of

microcomputer networks. Several novel features are incorporated

into the design to minimize overhead and enhance useability.

A typical implementation of the conceptual design using

state-of-the-art hardware is given and its operation on a specific

monitoring task is considered in detail. The implementation is

appropriate for use with the AIRMICS/GEORGIA TECH Experimental

Network and its use for this purpose is recommended.

Nf

ii

TABLE OF CONTENTS

FOREWORD.

ABSTRACT

* ~~~LIST OF FIGURES........................

LIST OF TABLES.

1. INTRODUCTION.

*2. REVIEW OF THE LITERATURE3

2.1 Existing Computer Networks

2.2 Hardware Monitors and Software
Monitors for Stand-Alone Computers......

*2.3 Hardware/Software Monitors and
Monitors for Computer Networks.......

2.4 Parameters Measured by Monitoring
System....................

2.5 Commercial Monitoring Equipment.........

3. OVERALL DESIGN CONSIDERATIONS FOR HYBRID
MONITORS.

3.1 General Requirements for a Monitor

System.

3.2 Specific Variables to be Monitored.........

3.3 A Proposed Monitor System

3.3.1 Nature and Physical Location of
Monitor Components......

3.3.2 General Approach to the
Measurement Tasks 23

3.3.3 Communication Between the Parts

of the Monitor System 4

3.3.4 Control of the Monitor System....

3.3.5 Identifying and Accounting for
Specific Jobs. 27

TABLE OF CONTENTS

(Continued)

4. STUDY OF A TYPICAL IMPLEMENTATION OF A I~
HYBRID) MONITOR SYSTEM

4.1 An Implementation of the Monitor
System. 29

4.1.1 General Operation.29

4.1.2 Specific Measurement Modules

4.1.3 Representative Specific
Measurements. 40

4.2 Example Illustrating the Use of the
Monitor System

4.2.1 Task Definitions 44

4.2.2 Computer Network and
Corresponding Monitor System
Operation on Assigned Task 5

4.3 A Monitor Structure for the AIRMICS/
GEORGIA TECH Experimental Network. 49

5. EXPERIMENTAL NETWORK

5.1 Communication Network Theory. 52

5.2 The Microprocessor Network S

5.3 Description of the Computer Network
Hardware ..

5.4 Network Trafficking Experiments

5.4.1 Introduction. 2

5.4.2 Traffic Routes.

5.4.3 The First Traffic Experiment.

5.4.4 Single Host Traffic Test o

5.4.5 Multiple Host Traffic Test.)

iv

TABIE OF CONTENTS

4(Continued)

Pace
5.4.0 'ultillc Loot "Iraffic Test 68

5.4.7 Network Test with Inventory
Control Procoram and Node

4. Traffickine 0 9

5.4.8 CS-79 Inventory (ontrol Test 70

5.4.9 Inventory Control Program Test
with Trafficking. 70

5.5 General Characteristics of the Computer

Communication Network 71

6. N1E1h0RK COBOL 78

6.1 Introduction 78

(.2 Acknowledfenent 79

o.3 Preface 80

6.4 Cruanization of Manual 82

6.5 Command Syntax Notation 82

0.60 COHIl, languape Structure 84

6.6.1 Introduction 84

0.0.2 (haracter Set 86

6.6.3 (naracters Used for Punctuation 87

6.6.4 Characters Used for diting 88

0.0.5 Characters Used for Relation Coi.ditions 89

6.7 Lords 89

6.7.1 befinition and Application 89

0.7.2 JData-,.ame 90

0. 7.3 Procedure- Name 90

0.7.4 literal 9

v

TABLE OF CONT1NTS

(Continued)

6.7.5 Figurative-Constants

6.7.6 Reserved Words

6.7.7 Key Words 9-

6.7.8 Optional Words 3

6.7.9 Connectives 94

6.8 Concept of Computer-Independent Data
Description 9

6.9 Logical Record and File Concept 9)4

6.9.1 Physical Aspects of a File 9

0.9.2 Conceptual Characteristics of
a File $5

6.9.3 Record Concepts 90

6.9.4 Concept of Levels

6.9.5 Level Numbers

6.9.0 Initial Values of Tables

6.10 Algebraic Signs

0.11 Uniqueness of Data Reference

0.12 Indexing.... 9o.

6.13 Format Notation I uw

6.14 Reference Format t "

6.14.1 General Description 102

6.14.2 Reference Format Representation1 3

6.14.3 Continuation of Non-Numeric Literals .. . I

6.14.4 Division, Section, and Paragraph Formats .

vi

No

II

TABLE OF CONTENTS

(Continued)

6.14.5 DATA DIVISION Entries 1 5

6.15 COBOL Input/Output Processing oo

6.15.1 COBOL Files 10o

6.15.2 File Organization 10o

6.15.2.1 Indexed File Organization i0o

6.15.2.2 Sequential File Or.-anization lot

6.15.3 File Access lo

6.15.3.1 Sequential Access 10o

0.15.3.2 Random Access 107

6.15.3.3 Dynamic Access107

6.15.4 Record Keys 107

6.15.5 File-Handling Methods 10

6.15.5.1 Sequential Access lu8

6.15.5.2 Random Access 108

0.15.6 Input/Output Processing Summary ug

6.16 IDENTIFICATION DIVISION 1u9

0.16.1 General Description 05

6.16.2 Orpanization11u1

6.16.3 PRORAM-ID Paragraph llo

0.16.4 DATA- CUNPI LI) Paragraph110

0.17 iNVIRONMENT DIVISION 113

6.17.1 General Description 113

vii

TABLE OF CONTENTS

(Con t in ued)

6.17.2 Configuration Section.......

63.17.2.1 S(URCE-COMPJTLR. Paragraph.... 14

6.17.2.2 OBJECT-COMPUTER Paragraph....

6.17.3 The INPUT/OUTPUT Section.....

6.17.3.1 File Control flarag raph.... 1

63.17.3.1-1~ SELECT Sentence for
N16800 COBOL....

t).17.3.1.2 SELECT Sentence for
M'ICROSOFT Intel SUS(0

0.17.3.1.2.1 Sequential
Files.. i

b .17.3.1.2.2 In de x ed
S equ e nt ialI
Files .Ii

().17.3.1.2.3 RFC OR 1 KELY
Clause .

6.17.3.1.2.4 File Status
Report i ng

0.17.3.1.3 SELUCI Sentence for
D~ata General CS-20 . ..

0.17.3.1.3.1 Sequential

Select 12

0.17.3.1.3.2 Indexed

03.17.3.2 1/0 CONTROL Parar~rah

6.18 DATA DIVISION .

6.18.1 Gcneral IDescription -(

v ii,

TABLE OF CONTENTS

(Cant inued)

-6.18.2 Physical and Logical Aspects of

DATA DIVISION. 1o6

6.18.2.1 DATA DIVISION Organization l2o

*6.18.2.2 DATA DIVISION Structure.127

6.18.3 File Section 127

6.18.4 Working-Storage Section. 129

6.18.4.1 Noncontiguous Working-Storage 129

6.18.4.2 Working-Storage Records u

6.18.4.3 Initial Values3u

6).18.5 File Description - Complete Entry
Skeleton U

6.18.5.1 L.ABEL RECORDS Clause131

6.18.5.2 DATA RECORDS Clause.131

0.18.6 Data Description Entries.12

6.18.6.1 General Format 132

6.18.6.2 Detailed Formats of Data Items 133

6.18.6.3 Alphanumeric Elementary Item . .. 134

6.18.6.4 Alphanumeric Edited Elementary
I tem.........

0 .18.6.5 Numeric Edited Elementary Item 135

6.18.6.0 Alphabetic Elementary Item 133

0.18.0.7 ASCII IDecimal Elementary Item ... 13o

6.18.6.8 Packed Decimal Elementary Item 130

6.18.6.9 Index Item3

ix

TABLE OF CONTENTS

(Continued)

I a'u,

6.18.6.10 REDLFINES Clause

6.18.6.11 PICTURE Clause 1j,

6.18.6.12 USAGE Clause i47

6.18.6.13 BLANK WHEN ZERO Clause i-i

6.18.6.14 JUSTIFIED Clause

6.18.6.15 VALUE Clause i51

6.18.6.16 OCCURS Clause

= 6.19 PROCEDURE DIVISION 34

6.19.1 General Description 1

6.19.2 Procedure Division Elements 13.

6.19.2.1 Statements I4

6.19.2.1.1 Compiler Directing
Statement

6.19.2.1.2 Imperative Statement

6.19.2.1.3 Conditional Statement I55

6.19.2.2 Sentences

6.19.2.3 Paragraphs 1.

6.19.2.4 Sections 153

6.19.2.5 Paragraph and Section Naming 156

6.19.3 Procedure Division Structure 15,

6.19.4 Conditional Statements 15(

6.19.4.1 Relations 157

6.19.4.2 Logical Operators (AND, OR and NOT) 158

x

TABLE OF CONTENTS

(Continued)

6.19.4.3 Other Condition Tests

6.19.4.3.1 Sign Test159

6.19.4.3.2 Class Test 159

6.19.4.3.3 Comparison of Numeric
Items159

6.19.4.3.4 Comparison of Non-
Numeric Items 161

0.19.4.4 Conditional Statement with
E Ixception Branches161

6.19.4.5 Nested Conditional Statements . . . 162

6.19.5 Input/Output Statements163

0.19.5.1 OPEN Statement 1b3

6.19.5.2 START Statement 163

6.19.5.3 READ Statement165

6.19.5.4 WRITE Statement 169

6.19.5.5 RLWRITL Statement170

6.19.5.6 DLLLIE Statement 170

0.19.5.7 CLOSE SLatement 171

6.19.5.8 ACC1 PT Statement 171

0.19.5.9 DISPLAY Statement172

o.19.6 Arithmetic Statements 172

0.19.0.1 Rules for Arithmetic Verbs 172

6.19.6.2 GIVING Option 173

xi

TABU" OF CONTLNTS

(Continued)

6.19.6.3 ROUN EDL Option

6.19.6.4 SIZE LRROR Option174

6 6.19.6.5 AND Statement 175

6.19.6.0 SUBTRACT Statement 177

0.19.0.7 ':IJLTIPIY 1781

6.19.6.8 DIVIDE Statement 180

6.19.7 Data Manipulation Statements 182

6.19.7.1 MOVE Statements 182

6.19.7.1.1 Alphanumeric Moves . . . 183

6.19.7.1.2 Numeric Moves184

6.19.7.1.3 Editing 184

b.19.7.2 INSPECT Statement180

6.19.8 Sequence Control Statements 1

o.19.8.1 Normal Sequence Control 189

t).19.8.2 GO TO Statement 189

6.19.8.3 PERFORM Statement191

6.19.8.4 "Nested" PERFORM Statement194

6.19.8.5 TIMES Option194

6.19.8.6 UNTIL Option195

o.19.8.7 V\MRYTNG Option 195

6.19.8.8 STOP Statement 198

.19.8.9 YXIT Statement 198

xt

xii

TABLE OF CONTENTS

(Continued)

Page
6.19.8.10 IF Statement 198

6.19.8.11 Evaluation of the Condition 199

b.19.8.12 Nested Conditional Statements. . . 199

o.19.8.13 Evaluation of Nested IF

Statements 200

6.19.9 Table-Flandling Statements 201

7. DISCUSSION AND CONCUISIONS 203

7.1 Design Conclusions 203

7.2 Network Experimental Conclusions 205

8. BIBLIOGRAPHY 207

9. APPENDIX A 213

10. APPvN1)IX B 221

11. APPENDIX C 23S

11.1 Introduction 235

11.2 Messages 235

11.2.1 Data Message 235

11.2.2 Source Acknowledgement235

11.2.3 Local Acknowledgement236

11.3 Message handling 236

11.4 Input/Output 240

11.5 Headers for the Three Message Types240

11.5.1 Oata Message 240

11.5.2 Source Acknowledgement 241

11.5.3 Local Acknowledgement241

xiii

II lllln II/1

TABLE OF CONTENTS

(iont i InLuC(I)

11.6 Diefinitions

11.7 Lrror l)etectin.. 242

12. APPENDIX D.. 275

ii

13. APPENDIX F.. 299

>. i

Ij

LIST OF FIGURES

Figure Page

3.1 A Distributed Microcomputer Network 17

* 3.2 A Typical Node in a Computer Network with
Associated Monitoring Equipment 22

4.1 An Implementation of the Basic Nodal
Monitor Stations 30

4.2 Program for Carrying Out Host-Controlled
Resource Measurements 32

4.3 Interval Counter, Event Counter and a Real
Time Clock 34

4.4 Histogram Generator. 36

4.5 Masked-Word Range Comparator 38

4.6 Logic Combination Unit 39

4.7 Schematic Representation of the Monitor
Functions at Node K for the Inventory
Control Problem. 48

5.1 Block Diagram of Complete Computer Network 59

5.2 The intel Microcomputer System 61

5.3 The Nova 820 Host Computer with Its Own
Network Processor Node 63

t.1 CS-20 SELECT Sentence Formats 123

6.2 Data Division Structure 128

t.3 PERFORM Statement (VARYING Optional) 197

(.1 Data Message Transmission with Acknowledgements 237

C.2 All ACIA's Busy, Message is Queued239

C.3 Local Sequence Number Storage 241

xv

LIST OF TABLES

Table

I I Parameters Measured by Monitoring Systems 12

2 Segmentation of Illustrative Task 4o

3 Traffic Routes for the Microprocessor
Communication System 65

4 File Manipulation Statements 111

5 Various Data Description Entries Listing 133

6 Examples of Insertion (haracters 144

7 Examples of Replacement Characters147

8 Examples of Picture Editing 148

9 Valid Class Tests 16(0

10 Permissible Comparisons 162

11 Rounding or Truncation of Calculations175

12 Permissible Moves 18(

Al. General Monitor System Functions: Initial
Set Up for Complete Problem 213

A2. General Monitor System Functions: Periodic
Monitor Functions 214

A3. General Monitor System Functions: Monitor
Functions at Problem Completion 215

A4. Activities in Execution of Job 1 with
Corresponding Monitor System Readings 216

AS. Activities in Execution of Job 2 with
Corresponding Monitor System Readings 22C

xVi

- -m*. --- --.-7

1. INTRODUCTION

This report presents the results of a performance monitor

- feasibility study performed as one task under a grant entitled

* "The Feasibility of Implementing Multi-Command Software Functions

on a Microcomputer Network" from the United States Army Computer

Systems Command Institute for Research in Management Information

and Computer Sciences.

The objective of the study was to investigate the feasibility

of using combined hardware/software monitors for distributed

microcomputer networks.

The field of computers in general, and computer networks in

particular, is undergoing explosive growth. Extremely rapid

advances in hardware, such as the advent of the microprocessor,

have made possible designs for distributed computer systems which

could not have been cost effective even a few years ago.

To keep abreast of the rapidly changing state-of-the-art, AIR-

6. MI CS is concerned with the potential applicability of distributed

database microcomputer networks to their data processing and

management information problems. The present grant provides funds

to study several aspects of microcomputer networks to assess their

applicability to these problems.

This report is concerned with a part of the overall study

directed toward monitor systems for distributed microcomputer

networks. Monitor requirements for distributed microcomputer

networks are developed using monitor systems for existing networks

as a guide. Feasible design approaches are developed to satisfy

the requirements.

Other parts of the study have indicated that packet switching,

as opposed to alternative approaches such as line switching, is

the most cost effective switching technique to use with the

microcomputer networks for the AIRMICS application. Thus when

* . aspects of the monitor system are impacted by such details, a

packet switching network is assumed.

The remainder of the report is divided into seven major parts:

section 2, which gives a detailed survey of the literature on the

monitor problem; Section 3, which develops an overall design for

a hybrid monitor system for distributed microcomputer networks;

Section 4, which is a study of a specific implementation of such

a monitor system; Section S, which is a description of the experi-

mental network; Section 6, w~hich details Netwoik Cobol; and

Section 7, Conclusion.

2

2. REVIEW OF THE LITERATURE

Section 8 of the report contains a bibliography of selected

papers under the headings: Hardware Monitors for Stand-Alone

Computers, Software Monitors for Stand-Alone Computers, Hardware/

Software Monitors for Computer Networks, Parameters to be Measured

for Monitoring, Existing Computer Networks, Analytic and Simulation

Models for Computer Networks, Measurements for Determining Param-

eters for use with Network Models, and Commercial Monitor Equipment.

The purpose of this section is to provide a concise guide to

this literature in several areas germane to the major thrust to

the study.

2.1 Existing Computer Networks

Specialized computer networks began to appear in the middle

and late 1960's and since the early 1970's have been implemented

for commercial service. As could be expected, there is a consid-

erable body of literature on all aspects of computer networks.

Computer networks can be classified in a number of ways using,

for example, application, type of hosts, geometry or method of

switching. The method of switching has a significant effect on

certain aspects of the monitoring problem and thus this classifi-

cation will he used to narrow the scope of the present survey.

Major types of switching for computer networks can be classi-

fied as nonswitched or leased-circuit, circuit-switched, packet-

switched and multiple access. Halsey, et.al. (1979) (Ref. 35)*

*Numbers refer to Bibliography in Section 8.

3

surveys the public data networks world-wide in the first three

categories and enumerates fifteen networks of the leased-circuit

type and seventeen of the packet-switched type.

Leased-circuit and circuit-switched networks were the first

types to be used and much existing theory and equipment were

developed for this type of network. As noted in the Introduction,

however, the interest in this study is in packet-switched networks

which are a more recent innovation. Wood (1975) (Ref. 34) surveys

eight packet-switching networks from countries around the world,

including the ARPANET, which is possibly the oldest and best

documented U.S. packet switching network. At the time of this

survey, the hosts in the networks examined were large computers.

The ARPANET, in particular, is well monitored and the equit:ment is

discussed in detail in the literature. See Kleinrock (1974) (Ref.

33).

Minicomputers are a recent innovation and thus the number of

papers describing minicomputer networks would be expected to be

relatively limited. Five papers describing reasonably general

purpose minicomputer networks were found in the literature. Three

of these papers, Fraser (1975) (Ref. 31), Aiso, et al. (1975)

(Ref. 29) and Kitazawa, et al. (1978) (Ref. 30), describe networks

which share a common bus controlled by a switching computer (or

computers). Farber (1975) (Ref. 27) describes a network using

what he terms a "communication ring" controlled by distributed

ring interfaces. Unfortunately, none of these four networks are

fell to be an optimum choice for the present application since the),

4

do not efficiently handle bursts of traffic between nodes as a

packet switched network would.

Labetoulle (1977) (Ref. 26) describes a network which is

possibly the best suited to applications of the type of interest

in the present study. He gives attention to the bursty nature of

communications between nodes and considers packet switching as a

possibility. However, from considerations of the hardware costs

at the time of his study (before 1977), he chooses a communication

loop based on the Newhall-Farmer protocol, rather than using

packet switching. Labetoulle does not consider the monitoring

problem.

2.2 Hardware Monitors and Software Monitors for Stand-Alone

Tomputers

Hardware and software monitors for stand-alone computers have

been in use for a number of years and there is a considerable

amount of literature on the subject. The book by Svobodova (1976)

(Ref. 24) contains a section on hardware and software monitors and

an extensive bibliography. Typical of several earlier survey

papers with references is the one by Lucas (1971) (Ref. 10).

To a large extent, hardware and software monitors are comple-

mentary in that they have access to different aspects of the com-

putation. There are some activities, however, such as CPU activity,

which are observable by both hardware and software.

A software monitor is a special program incorporated into the

software of the system under test. Through us. of commands, such

as interrupts, codes can be written to monitor many parameters of

the system.

Hardware monitors are typically some sort of "black box"

which measures certain system parameters through direct wired-in

connections. A complete hardware monitor also requires control

logic, accumulators, and a recording unit.

As pointed out by Svobodova (Ref. 24), a software monitor

can observe hardware-related events only if they are accompanied

by a control transfer to an instruction at a known logical address

or if they store other identifying information.

On the other hand, a hardware monitor can sense software-

related events only when they arc accompanied by a control transfer

to a fixed absolute address. This is possible because hardware

monitors can normally monitor the state of any memory element.

Hardware monitors require no system overhead while software

monitors can be costly in the use of resources.

A hardware monitor is well suited to the task of counting or

timing the duration of events or combinations of events, where the

term event is used to denote any occurrence of significance to a

unit of work processed by the system. Cockrum and Crockett (Ref.

1) present a good study of the use of hardware monitors for evenit

monitoring. They list events which can be monitored by single

sensors under four headings: fourteen events for the Central Proc-

essor Unit, seven events for the Direct Access Storage D)evice, four

events for the Control Units and four events for Unit Record Equip-

ment. They also list five types of events which require multiple

6

sensors and comparators and provide examples of how to determine

the combined events.

One source of data that can be accessed by a hardware monitor

is the memory bus. Fryer (Ref. 8) discusses in some detail what

can be found on the memory bus and also gives details of the re-

quired monitors. He points out that the memory bus has three

types of information, namely: 1) address lines which specify

which memory location is to be accessed, 2) data lines carrying

the data read or to be written, and 3) control i:iformation which

includes a read/write line and sometimes a split cycl" line for

read-modify-write operations. Fryer states that measuring the

actual execution time of a section of code is easily accomplished

with a bus monitor.

Typical general software monitor tools which have been imple-

mented are the following:

metering packages for time spent in executing selectable
supervisor modules while the system is running other tasks

packages for obtaining the distribution of segment
utilizations

packages for counting the number of times specified
procedures are called

general event tracing packages.

Some software monitor systems have been tailored to give data

for use with specific analytic models. A software monitor for use

with a queueing theory multiprogramming model of an IBM 360/65

under OS/MFT using the HASP Execution Task Monitor is described by

7

Wong and Strauss, (Ref. 14). This monitor system is composed of

two programs. The collection program which collects the required

data and dumps the information on magnetic tape and the analysis

program which processes the data collected. The collection pro-

gram periodically samples the 05/360 system tables and control

blocks by disabling all 1/0 interrupts, collecting the required

data, and then enabling the interrupts again. The data of interest

is CPU activity, the priority mapping of certain tasks, 1/0 queue-

ing activity and 1/0 activity of the devices on the selector

channels.

2.3 Hardware/Software Monitors and Monitors for Computer Networks

The general design characteristics of a hybrid, or hardware/

software monitor, for a stand-alone computer are discussed by

Svobodova (Ref. 24). A specific design for an elaborate hybrid

monitor for computer networks is discussed in detail by Morgan and

his coworkers (Refs. 16, 17). The design of a monitor system for

a specific computer network is illustrated by the monitor system

for the ARPA network (Ref. 18).

Hybrid monitor systems attempt to exploit the desirable

features of both hardware and software monitors. Svobodova de-

scribes a two level hybrid monitor structure. One level consists

of software for detecting software-related events, for controlling

which events are monitored and for generating signals detectable

by an external hardware monitor. Mnother level consists of an

external hardware monitor which combines signals from the software

-7 3

monitor with hardware probe signals and processes and outputs the

results. The interface between the software monitor and the

external hardware monitor is provided by an M-register (which is a

set of hardware latches) set and reset by the software to providing

external connections for the hardware monitor.

Morgan and his coworkers developed the design of a system of

hardware and software devices for monitoring the behavior of a

computer network. The monitor system is distributed so that each

node in the computer network is provided with a "remote controlled

hybrid monitor" and a "regional network measurement center".

Communication lines couple all of the regional network measurement

centers to one "network monitor control".

4 The remote controlled hybrid monitor is a general device

containing event detectors and time measuring modules as well as

data processing and storage equipment and communication modules.

The event detector can detect the following:

1. events defined in terms of data or address ranges

2. events defined in terms of Boolean functions of other
events

3. events defined as a sequence of other events

4. characters in bit-serial lines.

The time measuring modules contain four types of devices:

1. time szamp units

2. event times

3. interval times

* 14. a network clock synchronized with a standard reference

clock.

Although the general devices could be adopted to do so,

specific attention is not given to measuring features of a packet

switched network, such as message delay and traffic.

The monitor system for the ARPA network typifies a system

whose major function is to monitor the performance of a packet

switched computer network by measuring input traffic, line traffic

and message delays. The monitor is limited to determining the

behavior of the communication subnetwork which provides the mes-

sage service to the user-host system. The monitor functions are

implemented in software at the switching computers (IMPS) located

at each node in the network. All of the monitor equipment is

under program control and, upon request, data can be collected at

specific nodes and summarized in special measurement messages

which are sent to a specific collection Host.

Six measurement tools are implemented for the ARPA system.

* A Trace tool allows messages to be "traced" as they pass through

a sequence of IMIPS. A trace block is generated for each marked

packet. The trace block contains time stamps which occur when:

(a) the last bit of the packet arrives, (b) the packet is put on

a queue, (c) the packet starts transmission and (d) the acknowl-

edgement is received.

Another measurement tool is the Accumulated Statistics mes-

sage which consists of several tables of data summarizing activity

at a network node over an interval of time. These statistics

inrclude: (a) message size statistics such as histograms of packet

lengths in words for large packets, (b) a global traffic matrix

containing such data as the number of round-trips sent from a

probed site to each site, and (c) channel statistics for channels

connected to a probed site.

A Snapshot tool gives an instantaneous look at the operation

of an IMP. Snapshot data includes: several queue lengths, the

IMP's routing table, lost queue lengths, and data about storage

allocations.

An Artificial Message Generation tool is a package built into

each IMP giving it the ability to generate artificial messages.

The two remaining tools are Status Reports and Control, Collection

and Analysis.

2.4 Parameters Measured by Monitoring Systems

In principle, it should be possible to identify a minimal set

of states, or parameters, which will completely describe a computer

."system or computer network. Identification of such a set of pa-

rameters, however, has not been found in the literature and appar-

ently is beyond the state of the art at the present time.

Although a minimum set of parameters to be monitored is not

identified, several authors, including Svobodova (Ref. 24), Cox

(Ref. 20) and Morgan (Ref. 16) identify general sets of parameters

and the authors of the papers referenced in Sections 2.2 and 2.3

all identify the variables measured by their monitoring tools. A

compilation of the variables from these sources has been made. A

similar compilation made by Sutton and Morgan (Ref. 46) contains

essentially all of these variables and it is given with minor

additions in Table 1.

11

The parameters have been classified under the three general

headings of Computer Network Parameters, Workload Parameters and

Miscellaneous Items. The first category refers to those variables

internal to any part of the computer network. This category is

further subdivided into Utilization of Resources, Throughput, and

Response.

Workload Parameters are parameters associated with the exter-

nal load on the network, while the Miscellaneous category includes

those parameters which do not fit into the first two categories.

TABLE 1. PARAMETERS MEASURED BY MONITORING SYSTEMS
(Adapted from Sutton and Morgan with minor addition's)

1. COMPUTER NETWORK PARAMETERS

* Utilization of Resources

a. Frequency of

Specific software activity. This includes system
software, utilities, and a part or whole of the
operating systems of nodes or hosts.

Processor activity

Line or Link activity

Channel or controller activity

Auxiliary or main storage device activity

Data set activity

Data set structure activity

Processor states

Instruction execution.

b. Quantity of auxiliary or main storage space requested or

used.

12

c. Quantity of data moved to or from specific devices.

* Throughput

a. Time required to transmit/handle a message/packet through
a network node or other specific resource.

b. Number of messages, packets or jobs nandled by a node,
network or host.

c. Number of bits transmitted or received by a link, line
node, network or host.

d. Raw speed of a resource.

e. Time between dispatch of packets, messages or jobs.

Response

a. Time to set-up or disconnect a logical or physical path
through a network or node.

b. Time required to respond to a call for service.

2. WORKLOAD PARAMETERS.

a. User response time (or think time).

b. Time between arrivals of packets, messages or jobs.

c. Frequency and types of requests for service.

d. Reference pattern of software.

e. Size of packet, message or job in characters, lines or
cards.

f. Real time on the system.

g. Quantities and types of storage requested and used.

3. MISCELLANEOUS ITL\IS.

a. Time for the object system to detect, correct or recover
from trouble with data transmission; lines, nodes, hosts
or specific devices out of service; software errors, and
link problems.

13

b. Time for the object system to detect saturation of lines
links, nodes, hosts or other devices.

c. Number of packets, messages or jobs within the system
and the number of jobs active.

d. Size of queue.

2.5 Commercial Mionitorinig Equipment

* In the course of the literature survey the characteristics of

general purpose commercial monitoring equipment were examined.

This task was facilitated by two survey papers, one by Stiefel

(1979) (Ref. 52) concerned with network diagnostic tools and

another by Hart, et.al. (1971) (Ref. 51) concerned with monitoring

host-controlled resources.

The paper by Stiefel summarizes the properties of thirty-

eight different pieces of test equipment ranging in price from

twenty-nine dollars to seventeen thousand dollars. This array of

equipment tests such things as modem performance, polling, response

* ~...time, and link quality. There are units to carry out software

debugging, fault testing and related tasks. Other units provide

an RS-232 status monitor and measurements to test computer terminals.

Most of the test instruments, however, are tailored for leased-

line or circuit switched networks. None of the applications list-

ed indicates measurement of packet-switched network parameters such

as packet delay, queue length, etc. Thus, one must conclude that,

although some specific measurement techniques could be applicable,

none of the instruments described could serve, directly, the desired

network monitoring function.

14

The instruments described by lart for measuring host-control-

led resources also cover a variety of costs and complexities. One

or another of the instruments would seem to provide all of the

types of measurements desired for host-controlled resources. The

problem with these instruments, however, is that of interfacing

V and adapting a general purpose instrument to specific tasks. In

almost all cases, the general purpose instruments are tailored for

use with large scale, multiprocessing computers whereas the present

application is concerned with microcomputers which perform essen-

tially one task at a time.

I

15

3. OVERALL DESIGN CONSIDLRATIONS FOR HYBRID MONITORS

3.1 General Requirements for a Monitor System

Section Two contained a summary of the parameters measured by

existing monitor systems and the monitoring tools used by certain

large scale computer networks. In the light of this information,

the problem of conceptual design of monitoring equipment for dis-

tributed microcomputer networks would seem to be one of adaption

to specialized properties and needs. This section of the report

presents general design considerations for a monitoring system

specifically tailored to a distributed microcomputer network using

packet switching. The network is assumed to contain a relatively

small, but arbitrary, number of nodes distributed in space, as

indicated in Figure 3.1. The switching computers, which are small

scale versions of the ARPA IMPS, are located at each node and con-

trol the flow of packets into and out of the nodes over the con-

necting communication links.

From a consideration of their characteristics, several dis-

tinctive properties of microcomputer networks can be identified.

These properties translate into the followin.g specific requirements

for a distributed microcomputer monitoring system.

1) The host microcomputers at each node perform essentially

one operation at a time under control of the CPU. Thus,

monitor equipment at each node can be designed to monitor only

one operation at a time. Such monitor equipment can be

simpler than that required to function in a multiprocessing

environment.

lb

II

0 0 Of

U CD

C)

DZ

p 17

2) Queueing theory models may be useful for describing micro

computer networks and data appropriate to such models should

be obtained.

3) In applications of microprocessor networks, it is desira-

ble to monitor total resource utilization for each job and

for each task of which the job is comprised.

4) Microprocessor equipment is evolving at a rapid rate.

Hybrid monitor systems should, therefore, be designed to take

advantage of what is currently feasible, such as having a

microprocessor as a part of the monitor equipment at each

node when this can be useful.

In addition to the specialized properties listed above, mon-

itor systems for distributed microcomputer networks have the fol-

lowing properties in common with other such systems:

5) The monitor system should be controlled from a central

location,

6) The monitor system should require a minimal overhead, and

7) Results from monitor measurements should be presented in

a form which is as useful as possible to the ultimate user of

the network.

Of course, specific implementations of monitor equipment must

be tailored to particular hardware and software for each computer

network.

3.2 Specific Variables to be Monitored

A consideration of the variables measured by monitor systems

reported in the literature and of the specialized requirements for

distributed microcomputer networks leads to the following choices

for variables to be monitored. The variables are listed on two

levels - the variables employed by the end user of the network, and

the more basic measured variables from which these are derived.

The variables desired by the user of the computer network are

those required to characterize job performance - typically total

resource utilization and total computing time on a per task or per

job basis. For an experimental network, it is also desirable to

measure a set of variables which will characterize the behavior of

the network in transmitting data between the host computers.

The basic measured variables for resource Utilization involve

the total time devoted to each task or job by all of the host mi-

crocomputers, the host peripherals and the components of the net-

work. This translates into a measurement of the total time devoted

to each task by the following:

At each node

host CPU

host disk

line printers

terminals

For the network

all links

all node CPU's

The total computing time is measured directly from sign-on to sign-

off at the appropriate terminal.

19

To characterize the network, it is necessary to determine thc

behavior of packets in moving from node to node and waiting in

queues to be transmitted. The appropriate variables are random

with time and thus the basic measured data is used to construct

histograms or averaged to determine such statistics as the mean or

variance. The set of variables listed below has been chosen to

describe the network functions:

at each node

packets awaiting service

packets arriving per unit time

number of packets transmitted per unit time over each
link

number of transmitted packets niot acknowledged.

for the whole network

packet delay over cach path

number of packets in the network at a particular time.

In addition to the variables noted above, additional measure-

ments, such as time spent in executing portions of the software

package, may be rek.-ired. Some provision for this type of measure-

ment will be made in the proposed monitor system.

3.3 A Proposed Monitor System

A consideration of the general requirements listed in Section

3.1 and the specific variables to be monitored as listed in Section

3.2 has led to the design of a general monitor structure and a

philosophy to accomplish the required task. The design centers on

20

five specific types of problems; namely, a general approach to the

measurement tasks, nature and physical location of monitor compo-

nents, communication between the parts of the monitor system, con-

trol of the monitor system, and identifying and accounting for

specific jobs.

[3.3.1 Nature and Physical Location of Monitor Components: The

proposed monitor system has a Monitor Control (MC) location at one

designated node and Monitor Stations (MS) at each of the other

nodes of the network. Each nodal monitor station contains a micro-

processor, memory, a serial port connecting to the node switching

computer and a collection of sensors interfacing with the host

computer at that node to measure the use of the resources control-

led by the host. The equipment at a typical node is shown in

Figure 3.2.

Each nodal monitor station will also share a two-port memory *

with the switching computer to facilitate monitoring the network

resources. Appropriate data concerning the operation of the net-

work can be stored in this two-port memory by the switching com-

puter and accessed by the monitor system. By choosing the read-

write rate for the two-port memory to be twice the system clock

rate, the monitor will require effectively no overhead in this

operation.

Lach nodal monitor station will collect all necessary data

for its node from the host and its peripherals and also from) the

switching computer. In cases where it is appropriate to do so,

*The idea for this type of sensor was originated by D~rs. Barnwell
and Schiag.

21

PERIPHERALSCP

I MNORSEALN
CP FORNOD T

FIGURDE 3. A STYPI AL NOESCMUE ETWRK WIT ASOIAED
MOOR EQUOREN

MEMOY SEI2L2

preliminary data processing can take place at the node. For

example, the mean value of a set of data can be determined. At

periodic intervals, data from the iiodal monitors will be transmit-

ted to the Monitor Control Location.

3.3.2 General Approach to the Measurement Tasks: The measurement

tasks will be treated in two parts, those associated with micro-

processor host controlled resources and those associated with net-

work resources.

The host-controlled resource activities at each node will be

monitored directly and assigned to the job on which they are used.

This is not a difficult task since a microcomputer CPU can control

only one task at a time, and hence the resource activities control-

led by such CPU's do not overlap.

The network functions are controlled by the CPU's of the

switching computers, and therefore, network activity can overlap

activity of the host controlled resources. Allocating the use of

every resource of the network directly to the specific job on

which it is used would be a difficult task. Therefore, it is

planned to monitor every network resource but to allocate the cost

to jobs on an average basis by measuring the number of packets

used per job, the particular node-pair links traversed by the

packets and the total traffic load at the time of transmission.

A calibration of the network will be made to give the average cost,

in terms of resource utilization, of transmitting packets over each

node-pair link as a function of total traffic load over that link.

23

It is felt that this approach will minimize implementation diffi-

culties while providing adequate accuracy.

3.3.3 Communication Between the Parts of the Monitor System: As

noted above, the monitor stations are distributed throughout the

network to facilitate collecting data at each node. This distri-

bution of the monitor components, while desirable, necessitates

transmitting data to the MC location by some means.

One method for data transmission which would not require over-

head is that of constructing a monitor communication network to

match that of the original computer network. This alternative was

discarded as too costly in equipment.

The approach which was chosen is that of transmitting monitor

data through the network in the same manner as data is exchanged

by the host computers - by packets. This choice requires overhead

since the monitor packets compete with the data packets for use of

the network. The exact amount of overhead required, however,

depends on the frequency of sending monitor packets and it is felt

that this frequency can be kept low. A desirable aspect of the

use of monitor packets is the fact that these packets can also be

used to collect data on packet delay, transit times and other

aspects of the operation of the network.

A scheme for generating monitor packets, called IpickUp packets,

could have the packets originate either at the MC location or at

the individual nodes. Generation at the MC location has tentatively

been chosen as the best alternative.

24

The pickup packets will contain a data field and addresses

structured in the same manner as other packets. The MC will dis-

patch the pickup packets at regular intervals, routing them so

that at least one packet will traverse each link in the network

before they all return to the MC. The routing details depend on

the structure of the network as well as the specific routing

strategies.

As each pickup packet arrives at a node, a real time measure-

ment will be made and the time of arrival will be entered into an

appropriate location in the data field of the pickup packet. A

similar measurement will be made when the packet leaves the node.

This data will be coded as to the pickup packet to which it applies,

stored and then transmitted in the data field of the next pickup

packet. The timing data collected by the pickup packets will

ultimately be processed by the host at the MC to determine average

packet delay and related parameters.

Whenever a pickup packet arrives at a node, all monitor data

awaiting transmission to the MC will be placed, appropriately coded,

into its data field. After traversing its portion of the network,

the pickup packet will return to the MC and deliver the monitor

data acquired in route. Thus the pickup packet will serve the dual

role of transmitting data from the monitor stations to the monitor

control and probing the network to determine packet delay and

related parameters.

..3.4 Control of the Monitor System: Control of the monitor system

25

will reside at the NC location. Final data processing and monito

data printout will take place at the MC and programs to control

the monitor equipment at the various nodes can also originate and

be distributed to the monitor stations through the MC.

Each nodal monitor station will contain an EPRal memory which

will contain subroutines appropriate to controlling the monitoring

equipment for any given task or job. These instructions will apply

to all sensors, including the dual-port memory at that node.

In setting up a particular experiment, desired measurements

will be specified as inputs to the MC. The MC host computer will

then determine what measurements must be carried out at each node

to obtain the desired data and will prepare appropriate programs

for transmission to RAM memory at each node. The required program

will be transmitted from the MC via a preliminary set of pickup

packets.

With a small number of nodes in a central location, the RAls

at each node could, alternately, be programmed through a terminal

at the node.

In addition to the task of setting up each experiment to be

monitored, the MC must collect, process and output all monitor

data. Instructions for doing this will be placed in LPROM memory

at the MC location.

Note that the programs placed in RAMI memory to control partic-

ular experiments will consist largely of calls to subroutines

stored in hPR(I4 memory. Thus, such programs will be short and

easy to prepare.

2()

3.3.5 Identifying and Accounting for Specific Jobs: The distri-

buted microcomputer network will typically be processing a num~ber

of jobs concurrently. One requirement of the monitor system is

that it be able to determine the cost~in resources used, for each

job independently.

As noted above, host controlled resource use w-11 be assigned

directly to specific jobs, while network resource use will be as-

signed on an indirect basis. The accounting procedures are as

f ollowrs.

Requests for host-controlled resources at each unode are as-

signed an ID number associated with each job. This number is

placed in a memory location accessed by the nodal monitor station,

such as one in the two-port memory, and it remains there as long

as the CPU controls a resource used on this job. The ID number

is changed when the CPU or its peripherals perform a task for

another job.

The monitor routines can be set up to use the ID number in

initiating and ending measurements and in determining the memory

locations for storing measured results. The procedure allows the

nodal monitor stations at different niodes to monitor the activities

associated with different jobs.

To allocate the network resources to various jobs, the job ID

number is recorded in an appropriate location on each packet asso-

ciated with carrying out the job. Monitor equipment is designed

to count the number of packets associated with each job and to

record the path traversed by each packet and the average traffic

27

_.-;"

load on the path at the time of transmission. This data, along

with a calibration of packet processing costs, can be used to

allocate network costs to specific jobs.

28

-4. STUDY OF A TYPICAL IMPLEMENTATION OF A HYBRID MONITOR SYSTEM

The objective of the study is to assess the general problem

of hybrid monitors for distributed microcomputer networks. It is

felt, however, that no general design study is complete without

putting design concepts to the test of at least one possible imple-

mentation. This section of the report presents an implementation

of a hybrid monitor system and an assessment of it in monitoring

a typical job assigned to the computer network. This section also

contains comments on a monitor structure for the AIRMICS/GEORGIA

TECH Experimental Network.

4.1 An Implementation of the Monitor System

* The Nodal Monitor Station shown in Figure 3.2 can be implement-

ed with one of several appropriate microprocessor systems. Figure

4.1 shows a possible implementation with components from the Amner-

ican Microsystems S6800 family.

The operation of the Nodal Monitor Station is discussed under

three headings: General Operation, Specific Measurement Modules

and Representative Specific Measurements.

4.1.1 General Operation: The Nodal Monitor Station receives data

in three ways: by reading memory locations in the Dual-Port RAM,

through the Serial Communication Port and from the Data Gathering

system. The servicing of these inputs and the storing of data into

the RAM memory is carried out under the control of the microproces-

sor.

29

.2

cc0

4-
00

cc 0

-

-LJ

C-

00
0-n
U 0

3 0 I

The EPROM contains the basic subroutines which control all of

the functions of the Monitor Station. Details of what data is

taken and in what sequence measurements are made need to be flexi-

ble and read into the system for each particular experiment. This

is accomplished by storing, for each experiment, a program in the

RAN consisting largely of calls to the subroutines stored in the

EPROM. Experiments can be set up from the Monitor Control Location

using pickup packets sent out through the network to read in the

programs. Alternately, the RAM can be loaded locally through a

terminal associated with the local host.

As noted in Figure 4.1, the Nodal Monitor Station has a Data

Gathering System which collects data from probes into the Micro-

Computer host. These probes provide data on such things as the

* status of devices and are used with the Timer, the Real Time Clock

and several standard Measurement Modules to monitor the host-

controlled resources. The Measurement Modules are discussed below

in the section on specific modules.

The host-controlled resource measurements are carried out by

a program executed by the Monitor Microprocessor which uses specif-

ic software from RAM storage and general subroutines from the EPRQ'l.

The program, diagrammed in Figure 4.2, runs in an "infinite loop".

The program is designed to be interrupted by events associated with

the network, namely:

to read data from the Twa-Port RAM

at regular intervals, and

to process data to and from pickup packets.

31

GET JOB ID
FROM NODE
n HOST

SJOB K

INITIALIZE MODULES

FOR MEASURING
VARIABLES
ASSOCIATED WITH JOB K

GET JOB ID
FROM NODE n
HOST

ID UNCHARGED

READ MODULE

OUTPUTS

STORE IN JOB K
LOCATIONS

FIGURE 4.2 PROGRAM FOR CARRYING OUT HOST-CONTROLLED RESOURCL

