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ABSTRACT

A repairement assumption called instantaneous resurrection
is introduced and it is shown that, under this assumption, the
number of failures of an equipment in time t is a Poisson process
with leading function -log R(t), where R(t) is the reliability
function of the equipment. This fact is used in the estimation
of parameters of prior distributions via the appropriate Poisson
mixtures. The case of the two-way truncated Gamma prior and its
limiting forms is handled in some detail. A preliminary form of
a goodness of fit test in the case of varying operational time
in attribute failure data is presented.

I



EVALUATION

The work described in the report extends previous work by

Or. Bolis which provided guides to structuring Bayesian Reliability

Test Plans assuming an inverted gamma distribution of the prior

information and a constant failure rate of the tested equipment. The

report considers cases where these assumptions do not hold. The

previous work is currently being incorporated into a standard for

Bayesian Reliability Tests. The results presented in this report will

be used for modifying the standard.

ANTHONY COPPOLA
Project Engineer
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0. INTRODUCTION

In this report we introduce a repairment assumption, which we call
resurrection. Under this assumption when an equipment fails and is
repaired, the repair does not bring the equipment to a brand new stage
but to a stage of a functioning equipment of the same type and age that
had no failures. This assumption may be deemed as a simplication of the
actual circurstances, but to our opinion, it is a lot more preferable
than the renewal assumption.

We show in theorem 1.2.1 that, under the instantaneous resurrection
assumption, the number of failures of an equipment in time t is a non-
homogeneous Poisson process with leading function - log R(t), where R(t)
is the reliability function of the equipment. If we assume a suitable
form of a prior distribution of the parameters of the reliability function,

the resulting Poisson mixture (marginal distribution) allows the estimation
of the prior distribution from prior data. When the prior is determined,
Bayesian acceptance sampling plans can be constructed. The above form
the content of Section 1.

In Section 2 we consider the case of constant failure rate, where
the resurrection and renewal assumptions coincide. The two-way truncated
inverted Gamma distribution as well as all of its limiting forms (truncated
Pareto, uniform, etc.) is assumed and the methods of estimating its
parameters (mainly the method of moments) are presented.

In Section 3 we indicate how the methods of Section 2 can be carried
out (with minor adjustments) to the case of variable failure rate. As
an example, the Weibull time to failure is considered.

In Section 4 we construct a statistic, akin to the X2 statistic, to
test goodness of fit in the case the failure data do not exhibit the
same total time of operation. The exact mean and variance of this statis-
tic as well as the cumulants of its asymptotic distribution are computed.We do not know how these quantities are affected when uarameters are
estimated from thesampleused in the construction of this statistic.

This report is of a theoretical nature. It is of interest to check
the resurrection assumption by using failure data of repairable equipment
with known distribution of time to failure other than exponential. Also,
it would be of interest to see the amount of improvement of fit if the
two-way truncated inverted Gamma prior distribution is used on the mean
time to failure of electronic equipment in comparison with the use of
the full inverted Gamma. Further, the question of settling the behaviour
of the statistic S of Section 4 when parameters are estimated is important.
Some future effort may be dedicated to these questions.

i
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1. GENERAL THEORY

1.1 THE DISTRIBUTION OF THE TIME TO FAILURE. Let f(t), t>o be the
density function of the time to first failure of an equipment. We
assume that the function f is continuous. The function

R(t) . f(x)dx, t>o, St>t

is called the reliability function of the equipment under discussion.
It is the probability that the equipment will first fail after time t.
The failure rate X(t) (or hazard rate, or force of mortalitj) of this
equipment isi ned by

X(t) = .d log R(t) - f(t)/R(t).
dt

Another measure of reliability is the mean time to failure. In the general
case of an aging repairable equipment, it is more precise to call this
measure the mean time to first failure. if lim tR(t) = 0, t-Qo, this
mean is given by

= t f(t)dt = f R(t)dt.
0

1.2 THE DISTRIBUTION OF ATTRIBUTE FAILURE DATA. When a repairable equipment
is put to life testing and a failure occurs, two simple and opposite
assumptions can be made with regard to its state after repair: The repair
either brought the equipment to the start of a brand new one (renewal
assumption) or to the start of an equipment of a failure-free equipment of
the same age (resurrection assumption). The first case has been extensively

studied in the literature. Although the actual situation lies somewhere
between these two extreme cases, we believe that the r,.!surrection assumprion

is more realistic in the case of nonconstant failure rate.

