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0. Abstract, R and S2 charts for monitoring the variability of a

2
process are studied when the control variance, a0, is unknown, when

observations are non-Gaussian, and when the process drifts. Geometric

bounds on run-length distributions for the R and S2 charts are given for

all underlying distributions when a 0 is estimated in a base period.

Similar bounds apply in the case of a drifting process, the notion of

which is developed rigorously. It is shown that normal-theory properties

of these charts hold exactly for every spherical process when a suitable
2

estimate for a is used. Run-length distributions otherwise are shown

to be ordered stochastically given a peakedness ordering on the under-

lying spherical processes.
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1. Introduction. Standard procedures for monitoring the variability

of a production process are the R and S2 charts. Let (X - (Xill X2'

X in); i 1 , 2, ...} be the outcomes and ([Xi(1) - '(2) ... Xi(n)];

i - I, 2, ...1 the ordered outcomes in a succession of samples of n

observations each; let a2 be the process variance and a 2 its value when0[

the process is in control; and let Ri 
= (Xi(n) - Xi(1)) and S- (X -

2
/(n-1) respectively be the typical sample range and sample variance.

The R and S2 charts are graphs of the standardized ratios {Ri/a 0 ; i - 1, 2,
2 2

... I and JSi/a2; i - 1, 2, ...} plotted against time on the horizontal

scale. The monitored process is taken to be in control as long as the
2 2

ratios are within their control limits, i.e., Ri/o < c or S 2 < d as
i 0 - a 1 0  da

appropriate. Otherwise the chart signals that the process is not in con-

trol and that corrective action is needed. The object is to detect early

a shift in the variance, yet to signal infrequently when the process is

in control. The sample number N at which a signal occurs is called the run

length; its distribution determines the operating characteristics of the R

and S2 charts. The mean of the run-length distribution, if defined, is

called the average run length.

Usually it is assumed that a0 is known; that independent random samples

are generated on successive occasions by a Gaussian process; and, for
2

evaluating run-length distributions, that a remains constant throughout

the monitoring period. Then the run-length distributions for the R and S

charts are geometric, their parameters being the probability of exceeding

the control limit on any particular occasion. Although S2 is more efficient

than R. the latter claims wide usage in statistical quality control owing to

its greater simplicity and the fact that loss in efficiency may be compensated

by larger samples in nondestructive testing.
2

In routine use one or more of the usual assumptions may fail. When a 0
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is unknown a common practice is to estimate it during a base-line period

when the process is in control, and to maintain the R and S2 charts using

this estimate in place of a2. The run-length distributions, no longer
0

geometric, are complicated by stochastic dependence among the resulting

ratios. Properties of the actual run-length distributions are examined
2

in Section 2 using a variety of estimates for a without stipulating the
0

underlying distribution. Even when ac2 is known the run-length distribu-
2 0

tions are not geometric unless a remains constant. The notion of a

drifting process is developed precisely in Section 2 and stochastic bounds

for its run-length distributions are given. When Gaussian assumptions fail

little is known beyond the usual caution that normal-theory procedures for

variances are not robust. In Section 3 the robustness of normal-theory

R and S2 charts is studied for a large class of underlying processes.

Section 4 gives some numerical comparisons of practical interest stemming

from earlier sections, with special reference to normal-theory R and S2 charts.

2. Aouds. n Run-lengh Distributions. Given a sample X - (X ""

X m) of m observations taken while the process is in control, let V0 be an

estimate for aO. In particular, V0 may be the sample range R0, the sample

standard deviation So, the inter-quartile range, or some other estimate

which need not be stipulated here. Denote by NR and NS the run lengths of

the R and S2 charts, and by F R(t) and Fs(t ) their respective cumulative

distribution functions (cdf's). When the process variance remains constant

throughout the monitoring period these distributions are determined by the
2 2

Studentized ratios {Ri/V 0 ; i - 1, 2, ...) and {Si/V0; i 1 1, 2, ... } as

follows, where P(Elv) and P(E) are conditional and unconditional probabili-

ties of the event E. It is clear for each positive integer t that
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P(NR >t) P(R 1 /V 0 <c, ... , Rt/V 0 < c .)