MEASUREMENTS

32

The network resources are monitored though data stored in

appropriate locations in the Two-Port RAM. This device is also

discussed in the section on specific modules.

Communication between the Monitor Control and the Nodal Mon-

itor Stations will take place using pickup packets. The EPROM

will have a basic routine which enables the CPU to communicate data

through the Serial Port. Thus, data can be transferred to or from

pickup packets which arc in buffers at the node crepnigt

the nodal monitor station. Arriving pickup packets will cause an

interrupt in the monitor microprocessor program to ensure prompt

service of the pickup packets.

4.1.2 Specific Measurements Modules: The measurements of the

variables required to monitor a distributed microcomputer network

? can be carried out using several basic types of measurement modules.

These modules include counters for time and events, a histogram

generator, a masked-word range comparator and a logic combination

device. The logical structure of these modules will be given in

this subsection. Subsection 4.1.3 discusses how a number of the

basic variables are measured using these modules. The Two-Port RAM

and a Real-Time Clock will be included as modules in this discus-

sion.

The real time clock and counters for time and events are shown

in Figure 4.3. One Real Time Clock is required at each monitor

station along with possibly one half dozen time counters and a

similar number of event counters.

33

I~ 0 - - - 1-

22 L)

m-

00

LU

cn

cc u

00

00
cc-

34)

The Real Time Clocks at all of the monitor stations must be

synchronized. Given this basic requirement, the :locks can be

addressed with software and commanded to output to the data bus a

digital number giving the appropriate time.

Both types of counters can be addressed from the monitor bus.

to status signals obtained through probes from the host microcom-

puters. For example, if a disk status signal is high while the

*"isk is operating, the Time Counter will turn on upon receipt of

this signal and continue counting until the signal reverses state,

causing the counter to turn off. At an appropriate time after the

counter is turned off, a signal indicating the time interval is

supplied to the data bus upon command from the monitor software.

The Event Counter works in a similar fashion, counting the occur-

rence of events in a status signal rather than a time interval.

Since most of the network variables are random in nature, it

will be efficient to have several histogram generators at each

.. monitor station to reduce the random data to histogram form before

transmission to the Monitor Control Location.

A logic diagram of a histogram generator is given in Figure

4.4. The device takes any data signal and quantizes it into a set

of magnitude ranges for excitation of appropriate counters. The

counters, eight or possibly sixteen in number, are read by appro-

priate monitor software. The Data Valid Signal, which must be

p~resent for the counters to funct ion, is derived from the source

of the variable whose histogram is to be generated.

35

LD

0 0

o 3o

ijli

A masked-word range comparator is used to measure the time the

CPU spends executing a particular software region. This is accom-

plished by monitoring the occurrence of addresses between two

specific values.

An implementation of the Masked-Word Range Comparator is

shown in Figure 4.5. The lb-bit latches are loaded with the extreme

values of the address range to be monitored. Addresses from the

host probe are compared to the values stored in the latches in a

comparator. Address values in the appropriate range actuate a

counter which can be enabled by a signal from another source. Tie

device can be set up and controlled completely with monitor soft-

ware.

An implementation of a Logic Combination Unit is given in

Figure 4.6. Its operation is much like that of the Masked-Word

Range Comparator. For this unit, the eight-bit latches can be

loaded with appropriate patterns for comparison to, say, the status

word of some device. Using the Logic Combination Unit, specific

patterns in the status word can be detected. If a counter is con-

nected to the output, the time the device spends in one of its

states can thus be measured.

The Two-Port RAM, which is a part of each monitor station, is

regarded for purposes of discussion as a measurement module. This

*RAN permits non-intrusive access to data from the node switching

computer. This is accomplished by using a RAM with a read/write

rate of twice the clock rate of the node switching computer so

that data can be read into the PAM by the switching CPU and read

37

00

ccm

clm

Lin

0

0
0 0

38

MONITOR BUS

DATA

LTHCOMPARATOR
T

CO UN U 1

OTHE 0l

DATADEVICL

DATA VALID

FIGURE 4.6 LOGIC COMBINATION UNIT

39

out of the RAM by the monitor CPU in one period of the switching

CPU clock.

The Monitor Microprocessor and the Node Microprocessor will

he identical devices. Thus, all network data which must bc moni-

tored can be stored in this ,AM for access by the monitor CPU.

Job ID number, pointers or other data on packet queues and packet

arrival times are typical of the data to be stored in the Two-Port

RAM.

4.1.3 Representative Specific Measurements: This subsection

indicates in general terms how representative variables are measured

with the Measurement Modules. More detail on some measurements

will be given in Section 4.2 in the discussion of the monitor oper-

ation for a particular example.

In Section 3.2 specific variables to be monitored were classi-

fied as pertaining to resource utilization, variables describing

the network operation and additional variables. Representative

variables from each of these categories will be discussed below.

The activity of host-controlled resources (disks, line prirvters,

terminals, etc.), can all be monitored through use of status sig-

nals obtained through the probes connected to the host at each node.

A status signal is used as input to an Interval Counter such as

shown in Figure 4.3. When the Interval Counter is actuated by its

control signal, it will detect a resource active signal and measure

the time the resource is in the active state.

40

The software program for carrying out host-controlled re-

source measurements is tailored to actuate the counter, through

an appropriate control signal, when the ID number of a particular

job is stored in the dual-port RAM by thle host microcomputer con-

* trolling the resource being monitored. W~hen the ID number is

* changed, indicating another job is being serviced, the software

program causes the counter to read out the measured time to a

storage location assigned to tile particular job.

The activity of a host CPU or a switching computer CPU can

be measured by determining when the CPU is executing instructions

located in memory outside the wait loop. This measurement can be

made using the Masked-Word Range Comparator of Figure 4.5, which

requires the appropriate CPU address bus as an input. Use time of

a host CPU will be allocated to a particular job in the same man-

ner as described for the CPU controlled resources. Use time of a

- switching computer CPU will be totalled without allocation to

specific jobs.

Most of the measurements involving the network have to do with

measuring thle parameters of thle flow of packets. The proposed

monitoring system will determine the average parameters of packet

flow using measurements made on the normal data packets complement-

ed with measurements made with pickup packets. Both types of

measurements use the Two-Port RANI.

The normal data packets will all be labeled with a job number.

Whenever a packet is transmitted from a node, thle switching CPU,

which controls the transmission, will store a count in the Two-Port

41

RAM in a storage location corresponding to the link over which the

packet was transmitted. Classification as to job as well as to

link can also be retained if desired.

* The monitor software will cause the Two-Port RAM storage

* location to be sampled at regular intervals and the increase in

the number of packets stored will he the number of packets trans-

mitted over the particular link in the interval between samples.

Of course the count in the storage location must be set to zero in

initiating an experiment.

A similar procedure, storing a count for incoming packets,

can give a measurement of the number of arriving packets per unit

time on each link. Summation of either type of count over all

links at a node gives the number of packets arriving at or leaving

the node.

Several measurements, such as packets awaiting service, number

of packets not acknowledged, and the number of packets generated

at a particular node can be made by storing a count in an appropri-

ate location in the Two-Port RAM following specific actions con-

trolled by the switching computer CPU. The actions which can ini-

tiate a count to produce the above measurements are, respectively:

storing an incoming packet in the buffer for receiving packets,

retransmitting a packet, and transferring a packet out of the buffer

in which it is generated. As with the other measurements noted, the

above measurements rely on access of the Two-Port RAM storagej

locations to the monitor C.110.

42

Pickup packets will be used to measure packet delay. This

measurement will be implemented by giving a pickup packet a special

identification number which is read into a location in the Two-Port

RAM immediately after the pickup packet is received or transmitted

at a node. The monitor software monitors the RAM location and

produces an interrupt when a pickup packet ID is received. The

Real Time Clock is read following the interrupt and a "time stamp"

is recorded, either in the data field of an arriving pickup packet

or in storage for insertion in the field of the next pickup packet

if the packet is leaving the node.

The Monitor Control Location ultimately receives all of the

pickup packets and can extract the time of arrival and departure

from each node over each link. This data is adeq~uate to determine

the profile of packet delays.

The network variables measured at each node are random, and

thus it may prove to be efficient to convert most of these into a

histogram before transmitting the data to the Monitor Control loca-

tion. The Histogram Generator shown in Figure 4.4 can be used to

generate the histogram if this option is used.

4.2 Example Illustrating the Use of the Monitor System

The purpose of this section is to define a typical task for the

computer network and discuss in detail the functioning of the mon-

itor system in monitoring the network as it performs this task. An

inventory type task is chosen, and for such an application it is

assumed that the Monitor Control Location is also the site of a

43

large data base containing complete inventory data. The other

nodes in the network have smaller data bases containing local

data.

4.2.1 Task Definition: The task is defined by the following

sequence of operations which could arise in a distributed computer

a controlled inventory system.

a) A user signs onl at a terminal located at Node K(and re-

quests the restoration of a portion of his local data base

which has been lost (say thle Node K inventory of item A).

b) The Monitor Control Location supplies the required data

from its large data base over the network.

c) The user at Node K requests a search of the Node K inven-

tory of item A for anl item Ai. This item is found to be

absent from inventory.

a d) The user requests a search of the local listing of thle

item A inventory at other nodes to determine the number of

Ai items located at each node.

e) The user at Node 1K requests that his needs for Ai be filled

from the supply at the node having the largest number of items

Ai. (Assume that this is Node L.) The request is granted.

f) Node K updates its inventory of items A.

g) Node K instructs the Monitor Control to update its iven-

tory listing of items A.

h) The Monitor Control instructs all other nodes to update

their inventory listingIs Of items A.

44

i) User signs off.

It is assumied that the inventory listing of items A is sub-

stantial so that a thousand or so packets of several hundred bytes

each would be required to transmit it across the network. It is

also assumed that the network is operating with a background of

other tasks being executed.

4.2.2 Computer Network and Corresponding Monitor System 2eration

on Assigned Task: To illustrate properly the operation of the

monitor system, it is necessary to examine the details of monitor-

ing each activity of the computer network in carrying out a typical

task, such as that defined above.

Examination of the nine activities listed for the task defined

above indicates that they can be segmented into four distinct jobs,

as given in Table 2. The Table lists the resources required for

each job and it can be noted that Jobs 2 and 3 require only local

resources at Node K, while Jobs 1 and 4 require the resources of

the network and the resources at more than one node.

A detailed activity study is made for Jobs 1 and 2, since the

requirements for these jobs illustrate all characteristics of the

- computer network and monitor system operation. In the study the

computer network is assumed to operate in a specific manner. It

should be understood, however, that this operation is intended to

beC typical and not that of a specific system.

45

TABLE 2. Segmentation of Illustrative Task

Job Activities Principal Resources Used
Number

1 a, b Node K - Host CPJ, Node ('PU, Disk,

,ermina 1

MC Node - Host CPU, Node CPU, Disk

Links K to MC and any alternate

2 c Node K [lost CPU, Disk, Line Printer,
Terminal

3 d Node K - Host CPU, Disk, Terminal

4 e, f, g, h, i Node K - Host CPU, Node CPU, Terminal

* : Node L - Host CPU, Node CPU, Disk

Node K - Host CPU, Node CPU, Terminal

Node I (all I) - Host CPU, Node CPU,
* Terminal

MC Node - Host CPU, Node CPU, Disk

Links - MC to each node and alternate

The details of the Job and Job 2 activity, with the corre-

sponding function of the Monitor System are presented in an Appen-

dix in Tables Al - AS. Tables Al - A3 list the general monitor

system functions and Table 4 enumerates the activities associated

with Job 1 and Table 5 lists the activities associated with Job 2.

4 0

A summary indication of the functioning of the Monitor System

is presented in Figure 4.7, which is a schematic representation of

the monitor functions at one node, Node K. As each host-controlled

resource is used, the job ID is read into the appropriate memory

location in the Two-Port RAM. The software measurement program

senses the job ID and actuates an "infinite loop" which allows

appropriate modules to measure the active time of the resources.

Concurrently, as packets are generated and transmitted, the Node

CPU increments the counts in the indicated memory locations in the

Two-Port RAM1.

The software measurement program is interrupted at regular

intervals to allow the Monitor CPU to read the indicated Two-Port

RAM memory locations and transfer the readings to output locations

in the Two-Port RAM. '[he data stored in the output locations is

transferred to the data field of pickup packets when they arrive

periodically. The arrival (and departure) of pickup packets also

causes arz interrupt to allow the Monitor CPU to read a Real Time

Clock and insert this "time stamp data" into the data field of the

pickup packets.

The Monitor Stations at the other nodes in the network operate

in the same manner as at Node K. For this example, the final out-

put, printed out at the MC location, consists of the following:

Total time for the computer network to accomplish the task.

Total host-controlled resource utilization for the task as
compiled from the measured active time for each host-control-
led resource, segmented by jobs.

47

u ':1C

- 0 CD
ICA

-j -0

-~fa..

0.F - i

C 'D
0. 0 C

9>0_

ccc

CD

CC 0

.. 0o cc

Cc 0 f

0 u

484

Total average network resource use determined from a ratio
of the count of packets generated on the task to total pack-
ets generated, allocating measured node CPU and link times
to the task on a pro rata basis accounting for differences
with respect to time and to links traversed.

Total task cost obtained by multiplying resource use time
by appropriate resource costs.

Average or histogram for packet delay time for each link,
with time as a parameter if appropriate, computed from the
data obtained by pickup packets.

Average or histogram for queue length at each node computed
from the count of packets awaiting service, with time as a

parameter if appropriate.

Average or histogram for the number of packets not acknowl-
edged at each node, with time as a parameter if appropriate.

Statistics for traffic flow - average or histogram for total
packets arriving at each node, average or histogram for
packets arriving (and leaving) over each link both with time
as a parameter if appropriate.

The tables in Appendix A give details of the computer network

and measurement system activities on typical parts of the task.

Examination of these details shows that the proposed measurement

system structure can be implemented in a feasible manner.

4.3 A Monitor Structure for the AIRMI1CS/GEORGIA TECH Experimental

Network

The implementation of the hybrid monitor system discussed in

this section of the report was chosen for its possible applicabil-

ity with the AIRMICS/GEORGIA TECH Experimental Network. Although

the long range plans for the Experimental Network have not been

specifically quantified, the monitor system described in Section

4.1 is very flexible and has most of the features which could be

required by this network. In addition, the points of entry into

49

the Nodal Monitor Stations are compatible with what is available

at the existing nodes of the Experimental Network.

As discussed in general terms for the monitor system, three

types of measurements are possible, namely: host-controlled re-

source measurements, network related measurements, and auxiliary

measurements, such as measurement of the execution time of specific

L- pieces of software. A choice of what, and how much monitor equip-

ment to install will depend in detail on the studies to be made

with the network. Some general comments can, however, be made.

Of course if resources are available, a complete monitor

system with ample equipment for all three types of measurements

can be implemented. On the other hand, the following comments are

germane if the measurement system budget is limited.

It is felt that emphasis in studies made with the Experimental

Network will very likely be on characteristics of the network it-

eself--its geometry, its routing algorithms, etc., rather than on

the efficiency of the microcomputer hosts. To the extent that this

is true, the network related measurements can be emphasized and

implemented completely, witlh less attention being given to the other

two categories.

At the present time, the Experimental Network is distributed

over only two locations on the Georgia rech campus. As long as this

is the case, there is no need to use the complexity required by the

scheme for setting up experiments completely from the Monitor

Control location.

5O

Of course there is the possibility that the Experimental

Network could be used to evaluate prototype equipment for measur-

ing the efficiency, or monitoring the proper functioning, of micro-

computer hosts. In such a case, the host-controlled and auxiliary

measurements can be emphasized and the others deemphasized.

51

5.EXPERIMENTAL NETWORK

5.1 The Communication Network Philosophy

A major facet of the current system is a packet switched micro-

processor based communications network. This network, which far

exceeds the requirements of the demonstration system, has error de-

tection and correction capability in addition to its communication

functions. The network is wholly package switched and all data and

internal communications are handled through a packet switched proto-

col. The protocol was deliberately made to be open ended so that

additional packet classes may be added to the network later. The

current network implements three packet classes: data p~ackets,

which carry the host to host communication messages; local acknowl-

edgements, which acknowledge adjacent node communications; and

source acknowledgements, which acknowledge the final receipt of the

message at the destination node. other classes of messages which

might be later implemented include data based request messages, re-

quests for distributing processing cap~ability, and requests for

utility processing.

A message transmission scenario through tiie network can be de-

scribed as follows: A host initiates a data transfer to another host

on the network by transfering to its network node, in a very simple

protocol, the destination of the message and the contents of the

message. The network node, which we shall call the origination node,

takes two specific actions. First, it buffers the message as a safe-

guard against the errors in the communication process. it Will

r 2

retain this buffered message until it receives a "source acknowledge-

ment" packet from the destination node indicating that the message

has been received at its final destination. Second, the origination

node forms a data transfer packet addressed to the destination node.

Once the packet is formed, the node will attempt to send the packet

across the primary route to the destination node. If this communi-

cation route is busy, the origination node will try a secondary

route. The system supports three possible alternate routings. If

any of the appropriate communications links are free, the message

will commence transmission immediately. If all of these communica-

tions links are busy, the message will be queued for later transmis-

sion on the primary link.

lhen the message is received at the first adjacent node in the

transfer path, this intermediate node takes two specific actions.

First, this intermediate node forms and transmits a local acknowl-

edge packet back to the origination node. This local acknowledge-

ment informs the origination node that an error free reception of

the message has occurred. This fact is noted in the origination

node, and the buffered message is marked as having been locally

acknowledged. If no local acknowledgement is forthcoming in a fixed

amount of time, the buffered message will be retransmitted. This

particular error correction technique allows the network to handle

all detected errors in a uniform fashion: by discarding and not

acknowledging the error packets, they will be automatically retrans-

mitted. The second action taken by the first adjacent node is to

retransmit the data packet forward towards its destination. The

53

procedure for doing this is identical to the data transfer procedur

described for the origination node.

The intermediate node also holds the data message until it re-

ceives a local acknowledgment. Unlike the origination node, how-

ever, all intermediate nodes discard the data message when the local

acknowledgment is received. The data message thus travels from node

to node through the network with local errors being corrected until

it reaches the destination node.

At the destination node, three specific actions occur. First,

as in all the intermediate nodes, a local acknowledgment is trans-

mitted to the adjacent node from which the message arrived. Second,

information as to the message's source and the message itself is

transmitted to the host. If the host communication link is busy,

this message is queued for later transmission. Third, the source

acknowledgement packet is formed and is transmitted to the originat

ing node. This source acknowledgement packet travels through the

network in a fashion identical to a data message packet until it

arrives at the origination node. Upon its arrival, the originating

node discards its buffered copy of the original message. If no

local acknowledgement is received within a fixed time constant, the

data message will be retransmitted from the origination node.

This network is implemented on network nodes of identical hard-

ware. The software which runs within each node is identical to the

software that runs on all the other nodes. Routing for this network

is originally setup by a predetermined network architecture, but may

be changed dynamically by host requests for reroutings. Hence this

54

network may be reconfivured during actual operation, though this

feature was not used as part of the study.

The maximum packing length in this network is 256 bytes. The

maximum message len,!th is three packets. These parameters cannot

be dynamically confiftired, thouP1h they can be chanaed by minor

vroc!ranhlinv. All communications links h'rve switched selectable

baud rates, which may be chosen up to a maximum rate of 19.2 kilo-

baud. The actual network development work, however, was done at

a settin: of 1200 baud. This results at a maximum node-throujh baud

rate of 19.2 kilobaud. Since this was an experimental network do-

sigyned primarily to study networking techniques, the network code

was not optimized for maximum communication throui, i-put. In fact,

all communication input-output is done throu,,h accurmulator transfers.

.nis offers maximum flexibility with some loss of speeu.

5.2 The Microprocessor Network

The development of a packet switchied communication network pre-

sents many special and unique progtraming aebueving problemas. It

is true that only one program is being developed; however, in an op-

cratin(T network this one program runs simultaneously in many network

node processors. hithin each network node (which are, of course,

computers in their own right), there is a separate and unique real

time environment. Errors wiiicn are associated with the real time nature

of tile node provrans occur as a direct result of the network traffic.

Olue to the asvnchrony of tje entire system, this means that in ,many

* instances errors wuichi occur and are detected cannot be rejpeateu.

55

Another characteristic of the nietwork debugging environment iF

that often it is impossible to determine the source of an error.

Errors which are generated ini one node processor may he transmitted

out of that node without the recognition of the node program itself.

Thus, when the error is detected it may be far away from its source.

The apparent statistical nature of the behavior of packets

within the communication network forces the programmer into using

techniques which are themselves somewhat statistical in nature.

Many of these techniques are not only appropriate for the debugging

of the network, but are also appropriate for the later testing and

measuring of the network performance. The most important of these

techniques which was used in this development was the use of a

"traffic generator." A traffic generator is a piece of hardware

whose task is to simulate the existence of a larger network than the'

6. one which is really being tested. The type of traffic generators

used in this study were the so-called "constant load" traffic gener-

ators. This form of traffic generator forces an ambient condition

in the network in which a Known number of messages are always present

F within the operating nodes. Thus, for example, if the number of mes-

sages desired were five, the traffic generator would insert five mes-

sages into the network. Whenever one of the messages exits the net-

work by returning to the traffic generator, tie traffic generator

would insert a new message in its place. In this way an approximate

load of five bogus messages is kept within the operating network.

The use of the traffic generator represents a Monte Carlo ap-

I proach to the problem of network debugging. When a traffic generator

Sot

is allowed to run for long periods of time, a large number of dif-

ferent real time network states are excited. Thus, the network's

operation may be checked over many operating conditions beyond the

scope of its original architecture.

Two different traffic generators were implemented as part of

this study. The first, called the "dummy load" traffic generator,

was implemented as the combination of a multi-task Fortran program

on the Nova 820 in the digital signal processing laboratory and a

modified version of the network node program on a network communica-

tion box.

This traffic generator operated in conjunction with a number of

dummy routes which were preassigned during network initialization.

The dummy routes always started in the traffic node, passed through

one or more other nodes in the network, and finally terminated in

the traffic node. The traffic generator initiates messages along

these dummy routes and receives the messages when they return. Thus,

from the view point of the ordinary network host, the network oper-

ates normally, but appears to be bearing communication traffic from

a larger outside network.

The second traffic generator was the so-called ''host involvement"'

V traffic generator. This function was implemented entirely in the

Nova 820 and required no special modification of the network nodes.

During the operation of this traffic generator, all the network hosts

were dedicated to the testing procedures. Lach host ran a program

which returned an exact copy of the message it received to the source

of the message. The traffic generator sent a variety of messages to

57

the various hosts and waited for the message to return. Hence, the

use of this traffic generator constituted a test which involved the

host's data transfer program as well as a multiple real time environ-

ment within the network itself.

5.3 Description of Computer Network Hardware

This section describes the specifications of the computer hard-

ware that was purchased in order to complete the proposed research

project.

Figure 5.1 shows a fundamental block diagram of the complete

computer network. In the computer network there are four host com-

puters- -an Intel microcomputer system, a Data General computer sys-

tem, a Motorola microcomputer system, and an PDP 11/70 minicomputer

system. Associated with each computer host is a microprocessor com-

munications node. The microprocessor node has the responsibility o

handling all the network communications sent and is discussed in de-

tail in Appendix C.

Since the Intel and PUP 11/70 host computers are located at the

AIRMICS computer site, and the Motorola and Data General hosts are

located at the Electrical Engineering laboratory, the connection be-

tween the Intel and the Data General microprocessor host is accom-

plished by means of a standard telephone line and two Universal Data

System 1200 baud modems. The following sections will describe all

of the commercially available equipment in the computer networks

except the PDP 11/70 computer system which was an existing AIRMICS

facility and not purchased for the purpose of completing this p~artic-

ular project.

58

ui LLI

L

-

CC

cc.c

W0

- z Iw9

1) The Intel microcomputer system, illustrated in Figure 5.2,

is a standard Intel model 230 microcomputer system with an addition-

al Teletype 40 line printer. The computer system contains a central

processing unit, random access m~emory, read only memory, dual floppy

disk drives with controller, CRT with keyboard and controller, line

printer serial interface, and networh serial interface.

2) The Intel central processing unit is a standard Intel

microprocessor with an 8080A microprocessor chip, 2.6 Mhlz proces-

sor clock, system controller, niultibus priority resolution circuits,

multi-bus controlling data drivers, address drivers, system clock

generator, and I/0 board address decoder.

3) The random access memory is a 64 Kbyte memory used for storing

parts of the operating system, user programs, and data. The read-

only memory is used to hold the resident portion of the ISIS II

monitor, revision 1.2.

4) The complete ISIS 11 operating system is stored on the floppy

disk and is read in automatically from the read only memory portion

of the monitor. The dual floppy disk drives are housed in a separate

cabinet and interfaced to a floppy disk controller in the central

processor unit cabinet. The disk will hold approximately 200 Kbytes

of data on each disk and handle double density cassettes.

L 5) The CRT is housed in an integral part of the central proces-

sor console and the CRT screen storage uses a section of memory to

store the characters that are being displayed. This means that a

character can be displayed on a CR1 screen by storing the character

MASCUOZt moon UPGRADES AND OPTION S9

ERiTRNAL CRT. 2 ZS WGUE 0
TELETYPEWRITER. 4 DOUBLE

FRO04T PANEL. NUSX% DENSITY
INIERRUPIS NOWARI DRIVES

SISTER CAT

DRITE

EAETP
EAERV

1/0M PROONTE

FIGUR 5.2V TIF sNE MICROC(A1UCONTSYSTER

I'sT F. tGOAR
PROCESOR PACES61

in an appropriate memory location in random access memory. The 1 ine

printer is interfaced through a standard PS232 LIA level interface

with baud rates adjustable from 110 to 900 baud. The baud rate is

programmable under software control, and is currently set at 1200 baud.

6) The network interface is a standard PS232 IA interface which

permits the system to talk to the computer system network.

The Motorala and Data General microcomputer systems have equi-

valent hardware to the Intel system.

5.4 Network Trafficking Experiments

5.4.1 Introduction: Any reasonably designed computer network will

transfer messages from one computer host to another, as does the

computer network described in this project. The transfering of mes-

sages between a microcomp,.ter host running CCB(L inventory programs

does not push the computer communication network to a point anywhere

close to its limits in order to test additional loading on the net-

work. The data General Nova 820 computer was added as an additional

host in the network with its own network processor node (shown in

Figure 5.3). Instead of runui ing time consuming inventory I rograms to

send out messages through the network, the Nova 820 sent messages in a

controlled manner such that a given number of messages would be kept iii

the network at one Piven time. In this manner it was possible to sin-

ulate additional network traffic without the expense of adding costly

host computer systems. The traffic generator system could, in effect,

simulate the effect of many additional hosts on the network.

. I2 H " . . a . . .B "

INE 3 21 17

F:ICtlif 5. 3 THES NOVA 820 HOST COMPUTEiR W.ITH ITS 01N

NfTlWOPIZ PROCL~SSC; NOI.

5.4.2. Traffic Routes: In order to send messages through the sys

it was first necessary to establish particular message routes for

the traffic node to send messages through the network and back to

itself. The traffic generator would then send the message out to

the network on a given route, the message would traiel completely

through the network route and return to the Nova 820. I',hen the

message returned, the message was compared character by character

with the transmitted message and any deviation in output to input

would be indicated on the Nova 820 main terminal. The Nova 820 also

kept track of lost messages, that is, messages that were sent out

to the computer network on a given route but were never returned to

the 820. The particular traffic routes that were set up in the

microprocessor communication system are tabulated in Table 3, and an

illustration of each route is shown in Appendix B.

5.4.3. The First Traffic Experiment: The first traffic experiment

was a simple two communication processor loop that sent messapes

from one processor (which acted as a traffic node) through one of

the other processors and returned. Traffic could be initiated

through any of the node ports and in this manner the hardware could

be checked for reliable operation. It was of particulIar interest to

verify that each of the four serial ports on the processors were

operating reliably and that a reasonable error rate could be expected

between any two communicating, ports. The single loop traffic

experiment was repc ted with each of the communication processors so

that the reliability of each processor could be verified. Tlhe

<"

TABLE 3. TRAFFIC ROUTES

NAME NODE

F [--D--A- -E

G E- -A--D--E

If E- -D- -B1- -A- -E

K E--i)--B- - C- -L

m L- -A- -D- - 13- - C~- - 11

N E--C--B--A--L

0 E- -A- -B- - C--L

PL- -C- -b- -A- -D- -Ei

Q I.- -D- - A- -1B- -C- - L

result of the single traffic loop experiment were as follows:

1. A number of intermittent and hard failures were found ini the

serial I/C ports and repaired.

2. A number of hardware problems with the interrupt structure

were isolated and repaired.

3. A maintenance log was established on all the comtponents of

the microprocessor nodes indicating any failure of any of the com-

ponents and the fact that the components had passed the single-loop

test.

4. The single-loop test proved that the processor node soft-

ware is a single-iiJtut/single-output process.

5. The single-loop traffic test provided us some burn in time

for the processor components, which was extremely important since

* .input mortality is one of the most important reliability problems ir

integrated circuit technology.

5.4.4 Single Host Traffic Test: In this test the Nova 820 communi-

cated with each microcomputer host through its microprocessor node.

Programs were written on each of the three microcomputers to receive

a message from the network and return the same message to its origi-

nator. The Nova 820 would then send a message through its node to

the host node. The host would echo that message back to the 820

where the 820 compared the return message with the transmitted mes-

sage to detect only errors. The Nova 820 could vary the number of

messages sent back to back, the length of each message and the char-

acter in the message.

)06

The results of these series of tests were as follows:

1. The test verified the hardware protocol between each host

and its communication processor. 'lhis hardware protocol included

the correct cabling and correct action and polarity of data termi-

nal ready, clear to send, data set ready and request to send.

2. These tests verified the reliability of the host to connau-

nication processor serial interface.

. ,_,se tests verified the operation of the communication

drivers in both the host computers and the microprocessor nodes.

4. The test produced necessary burn in and reliability time

on the microprocessor nodes.

5.4.5 MIultiple Host Traffic Test: In the multiple host traffic

test, two or more microprocessor hosts with their communication ro-

cessors were hooked to the traffic communication processor and 820.

The 320 ivould send messaes to both of the host microcomputer systems
throurl; the microprocessor network. The microcomputer host would echo

the messagoes back to the 820 where they were checked. In this test the

820 could vary the iuntler of messa'es hack ti back, the nulnlmer of

ci1iii'actcrs iin each messa-.c anId the routes tiirn'oht the microprocessor

network. This test w;s designedi primarily to check the ability of the

nodes to iandle multidirectioial traffic. lith multidircctional

traffic, the nodes are forceu to queue messa-es and queue local

acknowledgements, and the interrupt handler in the nodes is forced to

sort an. oLuCue messages in different directions. The results of

o 7

this test were as follows:

1. This test uncovered several subtle software errors, such

as that the sottware would handle, siu nc tratffic patteris;, but

would fail when mu, ltiplc-loop tests would force certain routiincs to

he used in a re-entry mnanner.

2. The test validated tie basic structure of tne messa:e buf-

fers and queueinv structure used bV the nodes to sort and store multi-

pie messages.

. This test pointed out several network characteristics that

will be covered below in the section on ii eneral network characteris-

tics.

5.4.0 Hultiple Loo) 'Iraffic 'iest: In this series of tests the micro-

processor odes of tie network were connected without host computers

to the 820 traffic noue. The 820 would senu messages through dif-

ferent routes in the network with the 82U selected as the fial ous-

tination of the messaie. 'thc 82(0 was pro,,rammed to maintain a cer-

tain number of ;Iessages runnin t .rou ,I the networ, at any one ti1C

That is, the 8C'U would send out n-messages into the network. As soon

as one message was returned from tie network, another message was

immediately sent h~ack to the network. In this manner, n-m ssages were

always kept runnin!, throutch the network. 'lhc 1 6 couId control

the number of nessaes iii the network, the len lth and content of

each messale and the root for each messaie. litis test was des i gned

to operate the network in a controlled loaudingo manner so that var-

OI)

ious network limits could be investiglated. The result of this series

of tests are as follows:

1. It was determined that the microprocessor nodes could send

multiple path messages at baud rates of 1200 baud or less.

2. It was determined in 10 hours of continuous testing that

the number of CRC errors, loss messages, lost local acknowledgements,

and incorrect messages was extremely small. The error rate was less

than one error per a million characters.

Additional network characteristics were determined, and will

be discussed in the section on general network characteristics.

5.4.7 Network Test with Inventory Control Program and Node Traffick-

ing: In this test the Intel microcomputer and the Motorola micro-

computer and PDP 11/70 minicomputers were connected as with their

microprocessor nodes as a standard network and each node of the in-

ventory control program was tested for correct operation of the pro-

grams as well as the network responses. The CS-20 microcomputer was

eliminated from this test because the manufacturer, Data General,

would not give us proper information to properly modify the network

driver to operate further COBOL in the correct manner. In this test,

each of the instructions for the inventory control program (as de-

scribed in the inventory control program section) was executed on

each miachine and verified. O)perator initijated messages were sent

between each pair of host computers and the received message verified.

Remote holding of data bases was tested and verified, as well as re-

mote transaction initiation. The results of this series of tests were

0I 9

as follows:

1. This test verified that basically the same COBOL program

could be used on the three host computer to correctly operate the

inventory control program.

2. This test verified that the COIWL programs could implement

the correct protocols to talk to the network and receive messages

from the network.

3. This test pointed out the sensitivity of the different

host computers to network protocols. Fhese will be discussed in

detail in the section on host network characteristics.

4. The sensitivity of the host to the network protocol

emphasized the desirability of a communication processor whose host

* f. protocol can be tailored to the host machine drivers.

5.4.8 CS-20 Inventory Control Test: In this test, the software

inventory program for the CS-20 was tested with a remote terminal

acting as the network. Even though the CS-20 would not implement

the desired network protocol, the remote terminal was used to verify

that the inventory program would operate correctly with a modified

protocol. This verified the portability of the COBOL software even

though the network protocol could not be implemented.

S.4.9 Inventory Control Program Test with Trafficking: In this

series of tests, the full network was connected with the exception

of the CS-20 host computer. The CS-20 communication processor was

included. The 820 computer was connected to the network through a

traffic generator node as shown in Figure 5.3. The 820 generated

70

series of messages through different routes through the microproces-

sor communication network at the same time that the inventory con-

trol program was sending messages between host computers.

5.5 General Characteristics of the Computer Communication Network

The following section describes the characteristics of the com-

puter communication network as determined by the series of inventory

control programs and the traffic generator programs as described in

the previous section.

It was determined during the series of tests that the network

exhibited certain characteristic behaviors in particular situations,

and that the network was sensitive to certain types of situations.

- None of these characteristics made the network unusable, but it is

important to understand these limitations as a step to imnproving

future network communication systems.

ITEM 1: Sensitivity of the network to host protocol. Because

the host computers were being operated from a higher level language

(COLOL), there was very low flexibility in establishing a complex

protocol between the host and the microprocessor host. Therefore,

the following simple protocol was established for sending a message

from the host to the network:

a) The host starts a message by sending the letter of the

destination node proceeded by an open parenthesis. In this particu-

lar TIitwork, thc nodes were lettered "a" through "d".

b) The host follows the destination code with a string of mes-

sage characters. These characters can be any eight bit code asking

for data.

71

c) The message string is terminated by sending an ACSII

exclamation point character. If an exclamation point is used as

part of the message string, it must be proceeded by an escape char-

K acter so that the microprocessor xiode will not take it to be the end

of the message. An example of a typical message is given below:

(CT'11!IS IS A TEST NIESSAGE!

The protocol for messages from the microprocessor to the host

is similar except for the source of the message and the destination.

Neither the host nor the communication processor acknowledge any

messages and no vertical or longitudinal parity is checked.

Because this protocol is extremely simple, it makes it easy to

incorporate into high level languages such as COBOL, but this simple

e protocol does not provide a means for checking the communications

between the host and the microcomputer or the microcomputer and the

host. Therefore, all communication errors between the host and micro-

computer will be undetected. If an error occurs in the message

-' string, the result would be an erroneous message at the destination,

but the network would be unaffected. One of the most serious pro-

blems would be the possibility of an error in the destination code

at the begining of the message. If this code were wrong, the network

would try to send the message to a different destination. This

would result in a host getting a wrong message, or if the destination

were not part of the network, the message would remain in the network

trying to be transmitted. If enough suchi messages were kept in the

network, the processor memnory space could be exhausted, causing the

network to fail. If the exclamation point were communicated withi

72

an error, the result would most likely be two messages packed to-

gether as one, which would be an error in the total communication,

but would not bother the action of the communication network.

ITbM II: Sensitivity of the network software to buffer over-

flows. The present network software is sensitive to possible over-

flow in buffer storage or queue sizes. The present network will try

to handle incoming data beyond its capacity. This is not a problem

with the normal function of the network, since its capacity is clear-

ly capable of handling the inventory control program without exceed-

ing buffer or queue sizes, but under the extreme condition where the

traffic generator is sending excessive traffic through the network,

the network can be caused to fail due to excessive traffic. An ex-

tremely straightforward method of handling this problem would be to

implement the "clear" and "send" lines between the microprocessor

nodes and the host. These lines could be used to stop the host

computer from putting more traffic on the network than the network

can accomodate. The hardware to implement this connection is cur-

rently in the network, but the software to support these lines is

not included in the present node software package.

ITEM III: Sensitivity of the network to loss of local acknowl-

edgements. In the present network a fairly simple acknowledgement

scheme is used for verifying data transmission between two micropro-

cessor nodes. In this process, a packet is formed in one node and

sent to another node. The packet is checked for parity and CRC error,

and if both of these are correct, the message is acknowledged by

73

sending a local acknowledgement packet back to the transmitting nod