When a repairable equipment is tested, we shall assume instantaneous
repair, i.e., either the repair time is negligible or it is not included V
as test time. Two quantities enter in such testing: the test time T
and the number of failures r during the time T. We can either fix the
test time T in advance and observe the random variable r ( I censoring)
or test the equipment until a specified number of failures occur T l_ II
censoring). While a type I censored test has obvious advantages (test
time and cost well controlled), a type II censoring has theoretical as well

as practical interest. For example, if only r repairs are possible, then
one would be interested in the distribution of the waiting time for the
(r+l) th failure.

1.2.1 TYPE I CENSORING UNDER THE INSTANTANEOUS RESURRECTION
ASSUMPTION. It is surprising that the distribution of the number of
failures r in constant time T under the instantaneous resurrection

2



assumption is always a Poisson distribution with mean - log R(T). We
formalize and prove this result in the following:

THEOREM 1 .2.1. Under the instantaneous resurrection assumption, the
distribution of the number of failures of an equipment with reliabilit"
function R(t) in a fixed time T is the Poisson distribution with mean

- log R(T).

PROOF: The density function of the time t, of the first failure is of
course f(tl), t 1 >o. The cumulative distribution function of the time t 2 of
the second failure is given by

Prob (t2}xIt 2 >tl} = Prob ftl<t 2 <x} / Prob (t 2 >tI} - (F(x) - F(tl))/R(tl),

x>tI,

where F denotes the cumulative distribution function of the time to
failure. At this point we used the instantaneous resurrection assumption.
Thus, the density function of t 2 is f(t2)/R(tl), t 2>tl_ Similarly, the
density function of the time ti of the ith failure is f(ti)/R(ti.l),
t>ttj , l<i<r. Finally, the probability that no failures occurred between
times tr and T is R(T)/R(tr). Thus the joint density function of the times
tl, t2, ... , tr with O<tl<t 2 <...<tr<_T is

f(tI) f(t2) . . . R(Tj : R(T) ,i (tl) .. . (tr).

R(tl) R(trl) R(tr)

Therefore, the probability that r failures occurred in fixed time T is

T T TI.
PT(r) = R(T) 1 f ... ] f X(t l ) X(t 2 ) ... X(tr) dtr ... dtlo tI tr._1

T T T

R(T) loT T 1RT) rf o 1,(I q~rI)lg er-)dt•1.
o tI tr_2 R(T)

r!

More generally, let E(t) be the number of failures of the equipment in
time t. By reasoning as in theorem 1.2.1, we obtain

1 R(t) logr (R(;)/R(t)),t>s,(1.2.1) Prob {•(t) - '(s) = r} g(r/ t

i.e. the stochastic process z;(t) is a non-homo eneous Poisson process with
leading function -log R(t) (cf. page 46 of (1)).

3



1.2.2. TYPE II CENSORING UNDER INSTANTANEOUS RESURRECTION. Let T
denote the waiting time until the rth failure (r fixed). We shall show
that the random variable - log R(T) has the Gamma distribution with shape
pardmeter r and scale parameter 1. In view of theorem 1.2.1. this does
not seem surprising.

THEOREM 1.2.2. Under the instantaneous resurrection assumrption he
density function of the waiting time T until the rth failure is ýiven

(1.2.2) fr(T) l l f(T) logr'l
• • l)! (r_(T)),fTTo

PROCF: By reasoning along lines similar to those of the proof of
theorem 1.2.1 we obtain that the cumulative distribution function of T
is given oy

X x x
Prob {Tx f0 f ... f X(t) ... X(tr-1) f(tr) dtr ... dtI.

E:y differentiating this function with respect to x and replacing x by T
we obtain (1.2.2). q.e.d.

The average waiting time to the rth failure will be called the mean time
to rth failure and it will be denoted by Qr.

Thus,

(1.2.3) Gr : f T logr-l (I/R(T)) f(T) dT r=l, 2,

This agrees with the formula (1.1.1).

1 .2.3 THE INSTANTANEOUS RENEWAL ASSUMPTION. The distribution of
attribute failure data under the instantaneous renewal assumption is
well worked out in the literature (cf. e.g. (1), (2), (3)). In the
type I situation we have

(1.2.4) P T fT f T f(tl) f(t 2 -t l )-R(T-tr) dtr
(1.24) Tt~ o tl tr~ t ..lt

ri
whereas in the type It case we obtain

(1.2.5) fr(T) T IT ... T f(l) f(t 2 t) f(T-trl) dtrl" dt 10 tI tr_2 fýl ~2t).. rldrl

T>o, r=2, 3, .

fl(T) f(T).