fC [P(R < vc av) ItdG(v)

0

P(N> 0 PS2 /V2 <d ...' S 2/V2 < d )
P(NS > t) - 22 22

(2.2)

f (P(S 2 < v 2 d Iv)]tdG(v)
0- CL

where R and S2 have the same distributions as R. and 2 and G() is the
i Si,

cdf of V0. Moreover, in support of later developments using finite-dimen-

sional distribution theory, we note that P(NR < -) - 1 - P(NS < 0), i.e.,

both charts eventually signal with unit probability. For R charts this

follows on writing

P (N t) = fo [P(R < vc Iv) lP(R > vc Iv) ] dG(v); (2.3)

on noting that H(t;v) - [P(R < vc Iv)] t-l [P(R > vc Iv)] < 1, that fo dG(v) - 1,
a ~ a0

and that H(t;v) - 0 as t a for each v > 0; and on applying the dominated

convergence theorem to infer that

lim P(NR t) =f lim H(t;v)dG(v) 0. (2.4)

t -)- W t -* 0

Similar arguments establish that P(N < .) = 1.
S

Under Gaussian assumptions a survey of the relevant distribution theory

follows. With V0 - S the probability P(NR > t) is determined by the joint

distribution of Studentized ranges whose marginals are of the type considered

and tabulated by Pachares (1959), Harter (1960), and Owen (1962), although

the joint distribution appears not to have been studied. Similarly P(NS > t)

derives from the known Studentized largest chi-squared distribution considered

by Armitage and Krishnaiah (1964), David (1956), Finney (1941), Ghosh (1955),
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Gupta (1963), Nair (1948), and Ramachandran (1956). Under Gaussian

assumptions with V0 = R0 , P(NR > t) is determined by the joint distri-

bution of {R1/R0, ..., Rt/R 0}, apparently not considered before, each

marginal of which is of the type studied by Link (1950). To evaluate

(2.1) and (2.2) in particular cases, recourse may be taken to numerical

methods; unfortunately, even the extensive tables of Armitage and Krishnaiah

(1964) are tabulations of upper percentiles limited to the range 1 < t < 12

and thus are not suited to evaluating P(NS > t).

Rather than treat normal-theory distributions further, we turn instead

to general structural properties of F R(t) and F s(t) which depend neither

on Gaussian assumptions nor the particular choice for V . To this end let

G(t;) be the cdf of the geometric distribution having the parameter a. Our

first result provides bounds on the actual run-length distributions F R(t)

and Fs(t) in terms of G(t;).

THEOREM 2.1. Let {X0 9 X1 ... , X t} be mutually independent sample outcomes

such that {XI, ..., Xt } are distributed identically. Choose c and d such

that P(Ri < c) = 1 -I = P(S i/V 2 d , and let N have the distribution
1 0 1 V0

G(t;a). Then NR and NS are stochastically larger then N whatever be the

underlying distribution and choice for V0 , i.e., G(t;a) > FR(t) and G(t;a)

SF S(t) for every t > 0.
2 2

Proof. Consider sequences {R /Vo; i - 1, 2, ...) and {S /V 2; i - 1, 2, ....
i 2

of independent ratios having the same distributions as R /V and S2 /V2
i 0 10

respectively, and let NR and NS be run lengths associated with these.

Because NR and NS clearly are geometric, it suffices to show that P(NR > t)

P(NR > t) and P(NS > t) > P(N > t) for each fixed t. Consider some

I
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function *(Xit X0) > 0 and suppose X has the distribution of Xi. Under

the hypothesis of the theorem it is known (cf. Khatri (1967), for example)

that

P(I(,Xo) < c, ..., (X t,X ) < c) > [P(W(X,X0 ) < c] (2.5)

On choosing 0 successively as (Xi,X0) R/V 0 and (XX) = 2/V and

applying (2.5) to (2.1) and (2.2), we find that P(NR > t) > [P(R/V 0 < ca)]

P(NR > t) and P(NS > t) > P(NS > t), as required.