If the parity or the CRC does not check, then the receiving node

does not send an acknowledgement at all and the transmitting node

will wait a given amount of time ant then try re-sending the message.

This scheme, in effect, uses a time out for a negative acknowledge-

ment. Since there is no verification or check of the local acknowl-

edgement package, some problems can arise from this technique if

errors occur in the transmission of local acknowledgement packets.

If, for instance, the receiving node receives a message packet and

it is correct, then it sends an acknowledgement to the transmitting

node. If there is an error in the transmission local acknowledgement,

the transmitting node will time out and re-send the message which the

receiving node will now take as a second valid message. A second,

but less likely possibility is that the transmitting node would re-

ceive a packet in error that it thinks is a valid local acknowledge-

ment and would clear its buffer of a packet that has not been cor-

rectly received. A third possibility is the reception of a local

acknowledgement packet with invalid information in it. The local

acknowledgement packet contains information telling the transmitting

node which message has been correctly received and, therefore, to

clear its buffer of that particular message. If an acknowledgement

packet is received and taken to be valid, but has incorrect data con-

cerning which packet was being acknowledged, the transmitting node

would clear its buffer of the wrong message and continue to re-trans-

mit the acknowledged message. If a sufficient number of erroneous

local acknowledgements are passed through the network, the network

7,4

could fail due to mis-sent and un-sent messages.

ITIM IV: Sensitivity of the network to messages with improper

destinations. One characteristic of the network that is an out-

growth of the time-out and re-transmit scheme for unacknowledged

messages is a problem with messages that enter the network with

improper destination. If a host sends a message to a microprocessor

node with an invalid destination, or the node receives a message

with an error in its destination, then the node might transmit a

message to a destination that does not exist. If the destination

does not exist, then the message can never be acknowledged. The

source node will then continue to re-transmit the message on a time-

out and re-transmit basis. Therefore, the message will forever be

re-transmitted by the source node. If enough messages with no proper

destination are put into the network, the network will start to de-

grade in performance as the false messages are being transmitted,

and then finally fail as the node buffers become overflowed with

messages with no destinations. One possible solution to this problem

without altering the time-out and re-transmit scheme would be to

add additional software functions to the node to check for messages

with invalid destinations and clean them out of the node buffer.

This could be implemented as a table of valid destinations, or by

determining that after a message has been retransmitted a certain

number of times that it be declared an invailid destination. When an

invalid destination message is found, the message should be removed

from the buffer so that the buffer space can be returned for active

operation and some record should be kept of the number of messages

removed.

-?5

ITEt V: Availability of network operational status. The pre-

sent network is not equiped with a means of monitorin, the present

operational status of the network, so that even detected errors that

occur are not recorded on a real time operational basis. There is

also no implementation of correctional measures when error rates

exceed certain values. Implementing routines to keep track of mis-

operation of the network would be an extensive task, but would be

an excellent extension of the network capability. There would he

two possible approaches to this extension. The first would be to

handle network operational status on a local basis. That is, each

node would keep track of any network misoperation that it detected

and would relay that information to its host. Each host would then

be programmed to take any corrective actions required, and possibly

relay information about network operational status to the host oper-

ator. Another approach would be to dedicate a node of the network

and possibly a host computer to Keep track of the total operational

basis of the network. In this scheme, any node that detected a mal-

function in the network ould form a packet to be sent to the status

node re,,arding the failure and the type of failure. The status node

would be responsible for collectino this information and performing

corrective actions. Once corrective action was determined, the

status mode would then send a packet back to the approriate nodes

telling them to restructur the routing of the network to try to com-

pensate foi network failures. This second tecd injUe, thoughb more

complex, has the a lvantage that decisions about rest rc tur i ,, the

7 o

Oft3 GBEORSIA INST OF TECH ATLANTA SCHOOL OF ELECTRICAL EN-ETC F/B 9/2
pwim THEFEASIBILITY OF IMPLEMENTING MULTICOMMAND SOFTWARE FUNCTIONS-.ETC(U)

OCT 79 T P BARNWELL, J L HAMMOND. J H SCHLAG DAA629-7B-G-0139

C IFI ARO-15900.1-A-EL NL

2fllllllllllll

-EEEEE//////E
I/n/I///nn///
-. //E-E/I-
-EE//I--EI
-iEEE..--1

network could be made on status reports from all the nodes instead

of just local behavior.

~1

a7

6. NETWORK COBOL

6.1 Introduction

Because the Army uses multi-vendor machines, it is desirable

for the Army to have a language subset that is compatible with all

* of its machines. Such a language subset could provide a single

* program which woulu be executed by all the processors in the system.

* 'This capability would greatly simplify life cycle management by

eliminating the need for different versions of the same program to

- . run on several machines.

The following is a subset of M6800 COBOL, MICROSOFT COBOL, Data

General CS-20 COBOL, and DEC PDP-11 COBOL, called NETW.ORK CObOL.

,ETWORK COBOL has this important advantage of being compatible with

the INTEL, MCTOROLA, DATA GENERAL, and PDP 11/70 machines.

NETWORK COBOL has been tested and is the design language which

was used with the AIRMICS/GEORGIA TE(II microprocessor network to

* ~.develop a distributed data-base-management program.

Under the AIRMICS/GLORGIA TECH project, several things were

accomplished:

1. A common subset of the COBOL versions available for the

INTEL 8080 MDS System, the M6800 based EXOTERM, the DATA GENLRAL C520

System, and the PDP 11/70 was generated. This subset is termed

NETWORK COBOL.

2. A demonstration distributed and duplicate data base manage-

ment program was developed to do simple inventory control.

78

3. Programs were developed to convert between the various

*COBOL formats and also handle the hardware related differences be-

tween the COBOL dialects.

4. Several other programs were developed to rectify isolated

differences in the various operating systems.

6. 2 Acknowledgement

In compliance with the request of the Executive Committee of

the Conference on Data System Languages (WODASYL), and specifically

the CODASYL COBOL Committee, the following acknowledgement is ex-

tracted from that contained in the publication COBOL, Edition 1974..

"Any organization interested in reproducing the COBOL report

and specifications*, in whole or in part, using ideas taken from

this report as the basis for an instruction manual or for any other

purpose is free to do so. However, all such organizations are re-

quested to reproduce this section as part of the introduction to the

document. Those using a short passage, as in a book review , are

requested to mention COBOL in acknowledgement of the source, but

need not quote this entire section.

"COBOL is an industry language and is not the property of any

company or group of companies, or of any organization or group of

organizations.

"No warranty, expressed or implied, is made by any contributor

or by the COBOL Committee as to the accuracy and functioning of the

programming system and language. Moreover, no responsibility is

assumed by any contributor, or by the Committee, in connection there-

with.

79

"Procedures have been established for the maintenance of CO.

Inquiries concerning the procedures for proposing changes should be

directed to the Executive Committee of the Conference on Data Systems:

Languages (CODASYL).

"The authors and copyright holders of the copyrighted material

used herein have specifically authorized the use of this material,

in whole or in part, in the COBOL specifications. Such authorization

* extends to the reproduction and use of (IOBOL specifications in pro-

* :gramming manuals or similar publications."

*COBOL, Ldition 1965, produced by joint efforts of the CODASYL

COBOL Committee and the European Computer Manufacturers Association

(ECMA).
'I

FLOW-MATIC (Trademark of Sperry Rand Corporation), Programming

for the Univac (R) I and II, Data Automation Systems copyrighted

1958, 1959 by Sperry Rand Corporation; IBM Commercial Translator

Form No. F 28-81)13, copyrighted 1959 by IBM; FACT, DSI 27A5260-2760,

copyrighted 1960 by Minneapolis-Honeywell.

6.3 Preface

Mo800 COBOL is based on the specification of the COBOL standard

published by the American National Standards Institute (formerly

known as the United States of America Standards Institute) and con-

tained in the publication USA Standard COBOL X3.23 - 1974.

As its name implies, COBOL (COmmon Business Oriented Language)

is especially efficient in the processing of business problems. Such

80

problems typ~ically involve relatively little algebraic or logical

processing; instead, they most often manipulate large files of

basically similar records in a relatively simple way. This means

that COBOL emphasizes mainly the description and handling of data

items and input/output records.

This publication explains NETWORK ANS COBOL which is a compat-

ible subset of American National Standard COBOL. The compiler sup-

ports the processing modules defined in the standard. These proces-

sing modules include the following:

NUCLEUS defines the permissible character set and the basic

elements of the language in each of the four COBOL divisions: IDENTI-

* FICATION DIVISION, ENVIRONMENT DIVISION, DATA DIVISION, PROCEDURE

D IVIS ION.

TABLE HANDLING allows the definition of tables of contiguous

*data items and accessing these items through subscripts.

N SEQUENTIAL ACCESS allows the records of a file to be accessed

in an established sequence. It also provides for the specification

of rerun points and the sharing of memory area among files.

RANDOM ACCESS allows the records of a mass storage file to be

accessed in a random manner specified by the programmer. It also

provides for the specification of rerun points and thc sharing of

memory area among files. Specifically defined keys, supplied by the

programmer, control successive references to the file.

LIBRARY allows the programmer to specify text that is to be

copied from a library. This feature is different on all machines and

so is not used in NETWORK COBOL.

81

6.4 Organization of Manual

A COBOL source program consists of information in four divi-

sions: the IDENTIFICATION D)IVISION, ENVIRONMENT DIVISION, DATA

DIVISION, and PROCEDURE DIVISION. Taken together, these divisions

constitute the total program (including a description of the con-

figuration needed, the forms of various data files, and the program-

ming steps necessary to perform these procedures), and are presented

to the processor for compilation into a corresponding object program.

In this manual, NETWORK COBOL is described as follows:

- Sections b.6 and Sections 6.7 describe the COBOL language

structure. It presents the COBOL theory behind work for-

mation, the use of words to name elements in a program,

-I and a discussion of the syntax of the language.

- Sections 6.8 through Sections 6.15 contain a discussion

of the format and organization of data files, together

with methods used to remove data from, or place data into,

such files.

- Sections 6.16 through Sections 6.19 present a detailed

description of the IDENTIFICATION, ENVIRONMEiNT, DATA, AND

PROCEDURE DIVISIONS, respectively.

Appendix E contains a composite list of COBOL reserved words in

the NETWORK COBOL.

6.5 Command Syntax Notation

Notation conventions used in command specifications and examples

throughout this manual are listed below.

82

Notation Description

lowercase letters lowercase letters identify an element
that must be replaced with a user-select-
ed value.

CRndd could be entered as CRA03.

CAPITAL LETTERS Capital letters must be entered as shown

for input, and will be printed as shown
in output.

DPndd means "enter DP followed by the
values for ndd."

An element inside brackets is optional.
I Several elements placed one under the[other inside a pair of brackets means

that the user may select any one or none
of those elements.

[KEYM] means the term "KEYM" may be
entered.

Elements placed one under the other inside
a pair of braces identify a required
choice.

d means that either the letter A or
the value of id must be entered.

The horizontal ellipsis indicates that a
previous bracketed element may be repeat-
ed, or that elements have been omitted.

name ,name . . . means that one or
more values may be entered, with
a comma inserted between each name
value.

The vertical ellipsis indicates that com-
mands or instructions have been omitted.

83

OPEN MASTER-FILE.
* means that there
• are one or more

statements omitted
CLOSE MASTER-FILE. between the two

commands.

Numbers and special Numbers that appear on the line (i.e.,
characters not subscripts), special symbols, and

punctuation marks other than dotted lines,
brackets, braces, and underlines appear
as shown in output messages and must be
entered as shown when input.

(value) means that the proper value
must be entered enclosed in
parentheses; e.g., (234).

subscripts Subscripts indicate a first, second, etc.,
representation of a parameter that has a
different value for each occurrence.

name,, name 2 , name 3 means that three
successive values for name should be
entered, separated by commas.

6.6 COBOL Language Structure

6.6.1 Introduction: COBOL (the COmmon Business Oriented Program-

ming Language) consists of selected English words that impart key

meanings to the COBOL compiler. The language is arranged into state-

ments, sentences, and paragraphs in a manner similar to written

English. The words of this language are selected English words

(called "reserved words" because they cannot be used in any other

context and are listed in Appendix E), names of data and procedures,

and numeric or non-numeric "literals". Punctuation is permitted,

but the only meaningful punctuation symbol is the period.

84

4COBOL words are arranged into statements using the formats de-

scribed in this manual in the separate discussion of each statement.

One or more statements compose a sentence, which is terminated by

a period. One or more sentences, in turn, constitute a paragraph,

which can be given a name so that control can pass to the paragraph

by referencing its name elsewhere in the program. Similarly, several

paragraphs make up a section that can also have a name and, in addi-

tion, can be loaded as an "overlay". Several sections constitute a

division. There are four divisions in a COBOL program, each describ-

ing a different, important part of the program.

Structural hierarchy of the COBOL programming language and the

purpose of each level therein are:

The COBOL Program Contains all the information
required to perform a given task
on the computer.

Division Describes a specific category of
information essential to the
compiler; or, in the case of the
PROCEDURE DIVISION, specifies

processing steps.

Section In the PROCEDURE DIVISION, defines
the smallest block of the program
that can be loaded at one time or
as an overlay, in other divisions,
groups a particular type of infor-
mation within a division.

Paragraph Comprises one or more sentences
forming the smallest block of the
program that can be referenced by
name.

Sentence Consists of one or more statements
terminated by a period.

85

* Statement Consists of a group of words that
perform only one operation or
function in the progran.

Word Consists of a group of characters
and/or symbols that provide the
structural basis of a statement.

6.6.2 Character Set: The complete character set for NETWORK ANS

* COBOL consists of the 51 characters listed below:

Character Meaning

0-9 digits

A-Z letters

space (blank)

+ plus sign
9

minus sign (hyphen)

* asterisk

/ stroke (virgule, slash)

equals sign

$ currency sign

comma (decimal point)

semicolon

* period (decimal point)

double quotation mark

(left parenthesis

) right parenthesis

greater than sign

86

less than sign

single quotation mark

6.6.3 Characters Used for Punctuation: The following characters

are used for punctuation:

Character Meaning

space

comma

semicolon

period

quotation mark

(left parenthesis

) right parenthesis

The following general rules of punctuation apply in writing a

COBOL source program:

1. When any punctuation mark is indicated in a format in this

*publication, it is required in the program.

2. At least one space must appear between two successive words

and/or parenthetical exp.-essions and/or literals. Two or more suc-

cessive spaces are treated as a single space, except within nonnumer-

ic literals.

~.An arithmetic operator or an equal sign must be preceded by

a space and followed by a space. A unary operator may be preceded by

a left parenthesis.

4. A comma may be used as a separator between successive operand5

87

of a statement. An operand of a statement is shown in a format as

a lower-case word.

5. In the procedure division, a semicolon may be used to

separate a series of clauses. An example: DATA RECORD IS TRANS-

ACTION; RECORD CONTAINS 80 CIIARACTLRS.

6.6.4 Characters Used for Editing: Editing characters are single

characters or specific two-character combinations belonging to the

following set:

Character Meaning

B space

0 zero

+ plus

minus

CR credit (not verified)

DB debit (not verified)

Z zero suppression (not verified)

*check protection (not verified)

$ currency sign (not verified)

comma (not verified)

period (decimal point)
(not verified)

(For applications, see the discussion of alphanumeric edited and

numeric edited data items in "Data Division", Sections 6.1h.0.4 and

6.18.6.5).

88

6.6.S Characters Used for Relation Conditions: A relation charac-

ter is a character that belongs to the following set:

Character Meaning

> greater than

< less than

equal to

Relation characters are used in relation conditions (discussed

in "Procedure Division" Section 6.19.4.1). The word NOT may precede

the relation character.

6.7 Words

6.7.1 Definition and Application: The character set for words corn-

prises 37 characters: the letters A through Z, the digits 0 through

9, and the hyphen. A word is composed of a combination of not more

than 30 such characters chosen from this set with the following excep-

tions:

1 . A word cannot begin or end with a hyphen.

2. The space (blank) is not an allowable character in a word

and is used as a word separator. Where a space (blank) is required,

more than one may be used except for the restrictions stated in Sec-

tion 0 .14, "Reference Format". A word is ended by a space, period,

right parenthesis, comma, or semicolon.

Rules for using punctuation characters in connection with words

are:

1. If ANS-68 compatibility is desired, a space should follow a

89

period, comma, or semicolon when one of these punctuation characters

is used to terminate a word, and a space should not immediately

follow a left parenthesis or immediately precede a right parenthesis.

2. A space must not immediately follow a beginning quotation

mark or precede an ending quotation mark unless a space is desired

in the literal (which is enclosed in quotation marks).

6.7.2 Data-Name: A data-name is a word with at least one non-

numeric character that names a data item in the DATA DIVISION. A

space (blank) is not allowed within a data-name, and ANS COBOL

reserved words must not be used. (See appendix E, "NETWORK ANS

COBOL Reserved Words".)

. :6.7.3 Procedure-Name: A procedure-name is either a paragraph-name

or a section-name. A procedure-name may be composed solely of numeric

characters. However, two numeric procedure-names are equivalent

only when they are composed of the same number of digits and have the

same value: for example, 0023 is not equivalent to 23.

6.7.4 Literal: A literal is a string of characters whose value is

defined by the set of characters composing the literal. Every literal

is one of two types: non-numeric or numeric.

A non-numeric literal is a string of any allowable ASCII

characters (including reserved words, but excluding the quotation

mark character) up to 120 characters in length, bounded by quotation

marks. The double quotation mark (") is used. Thie value of a non-

numeric literal is the string of characters itself, excluding the

90

- I

quotation marks. Any spaces enclosed in the quotation marks are

part of the literal and therefore part of the value. All non-

numeric literals are classed as alphanumeric.

A numeric literal is a string of characters selected from digits

*0 through 9 (to a maximum of 15 digits), the plus sign, minus sign,

and decimal point. The value of a numeric literal is the algebraic

*" quantity represented by the characters in the literal. lvery numeric

literal is classed as numeric.

* Rules for the formation of numeric literals are:

* •1. The literal must contain at least one digit.

2. The literal must not contain more than one sign character.

If a sign is used, it must appear as the leftmost character of the

*literal. If the literal is unsigned, it is positive.

3. The literal must not contain more than one decimal point.

If the literal contains no decimal point, it is an integer.

If a literal conforms to the rules for formation of numeric

literals but is enclosed in quotation marks, it is a non-numeric

literal, i.e., alphanumeric, and is treated as such by the compiler.

6.7.5 Figurative-Constants: Figurative-constants are certain

constants to which fixed data-names are assigned. Such data-names

must not be bounded by quotation marks when used as figurative-

* constants. Singular and plural forms of figurative-constants are

equivalent and may be used interchangeably.

Fixed data-names and their meanings:

ZERO ---------------------------- Represents the value 0, or one or
ZEROS more of the character 0, depending
ZEROES on context.

91

SPACE --------------------------- Represents one or more blank
SPACES spaces

HIGH-VALUE---------------------- Represents one or more charact-
HIGH-VALUES ers that have the highest value

in the ASCII collating sequence.
* NOTE: All machines except Intel

use 8 bit characters. Intel
uses 7 bit characters.

LOW-VALUE ----------------------- Represents one or more characters
LOW-VALUES that have the lowest value in

the ASCII collating sequence.

QUOTE --------------------------- Represents one or more occurrences
QUOTES of the quotation mark character.

The word QUOTE cannot be used in
place of a quotation mark in a
source program to bound a non-
numeric literal.

ALl. literal --------------------- Represents one or more of the
string of characters comprising
the literals. The literal must
be either a non-numeric literal

"- or a figurative-constant other
than ALL literal. When a figur-
ative-constant is used, the
word ALL is redundant and is used
for readability only.

When a figurative-constant represents a string of one or more

- characters, the compiler determines the length of the string from

context in accordance with the following rules:

1. When a figurative-constant is associated with another data

item, that is, when the figurative-constant is moved to or compared

with another data item, the string of characters specified by the

figurative-constant is repeated--character by character on the right

--until the size of the resultant string is equal to the size (in

characters) of the associated data item.

92

2. When a figurative-constant is not associated with another

data item, that is, when the figurative-constant appears in a

DISPLAY or STOP statement, the length of the string is one character.

The figurative-constant ALL literal may not be used with DISPLAY or

STOP.

A figurative-constant can be used wherever a literal appears in

the format, except that whenever the literal is restricted to having

only numeric characters.

6.7.6 Reserved Words: Reserved words are used for syntactical

purposes and cannot appear as user-defined words. (See Appendix E,

"NETWORK ANS COBOL Reserved Words.") The three types of reserved

words are key words, optional words, and connectives.

6.7.7 Key Words: A key word is required when the format in which

the word appears is used in a source program. Within each format

such words are uppercase and underlined. The three types of key

words are:

1. Verbs such as ADD), READ , and PEiRFORM.

2. Required words (in statement and entry formats) such as TO

and GIVING.

3. Words that have a specific functional meaning such as NUMERIC,

and SECTION.

b.7.8 Optional Words: Within each format, uppercase words that are

not underlined are called optional words and can appear at user

discretion. The presence or absence of each optional word within a

93

format does not alter compiler translation. Misspelling an optional

word or its replacement by another word of any kind is not allowed.

- ! 6.7.9 Connectives: The two types of connectives are:

1. Qualifier connectives (used to associate a data-jinme or a

* !Paragraph-name with its qualifier) such as OF and IN.

2. Logical connectives (used in the formation of conditions)

such as AND, OR, AND NOT, and OR NOT.

6.8 Concept of Computer-Independent Data Description

To make data as computer independent as possible, characteristics

or properties of the data are described in relation to a Standard

Data Format rather than an equipment orientated format. This Standard

Data Format is oriented to general data processing applications; it

. uses the decimal system to represent numbers (regardless of the radix

used by the computer) and the remaining characters in the COBOL

character set to describe non-numeric data items.

6.9 Logical Record and File Concept

The following discussion defines file information by distinguish-

ing between the physical aspects of the file and the conceptual

characteristics of the data contained within the file.

6.9.1 Physical Aspects of a File: The physical aspects of a file

describe data as it appears on the input or output media and include

such features as:

1. The mode in which the data file is recorded on the external

medium.

94

- 2. The grouping of logical records within the physical limita-

tions of the file medium.

3. Mfeans by which the file can be identified.

6.9.2 Conceptual Characteristics of a File: The conceptual charac-

teristics of a file are the explicit definition of each logical enti-

ty within the file itself. In a COBOL program, the input or output

,* statements refer to one logical record.

It is important to distinguish between a logical recoru and a

physical record. A .BOL, logical record is a group of relateu infor-

mation, uniquely identifiable and treated as a unit. A physical

record is a physical unit of information whose size and recording

mode is convenient to a particular computer for the storage of data

on an input or output device. The size of a physical record is hard-

ware-dependent and bears no direct relationship to the size of the

o. file contained on a device.

A logical record can be contained within a single physical unit

or it may require more than one physical unit to contain it. There

are several source- language methods available for describing the

relationship between logical records and physical units. (bce the

relationship is establishedcontrol of accessibility of logical re-

cords as related to the pnysical unit is the responisibility of the

object program. Jn this manual, references to records are to logical

recorus unless the term "physical recoru" is specifieu.

The concept of a logical record is not restricted to file data

but applies also to the definition of workiing-storage and linkage

95

section. Thus, working-storage and linkage section items may be

grouped into logical records and defined by a series of Record De-

* iscription entries.

6.9.3 Record Concepts: The Record Description entry consists of a

set of Data Description entries tLat describe the characteristics of

a particular record. Lach Data Description entry comprises a level-

number followed by a data-name (if required) and a series of inde-

pendent clauses (as required).

- - 6.9.4 Concept of levels: A level concept is inherent in the struc-

ture of a logical record. This concept arises from the need to

specify sub-divisions of a record for the purpose of data reference.

(nce a subdivision is specified, it may be sub-divided further to

permit more detailed data referencinfl.

The most basic sutdivisions of a record - that is, those not
further sub-divided are called elementary itens; consequently, a

record consists of a sequence of elementary items, or tLe record it-

self may be an elementary item.

For ease of reference, a set of elementary items is combined in-

to a group. Each group consists of a named sequence of one or more

elementary items. These groups, in turn, may be combined into mul-

tiples of two or more, thus, an elementary item may beloiq; to more

than one group.

6.9.5 level-Numbers: A system of level-numbers shows the organiza-

tion of elementary items and -roup items. Since records are the most

96

inclusive data items, level-numbers for records start at 01. less

inclusive data items are assigned higher (not necessarily successive)

level-numbers to a maximum of 15. Special level-number 77, is an

exception to this rule (see below). Separate entries are written in

the source program for each level-number used.

A group includes all group and elementary items following it

until a level-number less than or equal to the level-number of that

group is encountered. The level-number of an item (either an elemen-

tary or a group item) immediately following the last elementary item

of the previous group must he the same as that of one of the groups

to which the prior elementary item belongs.

Noncontiguous working-storage and linkage section items that are

not sub-divisions of other items and are not themselves subdivided

are assigned the special level-number 77.

6.9.6 Initial Values of Tables: In the WORKING-STORAGE SECTION,

initial values of elements within tables are specified in the follow-

ing way:

The table may be described as a record by a set of contiguous

Data Description entries, each of which specifies the "value" of an

element, or part of an element, of the table. In defining the record

and its element any 1ata Description clause (IUSA;I., PICTURL, etc.)

may be used to complete the definition, where required. This form

is necessary when the elements of the table require separate handling.

The hierarchical structure of the table is then shown by the use of

the RIDF.VFINLS entry and its associated subordinate entries; these

97

subordinate entries, which are repeated due to CCUJRS clauses, must

not contain VALUE clauses.

b.10 Algebraic Signs

Algebraic signs are used (1) to show whether the value of ill

item involved in an operation is positive or negative, and (2) to

identify the value of an item as positive or negative on an editc;

report for external use.

Most forms of representation have a standard or normal manner

of depicting an operational sign. Thus, an indication that an oper-

ational sign is associated with an item is usually sufficient. Since

some forms of representation allow alternative methods for depicting

operational signs, it is possible to describe certain types of opera-

tional signs that deviate from the normal method. diting sirn con-

trol characters are used to display the sign of an item and are not

operational signs. These editing characters are available only

throuRh the use of the PICTURE clause.

b.ll Uniqueness of Data Reference

Every name used in a C(1CI, source program must be unique, that

is, no other name may have the identical spelling.

6.12 Indexing

References can be made to individual elements within a table of

like elements by specifying indexing for that reference. An index

is assigned to that level of the table by using the INDIXlD hY clause

in the definition of a table. A name given by the INDEXED BY clause

98

is known as an index-name and is used to refer to the assignea index.

An index-name must be initialized by a SET statement before it is

used as a table reference. (See "Table-H1andling Statements", Section

6.19.9)

The index can be represented by a numeric literal that is an

integer or by an index-name. The lowest permissible index value is

1. The highest permissible index value in any particular case is

the number of maximum occurrences of the item as specified in the

OCCURS clause.

The indices, or set of indices, that identifies the table ele-

ment is enclosed in parentheses immediately following the table ele-

ment data-name. The table element data-name appended with a sub-

script is called a subscripted data-name or an identifier. When more

than one subscript appears within a pair of parentheses, the sub-

scripts must be separated by commas.

The composite format of a subscripted data-name is:

data-name (subscript-1 Fsubscript-2 U subscript-J])

The composite format of a subscript is:

integer-1
index-name-1

The following are the restrictions on indexing and subscripting.

Tables may have one, two, or three dimensions. Therefore, references

to an element in a table may require up to three subscripts or index-

es.

An index can be modified only by the SiT, SEARCH, and I'ERFORM

statements. Data items described by the USAGL IS INDEX clause permit

99

storage of the values of the index-names as data without conversion;

such data items are called index data items.

6.13 Format Notation

The format of a COBOL statement is described in this manual

using the uniform notations itemized below. (See also Command Syntax

Notation, Section o.5)

1. A COBOL reserved word, printed entirely in capital letters,

is a word that is assigned specific meaning, in the COBOL system. It

must not be used in any context or position other than that shown in

the format description. SUBTRACt, FROMT and ROUNDt)L in the example

below are reserved words.

2. One or more CObOL elements vertically stacked and enclosed

in a set of square brackets indicate that this portion of the syntax

is optional and may be included or omitted at the discretion of the

programmer.

3. A pair of braces is used to enclose vertically stacked COBOL

elements when one, and only one, of the elements is required; the

others are to be omitted. Refer to the example below.

4. The ellipsis . . . denotes a succession of operands of re-

peated COPCL elements that may be used in the same particular state-

ment, even though the operands or elements are omitted in tie text.

An ellipsis is associated with the last complete element preceding it,

i.e., if a group of operands and key words are enclosed witnin brack-

ets and the right bracket is followed by tie ellipsis, the group (and

not merely the last operand) may be rpeated in its eitiretv.

, 1lo o

5. An underlined word is required unless the part of the for-

mat containing it is itself optional (enclosea in brackets). If a

required word is omitted or incorrectly spelled, it causes an error

in the interpretation of the program.

o. All COBOl words that are optional words (not underlined)

may be included or omitted at the option of the programmer. These

words are used only for the sake of readability; misspelling, how-

ever, constitutes an error.

7. Lowercase words represent information that is supplied by

the programmer. The natuc'e of the information required is indicated

in each case. In most instances the programmer is required to pro-

vide an appropriate data-name, procedure-name, literal, etc. Refer

to the example below.

8. The period is the only required punctuation. Other punc-

tuation, where shown, is optional.

9. Special characters (such as the equal sign) are essential

where shown, although they may not be underlined.

10. The notation A indicates the position of an assumed de'cimal

point in an item.

11. A numeric character with a plus or minus sign above it (n)

indicates that the value of the item has an operational sign that is

stored in combination %ith the numeric character.

12. Character positions in storage are shown by boxesjA] !clDI

An empty box means an unpredictable result.

13. The symbol A indicates a space (blank).

101

The following example shows a typical COBOL statement and use

of the notation described above.

dentifier- identifier- FRO dentifier-m
SUTRACT literal-i literal-2 "

[R CUIN DI

6.14 Reference Format

6.14.1 General bescription: The reference format, which provides a

method for describing COBOL source programs, is described in terms

of character positions or columns on a CRT line. The line may be up

to 80 characters in length. Rules for spacino ,given in the discus-

sion of the reference format take precedence over all other rules

for spacing. Division of a source program is ordered as follows:

the IDENTIVICATION DIVISION, then the ENVIRONMENT DIVISION, then the

I)ATA DIVISI('N, then the P!('CII)URL I)IVPSION. tach division must be

written accordin to the rules for the reference format.

The standard COBOL line format is as follows:

Columns 1-6 six digit sequence number

Column 7 continuation area

Columns 8-11 area A

Columns 12-72 area 1)

Columns 73-80 identification area

The %IIICROSOFT COBOl, uses this format. The Data General (ABL

may use this card format, but the preferred format, called CRT format,

eliminates the sequence numlber field and uses free format for the

remainint, fields:

11)2

Column 1 Area A, Continuation (hyphen
character), comment indicator (*).

Columns 2-80 Area B.

The M6800 COBOl. programs use the format:

Columns 1-4 four digit line number

Column 6 continuation area

Columns 7-10 area A

Columns 11-71 area B

Conversion programs between these formats have been written and

are available.

6.14.2 Reference Format Representation:

Margin 1, designates the line number area.

Margin C represents the continuation column. An *
* (asterisk) in margin C causes the compiler to

treat the entire line as a comment line. A /
(slash) in Margin C will cause the compiler to
start printing the source program on the top
of a new page. The remainder of the line is
treated as a comment. A - (hyphen) in 1.1argin C
is used to continue a non-numeric literal from
one line to the next.

Margin A represents the first column in the coding area.
or

Area A

Margin B represents the second area in coding portion of
or tile line.

Area B

(.14.3 Continuation of Non-Numeric Literals: When a non-numeric

literal is continued from one line to another, a hyphen is placed in

Margin C of tile continuation line and a quotation mark is placed in

Area E following the hyphen. All spaces at the end of the continued

103

, 4

line and any spaces following the quotation mark of the continuation

line and preccdin, the final quotation mark of the literal are

considered part of the literal. Note that each line in this system

*is terminated by a carriage return. If it is desired that additional

spaces are to be included at the end of the continued line, they

must actually be typed in.

(.14.4 Division, Section, and Paragraph Formats:

Division Header. The division header must be the first line of

a division reference format. The division header starts in Margin

A with the division-name followed by a space, the word IIVISION, and

a period. No other text may appear on the same line as the division

header.

Section [leader. The section header begins on any line except

the first line of a division reference format. The section header

starts in Area A with the section-name followed by a space, the

word SECTICN, and a period followed by a -pace. No other text may

appear on the same line as the section header.

A section consists of paragraphs in the ENVIRONMENT and PROCEDURL

DIVISION, and Data Description entries in the PATA DIVISION. Paragraph-

names but not section-names are permitted in the I)ILNTIFICATION

I)TVISION.

Paragraph-Name and Paragraphs. The name of a paragraph starts

in Area A of any line following the first line of a division reference

format (or section header if sections are used) and ends with a period

followed by a space.

104

A paragraph consists of one or more successive sentences. The

first sentence in a paragraph begins in Area B of either the same

line as the paragraph-name or the line immediately following.

Successive sentences begin either in Area B of the same line as the

preceding sentence or in Area B of the next line.

A sentence consists of one or more statements followed by a

period and a space. When the sentences of a paragraph require more

than one line, they may be continued on successive lines.

*6.14.5 DATA DIVISION Entries: Each DATA DIVISION entry begins with

a level indicator or a level-number followed by at least one space,

the name of a data item, and a sequence of independent clauses

. describing the data. The last clause of an entry is always terminated

by a period followed by a space.

There are two types of DATA DIVISION entries: those that begin

with a level indicator and those that begin with a level-number.

FD is a level indicator. In DATA DIVISION entries that begin

with a level indicator, the level indicator begins in Area A,

followed by its associated file-name and appropriate descriptive

information in Area B.

DATA DIVISION entries that begin with level-numbers are called

Data Description entries. A level-number may be one of the following

set: 1 through 15, 77. Level-numbers less than 10 are written as

zero followed by a digit. At least one space must separate a level-

number from the word succeeding it. In DATA DIVISION entries that

begin with a Data Description entry, the first Data Description entry

105

.A

starts with a level-number in Area A, followed by the descriptive

information in Area B.

6.15 COBOL Input/Output Processing

O. 15.1 .OBOL Files: NETWORK ANS COBOl, supports sequential and

indexed sequential file organizations and all access methods appropri-

ate for these organizations.

6.15.2 File Organization:

6.15.2.1 Indexed File Crganization: Indexed files are those in

which each record is associated with an identifyinp key. Indexed

files may be accessed directly or sequentially; however, they must

be assigned to input/output devices capable of direct access. Indexed

file organization is indicated in the COBOL language by tiic statement

ORGANIZATION IS INDLX.I) in the FILL-CONTROL piragraph of the LNVIRON-

MNT DIVISION.

6.15.2.2 Sequential File Organization: A sequential file is one

whose records are organized in a consecutive manner. There is no

identifying key associated with each record; therefore, records can

be accessed sequentially only. Consecutive files may be assigned to

any type of input/output device. Consecutive file organization is

indicated when CRGANIZATION IS SEQUENTIAL is written or when the

(;RGANIZATION clause is omitted altogether.

6.15.3 File Access: The three methods of accessing files are

sequential, random, and dynamic.

6.15.3.1 Sequential Access: Sequential access is the technique

1IPb

. -4 " - - - - *. -- ___ _ ... r -, - - .-. -. -. ,.... ...

of referencing records serially within a file. The order in which

records are read or written is determined implicitly by relative phys-

ical position within the file. This access method is specified by

the ACCESS MODE IS SEOUEiNTIAL clause or it is implied by the omission

of that clause.

6.15.3.2 Random Access: Random access is the technique of

reading and writing records of a file in an order dictated by the

programmer. It may only be used with ORGANIZATION IS INDEXED files.

The record to be referenced is indicated by the value of a key at

the time that the input/output command is issued. This access

method is specified by the ACCESS MODE IS RANDOM clause. The RLCORD

KEY clause specifies the key.

6.15.3.3 Dynamic Access: Dynamic access mode allows the file

to be accessed either sequentially or randomly depending upon the I/O

* istatement. It may only be used with files having ORGANIZATION IS

INDEXED. This access mode is specified by the ACCESS IS DYNAMIC

clause. The RECORD KEY clause is also required.

6.15.4 Record Keys: Files having an indexed organization may access

their records both sequentially and by a user specified key. The

variable used as the key is specified by the RECORD KEY clause. The

format of this clause is:

RECORD KEY IS data-name-1

where data-name-1 is an alphanumeric data item with no more than 8

characters. If uata-name-l has fewer than 8 characters, it should be

107

followed by a filler data item with enough characters such that the

number of characters in the filler and data-name-i sum to S. This

restriction is entirely the result of the M6800 file management

system.

6.15.5 File-H1andling Methods: A file-handling method is the effect

of the combination of access technique, file organization, and the

manner in which the file is opened.

6.15.5.1 Sequential Access:

1. OPLN OUTPUT. This combination creates a consecutive file.

The new records replace any previous contents of the file.

2. CPLN EXTEND. New records will be added to the end of a

consecutive file.

3. OPEN INPUT. If the file organization is sequential, READ

statements obtain records serially in the order in whici they were

originally written. If the file organization is indexed, RLtAO

statements obtain records serially in key value order (not necessarily

in the order in which they were written).

6.15.5.2 Random Access:

1. CO'I;N OUTPUT. This combination creates an indexed file. A

RECORD KLY must be specified and its contents consulted upon each

WRITE statement.

2. OPEN IN|PUI. Organization of the file must be indexcu. A

RECORD K.Y must be specifieu and the contents consulted for eacu

READ statement to locate the desired record witnin the file.

108

*0I

3. OPEN INPUT-OUTPUT. The sole essential difference between

OPEN INPUT and OPEN INPUT-(jTPUT is that the latter permits the file

to be updated instead of merely referenced; thus, WRIT statements

are allowed to address the file.

*" b.15.b Input/Output Processing Summary: Table 4 sunmarizes the

COBOL language file manipulation statements. Lach file must be named

in an ENVIRONMENT DIVISION SELECT sentence and defined by an FD entry

in the DATA DIVISION. Each of the language elements concerned is

described fully in succeeding chapters of this manual.

6.l6 IrENTIFICATION DIVISION

6.16.1 General Description: The format of the IDENTIFICATION

DIVISION is:

IDENTIFICATION DIVISION.

PROGRAM-IiD. program-name.

AUTHOR. comment-sentences.

INSTALLATION. comment-sentences.

DATE-WRITTEN. comment-sentences.

IATI-COMPILII). comment-sentences.

SlE CUR IIY. comment-sentences.

The IDENTIFICATION DIVISION specifies information essential to

identification such as the name of the program, the date the program

was written, programmer's name, security, etc. The listing contains

all information specified in this division, but the specified infor-

109

mation in no way affects the object program. Allowable information

is presented in seven separate paragraphs: one mandatory, the others

optional. If the opticnal paragraphs are included in the program,

they must be in the order indicated above.

6.16.2 Organizationi The IDENTIFICATION DIVISION header is always

the first line in a source program and appears as shown above, in-

cluding the punctuation. This header and tle fixed paragraph-name(s)

must conform to COBI. Coding Sheet specifications. Only the PROGRAM-

IID paragraph is mandatory; all others are optional. Comment-sentences

for the optional paragraphs consist of any sentence or 2roup of sen-

tences.

6.16.3 PROGRAM-ID) Paragraph: The PROGRAMI-I) parapraph must always

appear as the first paragraph in the IDENTIFICATION DIVISION. This

paragraph permits the programmer to declare the name of the source

program.

6.16.4 DATI.-COMPILY!D Paragraph: The I)ATL-COMPILLI) paragraph should

be used to provide the compilation data in the source program listing.

Lxample: The IDENTIFICATION DIVISION of a typical program might

be written:

IDENTIFICATION DIVISION

PROG RAN - I1). Inventory

AITIIOR. John Smith

DATE- WRITTLN. (Otober 15, 1977.

