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INEQUALITIES FOR JOINT DISTRIBUTIONS OF QUADRATIC FORMS

D. R. Jensen

Virginia Polytechnic Institute
and State University

0. Abstract. Chebychev inequalities are given for joint central

and noncentral distributions of k quadratic forms; these are sharpened

when k-2 using the canonical correlations of Hotelling. Complementary

inequalities are found as versions of Markov's inequality. Applica-

tions are noted in ballistics, in statistical quality control, in estab-

lishing consistency of Gauss-Markov estimates under dependence, and in

constructing conservative joint confidence sets depending on the under-

lying distribution only through its low order moments.

1. Introduction. Chebychev inequalities are fundamental to sta-

tistical theory and practice, providing connections to laws of large

numbers and conservative estimates for probabilities. Collections of

quadratic forms arise in many branches of applied probability and sta-

tistics, for example as amplitudes of random signals in multichannel

receivers and as meausres of discrepancy in parametric and nonparametric
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multiple testing procedures, where their central and noncentral distri-

butions assume a prominent role. Numerous multidimensional Chebychev

inequalities are available for probabilities of deviations from means.

However, few of these apply to distributions of quadratic forms, then

only in the central case, and even those results are scattered.

Here we develop Chebychev inequalities for joint central and non-

central distributions of k positive semidefinite quadratic forms,

extending results of Wilks (1962); we sharpen these bounds for central

distributions when k-2 using information supplied by Hotelling's (1936)

canonical correlations, extending work of Berge (1937) and Lal (1955);

we derive complementary inequalities as multidimensional versions of

Markov's inequality; and we extend some of these findings to indefinite

forms. We then apply these inequalities in a variety of problems in

statistics and applied probability.

2. The Main Results. Let Y = [Y"...,Yn]' be a random element

in On having the mean u " ['"'" ' ]' and the nonsingular dispersion

matrix V(Y) - Z - [a ], and let {BI,...,BkI be any positive semi-
ij z

definite matrices of order (nxn). A Chebychev inequality for the joint

noncentral distribution of semidefinite quadratic forms in Y is the

following.

THEOREM 1. Let Y be random having the finite mean y and dispersion

matrix Z, and let {BI,... ,_} be positive semidefinite (nxn) matrices.

For each 8 . Rn and each positive {6 ,...,)6k, we have

71 kk

where y- trB i+(X-I)'Bi(k,-I )  for i-1,2,...,k.

W I . . .. ..__ _ _... . . . . ...... .. ..... ......... .._ _



-3-

Proof. Let Q Q-)'31 Q-G) and Q()1 

and, for i-l,...,k, identify the sets Ai M (ZERnlQi()61} and

A = A n...nAk . From the nonnegativity of {QI(X)""'Qk(X )  and the

definition of A, we infer that Q(Q) 2 0 for all Z and Q() > 1 on

the complement Ac of A. A standard computation yields

E[Q(1)] - Q(ZdF(Z Q fQ(Q,)dF(X) ? I dF(Q 1PA

AuA 
- -P(A)

with FQ) the cumulative distribution function of Y, and it remains to

evaluate E[Q(X)]. A routine argument gives E[Q(Y)] - S [trB E +

+ ... + 61[trBk + (4-8)'B(W-e)] and thus the theorem.

It is known for certain symmetric unimodal distributions on gn

that the measure of a convex symmetric set diminishes as the set is

moved away from k along a ray (cf. Anderson (1955)). We note here that

a similar behavior with respect to ellipsoids is exhibited by any

n-dimensional distribution having second-order moments, in the sense

that the guaranteed probability diminishes as ( -8)'B( -O) increases.

This is a consequence of the following corollary; if in addition -

and r--1 , the corollary yields P((2-t)' -(Y- )<6) > l-n/6 as given

in Wilks (1962; p. 92).

COROLLARY 1.1. If I be random with parameters (XZ), then for each

PeRn , each S>O, and each positive semidefinite matrix B,

P((Ye) B(Ye)_____- r + - -'S -ii/i
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Many applications entail definite quadratic forms in subsets of

the elements of Y. Partition Y [,'".....]', ", - ,

" ,... , and Z -[Z~ conformably, with Y, of order

(mix1 ) and ml+...+m k = n, and choose block-diagonal matrices

{B1 ,...,B} of the types B - Diag (E1,O), i  Diag (0,EO), and

Ak - Diag (0,Ek) with E conforming to Y, for i-1,...,k. Theorem 1

yields the following useful corollary, a special case of which was given

in Wilks (1962; p. 274) when k-n,mI - ... - mk - 1, and 6-y.