Several consequences of Theorem 2.1 are immediate. One is that average

run lengths for the R and S2 charts, when a is estimated, are greater than

those of the approximating geometric distributions. Of considerable practical

interest is the error incurred on approximating FR(t) and FS(t) by G(t;a);

this topic is studied numerically in Section 4 for the Gaussian case.

To make further progress we suppose the underlying distributions belong

2 2
to a scale-parameter family. Let (a, 0 i .. be a sequence of scale

parameters corresponding to successive samples and, with yi = i/20' let

S( ... ). Recall that expressions (2.1), (2.2) and Theorem 2.1 apply

when {X1 ... , X I are distributed identically; under a scale-parameter

2 2
family this corresponds either to the case a, = aW0 when the process is in

2 2 2 2
control, or to the case a a for all i and some a > 0 . To treat the

geneial case, here called a drifting process, let r consist of all sequences

Y (Y1 1 Y2' "") for which yi I for all i. Two such sequences are said

to be ordered as yA y' whenever yi Yi for all i. Under this incomplete

ordering an element y e r0 is said to be minimal for r0 c F, and yM e r0 to

be maximal for ro, if, for every y £ O, y.4 In particular, m =

(1, 1, ... ) is minimal for r.

As the run-length distributions for drifting processes generally depend
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on y, we write the typical cdf F(t) as F(t;y) and consider the family

{F(t;y); y E r}. Such a family is said to be stochastically decreasing

in Y if, for Y and Y' in r, the ordering -4 Y' implies the stochastic

ordering F(t; y') I F(t;y) for every t > 0. That the families {FR(t;y);

Y e r} and F s(t;y); Y e r} of run-length distributions are stochastically

decreasing in Y, and thus that the R and S2 charts tend to signal more

frequently as the process drifts further from control, is established in

the following theorem for scale-parameter families of distributions.

THEOREM 2.2. Let (F (t;y);y e P}and (F (t;y);y c 1} be families of run-

length distributions for the R and S2 charts when {X09 Xi ... } are in-

dependent samples from a scale-parameter family. Then these run-length

distributions are stochastically decreasing in y.

Proof. Consider FR(t;y), the arguments for F s(t;y) being identical.

Corresponding to (2.1) let Fy(u I p ... , u t ) be the joint cdf of R I/VW... ,

R /V } in the general case; let Fl(U, ..., ut) be the case that Y. = 1
tO0 11t 3.

for all i; and write P Y(NR > t) = F7(ca, ...' c ). By independence and

the assumption of a scale-parameter family, we infer that

P y(NR > t) = F1(YI ca, ... , y7Ic ). (2.6)

The proof is completed on noting that P y(NR > t) is a decreasing function

of (yI , Y2 ... ) and thus FR(t;y) is an increasing function, as asserted.

Run-length distributions, depending on an excess of parameters, are

complicated in the case of drifting processes even when a2 is known. Under

further conditions on Y Theorem 2.2 supports the construction of envelopes

of curves containing FR(t;!) and Fs(t;y) in terms of distributions of types

(2.1) and (2.2). Suppose Y = (Y1, Y2 , ...) is a bounded sequence having



8

y I inf(y 1, Y2, ... ) and YM = sup(yl' Y2  ... ), and let y(m) - im(1, 1, .

and Y(M) - YM (1, 1 ... ). Clearly FR(t;y(m)) and FR (t;y(M)) are distributions

of type (2.1), and F s(t ; y(m)) and Fs(t;y(M)) are of type (2.2), these being

2
geometric when a0 is known. Bounds on FR(t;y) and Fs(t;y) for drifting

processes are given explicitly in the following theorem for any scale-

parameter family of underlying distributions.

