
7AD-AOB3 034 OHIO STATE UNIV COLUMBUS DEPT OF GEODETIC SCIENCE F/6 8/5
OPTIMAL ESTIMATION FROM DATA REGULARLY SAMPLED ONd A SPHERE WITH--ETC(U)
SEP 79 0 L COLOMBO F19628-79-C-0027

UNCLASSIFIED06S-291 AFOL -TR-79-0227 NL

EhEEEE~h-hEEhmmhmhmhhuI



AFGL-TR-79-0227. 13
OPTIMAL ESTIMATION FROM DATA REGULARLY SAMPLED ON A SPHERE
WITH APPLICATIONS IN GEODESY

Oscar L. Colombo

The Ohio State University
Research Foundation
Columbus, Ohio 43212

0 ptember, 1979

Scientific Report No. 1

Approved for public release; distribution unlimited

AIR FORCE GEOPHYSICS LABORATORY
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
HANSCOM AFB, MASSACHUSETTS 01731

QfA 14fAh1



Qualified requestora may obtain additional copies from the Defense
Documentation Center. All others should apply to the National
Technical Information Service.



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Do#a Entered)_

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
R DBEFORE COMPLETING FORM

S. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFGL TR-79-A227 _

4."jJT"m t..,Di,,- .5--.. . . . .... s. TYPE OF REPORT 4 PERIOD COVEREO

_TIMAL-ESTIMATION FROMRATA SEGULARLY Scientific. Interim
JAMPLED ON ASPHERE WITH APPLICATIONS IN Scientific Report No. 1

G. PERFORMING OIG. REPORT NUMBER
Dept. of Geod. Sci. No. 291

A.TNOR(#) 8. CONTRACT OR GRANT NUMBER(s)

scar Lb Colombo/ F19628-79C 27

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT. TASK

Department of Geodetic Science / AREA & WORK UNIT NUMBERS

The Ohio State University - 1958 Neil Avenue 61102F 1) (!j
Columbus, Ohio 43210 ,! 2369AW

II. CONTROLLING OFFICE NAME AND ADDRESS " T DAT

Air Force Geophysics Laboratory / Sep lm79
Hanscom AFB, Massachusetts 01731 13. NUMBER OF PAGES

Contract Monitor: Bela Szabo/LW 29 pages
14. MONITORING AGENCY NAME & ADDRESS(f different from Conrlin Office) 15. SECURITY CLASS. (of this report)

; /Unclassified
ISe. DECLASSIFICATIONOOWNGRAOING

.... .SCHEDULE

II. DISTRIBUTION STATEMENT (of this Report) ..

A - Approved for public release; distribution unlimited.

7. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different from Report)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Countinue on reverse side if necessary and Identify by block number)

geodesy, estimation theory, gravity anomalies, potential coefficients

20. ABSTRACT (Continue an reverse side If neceeeary and Identit y by block number)

- The size of the variance-covarlance matrix of the data, used to obtain minimum
variance estimators for collocation, is as large as the number of observations in the
data set. For some arrangements of the data, such as the usual "equal angle" (or
"regular') grid, the matrix presents a very strong Toeplitz-circulant structure that
can be exploited to reduce computing in setting-up and Inverting the matrix. This
reduction can be quite drastic. This report discusses such structure and presents

Do IOR 1473 EDITION OF I NOV GS IS OBSOLETEAN 7Unclassilfied

SECURITY CLASSIFICATION OF THIS PAGE (When Date 'ntered) --

L• * /



Unclassified
SECURITY CLASSIFICATION Of TMIS PACE(UWh D8a tntered)

an algorithm for Implementing collocation efficiently. Three applications are
considered: (a) the spherical harmonic analysis of point data; (b) the same
analysis using area means; (c) the estimate of the disturbing potential from
gravity anomalies. The harmonic analysis is optimal for noisy data as well; with
noiseless data it provides harmonic coefficients with minimum alias ing.,,

Acces"sion For

N'TIS GljA&I
DDC TAB
Unannouziccd
Just if'i c" t i

By___ _____

0 '0 _Codes

A a IlIai idfor

Unc lassifiled
SECuMIlY CLASSIFICATION OF AouWwo Dae Er.-



Foreword

This report was prepared by Dr. Oscar Colombo, Post Doctoral Researcher,
Department of Geodetic Science, The Ohio State University, under Air Force
Contract No. F19628-79-C-0027, The Ohio State University Research Foundation
Project No. 711664, Project Supervisor Richard H. Rapp. The contract covering
this research is administered by the Air Force Geophysics Laboratory, Hanscom
Air Force Base, Massachusetts, with Mr. Bela Szabo, Contract Monitor.

-iii-



Acknowledgements

The author Is thankful to Professor Richard H. Rapp and to Dr. Reiner
itimmel and Dr. Hans Siinkel for their many comments and the encouragement
they gave to this research. Pamela Pozderac is thanked for her typing of the
originals, with their less than optimal notation.

- iv-



Table of Contents

Foreword iii

Acknowledgements ...... Iv

1. Introduction ................................................ 1

2. Limitations on the Data Arrangement and on the Covariance Functions.. 2

3. The Structure of the Data Covariance Matrix ....................... 4

3.1 A Fundamental Property................................... 6

3.2 The Equation y = Cdd X ...................................... 7

3. 3 An Algorithm for Solving the Normal Equations CF T = Cz T...... 9

3.4 Equatorial Symmetry .................................... 10

4. Computing. ................................................ 11

4. 1 Setting up the Matrix Cdd = C,, + D ........................... 11

4.2 Solving the Normal Equations .............................. 12

4.3 Numerical Stability ........................................... 13

4.4 Eigenvector and Elgenvalue Decomposition of Cdd ................... 14

4. 5 Regularization of the Normal Equations ......................... 15

4.6 Grids of Higher Symmetry ..................................... 15

5. Exam ples ........................................................ 16

5. 1 Spherical Harmonic Analysis of Point Data ...................... 16

5.2 Allasing ..................................................... 19

5.3 Spherical Harmonic Analysis from Area Means .................. 21

5.4 Collocation and Numerical Quadratures ......................... 22

5.5 Estimation of Disturbing Potential from Gravity Anomalies ....... 23

-V-



6. Conclusions .................................................... 24

References ........................................................ 26

Appendix .......................................................... 28

L-



1. Introduction

The minimum variance linear estimates of values of a variable s (o,X, r)
from a finite set of measurements consisting of samples of a signal z (Cp,X, r)
plus measurement noise n(o,,, r), can be obtained using the following formulas
(Moritz, 1972): A

I = Fd
F = C., C(1cd= ,Z + D

The variance-covariance matrix of the estimation errors is

E = Mf(s- F_) (s - Fd}
Cg. - FC.,, - C.,F'+ FCdd F (1.2-a)

or
E =Cg - CIZCd CoTz  (1.2-b)

in the case of the optimal estimator F as given in (1. 1) above. Here

M f I is some kind of average over the sphere,
is the N. vector of estimates,

d is the Nd data vector,
C.Z is the N, x Nd covariance matrix of true values of s and z,
Cdd is the Nd x Nd data covariance matrix,
C, ZZ is the Nd x Nd measurements' signal covariance matrix,

D is the Nd x Nd measurements' noise variance-covariance matrix,
C,, is the Ns x N. covariance matrix of the true values of s.