If we set Fo(T) 1, Fr(T) f fr(t)dt r = 1 2, ... (T>o), we get

I: 4



PT(r) - F (T) - Fr~i (T).

In general, the integrations occurring in (1.2.4) dnd (1.2.5) are difficult
to carry out in closed form. It is well known that the instantaneous
resurrection assumption is equivalent to the instantaneous renewal assumption
if and only if the distribution of the time to failure is exponential.

1.2.4 CENSORING WITHOUT REPLACEMENT. Suppose that n identical equip-
ment• are put to life testing until a beforehand specified time T. Suppose
further that r equipments failed at times tl t2 < ... t < T. The
joint density of these times is given by r

n--! f(tl) ... f(tr) R(T)n-r 0 _< ... t tr < T
(n-r)!

and the probability function of the numer of failures r is uinomial:

(1.z.6) PT(r) _ (n) (I-R(T))r R(T)n--r r - 0, 1, ... , n.

Similarly,if n equipments are tested until the rth failure occurs (when an equip-

fails,it is discarded),the times of failure 0 <_ tI<... tr.< tr = T have joint

density function
nL fitI) ... f(trI) fiT) R(T)n-rl <

(n-r)!

anu the density function of T is given by

(1.2.7) fr(T) - r (n) f (T) (1-R(T))r-I R(T)n-r, T>o

i.e. the random variable R(T) has the Beta distribution with parameters
n-r+l and r.

1.3 BAYESIAN ESTIMATION TECHNIQUES OF RELIABILITY CHARACTERISTICS. Usually
the time to failure distribution depends on a (possibly vector-valued)
parameter c, i.e. f(t) is of the form

f(ti,x), t-o, ý%EGI C:Rk

where G1 is the r rige of the parameter a (usually a nice subset of the
Euclidean space RK). Knowledge of the parameter a entails complete
knowledge of the reliability characteristics of the equipment. Classical
estimation techniques apply to failure data of the different kinds mentioned
in the previous section 1.2 to yield point estimates and confidence regions
for ix. Also tests of hypothesis (reliability demonstration) can be devised
for .. These latter tests can be acceptance tests with t-eir power functions

5



delineating the producer's and consumer's risks. Here, we confine our-
selves to Bayesian techniques.

1.3.1 DETERMINATION OF THE PRIOR DISTRIBUTION. The choice of the
form of the prior distribution of a is made on the basis of computational
tractability, sufficient flexibility to accommodate a wide variety of
distribution shapes and, if possible, on whether it gives rise to conjugate
pairs, i.e., on whether the posterior distribution of a given the failure
data will be of the same form as the prior. Once the form of the prior has
been decided upon, it remains to determine its parameters. We shall assume
that prior failure data of the equipment in question are available. Since
a is unobservable, the parameters of the prior can be estimated froni the
marginal distribution of the available failure data, provided that this
marginal distribution is uniquely determined by the prior. In this case,
we say that the prior distribution is identifiable by the marginal distri-
bution of the data.

Let us be more specific. Let

g(a;ý), aeGICR k, acG2 CR m

be the prior density of a, where 6 is a (possibly vector-valued) parameter
to be determined (estimated). If the available failure date are attribute
data of the type I censoring, then the marginal distribution in question
will be

(.3.1) GPT (rja) g(a;a) d&

where PT(rla) is given either by theorem 1.2.1 or by (1.2.4) or by (1.2.6)
depending on the nature of the available data. The parameter 6 can be
estimated by classical methods under the hypothesis of identifiability.
The appropriateness of the prior can be checked by a X2 - goodness of fit
test. If the data are of the type II censoring (a rare situation), a
similar procedure can be applied.

The procedure described so far in this section was initiated by
Schafer et.al. (4) for the case of exponential time to failure with an
inverted Gamma prior distribution for the mean time to failure. The
method of moments was used in (4) whereas Goel (5) used the maximum likeli-
hood method in the same situation. When the available failure data are
of the form (r1, T.), i1l, 2, ... n (the ith equipment had ri failures in
time T.) it was praposed by us in (6) that in order to estimate the
parameter(s) of the prior distribution, the following generalized likeli-
hood function

(1.3.2) TI f l PT, (rila) g(a; 6) da

should be maximized. Since this method coincides with the maximum likeli-
hood method in case all Ti are the same, we called it the generalized
maximum likelihood method. A preliminary form of a goodness of fit test

I. 6



for this situation is discussed in Section 4.

