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1. htroduction

The minimum variance linear estimates of values of a variable s (©,A,r)
from a finite set of measurements consisting of samples of a signal z (®,A,r)
plus measurement noise n(@,A,r), can be obtained using the following formulas
(Moritz, 1972):

8 = Fd
F = C,, Cdd (1. 1)
Cu=C,, +D

The variance-covariance matrix of the estimation errors is

E=M{(s-F_)(s-Fd)}
-~ FCl,~CyyF' + FCu F' (1. 2-a)

or
E

C., - C,,Cas Ci, (1.2-b)
in the case of the optimal estimator F as given in (1.1) above. Here

M{ } is some kind of average over the sphere,
4 is the N, vector of estimates,
d is the N4 data vector,
C,, isthe N, x N4 covariance matrix of true values of s and 2z,
Cau is the N4 x Ny data covariance matrix,
C,, isthe Nix Ny measurements' signal covariance matrix,
D is the Na x Ng¢ measurements' noise variance-covariance matrix,
Ces is the Ns x Ns covariance matrix of the true values of s.

All variables are supposed to have zero mean values: M{s}=M{z}=M{n]}=

M {8} =0, while the noise is assumed to be uncorrelated both with the signal
s(®,A,r) and with z (®,A,r). The estimates s obtained by using the estimator
F defined in (1.1) have a corresponding E matrix whose diagonal elements are
the smallest for all possible linear estimators with the same data pattern. In

this sense, F is optimal. This estimator depends on the particular M { } chosen,
as explained by Rummel and Schwarz (1977), because this affects the elements of
the covariance matrices. In turn, these influence the actual estimates §_ , and

E as well.

A major problem with this method, also known as collocation, is that the
number of measurements Na is also the dimension of C4 , so setting up this
matrix requires computing up to N2 different elements. These elements are
given by the expression

4
Caa

M{z@ AT 2@ A g, T)) + MIn@, A, r)n@y Ay, ryl
€ (P, Py) + Cpp( Py, Py) (1.3)

where @,, is the "covariance function" of the signal z, and c,, is that of the
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noise n. Both depend, generally, on the sampling points P; and P;. In most
cases .
a, if i= J

0 otherwise (1.4)

cnn(pi yPy) = {
which is what is meant by the words "white noise". Calculating the covariance
functions' values may involve several operations in a computer. Sometimes a
large number of terms of a series expansion may have to be evaluated; even with
" closed expressions this can be a time consuming enterprise., Moreover, solving
the "normal' equations

Ca F' =Cas (1.5)

to find F requires an additional k N® operations, k being a constant character-
istic of the method used. Both tasks can be formidable with large numbers of
measurements, presenting the paradox that, while more data must result (theo-
retically) in better estimates, these are harder to obtain and are worse affected
by numerical errors. The discussion that follows will show how, for certain
types of covariances and certain distributions of data, the problem becomes
manageable even with large data sets.

2. Limitations on the Data Arrangement and on the Covariance Functions

Geodetic data, such as gravity anomalies, geoid undulations, etc., are given
usually in the form of either point values or of area means. In each case let
the following conditions be satisfied;

Point Values Area Means
C-1 All data points are on the same C-1' All area averages are taken
sphere of radius R; over blocks on the same sphere
of radius R;
C-2 All data points are nodes in a C-2' All blocks belong to a "'parallels
grid of "parallels and meridians" and meridians'' partition of the
(Fig. 2.1) with poles excluded; sphere without circular blocks

(polar caps) about the poles;

C-3 No data point in a row (all nodes C-3' In a row of blocks (blocks bound
along the same parallel) is empty; by the same parallels) if there is

data in one, there is data in all;

C-4 The longitude increment between C-~4' All blocks have the same longi-
adjacent meridians is constant. tude span.




Figure 2.1-a. Example of a grid of Figure 2.1-b. Grid of area means.

point measurements seen from one of The shaded blocks contain data. The
the poles. Notice that the Pole itself "parallels' and ""meridians' delimiting
is excluded, and that the separation the blocks are the same as in Figure
of the "meridians" is constant, not 1.1-a. Notice the absence of an un-
so that of the ''parallels". divided "polar cap".

In what follows, data points along the same parallel (blocks between the same
bounding parallels) form a row, while those along (between) the same (bounding)
meridian(s) form a column. Rows are numbered from N to S, and columns from
W to E. The latitude increments between data points (span of the blocks in latitude)
do not have to be constant, but the separation in longitude (longitude span of the
blocks) has to be constant. Moreover, rows of blocks with data can be separated
by empty ones.

All rows must have the same number of points (blocks), equal to the number
of columns N., which is also the number of meridians. A meridian is a 180° arc
from pole to pole. Calling the number of rows containing data N;, then the total
number of non~-empty points (blocks) in the grid is

Ney = Ne X N;
This is the dimension of d andalso thatof Cq4, or the numberofvalues inthe data set.
Having explained the kind of grid admissible,' something must be said about

the covariance functions (or the M/ } operator) that can be used. They must
satisfy the following restrictions:

In general, the data can be irregularly distributed, but point values can be
estimated at the nodes of the grid from neighboring measurements, and area
means from the averages of measuremeats on the same blocks. The estimates’

variances should be found, also, tosetup D.

-3-
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' To simplify typing (dy . .. Q".- 1" is used throughout this work instead of

Point Values Area Means

C-5 Giventwo rows i and j C-5"' Given two rows of blocks, i
(including i=7j), the value and j (including i=j), the
of the covariance function covariance between two area
Cax (Pyc» Py,) = M{xy x,} means X, and X,, must
between points P,, and P, depend only on l)\ w - A J,l
must depend only on |, -A,] (including k=m), where A,
(including k =m). is the longitude of the W

boundary of block ik .

Restriction C-5 (C~5') allows a variety of covariance functions, including the
so-called "isotropic’ or "global' used by the majority of workers at present
(Rummel and Schwarz, 1977).

Usually the "noise' function n is supposed to be uncorrelated from meas-
urement to measurement ("'white noise') resulting in a diagonal D matrix, To
satisfy C-5 (or C-5") the variance of the errors must be the same at all poirts
(blocks) on the same row, while it can vary from row to row. This assumption
is rather restrictive, as in practice (particularly with area means, where the
size of the block changes with latitude) the standard deviation of the measurements
can vary from place to place. Nearly homogeneous data sets may become more
common through an increase in the measuring of the gravity field from satellites
(satellite altimetry, satellite-satellite tracking, etc.). In some cases, even
when C-5 or C-5' are not exactly fulfilled, the noise fluctuations along rows
might be small, and the mean standard deviation of each row could be used to set
up D. A refinement of this idea is explained in the Appendix.