All variables are supposed to have zero mean values: M fsj =M(z} =MfnJ =

M fA = 0, while the noise is assumed to be uncorrelated both with the signal
A

s(P,Xk,r) and with z (@O,X,r). The estimates s obtained by using the estimator
F defined in (1.1) have a corresponding E matrix whose diagonal elements are
the smallest for all possible linear estimators with the same data pattern. In
this sense, F is optimal. This estimator depends on the particular M { } chosen,
as explained by Rummel and Schwarz (1977), because this affects the elements of
the covariance matrices. In turn, these Influence the actual estimates , and
E as well.

A major problem with this method, also known as collocation, is that the
number of measurements Nd is also the dimension of Cdd , so setting up this
matrix requires computing up to iNd2 different elements. These elements are
given by the expression

i =
Cdd Mf z(( j, X t. r t) z(O j, X j, rj)} + M~n(oj, X1, r0 n(0j, X, r))

= c,,(PlPi) + c,(P1,PJ) (1.3)

where o,, is the "covariance function" of the signal z, and c,, is that of the
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noise n. Both depend, generally, on the sampling points P! and Pj . In most
casesr j 1cnz(PI,PJ) =  if i =j (1.4)

f 0 otherwise

which is what is meant by the words "white noise". Calculating the covariance
functions' values may involve several operations in a computer. Sometimes a
large number of terms of a series expansion may have to be evaluated; even with
closed expressions this can be a time consuming enterprise. Moreover, solving
the "normal" equations

Cd FT =Cat (1.5)

to find F requires an additional k N 3 operations, k being a constant character-
istic of the method used. Both tasks can be formidable with large numbers of
measurements, presenting the paradox that, while more data must result (theo-
retically) in better estimates, these are harder to obtain and are worse affected
by numerical errors. The discussion that follows will show how, for certain
types of covariances and certain distributions of data, the problem becomes
manageable even with large data sets.

2. Limitations on the Data Arrangement and on the Covariance Functions

Geodetic data, such as gravity anomalies, geoid undulations, etc., are given
usually in the form of either point values or of area means. In each case let
the following conditions be satisfied;

Point Values Area Means

C-1 All data points are on the same C-1' All area averages are taken
sphere of radius R; over blocks on the same sphere

of radius R;

C-2 All data points are nodes in a C-21 All blocks belong to a "parallels
grid of "parallels and meridians" and meridians" partition of the
(Fig. 2.1) with poles excluded; sphere without circular blocks

(polar caps) about the poles;

C-3 No data point in a row (all nodes C-3' In a row of blocks (blocks bound
along the same parallel) is empty; by the same parallels) if there is

data in one, there is data in all;

C-4 The longitude increment between C-4' All blocks have the same longi-
adjacent meridians is constant. tude span.

-2-



Figure 2. -a. Example of a grid of Figure 2. 1-b. Grid of area means.
point measurements seen from one of The shaded blocks contain data. The
the poles. Notice that the Pole itself "parallels" and "meridians" delimiting
is excluded, and that the separation the blocks are the same as in Figure
of the "meridians" is constant, not 1. 1-a. Notice the absence of an un-

so that of the "parallels". divided "polar cap".

In what follows, data points along the same parallel (blocks between the same
bounding parallels) form a row, while those along (between) the same (bounding)
meridian(s) form a column. Rows are numbered from N to S, and columns from
W to E. The latitude increments between data points (span of the blocks in latitude)
do not have to be constant, but the separation in longitude (longitude span of the
blocks) has to be constant. Moreover, rows of blocks with data can be separated
by empty ones.

All rows must have the same number of points (blocks), equal to the number
of columns N , which is also the number of meridians. A meridian is a 1800 arc
from pole to pole. Calling the number of rows containing data N, , then the total
number of non-empty points (blocks) in the grid is

Nd = N, x Nr

This is the dimension of d and also that of Cdd, or the number of values in the data set.

Having explained the kind of grid admissible,' something must be said about
the covariance functions (or the Mf ) operator) that can be used. They must
satisfy the following restrictions:

In general, the data can be irregularly distributed, but point values can be
estimated at the nodes of the grid from neighboring measurements, and area
means from the averages of measurements on the same blocks. The estimates'

variances should be found, also, to set up D
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Point Values Area Means

C-5 Given two rows i and j C-5' Given two rows of blocks, i

(including i = j), the value and j (including i = j), the

of the covariance function covariance between two area

clX(Pik,P.) = Mfx t kx1.1 means xx and 7,, must

between points P1k and Pj depend only on IXik -XJ1 1
must depend only on I Xk -X (including k=m), where Xtk

(including k =m). is the longitude of the W
boundary of block ik

Restriction C-5 (C-5') allows a variety of covariance functions, including the

so-called "isotropic" or "global" used by the majority of workers at present

(Rummel and Schwarz, 1977).

Usually the "noise" function n is supposed to be uncorrelated from meas-

urement to measurement ("white noise") resulting in a diagonal D matrix. To

satisfy C-5 (or C-5') the variance of the errors must be the same at all poirts

(blocks) on the same row, while it can vary from row to row. This assumption
is rather restrictive, as in practice (particularly with area means, where the

size of the block changes with latitude) the standard deviation of the measurements

can vary from place to place. Nearly homogeneous data sets may become more

common through an increase in the measuring of the gravity field from satellites

(satellite altimetry, satellite-satellite tracking, etc. ). In some cases, even

when C-5 or C-5' are not exactly fulfilled, the noise fluctuations along rows

might be small, and the mean standard deviation of each row could be used to set

up D. A refinement of this idea is explained in the Appendix.

3. The Structure of the Data Covariance Matrix

When all the limitations described in the previous section are present,

matrices C,, , D and Cdd = C,, + D all have the same well-defined structure.

To make it clear, let us arrange the measurements in d as follows'

d = d

where d = [dodil... dik . . . d. i _ T

so the di are N, subvectors of dimension No , each containing the data values

for one row. This brings about the corresponding partitioning of C , C.. and

D into Nr,. N. x N, "row submatrices" C j, containing all the correlatins
between points (blocks) in the ith and the jth row. Assume N = 5, that the

point on the "0 th meridian" is the first point in any row, and that all others in

the same row are ordered, like their meridians, clockwise when seen from the

To simplify typing [d., T . is used throughout this work instead of
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North Pole (i.e., along increasing longitudes). Then, the point immediately to
the West of the first is the last, or No th, in any row. From the various re-
strictions mentioned in the previous section, both for points and blocks, it
follows that if

a = Cx(XioXao)
b = cx,(xio,xj) = cxx(xlo,xJ 4 )
C = c(x 1o,x,) = CiX(xto,x3)

are the covariances between the first point (block) in row i and all the points
(blocks) in row j , then

b a b cc

CJ c b a bc
c b ab

Lc c ba

Calling p the row subscript and q the column subscript of the cpq elements
of this matrix, we notice that they have the following properties:

tj = I ij tj

Sc q+1; c when p> 1
1i =

cp = CpN,2-q when p=l, q> 1

Matrices of this type belong to the class known as "circular" or "Toeplitz cir-
culant" (Lancaster, 1969). As Cad, C. 2 and D consist of blocks of this kind,
they can be described as block matrices of Toeplitz circulant blocks. As shown
in the remainder of this work, these matrices are much easier to set up and to
invert than ordinary symmetric matrices.

The first row in C , resembles a succession of equispaced samples of
some even function, so it can be represented exactly using a finite sum of
cosines:

CU k=.oa.,1 ,coS (3.1)

where 2N =No if N, is even; 2N+l = No if No is odd, and

1 *-- cj cos-- q, where H is defined later. (3.2)

The pth row is the same as the first rotated p times to the right.