1.3.2. BAYESIAN ACCEPTANCE PLANS. i," this section we assume that
the prior distribution is known. We further assume that equipments with
values of the parameter a in some subset Go of Gl are acceptable. We
confine ourselves to acceptance test plans of the form (T*, r*), i.e., if
in test time T* the number of failures of the equipment is less than or
equal to r*, the equipment is accepted. If this number of failures is
greater than r*, the equipment is rejected. The quantities

p = Prob {aEGolr>r*}

q = Prob {ctGojr<r*}

are called the producer's and the consumer's risk respectively. These
risks are usually referred to as posterior risks (cf. Goel and Joglekar (5)).
These risks are given by the following formu-as

(1.3.3) p =E PT* (rlc) g(a;,) dc/ rr
r r*+l Go z*+I Gl P T* (r I a)g ((x; 3)da

r*~

r*r(1.3.4) q r GI\G0 PT*(r(a) g(a;c) d/ r*

r=° / Z= f Gl PT* (rlcx)g(a;B) da
r o

Once the consumer decides on q and Go, he can determine T* and r* from
(1.3.4) (with T* smallest possible) and thus obtain an acceptance test
plan. The equation (1.3.3) will then determine the producer's risk.

7



2. EXPONENTIAL TIME TO FAILURE

2.1 THE EXPONENTIAL DISTRIBUTION. The most widely used distribution
for the time to failure is the exponential distribution. This distribution
is deemed appropriate for electronic equipment. We will not enter into
the discussion on when its use is appropriate and when its use constitutes
a misuse.

The density function is given by

(2.1.1) f(tj") exp (-t/e) t>o, e>o,

the reliability function is

(2.1.2) R(tJe) exp (-t/e)

and the failure rate is constant

(2.1.3) X(t) = 1/0 t>o.

It follows from (1.1.1) that the mean time to failure is 0, i.e.,

(2.1.4) 01 = e.

Because of the strong Markov property of the exponential distribution

(2.1.5) Prob {t>a+blt>a}= Prob ft>b} (a, b>o),

the instantaneous rEsurrection and the instantaneous renewal assumptions
lead to the same distributions of the attribute failure data. Thus,
theorem 1.2.1 and formula (1.2.4) yield

(2.1.6) PT(rf9) = 1 (T/e)r exp (-T/6),

whereas theorem 1.2.2 and formula (1.2.5) yield

(2.1.7) fr(T16) - -L (T r-!/r) exp (-T/6).
r(r)

Also formula (1.2.1) is reduced to
Prol fýt-( exp (-(t-s)/e),Prob {•(t) - i(s) = rj = l (!.)rep

i.e., the stochastic process C(t) is, in this case, a homogeneous Poisson

process with constant 1/e. The formula (1.2.3) yields

(2.1.8) 0 r = r9

Because of (2.1.5) the mean time to failure equals the mean time between
failures. The formula (2.1.8) tells us that the mean time to the rth
failure is r times the mean time to failure.

8



2.2. THE TRUNCATED INVERTED GAMMA PRIOR DISTRIBUTION "i4D ITS LIMIT FORMS.
The parameter of the exponential distribution is the mean time to failure
e. In the set-up of section 1.3, k=l, c±6, G, (o, + - ). We propose
as a prior distribution the truncated inverted gamma distribution

(2.2.1) g(3;Y,X, a, b) : - exp (-y/6), a<6<b

r(x,,Y/b) - r(X,Y/a)

where Y>o and

(2.2.2) r(X, x) = f+ "* ux-I -" du, x>o.
x

If x=o in (2.2.2), we must have X>o and, in this case, r(X,o) = r(X)

If X>o, r(X, x) can be computed either by numerical integration by using
the formula

(2.2.3) P,(X, x) - rx uX,-1 eU du
0

or by using Pearson's tables (7), where the function

(2.2.4) I(x, p) = I-f-- fx P uP e-u du
r(p+l) o

is tabulated. From (2.2.3) and (2.2.4) we obtain

(2.2.5) r(x, x) - r(X) (1-I (xlv-x, X-l))

The recurrence relation

(2.2.6) r(X+l, x) = xX e-x + x r(x, x),

the asymptotic formula

r (.,X) X -1 eX (I +Lj + (X-1) (X4 ) + as x--x x2

as well as the limit
o if x>l

lim r(X,Xx) 1{ /2 if x-l
X-_ r(x) 1 if - .27846...<x<I

shed some light into the behavior of this function (cf. for example
Chapter 6 of (8)).