3. The Structure of the Data Covariance Matrix

When all the limitations described in the previous section are present,
matrices C,,, Dand Cy =C,; + D all have the same well-defined structure.
To make it clear, let us arrange the measurements in d as follows "

!

d=(ddye-dio.. gl

where Qx" [dxodu. . e dlk' . . qu ]T

so the d; are N, subvectors of dimension N., each containing the data values
for one row. This brings about the corresponding partitioning of Cu, C,, and

D into NS Ne x N. "row submatrices" Cyy, containing all the correlatims
hetween points (blocks) in the ith and the jth row, Assume N =5, that the
point on the "0 th meridian' is the first point in any row, and that all others in
the same row are ordered, like their meridians, clockwise when seen from the

(& .. di1T = [i] i ﬂ




North Pole (i.e., along increasing longitudes). Then, the point immediately to
the West of the first is the last, or N; th, in any row. From the various re-
strictions mentioned in the previous section, both for points and blocks, it
follows that if

A T Cx(X109Xy0)

b = Cxx(X10,Xg) = Cux(Xi0sXy4)

c Cxx(X10,X32) = Cux{X10sXy)

1l

are the covariances between the first point (block) in row i and all the points
(blocks) in row j , then

C“:’

o0 60T
o6 o
(eI = I ~ i ]
o P TO0O0
w T oo

Calling p the row subscript and q the column subscript of the c; “ elements
of this matrix, we notice that they have the following properties:
19 = L1 WM > 1
Cpq = Cpdiqe1; Cpy = Cp- 1n, When p>1;
cdd = cpnea-q When p=1,q>1

Matrices of this type belong to the class known as ''circular' or '"Toeplitz cir-
culant'' (Lancaster, 1969). As Cy4, C.: and D consist of blocks of this kind,
they can be described as block matrices of Toeplitz circulant blocks. As shown
in the remainder of this work, these matrices are much easier to set up and to
invert than ordinary symmetric matrices.

The first row in C,; resembles a succession of equispaced samples of
some even function, so it can be represented exactly using a finite sum of

cosines: 21k
off = E ‘cos vk (3.1)

where 2N=N. if N. iseven; 2N +1 = N, if N. is odd, and

Ne -1
a:’ = %qgoc{q’ os%q where H is defined later. (3.2)

The pth row is the same as the first rotated p times to the right:

oL S0 2nk
cpq - kgoak cos Nc (q p)
N0 2rk ! 2nk
= 1 _a,cos ;&c q cos chk p +ktoa“ sin 4 Slﬂz;cl‘ p(3.3)

From the well-known trigonometric expressions




Ni(cos) 2na (cos)ﬂg - {Nc if a=k=0orifa=k=N (Nceven)

sl o Ne/2 if 0 <a=k< N (=N if N, odd)
s Ne 0 if 0sa#ksN
§* 2na 2k
os——q sin q = 0 always
=0 Ne
follows that N
a,’,J H cos-%?ﬁp = E “ q CO8 2?”5 (3.4-a)
c =
and
2nk Ng 2
as'H sin b}: p =q;:=:olc;q’ sin—ﬁ;lﬁq (3.4-b)

for 0 < k < N. Consider now the following vectors:

2nk 4nk 2nk 2nk
< = [1, COST cos—&,...,cosjs;‘q,...,cosﬁ“(m 1)]T

4 2k
[0, sin 55—, Ne’ 8in ;Lk,...,sm';—q, «vy Sin N (Nc 1)]

and

[

Sy

Expressions (3.4-a) and (3.4-b) can be written in matrix form

ag'He, = Cyyg, (3.5-a)

1
ak’H Sy

Cy sy (3.5-b)

Consequently, vectors such as ¢, and 8, are eigenvectors of the submatrix
Cyy» and to each such pair (k =0, 1,..., N) corresponds one eigenvalue

Ak = akH (3.6)

3.1 A Fundamental Property

Consider the N - vector

Sy = g fo oo Sonee Soel (3.7)

where the ith partition is fg,, =@'c, if & =0, or fo, =0fs, if & =1. The
product ga =Cq f§ can be partltioned in the same way:

4 - k k k k T
By = By, By,2  Bo, - Ba,n (3.8)
where the ith partition is
_ "r k Np " \ _ 1y \
Eat = Z Cully —ngmcu(-g:) = (fa H«o,/\ck) vi(e S (3.9-2)
, K o_ ;f 13 ¥ oyt ok
with 71 = j=1ak Hw‘, = E_:llk wj (3.9"b)

(el gatr - nd e
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Fora given n and k, L;l is in a one-to-one relationship with the N, -vector

P (k): ey 1T

@ (k)=[of & ...0%... 0 | %=>f [cal tmt(ﬁs")] (3.10-a)
Sk’

and similarly .

y (k) =" a...y,...yn (==>ga—cu " [71(—"'--%«(—"]

{3.15-b)
Expression (3.9) can be given matrix form:
Y (k) = R(k)g (k)&= Cully (3.11)
where R(k) isa N; x N, matrix with elements
rikj = akl"H = X:J (3.12)

Expressions (3,10-a), (3.10-b), (3.11) and (3.12) describe a property of the
covariance matrix that is basic to the algorithm developed in the next two sections.

3.2 The Equation y = Cy X

Consider once more the vectors .f;t and g& presented in the previous
section, and the equation .
Eq = Cu £, (3 13)

where the components of £ fy are the unknowns. As already explained, foz and
ga are in one-to-one relationship to ¢ (k) and y (k), respectively, so (3.13)
can be regarded as equivalent to (3. 11), because once we know

(01 @)... 0f... @1 = @ (k) = R(k)™'y (k)

k/C kfC k(C T k
we know [¢1(§>@3(§>-..¢1(§)...@~ Sk>] -£a
the solution to (3.13). IUf Ce' exists, there is always a solution to (3.13), and thus
to (3.11). Therefore, if Cy exists, sodoes R(k) ! forall 0< k < N. While
the strict invertibility of the R(k) is not essential, as long as 5& is in the
range of C,y, , the existence of inverses simplifies the argument. Assuming that
Cyi exists and that y is an arbitrary N. N,-vector, then there is another
Ne N. -vector x such that

Y = Cqe X (3.14)

With the usual partition by data "rows':




X = [XXgeer Xt oow Xy | Y = (Y Yaeeo Yeooo 1]

g T
Xy = [xloxu...xu...ch_‘] ¥ [}’go}’u.-.y”...ymc_ll

A sequence of N, numbers, such as the elements of x, or y,, can be repre-
sented exactly by a sum of sine and cosine terms:

2k
= S‘ Cyx COS N q +Sw 5, sin N, q (3.15)

where N is as in (3.1), and ¢y, =0 if N. is even. In matrix form:

N N
Xy = 2 Cy Cy +k§1s“‘§-" (3.16-a)

similarly N
Y = kgomik Ck +k§1nlk Sk (3.16-b)

Consequently, vectors suchas x and y can be represented by sums of vectors
of the same form as f“ or .5; “above:

1

x - kzoazo xé ©.17-2)
Yy = k§° ago 1:1 , (5:, = y_% =0 if N is odd; §f= x‘; =0 always) (3.17-b)
here
R (G VI SR ) S CC SN
and - 0 8/ \su s S Sk Swex S
x _ [ (Mo ¢ 1 Cx tk Cx & Cx ]'
Yo [< 0 Ek) C:u §k>..'(:'llk ) ('::.-k Ey)