= i 2r~k
! a cos (q-p)

ko kCSN.
= j 2 Ty 2k 2 1-nk . U 2T k 2rk 3acos -I;-q cos p + ak sin s in

From the well-known trigonometric expressions



No1
) H ~ if a=k =0 orlfa=k =N (Nceven)

(Cos)"2 aq (,s)-- c q = H llNZ/2 if 0<a=k<N (=N ifN odd)
q= si 0Si N 0 if 0 ot ik!5N

2tra 2rTk

Cos q4sin q 0 always
q -0

follows that 2rrk N 0-1  u 2nrk
aN H cos- e = 0 Cpq COS q (3.4-a)

and 2rrk N- 1  • 2nk
a H sin---p q= E pq s-in-rNq (3. 4-b)

for 0 ! k ! N. Consider now the following vectors:

2rrk 4 rk 2rk 2rTk ]c k = ,cs- -,Cos --... ,Cos ....,Coos -e-k (N_ ) V

and 2k 4 rrk 2rrk 2rk

Sk [0, sin - Sin-- .... nsin-' N' s-

Expressions (3.4-a) and (3.4-b) can be written in matrix form
ii'

k H Ek = Cjj Ek (3.5-a)

ak Hjk = C j (3.5-b)

Consequently, vectors such as 2, and t are eigenvectors of the submatrix
C, , and to each such pair (k = 0, 1..., N) corresponds one eigenvalue

IJ = Ii
= ak H (3.6)

3.1 A Fundamental Property

Consider the Nd- vector

fk ff k f k ...f k ...f k IT 3 7=~ [-k,-f. "C f-, " ] (3.7)
-01-42" - " --

where the ith partition is fk =k 5 if t = 0, or fk = if 0 =1. The

product .z = Cddfk can be partitioned in the same way:
kk k k k r

[,l 4 ,a..g .. l, I (3.8)

where the i th partition is

IC~_ IC M' (jfk NaitN

E = ft E _, = = =  a~k HAk ' = -- (3.9-a)

Nr k
with y = , aP - .t (3.9-b)

I J==

-6-



For a given ri and k, f k is in a one-to-one relationship with the N, -vector

(k) :k=[1tk . Q) (.1 aEk Py

and similarly

- (3. 1N-b)
Expression (3.9) can be given matrix form:

Z (k) = R(k)f (k)<-=) Cdd e_, (3.11)

where R(k) is a Nr x N, matrix with elements

k 13
a. H = Xk (3.12)

Expressions (3. 10-a), (3.10-b), (3.11) and (3.12) describe a property of the
covariance matrix that is basic to the algorithm developed in the next two sections.

3.2 The Equation y = Cdd x

Consider once more the vectors and Za presented in the previous
section, and the equation

k k (3 13)g -- d f O . 3

where the components of _f are the unknowns. As already explained, fk and

[a are in one-to-one relationship to 9 (k) and Z (k), respectively, so (3.13)
can be regarded as equivalent to (3. 11), because once we know

[(01 -.. (o .. oI= <a (k) = R(k)-'y (k)

we know [0 t O~~'Y ~ r~M =J f~ ~Sk y k \Sk )

the solution to (3. 13). If Cd1 exists, there is always a solution to (3. 13), and thus
to (3.11). Therefore, if C- exists, so does R(k) - 1 for all 0 k < N. While
the strict invertibility of the R(k) is not essential, as long as _g" is in the
range of Cdd, the existence of inverses simplifies the argument. Assuming that
C.1 exists and that y is an arbitrary N Nr-vector, then there is another
N N1-vector x such that

Y_ = Cd ,X (3.14)

With the usual partition by data "rows":

-7-



[ilia ... x~ I.j~ = [ Y. Yt.*YcI
(x1  X 3 ... x1 ,...XIN¢_ ]1 .Y =  [Yi Yil... Y, ... €N_-I

A sequence of N, numbers, such as the elements of x1 or y,, can be repre-
sented exactly by a sum of sine and cosine terms:

N N
2T k 21Tk,

x k CCOS'N, q + sin N, (3.15)
k e0 k i

where N isas in(3.1), and cl, =0 if N, is even. In matrix form:
N N

Xq =EoCk Ck +_E Sk (3.16-a)
similarly N N

Yt=Q o 7 Mik _k +Emk n k SX (3.16-b)

Consequently, vectors such as x and y can be represented by sums of vectors
of the same form asf or . above:

x (3. 17-a)
k N N

C,; yt, (XoD = _o 0 if N, is odd; = always) (3.17-b)
where

and k L\0 Ik I1

Expression (3. 14) can be written

N I N I
.LJr u C ' Zx (3.18)k =0 C 0Ot k=Oct= o

N I

E Z Cdd ak = O=O o f

Since the product Cdd x is another vector of the same "frequency" k and the
same ot as x, expression (3.18) can be separated into 2N or 2N + I systems
of equations:

kk N N (. "
= X° iy d . o _ = .. = C X.. =Cdx , 0=,1 (3.19-a)

In turn, solving these systems is the same as finding the solutions to

!2r_(0 = R(0) jt(0), C1 = 0 (3.19-b)

where 1l) = Rll) yo0ll)...H&lk) =R(k)y,0(k) ... ! ,(N ) =R(NMla(N)
w he re ~%1

and j(k) = [(Cok)(Ck) ...'(Ck).. (CNk) r (3.20-a)

MM = lk ... (Mik)... n~r)(3. 20 -b)-n8- , \ n '\



3.3 An Algorithm for Solving the Normal Equations CF T = C.

The optimal estimator matrix F relating the minimum variance estimates
to the data can be obtained by solving the normal matrix equations (1. 5) column
by column:

dd f1  - C (3.21)

where f is the transpose of the fth row of F and L is that of the fth row
of C,, . So it is necessary to solve N, systems of equations like (3.21). From
the previous section's analysis it is clear that this can be done by decomposing
(3.21) into (at most) Ne vectors of dimension Nr such as , in (3.19-a),
and then solving the corresponding systems u(k) = R(k) XC(k) of (3.19-b).
It is much easier to work with the N,. x N, matrices R(k) than with the
& N, x N,,N , matrix Cdd, even if there are N + 1 " N,/2 of the smaller
matrices. The whole procedure can be described as follows:

Part I

a) Form all R(k) matrices (0 5 k ! N), by Fourier analysis of the first
row in every submatrix CIj of Cdd (expressions (3. 1) and (3. 2).

b) Find the corresponding R(k)- 1, and saveall pairs (R (k), R(k)-1)
on tape or disk if the same tye of data, sampled on the same grid, is likely to
be used in future estimates.

Part II

c) Decompose the Ith "right hand side" c,, by Fourier analysis of its
N partitions, as in expressions (3. 15) through (3. 17).

d) Form the Ne "equivalent right hand side vectors" u (k) according to
(3.20-b), and solve the corresponding N equations (3. 19-b) to obtain the "equi-
valent solution vectors" Xa(k) as in (3. 20-a).

e) Use the N equivalent solution vectors to generate, by Fourier synthesis
(expressions (3.16-a) and (3. 17-a) ) the tth row of F.

f) Repeat steps (c) through (e) for every column in C,, , until all the
rows of F have been found.