The kth moment about zero of the distribution (2.2.1) is

(2.2.7) vi = k r (X-k, y/b)- V(X-k, Yla) k=o, 1,
1'(X, Y/b)- r(X, Y/a)

9
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We now look at some interesting limiting forms of (2.2.1).

Case (A): a--o. In this case (2.2.1) takes the form

(2.2.1A) g(6; y, X, o, b) = y•X-(X+l) exp (- Y/e) /r (X, Y/b)

o<O<b, Y >o

and its moments about zero are

(2.2.7A) I = yk F (x-k, Y/b) / r(X, Y/b), k=o, 1,

Case (B): b-40. Here, the formulas (2.2.1) and (2.2.7) yield

(2. 2. 1B) g (6; y., X, a, Y) e- e (-y/e) ,a<8, y>o, >,>o

F (X) - I'(X, Y/a)

(2.2.7B) •.. = k r(X-k)- r(x-k, Y/a) , o<k<X
k f(X) - r(C, Y/a)

Case (AB): a-o and b4-.. This is the case of the inverted Gamma

disTri buti on.

(2.2.1AB) g(9; Y,X, o, =) = yxe"(X+1 ) exp (=Y/e) / 1(x), V>o, Y>o, X>O;

(2.2.1AB) p' -y k/(X-l) (X-2) ... (X-k), o<k<X.•k' -

Case (f): y-o. In this case we obtain

(2.2.1F) g(6; o, X, a, b) X e"(X+l) / (a-X-b'X),if iO0,

(2.2.lrAo) g(O; o, o, a, b) = /e 'log (b/a), o<a<e<b.

This is a two-wa•s truncated Pareto distribution. Yf X<o, b can be taken
equal to + - in (2.2Tr-, whereas if X<o, a can be zero. If X=-I (2.2.1r)
yields the uniform distribution. Thus

(2.2.lrAi) g(O; o,-l, a, b) = 1/(b-aý, o<a<e<b.

If b- in (2.2.1lAI) we obtain an improper distribution.

The moments are easily obtained:
S(a- (ý-k)_b-( -k )/ a' - - ),if k •

(2.2.7r) -k

X log(b/a) / (a -b ),if k= X,

10



(22.7rA )1 (bk - ak) / 1o (b/a),k=l, 2,

o k' k

(2.2.7rA+B) lj ý Xak/(X- k),o<_k<

(2.2.7rA A) . = bk / (k-X),k=o, 1....

(rA+B means that in 2.2.7r, Xis positive and b- whereas rAA
means that Xis negative and a-o. The uniform case is included in
2.2.7r with X =-I).

2.2.1 ESTIf;ATION OF THE PARAMETERS. By virtue of (2.1.6) and (2.2.1),
the marginal distribution (cf. formula (1.3.1))has the form

(2.2.8) P T (r; y, A, a, b) = yX Tr [r(X+r,(T+y)/b)-r(x+r,(T+y)/a)]/

r! (T+Y)X+r [r(X,y/b) - r(x, y/b)]

In terms of the incomple Gamma ratio (the function given by (2.2.4)),
(2.2.8) takes the form

PT( y; y, X, a,b) =-Y( X (T ) r (X+r-l) IUT+y)/avT-, X+r-1)-I((T+y)/bvX-T, x+r-1)
ST Y T+Y I(r/a/X1 , x-l) - I (y/bV-X, X-1)

The (descending) factorial moments of tnis compound distribution are
(2. 2.9) Q(k -(T/-y) k [r(X+k,y/b)-r(X+k,Y/a)]/[r(X,Y/b) -F(X,Y/a)]

k=o, 1, ...

Thcre are four parameters to be estimated. If we have a sample with T
fixed, the method of moments can be used. Let m ., denote the factorial
sample moments. Thus, by matchinq moments we geK

(2.2.10) mflk):(T/y)k [(P(X+k; ylb)-r(X+k,y/a)]/[r(X,y/b)-r(X,y/a],kIl,2,3,4.