COROLLARY 1.2. Let Y - [I" ' YT be random having the mean

[IM',..... Q' and the dispersion matrix = [ and let

{ i(mixmi); i-1,...,k} be positive semidefinite matrices. Then for

each 8 - ...... 8]' E Rn and each positive {61,..,6k}, we have

1 fk
P(( YI-I) ' IXI- I)S1,...,(Xk-lk ) ~ _10:5-k) 6k ) > - I + "" + "Lk

where yi M trElili + (-.-Oi)'Ei(ji-Oi) for i-1,...,k.

Our inequalities thus far pertain to events of the type A

{zeRnQl(z)<61,...,Qk(z)56kI. Complementary inequalities have to do

with P(QI(Y)Z61,...,Qk(V 6k). To establish such inequalities we pro-

ceed as follows. Let X be random with values in a linear space X; let

X0EX be fixed; induce a partial order uy on X which is reflexive

and transitive; and call a real valued function g(.) on X monotone if

x y implies g(x)!5g(y). The following general version of Markov's

inequality is given in Jensen and Foutz (1978).

*1

Ii
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LEMMA 1. Let X0EX be fixed, and let % be the class of non-negative

monotone functions on X depending on P(.) such that, for each gE0'

E[g(X)] is defined. Then

P (X3xo 0 inf E[g(X)]/g(Xo).

To complement Theorem 1 we identify X as Rn; we induce a partial

order on Rn with respect to the positive semidefinite matrices {A,,

B } on stipulating that x y if and only if x'B.x 5 z'BZ for

all i-i,... ,k; we choose for convenience the monotone function

g(x) - 3'Bx with B = B +...+Bk; and we further assume that the several

statements x1 2 ,.,'B 60 are consistent. On letting
x0 E l be any point for which equality is achieved, i.e., {Li x

61... 'x Ik - 6k}' we apply Lemia 1 directly to establish the follow-

ing inequality complementary to that of Theorem 1.

THEOREM 2. Let Y be random having the finite mean Z and dispersion

matrix E, and let (BA,...,Bk} be positive semidefinite (nxn) matrices.

For each I E Rn and each positive {k1 , 6k}, we have

Y+...+Yk
;;),k 1  k 6 1+...+6k

where yi - trBiZ + - for i-l,...,k.

Theorems 1 and 2 are basic to the present study, applying to joint

distributions of positive semidefinite quadratic forms with bounds de-

pending in part on the traces of specified matrices. We next inquire

whether comparable inequalities may be found for indefinite quadratic

forms, and whether the bounds given may be sharpened on using more
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information about dispersion parameters. Both questions are answered

affirmatively under the conditions set forth in the paragraphs following.

Suppose {AI,...,B I are the matrices of indefinite quadratic

forms and they commute. Then {AI , ...,B I are reducible to diagonal

arrays by the same orthogonal matrix Q(nxn), and it thus suffices to

consider a canonical form in which A,.. .,k} themselves are diag-

onal and C has the dispersion matrix V(Y) Q' . Let {

D+} be the diagonal matrices obtained on replacing all negative ele-

ments of {B,...,Bk} by zeros in the canonical form of the problem;

observe that {'Rx d1 0 .. , !5 6 implies -5 ....

1'B xk k
x'Bkx :- 6k}; and use earlier results as they apply to the positive

semidefinite forms {x'D+ ,... x'D+1x. An amended version of Theorems

1 and 2 is the following; versions of the corollaries follow similarly

without difficulty.

THEOREM 3. Let Y be random having the finite mean and dispersion

matrix Z, and let IBI,.. ,} be indefinite commuting matrices reduc-

ible to the diagonal arrays {DI,...,Dk}. Then for each 6 E Rn and

each positive {61, ...,k}, we have

k1 ak

and

1"kk 1+...+6 k

where Ai - trD+: + 2'D~n, Dt is the positive part of the diagonal~- n'4n 4
matrix 2'1- 2 with other elements replaced by zeros, '

and -'

_ _ _ _ _ _ _ _ _ _
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In order to sharpen Chebychev's inequality through the use of

further information about dispersion parameters, we consider the spe-

-1
cial case of the problem treated in Theorem 1 with k=2, Q,", B I= II

-1
and B2 Z-22. This case leads naturally to a reduced form in which the

canonical correlation parameters of Hotelling (1936) assume a prominent

role. Our main result is the following.