An alternative to inverting the R(k)'s is to generate the pseudoinverse
(equivalent to R(k)- 1 when this exists) of each R (k) by Conjugate Gradients.
This method, described in Luenberger (1969), generates a series of Nr-vectors
v1 thatare conjugate directions of R(k) : v iTR(k) vJ = 0, i I j, and that
can be used to form the pseudoinverse:

t R
R (k) - (vITR(k) vl) - 1 vt vi , R = rank [R(k)] (3.22)

-9-



In cases when C~d (and, therefore, at least one R(k) - )does not exist, the
normal equations have, nonetheless, solution. This is because, being covariance
matrices, C.Ta is always in the span of Cdd. This means that there is always
an exact solution to pa(k) = R (k) 2,,(k) that can be obtained

1_j(k) = Rt(k) &r.(k) (3.23)

This idea has been used successfully to get the results in paragraph 5.5.

3.4 Equatorial Symmetry

If every row in the grid has a counterpart in the opposite hemisphere and
both are at the same spherical distance from their poles, then the grid has
"equatorial symmetry". The equator itself (an equatorial band, in the case of
blocks) can be one of the rows.

If the grid has equatorial symmetry, then Cdd is persymmetric: two
submatrices C1 1 are equal' if they are symmetrically situated with respect to
the main diagonal (ordinary symmetry) or the main antidiagonal. More generally,
one can permute the ith row with the ith column, or the ith row with the
N + 1 - i th column, in a persymmetric matrix of dimension Nd, without modi-
fying the matrix. Since R(k) is formed by taking one Fourier coefficient
a" from each Cij, it follows that R(k) is also persymmetric.

An important property of persymmetric matrices, from the point of view
of this study, is the following:

(1) If v is an "even" vector:

VIV2 ... lr I (3.24)

VI v% ; VN v _ .. , vt 
= v N -

l for0 < i N, = N,/2 if Nr is even

(N,-1)/2 if N, is odd

(2) Or if v is an "odd" vector:

v= IViV... v1... vN, I

v, = -vN ; v2 =
- v ,.._ ... vj=-vN, _r for 09 i! N, (3.25)

then the product of v by a persymmetric matrix Is also "even" or "odd", re-
spectively. In other words: multiplication by a persymmetric matrix preserves
the "parity" of the vector. Any vector b can be decomposed into an "even"
part b0=, and an "odd" part b=,:

r Remember that all Cj are symmetrical and, being Toeplitz circulant, are
also persymmetrical.

-10-



_ 0 = [b b1 ..... bb. b. 1 b =O b b-,..z), (b(b, +: if N, odd)

bs8 1 = [bb2...b'...bJ?' b' = (b, - b, () (3.26)

Therefore, an equation of the type

R_ (k)= R(k) 2t(k )

can be separated into two independent equations:

(k) ()

01's = R(k) xa$=0  (3. 27-a)
_S) , = R (k) (k) (3.27-b)

where P= 0 indicates "even", and = 1 "odd". The solution (3.27-a) must be
"even", while that to (3.27-b) must be "odd", so the actual number of "degrees
of freedom" is N, " numberofunknowns/2. When half of the unknowns are found,
the other half must have the same or opposite values. Therefore, only the first
N, equations in (3.27-a,b) are needed to solve the system. Instead of the original
system, one can solve the equivalent:

=it % R(k) no(3. 28- a)

where R. and o have dimension N, , R i(k) Is N, x N, and has elements
- o=rk + , 0
r., rn +- rN-.+I( -1) (3.29-b)

with n NN and 1 m ! N., where 2)ot contains the first N, elements

in t~$ and k)R the first N, in W There are twice as many equations
such as (3. 28) thn there are equations le (3. 19), but the reduction in size of
the matrices by half brings a considerable increase in efficiency.

4. Computing

This section considers the implementation of the algorithm for grided data
from the point of view of efficiency and of reliability of results. Also certain
numerical stability matters are treated.

4. 1 Setting up the Matrix Cdd = Czj + D

Usually D is a diagonal matrix, so calculating its contribution to Cdd is
trivial. If this is not the case ("colored noise"), this matrix is handled in the
same way as C22 . C,, contains all the covariances of the signal in the data:
because the symmetries in the grid are reflected in the structure of C,,, it is
not necessary to compute every one of them. C,, is symmetrical, so only half
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of its elements have to be found. Every C~j block is Toeplitz circulant, so
only the first row has to be known, and this first row is "even", as already
explained, so only half of its elements are different. If there is equatorial
symmetry, then C,, is persymmetric, and this reduces the number of dis-
tinct elements by half once more. The number of covariances in C,, is
(NC Nr)2: after all symmetries are considered, only NN,/4 have to be
computed if the grid is not symmetric, and only Nc N,/8 if it is. Computing
each covariance should take the same amount of operations, so the central
processor time needed is porportional to the number of distinct elements. This
means that a matrix such as C,, requires 4 N, times less to be set up than an
ordinary symmetric matrix of the same dimension, and 8 N, times less if the
grid is symmetrical. In the case of a regular lox 1V grid with 64800 points
(blocks) there is a reduction in effort of the order of 1400 times. Furthermore,
the existence of redundancy in the elements of Cdd can be used to decrease the
storage requirements for this matrix, that would otherwise be truly enormous
even with moderately large data sets.

4.2 Solving the Normal Equations

Solving a system of equations requires a number of operations proportional
to the cube of the number of unknowns. Assuming that the same method were
used to solve the original equation for one row of F

C'
dd~p

that is used to solve each of the equations

!_re(k) = R(k)X,(k) or (k)a= (k)

as the case may be, then the total saving in computing time due to the structure of
Cdd is of the order of N, . The use of a symmetric grid increases efficiency by
a factor of four. The additional time needed to do the "Fourier analysis" of the
right hand sides or the "Fourier synthesis" of the solution vectors is quite neg-
ligible, even for large numbers of data points, thanks to the existance of very
efficient algorithms, particularly in the case when N0 is a power of 2.1 In the
case of the regular lox 10 grid, with Nc = 360, the reduction of computing time
is of the order of 130000.

Computing the covariances that form the Cdd matrix, even after all sym-
metries have been fully exploited, remains no trivial task if the data points
(blocks) are very numerous. In the case of point data this situation is helped
by the existence of closed covariance expressions such as those found by Tscher-
ning and Rapp (1974) for isotropic functions. In the case of block data, as paragraph
5. 3 shows, the covarlances of area means are "area means of area means of covar-
iances," involving double area integrals over the various blocks. Numerical in-
tegration could be used as an approximation, but this would require a major

Fast Fourier Transforms. -12-



operation if the dimension of .d is large. It would be rmost desirable to have
closed expressions (or convenient approximations) for area means' covariances,
but they are not known to this author. Reductions in computer time, while val-
uable in themselves, are not the only important gain: fewer computations mean
less rounding errors accumulation, and more reliable results.