THEOREM 2.3. Let FR(t;y) and F s(t;y) be run-length distributions for the

R and S2 charts of a drifting process having the bounded parameter sequence

Y = 019 y 2 ' ... ). If {X0, XI, ...} are independent samples from a scale-

parameter family, then both F (t;y) and F (t;y) satisfy inequalities of the
R '~ S -

type

(i) F(t;y(M)) > F(t;y) > F(t;y(m))
2

for every t > 0. In particular, when a is known it is true that

(ii) G(t;a(M)) > F(t;y) > G(t;c(m))

where a(m) and a(M) respectively are the probabilities of exceeding the

control limits on any particular occasion when yi = Ym and when yi= yM for

all i.

Proof. The theorem follows directly from the monotonicity properties of

FR (t;y) and Fs(t;y) established in Theorem 2.2, together with the ordering

y(m)-4 Y-4y(M) under the condition that y be bounded.

Several conclusions follow immediately. Because yo = (1, 1, ...) is

minimal in r, it follows for scale-parameter families that Py(NR < ) =

2P (NS < M) and thus the R and S charts eventually signal with unit probability

whatever be the parameter sequence in r. Moreover, the lower and upper bounds

of Theorem 2.3 become tighter as the process drifts between narrowing limits,
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i.e., as yM - Ym decreases. The extent of this tightening depends on

the underlying distributions and is studied numerically in Section 4

with reference to normal-theory R and S2 charts. We finally note that,

if r0 consists of all sequences y for which y(m) is minimal and y(M) is

maximal, then the given bounds apply uniformly to all members of the

family [F(t;y); e r 01.

3. -Robust Aspects of R and S2 Charts. In practice R and S2 charts

typically are based on Gaussian assumptions together with the independence

of {X09 X9 ... }. Often neither assumption is tenable in sampling from a

continuing production process. Here the weaker assumption of spherical

symmetry is made, allowing at once dependencies among observations and a

large class of alternative distributions. We suppose first that successive

observations are generated by a spherical process and thus are dependent

in all except the Gaussian case. An alternative model, for use when

successive samples are known to be independent, replaces the normality of

each sample of size n by n-dimensional spherical symmnetry.

A distribution L(X) on the N-dimensional Euclidean space e is said

to be spherical if, for each (N x N) orthogonal matrix Q, L(QX) = L(X).

Each such X admits the representation X = RZ in polar form such that L(X)

is determined completely by the radial distribution L(R) on (0,-), and Z

is distributed uniformly on the surface of the unit sphere in RN independently

of R. Let SN(6,IN) be the class of N-dimensional spherical laws symmetric

about 0 e RN , i.e., if (Y) e S N (,IN), then L(Y - 8) is spherical; let M

N k
be a linear subspace of RN; and call a function €: R - R as location-invariant

with respect to M if, for every E c M and X e RN, O(X + ) (X). The

following result is basic to our subsequent developments.
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LEMMA 3.1. Let L(Y) be spherically symmetric about 6 e M, and let

0: RN Rk be any location-invariant function homogeneous of degree
Rk

zero. Then the distribution L(4(Y)) on R is invariant for all distri-

butions L(Y) in the class {SN (,I N); E M}.

Proof. By the location-invariance of *(-) and the fact that M is a

subspace of e, we may assume that 6 - 0. Then Y admits the polar

representation Y - RZ. We have L(O(Y)) = L(O(RZ)) and, by homogeneity,

L(Rz)) - L((Z)). The fact that Z is uniform on the surface of the unit

sphere, independently of the particular L(Y) c S N( I N), assures invariance

of the distribution L(O(Y)) as asserted.

Let N be countable and let [U(t); t E N} be a stochastic process such

that, for each N and (tI , ..., t N  £ eN, the joint distribution of [U(t 1 ),

... , U(tN)] is spherical; then {U(t); t c N1 is called a spherical process.