Expression (3. 14) can be written

z“

1

Cau ™ x X (3.18)

k=00 —o -«

k—O o=0
N 1

x
x z=0 a);o Cas Lo

it

Since the product Cyy 5& is another vector y ¥ of the same "frequency" k and the
same & as 5&, expression (3. 18) can be separated into 2N or 2N +1 systems
of equations:

£Q=C“£oa’ 11(2 = Cqgq ii;!n..xka= Cddil&‘..xb&-—-cdd 1(_”&, a=0,1 (3.19-a)

I turn, solving these systems is the same as finding the solutions to

fLn (0) = R(0)x,(0), a=0 (3.19-b)
whe re Log(1) = R(1) xg(1). . 0g(k) = ROK)L4(K)- -V N) = ROV X4(N)
and xat®) = [(T) () (52) - (2] o (3.20-a)

v (k) = [("(')"‘)(':1‘:)(";‘:) (r‘:‘:)] ' (3.20-b)
8-




3.3 _An Algorithm for Solving the Normal Equations CF' = C,|

The optimal estimator matrix F relating the minimum variance estimates
to the data can be obtained by solving the normal matrix equations (1.5) column
by column:

Caa f2 = ¢ (3.21)

where f . is the transpose of the Lth row of F and _c_,‘, is that of the £th row
of C,; . So it is necessary to solve N, systems of equations like (3.21). From
the previous section's analysis it is clear that this can be done by decomposing
(3.21) into (at most) N vectors of dimension N, suchas y, in (3.19-a),
and then solving the corresponding systems ULg(k) = R(k) Xqg(k) of (3.19-b).
It is much easier to work with the N, x N, matrices R(k) than with the

NeN: x Ne N, matrix Cy, even if there are N + 1> N./2 of the smaller
matrices. The whole procedure can be described as follows:

Part [

a) Form all R(k) matrices (0 s k s N), by Fourier analysis of the first
row in every submatrix C,; of Cy (expressions (3.1) and (3. 2).

b) Find the corresponding R(k)™', and save all pairs (R(k), R(k)™ 1)
on tape or disk if the same type of data, sampled on the same grid, is likely to
be used in future estimates.

PartI1

c) Decompose the £Zth ''right hand side' ¢,, by Fourier analysis of its
N partitions, as in expressions (3.15) through (3.17).

d) Form the N. '"equivalent right hand side vectors' V4 (k) according to
(3.20-b), and solve the corresponding N. equations (3.19-b) to obtain the "equi-
valent solution vectors” x (k) as in (3.20-a).

e) Use the N, equivalent solution vectors to generate, by Fourier synthesis
(expressions (3.16-a) and (3.17-a) ) the £th row of F.

f) Repeat steps (c) through (e) for every column in C,., until all the
rows of F have been found.

An alternative to inverting the R(k)'s is to generate the pseudoinverse
(equivalent to R(k)™! when this exists) of each R(k) by Conjugate Gradients,
This method, described in Luenberger (1969), generates a series of N.-vectors
v' that are conjugate directions of R(k): g‘rR(k) vi=0, iZj, and that
can be used to form the pseudoinverse:

R

R(k)" =,§°(1"R(k)z’)" vivi", R = rank [R(k)] (3.22)

-9-




In cases when Cg; (and, therefore, at least one R (k) ') does not exist, the
normal equations have, nonetheless, solution. This is because, being covariance
matrices, C,; is always in the span of Cy. This means that there is always

an exact solution to U, (k) = R(k) —y*a(k) that can be obtained

= rt

This idea has been used successfully to get the results |n paragraph 5.5.

3.4 Equatorial Symmetry

If every row in the grid has a counterpart in the opposite hemisphere and
both are at the same spherical distance from their poles, then the grid has
"equatorial symmetry'. The equator itself (an equatorial band, in the case of
blocks) can be one of the rows,

If the grid has equatorial symmetry, then Cy is persymmetric: two
submatrices C,, are equal’ if they are symmetrically situated with respect to
the main diagonal (ordinary symmetry) or the main antidiagonal. More generally,
one can permute the ith row with the ith column, or the ith row with the
N; +1 - ith column, in a persymmetric matrix of dimension N;, without modi-
fying the matrix. Since R(k) is formed by taking one Fourier coefficient
a}! from each C,,, it follows that R(k) is also persymmetric.

[ 4

An important property of persymmetric matrices, from the point of view

of this study, is the following:

(1) If v is an "even' vector:

Vv = [vyvaee. vy, v,,‘_]T (3.24)
. _ N./2 if N, is even
= ; = Vg aleos =yy,_y for0<isN,= r
VoW E Ve T Vet ee Vi Ve TOX OSSR V2 BN, is odd
(2) Orif v isan 'odd" vector:
vo=[vivaee. vieeaw 1]
Vl = -er; Vz = -VN',—I . .oV(='VNr_1 fOP 0 s i < NM (3. 25)

then the product of v by a persymmetric matrix is also "even' or "odd", re-
spectively. In other words: multiplication by a persymmetric matrix preserves
the '"parity' of the vector. Any vector b can be decomposed into an "even"
part I-)-B=° and an "odd" part bg_, :

T Remember that all C;; are symmetrical and, being Toeplitz circulant, are
also persymmetrical.
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EB=O= [b? t?a...b?... b&\r] bio é (bi + b—lfNrﬁl)l (b'?u¢1 = ‘NM“ lf Np Odd)

=[byby...bl.. b )" by =% (b -b ... (3. 26)
Therefore, an equation of the type
En(k)= R(k) }.a(k)

can be separated into two independent equations:
(k) (x)

VaB=0 = R(k)qu o (3.27-a)
e = Rk g, (3.27-b)

where B8=0 indicates "even', and 8=1 'odd". The solution (3.27-a) must be
""even', while that to (3.27-b) must be "odd", so the actual number of "degrees

of freedom" is N, > numberof unknowns/2, When half of the unknowns are found,
the other half must have the same or opposite values. Therefore, only the first
N, equations in (3.27-a,b) are needed to solve the system. Instead of the original
system, one can solve the equivalent;

~( ) P S (x)

aB = Rgtk)x,g (3. 28-a)
where u( )ﬁ and X(:p have dimension N, ﬁﬂ(k) is N, x Ny and has elements
;:na = I‘; + r:N,.--nﬂ( "1)ﬁ (3. 28-b)

with 1<sn<sN,and 1 < m < N..,where G(a)ﬁ contains the first N, elements
in aﬂ and ~(") the first N, in \( . There are twice as many equations
such as (3. 28) t n there are equations ﬂke (3.19), but the reduction in size of
the matrices by half brings a considerable increase in efficiency.

4. Computing
This section considers the implementation of the algorithm for grided data

from the point of view of efficiency and of reliability of results. Also certain
numerical stability matters are treated.