All the properties of the covariance matrix mentioned so far apply, in
the case of isotropic and other covariances, not only on the sphere but also
on any surface of revolution, as long as the "rows" are defined by circles per-
pendicular to the axis of rotation. Such surfaces include: the cylinder, the
cone, and the geodesist's old friend, the oblate spheroid. The same structure
arises from concentric rings on a plane and, of course, from the regular sam-
pling of a circumference. Equispaced sampling along a straight line results in
a Toeplitz matrix, different from a Toeplitz circulant one in that the last ele-
ment of a row is usualy 'lost" because a different number appears as the first
element in the following row, while all other elements are shifted one place, to
the right as before. Equispaced sampling on a rectangular grid in the plane
produces Toeplitz block matrices of Toeplitz blocks. All Toeplitz matrices can
be set up and inverted efficiently, with approximatelh (dimension)2 operations
per inversion. This is also the case with the type of block matrices dis-
cussed in this paper, as already shown. The properties of Toeplitz-type (and
closely related Hankel-type) matrices have been used to devise algorithms for
minimum variance prediction and filtering on the real line (time domain) and
on the plane. Examples of the first application are the algorithms of Levinson
(1947) and Trench (1964). For the plane there is an Interesting method due to
Justice (1977). In Geodesy there has been a recent application of Tooplitz
matrices to the prediction of ocean gravity anomalies from satellite altimetry,
by Eren (1979). Besides what might be called "outright" Toeplitz matrices
(circulant, block, or plain) there are "near Toeplitz" matrices and operators
which have, to a lesser degree, some of the advantages considered here. Such
structures have been studied by Kailath (1975 among others: it %as at a talk
delivered by him at the University of New South Wales, in early 1976, that ihe
author of this paper first became aware of the many uses of Toeplit, matrices.

4.3 Numerical Stability

The poles (circular bloc:ks about the poles) have been excluded by restriction
C-2 (C-2') bh,,aus ,, in order to partition Cdd into N, N. x N, s uhbmatrices Ctj,
the corresx)nding measurement would have to he artifrkiall,, treated :is N, meas-

urements at the same point (block), introducing N rows and columas ir C. that
are identical, thus making Ci, singular. E.en with this restriction, rows vern
close to the pole may create stability problems, as the matrix will tend to become

One approximation, based on the I'el] mcn "smoothing factors" (rendered into a

recursive form by Meissl (1971)), might be acceptable for very fine subdivisions
of the sphere, thiugh it requires the use of Legendre harmonic expansiots trun-
cated to a high degree.
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singular as the rows approach the pole. In particular, small perturbations in
the elements of Cdd may have serious consequences for the solution of the nor-
mals. The author found, when computing the results presented in Example III,
where the grid was confined to small circular caps, that interpolating linearly
from a table instead of computing each covariance exactly from a closed ex-
pression (in order to save time) resulted in a matrix with some negative eigen-
values when the table entries were spaced at more than 0.25 km intervals! He
finally computed all covariances from the closed expression, and the problem
disappeared. For a discussion of the interpolation problem, see Sunkel (1978).

Another way of computing covariances approximately is by truncating their
spherical harmonic expansions, which, in the isotropic case,2 are of the type

= c PZ,(cos J), c.(UP 1= caZ Pn(cos (4.1)

at a "sufficiently high" degree N,, (usually N,,, = 1000). If the spacing between
kmeridians is AX< Tn/N,, then Cd f = 0, where

if N., < k < Integer (TT/AX). Furthermore, R(k)= 0 if Nax < k < Integer
(-/ AA). This presents no problem if ca,()) is computed using an expansion
truncated to N.,, because c,, contains no higher frequencies in its
columns, which are in the span of Cdd, and the desired solution can be ob-
tained using the non-zero R(k), 0 ! k N,,.

4.4 Eigenvector and Eigenvalue Decomposition of C 4

One possibility, when dealing with an ill-conditioned, real symmetric matrix,
C, is to decompose it into eigenvectors and eigenvalues:

Rank C T

(where the yj are the eigenvectors and the X eigenvalues) and then form a
pseudo inverse

where the X, are those eigenvalues of C that satisfy the condition Xq E > 0

In the case of area means this problem can be alleviated by using equal area grids
with blocks of constant longitude span, and latitude spans that increase towards
the poles.
P, is the nth unnormalized Legendre polynomial; c , and c,, are the nth
degree variance of z and the nth degree covariance between z and s, re-
spectively.
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for oE "sufficiently small". In other words: the true inverse is "truncated" to
that part of its expansion that can be regarded as "sufficiently positive definite".
For this and other reasons it is interesting to know the eigenvector/eigenvalue
decomposition of C 4 .

From Section 3 it follows that if

T~(rn) 1 = [M( m),1 ... /(m) 1,NI

is an eigenvector of R (m) and A (m) is the corresponding eigenvalue, then
X (m), is also an eigenvalue of Cad, and

the associated pair of eigenvectors of Cd . Therefore, the spectral decomposition
of the N,/2 matrices R(m) is equivalent to that of Cdd. However, it is far
easier to decompose Ne/2 N, x N, matrices than to do the same to one NN, x
l, Nc matrix.

4.5 Regularization of the Normal Equations

Sometimes, when a matrix C is too ill-conditioned for the solution to the
corresponding system y = C x to be computed reliably, a simple form of re.u-
larization, that gives more stable results to a slightly different problem, con-
sists in solving the system y= (C + I) x (where U is a very small, positive
constant) instead of the original equations.

The "trick" consists in finding a value of a that stabilizes the results with-
out causing them to depart too much from those for the original system. This
can be done with relative ease if a spectral decomposition for C is available.
In the case at hand, the normal equations will have, after this regularization, a
"normal matrix" Cdd + O I(Nd X d). This can be "Fourier analyzed" as before,
yielding the N,/2 matrices

R'(m) = R(m) + rl(NXN,) (4.3)

so the regularization of Cdd implies that of each R( m), which can be
handled as in Tikhonov and Arsenin (1977).

4.6 Grids of Higher Symmetry

The high efficiency in setting up and solving the equation Cdd F = C
made possible by the structure of Cdd raises the question of the possible exis-
tence of partitions of the sphere that generate even stronger structures. The
answer is yes, and, as examples, consider: a single "row", two "rows" sym-
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metrical with the equator, and the vertices of the five regular (and of the 13
semi-regular) solids. In all these cases the matrix Cdd is a block Toeplitz
circulant matrix of circulant blocks, while the matrices considered so far
were simply block matrices of c irculant blocks.' With the exception of the
second arrangement, the size of the C 1 is 1 x 1, which reduces the whole
matrix to an ordinary Toeplitz circulant matrix, the setting up and inverting
of which is almost trivial. Are there such grids with lar-e numbers of nodes
(blocks) evenly distributed over the whole sphere? The answer to this question
is not known to the author, but its importance can be appreciated by the reader.
Paullk (1976) has published a theorem containing a sufficient condition for the
existence of this type of grid, as well as a constructive principle, linking its
existence to that of pairs of commuting, nontrivial, 3 x 3 orthogonal matrices.
Whether some of these pairs correspond to dense grids is another matter.

If CQd is block Toeplitz circulant of circulant blocks, then the elements in
each row (column) are the same, only their order changes. In the case of iso-
tropic covariances, this means that the set of distances from any data point
(block) to all the others must be independent of the data point (block) chosen.
Clearly this is a necessary condition.

5. Examples

This section illustrates the application of the method to spherical harmonic
analysis of gridded point data and of area averages, and to estimating disturbing
potential from gravity anomalies.