It is known (cf. Hartman and Wintner (1940), for example) that a countable

process is spherical if and only if it is a scale mixture of spherical

Gaussian processes, i.e., if for each N and {t,, ... , tc} e N, the joint

probability density function (pdf) of (U(tI), ..., U(tN)] is given by

f(u N) = (2i) - / 2 f1T)Ne '/2 2 dG(r) (3.1)

where u =(U, ... , u N) and G(.) is some cdf on (0,-). Various choices

for G(.) yield as special cases the spherical Gaussian process, a spherical

Cauchy process whose marginals are spherical Cauchy laws, and other spherical

stable processes as further examples.

Against this background we consider the performance of normal-theory R

and S2 charts when, in fact, the distribution of ( 0, X1 % ... ) exhibits

spherical symmetry. Partition N into the disjoint subsets W0' N1, ....
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corresponding to successive sampling periods; let u(t) and a(t) be

functions on N such that a(t) > 0; and model the process {X(t); t e N}

as X(t) - a(t)U(t) + p(t) such that (U(t); t e N1 is a spherical pro-

cess. We assume that p(t) and a(t) are step functions, constant within

samples with jumps occurring between samples, as it might happen when

periods of intense sampling activity are followed by long interim periods

and the functions are slowly varying. Accordingly let u, M (t) and ,-

o(t) for t e Ni, i = 0, 1, 2, ..., and let y ( 1 , Y2 ' ... ) such that
2 2

Yi ai/a0 2 >1. Suppose for the present that a0 is not known and that

22
some estimate V02 from a base-line period is used, and denote by GR(t;, )

and Gs(t;y) the actual run-length distributions of the R and S2 charts

under Gaussian assumptions. Under these conditions normal-theory pro-

cedures are more than robust; they remain exact for all spherical processes

as shown in the theorem following.

THEOREM 3.1. Suppose {X0' ' ... I are generated from a spherical process

{U(t); t e N) as {Xi (t) = oiU(t) + 1i; t c Ni} for i = 0, 1, 2, .... If

00 isestimated using a location-invariant function V0 of XO' then the run-

length distributions of the R and S2 charts are identical to their normal-

theory forms GR(t;y ) and Gs(t;y), respectively, whatever be the underlying

spherical process {U(t); t E N}.

Proof. For fixed t let N - m + tn be the number of observations taken up

to the point that a signal occurs, and let Y' = (Y', Y' ... ' Y') such that

-1-; -1 -N
ai oi- Then LM E SN(6,1N) for 6 belonging to a subspace M of R

and observe that *(Y) - (y- I R/V 0, ..., yI R /V0) not only is location-

invariant with respect to M, but is homogeneous of degree zero. From Lemma

3.1 it follows that the joint distribution of (y1
1R1/V0, ..., -91Rt/V0) , and

thus of (R1 /V0 , ..., Rt/V0), is invariant for all L(Y) £ SN (,JN). The joint
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distribution of (R1/Vo, ..., Rt/V0 ) thus is independent of the particular

spherical process generating the observations and, as the spherical

Gaussian process belongs to the class, the run-length distribution P (NR < t)y R

is identical to its normal-theory form, namely, GR(t;y). Similar arguments

establish invariance properties of S2 charts.

It may be noted that normal-theory properties of the run-length

distributions G R(t;y) and G S(t;y) were established in the preceding section

under the assumption that {X0' X' ... } are mutually independent. Theorem 3.1

assures that these properties continue to hold for all spherical processes

despite dependencies among successive samples, as long as V0 from a base-

line period is used to estimate a0. In contrast to these results, the

run-length distributions of the R and S2 charts do depend on the underlying

spherical process when a0 is known and the base-line period thus remains

unobserved. Despite dependencies among successive samples, stochastic

bounds for run-length distributions analogous to those of Theorem 2.1 are

given as follows for spherical processes.