4.1 Setting up the Matrix Cy =C;; + D

Usually D is a diagonal matrix, so calculating its contribution to C, is
trivial. If this is not the case (''colored noise'’), this matrix is handled in the
same way as C,,. C,, contains all the covariances of the signal in the data:
because the symmetries in the grid are reflected in the structure of C,,, it is
not necesaary to compute every one of them. C,, is symmetrical, so only half

-11-




of its elements have to be found. Every C,, block is Toeplitz circulant, so
only the first row has to be known, and this first row is "'even', as already
explained, so only half of its elements are different. If there is equatorial
symmetry, then C,, is persymmetric, and this reduces the number of dis~
tinct elements by half once more. The number of covariances in C,, is
(NeN.)?: after all symmetries are considered, only N.N,%4 have to be
computed if the grid is not symmetric, and only N N,78 if it is. Computing
each covariance should take the same amount of operations, so the central
processor time needed is porportional to the number of distinct elements. This
means that a matrix such as C,, requires 4N, times less to be set up than an
ordinary symmetric matrix of the same dimension, and 8N. times less if the
grid is symmetrical. In the case of a regular 1°x 1° grid with 64800 points
(blocks) there is a reduction in effort of the order of 1400 times. Furthermore,
the existence of redundancy in the elements of Cyy can be used to decrease the
storage requirements for this matrix, that would otherwise be truly enormous
even with moderately large data sets.

4.2 Solving the Normal Equations

Solving a system of equations requires a number of operations proportional
to the cube of the number of unknowns. Assuming that the same method were
used to solve the original equation for one row of F

t=cicl

that is used to solve each of the equations

L, (k) = R(k)l(a(k) or ’§8‘}3= ﬁa(lﬂﬂé

as the case may be, then the total saving in computing time due to the structure of
Caa is of the order of N.2. The use of a symmetric grid increases efficiency by
a factor of four. The additional time needed to do the ""Fourier analysis' of the
right hand sides or the "Fourier synthesis' of the solution vectors is quite neg-
ligible, even for large numbers of data points, thanks to the existance of very
efficient algorithms, particularly in the case when N. is a power of 2! In the
case of the regular 1°x 1° grid, with N. = 360, the reduction of computing time
is of the order of 130000,

Computing the covariances that form the C4, matrix, even after all sym-
metries have been fully exploited, remains no trivial task if the data points
(blocks) are very numerous. In the case of point data this situation is helped
by the existence of closed covariance expressions such as those found by Tscher-
ning and Rapp (1974) for isotropic functions. In the case of block data, as paragraph
5.3 shows, the covariances of area means are "area means of area means of covar-
iances," involving double area integrals over the various blocks. Numerical in-
tegration could be used as an approximation, but this would require a major

1

Fast Fourier Transforms. -12-
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operation if the dimension of (4 is lurge. It would be most desirble to have
closed expressions (or convenilent approximations) for area means' covariances,
but they are not known to this author.’ Reductions in computer time, while val-
uable in themselves, are not the only important gain: fewer computations mean
less rounding errors accumulation, and more reliable results.

All the properties of the covariance matrix mentioned so far apply, in
the case of 1sotropic and other covariances, not only on the sphere but also
on any surface of revolution, as long as the "'rows' are defined by circles per-
pendicular to the axis of rotation. Such surfaces include: the cylinder, the
cone, and the geodesist's old friend, the oblate spheroid. The same structure
arises from concentric rings on a plane and, of course, from the regular sam-
pling of a circumference., Equispaced sampling along a straight line results in
a Toeplitz matrix, different from a Toeplitz circulant one in that the last ele-
ment of a row is usually '"lost"” because a different number appears as the first
element in the following row, while all other elements are shifted one place to
the right as before. Equispaced sampling on a rectangular grid in the plane
! produces Toeplitz block matrices of Toeplitz blocks. All Toeplitz matrices can
be set up and inverted efficiently, with approximately (dimension)? operations
per inversion. This is also the case with the tvpe of block matrices dis-
cussed in this paper, as already shown. The properties of Toeplitz-type (and
closely related Hankel-type) matrices have been used to devise algorithms for
minimum variance prediction and filtering on the real line (time domain) and
on the plane. Examples of the first application are the algorithms of Levinson
(1947) and Trench (1964). For the plane there is an interesting method due to
Justice (1977). In Geodesy there has been a recent application of Toeplitz
matrices to the prediction of ocean gravity anomalies from satellite altimetry,
by Eren (1979). Besides what might be called "outright' Toeplitz matrices
(circulant, block, or plain) there are "near Toeplitz" matrices and operators
which have, to a lesser degree, some of the advantages considered here, Such
structures have been studied by Kailath (1975, among others: it was at a talk
delivered by him at the University of New South Wales, in early 1976, that the
author of this paper first hecame aware of the many uses of Toepliiz matrices.

4.3 Numerical Stability

The poles (circular blocks about the poles) have becn excluded by restriction
C-2 (C-2") because, in order to partition Cq into N N. x N. submatrices Cqy,
the corresponding measurement would have to be artificially treated as N. meas-
urements at the same point (block), introducing N. rows and columas ir C,y that
are identical, thus making Caq singular. Even with this restriction, rows very
close to the pole may create stabilitv problems, as the matrix will tend to become

' One approximation, based on the Pellinen "smoothing factors’ (rendered into a

recursive form by Meissl (1971)), might be acceptable for very fine subdivisions
of the sphere, though it requires the use of Legendre harmonic expansions trun-
cated to a high degree.
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singular as the rows approach the pole. 'm particular, small perturbations in
the elements of Cy, may have serious consequences for the solution of the nor-
mals. The author found, when computing the results presented in Example III,
where the grid was confined to small circular caps, that interpolating linearly
from a table instead of computing each covariance exactly from a closed ex-
pression (in order to save time) resulted in a matrix with some negative eigen-
values when the table entries were spaced at more than 0.25km intervais! He
finally computed all covariances from the closed expression, and the problem
disappeared. For a discussion of the interpolation problem, see Sunkel (1978).

Another way of computing covariances approximately is by truncating their
spherical harmonic expansions, which, in the isotropic case,’ are of the type

D

C(P) = :Enacu,n Py(cos¥), Cex¥) =‘§aca z,n Pn(COS ¥) (4.1)

at a "sufficiently high' degree Ny« (usually N,, = 1000). If the spacing between
meridians is AA< n/N,. then C,, l& =0, where

i3 k/C k/C x/C k/C T
o= [o(5)ex(5) - 23 ) ()]
if Ngy < k < Integer (m/AX). Furthermore, R(k) =0 if Na,< k < Integer
(7/4X). This presents no problem if c..(¥) is computed using an expansion
truncated to N,., because C,, contains no higher frequencies in its
columns, which are in the span of Cuy, and the desired solution can be ob-
tained using the non-zero R(k), 0< k< N.x.

4.4 Eigenvector and Eigenvalue Decomposition of Cyy

One possibility, when dealing with an ill-conditioned, real symmetric matrix,
C, is to decompose it into eigenvectors and eigenvalues:

Rank C

C =t A,gqﬂ
1=1

(where the u, are the eigenvectors and the A, eigenvalues) and then form a
pseudoinverse

+ LI
C' = T XM

1 =1
where the ), are those eigenvalues of C that satisfy the condition Ay > € >0
' In the case of area means this problem can be alleviated by using equal area grids
with blocks of constant longitude span, and latitude spans that increase towards
the poles.
P, is the nth unnormalized Legendre polynomial; ¢,:,, and c,.,, are the nth
degree variance of z and the nth degree covariance between z and s, re-
spectively.




for € "sufficiently small". In other words: the true inverse is "truncated' to
that part of its expansion that can be regarded as "sufficiently positive definite'.
For this and other reasouns it is interesting to know the cigenvector/eigenvalue
decomposition of Cyq .