5. 1 Spherical Harmonic Analysis of Point Data

Spherical harmonic analysis is to data distributed on a sphere, what Fourier
analysis is to data on the line or on the plane. Not only does it provide greater
insight into the properties of the information available, its statistics, and its re-
lationships to other signals (see Kaula, 1967), but it also allows the highly efficient
computation of convolutions. Such is the case of a function 2

h(oX) = E m +s', sin m,) (5.1)
=0 =0

that is transformed according to

If the data were partioned by meridians instead of by parallels, Cdd would be
a block Toeplitz circulant matrix, but the blocks themselves would not be Toeplitz.
P, is the associated Legendre function of the first kind, of order n and degree
m (normalized); c, and s., are fully normali ed coefficients; P, is the un-
normalized Legendre polynomial of degree n ; Ta da indicates an area integral
over the whole sphere; 0 is the spherical distance from (.,X) to (Q', X')
(see, for instance, Hobson (1965)). P 3 (c) is shorthand for P,,( sin 03).
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u(0,X) - oS( 0) h(0', ')do' (as in Stokes' formula) (5.2)
4-

forsome S() = 7 k.(2n+ 1) P,( )

in which case
u(0,k) = E k,, P.( c)[-..cos rnA +S , sin mA1 (5.3)

Computing (5.2) by n', nerical quadratures is far more laborious, if u is required
at many points, than using (5.3) truncated to a high degree and order, if the coeffi-

cients -6, s, are known. Finding these coefficients accurately and with a min-
imum of computations is a very desirable goal: a number of studies have been
published in recent years on the "correct" way of analyzing data, particularly
when given in the form of area means (see, for instance, Rapp (1977) and Kat-
sambalos (1979)). Much of the effort has been concentrated on computing the

coefficients from the expressions

1 R.,((0, X) h(o,X) do (5.4-a)=T ....

s.. -S= (, X) h(t,X) do (5. 4-b)

based on the orthogonality of the harmonics RX.(e ,A) = lr(sin o) cos mA and
S. 0,X) = P,3 (sin f) sin mX on the sphere, using numerical quadratures. Seh
approaches can be very efficiently implemented: in 1976 C. Rizos and the author
wrote Fortran programs for harmonic analysis and synthesis. As an example,
one of those programs took 1.3 minutes to generate a set of a,,'s and s. 's com-
plete to degree and order 180 from 64800 1 x 1- area means (gravlty anomalies)
in the AMDHAL 470V/6-11 computer of the Ohio State University.
Because the data is sampled, there is usually not enough of it to estimate the
coefficients exactly: the resulting error is known as aliasing, and it depends
both on the data distribution and on the numerical technique used. Moreover, the
data usually contains spurious signals, measurement errors for instance, that
also affect the results. A way of computing harmonic coefficients, minimizing
the effect of noise and aliasing simultaneously, has been described by Rummnel
(1976) and by Sj6berg (1978). The idea is to estimate the coefficients using tic
minimum variance method, or collocation, which involves solving the normal
equations Cdd FT = C,, for this particular problem. Under the restrictions
listed earlier on, which means, for instance, using an ordinary regular grid
and isotropic covariances as defined by (4. 1) with all data on the same sphere, the
Cdd matrix has the advantageous properties mentioned so far, and can be treated
accordingly. What of the C,, matrix? The F,, and . are functions of the
system of coordinates chosen: rotating the X origin, and shifting the poles
change their values. If 0 and A are the coordinates of the shifted N pole

with respect to some fixed system, then F, Fnsc(vX,) and 9, ST. , )

can be regarded as functions of the pole coordinates: ordinar, functions of 0

At the Department of Geodesy, School of Surveying, The University of New
South Wales, Australia.
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and X to be estimated at the "North pole" of the grid. Assuming that Mf
is the isotropic operator, using (5.4) and the orthogonality properties of surface

harmonics:

h,(Zo, ,(Pj = d X Q
4

= (2n + 1) (0 1 X J)

Similarly, h

.. . (2n + 1)

So
M e h- 2cos 2-

s ) ,) (2n +1) sinN mj (5.5)

From (5. 5), it is clear that the columns of Ca, are already separated in frequency,
with m taking here the place of k for convenience in notation. In the case of

equatorial symmetry u (M) -[ P.(4 1 ),PP(('P),... Pr( an (M)
[ ( ..... ( )) ]are identical and either "even" or "odd" vectors, because

the P., are even functions of o if n-m is even, and odd functions if n-m is odd.

In any event, u 0 (m) = u_= 1 (m) regardless of symmetry. The complete decom-
position of the columns of C;, (right hand sides) is immediate: all that has to be

computed are the values of PA ) for 1 ! i : Nr, for which there are simple

recursive formulas by order and by degree. After solving the reduced equations:

un(m) = R(m) -K(m) or -,(m) (I) (m)

(depending on whether the grid is symmetric or not w. r. t. the equator), where the

subscript ri is superfluous and has been dropped, the "synthesis" of the corres-
ponding row in F is also immediate, say

n the euatorially symmetric case, where fr.Z is the row in F orrespnding to

EM, or s... Once the 18(m) are known, the estimates are obtained as follows

(again in the symmetric case).

d - , -) + d

(~) y~ 1 Z~ 8 9  af~)d a

- z I=8 ,4 xl , ,, b , )(-l) t = N,+l-i (5.6
b bi

a c di coS d.. (5.7-a)
_e N-

b, Sill - (5. 7-b)
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Expressions (5. 7) represent the Fourier analysis of each N, partition of the
N, &-data vector d. So the algorithn for getting ., and h., once the values
of the X (m) are known, is as follows:

a) Find the ') by Fourier analysis of the d,;

b) Use the x (m) and ( ) as in expressions (5.6) and (5.7) to find the
estimated C . and ,.

For reasons explained in the next paragraph, m is to be limited to the range

0 N N,/2 if N Is even
0(Nc-l)/2 if N, is odd.

Steps (a) and (b) can be performed very efficiently, even for large numbers of
data points, because of the power of the Fourier algorithms available at present.&. A
Clearly, all c,, and b, of the same order m can be found quite independently
from the rest of the coefficients. This separability in order is also present in
the calculation of coefficients by least squares adjustment on a regular grid.
Such adjustment is based on the "observation equations"

N /R.h ( ,k.j) = E _ 0( ( (0 , X ) _
- \Snm ".n

In this technique, as in collocation, there is also sepa ration by frequency and pa ritv. When
n - N and m 7 N are the largest degree and order present In the data, the le.tst
squaies method yields perfect estimates (assuming no noise). Collocation, being
a minimum variance technique, also gives perfect estimates when applied to such
data. An imxrtant difference between the two procedures is tuit, for

least squares has no control on the aliasing, while collocation minimizes it
(provided the appropriate covarianees are used).

5.2 Aliasing
A

When data is noiseless, the error in( n. is a function of higher degree and
order coefficients. This type of error is commonly known as aliasing: high fre-
quency waves become indiscernible from lower frequency ones because of the
sampling. To understand this problem, aliasing can be considered first by degree
and then by order.

I - Higher degrees: There are Nr samples in latitude, so there are at most N,
independent columns in CB'Z of the form

- c - c c
P. (0 ..... m(i~) _ s

for any given m. Therefore, if n - 1%,
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N-~~
Y 

t- ai Cl

for some real numbers a,. If Cdd is invertible, F has the same rank as C..,
and there are only N, independent f = C- , If n N
a nd -O Nl N1

f na T a, im T Nd a,(= a)

--a JE- a --

or, after several more steps,

a: ,(5.8)tm n = N,+I

for some real numbers eta . Expression (5.8) indicates a dependence of the
estimated coefficients (fi) on coefficients of higher order. The actual coeffi-
cients are quite independent from each other.