0DATE-COMPIL-I). November 1, 1977.

11 0

RE!AkKS. This program prints the inventory report.

Table 4. File Maiipulation Statements

type of RLCORD
File ACCESS OPEN PERMISSIBLE KEY

Organization MODI IS STATEMENT I/O Statement Required

INPUT READ. . .

AT END No

Sequential SEQUENTI AL WRITE.
(or unspe- OUTPUT BEFOE

cified) AFTER ADVANCING No

EXTN 1)R TE. No

STT .r. INVALID

INPUT REAO . . . Yes
A T END

SEQUENTIAL
Indexed (or unspe- OUTPUT IRITE. . INVALID Yes

cified) KEY

I/O START. . . VALID
KEY

READ. . . AT END

WRITF . . INVA lI1) Yes

RI'MRITlI. . INVAL I1)
KEY

lAX)llliTE . . . INVALID
" i KEY

111

Table 4. ((ontinued)

Type of RECOR I
File ACCESS OPEN PLRMISSIBLE KEY

Crianization M'OD: IS S'TATEMENT I/0 Statement Required

INPUT READ. .INVALID KEY Yes

OUTPUT KRITE .INVALID KEY Yes

Indexed RAN1)OM READ. .INVALID FEY

WRITI .INVAI,1ID KIN
I/O Yes

REWRITE .INVALID KEY

DELETE. .INVALID KE'Y

INPUT STAT .INVALID KEY

REA). INVALID KEY Yes

READ NEXT. . AT LND

Indexed I)YNAMI C
IUTPUT jvRITE ,INVALID KEY Yes

STAR' .INVA!LII) KFY

READ. .INVALID KEY

READ NEXT. AT END

I/C WRITE .INVAIID K:Y Yes

REWRITE .INVAI.DI) KEY

I)ELI'T . INVALID KEY

112

6.17 ENVIRONMENT DIVISION

6.17.1 General Description: The format of the ENVIRONMENT DIVISION

is:
ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE- COMPUTER. source-computer entry.

OBJECT-COMPUTER. object-computer entry.

INPUT- OUTPUT SECTION.

FILE-CONTROL. file-control entry.

I-O-CONTROL. input/output control entry.

The ENVIRONMENT DIVISION describes those aspects of the data

processing program that depend on the physical characteristics of a

specific computer. The information presented in this division en-

ables the compiler to link the operations indicated in the DATA and

PROCEDURE DIVISIONs to the physical aspects of computer hardware and

the executive system that is to execute the object program. Thus,

the ENVIRONMENT DIVISION is entirely computer-oriented and changes

for each of the machines on the network.

The ENVIRONHENT DIVISION is divided into the CONFIGURATION

SECTION and the INPUT-OUTPUT SECTION.

The CONFIGURATI'N SECTION deals with the characteristics of the

computing system on which the source program is to be compiled and on

which the object program is to operate. This section is divided into

two paragraphs: the SOURCL- C(H 1fIIER paragraph describing the computer

on which the COB3OL compiler is to run and the OBJLCT-COMPUTER para-

113

graph defining the computer on which the translated program is to run.

The INPUT- WTI'UI SECTION provides information needed to control

transmission and handling of data between external media and the ob-

ject program. There are two fixed paragrapn names in this section:

the FILE-C.NTRCL paragraph, naming and associating the files with

external media and the I/O CONTROL paragraph specifying certain other

file information.

6.17.2 Configuration Section:

().17.2.1 SOURCE-CUMPUTER Paragraph: The format of this para-

graph is:

SOURCI-COMPUTLR. computer name.

* The SOURCE-C(NIPUILR paragraph enables the programmer to describe

to the compiler tie computing system on which source program transla-

tion is to take place. The rules for computer-name are:

MACHINE COMPUTER-NAML ENTRY

M6800 Treated as comment. M6800 recommend-
ed

Intel MICROSOFT Treated as comment. Intel 8080
recommended.

Data General CS-20 CS-20

6.17.2.2 CB.JECT-C(afPUTL:R Paragraph: The format of this para-

graph is:

OBJECT- C UvPUTER

computer-name (MEMORY SIZI; integer CIIARACT1IRS)

114

The rules for the contents of the OBJECT-COIIPUTER paragraph are

the same as for the SOURCL-COMPUTER paragraph.

6.17.3 The INPUT/OUTPUT Section:

The INPUT-OUTPUT section consists of the FILL-CONTROL and I/C

CONTROL paragraphs.

6.17.3.1 File Control Paragraph: The format of the File Lontrol

paragraph is:

FI LE-CONTROL.

SLLECT sentences

The format and meanin-z of the SELECT sentence varies among the

machines.

6.17.3.1.1 SL:LLCT Sentence for N6800 COBOL:

S ELLCT file-name-l fASSIGN-clause ~fORGA1NIZATION-clause
S(ASSIGN-clause) (RECORD-KEY-clause)

Each file defined in the FILE SECTION of the DATA DIVISION

must be named once and only once as file-name-1 in a SELLCT sentence.

Lach select file must have a File Description entry in the DATA

DIVISI ON.

The following clauses that compose the SELECT sentence are

all optional; except for the ASSIGN clause, they may be written in

any order.

ASS IGN Clause. The format of this required clause is:

(ASSIGN To implementor-name-I)

The ASSI(N clause permits a file to be associated with a

particular type of hardiare device.

' 115

Acceptable implenentor-flames a re:

P) R I NTI'ER

DISK diskid:number

','herc: diskid--represents an eipht character disk file.

identification number--represents the file number
for the suffix for the diskid.

(Refer to the :OB(L operations reference manual for an

explanation of the meaning of diskid: number as related to different

disk types.)

OR(ANIZATION Clause. '[he format oi- this clause is:

St"RULtNTIAL
AC(:LSS MODE IS RANDOM

1) IYNN 1 IC

SEQUENTIAL denotes that records are obtained or placed

equentially: that is, the next logical record is available from

the file on a REAl) statement execution, or a specific logical record

is placed in the next position in the file on a MZITI statement

execution.

If RANl)(or DYNAPII(is specified, the RLCORD KEY clause

(see below) must also be specified and the file must be assigned to

a direct-access device. In this case, the specified logical record

(located using RiC(RI) KLY data-name contents) is made available from

the file on a READ statement execution, or is placed in a specific

location on the file (located usino: Rl C'Rn KlY data-name contents)

on a WRITI: statement execution. O)YNAlII C access mode differs from

110

RANDJ access mode in that tie file may be accessed sequentially or

randomly, depending on the I/O statement. That is, after a record

is located by a random read, the records following it can be read

sequentially. Another random read can then be issued to switch back

to random access.

Sequential access is assumed when these clauses are omitted.

RECORD KEY clause. The format of this clause is:

RECORD KEY IS data-name WITh DUPLICATES

The RECORD KIY clause must be specified if 1NI)LXIL oroan-

ization is specified; it is not meaninoful to SLQUt:.N'IAI. organization.

Data-name must be contained within the record. In addition, it must

conform to the rules for the file management system outlined in the

COBOL operations reference manual.

The contents of data-name are usea by the READ and RITL

statements to locate a specific record in a mass storage file. The

symbolic identity of the record to be read or written must be placed

in data-name before tie appropriate input/output statement is executeu

The optional WIThi OUPLICA'ITS clause specifies that records

with duplicate keys are to be permitted in the file.

0.17.3.1.2 SELCT Sentence MICROSOFT Inte' 8080 (('IbOL:

0.17.3.1.2.1 Sequential Files: For each file having

records described in the i'ata Division's File 'ection, a Sentence-

Entry (beginning with the reserved word SLLLCT) is requireu in tie

Fl, I,-(;N'iI(I, paragraph. The format of a Selcct SentCnce-Entry for

117

a sequential file is:

SLLI.C" file-name ASSIGN TO DISK I PRINTER

(R SILRVL integer AREAS AR1.A)

(1:111. STATUS IS data-name-l)

(ACC;LSS MODI) IS SEQUENTIAL) (OR(;ANIZATI('N IS
S FOU NTI AL.)

All phrases after "SLLLCT file-name" can be in any

order. 6oth the AC(LSS and ORGANIZATICN clauses are optional for

sequential input-output processing. For Indexed or Relative files,

alternate formats are available for this section, and are explained

in the sections on Inuexed and Relative files (6.12-0.14).

If the PISERVL clause is not present, the compiler

assigns buffer areas. iAn integer number of buffers specifieo by the

•4 L eserve clause may be from I to 7, but any number over 2 is treatea

as 2.

In thle FILL STATUS entry, data-name-1 must refer to

a two-character lorkini -Storage or Linkage item of category alpha-

numeric into which tlie run-time data management facility places status

information after an 1/0 statement. The left-hand character of data-

name-1 assumes the values:

'0' for successful completion

'I' for 'ino-of-File condition

'2' for Invalid key (only for Indexed and Relative files)

'3' for a non-recoverable (I/e) error

'9' for implementor-related errors (see User's GuiueJ

115

The right-hand character of data-name-i is set to '0'

if no further status information exists for the previous I/O opera-

tion. The following combinations of values are possible:

File Status Left File Status Right Meaning

'0' '0' O-K.

'i' '0' EOF

131 '0' Permanent error

'3' '4' Disk space full

For values of status-right when status-left has a

value of '2', see the Sections on Indexed or Relative files (o.12-

.14).

0.17.3.1.2.2 Indexed Sequential Files: For an Index-

ed file organization, the SLLLCT entry must specify ORGANIZATION IS

INDI1XED, and the ACCESS clause format is:

A(CISS IODL IS SEQUINTIAL RAN Jt DYNAMIC

A file whose organization is indexed can be accessed

either sequentially, dynamically or randomly.

Sequential access provides access to data records in

ascending order of NIACtRJ) KI.Y values.

In the random access mode, the order of access to
records is controlled by the programmer. hach record desired is ac-

cessed by placing te value of its key in a key data item prior to

an access statement.

In tue uynamic access mode, the programmer's logic may

1 19

change from sequential access to random access, and vice versa, at

will.

0.17.3.1.2.3 RI,(COQR KLY Clause: The ,eneral format

of this clause, when required, is:

RYFCRD KIY IS data-name-I

, where data-name-1 is an item defined within the record descriptions

of the associated file description, and is 4 ,r'roill, iten, an c lelln-

tary alphanumeric item or a decimal field. A decimal key must have

no P characters in its PICTUR1L, and it may not have a SIPAPATI; si !,n,

No record key may be subscripted.

If random access mode is sIjecifieu, the value of data-

name-1 designates the record to he accessei by the n xt LlF'h I , RIAD,

RIhRITL or WRIT! statement. Lach record must have -' uniquc record

key value.

6.17.3.1.2 .4 File Status Reportin(,,: If a HIll STUIS

clause appears in the WNIRNHNINT DIV ISICN for an Indexed ori'anizatioi

file, the designated two-character data item is set after every I/0

statement. The followinp. table summarizes the possible settin.,s.

Status Data Status Data Item RIGIIT Character
Item L.IFT No Further Sequence Dupl icate No Riecord isk Spiace
Character Description Lrror Key Found Ful I-(o ()(2) (3) (4)

Successful

Completion (0) X

At Lnd (1) x

120

Invalid
Key (2) X X X X

Permanent
Error (3) X

Sequence error arises if access mode is sequential

when WRITEs do not occur in ascending sequence for an Indexed file,

or the key is altered prior to REWRITE or an unsuccessful READ pre-

ceded a DELETE or REWRITE. The other settings are self-explanatory.

The left character may also be '9' for implementor-defined errors;

see the User's Guide for an explanation of these.

Note that "Disk Space Full" occurs with Invalid Key

(2) for Indexed and Relative file handling, whereas it occurred witn

"Permanent Error" (3) for sequential files.

If an error occurs at execution time and no AT END or

INVAI.IID KIY statements are ,iven and no appropriate declarative

-. RROR section is supplied and no FILE STATUS is specified, the error

will be displayed on the Console and the program will terminate.

6.17.3.1.3 SELECT Sentence for Data General CS-20: SELECT

names internal program files and associates each one with a given

hardware device and external file name. Also, logical file organiza-

tion, access method, I/C status and keys may be defined if required

by the procram. Refer to Figure t.l for examples of the SELLCr state-

merit.

Tf the external file-name option is omitted from the SELECT

statement, the system file-names are supplied by default. Refer to

121

the following table for a list of the default file-names.

SYSTENI FILIi-NAMLS

Device File-name

PR I NTER LP'T
PRINTLR- 1 $S LPT1

Terminal KEY BOARt L s"I'
Terminal DISP LAY $TTO

DISK The first ten characters of the
internal (COBOL) file-name with
"-" deleted.

. - ,12

, 122

0.17.3.1.3.1 Sequential SELECT:

SELEC:T file-name ASSIGN TO ISTKR

TER-R-1 (.id-lit)"~~D P LAYB"R
(;ORGANIZATION IS SEQUENTIAL)
(;ACCESS MODE IS SEQULNTIAL)
(;FTFTATUS IS data-name)
(;DATA SIZE IS integer).

6.17.3.1.3.2 Indexed SELECT:

SELECT file-name ASSIGN TO DISK(.id-lit)

;ORGANIZATION IS INDEXED

(ACCESS MOE IS £SEQUENTIAJ

" ;RLCORD KEY IS data-name
(;FILL STATUS IS data-name)
(;INDEX SIZE IS integer)
(;DATA SIZE IS integer)

FIGURE 6.1 CS-20 SE.LECT SENTENCL FORMATS

123

LXAMPLLS OF TIHL SELE'CT S'TATHENT:

(SELECT for a randomly allocated indexed file)

SELECT tLFILL ASSIGN TO DISK,"DPl1t:CFILED";
ORGANIZATION IS INDIEXLD;
ACCESS MCDL IS DYNAMIC;

RECORD KEY IS C-KEY;
FILL STATUS IS CSTAT.

(SELECT for a contiPuously allocated indexed file)

SELECT CFILE ASSIGN TO DISK,EX-FILL-NAMF;
ORGANIZATION IS INDEXED;
ACCESS MODE IS RANDOM;
RECORD KEY IS C-KEY;
FILL STATUS IS CFSTAT;
INUEX SIZE IS 20;
DATA SIZE IS 10S.

0.17.3.1.3.3 Rules for use: Lxternal (System) File

-'.*%' Specification--the "id-lit" following the file device type in the

SELECT statements is an Interactive COBOL extension. It allows

specification of a program external file name. Also, if the device

is a disk, an optional device specifier may be use to associate the

external file name with a particular disk drive.

An external file-name for an indexed file mast not

have an extension.

If a data-name is used for the external file-name, the

full value of the data-name must be a valid file-name or the file-name

must be left justified in the data-item and terminated by a null (IOh-

VALUE).

When the external file-name is omitted, file-names are

supplied by default. Refer to the followinc table for a list of these

system file-names.

124

SYSTEM FILL-NAMES

Device File-name

PRINTER $LPT
PRINTER- 1 $LPT1

Terminal DISPLAY $TTO
Terminal KEYBOARD STT1

DISK The first ten characters of the
internal (COBOL) file-name with
'"S" replacing "-"

The FILl STATUS item must be described as a two char-

acter alphanumeric item.

Record keys must be alphanumeric and may be a maximum

of 100 characters long.

The DUPLICATES phrase specifies that the value of the

associated alternate record key may be duplicated within any of the

records in the file. Further, CS interactive CO1OL phrase is not

specified.

LINDEX S1ZI: specifies the number of 512-byte blocks of

contipuous disk storage space to be reserved for the data portion

of a sequential, indexed, or relative file when the file is created.

The file device names DISK, PRINTER, DTSPLAY, and

KEYBOARD are reserved words.

Files assigned to PRINTER or I)ISPLAY must be sequential

and opened in OUTPUT or IXTEND mode only.

Files assigned to KEYbOARD must be sequential and openeu

in INPUT mode only.

0.17.3.2 I/O (ONTR(. Paragraph: The format of this paragraph is:

125

(SAIE AREA FOR file-name-I (fil C-name-2)

Khere the format of the SAI ARIA clause is the same for all

machines.

When SfEll* AREA is uritten, the data areas for all of the files

mentioned overlap. Thus, only one of the list of files may be open

at the same time. More than one SAML AREA clause may appear in a

COBOL program, but no one file-name may apnear in more than one such

clause.

6.18 DATA DIVISION

6.18.1 General Description: The DATA DIVISION describes data that

the object program accepts as input in oruer to manipulate, create,

or produce output. 0ata to be processed falls into three categories:

1. Data that is contained in files and enters or leaves the

internal memory of the computer from a specified area or areas.

2. Data that is developed internally and placeu into intermeci-

ate or working storage, or into specific format for output reporting,

purposes.

3. Constants that are defined by the use.

0.1S.2 Physical and Lgical Aspects of Data Description.:

b.lz.2.1 rATA UVISIN (Irganization: The DATA i)IVISICN is sub-

divided into tile FIL,1, and VORKIN(G-STORAGI SECIONS.

The F II. SICTION defines tile contents of data files stored on an

external medium. Each file is defined by a file description followed

by a record description or a series of record descriptions.

12o

'he WORKING-STOPAGE SLCTION describes records and noncontiguous

data items that are not part of external data files but are developed

and processed internally.

6.18.2.2)ATA DIVISION Structure: The DATA DIVISION is identi-

fied by and must begin with the heauer:

DATA DIVISICON.

Each of the sections of the DATA DIVISIONS (except the hORKING-

STCRAGL SECTION) is optional and may be omitted from the source pro-

gram. The fixed names of these sections in their required order of

appearance as section headers in the 1)AIA DIVISION are:

FILLA SE TION.

WORUKING-ST Ok A; h SECTION.

Section headers for the FILL SECTION aie followed by one or more

sets of entries composed of file clauses, followed by associated

Record Description entries. i'(.R1,KIN;-STOAGL SECTION headers are

followed by Data Description entries for noncontiguous items, foliowed

by Rccoru oescription entries. See Figure 0.2.

o.164.-, lil Sectionw In a L.t(:I. pro,,ramn the 1-ile t)escription (Fi)

entry rcprcsclts the highest level of organization in tiie F:Ii. SLCfl

Inc FILL SLCTION is composed of the section header FILE SLCTION anu a

period, followed by a File Description entry consisting of a level

indicator (FD), a data-namne, and a series of independent clauses.

These clauses specify the size of the physical records, and the names

127

LIVIIS LP I[I S I

I A ALIV 1 IS IVISIeN

., Fi1Ll t (R k .-

SLSI (' I (\
Section I I

i ~S clt t t ott r, FI LI

1F1le Description

Record Record Pecora

Dcscrinticn Description LDescrirt iuj,

Record Gru

FIL SltT'tS Sri CS I

1 Al A IVISI tN

FI.L SEqIN
Sections of the I)OTA
DIVISION, if present,
appear in the source
program in the order h-S SECTION
shown readin from
top to bottom.

FI (JfDL 6.2 [(AT AiiI\ ISION, Structure

128

of the data records and reports that compose the file. The entry

itself is terminated by a period. For the Intel 8080 MICROSOFT COBOL,

the File iescription (PD) Entry also specifies the name of the file

as needed by the operating system.

Record Description -tructurc. A record description consists of

a set of Data Description entries that describe the characteristics

of a particular record. Yach Data Description entry consists of a

level-number followed by a data-name, followed by a series of inde-

pendent clauses, as required. A record description has a hierarchical

structure; therefore, the clauses used with an entry may vary consid-

erably, depending upon whether or not it is followed by subordinate

entries. The structure of a record description is defined in "Concep-

ts of Levels" in Section 0.9.4;- elements allowed in a record descrip-

tion are specified in "Data Description Entries" later in this section

(Section 6.18.6).

6.18.4 WORKINC-STOPAUL SECTION: The WORKING-STORAGC SECTION is com-

posed of the section header WIORKING-STORAGF SECTICN and a period,

followed by Data Description entries for noncontigIuous working-storage

items and Recoru Description entries (in that oraer).

0. 1S.4. I Noncontiguous 1orking-Stora~e: Items in working-storage

that bear no relationship to one another need not be grouped into

records provided they do not need to be further subdivided; instead,

they are classified and defined as nonconti,;uotis elementary items.

Each of these items is defined in a separate Data Description entry

that begins with the special level -numLber 77.

129

~/

Data clauses required in each Data Description entry are:

1. Level-number.

2. Data-name.

3. The PICTURL clause.

Other record description clauses are optional and can be used

to complete tEe description of the item if necessary.

6.18.4.2 Working-Storage Records: Data elements in worl ing-

storage that bear a definite relationship to one another must he

grouped into records according to the rules for formation of record

description. All clauses that are used in normal input or output

record descriptions can be used in a worki no-stora)'e record descrip-

tion.

0.18.4 3 Initial Va lues: "tle i nitiaI va Nie of an item in tjhe

' ORKING-STeRAGL SELTICN except a1 index data item is speciified by

using the VLUlI clause of the record description. li.e inijtial value

of any index data item is determined at compilation tinde.

6.18.S File Description-Complete Lntry Skeleton: The ,eneral format

of this entry is:

Fl f i Ie-name

i sP L 5I I S ITA N IA R(1)
LAPELES~ ~TTh

LD)MA A [IZLCOPII IS~ data-name-7 [d at a-name-

151

The File Description entry furnishes information concerning the

physical structure, identification, and record nanes pertaining to a

given file.

0.18.5.1 LAIBEI, RI'OPIDS Clause: The format of tils clause is:

LABEL IRECORv IS STANDARI)

.RYCORIS ARL OMITTLD .

The OMITTE) option specifies that no explicit labels exist for

che file or the device to which the file is assigned.

The STANDARD option specifies that standard system labels exist

for the file or the device to which the file is assigned. Such labels

are written when the file is opened for output and checked automatical-

ly by the operating systew when the file is opened for input or

input/output.

_V- For disk files, the 11,11. RECORDS clause varies depending on the

machiie. For the MOS 01) (COt;I. the lABlI, RECORDIS clause is optional,

and if present is treated as a comment. For the Intel 8080 MICROSOFT

CCBOL and the Data General CS-20 C(EOL, LABEL RECORDS are standard.

0.18.S.2 DATA RECORDS Clause: The format of this clause is:

DATA data-name-7 (data-name-S) . .
RECOR1)S ARL

The IATA RILCORDS clause cross-references the description of data

records with their associated file description. Each logical record

in the file may be named in this clause; the order in which they are

131

listed in the clause is not important. It must l)e remembered tuat

no two records of the same file are available for processiir, at the

same time; in other words, if one record is read from a file and

then another record is read from the same file, the second recoru

replaces the first.

0.18.0 Data Description Lntrics:

b.18.0.1 G;eneral Format:

Level-number data-name (RLDLFINItS-clause) (COPY statement)
I LLLR K

(PI CTUR1-clause) (uSAG(;-clause

(B LANK-c la tse) (JUSTI FI L)-clause)

(V IJI-F clause) (OCCURS-clause)

I' A Data Description entry (see lable 4) describes characteristics

of each item within a data record. Each itenm is accorded a separate

entry that must appJear in the order in which the item occurs ini the

record, since the relativu location of each entry is communlicated to

the compiler by its position in the record description. Lach entry

consists of a level-number, data-mame, and series of clauses terminat-

ed by a period.

The reserved word F1lLIAR may be substituted for a 1.roraymner-

defined data-name when an unused portion of a loical record or uata

item that is not referenced directlv is aefined.

Specific formats for individual tVes of data items are shoin

belo%. In cach of these formats, clauses that do not appear are

13-

categorically forbidden in that data type, while clauses that are

mandatory are depicted without brackets.

6.18.6.2 Detailed Formats of Data Items:

Group Item

Level-number ata-name1 [RL)EFINIS-clausel [CCCURS-clause

[USAGE-clause]

[VALUE is non-numeric-literal].

1-xample:

0 1 GROUP- ITEM.

* 02 FIELI)Ol PICTURE X.

02 FIELD-2 PICTURE X.

TABLL S VARIOUS DATA DESCRIPTION ENTRIES LISTING

01 VAR! (AJS-D)ATA-D)LS(

02 ALPtiABLTI C-IYPES.

03 Al PICTURE AAAAAAAA.
03 A2 Rl*DI:FINLS Al PICTURE A(8).
03 A3 PICTURE A(4) C(CURS 4 TIMES.
03 A4 PICTURE A(O) VALUE IS 'XYZ A'.
03 A5 PICTUR1 A'2) USAGE IS DISPLAY.
03 Au PITIJRF A(S).
03 A7 REIFINLS Ab PICTURL A(2) USAGE DISPLAY

OCCURS 4 TIMES.

02 AIPIIANUMLRIC-TYPES RPLDEFINI.S ALIPIiABETIC- TYPlIS.

03 AN1 OCCURS 8 TIMES PICTURE IS XgA.
03 AN2 PICTURI- X(l6) USAGE IS DISPLAY.
03 AN3 REDEFINES AN2 PICTRIL X(4) OCCURS 4 TIM.S.

133

02 A IPI IA-ED IT IUI-TYP FS.

03 AIl PICTURL XXBiXXI'XX.
03 A112 Pic is IxxxxBxx99hLC'OHxxx.
03 Al-3 RILE INI.S AI.2 P1IC X (() b09AAX DISP~LAY.

02 NMI C ~lL-T '.

03 NEI Fl CTURL 1S 2',!)99+.
03 N132 RLI)LF INLS N1. P1 CTURI; * *,**-
03 NE3 OCCURS 4 TIMLS PICTUVL ZZZ9.

02 NUMLIC-TYPL.

03 NI P I CTU R F 9999 OCCURS 5 TIMES tJSACIE DISPLAY.
03 N2 P IC 59999 VALUE IS -1234.
03 N3 REULPINES N2 PICTUTIRE S99V99.

6.18.6.3 Alphanumeric Elecmentary Item:

datal-n.ati'ame fILDI ES- xlc 1[ue OCCURS- clIause]lvl-umber 1 R

P, on-type [UISAGEIS DIS'PLAY1-f T ontpeI

EVALUE IS non-numeric-literal [G 77T-

02 CUST- NAIL F TCTUIJR X (21) UDISP LAY

02 C.USTI-AURl PIC X (45)

6.18.6.4 Alphanumeric Edited Llementary Iter),

Levt-nm cRI I)uIlS -ase numbR- e re

ISac- tvl~e[s(; SDcLY

134

jVALIJ S non-numeric-literaA IILJILL
* 1:xanile:

02 DATE PICTURE XXBXXXBXXXX VALUE '15 DEC 1977'.

6.18.6.S Numeric Edited Elementary Item:

Level-number 1_1ame1 [REDITINES-clause [OLCURS-clause]

JPICh IS numeric-type BLANK WHEN ZERO~
PPCR IS ~ne-type BLANK WhIEN ZERO

(USAGE IS D)ISPLAY]

L&LaMi) I C

02" IPP-N(PIC ZZ999.

02 GROSS-SALI.S PICTURE, SZ ,ZZZ ,ZZZ ,ZZZ.99-.

6.16.6.6 Alphabetic Llemntar)' Item:

lev l-n mbe Vm L CP [FP D I INES-clausel [0O URS-clause]

fP=p UL IS alpha-type [USAGE IS DISPLAY]

[VALUE IS non-numeric-litcral]

02 (:(lNTY-NAII PICTURE; A(3S) IJSAGEI IS DISPLAY.

135

,!-P. RFM-

6.18.b.7 ASCII Decimal Liementary Item:

LvI ata-LLa [Ri VLDLI. NI;S clause] [t(.(0RS-c I ausc]

fPIcluRt} IS numeric-type [USAGE IS DJSPU\Y

[VALUF IS numeric-iiteral]

ExamDle:

02 COST PIC 999V99 VALJL 10.3P.

0.18.6.6 Packed Oecimal Elementary Item:

level-number Lata- nanei [!FLE INES-clause] [(LJ RS -cIUSiL

I crl1RiI
.P [C IS numeric-type USAGL IS COMPUTATIONI'

VA IUJL IS nuieric- literal]

02 '1fAI.-RECOPIS PIC .)(4) C(OMPUTATIONAL.

0.18.6.9 Index Item:

77 index-naine USAGI. IS INDEX.

Lxample:

77 X 1 INDIX

0.18.6.10 RLI)i-EINLS Clause: The format of this clause is:

136

- -- ,

Level-number data-name-1 RLILFINES data-name-2

The REDEFINES clause overlaps items in storage (allocates the

same storage space for different items at different times) or

provides an alternate grouping or description of the same data

(redefines an elementary item or a group item.)

The level-numbers of data-name-1 and data-name-2 must be identical.

The REOLtFINLS clause is not used at the record 01 level in the

FILE SECTION. The DATA RECORDS clause in the FD entry indicates the

existence of more than one type of record; thus, an implied redefin-

ition exists at the 01 level.

Redefinition begins at data-name-2 and continues until a level-

number whose value is equal to or less than data-narie-2 is encounterea;

therefore, between data-names-l and -2 there must not be a level-

number lower than that of data-namcs-I and -2. Oata-name-1 must

follow data-namc-2 such that, if data-name-2 is a group entry, tihe

entry for data-name-1 must appear immediately after the entries for

all items in that group. liowever, additional entries that redefine

the same area may intervene.

Data-name-l may be a group or an elementary item irrespective of

the nature of the data-name-2 item. If it is a group, tiie data-naizie-2

entry is t ollu%\,cd Iy ail the entries in that groul, Si1Ce such entries

are part of tine redefinition; if it is an elementary item, it completeiy

redcfincs data-name-2. i, 1LLiiFINLA,; clause may be specified for an

item within the scope of ait area I-eing redefined; that is, RDlEFINFS

clauses may be specified for items subordinate to items containing

137

REDEFINLS clauses.

When the REDEFINES clause is used with certain other clauses,

entries (except for condition-name entries) containing or subordinate

to the REDEFINES clause must not contain VALI.U clauses.

When one area is redefined in three or more ways, differences

amonp the (0O1,1. versions exist. If A, B , C and D are all to refer

to the same area, the NOSD) (WIODL anti the Intel 8081)0 MI(8'H0OFT ('01401.

require that the followin,; sequential structure be used:

Define A
B redefines A
C redefines 11
1) redefines C

The ata General CS-20(4C1. requires that the structure be:

Define A
B1 redefines A
C redefines A
I) redefines A

hen ian area is redefined, all descriptions of ttat area remaij.

in effect for the entire propram. The one that is selected depends

on the particular reference made to the area. For example, if items

. and 1, share the same are.a, \(\ACV X TO A moves X to the area accordkinc'

to the description (,f A, M.!OVEI Y T(b moves Y to the same area accordin,

to the description of B. These statements could he executed anywhere

in a pro',rain; final contents of the area depenu on the order in which

they are executed. A table of constant items is redefined so that

any item in the table can be referenced by position rather than by

individual name. This does not redefinie the area accordintm to differ-

ent patterns, but simply permits the same pat tern of itenis to be

1.; 1

considered in a different way.

6.18.0.11 PICTURE Clause: The format of this clause is:

PEIC } IS character-string

The PICTURE clause describes the general characteristics and

editing requirements of elementary items.

The character-string consists of certain allowable combinations

of characters in the COBOL character set used as symbols. These

allowable comuinations determine the category of the item. The

five categories of data that can be uescribed with a PICTURE clause

are:

1. Alphabetic

2. Alphanumeric

3. Numeric

4. Alphanumeric Edited

S. Numeric Edited

The following rules apply to the use of the PICTURE clause:

1. GENERAL: The number of occurrences of any of the characters

indicates the size of an item described by the PICTURE clause. The

size may be indicated either by repeatino the character or, in a

shorthand way, by writing the character once and putting the number

of its occurrences in parentheses. Thus, Z (10)9(2) is equivalent

to Z ZZZZ99. A maximum of 30 characters is allowed in a PICTURL

clause. This limit does not refer to the number of characters in the

item itself, but only to the number of characters (including paren-

139

theses) used iii the PICTURt: specifying the item. For example, the

same item may be described by a PICTIIRI containing 12 ciaracters,

or by a PItTURL containing only 9 characters, E(10)9(2). In either

case, the actual size of the item is 12 characters. An item contain-

ing 75 alphabetic characters may be specified by the PICTUKi A(7S),

which uses only 5 characters, but the same item may not be specified

by a PICTURE in which A is repeated 75 times. The size of an alpia-

betic or alphanumeric item described by the IPICTUR1, is limited to a

maximum of 255 characters except for numeric display items, which are

limited to 15 digits. The size of an entire Croup Item is also limit-

ed to 4095 characters.

2. Categories of Data

a. Alphabetic (alpha-type): The PJCTUR} of an allhabetic

item contains only the character A. The number of A's in the chara

er-string denotes the size of the data item, and each A represents

one character that at execution time may contain one of the twenty-

six letters of the Inglish alphabet or the space character.

b. Alphanumeric (an-type): The PICTIRI. of an alphanumeric

item may contain only the Character X or a combination of tl-e charact-

ers X, A, and P. An X indicates that the corresponding character

position of the data item may contain any one of the characters in

the AS(I set. khei, the PIC'TURL is described with a combination of

characters, each character is treated as thouth it were an X, since

no examination of the data placed in the item is made at execution

time. Thus, this type of PICIORL description may have documentary

sivnificance only to the programmer.

140

c. Numeric (numeric-type): The PICTURE of a numeric data

item may contain only the characters 9, S, and V.

The character 9 represents a digit position cor:tainint, a

numeral and is counted in the size of the item.

Tie character S indicates the presence of an operational

sign and must be written as the leftmost character in the PICTURE.

The character V indicates the position of the assumed

decimal point and may occur only once in the character-string. The

V does not represent a aigit position and therefore is not counted

in the size of the item. When a V is written as the last (rightmost)

character in the PCItURE, it is redundant.

d. Alphanumeric Edited (ac-type): Time PICTURE of an

alphanumeric edited item contains any combination of the characters

X, A, and 9 together with one or more occurrences of the insertion

characters 0 (zero) or R. Each 0 represents a character position

into which the character 0 is to be inserted; each h represents a

character position into which the space character is to be inserted.

Thus, an alphanumeric edited field is one that contains certain char-

acter positions into which insertion characters are forced wienever

data is stored in the item at execution time.

e. Numeric Ldited (ne-type): lditini alters the format

and pInctuation of data in an item; cAiaracters can I' supLressed or

addeu. Editing is accomplished 1)y moving a data item to an item

describeu as containing editing symbols. Movement may be direct or

inuirect: The programmer can specify a MOVE statement or arithmetic

141

statement in which the result of computation is stored in such an

item.

Characters that may be used ill a PIC'IURL of a numeric cuiteu

item are

9 V +- , 0)1 / t:R flDb *

The characters and V are discussed above: tneir u'e is

exactly the samie as in numeric items. The remainder are insertion

and replacemen...characters (see below).

3. Insertion Characters: I-,hen an insertion character is specif-

ied in the PI(TURL, it appears; in the editeu data item; therefore, tie

size of the item must reflect these aduitional characters. Insertion

characters and their characteristics are:

s 1;hen, a single doliar sign is specified as tie leftost syi-

hol, it appears as the leftmost character in the size of tle itew.

+ Idhen a plus sign is specified as tile first or last syniol,

a plus sign is inserted in tie inuicated character position u- ti,

euiteu data iteini proviucu tne uata is i,.ositive (coi.tains a ipo-;itivc

operational sign) or is unsigned. If tihc uata is Ilciativc, a minus

sigit is insertcu in the inuicateu ci,aractur position. 'Il is sign is

counted in the size of the item.

nen a minus sign is specified as tile first or last symbol,

a minus sign is inserted in the indicated character position of tle

edited data item l'rovided the data is negative (contains a negative

operational sign). If tile data is not neative, "i blank is inserted

in the indicated character position. This si gin or hlIanl. is counted

in the size of the item.

142

. The period character represents an actual decimal point,

as differentiated from an assumed decimal point. When used, a decimal

point appears in the edited data item as a character in the indicated

character position; therefore, the decimal point is counted in the

size of the item. A PICTURE can never contain more than one decimal

loint, actual or assumed.

, When a comma is used, a comma is inserted in the correspond-

ing character position of the edited data item. It is counted in the

size of the item.

0 When a zero is used, a zero is inserted in the correspond-

ing character position in the edited data item. It is counted in the

size of the item.

I; When a character B is used, a space is inserted in the cor-

responding character position in the edited data item. It is counted

in the size of the item.

-/ I',ei the slasH Cla racter is used, a slash character is in-

serted in the correspondin, character position in the edited data

item. It is counted in the size of the item.

CR The credit symbol CR may be specified only at the right end

of the PICTPi . character-string. It is inserted in tie last two

character positions of the edited data item provided the value of the

data is negative; if the data is positive or unsigned, these last

two character positions are set to spaces. Since this symbol always

resuilts in two characters ((N or spatces), it is included as two char-

acters in the size of the item.

143

Table 6: Examples of Insertion Characters

Source Data ldit in', I'ICTURI Ldited Item

4 8 S99 $ 4 8

4 8 4 3 4 $99.99 ¢ 4 8 3 4

4 8 3 4 9,999 4 , 8 3 4

2 9 2 + + 2 9 2

2 92 +999 + 2 9 2
2 it 2 +99 9 + 9 2
2 9 2 -) 2! 22

2 9 -999 2 9

2 9 2 999- 2 9 2

2 9 2 999- 2 9 2 /

2 4 34 2 1 1bt3 99.99 , 2 4 3 2 1

2 4 3 4 2 1 S0o999.99 0 0 2 4 3 2

1 1 4 3 4 99.99CR 1 1 3 4 C R

1 4 3 4 99.99CR I 3 4 /

2 3 4 7 6 99.990)B 2 3 7 o 1) 1,

2 34 7 6 99.991)B 2 3 7 bA/

1 2 3 4 5 0 99/99/99 12/34/5

1 ,I ,I

a

R1A The debit symbol DlB may be specified only at the right end

of the PICTIIRI. It functions in the same manner as the credit symhol.

4. Peplacement Characters: A replacement character suppresses

leading zeros in data and replaces them with other characters in the

edited data item. Olly one replacement character may be used in a

PICTUm R, although Z or * may be used with any one of the insertion

characters. Peplacement characters and their characteristics are:

Z One character Z is specified at the left end of the PICTURE

character string for each leading zero that is to be suppressed and

replaced by blanks in the edited data item. Z's may be preceded by

one of the insertion characters S + or - and interspersed with any -f

the , 0 or B insertion characters.

Only the leading zeros that occupy a position specified by

Z are saippressed and replaced with blanks. No zeros are suppressed

to the right of the first non zero difit whether or not a Z is pre-

sent, nor are any zeros to the riht of an assumed or actual decimal

point suppressed unless the value of the data is zero and all the

character positions in the item are described by a Z. In this special

case, even an actual decimal point is suppressed and the edited item

consists of all blanks.

If a S + or - is present preceding the P's, it is inserted

in the far left character positon of the item even if succeeding

zeros in the item are suppressed. In the special case where the value

of the data is zero and all the character positions following the

+ or - are specified by Z's, the S+ or is replaced by a blank.

14 r

If a 0 or h or , in the PICTURP: is encountered before zero

suppression terminates, the character is not inserted in the editedi

data item but is suppressed, and a blank inserted in its place.

* The asterisk replaces the leading zeros it edits by an

asterisk instead of a blank. It is specified in the same way as the

editing character Z and follows the same rules, except that an actual

decimal point is never replaced.

$ hen the dollar sign is used as a replacement character to

suppress leading zeros, it acts as a floatin,, dollar sign and is in-

serted directly preceding the first nonsuopressed character. One

more dollar sign must be specified than the number of zeros to be

suppressed . This dollar si.,.n is alwavys present in the ed ited data

whether or not any zero suppression occurs. The remaining_, dollar

signs act in the same way as Z to effect the suppression of leading,

zeros. No other editing character may precede the initial dollar si.,gn.

Each dollar sign specified in a PICF'IJRE is counted in determinin, the

size of the report item.

+ Vhhen a plus sign is used as a replacement character, it is

a floatin2 plus siin. The plus sign is specified one more time than

the number of leadinp zeros to be suppressed. It functions in the

same way as the floating dollar sign: a plus sign is placed directly

preceding the first nonsuppressed character if the edited data is

positive or unsigned, and a minus sign is placed in this position if

the edited data is negative.

Ixhen a minus sign is used as a replacement character, it is

1,1

Table 7: Eixamples of Replacement Characters

Sourcc Iata ld itii., PIICTIRI. ldited Item

10 0 9 2 3 ZZ999 9 23

0 0 9 2 3 ZZZ99 A A 9 2 3

0 0 0 0 0 0 ZZZZ.99 A A A A 0 0

0 U 9 A 2 3 $***.99 $ * * 9 2 3

0 0 0 8 A 2 4 $$$$9.99 2 AA$ 8 .2 4

A 2 6 --- 9.99 A A - .5 2

3 2 o 5 $SS.99 . 3 2 t 5

147

Table 8: Examples of PICTURh Editing

DATA to be Edited PICTURE of Edited Item
Report Item

0 1 2 3 4 5 ZZZ,999.99 A 1 2 , 3 4 5 . 0 ,

0 0 1 2 3 4 799,999.99 A o U , 0 1 2 3 4

0 0 0 1 2 3 $ZZZ,ZZ9.99 AAAAAAI. 2 3

0 0 U 0 1 2 sZZZ,ZZZ.99 s A A A . 1 2

0 0 1 2 3 4 **,*9 S *1 ,2 3 4 0 0

1 2 3 4 5$***,9***99 S 1 2 3 , 4 5 0 U 0

1 2 3 4 5 $*** ****99 $ * * * * * * 1 2 3

0 (i 0 0 1 +9Q 99,9 + 0 0 0 , U 1 2

-1 0 0 0 1 2 -zzz,zzz A A A A A 1 2

* 2 3 4 5 SZZZ,ZZ9.99CR 5 1 2 3 , 4 5 0 0

0 0 0 1 2 9) S22,2.91) 1r s A A A A A A i

0 1 1 2 3 4 S(4),S$9.99 A A A A i i 2 3 4 u

S0 0 0 0 - -$(4),$$.99 A A A A A A A s . o
0000 o12k , .99 A A A AAAA -. 12.

0 0 0 0 1 2 , -99 A A A A A A AA 2

0 0 0 0 0 1 $$$$,$ZZ.99 Illegal PiCTURL

148

a floating minus sign. The minus sign is specified one more time

than the number of leading zeros to be suppressed. It functions in

the same way as the floating plus sign, except that a blank is plac-

ed directly preceding the first nonsuppressed character if the edit-

ed data is positive or unsigned.

5. Summary:

a. Only one of the characters of the set Z * $ + and -

can be used within a single PICTURE as a replacement character, al-

thoui it may be specified more than once.

b. If one of the replacement characters Z or * is used

with one of the insertion characters $ + or -, the plus or minus

signs may be specified as either the leftmost or rightmost character

in the PICTURE.

c. A plus sign and a minus sign may not be included in

the same PICTURE.

d. A leftmost plus sign and a dollar sign may not be in-

cluded in the same PICTURL.

e. A leftmost minus sign and a dollar sign may not be in-

cluded in the same PICTURE.

f. The character 9 may not be specified to the left of a

replacement character.

g. Symbols that may appear only once are V S CR and o'b.

h. The decimal point may not be the riphtmost character in

a PI ICTUIE.

6.18.6.12 USAGL Clause: The format of this clause is:

149

DISPLAYUSAGE IS 'Ico Ieu ATI NAL

:INDEX

The USAGE clause specifies the form in which data is represented

in the computer. It can be written at any level. If the USAGE clause

is written at a group level, it applies to each elementary item in the

group in addition, the USAGI clause of an elementary item cannot con-

tradict the USAGE clause of a group to which the item belongs.

This clause specifies the manner in which a data item is repre-

sented in the storage of the computer. It does not affect the use of

the data item, although the specifications for some statements in the

PRO(IDUPE DIVISION may restrict the USAGE clause of the referent

operands.

DISPLAY denotes that the item is carried in the ASCII format.

DISPLAY mode is assumed when a USAG. clause is not written. One char-

acter is stored in each byte of the item; if the item is numeric, the

leftmost byte can contain an operational sign in addition to a digit.

C(: (NtTATI(NAI1 defines a packed decimal data item whose length is

specified by the accompanying PICTURE clause.

INDEX defines an item that is called an index data item and will

contain a value that corresponds to an occurrance number of a table

element. Index data items must be elementary data items. Since U1SAGL

IS INDEX totally defines the internal representation of the data, a

PICTURE clause is not used with an index data item. The VALUE IS

clause may not be used with a USAGL IS index data item.

is0

u.18.6.13 BLANK k*IL1N ZERO Clause: The format of this clause is:

B ANK WHEN ZERO

The BLANK WhIIN ZEPO clause may be supplied only in conjunction

£ with a numeric edited item. It specifies that when the source item

has a value of zero, the edited data item is to contain all spaces.

0.18.o.14 JUSTIFIED Clause: The format of this clause is:

iUSi'i' Fi I G HT

JUST IT

This clause is applicable only to alphabetic or alphanumeric

items. Normally, when data is moved into an alphabetic or alphanumeric

field, the source data is aligned at the leftmost character position

of the receiving data item and moved with space fill or truncation on

the right.

- VWhen the receiving data item is described with the JUSTIFIED

clause and the sending data item is larger than the receiving data

item, the leftmost characters are truncated. When the receiving Jata

item is described with the JUSTIFIlD clause and is larger than the

sendinp data item, the data is aligned at the rightmost character

position in the data item with other characters space-filled.

6.18.b.15 VAIIJE Clause. The format of this clause is:

Value IS literal

The VALili clause defines ttic value of constants, or the initial

I1

S_ _ _ _ _

value of working-storage items. This clause must not conflict titi

other clauses in the data description of the item or in tile data

description ,ithiin thC lkierarchy oh the form. the follo%,in, ruLes

apply:

1. General

a. If the category of the item is numeric, thie I iteral is

aligned according to the alignment rules except that the literal mast

not have a value requiring truncation of digits.

b. If the catcgory of the item is alphabetic or alpianumer-

ic the literal in the VALUE clause must be a nonnumeric literal. 'Ihe

lIteral is aligned according to the alignment rules excel t tiiat the

number of characters in the literal must not exceed the size of the

item.

c. The numeric literal in a VALUI clause of an item must

have a value within the range of values indicated by the USAGE or

PICTURt clause.

d. The function of any editing clauses or editing, charact-

ers in a PICTURiE clause is ignored im) determining the initial appear-

ance of the item described. However, editing characters are included

in determining the size of the item.

2. Olata hescription Lntries

a. Rules govcrning the use of the VALUL clause differ with

the respective section of tie DATA l'IVIS(O:

(1) In the FI.E SILl ION, the VALUE clause is not

allowed.

152

(2) In the WORkING-STORAGI the VALUE clause may be

useu to specify tile initial value of any data ite'i. It causes tile

item to assume the specified value at the start of tie object

program. If the VALU clause is not useu in all item uescriptioxi,

tite initial value may be unpredictable.

b. The VALE clause must not be stated in a Record

lescription entry containingan (C('URS clause or in an entry sub-

ordinate to an enry containing an O(OJRS clause.

C. The VALUL clause must riot be stated in a Record

Description entry containing a RDEFIN-S clause or in an entry sub-

ordinate to an entry containing a REDEFINES clause. This rule does

not apply to condition-name entries.

d. The VALUE clause may not be used in an entry at the

roup level.

e. The VALUE c1a, may not be used with a USAGE IS Index

data itew.

6.18.o.16 OCCURS Clause: The format of this clause is:

('('(fRS integer- 1 TIUS

INDEXE) BY index-name-1 [,index-name-ZI . . .

The O(IuRS clause eliminates tl'e need for separate entries of

repeated data and supplies information required for the application of

subscripts.

The ([C(.'S clause is uised in defining tables and other homopen-

Cous sets of repeated data; when it is used, the data-name that is

the sub.ject oi this citry must cither I,c subscriltcd %dicnever it is

1 S3

referenced in a statement. Furthermore, if the subject of this entr

is the name of a group item, all data-names belonging, to the group

must be subscripted wienever they are used as operands.

The data description clauses associated with an item %,hose

description includes an OCCURS clause apply to each repetition of

the item described. Also the \MAWE clause must 11ot be stated ill a

data description entry that contains an OCCURS clause or in an entry

that is subordinate to an entry containing an (OCCU RS clause.

An INDEXED BY clause is reauired if the subject of this entry,

or an item within it if it is a group item, is to be referenccd by

indexing. The index-name identified by this clause is not defined

elsewhere; the compiler allocates storae for it unassociated with

any data hierarchy.

6.19 PO(CI)U!I DIVISION

6.19.1 General Description: The PROCEDUIT I)IVISION of a COlI,

source program specifies the procedures--the precise sequence of

processinp operations--nIeeded to solve a given problem. These

operations (computations, logical decisions, input/output, etc.)

are expressed in meaningful statements, similar to Ln'lish.

6.19.2 Procedure Division Elements:

0.19.2.1 Statements: A statement consists of a COBOl, verb

followed by appropriate operands (data-names or literals) and reserved

words. The three tyl~es of statements are:

1. Compiler directing.