From Section 3 it follows that if
g(m), = [U(m)x,v--#(m)t,Nr]T

is an eigenvector of R(m) and )\(‘m)i is the corresponding eigenvalue, then
A (m), is also an eigenvalue of Cys, and

s () M) ()1

the associated pair of eigenvectors of Cyy. Therefore, the spectral decomposition
of the N./2 matrices R(m) is equivalent to that of Csq. However, it is far
easier to decompose N./2 N, x N: matrices than to do the same to one N.N. x
N. N matrix.

4.5 Regularization of the Normal Equations

Sometimes, when a matrix C is too ill-conditioned for the solution to the
corresponding system y = Cx to be computed reliably, a simple form of recu-
larization, that gives more stable results to a slightly different problem, con-
sists in solving the system y =(C +al)x (where & is a very small, positive
constant) instead of the original equations.

The "trick' consists in finding a value of a that stabilizes the results with-
out causing them to depart too much from those for the original system. This
can be done with relative ease if a spectral decomposition for C is available.

In the case at hand, the normal equations will have, after this regularization, a
"normal matrix" Cu + @ Ting x ng)* This can be "Fourier analyzed' as before,
yielding the N./2 matrices

R'(m) = R(m) +(y[(erNr) (4.3)
so the regularization of C,y, implies that of each R(m), which can be

handled as in Tikhonov and Arsenin (1977).

4.6 Grids of Higher Symmetry

The high efficiency in setting up and solving the equation C4 F' = Cs%
made possible by the structure of Cy raises the question of the possible exis-
tence of partitions of the sphere that generate even stronger structures. The
answer is yes, and, as examples, consider: a single "row', two ''rows' sym-
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metrical with the equator, and the vertices of the five regular (and of the 13
semi-regular) solids. In all these cases the matrix Cy is a block Toeplitz
circulant matrix of circulant blocks, while the matrices considered so far
were simply block matrices of circulant blocks.? With the exception of the
second arrangement, the size of the C,, is 1 x 1, which reduces the whole
matrix to an ordinary Toeplitz circulant matrix, the setting up and inverting

of which is almost trivial. Are there such grids with larze numbers of nodes
(blocks) evenly distributed over the whole sphere? The answer to this question
is not known to the author, but its importance can be appreciated by the reader.
Paulik (1976) has published a theorem containing a sufficient condition for the
existence of this type of grid, as well as a constructive principle, linking its
existence to that of pairs of commuting, nontrivial, 3 x 3 orthogonal matrices.
Whether some of these pairs correspond to dense grids is another matter.

If Cs¢ is block Toeplitz circulant of circulant blocks, then the elements in
each row (column) are the same, only their order changes. In the case of iso-
tropic covariances, this means that the set of distances from any data point
(block) to all the others must be independent of the data point (block) chosen.
Clearly this is a necessary condition.

5. Examples
This section illustrates the application of the method to spherical harmonic

analysis of gridded point data and of area averages, and to estimating disturbing
potential from gravity anomalies,

5.1 Spherical Harmonic Analysis of Point Data

Spherical harmonic analysis is to data distributed on a sphere, what Fourier
analysis is to data on the line or on the plane. Not only does it provide greater
insight into the properties of the information available, its statistics, and its re-
lationships to other signals (see Kaula, 1967), but it also allows the highly efficient
computation of convolutions. Such is the case of a function °

h(o,A) =n§o _‘_20 Pra(©)(CnpCOS MA + g, sin mX) (5. 1)
that is transformed according to

' If the data were partioned by meridians instead of by parallels, Ci would be

&

P, is the associated Legendre function of the first kind, of order n and degree
m (normalized); ¢,, and s, are fully normalized coefficients; P, is the un-
normalized Legendre polynomial of degree n ; do indicates an area integral
over the whole sphere; ¢ is the spherical distance from (@,)) to (©',A")
(see, for instance, Hobson (1965)). P,,(©¥) is shorthand for P,,(sin ©).
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1
u(e,A) = ;‘J.OS("J) h(®',A'ydo (as in Stokes' formula) (5.2)
for some Sy = i kK, (2n+ 1) P, (%)
in which case - n“”

u(e,d) = T Lk, Pa(©0)[C€,,co8 mA +8_,sin mh| (5.3)

Computing (5.2) by n nerical quadratures is far more laborious, if u is required
at many points, than using (5.3) truncated to a high degree and order, if the coeffi-
cients ¢, , S;, are known. Finding these coe{ficients accurately and with a min-
imum of computations is a very desirable goal: a number of studies have been
published in recent years on the "correct' way of analyzing data, particularly
when given in the form of area means (see, for instance, Rapp (1977) and Kat-
sambalos (1979)). Much of the effort has been concentrated on computing the
coefficients from the expressions

- 1

Cun —4—TTJO R:.(w,)\)h(wy)\) do (5.4-a)

It

- 1 [ = ,
s!\l 41—1 J‘a S\Q(O’A)h(wik) do (O-‘l"b)

based on the orthogonality of the harmonics R,,(©0 ,A) = P, (Sin ®)cos m) and
Sae(®,)) = P, (sine¢)sin mX on the sphere, using numerical quadratures. Sich
approaches can be very efficiently implemented: in 1976 C. Rizos and the author
wrote Fortran programs for harmonic analysis and synthesis. As an example,
one of those programs took 1.3 minutes to generate a setof C,.'s and S,,'s com-
plete to degree and order 180 from 64800 1°x 1” area means (gravity anomalies)
in the AMDHAL 470V /6~II computer of the Ohio State University.

Because the data is sampled, there is usually not enough of it to estimate the
coefficients exactly: the resulting error is known as aliasing, and it depends

both on the data distribution and on the numerical technique used. Moreover, the
data usually contains spurious signals, measurewment errors for instance, that
also affect the results. A way of computing harmonic coefficients, minimizing
the effect of noise and aliasing simultaneously, has been described by Rummel
(1976) and by Sjoberg (1978). The idea is to estimate the coefficients using ne
minimum variance method, or collocation, which involves solving the normal
equations Cyy F' = C.rz for this particular problem. Under the restrictions
listed earlier on, which means, for instance, using an ordinary regular grid

and isotropic covariances as defined by (4. 1) with all data on the same sphere, the
Ci;s matrix has the advantageous properties mentioned so far, and can be treated
accordingly. What of the C,, matrix? The C,, and §,, are functions of the
system of coordinates chosen: rotating the X origin, and shifting the poles
change their values. If ¢ and ) are the coordinates of the shifted N pole

with respect to some fixed system, then €., = €T, (®,A) and §,,= §,(6,A)
can be regarded as functions of the pole coordinates: ordinary functions of ©

! At the Department of Geodesy, School of Surveying, The University of New
South Wales, Australia,
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and X to be estimated at the "North pole" of the grid. Assuming that M{ !
is the isotropic operator, using (5.4) and the orthogonality properties of surface
harmonics:

M{Eah(0, )} = 7= M| Rualo 1) h(0,3) B0, A, do’