11 - Higher orders: There are N, samples per row, so only Ne /2 1 terms in
cos rrAj and Nc/2 in sin mXj (defined in (5. 5)) can be independent simultaneously.
This means that terms of different frequency are lumped together, as shown by
the trigonometric relationship:

cos) 2_Zm n  (cos) 121(m+N,
sin N, sin)N,(m+Nak)q

where k = 0, 1, 2,.... Consequently, both the rows in C,, and in F correspon-
ding~ to :with m> N,/2 will have the form

(where m = m' + (No k)/2) and will be linear combinations of the N, independent
columns with the same lower order m' . it follows that there is dependency between
coefficients of order m' and those of order

fl = m' + N,, m'+2N,, m' + 31-,..., m' + kN,...

From (1) and (I) it is clear that estimates of degree n < N, and order m < N ,/2
are functions of higher frequency terms. This dependency usually gets worse as
the upper limits are approached by a and m . In regular partitions, where
AV =Ak , so N, - N,/2, this common upper limit for degree and order is
usually referred to as the "Nyquist frequency" N,/2, after its time series analogue.

Aliasing is a problem present in all forms of harmonic analysis, including
that on the sphere. Some methods, however, are less affected by it than others.
For noiseless data, aliasing is the error in the estimates of the coefficients. So,
if the mean square error in each coefficient is the criterion for measuring aliasing

Nc/2 is only correct within one unit of the actual number. "N,!2 " is used here
and in the remainder as a simplification.
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for that coefficient, then for a given class of functions h (0, X) with covarlance

M(h(P) h(Q) =ZO c. P.(0 PQ)

or degree variances (power spectrum) a, = cA,, minimum variance analysis
(or collocation) is the procedure with the least possible aliasing.

5.3 Spherical Harmonic Analysis from Area Means

Sjoberg (1978) has derived expressions for the isotropic covariances of
area means of gravity anomalies over blocks of the type shown in Figure 2. 1-b, and
for the covariances between such area means and the normalized harmonic coeffi-
cients of the signal before averaging. Generalizing those formulas to area means
R of a function h , we have

Mhh 1 = chh()dada (5.9)M thj] -AaAa, JAaj C

where Laj,,aj are the areas of the ith and j th blocks, and

Mf l (2n +1) (sin(o, -sinos) x

I if M =0, Ci = 0x Cos + ._ C1 sin(/m)[ a,(AX) .(sin) mA.k+ -I b. (AX) Cos ) mX j]

where a,(A>.) = sin mAX
b,(AX) = (1 - cos mAX)

X - West most longitude in j block
(ON North most latitude in j block
03j -South most latitude in j block.

Expression (5. 10) shows that the "Fourier analysis"of the partitioned rows *f C,,
is immediate, resulting in a "sine" and "cosine" pair per row, twice as many terms
as in paragraph 5.1. Furthermore, if the grid has equatorial symmetry,
the integrals

__fs -p,(€) cos e d

and the resulting csa vectors split naturally into even and odd, as before. Except

for the existence of "sine" and "cosine" pairs arising from each column in C,.
the basic algorithm is applied in the same way as for point data. All important
considerations made in the previous example apply to the analysis of area blocks,
particularly those pertaiiiing to aliasing.
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There remains the question of which way of representing the data, usually

not sampled on a regular grid, Is least affected by aliasing: whether coefficients
estimated from computed area means are necessarily more accurate than those
calculated from point values interpolated on a grid. This is not a simple question,
though "common sense" (something to be handled with extreme caution) suggests
that area means are probably better. This is so because aliasing, as already
explained, depends on high frequency terms that are "damped out" by the aver-
aging, while low frequency terms are only slightly modified. In other words, the
"signal", or low degree coefficients to be estimated, tends to be greater than
the "noise", or higher degree terms that are not estimated. 1 The understanding
of the spectral characteristics of data averaged over square blocks is not suffi-
cient, to date, to give a more definite answer. One thing is clear, however: if
the coefficients were estimated by collocation from the original ungrided data the
resulting mean square error would be the least for any linear estimator utilizing
the same data, including those that first "grid" (average) the data and then "col-
locate, the coefficients from the grided (averaged) data set. This resulting
error will include the effect of measurement errors and of aliasing.

5.4 Collocation and Numerical Quadratures

Expression (5.6), in the general case of a nonsymmetric grid, becomes

nT r  ,r Nr c-1 cos 2
T

(~n)= XI(m)(2CO ) d1 = , x 1(m)("')- mj dij (5.11)
- - I-1\5 * / s in N,

where x (m) are obtained by solving (3. 11). If the dat. is point data (to simplify
the discussion), a common way of computing (c ) is by "discretizing" the basic
expressions

4 Ts n.JP()( m, h((O,,X)dc (5.12)

in the form

4\ = 1 Nr Ne- P 0 cos P jh(o/,) =dij (5.13)Co) :T : 30smX (2T, /Nocj

where the W,, are "quadrature weights", often the area 6(yio of each block.
Comparing (5.13) to (5.11) and assuming all P,,(o j) - 0, one can write:( = NO1 WP (_Oso)mA h , ) (5. 14-a)

4 Elj0 Eo 1 si

* a 4 rr (5. 14-b)

There Is, however, loss of information. If a grid such as that in Figure 2. 1-b is
used (constant AX) then all harmonics of order m - N k, k 1,2,...,
are "averaged out" of the area means.
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where the W,* are the "collocation quadrature weights". \s already explained,
collocation provides the least aliased coefficients and, for noise data, also the
best filtering, of all linear estimation procedures. According to (5. 1), i
numerical quadratures, regardless of the "weights" used, one computes ( n.)
as linear combinations of the data, so estimation by quadratures is linear. "

Expressions (5. 14-a,b) can be used as a justification for considering collocation,
in this context, as a numerical quadratures technique with optimal weights for
reducing both aliasing and the effect of data errors.

5.5 Estimation of Disturbing Potential from Gravity Anomalies

The value of a function u(0,X) at the "North pole" of a grid, equals the
sum of the unnormalized co or "zonal" coefficients of its harmonic expansion.
For this reason, estimating such value is equivalent to estimating ,_o c.o , and,
when the data is grided: d(0 ,Xj) = h(o ,Xj) + n(0 ,Xj) , this means solving
_ (0) = R(0) XR(O) for all the Nr "independent"

Yn ( 0) = [ Po(sin O),--,P.O(sinOJ,)] T

and then computing
Go - N A N~ N, 0 NC-1di

nEO Co U! CO -= X1

This is a simple explanation of why only the "zero frequency" part of the estimation
algorithm has to be carried out.

There is no need, however, of estimating each c,,o separately. Assuming
that the covariance is Isotropic

M(u(P) h(Q) = cUh,. P1(09q)

then, if P is at the pole, the covariance is constant for Q at any position in theT
same row. The matrix C, becomes a Nr Nc-vector of the type:

0 T
C0 co, o' c 0 ,..., 0 ..... U N co]

where cO = [1 1 1 1 ... lIT is a "zero frequency N-vector". Conscquently,
matrix FT becomes the NrN,-vector

01 co, ) 0 E09 X -o, X- r

where

!1(0) = [ T ,...,xr] and X(O) =[ It
and -a(0) = R(O)-  (0)

So f r 0 NC-1 = " 0 N0- 1
u(P) =fd = X Co dX = d

t~~l i I J;O I 1 ( Q j)+n(

Ncr

= t where d, =EO di (5.15)
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Expression (5. 15) can be interprqtel as representing the optimal estimate of
u(P) based on the "ring sums" dj d. It is easy to verify that

0T(O) CZ (Cdd+ - = OT( 0 ) R(0)-
No -1

where D is the variance-covarance matrix of n = Z n1 j so this interpretation
can be used quite consistently. The main consequency of all this is that u ( P) can
be estimated from the N, a 's by inverting the N x N matrix R(0), instead of
the (Nc N,.) x (&l N,.) matrix Cdd, which can represent great savings in computing,
and a corresponding decrease in rounding errors. Setting up R( 0), on the other
hand, requires just as much effort as forming C44 , because the same number of
Individual covariances has to be computed for both.