154

2. Imperative

3. Conditional

6.19.2.1.1 Compiler Directing Statement: A Compiler

Directin statement uirects the compiler to take certain actions at

compilation time. Compiler Directing, statements are: COPY. This

statement is not in NETICRK COBOL.

6.19.2.1.2 Imperative Statement: An imperative statement

specifies an action to be taken unconditionally by the object program.

An imperative statement may consist of a series of imperative state-

ments.

6.19.2.1.3 Conditional Statement: A conditional statement

describes a condition that is tested to determine which of alternate

paths of programmed processing flow is to he taken. Conditional state-

ments are:

1. RFAI) and RETURN statements that have the AT END or

INVALID KEY options.

2. WRITE statements with the INVALID KEY option.

3. Arithmetic statements with the SIZE ERROR option.

4. IF statements.

0.19.2.2 Sentences: A sentence is a single statement or series

of statements terminated by a period. A single semicolon may be used

as a separator between statements within a sentence.

0.19.2.3 Paragraphs: A paragraph consists of one or more sen-

tences identified by a beginning paraFraph-name.

0.19.2.4 Sections: A section comprises one or more successive

155,

paragraphs, and must begin with a sect ion heaider. A Sect ioji iucader

consists of a sect ion-name fol lowed by tile word SECTIlON and~ a periot.

0.19.2.5 Paragzraph and Section Naminf7: 1:very paraf-rapli or

section has a p roijrammer - SOI) ied nam11e thait siv, enC ill tilelheade r

entrx'. This name is used for reference (as, for example, when

specifying a GO TO paraigraph-namie or a Go '10 sect ion-name.)

6.19.3 Procedure i'ivision Structure: The formats of the P)RO(CLDURL

DIVISICN are:
Format 1:

PROCE3DURE DIVISION

csction-name SLCTICIN.

IT)ar a r a 1)1-n am e. heuCitence 1. . 1
Format 2:

[a ra,, ra1) 11 - 1namlle . sentence ..

Lxecution of tile protram begins at the first statem,,ent of tne first

sect ion.

6.19.4 Conditional Statements: A conditional statement diescrit.cs a

condition that is tcsted to uetcrninc selection of alternatc paths of

protgrammed processingl flow. Iiie pro(.raninmer cani accompolishi this

branch in' USiTh' tile fol 0loin tNypes 01f statemnIltS:

J. '1Hie C(0 'I C);'~~ CO wh ii branlches to one of

1 5o

several proccdure-iames.

2. Statements with exception branches: AT ENI), INVALI K IY,
aria (N SIZL ERROR.

3. The IF, and PERFOIR , in which tile condition is explicitly

Stated.

6.19.4.1 Relations: Relational-operators in the COBOL language

are:

Is S N 'r I L 11 GRLATLR ' 1 IN

IS (NiJ LSS TAN1

S [L 1 1 { L Q U A L T 0

OQUALS

Underlined words in the above list must be present wnen the re-

lational-operator is used. i\orus not underlined may oe omitted if

the programmer desires, with no effect on the meaning of the relation-

al-operator.

I'elational-operators are combined with identifiers or literals

to create relation conditions. The p.eneral format is:

Side nt if icr- identifiier-2

literal-1 frelat ional-operator literal-2

arithmetic- arithmetic-
pressioncx p ressi on

157

6. 19.4. 2 Log ica ')p erators (AV, D, OR and NOT): The three

logical operators are AND, OR, and NOT. AND and CR arc used to

create a "compound condition" when two or more tests are specified in

the same expression. NT is used to specify tie negation of a

Condicion. NCTI: Compound conditions must be enclosed in parentheses

if they are to work correctly. Thie 'II(ROSCT C'+CI. will flag this

as an error but generate the correct code. Consider the fo 1m, in'

example :

IF (CM. IS ZLR(ANI AM NT (,,;Att ll1HM 21 At)D M 'I .

Notice how AND and NOF are used to augment the two basic tests.

Because the tests are connected by AND, they both must be true for

A to be added to 1P.

Consider the following:

I! FB NT ZFRO OR AGF GPRATI' T ,A-jN 21) ADD (TO 1).

This time the logical operator OIR slwcifies Lhat C is to be added to

if either or both conditions are fulfilled.

NPT call Le used ill two ways with a simple relational condition:

in the relational-operator as in AOf N1 CRTAII'P, TPAN 21, or precedint,

the entire cond ition as in NWf AG1 GPE.\TIT, THAN 21 . A(;I. NO' CRtATIR

TITAN 21 and NOT A(L, (LATR TIC\N 21 are cxactly eq(jivalelt in

meamin-. If %CT precedes a simple relational condition that contains

N('I in the relational-operator, a double nevative rc..ults alnd causes

aM error.

1 1.1 .3 Other Condition 'tests:

6.19.4.3.1 Sign Test: The format of this test is:

1at a -name I~OIIE
arit h m etic-expressionj [N A LT IV [:

The sign test is also effectively a special case of relation

testing equivalent to testing whether an expression is GREATER TiAN,

LESS THAN, or EQUAL TO ZERO. The data-name must be a numeric value

that, if unsigned and not equal to zero is assumed to be positive.

The value zero is considered f-ither positive nor nepative. 1he

statement GROSS IS NIGATIVE is equivalent to GROSS IS LLSS 1lANV ;

GROSS IS POSITIVE is equivalent to GROSS IS GREALIR 'JiAN U. Any

condition that can be expressed as a sign condition can he expressed
as a simple relational condition; the sign condition is merely a

convenient way of expressing certain situations.

6.19.4.3.2 Class Test: The format of this tes- is:

IF data-name IS [Cl] INUM ERIC t.ArPi iA B 'f I (I

The data-name must be defined in the IIATA DIVISIGN as

IiSAGI:)SPIAY. Talble 1) lists cases where the claiss test is valid

and meaning(1, of the results.

,.1 9.4.!3. Coniarisci of N.umeric Items: Ior nulneric items a

relation test determines that the value of one of several items is

less than, equal to, or greater than the others, regaruless of tiea

CH It 11. Numeric items are compared alebraically after alignment of

1;,;)1 points. Zero is considered a unique value regardless of

Table 9. Valid Class Tests

P I TUR E

'lu s t May
Contain Cont a in A1 owable (ha rac ters Va I i d est s Meanin

A Alphabetic (A-Z and ttC\ (] ALPhIA- (Not) only
space) bLT IC characters

A-Z and
space appear

[N(T] ALPIIA- (Not) only

A 9 X B (Alphanumeric (an), BE IC characters
X A9 5 0(character) A-Z and

space aplear

[NYI] j,. U LP- (Not) only
I C: characters

-9ap:)C ar

S 9 0 X P' Zoned decintal with NOTJ NUMLB- (Not.) onl
operational sign IC charactcrt

0-9 appear
in a I I pos-
itioln, which
can contain
zone bit.

9 0 V P' Zoned deciiial with- [N(IJ NUMIR- (Not) only
out siln IC characters

U-o appear.
___________________________________ ___ ___________________________

I b UI

length, sign, or implied decimal-point location of an item.

o.11).3.4 Comparison of Non-Numeric Items: For non-numeric items

a comparison determines that one of the items is less than, equal to

or greater than the other with respect to thle biinary collating' sequence

* of characters in tile ASCI I character set. If tile lion-numeric items

are of equal. length, tile comparison proceeds by comparing characters

in corresponding character positions starting from the high-order

Position and continuinm- until either a pair of unequal characters or

thle low-order position of the item is compared'. If tile non-numeric

items are of unequal lengpth, comparison proceeds us diescribec, for

items of equal length. If this proLess exhausts tile characters of tile

Shorter itemt, the shorter item is less thant the longer unless t e

remainder of the longer item consists solely- of spaces, in whiich case

thle items are equal.

[able 10 indicates characteristics of tile compared iteims andi tile

type oi- comparison tm-ade.

0. lP.4 1.4 Condlitiunal Statements xitii lxcelt ioi iralcics: tile

format of these statements is,

AlLIO
INV7LII) iw1;Y fmperative-statementsi

'fie RAI., ~i'~ii , ~ii RI.bPii., lI;L~i jDji , SUDIRACI , JUl 'IIIi

iiiu I I I,)]. verb-ls si. c iI), tuc ec.\ cp t jon I)ra I I! as (: tIaer an o Ij) tio L a i or

;Ia i (It I i rckl panr o!_ ti 1 t L;t L-111CI)lt . hdlici tile cX.Cclt tiln i)ralichi is presenit,

Lic c-I4 ill,jj()scI kuiia L i t is j~ri Lten is COWsiucred2L LO 6C a coiii Lioni-

al statement. Norniiahly, control bypasses thle exception branch to the

101

Table 10 Permissible Comparisons

Item Characteristics GR X NI)

Croup Item GCR A A A

Alphabetic,
Alphanumeric,and Edited X A A A

Numeric Display NI) A A 9

A. Alphanumeric or byte comparison, byte-by-byte from left to
right.

9. Numeric comparison.

first statement in the next sentence or the first statement beyond tl(

next ELSE (within an IF statement), but when the exception condition is

met, control is ,iven to the i:pcrative-statement followin , thte "I

INM), I, X'ALI II KFY, or SIZE LRROJ,. None of the sta teients uy, to the

next period or lPF (within ai 11 statement) may be o conditional

Statement: thus "nestin.," of exception branches is not allowed.

o. 19...5 Nested Conditionl Statements: 'hC If stater' t 11i1,v

*iavc coniiitional statements ill cithier of' te w r;jnchcs tai,,li bccausc

of the outcorle of the condition test. PtirtiherMore , tie coditionaIl

statement can he another IF, thus it is possible to "nest" IFs (in

other vnrds, Ifs nav be contained within Is). ,cfer to the "I1.

'tltec lclt" discussion (Secti en ,.1).,,.1)

1 (2

(6.19.5 Tnnut/(Output Statements:

0.19.5.1 OPEN Statement: The general format of this statement

is:

OP EN [I1 NPU'1 rfilc-name] . .

[O(tITFUJT [file-name] .]

[kXTLINDIf ile-name] . ..

(1-0 [file-name]...

The OPEN statement initiates processing of the files named in

the statement.

Cne of the INPUT, (UTPUT, LXTLNID or 1-0 options must be specifi-

ed. The 1-0 option pertains only to files on direct access media

used when A'(hiSS IS P'NUDOI is specified.

The IXTEND option means that the file is to be opened for output

and that new records are to be added after the last record currently

in the file.

An OPEN statement must be executed prior to any other input/

output statement. A second OPEN statement for a given file cannot

be executed prior to the execution of a CLOSt statement for that file.

The O'PEN statement itself does not obtain or dispatch data; a RLAD or

h'RIT: statement must execute to obtain or release, respectively, the

first data record.

0.19.5.2 START Statement: The START statement provides a means

for io7 ;Cal vositioninc within an indexed file for subsequent sequen-

tial retrieval of records.

163

Format:

1: ITA 1, TO

STARZT file-name [KhY IS GREATER, THAN data-name]

N OT
1

TIA N

INVALIt) KEY imperative-statement]

When the SI ART statement is executed, the associated f ile must

be op~en in INPUT or I-C mode.

File-name must name an indexed file with sequential or dyniamic

access. Vile-name must be defined in ain P) entry in the Diata Dlivision.

When the K"EY option is not specified, the F(OUAL T(relational

operator is implied. When the STPRT statement is executed, the EQUAL

IT comparison is made between the current value in the RECORD) KLY and

the correspondin(o key field in the file's records. The Current Record

Pointer is positioned to the logical record in the file whose Key

field satisfies the coinparisom.

When the KLY opt ion is specified, data -name may be either:

- The P.ICold) KE:Y for this file, or

- Aniy aiphanume ic dat a it em suho rd in atc to tne IL EC'. 'R

1 h4

KEY whose leftmost character position corresponds to the leftmost

character position of the R.CcORD KI-Y (that is, a generic key).

When tile START statement is executed, the comparison specified

in the KFY relational operator is made between data-name and the key

field in the file's records. The Current Record Pointer is position-

ed to the first logical record in the file whose key field satisfies

tile comparison.

If the comparison is not satisfied by any record in the file, an

INVALID KEY condition exists, and the position of the Current Record

Pointer is undefined.

6.19.5.3 REAl) Statement: For sequential access, the READ state-

ment makes available the next logical record from file. For random

access, the READ statement makes available a specified record from a

file.

The formats of this statement are:

Format 1:

I.AID f ie-name [NLXT] RECORD [INTO identifier]

[AT lND imperative-statement]

Format 2:

RIAL) file-name RIC(ORD [INTO identifiej; INVALID KEY

imperat iye-statement

Functions of the REA) verb are:

I03

1. Sequential file processing (Format 1) makes available the

next logical record from an input file and allows execution of a

specified series of imperative-statements when the end-of-file is

detected.

2. Random file processing (Format 2) makes available a specific

record from an indexed file and allows execution of a specified

series of imperative-statements if the contents of the associated

RECORD KLY data item are found to bL invalid.

When the R1LA1) statement is executed, the associated file must be

open in INPUT or I- c mocie.

File-name must be defined in an Fl) entry in the hata livision.

Format 1: W,'hen ACCESS NIOI)l SlIJQIFN'fIAI is specified or assumed

for a file, this format must be used. For such files the statem;ient

makes available tile next lopical record from the file. I-or indexed

files, the NEXT option need not be specified; for sequential files,

the NFXT option must not be specified.

"-ii., AC(SS M D.1 1)YNAM!IC is specified for indexed files, the

NIXT option must bb specif:ed for sequential retrieval. For such

files, tile A xl:X'I statement makes available the next lovical re-

cord from the file.

before i Iorzmat 1 kLAij statement is executed, tiie Current l,ecord

Pointer must be positioned by the successful prior execution of an

OPEN, SIARI, or ki:Ab) statement. Mien the Format 1 RLA) statement is

executed the record indicated b)y, the Current kecord Pointer is lia e

available. For sequential files, the next record is tie succecdiniu

Io (

record in logical sequence. For a sequentially acccsseu indexed

file, the next record is that one having, tile next hither RLCORD KEY

in collatiing sequence.

Format 2: This format must be used for indexed files in random

access mode, and for random record retrieval in the dynamic access

mode.

Execution of a Format 2 READ statement causes the value in tile

R- T(RI) KLY to be compared with the values containea in tie correspond-

in.g key field in the file's records until a record having an equal

value is found. Tihe Current Pecord Pointer is positioned to this

record, which is then made available.

If no record can be so identified, an INVALID KEY condition

exists, and execution of the RI.AD statement is unsuccessful.

Immediately following execution of a REAI) statement, the next

lo.ical record ill the file is accessible in the logical record area

associated with the file as defined by the Record Description entry.

%',hen multiple record descriptions follow a File Description (FiJ)

entry, it is the responsibility of the programnier to recognize which

record is present in the area at any given time. The record is avail-

able in the logical record area until another RLAD statement or a

L.OSt- statement for that file is executed.

The INTO option is equivalent to a PTIIAI) statement followed hy a

\WIkV, amd results in the record obtained by execution of tile RFAI)

becoming va il;mble in both the record area for the file and in tile

location indicated by the identifier. The record is moved from the

1b7

record area into the identifier in accordance with the rules for the

MOVI statement.

In the case where the file contains records of vary ing len!,ths,

the size of the lonest record is assumed for the input record for

the purnose of executing the M(VE.

IIie AT LIN) clause is required for files that are accessed se-

quentially. The statements introduced by this clause are executed

when eni-of-file is encountered.

For files with SEOUENTIAL organization, when the AT LNlD conditioh

has been recognized, a RlA) statement for this file must not be exe-

cuted until a successful CL'SE statement followed by a successful

OPLN statement iras been executed for this file.

For files with INI..XEI) organization, when the AT ENI) condition

is recoqnized, a Format 1 READ statement for this file must not be

executed until one of the folloi, in, has been successfully executed

- A CLOPSL statement followed by an (11111N statement

- A Format 2 RIAl) statement (dynamic access)

- A START statement

The INVALIo KEY clause must be written for files for which At.LmSS

IS RANI)i is specified. Inc imperative-statemeits are executed if a

record corresponding, to the contents of the ,E.IW KIY cnnot be

located in the file.

The contents of the ZI.CCRI) K;Y data item must be appropriately

established prior to execution of the RI:AD statement itself.

I ox5

6.19.5.4 WRITE Statement: The formats of this statement are:

Format 1:

WRITE record-name [RU(1 identifier-i] jR ADVANCING
AP FI 7LR

identifier-2 Lj]S

Format 2:

INR1Tt record-name [VI identifier-i] ; INVALID KEY

imperative statement

The WRITE statement releases a logical record to an output file.

For random access files the statement also allows execution of a

specified series of imperative-statements if the contents of the

associated RECZCR) KEY data item are found invalid.

An ('PIN OUTPUTI, (PE, EXTEND, or ,PLN INPUT-OUTPUT must be execut-

Lcc)cfore a h'RITf statement can be executed for a file. On1ce the

WRITE is executed there is no guarantee that the logical record re-

leasei thereby still exists in the logical record area for the file.

A hI'I11. statement bearing the FRO option is equivalent to a AeVt

identifier-1 "'O record-name statement followed 1,y 'WR'ITE record-name.

',lovin,, takcs place in accordance with rules for the IVE: statement.

format I relates to files opened for sequential access. 'file

AIkV.\',(ING(option applies to files containing output destined to be

printed. Integer-1 should be an unsi.gned integer, and identifier-2,

1 09

similarly, shoula contain a non-negative integer. The line is print-

ed BLFORL or AFdTR. the specified number of lines is spaccd.

Format 2 is used for mass storage files. Statements following

the IN'AIII) MLY clause are executed when:

I. No space exists Oil the file liledil to accO mmo atc tic rcori.

The file is open for (,UTPIT or I-(I ano a record correspond-

ing to tile contcts of tile RIXI(RD KILY alreadly exists in the file.

o.19.5.5 R]JiRITL Statement: The format of this statencmt is:

kiA~k Lf record-name [FROM identifier-1] ; I\ A1,11) Ii

illjerative-statcren t.

ihi: i\LLhIii statement ru.writes a previously read io., ical rccord

to t Lt output f-i I.. "I~ c statcmeiC)t also ailows Cxccutiol oi- s1 jucl, i-

C", scrics or iii, r'?t i c-_ta telc tit " tic conTtunts o1 ti- c JL s C iatld

I7('+ I,Y . a tla itc l arc foulnd i ova ia.

,, LTL I - (i Ist l(executcd Lic orv a RL:1,R111 statement can he

executed for a file. Once the RIkiITL is executed there is no uar-

antee that the loic;il record rewritten still exists in the logical

record area for the file.

The st ,teinents followini, the INVA.I FLY clause are executed whe

the record correspondinQ to the contents nf the PIA'I(RD ktlY clause Was

not previously rcju.

0.11.5.0 I11,1,11 St temlenlt: The iormli t of tnis staitei,(',t is:

K)TIl I ti it-name;] \,,\ I. I P ie am Ci ,e-:;t tueci

iI-

The 011:11T]: statement deletes a 10.ical record from the output

F i1 . The statement also allows execution of n specified series of

i, ;erativc-statemcnts if the contents of the associated RtICOPJ) KIY

data item are found invalid.

An OPEN I-0 must he executed before a M)E1FTE statement can he

cxecuted for a file.

The statements followini- the INVALI) KFY clause are executed

when tro record corrcsnondin(, to the contents of the RIC(UTI) KEY

clause is not found in the filc.

0.19.5.7 CLOSE Statement: The format of this statement is:

[I f i1- m [1 V LI ET 1 .

The CLOSE statement terminates the nrocessin' of files. iixecu-

tion of a CLOSIE statement causes the standard closing procedures te

be carried out on the file named. An OPPEN statement must be executed

before a CLOSE can be honored for a file; once closed, a file may not

be referenced a vain until another OPIN statement is executed for that

file.

If the PIIUFT I option is specificd, all records in the file will

he deleted.

0. 19. 5. AC((I-PlI Statement: The format of this statement is:

A,((I 'PT identifier-1 I identifier-2 I

11e AC(CAifT' stat T"ent specifics acceptance of data from the CRT.

It is normally used to read unprotected (RT fields.

171

The identifier mfus t he all Ulne(i tei Dl SPL \Y dAata it en; or 2 ("r0,1

item. R% efer to the ccratti(,,ns manu-al f1Or ad i t jonll in format ,It 1 1,cn

rcadindo 1TrotOC ted f iCd 1ci 01s11o thle CRT1

1). .9 l)ISPI.AY Statement: [he formaI.t of this statemencit i

is A Jidcnti Fier- I+ idlnt ii er-_

1 literal-i I Pitural-2

'llhe D)ISP LAY st atement enlahles; data to Ihe writ ten to tile (:Rl.

1.iten a DISPLAY statemient contains, iio(re thanr one operanu, tne cliar-

acters LOT1prisin'' the items namedI and any literals speci fied il ttoe

statement ,ire d slvucoilsecut ively', with no spoacs hetiwoen cna~r

a cters unlIe ss s; ec ifC i ed

Pnv rem~ain in'' 151 t ionS, an a I io aI Zt t1IeCI 01,1O the dataI t r aP

fer are left unkchanf cd. Any nu!!her olf literail s or 10t a names; :nA he

specif i ed. lie dat a -lnamel May' ie that ol a ' rouli o'r an cl events,ir\

item7 and may also he sSLiL jjted. I ittr ml inl a iISPLA), staIteenult

may he numleric or- noni-nullri 1ic 1111\ !)(' Ne a eXadecipil Crnnstant to

smnecif'y Cli or jeld attrilaitcs.

F hi ,I,) Y II' c I IN

o . 1 o. AR 'I uINTlI IU t. atot emenITt S 1,11L ha S i c a r It !,wt I c J-.: ; I 1n 0 1) I

q nec ied Vth c 'ou r vecrb s AL)',t I I RA(I "It VdI IIPI ,l .. n lI '1

0. 1'. I ,I , for " r It 11iln t i c \V'c ri'S: 0 1 I ii t'h:

mu los aipr'Iv to r) I I r i thmet ic k-erbs

17~

7 Ar- A 0 6EORGIA INST OF TECH ATLANTA SCHOOL OF ELECTRICAL EN-ETC F/6 9/2
FEASIBILITY OF IMPLEMENTING MULTICOMMANO SOFTWARE FUNTIONS-ETC(U)

OCT 79 T P BARNEIL, J L HAMMOND. J H SCHLAG OAA629-78-C-0139
WICLASSIFIE D ARO-15900.I-A-EL PM.

Ol///////
-E||h|hEE|hEEI-E/EEEEEEEEE
im/ll///mu

-Eu..'.--

1. All literals specified in arithmetic statements must be

numeric.

An identifier used in an arithmetic statement must be an

elementary item and must be numeric.

2. The maximum size of an operand is 15 decimal digits. If tie

entry for an operand in the DATA DIVISION specifies a size greater

than 15 digits or if a literal contains more than 15 digits, an error

is indicated at compilation time.

3. The items in an arithmetic statement may be mixed sizes as

Ion, as they are all numeric. Any necessary decimal-point alignment

is supplied automatically throughout computations.

4. No item used in computations may contain editing symbols.

If such an item is used, a compilation-time diagnostic results. (per-

ational signs and assumed decimal points are not editing symbols. An

item used to receive results may contain editing symbols if it is not

used in subsequent computations as an operant. When an item used to

receive results contains editing symbols, the result is edited accord-

inp to editing specifications before it is moved to the item.

I<OINDEID, GIVING and SIZE ERROR options apply to all arithmetic

statements.

0.19.6.2 GIVING (ption: If the GIVING option is written, the

value of the identifier that follows the word GIVING is made equal to

the calculated result of the arithmetic operation.

If the GIVINC option is not written, each operand following the

words TO, FR(1I, FY, and INTO in the ADD, SUBTRACT, MULTIPLY, ana

173

*

DIVIDL statements, respectively, must be an identifier (not a literal

Each identifier is used in the computation, and also receives the

result.

6.19.6.3 i(.UjNVLD1 Option: If the ROUNVLD option is not specified,

truncation occurs when the number of places calculated (after decimal

-point alignment) for the result is greater than the number of places

in the data item that is to be set equal to the calculated result.

,i en the ROLJNDLo option is specified, the least significant uigit of

the resultant data-name increases in value by 1 whenever the most

significant digit of tile excess is greater thian or equal to 5.

Rounding of a computed negative result is performed by rounding

the absolute value of the computed result and then naking the final

result negative.

Table 11 illustrates the relationship between a calculated result

and the value stored in an item that is to receive tie calculated

result.

0.19.6.4 SIZE Lki(OR Option: An arithmetic statement, if written

with a SIZE LRhiOtk option, is not an imperative-statement. Rather,

it is a conditional statement and is prohibited in contexts wiere only

irperativc-statcments are allowed.

;henever tnLe humber of inte,,er places ii the cai:iilatcu result

exceeds the iiumber of integer places specified for the resultant item,

a size error conuition arises. If the SIZE LRRtR optiont is specifieu

and a size error condition arises, the value of the resultant item is

not altered and the series of imperative-statements specified for the

174

Table 11. Rounding or Truncation of Calculations

CAL(ULATED VALUE AFTER VALUE AFTER
F RESULT P I CTURL ROUNDING TRUNCATING

12.36 $99V9 -12.4 -12.3

8.432 9V9 8.4 8.4

' 35.6 99V9 35.6 35.6

65.6 99V 66 65

0.0055 V999 0.006 0.005

condition is executed.

If the SIZE EIROR option is not specified and a size error con-

dition arises, no assumption should be made about the correctness of

the final result even though the program flow is not interrupted.

- 0.19.0.5 A)) Statement: The formats of this statement are:

Format I:

ADD Yidentifier- r[identifier-21
literal-1 P literal-2 J . . . , identifier-n

[POUNEI] [ON SIZE EP.ROI imperative-statenent]

Y:orinat 2:

Aid fdontifrer-i r4 identifier-
Sliteral-I literal-2 . . . TC identifier-m

°IJ [N SI LT11ROR imperative-sttement]

175

4.

Format 3:

AD____tiie- identif'icr-21 i dentifier-3
AIl tl f i - [literal-2 [literal-3]

G TV I N'I identif17ier-n ROUNII)] [ON SIZE LICR imperat ive-
statement]

The ADD statement sums the values of two or more numeric items

and/or literals and sets one or several items equal to the resultant

value. Operands used in an PD)1 statement must conform to "Pules for

Arithmetic Verbs" (Section 6.19.6.1) in addition to specific rules

applyinq to this individual statement. Use of the S1Z ERROR and

ROUNDI)D options is also discussed in the referenced paragraph.

When Format 1 is used the values of all the operands including'

identifier-n are added to,.(ether and the result is stored as the new

value of identifier-n, the resultant-identifier.

Examp le: Given the statement AIDI) A, B, C, the values of A, b

and C before and after execution are:

A B C

before 5 6 3

After 5 (19

Note that the value of A and B do not change as the result of

the addition.

Format 2 adds the values of the operands (identifier-I or literal-

1 and identifier-2 or literal-2) preceding the reserved word TO,

and this intermediate result is added to the data items specified by

identifier-m, identifier-n, etc.

170

Ixample: Given the statement ADD W, X, Y to Z, the values of
W, X, Y and Z before and after execution are:

X Y z

Pefore 2 7 8 12

After 2 7 8 29

Note that the value of all operands participates in the addition.

Format 3 adds the values of the operands (identifier-l or liter-

al-i and identifier-2 or literal-2, etc.) precedinf, the reserved word

CIVING, and this intermediate result is placed in identifier-m, iden-

tifier-n, etc.

ixample: Given the statement ADD A, 1,, C, GIVING D, the values

of A, B, C, and I) before and after execution are:

* A P3 C D

Before 1 2 3 5

IN After 1 2 3 b

Note that the intermediate result replaces the value of 1) and is

not added to D.

6.19.6.6 SUBTRA(T Statement: The formats of this statement are:

Format 1:

SUBITRAT ~dentifier-lF identifier1jli teral-1 literal-2

FR(I idcntifier-n [R(UNDII] [UN SIZI iRROR imperative-

statemecnt]

177

Format 2.:

SUBTRACT [identifier-fI identifier- 2F 11 OMU

literal-1 literal-2

identifier-. GIVING identifier-n [ROULNIAL]

literal-m I

[ON SIZE IRROR imperative-statement]

The SIIPTITA(I' statement subtracts the value of a numeric iten,

from another item and stores the result in a third item.

Format 1 subtracts the operands preceding the word FROM from

identifier-m placing the result in identifier-rm.

Format 2 subtracts the operands preceding the word FROM from

identifier-m (literal-m) without changing the contents of identifier-

m, placing the result in the item following GIVING.

A

Examnle: Given the statement SUBTRACT A FRC61 1; G;IVING C' the

values of the operands before and after execution are:

A B C

Before 10 80 90

After 10 8 70

U.19.0.7 M.IUI1iPLY Statement: The formats of this statement are:

Format 1:

IIIITIPJN fidentifier- IY identifier-2 [RTlJNIi,]

Oiteral-1

* I [ON SIZL ERROR imperative-statement]

178

Format 2:

MULTIPLY fidentifier- BY identifier- 2 GIVING
!lliteral-1 literal-2

identifier-3 rRONDED]

The MULTIPLY statement can be used to multinly two items with

the value of a third item bein- set to the product. Operands used in

a MU.TIPLY statement must conform to "Rules for Arithmetic Verbs",

(Section 6.19.6.1), in which the SIZE ERROR and OUNIJDEID options are

also discussed.

Format I allows the multiplicand (identifier-1 or literal-l) to

be multiplied by the multiplier (identifier-2) and the value of

identifier-2 to be set to the product. A literal cannot be used in

place of identifier-2.

Example: Given the statement MULTIPLY A BY b the values of the

operands before and after execution are:

A B

Before 10 20

After 10 200

Note that the values of operand B chane to reflect the multiplication.

Format 2 allows the multiplicand (identifier-1 or literal-l) to

be multiplied by the multiplier (identifier-2 or literal-2).

Example: Given the statement MULTIPLY A I-Y L GIVING C the values

1 of th~e operands before anu after execution are:

179

A C

Before 5 10 20

After 5 10 50

Note that the values of operands A and 13 remain the same, while the

value of operand C changes.

6.19.6.8 DIVIDL Statement: The formats of this statement ;ire:

Format 1:

DIVIIDE identifier-ll INTO identifier-2 k,0OUNDiD3

' {fliteral-i1

[N SIE iL LRlR imperat ive-statement]

Format 2:

DIIDE~ fident ifier- I INTO identifie r-2 G I V 1ING

Iliteral-i1 Uiteral-2

identifier-3 [I RCUNi)I l [ON SIZI LRIZP imperative-statement]

Format 3:

DIVIlDL identifier- 1 BY identifier-2 GIVING

Iliteral-i lIiteral-2

identi fier-3 [ROINDLDj [ON SI ZE LRROR imperative-statement]

"rhe I)IVII)I. statement divides the value of one numeric item into

the value of one or more numeric items anu sets the value of one or

more items to the quotient. Operands used in a IIVI1)L statement must

conform to "Rules for Arithmetic Verbs", Section (.l.t.l, in audition

to specific rules applying only to this individual statement. Use of

I ,; C

the SIZE ERROR and R(IJNII) options is also discussed in tile reference

parag raph.

Format 1 allows one division, with the quotients stored as tile

value of tile item follo iqi, INI'l. The dividend (idetifier-.) divided

b1v the divisor (identifier-1 or literal-I) and tile value of the

dividend set to the value of the associated quotient. literals

cannot be used in place of identifiers-2. The size error condition

results when the divisor is zero or the quotient contains more integer

positions than are available.

Example: Given the statement DIVID1- A INIC b the values of tile

operands before and after execution are:

A I

Be fore 5 i0

After s 2

Format 2 allows the sing, le quotient resulting from a division to

be stored in a third item. If Format 2 is used, the dividend (ident-

ifier-2 or literal-2) is divided by the divisor (identifier-l or

literal-i), and the value of the resultant quotient becomes the new

value of identifiers-3.

Examp le: Given the statement D)IVIDFI. A INTO t" GIVING C the values

of the operands before and after execution are:

A C

1' fore IV IS

After 5 1 0 2

18

1

(: 'i'l~ ''2li1- ic .'fl1 I - I; J I "I I,(if -

"] ','--] ' .

....... "

The types of MOVL statements are discussed in the following

parapraphs.

6.19.7.1.1 Alphanumeric Moves: Source data is stored

left-justified in the reccivinQ area. If tne receiving area is not

Collpletely filled by data, rpni i ositiuns arc filled ivitii

spaces. If the receiv in- i t em is I phalet ic, it is trcated as alpha-

numeric.

Lx amp les :* itlL l d.l of
Source Data Kecei~v~i' Item Ieceiving' Item

A! h IC IF 7 1A(4) or X(4) t' S C

AI 1, C 1 :1:] AtS) or X(S) [A h, c 7 TT1

1A 'ILICIj a 1 2 13 X(8) A hC 1) 111 2 131a_

1 2 ~ X(8) 12 3AAAA

. DA(3) or X(3) E!

If the receiving item is alphanumeric, the literal may be

any literal or figurative-constant. If tie figurative-constant takes

the form of ALL any-literal, the literal must be enclosed in quotation

marks and is considered an alphanumeric item. Ine size of an AL.L

any-literal item is determined by the size of the receiving item, iiti

characters repeated from left to right.

Ixamplcs:
P C'l HIRI, of

Source o ata KccuiviI IL cie ixceivi nc I tem
'A,AC ' X (4 A I i; I iL

183

------- ------ ------

7f7!.CT J-1-

I:ditin occurs after decimal point alif'nnent. IFitin:, symbols in
ti~v receivino item (ctirreacv si ns, commas, etc.), make this item

alphanumeric; ifI it is subsequently referenced as a source item in

a M()" statement, it is moved in accordance with the rules for

* alphanumeric items.
*I

Exaniples :

PILCTIRI of
Source ioata Receiving Item Receiving, Item

4I1l "**9.99 1 1 2 13. 4l.1

12 EE 4 5 999.9 L11 23.4

.99 *) 0.12

If the receiving item is numeric or numeric edited, the

literal can be any numeric literal The point location and size of

the literal. are determined by the actual literal in the source

statement. Further examples of editintg are i iven in "PI(:TURI Clause"

tinder "DN'A DIVISION Structure" in Section 6.13.b. l1.

Examples:

PICTURE of

Source lata Receivin, Item Receivinq Item
+1.23 $9V99[1 2 3

+1.23 S9V9 12

123 9(s) l 1

+137 'S 1)99%,11 71 l.Z I7 1
i)3737.3 7***() , 1 7

18 S

1 1 1 l e 1 2 c r J(.

1 -jJ

I- Q U;A

* ~C :: t& :i1 1l

-- - --- -. - - ~ ---

I, I t- C

THIS PAGkE LS 6-'31 QUALIT~XfA(UCAI

Identifier-1 must reference either a group item or any category

of an elementary item, described imnlicitly or explicitly as USAGE

IS D)ISPLAY. Identifier-2 throu-jh identifier-3 must reference a one

- byte elementary alphabetic, alphanumeric, or numeric item described

implicitly or explicitly as USAGE IS DISPLAY. Literals must be non-

numeric and may be any figurative constant except ALL.

Rules Applicable to All Formats: Inspection begins at the

* leftmost nosition of the data referenced by identifier-i, regardless

, of its class, and proceeds on a character-by-character basis to the

riqhtmost character position. The contents of the data item referenced

by identifier-1 is treated subject to whether the identifier is

discribed as alphanumeric, unsipned numeric, or si-ned numeric:

1. Alphanumeric - identifier treated as a character strin'.

2. Unsigned numeric - inspected as though it had been redefined

as alphanumeric and the INSPECT statement had been written to reference

the redefined data.

3. Signed numeric - inspected as though the data item had been

moved to an unsi.,neu numeric data item of the same length, subject

to the rules set forth above.

4. The rules for replacement are as follows:

a. When literal-I is a figurative-constant, each character

in the data referenced bv identifier-1 that is equal to the figiurative-

constant is renlaced by the single character referenced by literal-2

or identifier-5.

b. I'hen literal-2 is a f i)urat ive-constant , each character

1S7

17 T c tC 1 I' v t tI- I ' ! ~ * -I..

IC~~~~~~~~~~L '17 1V o~ 11

C IC. &I '. 1 C 17 i~t''.t1 t I. i' I~ c tj,,, . uli

*~m I 7 -W . - -

are executed

1. GO TO permanently releases control to the first statement

in the procedure named.

2. PEIJ(FOR causes statements in a remote procedure to be

executed and control returns to the statement followin2 the PI:.RFC-R .

3. ST(P allows tihe program to terminate in an orderly manner.

4. IF causes control to branch into either a "true" or "false"

path, depending on the outcome of a condition test written in the

prorwi. The paths rejoin at the beginning of the next sentence

unless a GO TO branch is used in one or both paths.

5. EXIT merely declares that the paragraph in which it is

contained is a transfer point that may be referenced by other sequence

control statements.

(1.19.8.I Normal Sequence Control: "Ihe starting location for

the program is at the first statement of the PROCII)URL DIVISION.

(ontrol then proceeds to subsequent successive statements until the

end of the paragraph or section is reached. Unless the paragraph or

section is executed under control of a PERFORM statement, control

then passes to the first statement in the next paragraph or section.

Execution of a sequence control statement, of course, alters tne

normal sequence of coj)trol.

6.19.8.2 Go To Statement: The format of this statement is:

Format 1:

;o To [procedure-name-i]

i ;

* I

J

I'

. ri, *
.!.''r(r

*

,

~

lx.

.
I

.

I.

I -
- S -

TMtS E~AG1 ~S ~ST QUALI~ PL~TLC~~

passes to the next statement following the GO TO statement. A

maximum of 16 procedure-names may be used in one GO TO statement.

Example:

GO TO FEDERAL-TAX, STATE-TAX, LOCAL-TAX DLPENDING ON GROSS-

SALARY-CODE.

6.19.8.3 PERFORM Statement: The formats of this statement are:

Format 1:

PERFORM procedure-name-1 [THIRU procedure-name-2

Format 2

PERFORM procedure-name-1 [THRU procedure-name-2

fidentifier- T TI MES

integer-I J

Format 3:

PERFORpM procedure-name-1 THtRU procedure-name-21

UNTIL condition-1

Format 4:

PERFORM procedure-name-i [TIRU procedure-name-2 VARYING
ndex-name-I FR4 "index-name-2 BY identifier-3

dentifier- - identifier-2 I iteral-3
literal-2

UNTIL condition-1

AFTER index-name-41 FROM index-name-S BYL fdenifir~4 ~ itfer-5dentifier-4 dcn
1literal-5

191

,AI'fl index-iiamc- 71 idx IOX n -8,1M

(e t r a l c r -

identifier- UNI1 condition-3J

The P1k RFOIN statement causes a departure and retUrn ron 10m 1

* rrocedures ecxcult ionJ to anlotheri part oi- 1:11C tryra Uo~tCJ 1

7iore pioc~lirrs-. hese nro, P ie r xct!arecleorVin-1 o 01-

6"'r of tie oi-I wi 1t ii I SPO spe i ie cond(i I i on 15 s at 1 si- cd , I ;r c ,:

normal TroCClI c, Y' >it ion i05111C'5 In O -tIsp t t :

V!1 n~ rov jI-les ;i ir-inch , x c c it i on (I-t-he Irjce~dure , isd a r,t i ri

10o tK 10 l0v c-i' I x !,Co-,mcat S 1-11 canc isL,, , 'au , hu11t t ijOc 1 nt-He.r "

c~ecut l0i.s i s colit IF, 'Cl.Z lwni a condit ionl control led andu tc-to: bY

jthe '-taterlev~t '~I u tI!(PihJ l~i 'tzlte!leIt eri it s relet it ixe

*execut ion or loop i n 11,11 si n lon s tote'-enl ; thait :s, 1 t 1 1 1t 1 .1-

andi ma inta in,. Ioopw cmi terion (V '!TiabeI C), teCS ts' t h c ri t cr i oi :i i hi Tl-

torr,, oncemat i oii

'[hO returi, [point for the PJ:,!:P11 statemencit is determines iv

whether theio rocedure to which it [ranches is a par a" raph or st-ct ion.

M~ici-i the inistruct icins compi led from, a PI(i- Statcmcnit arL,~cit~

thcv transfer conjtrol1 to the I irst statement Of the spt..c i tict; :,] cc-

duire. Instruct Iu~that prnvide r-eturn to t lie sttmn ~o.i

PFRUCIRe-M are ;ct tin as, fol ov ',

I . I oTJrc- ar c-I rni ah -m mach- (n I F ll -i I5't F

n , ot c-'e C1 i, I t r o I ro P roI i i r Ir tI C, -. 1t a. t

THIS PAGE IS BEST QUALITY PRAC1CA~I I

mut~ cokY -J,!-J

the procedure-name-i paragraph.

2. If procedure-name-i is a section and a procedure-name-2 is

not specified, control is returned after the last statement of the

last paragraph of the procedure-name-I section.

9 3. If procedure-name-2 is specified and is a paragraph-name,

control is returned after the last statement of the procedure-nanie-2

paragraph.

4. If procedure-name-2 is specified and is a section-name, con-

trol is returned after the last statement of the last paragraph of

the procedure-name-2 section.

Note: The "last statement" referenced in each of the above

cases must not be an unconditional GO TO statement.

When procedure-name-2 is specified, the only required relation-

ship between procedure-name-I and procedure-name-2 is that of logical

sequence, that is, execution sequence must proceed from procedure-

name-i to the last statement of the procedure-name-2 paragraph or

section. GO TO statements and other PERFORM statements are permitted

between procedure-name-i and the last statement of procedure-name-2

provided that the sequence ultimately returns to the final statement

of procedure-name-2.

If the logic of a procedure requires a conditional branch prior

to the final sentence, the EXIT statement may be used to satisfy the

foregoing requirements. In this case, procedure-name-2 must be the

name of a paragraph consisting solely of the EXIT statement; all paths

must eventually lead to this point. (See the "EXIT Statement" discus-

196

sion, Section b.19. .9)

it is not necessairv for procedures to he referenced l), :i P I<;

statement before they can be executed. l'rocedlireN can also he 'xect-

ed in normal sequence from the precedin", statellment, in which case

return of control does not apply after execution of the last sentence

in a particular procedure.

b.19.8.4 "Nested" 1'J!i,F0)R'1 ,tatsment: If a sequence of state-

ments referred to by a PI:RFOROM statument includes another 1 l.I' VRX

Stntemuent, t he seqluence ot rrocedures associated uith the iclu(n!

, t it MJf W eitnicr trtally inclui ded i", or to, tally x-

t"i ,: ! r,)"i ti!,. (' 11c;1 -cq ence rutoerred w Iv the first PER} 04

I l > a i i , a ' ' I P itt t D11l who e e\ 'CW lr i o i o i T;t oea i 11 SN i

t h(r " : 0 1 i " ' 21 ust 11ot n vit ii Dithi7 i ts ra TiM t ii

exit t, tnt OF the her active PthOhIVI statement

. .. I IS (h lon" !n ori,-at 2, the procedure is ex ecut ed

revet jiiveiv a crt i iumiter oftimes . '1e 1,0 nn1 hey W, eN'7Ct10Pi or ';u!

h Speccified exl;iC tl ;I an inteer or implicitlv as tihe vitiv aie

S I C e T , t : 1 TV at 1 1 t C111

If a n ident i icr is u sed it iiay be of any numeric isa e, anid i t

ioiay ile suil- ri t . then tilis o tlon is i nlIued, a CouPt tr iS Sct

up; with a value equnl to the value f the identifier-! item or irtect!

I. ,efore each execut ion of the spec if ed procedure, the Chiter i5

tested to see if it is neqative or zero. If it is neither MqUei'Ht'ir

nor :pro, the proou re is (xec-utea and tre -a lie of the counter K'

ire'su.d o' one; h.':eii the a lie of the cou tur i nt t ive Or 7ert, IW,

:a)I

procedure is executed and the value of the counter decreased by one;

when the value of the counter is negative or zero, the procedure has

been executed the specific number of times and control transfers

to the statement following the PERFORM statement.

6.19.9.6 UNTIL Option: In Format 3, the number of times the

procedure is executed is dependent on the truth or falsity of a con-

dition (condition-l) rather than a stated value. Condition-i can be

any simple or compound conditional expression that is evaluated before

the specified procedure is executed. If it is found to be false, the

procedure is executed and the expression is evaluated again (values

of the items may be altered by execution of the procedure) and tested

for truth or falsity; this process is repeated until the conditional

expression is found to be true, at which point control transfers to

the statement following the PERFORM statement. If the conditional

expression is found to be true when the PERFORM statement is first

encountered, the specified procedure is not executed. (Refer to

"Conditional Statements", Section 6.19.4).

6.19.8.7 VARYING Option: In Format 4 the VARYING option makes

it possible to PERFORNI a procedure repetitively, increasing or de-

creasing the value of one to three data items once for each execution

until one to three conditional expressions are satisfied.

The flowcharts in Figure 6-3 illustrate the logic of the PERFORM

statement when one, two, or three identifiers are varied. Let

1. Each di represent an identifier or index-name.

2. Each 1i represent a literal.

19S

3. Each c, represent a condition.

4. Lach Pi represent a procedure-name.

-, m!xa)le: To help clarify use of the VAi<YING subscri ut-name

option, assume that a rate table is employed in a billing procedure

and that the tahle reouires periodic updatinp. This hypothetical

rate table is three-dimensional: divided into five regions, each o

which includes ten states, each of which contains rates t or twelve

cities. It is assumed fnrth;r that an annri riate rnte-updatini, n ro-

cedure is available elscwhere in the progrm Stuch -i procedure ri ,i,

eny oar as

RAiE- i I';.I \ . >Vif T W I IT 1 V I (; I(N , S'I' A , C ITY 1Y hiJIW -

FACTOR WV 7XG; RAI (RhlIOn, SlI'IL, IiY).

It is desired to execLte this IATL-UIl),,'i'IN(; procciurc once or

each (_ itv ot . eacm state in each reoion, usin,, the current rate tor a

,iveil city ind prodc ing an aujustd rate tor that cits . Acord im .

tie 'ro.tran'er employs a i'H<1UiTFU statement varyi , these itMs:

PHI 'l AI L.- UI' AI'IN(; V'A YINALC; LI ICN FROM, 1 YI)' 1 :I 1i , 1,1 i .X
IS (;PIATil I RAN 5 AYTLH STATE FROM 1 BY 1 UNTIL STAI'I Ii' I
11 AF'KIYR ITY tR(N I BY 1 UN'IIl. CITY IS GREAMLIZ TiI XK 12.

h;i~en t !' I K,1 PF is executed at object time, tie dAli -IIR1AI I

['roccdurc is executed for tie 1irst city ,. the fir.t St it?: 10 t; I
qirst region, then f1 o:1 the next city, etc. [he PllI (PM is c,,i Ict

%%ien the rocodl re is executed for the twelfth citv of tile tcnth

state of the W-F fth r i o , i V w ic, t i:ic the p roccdlirc L -C .

.\0 c t C {i t ii'l 0 .

190

S.Set

- d 10.1 (,..)

y "J (II

.
¢It

FIGURE 6.3 PERFORM Statement (VARYING, Option)

197

u* S.6 1AUP Statunemt *I nC i U 1lia a 1o t hS statuICli t ~

A, CP 1ie raj

Ine "T tatmentperanetlysuspends executionl of- tnc ot j oct

r 0' T': n V I UN.1 qenicratuv a ollI-of'-jr(oqvnn (.t to t~v loititc

i toi s t 12.i t or> I L (;I so II,. iit O

1 tera rI t 0 t\ 0 S

At i 5- ZI A ewnt cause a0 I I W. rI~u tv Scvouocos of 001 .L j i t C

1 i iwji o~jn w:>c the r th de Jscriptotn0 of w JKN covotic j,-

- r' I at

On o , u n 1yt1c ;t u C

t. _ . • - -_

The conditioii may be a simple conitiition as presented by the

format below or a compound condition as describeu under "Conditional

Statements", Section u.19.4. The format of a simp'le condition is:

GRL"ATER TCAN
fidentifier-I1 - - - identifier-Z2
literal- 1 IS [NOT] L LSS TIAN iliteral-2
formula-i 1U formula-2 I

EQUAL TOT dentifier-31 fl'SITIVF 1

iforinula-3 IS [NOT) 7R

[identifier-4] IS [NOT] NUMERIC

-ALPHABETIC

6.19.8.11 Evaluation of the Condition: The condition is evalua-

ted before any action is taken. If the condition is true, eituer

statement-1 or NFXT SENTENCE is executed. When NEXT SENTENCL is spe-

cified, control is transfered to the next sentence, and the ELSE part

of the statement is ignored. If the condition is false, either state-

ment-2 or NFXT SENTENCL is executed. Control is transferred to the

succeeding sentence when NEXT SENTENCE is specified. Statement-1 or

statement-2 may be a series of statements anI each may be terminated

by a period of ELSE.

6.19.8.12 Nested Conditional Statements: Statements-1 and -2

can he imperative-statements or imperative-statements followed by a

conditional statement. When either statement-1 or statement-2 or both

199

c onIIt a iI a coniditi olnal stat cmev-t ,tlic COniO t ioia1 st at e'lent I comles

ne0S ted. Nestedl cofld it i onn 1 sta t ement s m.a \ a Iso colita ill conid i t i cnn I

s tatemenlts S Nes ted con, I iti nn I stateent s are aina Ic mou s to t icc use

of mirentheses I or ccmbhininp subhordinate an thnct ic-exprress ions; so

that the exioress ions becomec part OF a lari'er ari thmet ic unit.

I. .13 1.1aluat ion of NICsted 11: Staitements: (mid il jiiol

state"Ients coalt P int' mi thi; con(!it ionaI st ;t events u ~ .it hin i V

vnstbecosidered as paiired ITV and cS cobntos trc ,d n

f-rom, left to ri oct . 'therefore , am, 1. 1 Phencountecrc-n ani i es to theic

!"' itei INreced in- TF that i s not a I read :p i red wit> a1 n I:A5!

In e'ssence , t; c number oi- occurrences c0, ILSE ini aiy coniina-!

Statceent maust cea t ot CI11 t'he jnumber of occiirrences 0f 11: re c less

ci thc c omp ICxKi t N cm a6d sv lie st in 1 t thel fo I x,11 cel t Ic()I

when P1-A1:- or NIWI SIINTl3N CI di rect ly precedes thte term inal or ou (-f

ai scoc c , Ithe cit ire phraise nay hec ojiittedl and tlic- perioi. s1,ecjfiutie

.1t to cna h e ;r e v ou s lr.-2 5 c Sil i-) jS Ct LteI i d to ic T;

setece, tc icach 1.1.81, thec assoc iaitcd statement is executeli

lilv mwnr tie colldi tiol:i Il express ion in the corresimondlins,]I V is ti o

to be f'alse. If there are miore IF-,; titan 1..IPS in a statemeint, it is

assumed that I1 .51 NX SNTAC.phae at the end of the senltfe;Jcc

r c- no, i t tLe d.

I:xarjjdL Li sentenice ini tile Foli in- para prapli conta ins twe

i TdenenC1dent nests SOf con1d itioa s I;tait e P)enits. Tie f irst nest ends