1 —
37 ] Bu @) MR ) b2y} do

1 @
- = R B, e, Polbm) 40, (P = (0,0), Q = (01,4))
_ Cy —
= o+ 1Ry
Similarly, . s _
M1 S, h(w{’Aj)} = o+ 1) S!‘»‘I(GIIAJ)’
30 { Enu Ca = . cosy 2r . =
W'(§n,) h(@,,A)} = (2n+1)p“=(sm"°‘)(sin)—1\1_ mj (5.5)

From (5.5), it is clear that the columns of C,, are already separated in frequency,
with m taking here the place of k for convenience in notation. In the case of
equatorial symmetry Eazc(m) = [Paa(©1)s Pua(@3)s s+ ’ﬁnu(@w,)] " and Vh=1(m) =
[Poa(P1)seees Pm(ri) }' are identical and either "even'' or "odd'" vectors, because
the P., are even functions of ¢ if n~m is even, and odd functions if n-m is odd.
In any event, U =0T = Lg=,(M) regardless of symmetry. The complete decom-
position of the c?ﬁumns of C], (right hand sides) is immediate: all that has to be
computed are the values of P_(¢;) for 1< i< N,, for which there are simple
recursive formulas by order and by degree. After solving the reduced equations:

v'(m) = R(m)yx™m) or E"B(m) = R(m) Z“B(m)

(depending on whether the grid is symmetric or not w.r.t. the equator), where the
subscript & is superfluous and has been dropped, the "'synthesis' of the corres-
pounding row in F is also immediate, say

Moo v R Ca\ o 2 ,Cq ~® Cyr\7T
"aB - [Xﬂ,l;n(gu)’xﬁyaﬂ.(gm)’.."XBQ“,’“(_EJ‘,)]
T

jn the eckmtorially symmgtric case, where _fS:B is the row in F corresponding to
The O Sp,. Once the xg(m) are known, the estimates are obtained as follows

(again i%the symmetric case).

A T N 7
Cns — s’ - {i ~ 9_;. l“ ~ 8 ,9_:
(én.)— 'f‘aﬁg' =1 XB,!,R(§; >g' +1=»"—‘“_IXB,Y.,.1 (_S‘L)_qj (—1)
N a“z g ~ a? 8
_w oy S N V- B
1‘=“1x30"“(bf) x:u.mxﬁ"vﬂ(b:)( 1), t=N+l-i (5.6
s ' 7 2~ mj
4y, = G, g.‘ - :—ﬂ cos N-‘ d., (5. 7-a)
. N 9
b = Spd. - T, sm __1\_”3) d,, (5.7-b)
Z1N-




Expressions (5.7) represent the Fourier analysis of each N, partition of the
N. Ne-data vector d. So the algorithm for getting ‘8‘,,. and ﬁn,, once the values
of the Lﬁn(m) are known, is as follows:

a) Find the (;,‘,) by Fourier analysis of the d;;
i
b) Use the xB(m) and (b'f) as in expressions (5.6) and (5.7) to find the
estimated ¢,, and §,.

For reasons explained in the next paragraph, m is to be limited to the range

i N./2 if N is even
0<m=N =<(Nc—l)/2 if N, Is odd.
Steps (a) and (b) can be performed very efficiently, even for large numbers of
data points, because ofﬂthe power of the Fourier algorithms available at present.
Clearly, all ¢,, and %, of the same order m can be found quite independently
from the rest of the coefficients. This separability in order is also present in
the calculation of coefficients by least squares adjustment on 2 regular grid.
Such adjustment is based on the "observation equations!'

N n
h('ﬂn)\;)=n§n .‘E <§n-) (‘ny/\;)( )

Inthis technique, as incollocation, there is also separation by frequency and parity. When
n~ N and m = N are the largest degree and order present in the data, the least
squares method yields perfect estimates (assuming no noise). Collocation, being

a minimum variance technique, also gives perfect estimates when applied to such
data. An important difference between the two procedures is that, for

n

h(g,X) = 2 Eolann ﬁu((p A) +snu (0, )]
=g 3=

least squares has no control on the aliasing, while collocation minimizes it
(provided the appropriate covariances are used).

5.2 Alias ing
A

When data is noiseless, the error in(gz') is a function of higher degree and
order coefficients. This type of error is commonly known as aliasing: high fre-
quency waves become indiscernible from lower frequency ones because of the
sampling. To understand this problem, aliasing can be considered first by degree
and then by order.

[ - Higher degrees: I‘here are N, samples in latitude, so there are at most N;
independent columns in C,; of the form

i (Pan@0)() Prk0)(G1)r o Br@e( T ) |

for any given m . Therefore, if n > N,
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N t
nn _ s
Sy = 121 ACoz,00

for some real numbers a,. If Cy i8 invertible, F has the same rank as C,,,
and there are only N, independent f_a = Caa g_::’q. f n> N,

ns 2y N ot N :
and f‘a = C“llgl Cono s = &, Cad Coryr A1 = igl Et; 4
N
nn - nat - r ol N 1n
<gnl> —fa d ‘Z a’ ‘f—‘a d -1:.-.1 ai( ll)
or, after several more steps,
¢ ® T
") =T - 5.8
<g'iu) n=‘.‘N\-3h ( snl) ( )

for some real numbers ,&, . Expression (5.8) indicates a dependence of the
estimated coefficients ‘") on coefficients of higher order. The actual coeffi-
cients are quite independent from each other.

1I - Higher orders: There are N. samples per row, so only N./2 ' terms in

cos mA, and N./2 in sin m), (defined in (5.5)) can be independent simultaneously.
This means that terms of different frequency are lumped together, as shown by

the trigonometric relationship:

(COS)g_n;mq = <cos> 2”(m+Nak)q

sin /] N. sin/ Ng

where k =0,1,2,.,.. Consequently, both the rows in C,, and in F correspon-

ding to <g.") with m > N./2 will have the form .
na

Cq C 9_& C _ 9_" _-'v . __u' ,_"x T
m(gomsn) g gV = Is(G (k)G ) S )
(where m =m' + (N.k)/2) and will be linear combinations of the N, independent

columns with the same lower order m'. 1t follows that there is dependency between
coefficients of order m' and those of order

m = m'+ N, m+2N;, m'+ 3N.,..., m' + kN.,...

From (1) and (1I) it is clear that estimates of degree n < N, and order m < N./2
are functions of higher frequency terms. This dependency usuvally gets worse as
the upper limits are approached by n and m . In regular partitions, where

40 =42 , so Ny > N./2, this common upper limit for degree and order is

Aliasing is a problem present in all forms of harmonic analysis, including
that on the sphere. Some methods, however, are less affected by it than others.
For noiseless data, aliasinglg the error in the estimates of the coefficients. So,
if the mean square error in each coefficicnt is the criterion for measuring aliasing

1'N./2 is only correct within one unit of the actual number. '"N./2" is uscd here

and in the remainder as a simplification.
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for that coefficient, then for a given class of functions h (¢,A) with covariance

M{h(P)h(Q)} = E c,Py(¥sa)

or degree variances (power spectrum) ¢, = ¢,, minimum variance analysis
(or collocation) is the procedure with the least possible aliasing.