THEOREM 3.2. Suppose {X1, 2' "' I are generated from a spherical process
2 2

for which o is known and a remains constant, and let N and N be run
0 R S

lengths for the R and S2 charts having the respective cdf's F R(t) and F S(t).

Choose aR = P(R/ao > c.) and fS  a p(S2 a> d ), where R and S2 have the
2 * *

same distributions as R and S for i - 1, 2, .... Let N and N have the
i i R S

geometric distributions G(t; aR  and G(t; aS). Then NR and NS respectively

• *
are stochastically larger than NR and NS, i.e.,

G(t;a R) > FR(t), G(t; aS) > FS(t)

for all t > 0.
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Proof. We supply details for R charts; the proof for S2 charts is

identical using appropriate notation. On representing a spherical process

as a scale mixture of Gaussian processes, we infer that the actual run-

length distribution can be expressed as the scale mixture

P(NR > t)- f P(R 1/o 0  ca , ..., R/TOc0 rC IT)dG(T) (3.2)

where G() is the mixing distribution. Because (R1, ..., Rt I are con-

ditionally independent and identically distributed, we havetI
P(NR  > t) - < c[P(R/jTO CaLI)] tdG()ffP(Rto 0 ~(3.3)

> [P(R/a 0 < c)] t - P(N* > t)
*

as in the proof of Theorem 2.1, where NR has the distribution G(t;aR).

Not only do the run-length distributions of R and S2 charts depend on

the underlying spherical process, but the geometric bounds of Theorem 3.2

are similarly dependent through %R and aS . For these bounds to be useful

it thus would appear that the form of the spherical process must be known

in each particular case. Our next developments show that run-length distri-

butions are ordered stochastically whenever the underlying distributions are

ordered in their degrees of peakedness. It follows that geometric bounds

for a reference distribution, such as the Gaussian law, then apply uniformly

for all spherical laws more peaked than the reference distribution.

Let i(.) and v(.) be measures on RN; (.) is said to be more peaked

about 8 c RN than v(.) if, for every compact convex set E R N symmetric

about 6 under reflection, u(E) > v(E) (cf. Sherman (1955)). If (.) and

v(.) are finite-dimensional measures characterizing two zero-mean spherical

processes, then the u-process is said to be more peaked about zero than

the v-process if U(.) is more peaked about 0 E N than v(.) for every S < =.

Our basic result is the following.

THEOREM 3.3. Let F (t;y), with paremeter sequence y - (y1, y2' ...), be the~1
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run-length distribution for either the R or S2 chart of a drifting process

generated from a spherical process having the measure w(-). Of two pro-

cesses having the measures p(.) and v(.), suppose u (') is more peaked than

v(-). Then the run-length distributions for the R and S2 charts from the

two processes are ordered stochastically as

F V(t;y) > F (t;y)

for each fixed y and t > 0.

Proof. Let NR be the run length of the R chart; S2 charts are treated

similarly. Let N - tn and, as in the developments preceding Theorem 3.1,

consider (Xi, 2, ... , Xt} and {Yi' ... , such that Y- u I Xi and

let R(Y i) be the range function R(Yi) Y i(n) - Yi(1)" AS the sample range

and sample variance are invariant under translation, we may take the process

to be symmetric about zero. Let

A, afYC e R  c i= 1, 2, ... , t
t N

and A -,,,A,. Under the typical measure w(-) on R and the induced measure

P (.) on R1 we infer that
W

P (N > t) - w(A).

Because R(Yi), the sum of convex functions, is convex and symmetric, it

follows that Ai is a cylinder set in R symmetric about 0 and having compact

convex sections. Therefore A is a compact convex symmetric set and, under

the hypothesis that u(') is more peaked about 0 e R than v('), it follows

that ii(A) v(A), i.e.,

P Ij(N R> t) > PV (N > t)

which is equivalent to the assertion of the theorem.