i fter thle statement PUMV(1k'I proccedu-nxime- t~ tie seconid nest Con)S i St

ci thvc remainder of tlic sentence and has an uip~li IJ -I d VI !AI 1., N.

before the period. Each upper-case letter of the alphabet corres-

* ponds to a conditional expression.

IF A IF B PERFORM procedure-name-l ELSE NEXT SENTENCE ELSE

IF C NEXT SENTENCE ELSE PERFORM

procedure-name-2 IF D PERFORM procedure-name-3 IF E PERFORM

procedure-name-4 IF F PERFORM procedure-name-3 ELSE PERFORM

procedure-name-6 ELSE STOP RUN.

6.19.9 Table-landlin' Statements: The structure of a table is de-

fined by the use of an OCCURS clause (refer to "OCCURS clause" Section

6.18.6.16). Entries in a table may be referenced by a subscript or

index, which identifies a particular element within a table.

Indexing has the advantage in efficiency that no address computa-

tion is involved; an index contains a direct pointer to an individual

element in a table rather than a mere occurrence number. The SET

* statement facilitates the correct setting of indexes.

The formats of the SET statement are:

Format 1:

SET index-name-11 TO index-name-2

tidentifier'll {identifier-2I

lteral- 1

Format 2:

SET index-name-3 UP BY identifier-3

DOWN BY (literal-2

201

The StT statement establishes reference points for table-handl-

ing operations by setting index-naimes associated with table elements.

All identifiers must he either index d,lta items or numeric elc-

mentarv items described without any positions to the rii,ht of toe

assumed decimal point, except that identifier-3 must not be an index

data item. M ien a literal is used, it must he a positive iiiteier.

* Index-names are considered related to a f!iven tablc and are defined

by specification in the INDLXED ,Y clause.

In Format 1 the following, action occurs:

1. Index-name-1 is set to a value corresponding to the same

occurrence number to which either index-name-2, identifier-2 or lit-

eral-1 corresponds. If identifier-2 is an index data item or it i JjU.'-

nlare-2 is rel at -d to) the same table as index-name-I , coliV,2ISiol

takes place.

2. If identifier-l is an index data item, it may be set equal

to either the contents of index-name-2 or identifier-2 where the

" latter is also an index data item; literal-l cannot be used.

S. If iden t if icr- 1 is not an index data item, it may be set

only to an occurrence number correspondin(, to the value of index-name-

- ; neither identifier-2 njr literal-I caN bc usc.

In I:ormat 2 the value of index-name-5 is incremented (P' 1')*) or

decrcrented (j)(.N bY) by a value ccrrespondin,, to the niumier ot

occurrences reOresented by the value of literal-2 or identifier-3.

2002

7. DISCUSSION 4 CONCLUSIONS

7.1 Design Conclusions

An examination of the variables in computer networks indicates

that these variables can be classified either as host-controlled re-

source variable5 or as network variables. Obviously, the former are

determined by the nature of the hosts and the latter by the nature

of the network.

Two distinctive aspects of distributed microcomputer networks

are the facts that the hosts, being microprocessors, can control

only one operation at a time and that packet-switching has been

chosen for the network. Further considerations for the monitor

system is the desire to require a minimal overhead for the monitor

system and to acquire it for a cost comparable to that of the (inex-

pensive) microcomputers.

* The review of the literature indicates that the quantities to

be measured for microcomputer networks can, in fact, be a subset of

the variables measured for larger networks and computers. A partic-

ular set of variables, which are felt to be sufficient, is listed

in Section 3.

With respect to measuring the desired variables, the host-con-

trolled resource variables can be measured in the same manner as de-

scribed in the literature for large computers with some simplification

due to the limited flexibility of microcomputer hosts. The problems

here are interfacing~ with specific equipment and achieving an iuite-

203

grated monitor system with convenient user access.

With respect to measuring network variables, there is limited

discussion in the literature of monitor systems for packet-switching

networks. Monitoring for the ARPANLIT is, of course, discussed in

considerable detail. This network, however, differs from those

i being considered in significant respects such as scale and age, to

mention only two. No monitoring system for recently designed packet-

switching mini or microcomputer networks was found discussed in the

literature.

, With this background, thc need was felt to adapt cxisting mon-

itor strategTies to the c aracteristics of distributed microcomputer

networks and des iin a comlete monitor system structure for such

networks. The dcsign is discussed in Section 3.

Tne low overhead tor the monitor systen is felt to be especiall,

attractive. The host-controlled resources are monitored without tie

use of software and hence, require no overhead. 'The use of the Two-

Port RAM's at cach node provides data on the ne.twork operation, alse

without overhead. The pickup packets, which probe packet delay and

convey information between the Monitor Stations and the Men niter Lon-

trol, are the only aspects of the monitor system which require over-

head. Such overhead is determined by the ratio or the number of

picku, packets to the total iumber of ,ackets in the network over

some reference time interval.

by processing data at each node ana storing, for example, his-

tograms or random variables, the need for frcquenit comnmiunicat io)

t.

between the Monitor Stations and Monitor Control is minimized. Thus,

the limiting factor in pickup packet overhead would seem to be the

frequency with which packet delays need to be sampled. This fre-

quency will, 'of course, depend on the use of the monitor system.

With respect to this point, it is likel, that packet delay will

* be of significant importance in studies for improving the network

design. On the other hand, in an operating network, where efficiency

is important, frequent measurement of packet delay may not be neces-

sary and hence the number of pickup packets can be kept small.

An implementation of the general monitor system design is given

in Section 4. The implementation is chosen to be compatible with

* the AIRMICS/GEORGIA TECH Experimental Network and thus it has the

potential of being used with that network. This point is discussed

in Section 4.3.

An example of a typical use of the distributed microcomputer

network is formulated in Section 4.2. For this example, the monitor

system is studied on a step-by-step basis. As indicated by detailed

activity tables in Appendix A, the proposed monitor system can ap-

parently function properly for this test case.

7. 2 Network)Experimcntal Conclusions

The results of the Inventory Control Program Test with Traffick-

ing series of tests are as follows:

1. It was possible to overload the network and cause it to fail

by trafficking nodes that were also receiving large bursts of data

K I from the host computers.

205

2. The communicationi network was more likely to reorder mes-

sages during a traffic situation than with no traffic.

3. These tests helped point out some of the characteristics

of the network that are described in detail in the section of network

characteristics.

4. The test helped point out characteristics of the inventory

control problem that are detailed in the section on inventory control

program characteristics.

4

20

8. BIBLIOGRAPHY

I. HARDWARE MONITORS

1) J. S. Cockrum, E. D. Crockett, "Interpreting the Results of a

Hardware Systems Monitor", AFIPS Proc., SJCC, 1971, pp. 23-28.

2) G. Estrin, 0. Hopkins, B. Coggan, S. D. Crocker, "SNUPER COMPUTER,

A Computer in Instrumentation Automation", AFIPS Proc., SJCC 1967,

pp. 645-656.

3) R. W. Murphy, "The System Logic and Usage Recorder", AFIPS Proc.,

FJCC, 1969, pp. 219-229.

4) R. Aschenbrenner, L. Amiot, N. K. Natarajan, "The Neurotron Monitor

System", AFIPS Proc., FJCC, 1971, pp. 31-37.

5) F. Schulman, "Hardware Measurement Device for IBM System /360 Time

Sharing Evaluation", Proc. of the 22nd ACM Nat. Conf., Aug. 1967,

pp. 163-199.

6) J. Noe, "Acquiring and Using a Hardware Monitor", Datamation,

April, 1974, pp. 89-95.

7) L. Svobodova, "Computer Systems Measurability", Computer, May/June,

1976, pp. 9-17.

8) R. E. Fryer, "The Memory Bus Monitor - A New Device for Developing

Real-Time Systems", AFIPS Conf. Proc., 1973, NCC, pp. 75-79.

9) F. Arnolt, G. M. Oliver, "Hardware Monitoring of Real-Time Computer

Systems Performance", Computer, July/Aug., 1972, pp. 25-29.

10) H. C. Lucas, "Performance Evaluation and Monitoring", Computing

Surveys, V. 3, No. 3, Sept. 1971, pp. 79-91.

II. SOFTWARE MONITORS

11) Y. Bard, "The VM/370 Performance Predictor", Computing Surveys,
V. 10, No. 3, September 1978, pp. 333-341.

12) P. Balcom, G. Cranson, "USACSC Software Computer System Performance

Monitor: SHERLOCK.", Proc. of the 8th Meeting of CPEUG, Sept. 1974,

pp. 37-43.

207

11_ IIII

11. SOFTWARE MONITURS (cont'd)

13) R. Ca ,t]4'1erformancc Measureient of UUACSC" , P o of o '

Mee-tinjg of C-P.JG-, September 1974, pp. 55-62.

14) K. Wori'g, J. C. Strauss, "Use of a Sof-tware Moni tor in tiiu

Validation Of an Analytiu-al Computer Systeni Model",Sotw-

-Practice and Experience, Vol. 4, 1974, pp. 255-263.

15) J3. C. Straui-ss "An) Analytic Model of the Hasp ExLecitic i Txack

Morli tr" , Curvunicatjis__of the ACM, Deu. 1974, Vol I ..

pp. 67'9-685.

I 11. HARUlWAPL,'2UlJTWAk& MONITORS FOR COMPUTER %IWTWORKS

1 it)D Mrjin, W. Kinks, D). Goodspeed , R. Koianko , "t

Netvw(,rk Muni rnq -'ysteii' , Trar, . oni Sof-tware L9_'L 1

Voeirbmer 19/5,

/ Mu'a' , . Hd , U uttA!) . .lII Prl orm nc

Meacj-ii f~'o r or Computer Scw' i<,'ruc. iun

U)L. clint-OcK, W. E. ,'ylur, "On Measural- Lehdvior ci '0t~ i

Network'', AFIPL;I. Pr,;.. NUC, !,7"", Vol. 43, pp. /7/i

19) z. K*jw, Sa k, Pe r t o ri, n L v,10i aLI ol LOCUI

Campr Nework, Coputer Communica t-ions , Vol .I

Junie /> . -l.

[V. PARAMLILRS MLA L'RED BY MONITORING SYSTEMS

20) . W. Co,, , "Ifiterprrt- yve Analysis of Com puter P' :!I

ACM Pevrformiance Fvalua tion) Review, Vol . 2, No. ,.C

pp. 1-5 5.

21) C. A. Rose, "A Measuremunt, Proceduru fo(-r Queue nar \,:'

of Computer Systems", Co ,ptingSres Vol . 10, l

pp. 2,63-275.

L2) U . becir, T. Peeves, "Wo rkl odd Cho 1&- Ctr I Zat i on aj- t er;t:f

Measurement for a CDC Cyber 74 Comiputer S~ystrv" K ''ci

the CPEUS, NBS Special Publication 591,pp. 39-()'

IV. PARAMETERS MEASURED BY MONITORING SYSTEMS (cont'd)

23) D. C. Wood, E. H. Forman, "Throughput Measurement Using a

Synthetic Job Stream", AFIPS Proc. FJCC, 1971, pp. 51-55.

GENERAL REFERENCE ITEMS I-IV

24) L. Svobodova, Computer Performance Measurements and Evaluation

Methods: Analysis and Applications, Elsevier, North Holland,

1976.

V. EXISTING COMPUTER NETWORKS

25) E. Manning, R. W. Peebles, "A Homogeneous Network for Data Sharing

Communications", Computer Networks, 1977, pp. 211-224.

26) J. Labetoulle, E. G. Manning, R. W. Peebles, "A Homogeneous

Computer Network", Computer Networks I, (1977), pp. 225-240.

27) D. J. Farber, "A Ring Network", Datamation, Feb. 1975, pp. 45-46.

28) J. McQuillan, W. R. Crowther, B. P. Cosell, 0. C. Walden,

"Improvements in the Design and Performance of the ARPA Network",

AFIPS Proc. FJCC, 1972, pp. 741-754.

29) H. Aiso, Y. Matsushita, et.al., "A Minicomputer Complex - KOCOS",

IEEE/ACM Fourth Data Communications Symposium - Quebec City,

Oct. 1975, pp. 5-7 to 5-12.

30) Kitazawa, "Performance Evaluation of KUIPNET Computer Network",

Computer Communications, Vol. 1, No. 3, June, 1978.

31) A. G. Fraser, "A Virtual Channel Network", Datamation, Vol. 21,

No. 2, 1975, pp. 51-56.

32) D. L. Mills, "An Overview of the Distributed Computer Network",

AFIPS National Computer Conference Proceedings, Vol. 45, 1976,

pp. 523-531.

33) L. Kleinrock, W. Naylor, "On Measured Behavior of the ARPA Network",

National Computer Conf., 1974, pp. 767-780.

34) David C. Wood, "A Survey of the Capabilities of 8 Packet Switchinri
Networks", Computer Networks: Trends and Applications, June 1975,

pp. 1-7.

209L i

V. EXISTING COMPUTER NETWORKS (cont'd)

35) J. R. Halsey, L. E. Hardy, L. F. Powning, "Public Data Networks:

Their Evolution, Interfaces and Status", IBM Systems J., Vol. "I"

No. 2, Nov. 1979, pp. 223-243.

VI. ANALYTIC AND SIMULATION MODELS FOR COMPUTER NETWORKS

36) S. R. Kimbleton, "A Heuristic Approach to Computer Systei! .,
Performance Improvement. I - A Fast Performance Prediction loot"

AFIPS NCC, 1975, pp. 839-645.

37) J. W. Boyse, D. R. Warn, "A Straight-Forward Model for Comj'puter
Performance Prediction", Computer Surveys, Vol. 7, No. 2, June 111/5,

pp. 73-93.

38) K. M. Chandy, U. Herzog, L. Woo, "Approximate Analysis of Gen:ri;

Queueing Networks", -IBM Journal Research & Develogpment, Jan. iti .

pp. 413-49.

39) F. Baskett, K. M. Chandy, R. rMuntz, F. G. Palacios, "Open, Cluos .!.

and Mixed Networks of Queues with Different Classes of Custo'iers"

J. of the ACM, Vol. 22, No. 2, April 1975, pp. 248-260.

40) M. Reiser, "interactive Modeling of Computer Systems", 1N Liv,

Journal, No. 4, 1976, pp. 309-327.

41) P. J. Denning, J. P. Bazen, "The Operational Analysis of Quuutinc

Networks Models", ComptinU Surveys, Vol. 10, No. 3, Sept. 1

pp. 225-261.

42) J. W. Wong, "Queueing Network Modeling of Computer ComjIuin i ,,!

Networks', Comuting Surveys, Vol. 10, No; 3, Sept. 19/,

pp. 343-351.

43) M. Irland, "Queueing Analysis of a Buffer Allocation Scheie fo4 r

Packet Switch", National Telecommunications Conf. Record, I/'.),

pp. 24-8 through 24-13.

44) F. A. Tobagi, M. Lerla, R. W. Peubles, E. G. Mannimo, "2I

and Measurement Techniques in Packet CoININUunicadion NiUtwur Cks

Proc. of IEEE, Vol. 66, No. 11, Nov. 1978, pp. 14,3-14'17.

45) L. Kleinrock, Queueing Systems, Volume I: Co!miputer Aii1ic,:.ior,,

New York, Siley lnterscience, 1976.

21

VII. MEASUREMENTS FOR DETERMINING PARAMETERS FOR USE WITH NETWORK MODELS

46) D. Sutton, D. Morgan, "The Monitoring of Computer Systems and

Networks: A Summary and Proposal", University of Waterloo

Computer Communications, Network Group Report, E-22, May, 1974.

47) F. Tobagi, et al., "On the Measurement Facilities in Packet

Radio Systems", Nat. Computer Conf. Proc. (New York), June 1976.

48) S. A. Mamrak, S. R. Kimbleton, "Comparing Equivalent Network

Services Through Dynamic Processing Time Prediction", AFIPS Nat.

Cump. Conf., 1977, pp. 455-460.

49) F. Tobagi, S. Lieberson, L. Kleinrock, "On Measurement Facilities

in Packet Radio Systems", AFIPS Proc. NCC, 1976, pp. 589-596.

50) G. Estrin, L. Kleinrock, "Measures, Models and Measurements in

Time-Shared Computer Utilities", Proc. ACM Nat. Meeting, 1967,

pp. 85-96.

VIII. COMERCIAL MONITOR EQUIPMENT

51) L. E. Hart, G. J. Lipovich, "Choosing a System Stethoscope",

Computer Decisions, Nov. 1971, pp. 20-23.

52) M. L. Stiefel, "Network Diagnostic Tools", Mini-Micro Systems,

March 1979, pp. 62-76.

211

flRCEDING PAGE UAL&1OT 7JIJM

-9. APPENDIX A

TABLES GIVING COMPUTER NETWORK AND MONITOR SYSTEM

ACTIVITY FOR INVENTORY CONTROL EXAMPLE

TABLE Al. General Monitor System Functions:

Initial Set Up for Complete Problem

o Set up Masked-Word Range Comparators to record the activity of

the Host CPU at Node K (Module Kl) and the Host CPU at the MC

Node (Module MCI). (Other modules are required for Jobs 3 and 4.)

o Set up Interval Counters to record the activity of the Terminal,

the Line Printer and the Disk at Node K (Modules K2, K3, and K4)
and the Disk at the MC Node (Module MC2). (Other modules are

required for Jobs 3 and 4.)

o Initialize the modules for monitoring the Node CPU activity of

each node. Modules K5 and MC3 are used with Jobs I and 2. Other

modules are required for activities associated with Jobs 3 and 4

and with possible alternate routing used in Job 1.

o Initialize the count in all Two-Port RAM Counter locations at each

node.

o Set the Job ID numbers to zero in the Two-Port RAM at each node.

Identify Two-Port RAM memory locations for data to be transmitted

to the MC Node (for this example, assume all memory locations fall
in this category).

o Identify Two-Port RAM memory locations for variables from which

histograms will be generated.

O Activate total problem time counter.

213

TABLE A2. General Monitor Syste Fuictiorb:

Periodic Monitor Functions

Transmit pickup packets from MC Node.

Sample all Two-Port RAM counter locations and store the values ruad

along with the time in appropriate Two-Port RAM memory locations for

periodic transfer to the MC Node and/or input certain value' to

Histogram Generators.

Discussion: The pickup packets cause the following activitiu. to taku

place.

At each node the ID of the pickup packet is read by the N'ode CPU,

an interrupt is generated, the Node CPU causes the Real Time Clock to Je

read, the resulting number is recorded in the data field of toie pickup

packet.

Data from specific Two-Port RAM mem:iory luc+itius and frui , ,)ul'-,

is read into the data field of the pickup packet to be trinsmittL(d O

the MC Node.

As each pickup packet is transmitted from a node, an interruot is

generated and a time value is read into a storage location identi-i(,J vi

the departing pickup packet number.

21 J4

TABLE A3. General Monitor System Functions:

Monitor Functions at Problem Completion

0 Stop total problem line counter.

0 Transmit pickup packets to all nodes.

o Read data fields of returning pickup packets at MC Node.

*0 Compute all desired functions of accumualted data.

0 Output all desired data from MC Node Host.

Discussion: As an example 6f a desired function of the accumulated data

at the MC Node, the total number of packets transmitted from K to MC in a

short time interval can be computed and divided into the Node CPU and

commnunication channel costs for this interval to obtain the cost per

packet over this path during the time interval. The resulting number

can be multiplied by the number of Job 1 packets transmitted from K to

MC to give the network cost to be used with Job 1 in the same time interval.

"IS

0 a

C)' c) i3
*~~~- -- --- 4-

0)0 E' Z a

In U 0) 04-wC

*-- 4-)4-). 4- I -,-
000)~-z t30)/ ~ 4)0

!Z ~ 4- 0--.

1-) 0

0)- ~~ ~ e 0 CL 0)0 - o i 0 ~
:3 C) go -3 4-4(o 4-

0~r" Q-.- I-0< 3
s- 9, IL.< Q - (2) u' < 0) --

4- -C In -E , IV- cJ --- (2) I cn'

* o - -- F- .- .0 c :7

* ~ ~ ~ ~ U U- MCt uO0 0 C)0 3 3 0 , U0 ~
41 -3 aj I 4

a) Q(2 C) 14- =D
I u 4- * a 4 -4-) .'Z 0 -Z73/) 0>, 4-

L, -I 01-) 0)' C- a)
Lwn In -4- M. c- _0 -- ' 02 0 -)

0 0J 41 -' C0
In-- o2 0 0 D0- -W 4-

7: C L0) a 1 0 7
10 -j CL C 0 C --

-- ' m) 0 0- C 0) (1 70 C.4-' CC

.0 CO -.- ,-c3 CL -E- - (0 4

Q 0 :w: 4-- c , 0)4' (~ ~ 0

S. 0 C0)fo. C) 0 4 -' 1)

C, uc)-- C)

73 ~ ~ ~ 1 0 -* 4) 20 '-

Cy)0 -,- --4-

4-'4-

0 0
C. C) '33 LL

'loI o

44-

IA S- 0- >)-

4 ~ C 4- 4-
c~ *.- 0L

U~a W) 4
U)~~ 04--3: U -

-~~ 4)* L.
C U) 4-) >)

S- to- u.

>i M U)
>1 .- 4-) 4. 4w3

VE 4-) 4- 4-J U- U- 4-' L. *
4) 4- 4) W - .- 41)>. 0

L) L) 3: 4) 4fu) - C-*-

- - 4) 4) .- C0 - - 0)
C ~~ ~ ~ (0 :3 C5- . -34' 4'000 4 4 4- N- 0) -L
4-)) 0: 4) 3 4-- a-)

2o 4-) 4- 1 Q 04-) tC
c) a i 4 0 J_- S- m) 0

4-) =3 XC .C) 3: (.- S- (0
c. 00 0 4-) 41 4L) ()- C 4U 0C

5.- 4- 0 0: c (A c 4--
0 :3 =3 00 a 4-) 4C C' 4-3 c-

C S... w.C U U 0 -. 03: U
..) (a 00 C Cl) 0 E U C J

4-' E 0)-' 4-)"-U ~4~
S- 4-)' 00 C 5. C 0)

0 4-) in 4.)-U4) 4J U- S* 'a) '- 4) (0
4) a)0 a- -) a-' S- u- L/) 40

S-) c Ln - - LA 4 - 4 -0 0 M C-) A
00 C- ci E4 u) cl Ln (A

0 0) 4)) 4-' (A Q) =3 (v -03c
4A) 0-- (4J 0- (10 C-) c-)- s- c4) 4-)

C 4L) ro4- 0) 0 4 L) 4)0 'V 0 o
0 A 0- =0 .0 40) 0 (A (D

>) t1 ..)U a- o3: 41 C) C -0) 00 C-)
0) UC- 0-. C-4- '-' 3O 3O -0-; C

§-asN 0 0 0. 0s 0 __

LI 3- 4)a) 5 4-o 4) -0 0)cuc
C J -a ua - -

0) 41 4- E>.
uA 0- 0 3 a) 0 0 0C-~

4-) Cl. U = C- =! 0- (-
<- U. 0- 1/14.

0. 0 0- 0) 0
0 0 0 0- 0)

UL 4.3U a) E. 4 -
Li~-. C- 0 4)5

4-e 4- 0-~.)

(A 4)444 -) (
oV a)~0) . 3 4-) U

3: U 34-) >- 4- :) (A4
Li 4-' .-- 1 4)4-

4)) (n 'Vl4)4-
C-) I--C -') a) (U I- -EQ.-

0- S-

LA 00 Q). 0

217

-0 A 4.1

0 W

V) 0A 0)0
(..)1 0 0 4-O 4- -

cA S0- IAl a) (1) 0
04- W 4- -0 ~ -0 1)-

- 4- 4- .- 4 ' L) S-
4- C +1 0

.0)Q =5 F= 0 C u- 4 0
04- CD0 .-) (D (-0.t, 0

"a 0
1

4 0l 4E)0 a) ~
CA a) >i4 C , 0 V C-

*'-.. 0 - 10E C 0 - i 4-'

0 4 3: 00u I-- -I

s-4-. -9- 4-I cu (A W1 *- 0 -

o I4.) 0 Ile _S - 4 4A 0 '0 S- I_
4-'AU) -C -0 Ce.. (1) 0 4 E. >

S-4-C 0- =O U (-) -'4 L) '- -

U) CL 4-I-' 10 -- - 010
-0E a)o.)"

0 >1 4-S. Q)(4- C -SC1 0 :30 4) C-
* ,0 C 4- 0 m1--C (0 -IIS- () 0- 0 L 4

-1 VI 4-> S-4-) LA &- 4- E a)0 Ca. 0o
4-I 4-)I 0) 4-3 4-) V) - 50 uE

L") S - C Ca) C (DIA 4-) 10 C Ia

-))0 u E .-) to EW 10 a) *I) 1
0 w aj (U. a) 4- > '

4- C) 0. -CL (1 U- .'- 0 m 04~

IA 0 > -0 M- '- 01 1 4-'0 2=L-) 4-'
Cn - to I) 4-) >) CL Z34-.> V)A4-

C- 4J) C 4-)0 Z 0-C 4 -' S. '-Z

'I E - U -) 0 a) (U.. a-s-) C- -6
Ln L = U) C 0 4- M) 10)) ct)1 C(U910 4

>1 soA 0)(1- a 0) 100(-0.1 -0) -0 4-' a)0
-0 LO) 0 V 4L 0 0 4- 0 A 0 C 4- L -

o 0) 0 tA .-. 4*- ~ -3~' ~ s
5. ~~~~~- a)II)- 0. 0.I) a) 00

.001lo 40 4 1 L9 Q)) C -' 1) 0
'4 4) ~ Js C ~ 4))a) : C (V T-I - - (L)

CI .. -S-- 4 00 0)r :, - - 1 S.- 0 0 0
-c ~ cc 0) 'u - :10 e-a 1- 0 -: -4-' M- "E I-

4)00 0 0 0 0 0 0 0 0

0. Q A 41) s 0 4-) 0)
Lfi L) 1 - 4- 4) I C0 0 -- 4- (L1-

w- -< 4- 4-) -) 4-) --. E 4- S- 0L))-
C-0) 0 -V 4- CL) 4- IA Z3 10r

-) i., NC C 0 C: c) 10 C
U CO 0 - = u 10 >1) -- ' 0 4

II) 0- A 100 S.. 0) 0)CD
4) . U 01 0-0 C 4-) -0 - 4

4-'~ -a~ 4-' 0- 0) 00 S.>,)~ 0
-- C ' 4 0 0 0 0 E 0- .C

=) (L) IA00 C -- -0 C) 4

4-I4-) IA 0)0 -C~0 0) 4-' 10 - 0 (1,
l4 +) C W)- 'o I 34' 0

S.. -) _ .- C s-4 1 I.- 0 C0
0 "- CI C ~ -~ 4-' s 4-) 41 s ,-.z~

4) 3 1 4 - C - 4a- -)-) 4

- 44 4-' o C 0) 0 1 4- 4- - IA 0
4 es-C 3 S.- C a

C 01 M 00 -C w
0 - r ~). -1 03 4' 104- - 0

.4-) ~ ~ c >1 4-4-S.. s 'a I (M) 0 .~ " 0

* 4 0 4-- L4-- 0_I0 a - > -1Z -~~
0140e C: () 0 -

4- M5-- '0 M f 4) L

- 0J

a))
..-..--

40 r_ OU C
C04

"
(c0 0 00

*N e >. no: L

Eu o r -' U CC 0 4-0

0- of - 0 d,-
Wl W .C ->

* S-,-t - dix (A 0],-

1)t L)O ~ (O

u-) 01 C Q3
4- "D * 4...,-

-X cc M Z0 (4-)

• 4J CL 34-) C- 4J r-3oJ
u. .t : 3 0 S.- 0 0m > m to 0i - S4-' tV."-10 .+C 4- i1

C.) 0.4- 4.) U 0) 4-4-)

• , 0 ' - 4J.
-

LAt c"
C U- UO- I.J J 0, 00=

• - > 4-) 0) .
O~~2 0~ A 0 .

S- ' 0 S-J >- 0- - '
I 0 - - U --

CL a'OC to LA) (A C4-

(A- I- 0U -- 0 3 " --
- ,) - o -4-

00C~. d) r 0 4-UL-
to E: -1.- >S-

0 -0) -... 0 0"&A S-U S- 00 to4 >4 --a 4- 0- 4)~ LX O o 1
o .-) mi (0 4. $- -a

0 4-)0 4--) ~ =0430

O~ ~ 4-04 0) 4-)d
1-. w1. .160

4-o
S 4) 0 0to 01=

oi 0 0 ,u C CL ..4

z 4.1 - "S- = -- C 4 -)

0 ~- (-- =3 cu a)- 3:t '-

(A >- t0 > 4. 0.

C .'- C 1 -

o0 o." 1- U-)-)0
0 1-" .0 - o. 0 0..C 3.

0 C 0

4-)

UL 4. -IU'g_
43 4- (A.Jk

" J4.) +0 4•"'' "A

C> i) C: -
A-- 044 0 C

Wi 14- 4-) Q W)
41 - 0 %. -

~4) 4-) 4-
1:. S- >,4-
4 - 1 -1.. 0.0

4-1 U Wi 14) 44 Q;Q 4- 4-0 M -C
S- (A 4- di4-) 4-) 4.)

1. - C (0

S0 aL. 4) U -he 0.
= - ~ . 4) U 40 C E

4- 4J +.) (A m) r=

4-' Z 4-) W . A (
Cu 4)) M. C(A p

0 1. .~ 00 ra - Aj
-...- 4- ~44) 0A S-

CA C 4-1)

LALA

>11

CU

Q) U 4a)

O a) >)

w 0- 4-)0

-O D -- L) 41G

oe c)* a) W 4- (aA
W C (a' a) '0.- .- '>

-~S. 4-) U) 0)- -'

-o o 1.. 4- ~ a) 4-' '

41 '.U C 'a _J4- ca
*~~~l 0')I . '

4) 4a-) - -

c~1. 4- W 4A-) L
o- E c- CU*. c:J-

0)4- 4)0 4-)4'a
S.- 0 - 4jC -a) C4-

(NJ Ln eo 0 0 0 4

C 4,- 4--.) 4-' 0)

on S- 0) - V) 0.- C u)

4- a) (D -' (0 C> .- (A
a- u E 4) c-) 0) 4
c S.- L U 4- 4-' 0 4-

o * aG) to .- a) C.

L) 0 4a) CA. a))-

1-SV 4- 4-) (A E o

4- a)~ a) E. at -- (

a) E E- - -

C LC S..A 0U
LA 4104- 'a +-a 4-

>1 4-) a)*. .)() a
V) c) 0)- C >~ a) C -

S-c m- (A :CC

O 0(L- C (U 4) ' u a)()a

C.) E00 00 ' 0 'a0 0 0 0

4-' 49=-1 =-) 7- '- (3 0z;_
0- (A0 0 0O 4~U - -

:3 ~4- 4- 4J4VS

L) C'a m -

C') (A. -e 00-

0L o-- L 0) 0)) (A <)

04-'C i L 4

ta (A. 4A.O 0
00 00 0 -CO 0 0 0

a) 4_)

4-' 4C 0 a 0
o E 4-) C

0 t0

= c a).. (A (A W 4
S--0 - a) (A 4-

(A4 C E- a)0 1- 0 c E
'a 0 S.- u- 2- a)

41 0. S- 0a L-:3 -

"a (A G-) 4-) E u 4- a

4A- fa a) = -C- 0c) S.-
U) 'A0- -0 4- tn C Q0

cl C)

10. APPENDIX B--TRAFFIC ROUTES

221

NOVA 820 A N~n X

INTEFL 3OT F

22

IRAFEI 3OU 2LB(3

22

TRAFFI 3~JT B

22

=Fw

3 2

NOVA 820

TRAFFIC ROUll I

S t1

NOVA 820

TRAFFIC RRJTL J

227

2

3

NOVA 820

IRAFFIC R(UTL X

IS8

2221

12 2

NOVA 820

TRAFFIC HRflL M

2 E

NOVA 820

TRAFFIC ROUTE N

NOVA 820

1 RAI1:I1 RCkJli- c)

- _ _---

TRAFFIC ROUT P

233

2 E

3

NOVA 820

TRAFF IC ROUTL

234

11. APPENDIX C

11.1 Introduction

This appendix attempts to explain as clearly as possihle the

communications control software. It assumes little knowledge of

N16800 microprocessor COLC, but does assume a knowledge of the

general configuration of the network. It is presented in five

parts: 1) Explanation of the different types of messages, 2) short

description of the method of error detecting being used, 3) the

general message handling process, 4) a description of important

buffers that the program uses, and 5) a flowchart that shows much

of the program detail.

11.2 Messages

Lssentially there are three types of messages: 1) Data, 2)

Source Acknowledgement, and 3) Local Acknowledgement. The first is

of prime importance to the system, and the second two nsure the

error free transmission of the first.

11.2.1 Data Message: Any communication between two elements in the

network is done with a data message. After a data message is sent

out from its origin, it remains stored in the origin's RAM until it

has been received at its destination. This is when a source

acknowledgement should be received by the origin from the destination

to indicate safe arrival of the data message.

11.2.2 Source Acknowledgement: The source acknowledgement, as just

13S

mentioned, is to indicate to the original sender that a messaqe

has reached its destination error free. After receiving this

acknowledgement, the message stored in the source's buffers can be

cleared.

11.2.3 Local Acknowledgement: The local acknowledgement is one of

the steps along the way to an eventual source acknowledgement. If

an element in a network is part of the path of a message from the

source to the destination, it must receive the message, report to

who sent it that the transmission was error free, and send this

message back out alorg its way. This is done through the local

acknowledgement. If this local acknowledgement is not received by

the sender after a certain period of time, the data message is

retransmitted. If the local acknowledgement is received properly,

the message can be cleared from the buffers of the intermediate

nandler. See Figure C.l.

11.3 Message Handling

The way in which a message is processed will be described in an

attempt to become more detailed in the discussion of the total system.

The reader is referred to Flowchart C.1.

Essentially, the steps are as follows:

1. A message is put in through an interrupt routine t);at will

input one word at a time. This is done to take advantage of the

relative speed that the central processing unit possesses compared

to the speed of serial data transmission. This interrupt 1U scheme

will be discussed in more detail later.

I(If , C. I

An example of dalta mssage transuiission , tlh acknowleden.eats:

Local Ack. Link l'ink

(1) [Gi)na- _ 0 Iial

Messape

Message is transmitted to first link of its path Local Ack.

is sent by (2) to (1), safe arrival. (1) still waits for a

source ack.

Local Ack.

(2) 0cila El
M.e s sa oc

...s c tr : I i Ltc to (3)

2) (lears rcss. c rn,: its ;u;'cr- Jf'tL)r local ack. is received.

I} . till %,iitino for s;ourcc acl,,

Local \ck.

Snurce AcI,.

(3) Transmits source ack . for messa ge

(2) Sends (3) a local ack. for the source acd, (3) clears tic

source acL.

(1) still w,;lits

Loca Ac!\.

("/~ ~ ~ ~ ~o *rri al <--p T r P i1al

Siircc Ac k. from (3)

3 7

LL-

2. The message is classed as either a data message, local ac-

knowledgement, or as a source acknowledgement

If the message is a data message, it must be distinguished

between a message that has reached its destination and one that

needs to be put back out into the network. If the data message

is still in the network, a local acknowledgement must be sent to

the last node that held the message so that it can clear its buffer,

and then the message must be put back into the network to continue

towards its destination.

If the message needs to go back out into the system, it is sent

to an ACIA for output. If the ACIA is busy, this being the proper

ACIA, the message is sent to an ACIA that is linked to the proper

one for output. If output is not possible after all the links are

tried, the message is to be placed in a queue for output at a more

convenient time. (See Figure C.2)

If the data message is at its destination, a local acknowledge-

ment must be sent to the last node that held the message so that it

can be cleared from the buffer, and a source acknowledgement must be

sent to the message's source to acknowledge the completion of the

transfer of information.

If the message is a local acknowledgement, the receiving node

knows that the message was received error-free and that its buffer

can be cleared.

If the message is a source acknowledgement, the origination node

knows that the message was received error-free and that its buffer

Data ACIA 1
Message (BUSY) Message

QU L

ACIA 2

(Busy)

ACIA 3

FIGURE C.2: ALL ACIA's BUSY, MESSAGE IS QUEUED

Ac--I2 // 3

can also be cleared.

3. Data Transmission Complete.

11.4 Input/Output

The input and output routines are called in the interrupt por-

tion of the program. A message is outputted one word at a time.

After each word is sent to an ACIA for output the program continues

to perform its normal process of processing message until output of

word is completed, at that time another word is sent to the ACIA and

program excecutions resumes again like normal.

In the input case, the inputting ACIA will interrupt normal

program flow to input tD a buffer one word after completely receivinp

the word. After each input normal program execution can continue.

Reintrant RAM is used primarily to achieve input and output to

the proper buffers in this interrupt scheme. (See next section.)

Note: The input/output flowchart will help this dcscription

greatly.

11.5 Headers for the Three Messae Types

At the beginning of each message is a header telli g the receiver

how to treat the message.

11.5.1 Data Message:

00 Message Class
01 Number of Buffers
02 Number of Words in Last Buffer
03 Origin
04 Destination
05 Message Number

06 Sequence Number

07 Local Sequence Number

11.5.2 Source Acknowledgement:

00 Class
01 Destination FIGURE C.3
02 Message Number
03 Local Sequence Number

11.5.3 Local Acknowledgement:

00 (:lass

Note: The Local Acknowledgement message only contains
this header and a local sequence number.

11.6 Definitions

Message Class - Each message can be classed according to the

type of information in its bits. The three types of

message classes are: 1) source acknowledgements, 2)

local acknowledgements, and 3) data messages.

Number of Buffers - This is the number of buffers the message

is sent in. Maximum buffer length is 255 words including

the Cyclic Redundancy Code (CRC) and the header.

Number of Words in the Last Buffer - This provides a means of

quickly finding the CRC which is located in the last two

words of the message. (See Error Detecting, Section 11.7).

Origin - The origin is where the message orginated. It tells

which ACIA should get a source acknowledgement. Lach

2,11I

element of the network is assigned a nuaber.

Destination - This is where the message is going.

Message Number - This is the name of the first buffer where a

message is stored in the source. Used for source acknowl-

edgement purposes.

Sequence Number - The sequence number is the packet iiuMiar of

the message. Presently, a message may be three packet:

long. Sequence number is used because of the necessity

to receive packets in order.

Local Sequence Number - This is the name of the first buffer

where a source acknowledgement or a data message is stored

in a link. See Figure C.3.

11.7 Error Detecting

The end of each message contains the CRC. The primary concern

of the network is data routing and transmission, but accuracy is

also a major concern. The CRC is simply a check-sum of all the words

contained in the message.

A CRCI is on the message, but is also used for comparison when a

message is input. Unfavorable comparison results in the message

being discarded and retransmitted.

The MC08S5O also performs an error chieck of each word input. It

checks for framing errors, receiver overrun, and proper parity. ThIe

reader is referred to the M(46850 SPtLC sheet.

. . . --.. .--.. . .--... I 1

11.8 Buffer Definitions

Certain dnt'i arrays arc, used for the torr,ry stora ,c

~i ii orma t i on necdoti to process mcssa,,es. .1 I&st so call cL.

"LII lrs''ire! exy aijitc.i (it'rc

AA I
j('BUFFLR - Reintrant RAM

Thec upiper porti10n of iL _

reintrant !1,Y1 consists ~C i A #Y
of space for storin ,
data to input and Out - WCIA P 4
put a wessa100 See i curc .

Atypical AtI ibuffer looks L(H;l for

Local .\ch.
11 for 111 C l-

I ;t Inp It j r \ N ' W

- 1 Present Inpult 'Iufc I Feel I nt of Ist f
.Locat ion ill Preseo t. ; erlocaIl ack.
')I - Input F, -C ie scont

1)3 iii OrdeIr (Od.'ca CuL'iateLL\(Lillks to
0 VPLow O(lrdr CRTI J othecr

27 ACIA iici (rder Adldress A .CI A s
(), AC hA L~ow Order Atlres s

Ti', urhelr Of 01ktj)Lt tuffers Le(f t
Lo , >IIPcr of lv;ords,, in lasI't ofLl for 11o1i1t

(1: Present L Ir('(1 or
0 C locat ion in iiresent 1,L1 Ir ;Lc t i I I 1 A CA 2

F ()I I;\ t p ui t

Ill I l It rout! i li&5 Cmr 5tor' il)
I'55;i o (11 r c co iv iIn I

d~~ltcJ~~ S I 01 I l.

cl 3l

" n L ;ort ioii C rc i 1 L rl".it

is tc r t local c,.-
aw..d..c,,ents or or data messages. .1 i Il cr of' Eirst Putl-feC

(.;ee Fi!oure) 1ach ACIA also has I "."Iber of :,,,rs
associated witi it a LII.. Described . o, or 01 o ri s ii
as it is in the f i',ure. Iocations Last ihu fei"
4N-45 are the message QU'. Iwo 3 a of !'irst o.4.r
Tessaves can he l;aced in the Q2i, 11 of h;offers
For a particular ACIA. Locations 40 -40 45 # of U'ords in last
are for loca l aclnowledements. Thex' fufer
Lontain all toat is needed for tie 4 lOCal se;C(CIIC, 1st
send i :, of a local acI, Low led',eiPen t, tie Ack.
location of the messave in te s.:i, or, 47 local Sequence 2nd
",,.crs so it can c clearcd fro:v' there. Ack.
(:, 1,c-t acktowlcd,,ement scetion) 44 Local Sequence P .rd
rocation 4C, the buffer nuriher of the Ack.
list local ac;,nowlede,,ent sent is used 49 Local ,equence Aith
so that this local ack. messaie noy he Ack.
clearea. Location 40 contains a constant ; 4A
ven operated on will reveal the linikcd 418
ACIA's that provide an alternate route 4C Buffer # of Last AcL.
for sendini a message. Sent

4j Links to Other AC A's

BEGSTR BUFFER

The input section of reintrant RA_ _ _

will he transferred to a Begstr Oi Location of the First Cuficr
after the message has been totally 01 fNumber of buffers
received. Also wien the output of 02 [Number of ,ords in Last offer
a ressale is started. Begstr is 13 Processing Status
transferred to tie output of 0 4 ili!b Order (i:C Calcul; atei
reintrant LM. The purpose of 05 Low Order (:
Eevstr is to provide a means of
Find1ing a messare when the tioe
has come for it to he processed.
The processing s atus of a nessaqe
Cri,1 be ally Of the followin":

-. () ,e .;,.' t o l rocesse.
I) Proccsse, 01 L' "- i 1 .
(2) Inrc 'lessa:,e Not Processed

(.;) 'o:ie c:ssa1,e Processed "o
Local Ack.

(4) (or~e '5500 rI'O Sea ,t

o CIiF rcc \ci

L;ici ,.;sa ,r c 'sse. lia :1 ;&:,,str a:SUOc 1 L1 - . i II.

- 4

BEGBUF BUFFER RE;;UP:

:;e !Ouf contains in array of buffer ACIA using FO
names and the PCIP that is presently :0
usinj them. A ,eneral descriotion 3,uffor ACIA using FI
of ei:'buf is presented in Fi!ure K. Namc F1
3ixe acia using buffer word is called ACIA using. F2
the "key" word. F2

XDIREC BUFFER

The directory is an array used to
determine the -.ro!'er A(IP for the
out, ut of a 'less;i<e. "lhe low order
addrcss for the ,iirectors ,,,inter,
points to an clemient that has in it
an address of ,ia AIP. So if the ACIA using FF
destination is Anohi tio proper FF
.cia can he gotten by placing this
destination in the low order address
or the virectors pointer, XHiO.c. FIC)URII K

ZZ BUFFER

is tile a'lio\ledcreet needed
.- '.,'hcn a inessaze is oututtc1 ,

its first buffer number is placed
ill this Qdil so 'en an achlnowledge-

sent coms, a quicL, location oA tile
:v essande al Squent incrementin!,
K: its Fro:ssin(. status is achieved.

Is) wiun a messaC is outputted, tihe
time of output is recorded in "2, so
if too much time imas progressed and
N local ach. has not been received,
the messa,-e can e retransmitted.

IIOMEREC BUFFER

lornerec is used Cor process esa., nat tit)
homec mcssao es rece ived froi-i (11 Or io~ii
the networh. I t KCCIps- trach ci2 ~ fLast Packet keCeiv~d
cf the inlco:l~i n" u lclkets alia 03 Loca tioln of Iaci~. It
where thuy are storedt1T ink .I lxca ti j of Paic ~et

Honerec iiay 5c better une- S .1PI ocation" ci lst
stood wiici it is vicved ill Packet
its pro')er conitext inl the flov UP 1 ow (rder i.;;r .\.rcss
chart .

11.9 Flow Charts

Tie 1 ' Ldi i~ r.,iitwt iA~es 111) tieC rest of thlis
']a er is lntcinjeIL; to tell, in real worus , the rocess
t jult i S t k ii .I acc. [or ti;is FO-soli, it 11,1v nt
!)c xuoru .rr iord corre oR iln- to tiiL i)rolrd' i~t

Nlso, ojeleve 1CC1LIc:-e.r ir t'ctail coiI l i,;vQ Lueon
6Cor'le

21 4 o

INPUT A
MESSAGE
OVER AN
AC I.A.

LOCAL ACKNOWIElx;E2ENT DETERMII NL SOURCE ACKNOWLEDG~2EET
THE CLASS OF
THE MESSAGE

FIND HE MESAGESEND A
LOCAL

ISFRADDATA MESSAGE ACE. FOR
CLEARIT, F ITTHIS

SES AO HM MESSAGE

MEMESSAGE

TE DESTINATION

OF THIS
SOURCE

IS THISACE.
YES IRE DESTINATION

FOR THIS OUTPUT THIS
MESSAGE SOURCE ACE. YES

RECEIVE ALL
PACKETS OF THIS
MESSAGE, SEND N

A SOURCE ACK.
FOR IT.

THEREA NoFINDTSR
FREE ACIAMESSA3T -,;i:
FOR OTPUTSOURCE ACK. IS
OF THISFOR, A-\-

MSG CLEAR IT.

OUTPUT THIS AII O
MESSAGE PSIL
TO THEYESTR TH

HOST OVER F.IQE
AN AC IA

OAUTPUT THE1

THMESSAGE
IF AER D PO L

CLAI R THE G

PROPR A 217W

NORMAL ROUTINE
FLOWCHART

"CLASS"

MAIN

IS THE YES
CLASS A ~

A M
DATA MESSAGE2

PROCESS A
NO DATA MESSAGE

IS THE
CLASS A

LOCAL ACKNOW- YES
L~G2ENT? z

YES LDEET

PROCESS A

FIND A MESSAGE LOCAL AK.
SUB IN BEGSTR THAT

LOOK NEEDS TO BE
21PROCESSED is THL~TE

A

CLS A YES

SOURCE ACKNOW- ACKSOR A SOL,

PROCESSfNIN STATUS
OF THE MESSAGE
IS '0' OR '2' NOTECAS S'

E 'BE RETURN ONE OF THE THREEFROM
THAT WE SHOULD

NO "CLASS" HAVE RECEIVED

TO PROCESS SUBROUTINE

ICEETNO ANY MORE"ESSAGES TO CONTINUE THE

ST F PROCESS SEARCH IN
MBEGSTR

YES
FIND ANOTHER

TAKE INFORMATION MESSAGE TO

SUB DESCRIBING MESSAGE ENTER PROcESS

TAKE 5 AND PUT IT IN SUB

ASAU VARIABLES. THIS LOO Al

IS DONE MORE OH LESS FOR LAX)K I

CONVENI ENCE.

NoIS THERE
A MESSAGE

FOR H4ME

YES

A

MESHOM

THE IRSTNO

I MESSAGE?
PACKE OF HE

----- SUB
FIND THE SRCH

HOMEREC Z
FOR THIS

LOOK FOR A MESSAGE

ME2ORY FOR
SUB SETTING UP

SRCHOM A HOME REC.25

WSNO <.OEREC FOR
jTHIS MESSAGE

FOUND

IF THE HOME
REC WAS NOT CLRE 5
FOUND, SOMETHING CLRE 6
IS WRONG, CLEAR YES

THIS MESSAGE IF THE PACKETS
& WAIT FOR ARE OUT OF
IT TO BE SENT RDER CLEAR
AGAIN. ARE THE MESSAGE

YES

UPDATE BEGSTR

AND "ASAU"

VARIABLES WITH

NEW PACKET

INFO

RTN

CLASS MESSAGE"
RECU' 0

THE INDICATION FORYE
A HOME BOUND MESSAGE
IS AN N *FF' IN CLEAR HOMERECTHE PROCESSING INDICATE IN
STATUS OF THE BEGSTR THAT THIS
MESSAGE'S BEGSTR HOME BOUND MSG

INC. HOMEREC

SUB. SEND TH,

SOA. SOUR0
9 ACKNOWLEIWkI-

MENT

2 , 1

If BA I IK. M-'A,

KK

XfC~ IC,

F.C F

ri' A,', ED I I'

MESSACE

YES FiND ' LT

- - SSArE P I-.i IS ijC

HUE E
SotRCE N5.

F<-'S''
SA

, ' 71,1 111 THE

17 TAlLS, 'I.-
jF SI-I Si I HAT

A i.O-llRE ACE.

IM: NC -
.,FF(49

vi. I
eF) IN

Nl .-- - - -JM

ACELIUE

RETURN
FROM

QAZ
HERE

ARE

SUB-
ROUTINE SEARCH

"AIAK YSTYMOUT THE ACK.
NEEDED
QUE FOR

SUB EARC FORTIME EXPIRED
ACKAK FREE CIA!ACKNOWLEDGE-
29 F AY AE MNTS.

WILL BEQM 1
PROCSSED10

OREE SEE REA

YYES 4CNCRONENT
+ NF~T NUEXT #'I

SUBROTINE 4C CATAIN

NO.AC

YES BUFER # F LAS

FB

TO FORM A LOCAL
ACKNOIEJDGE4ENT
MESSAGE. ONE IS
GOTTEN THROUGH

SUB THE USE OF

BUFALO SUBROUTINE BUFALO

27

BUFFER NO

RM.,OAV LOCAL

SEQUENCE NUMBER
BACK IN THE

SET UP REINTRANT QUE

RAM FOR THIS

! MESSAGE OUTPUT

STORE LOCAL SEQ.

f
I
& CLASS IN

OUTPUT BUI FER

FROM
QAZ

ACIO4ES - ACKIES IS A VARIABLE WHOSE VALUE

EQUALS THE NUMNBER OF ACE' S TO SEND
GO TO OUTDES
ROUTINE TO

R2D9 OUTPUT THIS
7 MESSAGE.

I2S2

O..T.ES
THE LOCAL ACK IS

LOCALP NOT SENT IMFDII ATELY,

IT SNI WHEN SCHEDULING
PR/ DICTS. FOR NOW

PkI %l'tNS FOR A
IA AI. ACK. ARE NTOR

TIl ACIA IN FiIl LOCAL. ACK.
THAT THE QUEL OF A ACIA. WIlli THE DESTINATION

MESSAGE LOOK IN THE DIREC-

BEING ACK'ED SUB TORY FOR THE ACIA

CAME IN ACIAE 6 FOR TH/,", DEST-

ON IS 28 INATION.

GOTTEN FROM

BEGBUF. By
ACIAEG, THIS

SO CALLED

KEY WORD

ALIAEC RETURNS

WITH IS DECODED

BY REINE6 SUB QUE

"QUEACK" REIN 6 H

SO REINE6
WILL GIVE US
THE PROPER m

ACIA TO SET O

UP THIS LOCAL
AGK. ON.

SET REAC UP

SUB FOR OUTPUT.

LOCAL SEQI-IFNCE

NUMBER IN THE

ACK. QUE ON
* THIS ACIA

REFER TO

REAC. is

k FOR HELP THE MESSAGE YES

IN' LUNDER- A SOURCE ACE
STANDING OR DATA

THIS MSG?

PROCESS AS

" THERE ROON LCL PUT THE MSG
NO IN THE NEED

------ ACK. QUE.
NOTHING WCE

YS CAN DO BUT TRY
R AGAIN LATER

THE MESSAGE

RI WILL PROBABLY

FROM SENT AGAIN.

LOCALP OTU
START OF

HEADER,

LET INT.
ROUTINE OUTPUT
THE REST OF

THE MSG.

RIFRO
CLAS

DETERMINE
LINKS TO OTHER

AC IA'S.
(COUNTER SET UP

TO CHECK 4 LINKS)

YEES

YQEE

LLNN'S BEEFRTNUFE

NUHERE

INDCA< THAT- INAC
THE MESAGE NC INER

INTR BETO QF QUE?

RUE T N

SEARCHF FORQU
NEXT LANK

STR I H

NORA(

THE DIREC- FIND THE ACIA

TORY IS THAT MSG BEIN(;

USED HERE. SOURCE ACED CAME DECREMENT

IN ON. THIS IS PROCESSING

THE ACIA THAT WE STATUS OF MSG

WANT TO SEND SOHAC (NO SOURCE

OUT ON IF ACK SENT)

POSSIBLE.

INCREMENT IN MES.

USE SUBROUTINE RTN
BLCFALo) TO FIND, FROM

A MESSAGE CLASS
TO FORM
SOERCE ACK.
IN.

NO
BUFFER

AVAILABLE?

YES

FORM THE

SOURCE ACK CRC IS CALCULATED AND

MESSAGE. INCLUDED IN THE MES.&AGY

'55

THIS ROUTINE PERFORMS

A QUE SEARCH FOR MESSAGES.

ARE
THERE ANY NO

MESSAGES IN _________________ MAUNG
QUE 1

(QUE MES. IS CHECKED,
ITS VALUE EOUALS
THE NUMBER OF

YS MESSAGES IN
THE QUE)

CALL SUB
AC LACK
TO) FIND' ACIACK
AN-(ACA'S 29
THAT ARE
NOT BUSY.

< F R E NO

SC ROUT INE
QS K S

SEARCH FOR
QItE 'D M SSA.;E

IN1 AC IA 'S QtlI.
REIS7RAlNI R&M

FOU SI

IN THI ACIA S ______

'H IIS ME
S G N l'F

INCR MENTSET p SETtTINI
N~~ ~ ~ ~ F RITATHER ITAS

AC ~ ~ ~ ~ ~ I HETISMSAGRNALEH

TO HOMt. Ott

INTERRUPT SPECIAL CASES,
RTINE OUTPUT SIMILAS To

1/O To 0 1 V'A

INPUT ACIA'S.

TR

OUTEUITOTA

INTRUT SOUTPUT I

DETERIM I NE KNU SiSSlo

WH IC H ACIA .IHt

INTERRU'PTEDI

16PUTA N1

WAS YES - NO, SIS W'I

YEE

WA ITH HOM RETUR THER IS

OR SOMETHER' fHE"~'
ACIAU

FO R ES E c EN s s

YES CAUE OYEA

THIERE T5 A

,W NSUT IISREI'.RL IT)F
INTE RUP LINE

~~O o THERE _______

UNREESEE

THLRR P7 IRFR

REEREnT THE TGA. AI.

2, RCEIER VERU OSEUSETPUTU N1U1 HN HSSOU
TME

E D THIHY,'
ACA.B

TEFI

<3 ART ER O UTPUT
~. OMUE

WR O

DASTAR OF'E HT 1ER

SUFE BEE OP

ALOCTE ERIOR
C i ' F R YT

I S N U T

kl) FRAING EOR T Tl E REDRISAWRDFO

F WASDHT THSIS.A I

I~~~~ ~ ~ YESc6 'AIA FTH IS
(3) PA IYER RI (T,*1CM U E WOD F H

SYSTM iS, m ESAGE LS
El,. TATOFHADR

HAS AE >

F-INPUT 1S USED TO

PERMIT AND END-OF-TEXT
SYMBOL AS PART OF

THE MESSAGE. If AN ESCAPE0

INI CHARACTER IS SENT
IMMEDATELY BEFORE.

GET A BUFFER WHEN ESC. IS SENT,

FOR THIS MSG. F-INPUT IS SET TO II

SUB. BUFALO" 1. F-INPUT IS CLEAR

27 THEN CLEARED AT F INPUT N
THE RECEIPT OF

THE NEXT WORD.

THISWORDY__S INC E F2ENSl

BUFFERI NO ROMCHRCTR

AVAILABLE? SORRY, NO INTRUP
ROOMY
TOSS MS5G.

YES

STONE BUFFER REFER TOEN OFTX

NAME IN DISCUSSION OFCHRTE
FIRST INPUT REINTRANT

BUFFER AND PRFEEING. THIS
PRESENT BUFFER FLOWCHARr. NT:TI

OF REAC.LN ITAI

NECESSARY TO

S ENDI THE ESFC
UFAE CHARAC.TER h1, 1F

RNIG FOR I I TO BL

CRC.INCLUDEl) IN THE

RETURN
MES

FROM

INTRUP

WORD IN

PRESENT

BUFFER
INCREMENT
LOCATION;
IN BUFFER

ARE WE NO FTN
FIDAAT THE END FROM

FIND A OF PRESENT INTRUr

BUFFER BFE

YES

E(; I RBUFFER
'AS FIRS . BU;FALO' o

THIS CAN -i
TIU- IAS I

J.IBETS

USE FiR ' l
YES

F F

FILL BEGSTR

BUFFE No WIITH DATA

AVAILABLE - _ _ FROM RET

>

INTILANT
RAM

MESSAGE CAN

NOT BE TAKEN,
YES TOSS MESSAGE

CLEAR REAL

INDICATE IN

BEGBLF THAT

LINK PRESENT THE BUFFERS (i. -. INDICATI

BUFFER TO BEING USER THERE STATUS

NEXT BUFFER kTN BY THIS ACA TO SHOW tHA!

UPDATE REAC TO FROM ARE NO LONGER MESSAGE IS

REFLECT NEW INTRUP GOING TO BE FULLY RECEIVLEL)

BUFFER INU TTED INTO

.(I.- CHAN,;

0

L(ATIFNS

(11(12
OF RE'M

FROM

I NTRUTRN

OUTPUT TIIIS FIOWCHARI OF THE OUTPUT ROUTINE

DIFFERS WITH THE WAY THE PRO;,GRA LISTING READS.

THIS SEC ILLI OF COoL IS EXPLAINED IN A CLEARER WAY.

-OUTPUT

SET'

I Ltw FL IIP I 1-I"PUI PROVIDES IRlti SAME CAPABILITY

ILu IF AS F-INITI IN TIFF OUTPUT SENSE.

EIAFF L:ISXALU EL II ALLOWS AN FNI,-OF-TSlT CHARACTER

(' IF", I 1S Tt BF INCI.L'DE IN THE OUTFUIl MESSAGE.

NEXT WO.RD WiN F-OUTPUT IS SET, THE NEXT

,, 11F MISSAGE HARA,'TES IS NOT TO BE INTERPRETED

AS AND IN OF TEXT.

IS THIS -
THE LAST

BIFEEE-:

YEN

ARE WE N
AT THE END H T

OF THE ITU

No ARE AT
NO THE END OF

YES T HE CURRENT
HUFFER

THE ASTYESYE
CHARACTER OtUTYES

CLEARREINRANTLUNK TO THE
+NO AM CEARNEXT BUFFER,

THE MSSAGEREFLECT INFROM MEMORY REAC THAT WE'VE
IF I IS OINGSTARTED ON

OUTPT OU TO OMEANOTHER BUFFER

TTHE

CHAHECTER

RRTN
FROM YE is RO I
NINTRU

BUERhNTU I N)

AVAILBLE' VALAL

RERETURN

SET UP LINKS

RAC ON TIN

FINDC

ER NOE: IFN

TRFE

RLAC 10

OT AOUTFUTA ACCOMPLISHES

THE OUTPUT TO HOME.

WITH A FEW EXCEPTIONS

IT RESIMBLES VERY

CLOSELY THE REGULAR

HOST 8 OUIPUr ROUTINE, THIS
FLOWCHART IS NOT

COMPLETE.

is NO

HOST SET?

YES

OUTPUT

2(2

THE PURPOSE OF CHANGE IS TO

RECALCULATE THE, CRC
PLACED WITH THE MESSAGE

CHARCLTO REFLECT THE NEW
LOCAL. SEQUENCE NUMBER
PLACED WITH THE MESSAGE.

FROM THE 'ASAL

VARIALE. ~NI)THIS CHANGE TAKES PLACE IN

THE MESSAGE THE ASAC VARIABLES.

USING THE FIRST
BUFFER NUMBER

SUBTRACT THE
LOCAL SER. # WE

ARE GOING TO PLACE
ON THE MESSAGE

FROM THE

PREIVIOUS ONE

DDIFFERENCE
FROM THE

CRC

LOOK - THIS SUBROUTINE PERFORMS
A SEARCH OF BEGSTR'S TO

FIND HESSAGES THAT NEED
LOGK TO BE PROCESSED. THE PROCES-

SING STATUS PROVIDES THE
KEY. WHEN IT RETURNS,

THE ADDRESS OF BEGSTR
IS IN THE X REGISTER.

PRESENT LOCATION
TTOP OF BEGSTR

BEGSTR

INMEAGEVETH

TOh THE MESSAG E SN

IES TINSEMN BEGSTR

TRTN WITH
LOECITE LOADED

IN IC

PRESENT LOCATION IN BUFFERS IS

LOGFJ AT X1 WHEN SUBROUTINE
IS ENTERED AT LOOKI

2 C) 1

TAKE5,: TAXES A BEGSTRHi
TIFNDA

FROM RAM AND Hi HOME BOUND

TAKE 5 STORES IT IN THE MESSAGE By

ASAS ARIALES.SEARCHING THROUGH
ASAU ARIALES.BEGSTRS

PRESENT LOCATION

Is TOP OP BEOSTS

(U) LOCATION OF FIRST

BUFFER FAKE YX

(2) FIRST INPUT BUFFER
UPPER ASA VOISTS

(3) NUMBER OF BUFFERSYE

ASA VI ESG
4) #OF WORDS IN LAST

BUFFER ASAV2
5) PROCESSING STATUSSTRINEMT

ASA V3 TI OAINT H
(6) HIGH ORDER CRC O ESRNX

ASA V4 I zBGT
,7) LOW ORDER CRC N

ASA V5

RETURN
W/ BEGSTR I HSN
LOCATION TELS

SRYEX

TAKE 5 FO
PUTOUT PUTOUT WIL

OUTPUT A HUME- MESSAGE
OVER THI: HOME ACIA IF

RTN YES
ROM IS HOME

PUTOUT ACIA BUSS?

NO

FROM BEGSTR

WE WANT 7%) SET REACO

OUT EVERYTHING FOR. OUTPUT

IN THE MESSAGE OVER THE

BUT THE ACIA HOME ACIA.

7 OUTPT
THERTNFIRSTWORDFROM

To THE HOME PUTOUT

ACIA, ET TH

SRCHoI SRCHOH-
THIS SUBROUTINE PERFORM4S
A SEARCH THROUGH
ME240PY FOR A
HOMEREC NOT
BEING USED

PRESENT LOCATION

ISEE AAT FORFRS
HOHFNDNUAHOERC

HITH HOMERNO

NO:- I SURUIN EFINDS AOIC HOMERECA

ORGI

AREE)I

YES HMFRECNOT INDIH A HERECC

RTN
FROM

tSRH.

SUBOUIN ARBENGUAFLA
WITH X HMRCOTINGNDCTNMSAE

ELOCATION OF

SRC4ERE C 4 HSSBOTN ID HOT FOUND

CRCLK & CRCCK BOTH WILL BE

CRCLK DIAGRAKKED HERE.
THERE PURPOSE IS TO FIND A

MESSAGE'S CRC AND CHECK

IT WITH THE ONE CALCULATED
WHEN THE MESSAGE WAS INPUTTED

IS THIS NO

THE LAST BUFFER EXAMPLE OF BUFFER LINKAE

OF MESSAGE AND LOCATION OF CRC

LINK
TO THE BUFFER 3 bUFES

LAST FIRST MESSAGE

BUFFER BUFFER F 1

\b_____ LOC. FJFF F 2
LSE NUMBER

OF WORDS IN LINK

LAST BUFFER TO
FIND CRC.

PUT POINTER

(ACCR) AT THIS

CRC LOCATION BUFFER

F2

RTN
LOG. F2FF F

FROM

CRCLK
I LINE

BUFFER

CRCC K
F3

LOC'S F3F CRCI

COMPARE CRC F3FE CRCL

ON MESSAGE

WITH CRC

CALCULATED

SET THE

FLAG (ACCB)
FOR ERROR
IN CRC

DO THE
TWO NUMBERS
EQUAL EACH

OTH ER

CRUKl

ACKNAC CLEARS THE LOCAL
ACKN).C ACKNOWLEDGEMIENT MESSAG;E

FROM BEGSm 6 BEGBUF.

CRCCK FIND THE
CRCRK CRC AND

CHECK IT.

CLEARA LOCA

CN. FROM

BEG BUKFJ

FFROM
AC CKNACC

CLS CLEARS A MESSAGE CLRE) -'CLARWCUR ZZ FROM THE ACK. A BESTR
NEED)ED QUE (ZZ) CLRE5

PRESENI LOC. WHEN CLRZZ IS CALLED

IS Al THE THL MESSA E BEING
TOP OF ZZ ACK'ED IS IN

ACCUMULATOR B

WHEN CALLED, X

CONTRINT THE LOCA-
DOEB NO TION OF A BEGSTR

TO CLEAR, CLEAR
MESSAGE / THIS BEGSTR.