5.3 Spherical Harmonic Analysis from Area Means

Sjoberg (1978) has derived expressions for the isotropic covariances of
area means of gravity anomalies over blocks of the type shown in Figure 2.1-b, and
for the covariances between such area means and the normalized harmonic coeffi-
cients of the signal before averaging. Generalizing those formulas to area means
h of a function h , we have

- = 10
M{hih]} = 30,80, JAo, on’cna('b) do do (5.9)

where A0,,A0; are the areas of the ith and jth blocks, and

Ay
_ L"sf”“ ¥) cos pdp

Cnn kN - Cy
M{(Enn)’ J} - (20 + 1) (Si.D(DNJ 'Sin(os") X

X {1 if m=0, cogo
(1/my[a, (AX) (gjp) mAa + (- 1)%ba0) (oon ) mAw, |

1]

where a,(A)) sin mAX
ba(AX) = (1 - cos mAl)

Aw, = West most longitude in j block
On, = North most latitude in j block
¢s, = South most latitude in j block.

Expression (5. 10) shows that the ""Fourier analysis' of the partitioned rows >f C,,
{s immediate, resulting in a ''sine’ and ‘cosine’’ pair per row, twice as maay terms
as in paragraph 5.1. Furthermore, if the grid has equatorial symmetry,

the integrals

J‘ Poa(©) cos © do
and the resulting c.:a vecbors split naturally into even and odd, as before. Except
for the existence of ""sine' and "cosine' pairs arising from each column in C.z '
the basic algorithm is applied in the same way as for point data, All important
conslderations made in the previous example apply to the analysis of area blocks,
particularly those pertaining to aliasing.
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There remains the question of which way of representing the data, usually
pot sampled on a regular grid, is least affected by aliasing: whether coefficients
estimated from computed area means are necessarily more accurate than those
calculated from point values interpolated on a grid. This is not a simple question,
though ""common sense'" (something to be handled with extreme caution) suggests
that area means are probably better. This is so because aliasing, as already
explained, depends on high frequency terms that are "damped out' by the aver-
aging, while low frequency terms are only slightly modified. In other words, the
"signal", or low degree coefficients to be estimated, tends to be greater than
the 'noise", or higher degree terms that are not estimated. ! The understanding
of the spectral characteristics of data averaged over square blocks is not suffi-
cient, to date, to give a more definite answer. One thing is clear, however: if
the coefficients were estimated by collocation from the original ungrided data the
resulting mean square error would be the least for any linear estimator utilizing
the same data, including those that first "grid" (average) the data and then ''col-
locate' the coefficients from the grided (averaged) data set. This resulting
error will include the effect of measurement errors and of aliasing.

5.4 Collocation and Numerical Quadratures

Expression (5.6), in the general case of a nonsymmetric grid, becomes
Nr

(§“;> -t =%  Xim)( Sy )dz = ,_lmx s(m) (505

where xn(m) are obtained by solving (3.11). If the dat. is point data (to simplify
the discussion), a common way of computing (g::) is by "discretizing'" the basic
expressions

cos m] dy (5.11)

l
Ty . 1 3 cos

<‘ > an Jo Pﬂ=(“’)<sm> mX h(@,1) do (5.12)
h(‘pt,)w) =d“

(g::> - 741:12 Eol qp“(‘p’)((s:clils)m h(®01,X), {A3=(2ﬁ/Nc)j (5.13)

where the W,, are "quadrature weights', often the area Aoy, of each block.
Comparing (5.13) to (5.11) and assuming all P,,(©:) # 0, one can write:

(g'n.) 4n 5 I 5 W’J P“(G;) ( Sm)mj h(o, Ay (5. 14-a)
f X, el 5. 14-b
W = X B 000 ( )

! There is, however, loss of information. If a grid such as that in Figure 2,1-b is
used (constant AX) then all harmonics of order m = N k, k=1,2,...,
are "averaged out'" of the area means,
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where the W[: are the 'collocation quadrature weights'', As already explained,
collocation provides the least aliased coefficlents and, for noise data, also the
best filtering, of all linear estimation procedures. According to (5.1%), i
numerical quadratures, regardless of the '"weights' used, one computes (

as linear combinations of the data, so estimation by quadratures is linear.
Expressions (5.14-a,b) can be used as a justification for considering collocation,
in this context, as a numerical quadratures technique with optimal weights for
reducing both aliasing and the effect of data errors,

5.5 Estimation of Disturbing Potential from Gravity Anomalies

The value of a function u(e,A) at the 'North pole' of a grid, equals the
sum of the unnormalized ¢, or '"zonal' coefficients of its harmonic > _expansion.
For this reason, estimating such value is equivalent to estimating , 'z: Cao » and,
when the data is grided: d(@i1,A;) = h(@, X)) + n(P1,4y), thzs means solving
¥Y"(0) = R(0) x"(0) forall the N: "independent'

¥"(0) = [Puo(Sin®,),..., Pro(s5in®,))"
and then computing
@ Ne 0 Nc=1
aZq Cno = i Cno = iCa 2, Xt Jgod”

This is a simple explanation of why only the 'zero frequency'' part of the estimation
algorithm has to be carried out.

There is no need, however, of estimating each c,y separately. Assuming
that the covariance is Isotropic

M{U(P) h(Q)} = nzo Cunyn Pa(¥sgq)

then, if P is at the pole, Tthe covariance is constant for Q at any position in the
same row., The matrix C,, becomes a N; N.-vector of the type:
Q Q vl

gu(o) = [ Ulo Co» V2 Corveeey Uy Coreney UN,. Eo]T
where ¢, =[1111 ... 1]7 is a "zero frequency N.-vector'". Conscquently,
matrix F' becomes the N: N,-vector
o
{

Q
f = [ X? Co» Xg Coreees K Coreoen XN, _c_O]r

where

B(0) = [ vf seeestfl and g(0) = [x3 oo )
and o

X(0) = R(0)™ u(0)
So N T N N =1 Na N.—1
u(P) = _f_fg_ = 121 xc: co d; ’151 X1 :§°d” l§1 \10 J:(_)(h(Q”\41)((.)13))
N ~ Nl
= & X d, where d, = I di (5.15)




Expression (5. 15) can be lnterpr%t?_q as representing the optimal estimate of
u(P) based on the "ring sums" 1o dyy. It i8 easy to verify that

x"(0) = Cx(Caa+ D)= v'(0)R(0)™*

where D is the variance-covariance matrix of n = Nc)_: ln,, so this interpretation
can be used quite consistently. The main consequency of all this is that u(P) can
be estimated from the N, d,'s by inverting the N, x N. matrix R(0), instead of
the (N¢ N,) x (Ne N;) matrix C, , Which can represent great savings in computing,
and a corresponding decrease in rounding errors., Setting up R(0), on the other
hand, requires just as much effort us forming C,4s , because the same number of
individual covariances has to be computed for both.