THEOREM 4. Let X -[IY] be random of order r + s = n, with

r : s, having the finite mean = the dispersion matrix

- [ ] and the canonical correlations P1'''Pr}". For each

positive {61,62}, we have
P((Xj-'q)'Z-, -1(1

P((I- 1l(1 )<l V(2_- 2 ) 'Z22(Y-2<2 ) -'I-( 6, 2 ; 2 )

where 9 .[ "'''Pr ]P and

(_r) r
R(6 1 ,6 2 ;P) = 2 + i {(0 1+6 2 )+[(ai+62 )2-4p2d 1 2 ] }/26i62

•11 2 ~6 2 i=l

Proof. Choose symmetric square roots and let Z = Zl,Z] such that

(Y and Z = Z observe that E(Z) = 0,

,r E(Z ') ;1 __11 and E(Z 2 2) - I; and, byE(ZZ') - Ir ,  (ZI 21 - EI2 ~II1112Z22' E(22 ~s

invariance of ZIZ I and Z2Z 2 under orthogonal transformation, choose

orthogonal matrices P(rxr) and Q(sxs) so as to achieve the singular

decomposition PRI 2 ' = D - [Diag(pl,...,pr),2], where {Pl,...,pr

are the canonical correlation parameters of Hotelling (1936). In ca-

nonical form with U1 /Si and U2 - P2/62, it suffices to demon-

strate that P(A) a 1-R(6 1,62 ;a), where A - [UIMU U51,UU and Ac

is its complement. To this end consider g(u;t) u '[G(t)]-l as a
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function of the adjustable parameters ( [tl,...,t ', where G(t) =

[Gij(t)] is a partitioned matrix with G11(t) - it, G22(t ) = is' and

Gl2 (t)= G21(t) - [Diag(tl,...,tr),02 T; and provided Itil < I

(which we henceforth assume), observe that g(u;t) a 0 for all u and

that g(u;,t) > 1 for u 6 Ac. These assertions follow, the first from

the positive definite character of G(t), the second on completing the

square as g(u;t) - 1 2 + S, for example, S being a positive

semidefinite quadratic form. We accordingly have

E[g(U;t)] = f g(u;t)dF(u) - f g(U;t)dF(u) > f dF(u) = 1-P(A)
AUA c A c A-- Ac

and it remains to evaluate E(g(Q;t)] - tr[G(,t)]-12, where =[2ij]

,) D/ 6 and Q = I/62. A reduction usingv(M), 211 = 4t/61' 212 =~ 1 2' -22 is~

partitioned matrices yields

t I TT)' T'1 - \,66 I)II/66'
Efg(Q;t)] = tr(Ir- /S1-tr T(Is-TT) D'/'-tr T'(I r-TT )

+ tr(I-T 1/
+2

which, from the special structure of T and D, becomes

E [ g(Q;t)I (s-r) + r 2pt.16 6 ]/G1t2).
62 : 1 2i211 ii 2

On varying t, we obtain the smallest bound by minimizing E~g(U;t)] with

respect to {t1 ,.t tr . Term-wise differentiation yields the solutions

ti M(0 6 )- I((1+62)2 - 4p26 6 ]1 /2pi6 -1 ; satisfying Itjl < 1;

when substituted into an earlier expression these give the required

bound.

When 61 62 - 6 the bound simplifies as follows.
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COROLLARY 4.1. For each 6 > 0 we have

-(z z I1 -1-1 ' -2 r

' -[s+ Z (1-pi)216i=l

It may be noted from the proof that Theorem 4 provides the best

bounds available depending only on dispersion parameters. Theorem 4 is

stronger than the corresponding version of Theorem 1, yielding the lat-

ter when p1  ... = r = 0. When r = s = 1, Theorem 4 yields a

result of Lal (1955) and Corollary 4.1 a result of Berge (1937) in

terms of the simple correlation parameter p.

3. Applications. The foregoing inequalities apply in a variety of

problems in statistics and applied probability. Some examples follow.

3.1 Ballistics. Given random impact coordinates having an arbi-

trary dispersion matrix, the probability of hitting an elliptical tar-

get may be rephrased in terms of the distribution of a definite quad-

ratic form. Joint distributions of such forms arise in connection with

salvos and multiple independently targeted reentry vehicles. In the

case of a salvo of shots subject to a common aiming error, the required

joint probabilities are determined by noncentral distributions of

definite quadratic forms.