~~~INCREMEN'T CA

TO NEXT

SIB
MESGCEBE

CLLEAR- CNAAR

THE BN'FYE,
IN USE FLAt;

AT BOTTOM OF FROM bEBU

WHEN CALLEDCLRE6 'B CONTAINS FIRST
+ INPUT BUFFERS

'A' CONTAINS

YES N 5UMBER OF BUFFERS. -1

,( tFRL)M ONF HOW

MANY B': FERS?

Tl CL I-IV'

MORE
'LAN ONE

PULL. PUSH ALL THE
BtFf tR BUFFERS ct

TO CLEAR CLEAR ON TO
OFF OF THE MTiORY
THE STACK SACY.

STA, V'

'4Y

F kf,

C 1k F



BUFALO - BUFFER ALLOCATION

SUBR'tTINFl, THIS

BUFALO SUBRKILl[NF SEARCHES
BEt;Bt' FOR A
FRLL Bi'FER AND

ASSILNS I1 TO AN
ACIA. WlEN BUtFM)O

IS CALLED ACC 'B'

CONTAINS THE KEY

PAT TPOFR WORD SPECIFYING

BEGBUFA WHO WILL USE. THE
BUFFER.

/ IS THIS N

BUFFER IN

YEFS

PUT THEBUFFER
ARE NAM i

WE AT T YIN ACCA

O-* ACCA
RETURN A ZL,- 1N

FRM AtA INDCA I}S / ST
FROY ((%RT8UI T 0Li Ni A FRO

SCSI IS WAS BFL

INCREMENT I-OL Nr'
TO THEj

NEXT
BUFFER

IN BE(;BUF

-NOTE ACCA -ACCUMULIATOR 'A'



L D 06 GEORGIA INST OF TECH ATLANTA SCHOOL OF ELECTRICAL EN--EC F/6 9/2
TH FEASIBILITY OF IMPLEMENTING MIJLTICOMMANO SOFTWARE FUNCTIONS-ETC(U)

W OCT 79 T P BARNWE.L J L HAMMOND. J H SCHLAG DAA629-7-6-0139
UNC.ASSIFIED ARO-15900.1-A-EL NL

4''I/EEEIE////I

-llEEEE-EI-m
iONnE

Lim-O



4ACIAE6

THIS SUBROUTINE REINE6 
ACIAE6 WILL FIND THE TAKES

KEY WORD, OF REINE 6 THE KEY
A BUFFER. WORD AND
KEY WOR D INTERPRETS
WILL BE IT INTO
USED TO SET A LOCATION

PRESENT UP THE LOCAL IN REINTRANT

LOCATION ACK. RAM

IS TOP OF
BF.GBUF

SHIFT KEY WORD

LEFT ONE AND

COMPARE DECRE4ENT IT

1st BUFFER TO GET THE LOWER

TO PRESENT ADDRESS OF
BUFFER IN REINTRANT

BEGBUF RAM FOR QUE
IN THE LOCAL ACK.

ARE THE
: TWO BUFFER

NAMES THE N

SQME FORO

FOPUT T AEi EY WRD
,, ,NO IN ACCA

INPUT TO L NQUEACK WILL
NEXT SEARCH IN THE

j, BUFFERLA LOCAL ACK.
IN BEGBUF QUE FOR A

RTN FREE SPACE

FROM PRESENT A S E U

ACEAE6 LOCATION IS. j AT TOP OF NUMBER THERE.

- LOCAL ACK.
~QUE FOR

" AN ACIA||

YES LOCATION FREE?

(CA' WE QuE A SEE REINTRANT RAM.

-i

LOCAL HERE?)

STORE THE INCRE24ENT

LOCAL SEUECE T 1O NEXT
NUMBER HERE LATLOCATION

IPOSSIBLE .

i ACCUULTOR
WILL REFLECT

"71



* ACIACK -PERFORMS A SEARCH
FOR AN ACIA NOT

ACIACK CURRENTLY BEING USED
FOR OUTPUTr.

LOCATION OF POINTER
PRESENTLY AT
TOP OF REINTRANT
RAN.

AIA PRESENLY NO

SE FLAG FORFON
S E A R C O F LG T

ONNIN KEYINCTH

YHEN CA WDCIL CONTN
BEGST THEFIRS BUER T O F THI S SAC E.

IN CONTAINS

YES NNoYRES
LAST LAST

CLEAR T

FLAG.272



ECHO -THIS SUBROUTINE ECHOES THE INPUTTED
SUB CHARACTER BACK TO THE HOST.

ECHO THE FLOW~CHART OF THIS SUBROUTINE
IS NOT COMLETE.

~~FREBUF -RBI THIS SUBROUTINE FREES
FREBUFA BUFFER FOR USE BY OTHER

AT TP OFACIAS. WHEN CALLED THE KEY

WORD OF THE BUFFER TO BE

PREENTFREED Is IN THE ' ACCUMUIATOR.