This idea was used by the author as part of his research on the creation of
a world height system (see Colombo, 1979), and it will be explained more fully
in a future report on that project. The particular application was predicting
disturbing potential T froiu gravity anomalies Ag inside a spherical cap sur~-
rounding the point of computation. The semi apertures of the caps studied were
5° and 10°, the rings being spaced at nearly 0.4° intervals. To keep the sep-
aration between ""gravity stations' roughly constant, the rings were progressively
decimated in azimuth towards the center. While this departure from the type of
grid considered so far invalidates, in a strict sense, the equivalence between
"point' data collocation and "ring averages' collocation, the effect on the results
is very small. The covariances were computed using the "two-terms'' covariance
functions obtained by Jekeli (1978), that have finite recursive form.

Setting up the C,4 matrix took near 5 seconds for the 5° cap and 30 seconds
for the 10° cap; with 12 "rows'' and 475 points in the first case, and 24 "rows"
and 3000 points in the second. The times for finding the optimal estimator F
(including the inversion of R(0))were of the order of 1 second in both cases,
These are C.P,U. times using the Ohio State University's AMDHAL 470V/6-11
computer.

6. Conclusions

Minimum variance linear estimation from grided data can be implemented
effectively, even when the number of measurements is very large, exploiting
the structure induced in the Cq matrix by the regularities of the grid. This is
true of both "point data" and of "area means". The restrictions imposed on grids
and on covariance functions do not exclude those used in most applications: the
"regular’” grid and the "isotropic' covariance. The greatest constraint is on
the "'random’! part of the noise, that has to have the same standard deviation at
all points in the same ""row",

There might be other types of partitions of the sphere that result in even
stronger structures for Ci, allowing yet more efficient algorithms for forming
and inverting this matrix. Research to this end could be both pleasant and profit-
able.
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The reduced number of computations, when the features of C;; are ex-
ploited, means not only shorter computer runs, but also more accurate results,

The algorithm presented here could make possible the computation of ;
spherical harmonic models from global data sets to very high degree and order
and with minimum aliasing.

Even after all symmetries in Cqs are exploited, creating this matrix is
now the major task when doing collocation with very large data sets. This is
particularly serious in the case of area means, as the covariances are the
"point' covariances integrated twice in two dimensions, as shown in expression
{5.9). It would be truly useful to obtain either closed expressions for this cu-
variance, along the lines of Tscherning and Rapp (1976), or else, approxi-
mate expressions that are inexpensive to compute,

Storage requirements can be reduced drastically, as only half of the first
row of some of the N; x N. partitions C,;; of Cy are truly needed; while the A
R(k) and their inverses are relatively small matrices. The separation of the "‘
normal equations into '"frequencies'' (expression (3.19-b)) makes this approach ;
easy to implement in a parallel-processing machine. "

Matrices with the same type of structure considered in this work appear
in interpolation and filtering with symmetric kernels of various types, besides
covariance functions. In particular, this is true of such things as point mass
models when the points are distributed on regular grids.

e o

Already, the ideas presented here have been found useful in estimating
disturbing potential from gravity anomalies, because of the economies in com-
puting time they make possible. Soon 2 program for spherical harmonic analysis
based on the same principles will be attempted.
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Appendix

As explained in Section 2, the matrix of noise covarjances D is supposed
to consist of Toeplitz circulant blocks, like C;,. If the noise is uncorrelated
from measurement to measurement (area mean to area mean) then D is diagonal.
To satisfy the Toeplitz condition, this matrix should have those diagonal elements
corresponding to points on the same parallel row, at least, equal. In general,
this will not be the case. Since approximate results may be better than none,
it could be a good idea to use a modified matrix D' instead of D, satisfying
all requirements without being ''too unlike' D. Two ways of doing this are
considered next,

Iy D=0

The noise might be ignored altogether, when the quality of the data is very
good. Then the problem disappears, because D D' = 0. However, itis
desirable to know the effect on the estimates s of the noise n

T

F = (Cu +D)7C,, = CiiC/, (A.1)

F is suboptimal, because the noise matrix has been omitted in (A.1). The
variance covariance matrix E of the estimator error is

E = M{(3-Fd)(§-Fd)'}= Cp - FC,s - Cu F + F(Cos + D) F'
(expression (1. 2-a)) which can also be written as
E = E,+E, = [Coy ~FCs, ~Cyy F+ FC,, F' ) +[FDF'] (A.2)

Here E, represents the error due to the way the data is sampled (aliasing), and
E, is the contribution of the "propagated' noise. Forming E, E,, and E;, re-
quires cyalculating a number of matrix products, the most involved of which is

F C.; F . Another matrix product of interest is C,; F', needed for the second
part of this Appendix. These products can be obtained efficiently by exploiting
the structure of C,,, which is the same as that of C,;'. Therefore, the method
for solving the system of equations y = C:. x (i.e., finding C3i,'y) can be
applied to obtaining C,, y as well, with minor modifications. To this end, the
algorithm described in paragraph (3.3) has to be changed as follows:

k
a) Use the {natrices R(k) and the vectors Xegyn = [\a.l."(f)' ceey \n.‘«-.a(s'"]

(where f :oaz X i8 the nth column of F ), which have been obtained

during the determinntion of F, to calculate

Ep(K) = R(K) xg(k) (A.3)
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where K;(k) = [Xc:,l,up---')({;,“r,n]r

b) Form the columns of H = C,; F' by "Fourier synthesis':

n = | R g é 1 A.4
L] Cal k“an‘—‘n&-d.“ (A.4)
X - k C, % Cyy 17
where ey, [£a'1’n (g),, €°l»"r,h(§x)]

b') In particular, the elements of J = FC, F' are

N 1

jiy = £ Cut’= £'Thy = X T D
N Ne

= HY ¥

k=0r =1 @ =0 T, !
where H has been defined in paragraph (3.2).

N 1
-
k’-'.‘Ca.g_o
1
z

k k
X Eor,r,g (A.5)

1) Replacing D with an "Average Noise'' Matrix, and Refining

If the noise is white, but its standard deviation varies from point to point
(or block to block) along a parallel, a diagonal D' matrix could be chosen with all
elements corresponding to the nth data row equal to the average of the variances
of the individual data in that row:
- 1 Vel v e
d'y, = 0, = N xzconl (5.6)
This could be regarded as a reasonable approach in cases where the noise is tco
great to be neglected without serious luss of accuracy. Whichever way the es-
timator F is obtained, it can always be “'refined’ (if suboptimal) to make it more
accurate. One way of doing this is to apply ''steepest descent’, where the var-
iances of the errors (diagonal elements of E) are reduced simultaneously along
the '"line' of search defined by the present F and the matrix gradient of the
trace of E, \F( E), to obtain the "improved' estimator Fa :
Fo' = FT+[Cu F -CLIK
. (A.T)
= F'+[CuF +DF -C&)K

K is diagonal, and

kn = _T.n._-u__.
n ~
Vn Cyg 74
Cy = defr ‘C_;\ = Cn[q + DL‘ _‘;:x

(where f_" and g.”, are the nth columns of F' and C,': , respectivelyy. The
element k. constitutes the optimal "step length' for f°. Expression (A.7) re-
quires calculating C,;F and f_"' ;. [7. This can be done using the procedure

explained in the first part of this Appendix, if those products are got already
available, The whole procedure can he iterated.
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