This idea was used by the author as part of his research on the creation of
a world height system (see Colombo, 1979), and it will be explained more fully
in a future report on that project. The particular application was predicting
disturbing potential T from, gravity anomalies Ag inside a spherical cap sur-
rounding the point of computation. The semi apertures of the caps studied were
50 and 10', the rings being spaced at nearly 0.40 intervals. To keep the sep-
aration between "gravity stations" roughly constant, the rings were progressively
decimated in azimuth towards the center. While this departure from the type of
grid considered so far invalidates, in a strict sense, the equivalence between
"point" data collocation and "ring averages" collocation, the effect on the results
is very small. The covariances were computed using the "two-terms" covariance
functions obtained by Jekeli (1978), that have finite recursive form.

Setting up the Cdd matrix took near 5 seconds for the 50 cap and 30 seconds
for the 100 cap; with 12 "rows" and 475 points in the first case, and 24 "rows"
and 3000 points in the second. The times for finding the optimal estimator F
(including the inversion of R( 0)) were of the order of 1 second in both cases.
These are C. P.U. times using the Ohio State University's AMDHAL 470V/6-11
computer.

6. Conclusions

Minimum variance linear estimation from grided data can be implemented
effectively, even when the number of measurements is very large, exploiting
the structure induced in the Ced matrix by the regularities of the grid. This is
true of both "point data" and of "area means". The restrictions imposed on grids
and on covariance functions do not exclude those used in most applications: the
"regular" grid and the "isotropic" covariance. The greatest constraint is on
the "random" part of the noise, that has to have the same standard deviation at
all points in the same "row".

There might be other types of partitions of the sphere that result in even
stronger structures for Cdd, allowing yet more efficient algorithms for forming
and inverting this matrix. Research to this end could be both pleasant and profit-
able.
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The reduced number of computations, when the features of C, are ex-
ploited, means not only shorter computer runs, but also more accurate results.

The algorithm presented here could make possible the computation of
spherical harmonic models from global data sets to very high degree and order
and with minimum aliasing.

Even after all symmetries in Cd are exploited, creating this matrix is
now the major task when doing collocation with very large data sets. This is
particularly serious in the case of area means, as the covariances are the
"point" covarlances integrated twice in two dimensions, as shown in expression
(5.9). It would be truly useful to obtain either closed expressions for this co-
variance, along the lines of Tscherning and Rapp (1976), or else, approxi-
mate expressions that are inexpensive to compute.

Storage requirements can be reduced drastically, as only half of the first
row of some of the N, x N, partitions Cf of Cd are truly needed; while the
R(k) and their inverses are relatively small matrices. The separation of the
normal equations into "frequencies" (expression (3. 19-b)) makes this approach
easy to implement in a parallel-processing machine.

Matrices with the same type of structure considered in this work appear
in interpolation and filtering with symmetric kernels of various types, besides
covariance functions. In particular, this is true of such things as point mass
models when the points are distributed on regular grids.

Already, the ideas presented here have been found useful in estimating
disturbing potential from gravity anomalies, because of the economies in com-
puting time they make possible. Soon a program for spherical harmonic analysis
based on the same principles will be attempted.
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Appendix

As explained in Section 2, the matrix of noise covariances D is supposed
to consist of Toeplitz circulant blocks, like C~zz If the noise is uncorrelated
from measurement to measurement (area mean to area mean) then D is diagonal.
To satisfy the Toeplitz condition, this matrix should have those diagonal elements
corresponding to points on the same parallel row, at least, equal. In general,
this will not be the case. Since approximate results may be better than none,
it could be a good idea to use a modified matrix D' instead of D, satisfying
all requirements without being "too unlike" D. Two ways of doing this are
considered next.

1) D' = 0

The noise might be ignored altogether, when the quality of the data is very
good. Then the problem disappears, because D - D' = 0. However, it is
desirable to know the effect on the estimates s of the noise n

A
s Fd = F(z+ n)

F' = (C.. + D')- C = CC.. (A.1)

F is suboptimal, because the noise matrix has been omitted in (A. 1). The
variance covariance matrix E of the estimator error is

E Mr(s_- Fd)( - Fd)T' = C. - FC,; - C.,F + F(C , +D) F'

(expression (1.2-a)) which can also be written as

E = Eg+E = [Cos- FC.1 -C,F+FC,,F ] +[FDFTi (A.2)

Here E, represents the error due to the way the data is sampled (aliasing), and
E, is the contribution of the "propagated" noise. Forming E, E,, and E, re-
quires calculating a number of matrix products, the most involved of which is
F C.., F . Another matrix product of interest is C,, F', needed for the second
part of this Appendix. These products can be obtained efficiently by exploiting
the structure of C,, which is the same as that of C3, 1 . Therefore, the method
for solving the system of equations y = Czz x (i. e., finding C[:'y) can be
applied to obtaining C,, y as well, with minor modifications. To this end, the
algorithm described in paragraph (3.3) has to be changed as follows:

a) Use the matrices R(k) and the vectors X,, e, i )I eN I. ,n ,
(where f r " x a is the nth column of FT), which have been obtained

during the determination of F, to calculate

J (k) = R(k) j (k) (A.-3)
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where Z (k) =

b) Form the columns of H = C, FT by "Fourier synthesis":

V = Czf ' = N7 e (A. 4)
- k =0 oet I -Of,

where e = (2k)--

b') In particular, the elements of J F C,, F are

f1- C zf_- fT N 1 T N 1

!_ k -.- = -- a~~

N Nr 1
=0P~,ZrF1aFx(.5

where H has been defined in paragraph (3.2).

II) Replacing D with an "Average Noise" Matrix, and Refining

If the noise is white, but its standard deviation varies from point to point
(or block to block) along a parallel, a diagonal D' matrix could be chosen xN ith all
elements corresponding to the nth data row equal to the average of the variances
of the individual data in that row:

d'I -, (A.6)

This could be regarded as a reasonable approach in cases where the noise is t(.

great to be neglected without serious loss of accuracy. Whichever way the es-
timator F is obtained, it can always be "refined" (if suboptimal) to make it more
accurate. One way of doing this is to apply "steepest descent", where the val-
iances of the errors (diagonal elements of E) are reduced simultaneously along
the "line" of search defined by the present F and the matrix gradient of the
trace of E, -tF ( E), to obtain the "improved" estimator FR

F

FR FT +ICdd FT -cat I K
(A. 7,

FT I C "z +DF" +' rj

K is diagonal, and

k, T = C 7

= C~df -C,. = C 4-Df -

(where ffI and c', are the nth columns of FT and C[:, respectivelyi. The
element k. constitutes the optimal "step length" for fVl Expression (A. 7) re-
quires calculating C,, F and f . f '. T'his can be done using the procdu rv
explained in the first part of this Appendix, if those products am, not al r'cadv
available. The whole procedurt, can he iterated.
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