INPRESENT

BEEGBUF

~~~~~OE __ __ __ __B1

EQUAL EY27E

SUBr S THIS MESSAGE - '

t>

SUBs p' SU!ZB.
SUB IT .HU E 1 1 LCALAC'I¢C:+TFO "T +" s

22 Isr 111.s 4,

5ILS I ~ '("t

I+L NI. ,'I SH M L: C

THE i . IF IHiL-:, -.
HOSRI AULA IS
SSSY, K::P I E UP

TE ES', LOkAL ACE. LOcAUP

THE CRC FOR "HIT

TIlE LOCAL

ACK. QUME

RECA4LCU LATESU

T E CRC WiIi CHANGE

SEt. SUTIBRR

MAINGO BACK TO TIlE
MAIN ROUTINE.

OUTPUT SUE.
THIS MUSSACE OUTDES

TO ITS
DESTINATION
IN THE NETWORK.

• 4 THIS ROL'TINE

DATAlS PROCESSES A

DATA MESSAGE

STORE LOCAL
THE 'ASAU.' SEQUENCE 'JT,'SBER
VARIABLES IN PAC.

GOTTEN STORE ORIGIN IN "ORIGIN"
IN 'TAKES' STORE DESTINATION
PROVIDE IN "DESTIN"
THIS NFOR- STORE MFSSAGE 0 CLEAR THE
MATION. IN "MESNO" MESSAGE FROM

STORE SEUF';CE Q BEGBUF &
IN "SEQ'" BEGSTR.

IRTN

SUB's .FROM
CRC L TilE CLASS /" 1

&~(:)~r ('I Oili

(C R C'(K) I T '
CRC C.

I: ir.t lT

244

ITlF' I I'; A~

Sil, 1 lp

274

* 12. APPENDIX D--COBOL PROGRAM

27S

MICROSOFT COSOL-80 V2.05... DEMO COD 10/24/78 16:0: PAGE

I
2
3 IDENTIFICATION DIVISION.
4 PROGRAM-ID.
5 INVENTORT-DEMO-PROG.
6 DATE-WRITTEN. ORIGINALLY 7 FEB 1979
7 7 COMPLETED APPROXIMATELY 26 JUL 1979.

9 ENVIRONMENT DIVISION.
1 CONFIGURATION SECTION.
11 SOURCE-COMPUTER.
12 INTEL 808f.
13 OBJECT-COMPUTER.
14 INTEL 8080.
15 INPUT-OUTPUT SECTION.
16 FILE-CONTROL.
17 SELECT DATA-FILEl ASSIGN TO DISK
18 ORGANIZATION IS INDEXED ACCESS MODE IS DYNAMIC
19 RECORD KEY IS PRTNO.
20 DATA DIVISION.
21 FILE SECTION.
22 ID DATA-FILEI
23 LABEL RECORDS ARE STANDARD
24 DATA RECORD IS DATA-BASE
25 VALUE OF FILE-ID IS ":F0:DATA1.IND".
26 01 DATA-BASE.
2? 05 PRTNO PIC 1(3).
28 05 PLAN11 PIC 1(5).
29 05 PT-NM PIC 1(6).
36 05 STOCKi PIC 999.
31 65 ON-ORDER1 PIC 999.
32 065 THRESHOLD1 PIC 999.
33 05 ORDER-SIZE1 PIC 999.
34 *
35 *FD NETWORK-IN

-, 36 * ABOVE FOR CS-20'S BENEFIT ONLY
37 *FD NETWORK-OUT
38 * ABOVE FOR CS-20 ONLY SO IGNORE
39 *FD AUDIT-FILE
40 * ABOVE FOR PDP-11 AUDIT TRAIL FILE
41 *
42 VORKING-STORAGE SECTION.
43 *61 COMMUNICATIONS-STORAGE.
44 01 MICRO-FLAG PIC 9.
45 01 MESSAGE-SEND-LENGTH USAGE IS INDEX.
46 01 MESSAGE-LENGTH USAGE IS INDEX.
47 61 MESSAGE-BUFFER.
48 05 SOURCE-DESTINATION PIC I.
49 05 MIESSAGE-CONTROL.
56 16 MESSAGE-CLASS PIC I.
51 1 LAST-OF-MESSAGE PIC X.
52 16 FILLER PIC 1(5).
53 05 MESSAGE-DATA PIC X(72).
54 05 MESSAGE-DATA2 REDEFINES MESSAGE-DATA.
55 10 HISSAGZ-DATAI PIC I OCCURS 72 TIMES

277

MICROSOFT COBOL-S V2.6... DEMO COD 10/24/78 10:06:66 PAGE 2

56 INDEXED IT MIS-INDEX.
t 57 05 FILLER PIC I(S).

58 61 MESSAGE-BUF REDEFINES MESSAGE-BUFFER.
59 65 MESSAGE-BUFF PIC 1(70).
60 05 FILLER pig w(le).
61 61 LOCAL-FLAG PIC X VALUE T*.
62 e1 NOsHO-CODE PIC X VALUE A.
63 61 PDP1l-CODE PIC I VALUE "I".
64 61 INTEL-CODE PIC X VALUE :C:.
65 61 CS-20-CODE PIC I VALUE D
66 61 RETURN-ADDRESS PIC I.
67 01 REMOTE-COMMAND PIC 1.
68 91 REMOTE-ADDRESS PIC I.
69 01 WAIT-FOR-ANSWER PIC I.
76 61 CON-FUNCTION PIC I.
71 61 DUM-DUM-TABLE.
?2 63 DUN-DUN PIC I OCCURS 2 TINES.
73 01 COMMAND-STRING.
74 05 MAl-LENGTH USAGE IS INDEX.
75 65 PART-STRINGI.
76 10 FIRST-CHARACTER PIC I.
77 16 REST-COMMAND PIC I OCCURS 29 TIMES.
78 05 PART-STRING REDEFINES PART-STRING1.
79 It PART-MUM PIC 1(13).
86 10 DIGITS REDEFINES PART-NUM.
81 15 DIGIT-3 PIC 1(3).
82 15 FILLER PIC 1(1S).
83 16 FILLER PIC 1(17).
84 95 OUT-COMMAND REDEFINES PART-STRING.
85 16 COMMAND-OUT PIC I OCCURS 36 TiMES INDEXED BY 13.
86 05 PART-NUNIER REDEFINES OUT-COMMAND PIC I OCCURS 36 TIMES
87 INDEXED BY I1, AACTUAL.
88 *
89 01 STRING).
96 65 MAXB USAGE IS INDEX.
91 05 STRING2 PIC I OCCURS 16 TIMES INDEXED BY 12.
92 01 DEBUG PIC I VALUE "N".
93 61 STOP-FLAG PIC I VALUE "T".
94 01 CURRENT-DATE PIC I(S).
95 01 LIST.
96 05 MAl USAGE IS INDEX.
97 65 FILLER PIC 1(16) VALUE "LIST
98 61 INITIALIZE.
99 05 MAX USAGE IS INDEX.
166 05 FILLER PIC X(18) VALUE "INITIALIZE".
161 61 UPDATE.
102 65 MA12 USAGE IS INDEX.
103 15 FILLER PIC 1(10) VALUE "UPDATE
164 61 STOCK.
105 65 MA13 USAGE IS INDEX.
166 65 FILLER PIC 1(19) VALUE "STOCK
167 01 ON-ORDER.
168 65 MA14 USAGE IS INDEX.
109 65 FILLER PIC 1(18) VALUE "ONORDER ".
116 01 THRESHOLD.

278

O hl I // ri. .

i
I

MICROSOFT COBOL--SO 12.0... DEMO COS 10/24/78 10:09:11 PAGE

0111 5 MA5 USAGE IS INDEX.
112 I5 FILLER PIC 1(10) VALUE "THRESHOLD
113 91 ORDER-SIZE.
114 05 MAi6 USAGE IS INDEX.
115 05 FILLER PIC l(11) VALUE "ORDERSIZE
116 61 COMMAND.
117 55 ACTION PIC I.
118 05 RENTRY PIC I.
119 95 QUANTITY-SIGN PIC I VALUE " ".
120 05 QUANTITY PIC 999.
121 05 PARTNO PIC 1(13) VALUE
122 05 PART-NAME PIC X(20) VALUE
123 01 FLAGS.
124 05 ACTION-FLAG PIC I VALUE "N".
125 05 REPEAT-FLAG PIC I.
126 05 ERROR-FLAG PIC I.
127 31 DUMMY-FLAG PIC I.
128 01 TRANS-FLAG PIC 1.
129 0i SAME-FLAG PIC 1.
130 01 NEV-BUFFER PIC I.
131 01 NO-INPUT-FLAG PIC I VALUE "N".
132 31 BUFFER-EMPTY PIC I VALUE "N".
133 01 EMPTY-LINE PIC 1.
134 ft YES PIC I VALUE "Y".
135 3l NONO PIC I VALUE "N".
136 51 PARTNO-STORAGE.
137 05 DUMMY-ARRAY PIC I OCCURS 135 TIMES
138 INDEXED BY I.
139 95 TIM 71C 1.
145 *
141 01 DATA-BUFFER.
142 05 PART-NUMB PIC X(3).
143 05 BLANK-RUF PIC 1(5).
144 55 PRT-NM! PIC 1(6).
145 05 STCK PIC 999.
146 05 ON-ORDR PIC 999.
147 55 THRESHLD PIC 999.
148 05 ORDR-SIZE PIC 999.
149 01 READING-LINE.
150 05 FILLER PIC 1(11) VALUE "PART NUMBER".
151 35 FILLER PIC III VALUE
152 05 FILLER PIC X(9) VALUE PARTNAME".
153 05 FILLER PIC 1(4) VALUE
154 05 FILLER PIC I(5) VALUE "STOCK".
155 05 FILLER PIC I VALUE
156 05 FILLER PIC I(8) VALUE ON ORDER".
157 05 FILLER PIC I VALUE .
158 05 FILLER PIC 1(9) VALUE "THRESHOLD".
159 05 FILLER PIC I VALUE " ".
165 05 FILLER PIC (I) VALUE -ORDER SIZE'.
161 I1 PRINT-LINE.
162 05 PART-NUM-OUT PIC I.13).
163 05 FILLER PIC I VALUE
164 05 PART-NAME-OUT PlC 1(12).
165 05 FILLER PIC II VALUE

279

MICROSOFT COBOL-89 V2.9... DEMO COB 16/24/?8 16a1:II PAGE 4

166 65 STOCK-OUT PIC 999.
167 05 FILLER PIC 1(4) VALUE
168 45 ON-ORDER-OUT PIC 999.
169 05 FILLER PIC X(?) VALUE "
170 0! THRESHOLD-OUT PIC 999.
171 05 FILLER PIC 1(7) VALUE .
172 f5 ORDER-SIZE-OUT PIC 999.
173 01 ERROR-LINE.
174 05 FILLER PIC X(12) VALUE "PART NUMBER
175 05 ERROR-PRINT PIC X(13).
176 05 FILLER PIC X(24) VALUE - IS NOT IN THE DATA BASE".
177 01 DELETE-LINE.
178 05 FILLER PIC X(12) VALUE "PART NUMBER
179 05 DELETE-PRINT PIC 1(13).
180 05 FILLER PIC X(17) VALUE HAS BEEN DELETED".
181 01 ADD-LINE.
182 05 FILLER PIC X(12) VALUE "PART NUMBER".
183 e5 ADD-PRINT PIC 1(13).
184 05 FILLER PIC X(15) VALUE "HAS BEEN ADDED.
185 01 PRESENT-LINE.
186 05 FILLER PIC X(12) VALUE "PART NUMBER".
187 05 DATA-PRES-PRINT PIC 1(13).
188 05 FILLER PIC X(19) VALUE "IS ALREADY PRESENT".
189 05 FILLER PIC X(16) VALUE "IN THE DATA BASE".
190 01 INTERNAL-ERROR-ENTRY.
191 05 FILLER PIC X(22,) VALUE "INTERNPL ERROR. ENTRY="
192 05 ENTRY-ERROR PIC X.
193 01 INTERNAL-ERROR-COMMAND.
194 05 FILLER PIC 1(24) VALUE "INTERNAL ERROR. COMMAND=".
195 05 COMMAND-ERROR PIC X.
196 01 VALUE-TOO-IG PIC X(26)
197 VALUE VALUE TOO LARGE - 999 USED".
198 61 MISCELLANEOUS.
199 05 ERRORI-FLAG PIC 1.
200 05 TEMP PIC 999.
201 61 INDEX-CONSTANTS.
202 05 ONE USAGE IS INDEX.
203 05 FOUR USAGE IS INDEX.
204 05 EIGHTY USAGE IS INDEX.205 01 D-I-P-F PIC X.

206 a1 M-D-R-F PIC X.
207 01 COMMAND-SPACE.
208 05 COMMAND-LINE.
209 16 COMMAND-BUFFIER PIC I OCCURS 70 TIMES
210 INDEXED BT TEM-PTR, PTR, TPTR.
211 65 FILLER PIC 1(1).
212 01 BUFFER-LENGTH USAGE IS INDEX.
213 61 ADDIT.
214 05 MAX? USAGE IS INDEX.
215 05 FILLER PIC X(18) VALUE "ADD
216 61 DELETE-IT.
217 05 MAIS USAGE IS INDEX.
218 65 FILLER PIC (1) VALUE "DELETE
219 61 STOP-IT.
226 05 MAX9 USAGE IS INDEX.

280

MICROSOFT COBOL-S V2.0... DEMO COB 10/24/78 13:0a;66 PAGE 5

221 05 FILLER PIC X(16) VALUE "STOP
222 91 DELP.
223 35 MAXIS USAGE IS INDEX.
224 05 FILLER PIC 1(le) VALUE "HELP
225 01 REMOTE-NAME.
226 35 MAIll USAGE IS INDEX.
227 05 FILLER PIC 1(10) VALUE "REMOTE
228 01 SEND-IT.
229 35 MAX16 USAGE IS INDEX.
23F 05 FILLER PIC X(10) VALUE "SEND
231 01 M6800.
232 05 MAX12 USAGE IS INDEX.
233 05 FILLER PIC X(10) VALUE "M6800
234 31 PDPlI.
235 05 MAX13 USAGE IS INDEX.
236 05 FILLER PIC X(10) VALUE "PDPll
237 @1 INTEL.
238 05 MAX14 USAGE IS INDEX.
239 05 FILLER PIC X(10) VALUE "INTEL
240 01 CS20.
241 05 MAXI5 USAGE IS INDEX.
242 05 FILLER PIC X(lC) VALUE "CS-20
243 01 FIRST-TIME-THRU PIC 9 VALUE 1.
244 * END OF WORKING STORAGE SECTION.
245
246 PROCEDURF DIVISION.
247 MAIN-PROGrAM.
248 PERFORM INITIALIZE-FOR-DAY.
249 PERFORM COMMAND-PROCESS UNTIL STOP-FLAD = YES.
250 PERFORM END-DAT.
251 STOP RUN.
252
253 COMMUNICATE.
254 * THIS PARAGRAPH IS A SUBROUTINE THAT IS SPECIFIC TO EACH
255 * COMPUTER IT HANDLES THE INTERFACE WITH THE NETWORK.
25f * LOCAL-FLAG INDICATES WHETHER A TRANSACTION COMES FROM
257 * THIS MACHINE.
258 * COM-FUNCTION TELLS WHETHER TO SEND RECEIVE OR INITIALIZE.
259 * MESSAGE-BUFFER CONTAINS THE DATA TO BE TRANSFERRED
260 * MESSAGE LENGTH IS THE NUMBER OF CHARACTERS TRANSFERRED.
261
262 IT DEBUG = YES
263 DISPLAY "NETWORK CALLED" COM-FUNCTION
264 ELSE
265 PERFORM COM-DUMMY.
266 COM-DUMMY.
267 IF CON-FUNCTION - "I"
268 PERFORM NETWORK-INITIALIZX
269 ELSE
270 IF CON-FUNCTION - "S"
271 PERFORM NETWORK-SEND
272 ELSE
273 IF CON-FUNCTION - "A"
274 PERFORM NETWORK-RECEIVE
275 ELSE

281

MICROSOFT COBOL-80 V2.0... DEMO COB 10/24/78 19:80:0 PAGE 6

276 DISPLAY "ILLEGAL COMMAND TO COMMUNICATE" COM-FUNCTION
277 STOP RUN.
278 *
279 NETWORK-INITIALIZE.
280 DISPLAY INITIALIZE THE NETWORK".
281 SET MESSAGE-LENGTH TO 4.
282 * USE MESSAGE-LENGTH TO PASS A REQUEST FOR 1200 BAUD.
283 CALL "INITIALIZE" USING MESSAGE-LENGTH.
284 *
285 NETWORK-SEND.
286 SET MESSAGE-SEND-LENGTH TO MESSAGE-LENGTH.
287 CALL "SENDMESSAGE"
288 USING MESSAGE-BUFFER MESSAGE-SEND-LENGTH.
289 *
290 NETWORK-RECEIVE.
291 MOVE SPACES TO MESSAGE-BUFFER.
292 CALL "RECEIVEMESSAGE"
293 USING MESSAGE-BUFFER MESSAGE-LENGTH.
294
295 INITIALIZE-FOR-DAY.
296 SET I TO 1.
29? SET ONE TO I.
298 SET I TO 3.
299 SET MAX7 TO I.
300 SET I TO 4.
301 SET MAil TO I.
302 SET MA19 TO I.
303 SET MAX10 TO I.
304 SET MA116 TO I.

" 305 SET JOUR TO I.
306 SET I TO 5.
307 SET MA13 TO I.
308 SET MAX12 TO I.
109 SIT MAX13 TO I.
310 SET MAX14 TO I.
311 SET MAl15 TO I.
312 SET I TO 6.
313 SET MAX2 TO I.
314 SET MA18 TO I.
315 SET MAX11 TO I.
316 SET I TO 7.
317 SET MA14 TO I.
318 SET I TO 9.
319 SET MAI5 TO 1.
320 SET MA16 TO I.
321 SET I TO 10.
322 SIT MAX TO I.
323 SET I TO 30.
324 SET MAX-LENGTH TO I.
325 SET I TO 80.
326 SET EIGHTY TO 1.
327 MOVE SPACES TO BLANK-BUF.
328 MOVE NONO TO REMOTE-COMMAND.
329 MOVE NONO TO WAIT-FOR-ANSWER.
330 DISPLAY "INVENTORY PROGRAM VERSION 1.0".

282

MICROSOFT COBOL-80 V2.0... DEMO COB 10/24/78 19:e0:0 PAGE 7

331 DISPLAY "ENTER DATE (DD/MM/YY)".
332 ACCEPT CURRENT-DATE.
333 PERFORM OPEN-AUDIT-FILE.
334 MOVE "I TO COM-FUNCTION.
335 PERFORM COMMUNICATE.
336 ABOVf HAS INITIALIZED THE NETWORK PORT.
337 MOVE C TO ACTION.
338 MOVE "I" TO IENTRY.
339 MOVE 0 TO QUANTITY.
340 PERFORM TRANSACTION-PROCESSOR.
341 MOVE NONO TO STOP-FLAG.
342 DISPLAY "ENTER HELP FOR A LIST OF CURRENT CAPABILITIES".
343 *
344 OPEN-AUDIT-FILE.
345 PERFORM DO-NOTHING.
346 * FOR MICRO THIS IS A DUMMY PARAGRAPH
347 *
348 END-DAY.
349 MOVE "C TO ACTION.
350 MOVE "E" TO EENTRY.
351 PERFORM TRANSACTION-PROCESSOR.
352 DISPLAY "END OF DAY PLEASE REMOVE DISKETTE".
353 *

354 COMMAND-PROCESS.
355 IF DEBUG = YES DISPLAY "COMMAND PROCESS ENTERED".
356 SET MESSAGE-LENGTH TO FOUR.
357 PERFORM PROCESS-MESSAGE UNTIL MESSAGE-LENGTH < ONE.
358 IF WAIT-FOR-ANSWER = NONO
359 PERFORM ASK-FOR-INPUT.
360 *
361 ASK-FOR-INPUT.
362 DISPLAY "ENTER PART NUMBER OR COMMAND".
363 MOVE YES TO LOCAL-FLAG.
364 MOVE YES TO NEW-BUFFER.
365 PERFORM READ-INPUT.
366 IF FIRST-CHARACTER IS NOT ALPHABETIC
367 PERFORM PART-NUMBER-PROCESSOR
368 ELSE
369 PERFORM COMMAND-PROCESSOR.
370*
371 PROCESS4ESSAGE.
372 MOVE P TO COM-FUNCTION.
373 PERFORM COMMUNICATE.
374 IF MESSAGE-LENGTH NOT < ONE
375 IF MESSAGE-CLASS = "C',
376 PERFORM APPLY-COMMAND
377 ELSE
378 I MESSAGE-CLASS - "D
379 PERFORM DISPLAY-COMMAND
380 ELSE
381 IF MESSAGE-CLASS = "A"
382 PERFORM AUDIT-COMMAND
383 ELSF
384 DISPLAY SOURCE-DESTINATION MESSAGE-CONTRCL
385 DISPLAY MESSAGE-DATA.

283

- --.o. -

MICROSOFT COBOL-80 V2.0... DEMO COB 10/24/78 10:00:00 PAGE 6

386 *
387 DISPLAY-COMMAND.
388 DISPLAY MESSAGE-DATA.
389 Il LAST-OF-MESSAGE Y YES
39C MOVE MONO TO WAIT-FOR-ANSWER.
391 *
392 APPLT-COMMAND.
393 MOVE MONO TO LOCAL-FLAG.
'A94 MOVE SOURCE-DESTINATION TO RETURN-ADDRESS.
395 MOVE MESSAGE-DATA TO COMMAND.
396 PERFORM TRANSACTION-PROCESSOR.
397 MCVE YES TO LOCAL-FLAG.
398 *
399 AUDIT-COMMAND.
400 DISPLAY "AUDIT TRAIL MESSAGE --
401 DISPLAY SOURCE-DESTINATION MESSAGE-CONTROL.
402 DISPLAY MESSAGE-DATA.
403 *
404 PART-NUMBER-PROCESSOR.
405 IF DEBUG - YES DISPLAY "PART NUMBER PROCESSOR ENTERED".
406 MOVE NONO TO ERROR-PLAG.
407 MOVE TO PARTNO.
408 MOVE L" TO ACTION.
409 MOVE TO ZENTRY.
410 MOVE " TO QUANTITY-SIGN.
411 MOVE I TO QUANTITY.
412 MOVE TO PART-NAME.
413 PERFORM PARTNO-CHECK.
414 IF ERROR-FLAG = MONO
415 PERFORM CHECK-OTHER-FIELDS.
416
417 CHIECK-OTHIR-FlIELDS.
418 MOVE YES TO REPEAT-FLAG.
419 MOVE MONO TO ERROR-FLAG.
420 PERFORM ACTION-CHECK UNTIL REPEAT-FLAG = MONO.
421 IF ACTION-FLAG Y YES
422 MOVE YES TO REPEAT-FLAG
423 MOVE MONO TO ERROR-FLAG
424 PERFORM ENTRY-CHECK UNTIL REPEAT-FLA3 = MONO
425 MOVE YES TO REPEAT-FLAG
426 MOVE MONO TO ERROR-FLAG
427 PERFORM VALUE-CHECK UNTIL REPEAT-FLAG = NOMO.
428 PERFORM TRANSACTION-PROCESSOR.
429 *
430 PARTNO-CHECK.
431 IF DEBUG - YES DISPLAY "PARTNO CHECK ENTERED".
432 MOVE MONO TO ERROR-FLAG.
433 PERFORM DIGIT-CHECK
434 VARYING I FROM 1 BY 1
435 UNTIL (Ii > 13 OR ERROR-FLAG = YES).
436 1I ERROR-FLAG a NONO1
437 MOVE PART-NUM TO PARTNO
438 ELSE
439 DISPLAY "PART-NUMBERS CONTAIN ONLY DIGITS.".
440

284

MICROSOFT CODOL-80 V2.0... DEMO COB 10/24/78 19:6:66 PAGE 9

441 DIGIT-CHECK.
442 MOVE PART-NUMBER(I1) TO TEM.
443 IF TIM IS NUMERIC OR TIM =
444 NEXT SENTENCE
445 ELSE
446 MOVE YES TO ERROR-FLAG.
447
448 READ-DATA.
449 MOVE YES TO NEW-BUPFER.
450 MOVE YES TO NO-INPUT-FLAG.
451 PERFORM READ-INPUT.

* 452
453 ACTION-CHECK.
454 IF DEBUG w YES DISPLAY "ACTION CHECK ENTERED".
455 IF ERROR-FLAG = MONO
456 MOVE NONO TO NEW-BUFFER
457 PERFORM READ-INPUT.

, 458 IF (NO-INPUT-FLAG a YES OR ERROR-PLAG = YES)
459 DISPLAY "ENTER ACTION - LIST,UPDATE OR INITIALIZE"
460 PERFORM READ-DATA.
461 MOVE MONO TO REPEAT-FLAG.
462 MOVE LIST TO STRINGB.
463 PERFORM RECOGNIZE.
464 IF SAME-FLAG = YES
465 MOVE "L" TO ACTION

' '466 MOVE MONO TO ACTION-FLAG
467 ELSE
468 MOVE UPDATE TO STRINGS
469 PERFORM RECOGNIZE
470 IF SAME-FLAG = YES
471 MOVE "U" TO ACTION
472 MOVE YES TO ACTION-FLAG
473 ELSE
474 PERFORM ACTION-CHECKI.

" 475 ACTION-CHECK1.
476 MOVE INITIALIZE TO STRINGB
477 PERFORM RECOGNIZE
478 IF SAME-FLAG - YES
479 MOVE "I" TO ACTION
483 MOVE YES TO ACTION-FLAG
481 ELSE
482 DISPLAY "ILEGAL ACTION CODE - RE-ENTER"
483 MOVE YES TO REPEAT-FLAG
484 MOVE YES TO ERROR-FLAG.
485
486 ENTRY-CHECK.
487 I DEBUG = YES DISPLAY "ENTRY CHECK ENTERED".
488 IF ERROR-FLAG = MONO
489 MOVE MONO TO NEW-DUFFLR
490 PERFORM READ-INPUT.
491 IF (NO-INPUT-FLAG - YES OR ERROR-FLAG = YES)
492 DISPLAY "ENTER CODE FOR ENTRY TO 31 CHANGED"
493 DISPLAY STOCK, ON ORDER, THRESHOLD OR ORDER SIZE"
494 PERFORM READ-DATA.
499 MOVE MONO TO REPEAT-FLAG.

*21

285

MICROSOFT COBOL-8e V2.0... DEMO COB 10/24/78 10:00:00 PAGE 10

496 MOVE STOCK TO STRINGB.
497 PERFORM RECOGNIZE.
498 IF SAME-FLAq = YES
499 MOVE S TO EENTRY
500 ELSE
5F1 MOVE ON-ORDER TO STRINGB
502 PERFORM RECOGNIZE
503 IF (SAMI-FLAG = YES AND AACTUAL > 1)
504 MOVE "0" TO EENTRY
505 ELSE
506 PERFORM ENTRT-CHECKI.
507
508 ENTRY-CHECKI.
509 HOVE THRESHOLD TO STRINGB
510 PERFORM RECOGNIZE
511 IF SAME-FLAG - YES
512 MOVE "T'" TO EUNTRY
513 ELSE
514 MOVE ORDER-SIZE TO STRINGB
515 PERFORM RECOGNIZE
516 It (SAME-FLAG Y YES AND AACTUAL > 1)
517 MOVE "Z" TO EINTRY
518 ELSE

* 519 DISPLAY "ILLEGAL ENTRY CODE"
520 MOVE YES TO REPEAT-FLAG
521 MOVE YES TO ERROR-FLAG.
522
523 VALUE-CHECK.
524 IF DEBUG Y YES DISPLAY "VALUE CHECK ENTERD".

• 525 IF ERROR-FLAG a NONO
526 MOVE NONO TO NEW-BUFFER
52? PERFORM READ-INPUT.
528 IF (NO-INPUT-FLAG = YES OR ERROR-FLAG = YES)
529 DISPLAY "ENTER THE NUMBER OF ITEMS"
530 PERpORM READ-DATA.
531 IF (PART-NUMBER(1) = "*" OR PART-NUMBER(1) =
*,** PUNCT?
532 THIS CODE ASSUMES 3 DIGIT PART QUANTITIES
533 MOVE PART-NUMBER(1) TO QUANTITY-SIGN
534 MOVE PART-NUMBER(2) TO PART-NUMBER(1)
535 MOVE PART-NUM3ER(3) TO PART-NUMBER(2)
536 MOVE PART-NUMBER(4) TO PART-NUMBER(3)
537 SET AACTUAL DOWN BY 1.
538 If AACTUAL > 3 SET AACTUAL TO 3
539 IF AACTUAL < 1
540 SET AACTUAL TO I
541 MOVE "A" TO PART-NUMBER(M).
542 MOVE MONO TO ERROR-FLAG.
543 PERFORM DIGIT-CHECK
544 VARYING 11 FROM 1 BY 1
545 UNTIL (I1 > AACTUAL OR ERROR-FLAG = YES).
546 IF ERROR-FLAG - MONO
547 PERFORM RIGHT-JUSTIFY-0-FILL
548 MOVE DIGIT-3 TO QUANTITY
549 MOVE MONO TO REPEAT-FLAG

280

MICROSOFT COBOL-6 V2.0... DEMO COB 16/24/78 16:00:01 PAGE 11

550 ELSE
551 DISPLAY "ENTER NUMBERS ONLY".
552 *
553 *

-_ 554 RIGHT-JUSTIFTY--FILL.
555 MOVE PART-NUMBER(AACTUAL) TO PART-NUMBER(3).
556 I7 AACTUAL - 2
557 MOVE PART-NUMBEE 1) TO PART-NUMBER(2)
558 MOVE "0" TO PART-NUMBER(I)
559 ELSE

" 560 17 A-ACTUAL - 1
561 MOVE "B" TO PART-NUMBER(2)
562 MOVE "0" TO PART-NUMBER(1).
563 *
564 *---------------- ------ ----
565 TRANSACTION-PROCESSOR.
566 It DEBUG - YES
567 DISPLAY "TRANSACTION PROCESSOR ENTERED"
568 DISPLAY COMMAND.
569 MOVE "S" TO COM-FUNCTION.
576 MOVE SPACES TO MESSAGE-BUFFER.
571 SET MESSAGE-LENGTH TO EIGHTY.
572 I REMOTE-COMMAND - YES
573 PERFORM SEND-OUT-COMMAND
574 ELSE
575 PERFORM TRANSACTION-PROCESSOR1.
576
577 SEND-OUT-COMMAND.
578 MOVE REMOTE-ADDRESS TO SOURCE-DESTINATION.
579 MOVE C" TO MESSAGE-CLASS.
586 MOVE YES TO LAST-OF-MESSAGE.
581 MOVE COMMAND TO MESSAGE-DATA.
582 MOVE YES TO WAIT-FOR-ANSWER.
583 MOVE NONO TO REMOTE-COMMAND.
584 PERFORM COMMUNICATE.

N., 585 * A MESSAGE ASKING IF WE SHOULD WAIT FOR RESULTS WOULD BE NICE.
586 DISPLAY "YOUR REQUEST HAS BEEN SENT. WAIT FOR RESULTS".
587 *

588 TRANSACTION-PROCESSOR1.
589 MOVE PDP11-CODE TO SOURCE-DESTINATION.
590 MOVE "A" TO MESSAGE-CLASS.
591 MOVE YES TO LAST-OF-MESSAGE.
592 MOVE COMMAND TO MESSAGE-DATA.
593 MOVE NONO TO ERRORI-FLAG.
594 MOVE YES TO TRANS-FLAG.
595 IF ACTION - "C"
596 PERFORM DO-COMMAND
597 ELSE
598 PRFORM FIND-PART
599 IF ERROR1-FLAG = NONO
606 PERFORM EXECUTE-TRANSACTION
661 ELSE
602 CLOSE DATA-FILEl
663 MOVE PAITNO TO EROR-PRINT
664 IF LOCAL-FLAG a YES

287

MICROSOFT COSOL-S 12.0... DEMO COD 11/24/78 1:99:90 PAGE 12

605 DISPLAY 111OR-LINE
606 ELSE
637 PERFORM SETUP-TO-DISPLAT
608 MOVE ERROR-LINE TO MESSAGE-DATA
609 PERFORM COMMUNICATE.
616 *
611 SETUP-TO-DISPLAY.
612 MOVE RETURN-ADDRESS TO SOURCE-DESTINATION.
613 MOVE "D" TO MESSAGE-CLASS.
614 MOVE YES TO LAST-OF-MESSAGE.
615 MOVE SPACES TO MESSAGE-DATA.
616 *
617 EIECUTE-TRANSACTION.
618 1I ACTION NOT - "L"
619 PERFORM PROCESS-PART.
620 I (TRANS-FLAG - YES AND ACTION NOT - "L")

**** PUNCT?
621 SEND OUT TIE AUDIT TRAIL
622 PERFORM COMMUNICATE.
623 I1 TRANS-FLAG - YES
624 PERFORM PRINT-LINE-TO-DATA-BASE
625 IF LOCAL-FLAG - YES
626 DISPLAY HEADING-LINE
627 DISPLAY PRINT-LINE
628 ELSE
629 PERFORM SETUP-TO-DISPLAY
638 MOVE NONO TO LAST-OF-MESSAGE
631 MOVE HEADING-LINE TO MESSAGE-DATA
632 PERFORM COMMUNICATE
633 PERFORM SETUP-TO-DISPLAY
634 MOVE PRINT-LINE TO MESSAGE-DATA
635 PERFORM COMMUNICATE
636 ELSE
63? MOVE SENTRY TO ENTRY-ERROR
638 IF LOCAL-FLAG - YES
639 DISPLAY INTERNAL-ERROR-ENTRY
646 ELSE
641 PERFORM SETUP-TO-DISPLAY
642 MOVE INTERNAL-EBROR-ENTRY TO MESSAGE-DATI
843 PERFORM COMMUNICATE.
644 CLOSE DATA-FILE1.
645 *
646 FIND-PART.
64? OPEN 1-0 DATA-FILEl.
648 MOVE PAITNO TO PETNO.
649 START DATA-FILE1 KET EQUAL PRTNO
650 INVALID LET MOVE YES TO ERRORI-FLAG.
651 READ DATA-IILE1 INVALID KEY MOVE YES TO ERRORI-FLAG.
652 PERFORM MOVE-TO-PRINT-LINE.
653 *
654 MOVE-TO-PRINT-LINE.
655 MOVE PATNO TO PAIT-NUM-OUT.
656 MOVE PT-NM TO PART-NAME-OUT.
65? MOVE STOCKI TO STOCK-OUT.
658 MOVE ON-ORDEEI TO ON-ORDER-OUT.

288

MICROSOFT COBOL--SI V2.3... DEMO COB 10/24/78 11:13:01 PAGE 13

659 MOVE THRESHOLD1 TO THRESHOLD-OUT.
663 MOVE ORDER-SIZE1 TO ORDER-SIZE-OUT.
661 *
662 PIOCESS-PART.

. 663 IF DEBUG - YfSDISPLAY "PROCESS PART ENTERED".
664 I SENTRY "S
665 MOVE STOCK-OUT TO TEMP
666 PERFORM PROCESS-TEMP

, 667 MOVE TEMP TO STOCK-OUT
668 ELSE
669 IT SENTRY a "T"
676 MOVE THRESHOLD-OUT TO TEMP
671 PERFORM PROCESS-TEMP
672 MOVE TEMP TO THRESHOLD-OUT
673 ELSE
674 I1 SENTRY - "0"
675 MOVE ON-ORDER-OUT TO TEMP
676 PERFORM PROCESS-TEMP
677 MOVE TEMP TO ON-ORDER-OUT
678 ELSE
679 IF SENTRY ="Z"
680 MOVE ORDER-SIZE-OUT TO TEMP
681 PERFORM PROCESS-TEMP
682 MOVE TEMP TO ORDER-SIZE-OUT
683 ELSE

* 684 MOVE NONO TO TRANS-FLAG.
685
686 PROCESS-TEMP.
687 IF ACTION = "I"
688 MOVE 3 TO TEMP., .
689 IF QUANTITY-SIGN = +
690 ADD QUANTITY TO TEMP
691 ON SIZE ERROR
692 MOVE 999 TO TEMP
693 IF LOCAL-PLAG = YES
694 DISPLAY VALUE-TOO-BIG
695 ELSE
696 PERFORM SETUP-TO-DISPLAY
697 MOVE VALUE-TOO-BIG TO MESSAGE-DATA
698 MOVE NONO TO LAST-OF-MESSAGE
699 PERFORM COMMUNICATE
76C ELSE
731 IF QUANTITY > TEMP
72 MOVE 0 TO TEMP
703 ELSE
704 SUBTRACT QUANTITY FROM TEMP.
735 *
736 PRINT-LINE-TO-DATA-BASI.
707 MOVE STOCK-OUT TO STOCK1.
708 MOVE THRESHOLD-OUT TO TRIESHOLDI.
709 MOVE ON-ORDER-OUT TO ON-ORDERI.
716 MOVE ORDER-SIZE-OUT TO ORDER-IZI.
711 REVRITE DATA-BASE;
712 INVALID.KEY MOVE YES TO DUMMY-FLAG.
713 *

289

MICROSOFT COBOL-BI V2.... DXMO COD 13/24/78 11tes1: PAGE 14

714 DO-COMMAND.
715 17 DIBUG -YES DISPLAY -DO COMMAND ENTERED".
716 I ENTRY L
717 PERFORM LIST-PARTS
718 ELSE
719 IF LOCAL-FLAG NOT a YES
726 PERFORM STUP-TO-DISPLAY
721 MOVE "REMOTE COMMAND ERROR" TO MESSAGE-DATA
722 PERFORM COMMUNICATE
723 ELSE
724 PERFORM LOCAL-COMMAND.
725
726 LOCAL-COMMAND.
727 IF IENTRT - "D"
728 PERFORM DELETE-PART
729 ELSE
730 IF IENTRY - "A"
731 PERFORM ADD-PART
732 ELSE
733 IF IENTRY - "I"
734 PERFORM INIT
735 ELSE
736 IF SENTRY - "I-
737 PERFORM TERMINATE-RUN
738 ELSE
739 MOVE COMMAND TO COMMAND-ERROR
?49 DISPLAY INTERNAL-ERROR-COMMAND.
741 *
742 TERMINATE-RUN.

- I 743 PERFORM COMMUNICATE.
744 DISPLAY "END OF DAY - SAVE THE DATA-BSE".
745 *
746 INIT.
747 PERFORM COMMUNICATE.
748 OPEN INPUT DATA-FILE1.
749 READ DATA-FILE1 NEXT AT END MOVE NONO TO M-D-R-F.
750 CLOSE DATA-FILE1.
751 DISPLAY "INITIALIZE THE DATA BASE".
752 *
753 LIST-PARTS.
754 IF LOCAL-FLAG = YES
755 DISPLAY BEADING-LINE
756 ELSE
757 PERFORM SETUP-TO-DISPLAY
758 MOVE NONO TO LAST-OF-MESSAGE
759 MOVE HEADING-LINE TO MESSAGE-DATA
760 PERFORM COMMUNICATE.
761 OPEN INPUT DATA-FILE1.
762 MOVE YES TO M-D-R-F.
763 PERFORM LST-PRTS UNTIL M-D-R-F NONO.
764 CLOSE DATA-FILE1.
765 1F LOCAL-FLAG NOT - YES
766 PERFORM SETUP-TO-DISPLAY
767 PERFORM COMMUNICATE.
768

290

*MICROSOFT COBOL-8I V2.0 ... DEMO COB 16/24/78 169:0: PACE 15

769 LST-PRTS.
779 REID DATA-FuILI NEXT AT IND MOVE NONO TO M-D-R-F.
771 11 M-D-R-1 NOT M ONO
772 PERFORM PRINT-A-LINZ1.
773
774 PRINT-A-LINE1.
775 PERFORM MOVE-TO-PRINT-LINI.
776 IF LOCAL-FLAG a YES
777 DISPLAY PRINT-LINE
778 ELSE
779 PERFORM SETUP-TO-DISPLAY
786 MOVE NONO TO LAST-OF-MESSAGE
781 MOVE PRINT-LINE TO MESSAGE-DATA
782 PERFORM COMMUNICATE.
783
784 PRINT-I-LINE.
785 IFJPRTNO NOT=
786 PIRFORM MOIE-TO-P'RINT-LINE
787 DISPLAY PRINT-LINE.
788
789 DELETE-PART.
796 PERFORM FIND-PART.
791 IF ERRORI-FLAG aNOKO
792 PERFORM DELETE-RECORD
793 ELSE
794 MOVE PARTNO TO ERROR-PRINT
?95 CLOSE DATA-FIL1l
796 DISPLAY ERROR-LINE.
'797
798 DELETE-RECORD.
799 DELETE DATA-FILSI;
86e INVALID KEY DISPLAY "INTERNAL ERROR DELETE"
601 CLOSE DATA-FIL1l
862 STOP RUN.
863 PERFORM COMMUNICATE.
64 MOVE PARTNO TO DELETE-PRINT.
805 CLOSE DATA-ruIL.
866 DISPLAY DELETE-LINE.

sea ADD-PART.
869 *IN THIS SECTION
8ale D-I-P-F AREVIATIS DATA-IS ALREADY-PRESENT-FLAG.
all PERFORM COMMUNICATE.
812 PERFORM SET-BUFF.
813 OPEN 1-0 DATI-Flill.
814 MOVE NONO TO D-I-t-F.
815 WRITE DATA-BASE FROM DATA-BUFFER;
816 INVALID 1EY MOVE T11 TO D-I-P-F.
a17 IF DEBUG a YES DISPLAY MID ADD PART -D-I-P-F.
818 11 D-1-Y-1 - YES
819 PERFORM VALUE-IS-PRESENT
826 ELSE
821 MOVE PAITNO TO ADD-PRINT
822 DISPLAY ADD-LINE.
823 CLOSE DAA-FIL,11.

291

MICROSOFT CODOL-B M2.3... DEMO COD 10/24/78 10:13:11 PAGE 16

4 824
825 VALUE-IS-PRISENT.
826 MOVE PLTNO TO DATA-PRUS-PRINT.
827 DISPLAY PRESENT-LINE.
828
829 SET-BUFF.
830 MOVE PARTNO TO PART-NUM.
831 MOVE PART-NAME TO PRT-NME.
832 MOVE :003" To STC[.
833 MOVE $00 TO ON-ORDR.
834 MOVE "00" TO THRESLD.

* 835 MOVE 000 TO ORDR-SIZE.
836

'I 837 *-
838 RZAD-INPUT.
839 IF NZW-UFFIR a YES
843 MOVE YES TO BUFEIR-EIPTY

* 841 PERFORM GET-NEV-DUYJER UNTIL BUFFER-EMPTY - NONO.
842 It DEBUG a YES
843 DISPLAY COMMAND-LINE.
844 MOVE BUFFER-EMPTY TO NO-INPUT-FLAG.
845 I BUFFER-EMPTY - NONO
846 PERFORM DELETE-FIRST-FIELD.
847 *
848 GET-NEV-NUFFER.
849 I DEBUG - YES DISPLAY "TEST GET NEV BUFFER".
853 OVE SPACES TO COMAND-LINE.
851 ACCEPT COMMAND-LINE.
852 INSPECT COMMAND-LINE REPLACING ALL , NY "B .
853 SIT TPTI TO ONE.
854 PERFORM CLEANUP-LINE.
855 IJ SUIER-EIMPTY - YES
856 DISPLAY "RE-ENTER LAST LINE.".
857
858 DELETE-FIRST-FIELD.
859 I DEBUG - YES DISPLAY "DELETE FIRST FIELD ENTERED".
866 MOVE SPACES TO OUT-COMMAND.
861 PERFORM MOVE-FIRST-FIELD
862 VARYING PTR nRom i BY 1
863 UNTIL (COMMAND-BUJJER(PTR) = "/ OR PTR = 30).

864 17 COMMAND-BUflER(PTR) =
865 SIT 13 TO PTR
866 MOVE TO COMMAND-OUT(I3)
867 SET AACTUAL TO PTR
868 SET AACTUAL DOVN BY 1
869 ELSE
873 SET AACTUAL TO PTR
871 1ERORM DO-NOTHING
872 VARYING PTR FROM AACTUAL BY 1
873 UNTIL COMMAND-BUUFER(PTR) - "I".
874 SIT PTR UP BY 1.
875 SET TPTR TO PTR.
876 PERFORM CLEANUP-LINE.
87?
878 CLEANUP-LINE.

292

MICROSOFT CONOL-80 V2.3... DEMO COD 1/24/78 13:iggii PAGE 17

879 SIT TZM-PT! TO ONE.
88 PERFORM REMOVE-SLANKS-AND-PACK
881 VARYING PTR FROM TPTR BT 1 UNTIL PTR > 70.
882 PERFORM ILANK-REST-OF-LINE
883 VARYING PTR PROM TIM-PTR BY I UNTIL PTR > 73.
884 If TIM-PTR - ONE
885 MOVE YES TO BUFER-EMPTY
886 ILSE
e87 MOVE NONO TO SUFEIR-EMPTY
888 SET TIM-PT! DOWN BT 1
889 SIT BUFFER-LENGTH TO TIM-PTR
89e IF COMMAND-BUFFER(TEM-PTR) NOT - "I"
891 SET TIN-PTR UP BY 1
892 SIT 3UIFEI-LENGTH TO TIN-PTR
893 MOVE "/" TO COMMAND-BUIFER(TEN-PTR).
894 *
895 RENOVE-BLANKS-AND-PACK.
896 1 COMMAND-BUFFER(PTR) NOT =
897 MOVE COMMAND-BUYFER(PTR) TO COMMAND-SUFFIN(TEIM-PTR)
898 SET TIM-PTR UP BT 1.
899 *
9o mOVI-FIRST-FIELD.
931 SET 13 TO PT!.
902 MOVE COMIAND-BUFYER(PTR) TO COMMAND-OUT(13).933 *

934 BLANK-RiST-0F-LINE.
905 MOTE TO COMMAND-SUFFRR(PTR).
906 *
937 DO-NOTHING.
98 SET PT! TO PTR.

S939 *
910 *------- ---------------- -----------------
911 RECOGNIZE.
912 MOVE YES TO SAME-FLAG.
913 PERFORM COMPARE
914 VARYING 12 FROM 1 BT 1
915 UNTIL (SAME-FLAG a NONO OR 12 > AACTUAL OR 12 > MAZ).
916 *
917 COMPARE.
918 SET 11 TO 12.
919 I PART-NUMBER(11) NOT = STRING2(I2)
920 NOVE NONO TO SAME-FLAG.
921 *
922 *
923 COMMAND-PROCESSOR.
924 IF DEBUG a YES DISPLAT "COMMAND PROCESSOR ENTERED".
925 MOVE TO PARTNO.
926 MO41 TO-ACTION.
927 MOVE TO SENTRY.
928 MOVE TO QUANTITY-SIGN.
929 MOTS :090" TO QUANTITY.
930 MOVE TO PART-NE.
931 * TIE FOLLOVING IS A CASE STATEMENT ON TIE COMMAND NAMES.
932 MOVE LIST TO STRINGI.
933 PERFORM RECOGNIZE.

293

MICROSOFT COBOL-80 12.0... DEMO COB 10/24/78 19:90:9: FAGE 18

934 IF SAME-FLAG - YES
935 PERFORM LIST-PROCESS
936 ELSE
937 MOVE STOP-IT TO STRINGS
938 PIRFORM RECOGNIZE
939 IF SAME-ILAG - YES
940 NOVE YES TO STOP-FLAG
941 ILSE
942 OV ADDIT TO STRINGS
943 P1RIOM RECOGNIZE
944 I SANE-7LAG a YES
945 PERFORM ADD-PROCESS
946 ELSE
947 NOVE DELETE-IT TO STRING3
948 PERFORM RECOGNIZE
949 I SAME-FLAG a YES
950 PERFORM DELETE-PROCESS
951 ELSE
952 PERFORM CHEC--OTEXRS.
953 *
954 CEECE-OTUR1S.
955 MOVE EELP TO STRINGS.
956 PERFORM RECOGNIZE.
957 IF SAME-FLAG 0 YES
958 PERFORM HELP-PROCESS
959 ELSE
960 OV1 REMOTE-NAME TO STRINGS
961 PERWFORM RECOGNIZE
962 1 SAME-ILAG a YES
963 PFR0RM REMOTE-PROCESS
964 ELSE
965 NOVE SEND-IT TO STSINGI
966 PERFORM RECOGNIZE
967 IF SANE-FLAG a YES
968 PERFORM SEND-PROCESS
969 ELSE
976 P1R101 ILLEGAL-COMMAND.
971 *
972 ILLEGAL-COMMAND.
973 DISPLAY "ILLEGAL COMMAND - ENTER HELP FOR HELP".
974
975 LIST-PROCESS.
976 MOVE "C" TO ACTION.
977 MOVE "L" TO EUNTRY.
978 OV1 NONO TO NEW-SUF7ER.
979 PERFORM READ-INPUT.
g8 11 (NO-INPUT-FLAG - NONO AND PART-NUMBER(1) -"")

**** PUNCT?
981 NOI "A" TO QUANTITY-SIGN.
982 PEFORM TRANSACTION-PROCESSOR.
983 *
984 ADD-PROCESS.
985 NOV "C" TO ACTION.
986 MOVE "A" TO gENTRY.
987 MOVE YES TO RIPEAT-FLAG.

294

MICROSOFT COBOL-8 12.6... DEMO COB 10/24/78 11:81:11 PAGE 19

988 MOVE NONO TO ERROR-FLAG.
989 PERFORM GET-PART-NUMBER UNTIL REPEAT-FLAG M NONO.
990 MOVE YES TO REPEAT-FLAG.
991 MO MONO TO ERROR-FLAG.
992 PERFORM GET-PART-NAME UNTIL REPEAT-FLAG - MONO.
993 PERFORM TRANSACTION-PROCESSOR.
994 IF TRANS-LAG a MONO
995 DISPLAY "DATA BASE FULL. PART NOT ADDED.".
996
997 GET-PART-NUMBER.
998 IF ERROR-FLAG - MONO
999 MOVE MONO TO NEy-BUFFER.
1ogo PERFORM READ-INPUT.
1661 IF (NO-INPUT-FLAG a YES OR ERROR-YLAG YES)
1962 DISPLAY "ENTER PART NUMBER"
103 PERFORM READ-DATA.
104 MOVE MONO TO ERROR-FLAG.
1695 PERFORM DIGIT2-CHECK
1666 VARYING I1 FROM 1 BY 1
1667 UNTIL (I1 > AACTUAL OR ERROR-FLAG = YES).
1608 IF ERROR-FLAG - NONO
1699 MOVE PART-MUM TO PARTNO
le1 MOVE NONO TO REPEAT-FLAG
121 ELSE
1612 MOVE YES TO REPEAT-FLAG
1013 DISPLAY "PART NUMBERS CONTAIN ONLY DIGITS.
1614 *
1015 DIGIT2-CNEC[.
116 IF PART-NUMBER(II) IS NOT NUMERIC
1617 MOVE YES TO ERROR-FLAG.
1618 *
1819 GET-PART-NAME.
1020 IF ERROR-FLAG - NONO
1021 MOVE MONO TO NEW-BUFFER
1622 PERFORM READ-INPUT.
1023 IF (NO-INPUT-FLAG - YES OR ERROR-FLAG = YES)
1024 DISPLAY "ENTER PART NAME"
1025 PERFORM READ-DATA.
1026 MOVE PART-STRING TO PART-NAME.
1027 MOVE MONO TO REPEAT-FLAG.
1028 *
1629 DELETE-PROCESS.
13f MOTE :C TO ACTION.
1631 MOVE b TO IENTRY.
1632 MOVE YES TO REPEAT-FLAG.
1033 MOVE MONO TO ERROR-FLAG.
1634 PERFORM GET-PART-NUMBER UNTIL REPEAT-FLAG - MONO.
1035 PERFORM TRANSACTION-PROCESSOR.
1636 *
1037 HELP-PROCESS.
1038 DISPPAY "SEPERATORS ARE EITHER COMMAS OR SLASES (, OR /)"
1639 DISPLAY --------
1640 DISPLAY - THE FOLLOWING COMMANDS ARE IMPLIMENTED:".
1641 DISPLAY R BELP - PRINTS THIS LISTING".
1042 DISPLAY LIST - DISPLAYS TE DATA BASE".

295

MICROSOFT COBOL-O M2... DEMO COB 16/24/78 11:11:61 PAGE 20

1043 DISPLAY - STOP - TERMINATES THE PROGRAM".
1044 DISPLAY : DELETE,PART NUMBER -". O IEDT ES"
1645 DISPLAY REMOVES AN ITEM RVTXDABS%
1646 DISPLAY ADD/PART NUMBER/PART NME - .
1347 DISPLAY ADDS AN ITEM TO THE DATA EASE".
1348 DISPLAY ALL QUANTITIES ARE SIT TO 06
1049 DISPLAY REMOTI/DESTINATIONfCOMMAND - SEND COMMAND TO-

-I1350 DISPLAY "DESTINATION MACHINE AND AWAITS RESPONSE'.
1651 DISPLAY - SEND/DESTINATION/MESSAGE - SIND MESSAGE TO
1652 DISPLAY DESTINATION MACHNIE
165.3 DISPLAY -----
1054 DISPLAY "TO MODIFY THE QUANTITIES FOR ANY ITEM ENTER'.
1055 DISPLAY PART NUMBER/ACTION/ENTRY/SIGNED QUANTITY".
1056 DISPLAY "VER".
1357 DISPLAY PART NUMBER IS A STRING OF DIGITS".
1658 DISPLAY ACTION IS LIST,UPDATE OR INITIALIZE TI ITEM".
1359 DISPLAY ENTRY IS STOCK.ON ORDERTHRESHOLD, ORDER SIZE.
166
1661 UIMOTE-PROCESS.
1662 MOVE IES TO REMOTE-COMMAND.
1063 MOVE YES TO REPEAT-FLAG.
1664 MOVE MONO TO ERROR-FLAG.
1665 PERFORM GET-DESY'NATION UNTIL REPEAT-FLAG - MONO.
1366 MOVE NONO TO NEW-BUJFER.
1667 PERFORM READ-INPUT.
1668 11 NO-INPUT-FLAG - YES
1669 DISPLAY "ENTER PART NUMBER OR COMMAND FOR REMOTE COMMAND"
1676 MOVE YES TO NEW-BUFFER
1671 PERFORM READ-INPUT.
1672 I1 FIRST-CIARACTER IS NOT ALPHABETIC
1673 PERFORM ?ART-$4UMBEH-PHOCESSOR
1174 ELSE
1675 MOVE LIST TO STRINOB
1076 PERFORM RECOGNIZE
1677 IF SAME-FLAG a YES
1678 PERFORM LIST-PROCESS
1679 ELSE
1686 DISPLAY "ILLEGAL REMOTE COMMAND".

-~ 1681 *
1682 GET-DISTINATION.
1683 ITIERROR-FLAG - MONO
1684 MOVE NONO TO NEW-BUFFER
1685 PERFORM READ-INPUT.
1686 11 (NO-1NPUT-ILAG - YES OR ERRO1-FLAG YES)
1387 DISPLAY "ENTER DESTINATION MACHNI CODE."
1688 PERFORM READ-DATA.
1389 MOVE NOVO TO IIPEAT-ILAG.
169e MOVE M6806 TO STRINGD.
1691 PERFORM RECOGNIZE.
1692 IF SAME-FLAG - YES
1693 MOVE M6800-CODE TO R9MOTE-ADDRESS
1694 ELSE
1395 MOVE PDP11 TO STRINGB
1696 PERFORM RECOGNIIE.
1697 IF SAME-FLAG a YES

296

6-i

MICROSOFT COOL-80 V2.9... DEMO COB 16/24/78 10:0:60 PAGE 21

1698 MOVE PD?11-CODE TO REMOTE-ADDRESS
1099 ELSE
li16 MOVE INTEL TO STRINGB
1191 PERFORM RECOGNIZE
1162 IF SAME-FLAG - YES
1103 MOVE INTEL-CODE TO REMOTE-ADDRESS
11,4 ELSE
1165 MOVE CS29 TO STRINGB
1106 PERFORM RECOGNIZE
1167 IF SAME-FLAG - YES
11e8 MOVE CS-20-CODE TO REMOTE-ADDRESS
1109 ELSE
1116 PERFORM BAD-DEST-CODE.
1111 *

1112 BAD-DEST-C3DE.
1113 DISPLAY "ILLEGAL DESTINATION CODE.-
1114 DISPLAY USE M6800, PDP11, INTEL, OR CS-20"
1115 MOVE YES TO REPEAT-FLAG
1116 MOVE YES TO ERROR-FLAG.
111?

1118 SEND-PROCESS.
1119 MOVE YES TO REPEAT-FLAG.
1120 MOVE NONO TO ERROR-FLAG.
1121 PERFORM GET-DESTINATION UNTIL REPEAT-FLAG a NONO.
1122 DISPLAY "ENTER TEXT - EMPTY LINE WILL TERMINATE.".
1123 MOVE YES TO REPEAT-FLAG.
1124 PERFORM SEND-TEXT UNTIL REPEAT-FLAG = NONO.
1125 *
1126 SEND-TEXT.
1127 MOVE SPACES TO MESSAGE-BUFFER.
1128 ACCEPT MESSAGE-DATA.
1129 MOVE YES TO EMPTY-LINE.
1130 PERFORM CHECK-EMPTY-LINE
1131 VARYING MES-INDEX FROM 1 BY I UNTIL MES-INDEX > 70.
1132 MOVE REMOTE-ALDRESS TO SOURCE-DESTINATION.
1133 MOVE "D" TO MESSAGE-CLASS.
1134 MOVE NONO TO LAST-OF-MESSAGE.
1135 IF EMPTY-LINE = YES
1136 MOVE YES TO LAST-OF-MESSAGE
1137 MOVE NONO TO REPEAT-FLAG.
1138 SET MESSAGE-LENGTH TO EIGHTY.
1139 MOVE "S" TO COM-FUNCTION.
1146 PERFORM COMMUNICATE.
1141 *
1142 CHECK-EMPTY-LINE.
1143 II MESSAGE-DATA1(MES-INDEI) NOT =
1144 MOVE NONO TO EMPTY-LINE.

297

EDING PAGE ALAw~~FL'

13. APPENDIX E- -NETWORK COBOL RESERVED WORDS

2199

~ED)D ~aIBLANX.MT 11JJp=

13. APPENDIX E

NETWORK COBOL RESERVED WORDS

ACCEPT AUTHOR CF

" ACCESS AUTO CHANNEL2

ACCESSABILITY BACKWARD CHARACTER

ACTUAL BEEP CHARACTERS

ADI) BEFORE CINT

ADDRESS BEGINNING CIOC

ADVANCING BELL CLOCK-UNITS

AFTER BIT CLOSE

ALL BLANK {I1OD

ALPtiABtITIC BLINK COBOL

ALSO BLOCK CODE

A Ll ER BOTTOMI CODE-SET

ALTERNATE BREAK-KEY COLLATING

AND BY COLUMN

APPROXIMATE C-300 COMMA

ARE CALL COMMUNICATION

AREA CAM COMP

AREAS CANCEL COMP-1

ASCENDING CCNL COMP- 2

ASCII CD COMP- 3

ASSIGN CDAC COMPRESSION

AT CDIS C(TPUTATIONAL

301

COMPUTAT I ONAL- I DATE-C(I1PI LED DISABLEI

COMP[ITATIONAL-2 DATE- IVR I TTEN DISK

COMPUTATI ONAL-3 DAY D ISP LAY

COMPUTE DE DIVIDE

CONFIGURATION I)IBUG-CCONTENTS DIVISION

CONSOLE DEBUG-ITEM DOWN

CONTAINS DEBUG-LINE DUPLICATES

CONTIGUOUS DEBUG-NAME DYNAMIC

CONT-OL DEBUG-SUB-i EBCDIC

CONTROLS DEBUG-SUB-2 ECLIPSE

COPY DEBUG-SUB-3 EGI ELSE

CORR DEBUG-SUB EM I

CORRESPONDING DEBUG-SUB2 ENAbLE

COUNT DEBUG-SUB3 END

CR)EBUGGING END-OF-PAGE

CRCV DECIMAL-POINT ENDING

CREATE DECLARATIVES ENTER

CS-20 DEF INE ENVIRONMNIN'

CS-40 DELETE EQUAL

CS-60)ELIMITE) EQUALS

CSND I)EL 1 I TER ERROR

CURRENCY DEPENDING -SI

DATA DESCENDING EVEN

DATA-SENSITIVE DESTINATION EVERY

DATi I)ETAIL EXCEPTION

302

EXCLUDE GENERIC INITIATE

EXCLUSIVE GIVING INPUT

IXIIIBIT GLOBAL INPUT- OUTPUT

-I EXPIRATION GO INSPECT

EXPUNGE GREATER INSTALLATION

EXTEND GROUP INTO

Fl) HEAD ER INVALID

FEEDBACK IEAD ING INVERTED

FIELD HIERARCHICAL IS

F IELDS HIGH JUST

FILE HICH-VALUE JUSTIFIED

F I LE- CONTROL HIGH-VALUES KEY

FILE-ID 1-0 KEYBOARD

.TLE-LIMIT 1-0-CONTROL KEYS

ILE- LIMITS ID LABEL

SF I LLER II)ENTIF ICATI ON LABELS

F INA 1, IF LAST

FIRST IMMvEDIATE LEADING

FIXED IN LEFT

F OOTI NG INDEX LENGTH

F OR INDEXED LESS

FORWARD INDICATE LEVELS

FROM INFOS LIBRARY

GENERATE INITIAL LIMIT

GENERATION INITIALIZATION LIMITS

303

LINAGE NATIVE OVERFLOW

LINAGE-COUNTER NEGATIVE OWNER

LINE NEXT PAD

LINE-COUNTER NO PAGE

LINES NODE PAGE-CCUNTER

LINK NOT PARITY

LINKAGE NUMBER PARTIAL

LOCAL NUMERIC PERFORM

LOCK OBJECT-COLNTER PF

LOGICAL OCCURANCE PH

LOW-VALUE OCCURS PHYSICAL

LOW-VALUES ODD PIC

LRU OF PICTURE

MANAGEMENT OFF P LiU S

MAXIMUM OFFSET POINTER

MEMORY Oil POSITION

MERGE OMlITTED POSITIVE

MER IT ON PRINTER

MESSAGE ONLY PRINTING

MODE OPEN PROCEDURE

MODULES OPTIONAL PROCEDURES

MOVE OR PROCEED

MULTIPLE ORGANIZATION PROCESSING

MULTIPLY OUTPUT PROGRAM

NAMED OV PROG R Al- ID

I
304

_ ---

1

QU EU E RESERVE SELECTED

QUOTE RESET SEND

QUOTES RETAIN SENTENCE

RANDOM RETRIEVE SEPARATE

RD RETURN SEQUENCE

READ REVERSED SEQUENTIAL

READY REWIND SET

RECEIVE REWRITE SIGN

RECORD RF SIZE

RECORDING RH SORT

RECORDS RIGHT SORT-MERGE

REDEFINES ROOT SOURCE

REEL ROUNDED SOURCE-COMPUTER
q

REFERENCES RUN SPACE

RELATIVE SAME SPACES

RELEASE SAVE SPECIAL-NAMES

RFMAINDER SCREEN STANDARD

REMARKS SD STANDARD-1

REMOVAL SEARCH STANDARD-2

RENAMES SECTION STANDARD-3

REPLACING SECURE START

REPORT SECURITY STATIC

REPORTING SEEK STATUS

j REPORTS SEGMENT-LIMIT STOP

RERUN SELECT STRING

30S

SUB-INDEX TIMES VOLUMN

" SUB-QUEUE-i TO WAIT

SUB-QUEUE-2 TOP WHEN

SUB-QUEUE-3 TRACE WITH

SUBTRACT TRAILER WORDS

SUM TRAILING WORKING-STORAGE

SUPPRESS TRUNCATE WRITE

SyITCH TYPE XECS

SYMBOLIC UNDEFINED XMOD

SYNC UNDELETE XNMT

SYNCHRONIZED UNIT XPND

TABLE UNLOCK XTRN

TALLY UNSTRING ZERO

TALLYING UNTIL ZEROES

TAPE UP ZEROS

. TEMPORARY UPON

TEMINAGE USAGE

TERMINAL USE

TERMINATE USER

TEXT US I NG

THAN VALUE

THEN VALUES

THROUGH VARIABLE

THRU VARYING

TIME VERIFY

306