In particular, let ,.,Zk be the points of impact of k shots

all aimed at the same point but intended for a target A =

BQ-)56) with center at T. Suppose the dispersion matrices V(X,) =

Z are equal for i-l,...,k, but no other constraints are imposed on

the joint distribution of {Y,...,Xk}. A routine application of Corol-

lary 1.2, with p , and ,= Z for i1l,...,k, yields the bound
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P (E) !5 kyI/ 6

for the event E that one or more shots miss the target, where y =

trBZ (J-Z)'B(J-Z). Perhaps more useful is the probability that one or

more hits are scored; from Theorem 2 comes the bound

P(S) 2 l-y/

for the probability of the event S that one or more hits occur. We

note that both bounds may be improved by centering the impact distri-

bution on the target center, thereby eliminating the noncentrality

parameter ( --)'B( -) from the bound and guaranteeing a smaller

value for P(E) and a larger value for P(S). Whereas probabilistic

analyses of ballistics systems usually are carried out under Gaussian

assumptions (cf. Eckler (1969), for example), the foregoing develop-

ments apply to all joint impact distributions having moments of second

order.

3.2 Statistical Quality Control. The variability of an industrial

production process often is monitored using S2 charts based on under-

lying Gaussian distributions. Let {Y,1'2, ... I be vectors of n obser-

vations drawn on successive occasions; let {S2 ,S2 ,.... I be the corre-
1' 2

sponding sample variances; and let a2 be the control variance. The S2
0

chart is a graph of {S2,S2 ... } against time on the horizontal scale;

the process is asserted to be out of control and corrective action is

taken whenever S2 /a2  exceeds the control limit c. Operating charac-

teristics are determined by the distribution of the run length, i.e.

the number, N, of successive samples drawn before the chart signals

that the process is out of control. When [XI,2 .... are independent

.OPP
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and identically distributed, whatever the underlying distribution, the

run-length distribution is the geometric distribution G(t;a) with para-

meter a - p(S2/o2>c).

On choosing @ - and B - I -n-1 1', where I' - [1,...,1]
- nn '

is n-dimensional, we infer from Corollary 1.1 that

P(S 2 /az'c 1/C

when the process is in control. Moreover, because the family (G(-;a);

aE(O,1)} of geometric distributions is stochastically decreasing in a,

we get the universal stochastic lower bound

F(N>t) >- 1-G(t;c -
)

for every run-length distribution. Similar conclusions apply when the

process is not in control and a2 > a.

0*

3.3 Weak Laws of Large Numbers. Let (Y1,Y2,...1 be n-dimensional

outcomes in a sequence of experiments having homoscedastic errors

,2,.. uncorrelated on successive occasions. We study consistency

properties of the Gauss-Markov estimator i ("'p) 1'Y under the

assumed model Yi " given that the actual model is

y =A+Zi + -i "

LNt I N 1  -- +:, observe that E(-) -1 4  -~1 ' 1

and, using the uncorrelatedness of successive error vectors, compute
the dispersion matrix V(j) - N-I 2M with M r-.

N a wit 14 (X') .From Corol-

lary 1.1 we have

_. _ _ _ _ _ _ _ _
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a2 trM XG'

IWN .

where I I is the Euclidean norm and N WC-(X')-1X' zi. If we

-1 Nnow suppose that lim G. 2, i.e., lir X(N -  r Z) 0, we find on
N_- N_ i-l

taking limits that is weakly consistent for I. In particular, if

Z, and X'Z - , then is clearly consistent. Note that this

approach avoids the usual assumption that (Y1,Y2,"" } be mutually

independent and that the model be correct.

3.4 Simultaneous Confidence Bounds. In a random sample of n obser-

vations from some scalar distribution having the mean u and variance a2,

let Y and S2 respectively be the sample mean and variance. On choosing

(no2)2 1 1' and B = [(n-l) 2 ]1 (I -n- 1 1'), we apply Theorem
an-n '2 _n -n-n

1 directly to obtain the bounds

P(IY-qOIsa6 1 S2 /a 2 5j) > 1-C + C-) 2  + 12 n7- ( -) 6

1 1 2

When inverted using e - u this gives a bound on the joint confidence

coefficient for a region yielding two-sided limits for u and a one-

sided limit for a2. We note that no further improvement of this bound

is available from Theorem 4, owing to the fact that n y is uncorrelated

with each of the residuals {(Y
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