4. Numerical Comparisons. We study numerically some bounds developed

in earlier sections, first considering stochastic bounds on FR(t) and Fs(t),
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as given in Theorem 2.1, when the underlying distributions are Gaussian.

We treat the case that n - 10 observations are taken on each occasion,

22
a having been estimated using the sample variance, SOm , of a variable

number, m, of observations in a base-line period. To monitor at the

level a - 0.05, we choose the critical values c (m) and d (m) from standard

2 2
tables such that P(Ri/S m < c (m)) - 0.95 - P(S i/Som L d (m)). We assume

2 2
that the process is under control, i.e., aiM a0 for all i. The run-length

distributions for the R and S2 charts are found by numerical integration

from normal-theory versions of expressions (2.1) and (2.2) using an IMSL

(1979) subroutine. Results of these computations are tabulated in Table 1

for R charts and in Table 2 for S2 charts for various choices of t and m.

We report results up to t 1 100 and m - 40, as computational errors are

greater for large values of t and m owing to the configuration of the system

2
used. The entry m in Tables 1 and 2 corresponds to the case that is

known, the base period remains unobserved, and each run-length distribution

is geometric having the parameter a - 0.05. The distribution G(t;a) also is

the limit of F R(t) and F S(t) as m , whatever be the choice for a.

These tabulations suggest a further ordering, namely, that NR and NS

decrease stochastically as m increases, reflecting successively weaker

dependencies among the ratios {R /S0 , ..., R/S 0 } and S2/S ,  S 2/S 2
1 Om Om Om,***,t Om

The geometric approximation is seen to be quite close even for m - 40. In

addition, Tables 1 and 2 suggest that the R chart may signal more frequently

than the S2 chart when the process is in control, its variance is estimated

using S02 from a base period, and both charts operate at the level a - 0.05.

We next study examples of the drifting processes considered in Section 2,

specifically, the Gaussian case in which successive samples are independent.
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We suppose that n - 10 observations are drawn on each occasion, including

2 2the base period which yields the estimate S0 for a0. Again c and d are

taken from standard tables with a - 0.05. To study the bounds of Theorem

2.3 numerically, we consider the run-length distributions FR (t;y) and Fs(t;y )

2 2associated with parameter sequences of the special type y(&) - (2 2 )

where - a 0o. Tables 3 and 4 give probabilities from these distributions

for & taking values in the set {1.0, 1.2, 1.5, 2.0}, entries having been

computed by numerical integration using an IMSL (1979) subroutine. These

values in part are presented graphically in Figures 1 and 2, which provide

envelopes for the run-length distributions of certain families of drifting

processes. For example, all drifting processes which satisfy oi/ 0 < 1.2

for all i will have run-length distributions lying in the region bounded by

the curves labeled - 1.0 and - 1.2. Note that, v hile the run-length

distributions for drifting processes depend on the path of the drift, namely,

- (y1, 2, ... ), the envelopes depend only on the maximum and minimum drifts

of the process.

Turning to the spherical processes discussed in Section 3, we note by

Theorem 3.2 that geometric bounds are available for the run-length distribu-

tions of the R and S2 charts, the parameters aR and aS depending on the

particular process. It is instructive to study disturbances in R and S

owing to misspecification of the underlying process. Here we compare the

actual values with their nominal values, the control limits c. and d. having

been set under the mistaken assumption that the process is Gaussian, when,

in fact, successive observations are generateo from a spherical Cauchy pro-

cess. These comparisons are given in Table 5 for R charts and in Table 6 for

S2 charts using samples of sizes n - 3, 5, and 10. Table 5 was generated by

• " , *1 j
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simulating P(R/o0 <_c), ca being the normal-theory control limit, using

100,000 replications for n = 3 and n 5 and using 10,000 replications

for n - 10. Table 6 was constructed on computing P(S 2 < d ), d being

the normal-theory control limit, using the fact that S 2/l0 has an F-dis-

tribution with n - 1 and I degrees of freedom in the case of a spherical

Cauchy process. The evidence at hand indicates that disturbances in aR

and a S become larger as the sample size increases under the particular

type of misspecification considered here.

' =" ... ..... .. ... ...... [ " l lli[ =-II. ...Hi .. ......v"
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TABLE 1. Run-length distributions of R charts using a - 0.05, samples
of size n - 10, and the sample variance from a base period of m observa-
tions, under normality when the process is in control.

m P(NR > 5) P(NR > 10) P(NR > 20) P(NR > 50) P(NR > 100)

5 0.90106 0.85295 0.79521 0.74538 0.73882

10 0.85438 0.79618 0.72168 0.61366 0.55701

20 0.82050 0.72422 0.60897 0.45363 0.33984

40 0.79660 0.66909 0.51149 0.30223 0.17738

, 0.77378 0.59873 0.35848 0.07694 0.00592

w.E
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2O

TABLE 2. Run-length distributions of S2 charts using a - 0.05, samples
of size n - 10, and the sample variance from a base period of m observa-
tions, under normality when the process is in control.

m P(NS > 5) P(NS > 10) P(NS > 20) P(NS > 50 ) P(Ns > 100)

5 0.90076 0.87008 0.83509 0.80584 0.79672

10 0.86113 0.80833 0.74950 0.67011 0.61025

20 0.82715 0.74039 0.63967 0.50024 0.40076

40 0.80168 0.68204 0.53659 0.34162 0.21937

0.77378 0.59873 0.35848 0.07694 0.00592
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TABLE 3. Run-length distributions for the R harts of stationary Gaussian
processes having the parameters y(6) - Q( 2, , ...), using the sample
variance in a base period of m -_10 observations to estimate a2, with
a 0.05 and samples of size n 1 10. 0

P(NR > 5) P(NR > 10) P(NR > 20) P(NR > 50) P(NR > 100)

1.0 0.85438 0.79618 0.72168 0.61366 0.55701

1.2 0.67862 0.57321 0.47783 0.35281 0.26283

1.5 0.38038 0.25958 0.16908 0.09150 0.05167

2.0 0.08241 0.03287 0.01212 0.00282 0.00099
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TABLE 4. Run-length distributions for the S2 charts of stationary Gaussian
processes having the parameters Y(E) - (E2, 2, ....), using the sample
variance in a base period of m 1 10 observations to estimate a2 , with
a 0.05 and samples of size n = 10. 0

P(NS > 5) P(NS > 10) P(NS > 20) P(NS > 50) P(NS > 100)

1.0 0.86113 0.80833 0.74950 0.67011 0.61025

1.2 0.68704 0.59400 0.50344 0.39644 0.32490

1.5 0.37996 0.26980 0.18574 0.10983 0.07304

2.0 0.07654 0.03249 0.01315 0.00386 0.00151
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TABLE 5. Values of P(R/O0 % c ) for spherical Gaussian and Cauchy
processes using samples of size n.

Gaussian Cuchy Process
Process n - 3 n - 5 n - 10

0.900 0.5786 0.5150 0.4633

0.950 0.6234 0.5548 0.4978

0.975 0.6570 0.5858 0.5270

0.990 0.6399 0.6177 0.5585

I.
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2 2
TABLE 6. Values of P(S a .d.l) for spherical Gaussian and Cauchy
processes using samples of size n.

Gaussian Cauchy process
Process n -3 n -5 n - 10

0.900 0.5778 0.5130 0.4538

0.950 0.6218 0.5515 0.4843

0.975 0.6546 0.5814 0.5089

0.990 0.6870 0.6123 0.5353
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Figure 1. Envelopes for the run lengths of R charts of drifting Gaussian
processes in terms of stationary processes having the parameters Y(E)
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Figure 2. Envelopes for the run lengths of S2 charts of drifting Gaussian
processes in terms of stationary processes having the parameters 't(E)
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