By dividing the kth equation in (2.2.10) by the (k-l)th (remembering that
m(o) ' 1(o) = 1) and using the recursion (2.2.6) we obtain

(2.2.11) m(k)/m(kl)-(X+k-I)T/y=(T/y)[(Y/b) X+k' 1e-Y/b -(Y/a)X+k-le'/a]+

Er(X+k-l, y/b)-P(X+k-l, y/a)], k=1,2,3,4.

We set Mk = M (k) - m(kl) (X+k-1) T/y and consecutively divide the
the equations (2.2.11). In this way, we obtain the equivalent system

Mk+ /Mk [1-(b/a) X+k exoC(b -a-a )y]/(l-(b/a)X+k-I expC(b- 1a-I )Y)k~kl k"b
k=1 2,13,

11



(2.2.12)

Mj=(T/y)(y/b~e-Yb[1-(b/a)'exp [(b'1-a'l)Y]J/[r(.ý,y/b)-r(ý,y/a)].

A little more algebra with the first three of (2.2.12) yields

abM3 - (a+b) IM.2 + T2 MI 0

abMl4 - (a+b) TM3 + T2 M2 = 0

(2.2.13) (b/a)A+l exp [y(b--a = (bM2 - TMi)/(aM2 -T7il)

The first two of these yield

ab z' 2 (M M3 - M ) 0 M4 -M ) T2 B (Y,X, T)

a+b = T(MIM4 - M2M3 )/(M 2M4 - M2) TA(y,.,T)

which imply

(2.2.14) a = ½(A - (A2 - 4B)½] b : -T [A+(A 2 - 4B)I/2]

Thus we have a and b exclusively in terms of Y and X. If we substitute
these values of a and b in (2.2.13) and the fourth of (2.2.12), weobtain two equations in Y and ;ý which can be solved numerically.

We now describe a simpler estimation method. We can take as a and b
the lower and upper confidence bounds for 9 as estimated from the failure
data. If the data are ri, i=l, ... ,n, and if r=Eritthen @ = nT/r and
a two sided confidence interval for e at confidence level 1-ca is

2r0 2re
(2.2.15) (

2 '2 (2r)X (2r+2) cc 12
1 -c12

(cf. p. 181 of (2)).

We can take a very small and put a equal to the lower confidence bound
and b equal to th.p upper confidence bound. Then, we can proceed to
the computation of Y and X.

It is easy to ,rite down the maximum likelihood equations or the
generalized maximum likelihood equations for this situation. They turn
out to be very complicated to work with although this complication is
considerably reduced if we assume that a and b are known. The main
disadvantage is that numerical integration is necessary in order to
compute integrals of the form

12



S(¾, x) = / u-l- Ion u e du r x)•()- ;x u logueu du.
0

However, if N is assumed known, this difficuly is overcome. If X and y are

assumed known, the situation is quite manageable. We omit the details.

In the situation of type II censored failure data we obtain

(2.2.16) fr(T; y, X, a,b) = T PT (r; y, X, a, b)

where PT (r; y, X, a, b) is given by (2.2.8). The moments about zero are

(2.2.17) k r(r+k) r(X-K, Yjb) - F(X-k, Y/a)

k r(r) r(X, Y/b) - r(x, Y/a)

An analysis similar to that of the case of type I data can be carried out
in using the method of moments to estimate the parameters. Incidentally,
(2.2.16) shows that the generalized likelihood equations will have the
same form as that of type I data (since r/T does not depend on the
parameters).

We observe that the posterior distribution is again a truncated inverted
Gamma distribution with parameters T+y, X+r, a, b, i.e.

hT (elr) = hr (61T) = (T 4-y)X+re-(x+r+l) exp [-(T+Y)/e]

[r(X+r, (T-y)/b) - r(x+r, (T+Y)/a)].

The pusterior mean is given by (2.2.7) for k-l, y replaced by T+4 and X
replaced by X+r.

We now turn to the more hospitable limiting cases of the truncated inverted
Gamma prior distribution.

rase (A)- a-oo The marginal distribution for type I attribute data is
(2.2.8A) PT(r;y, X9 o. b)= yXT r r(X÷r, (T+ylb)Ir!(T+-Y) X+r r(X, 'Y/b)

and the equating of sample factorial moments with the theoretical ones
yields

(2.2.10A) m(k): (T/,f)k ?(X+k, Y/b) / r(x, Y/b) k=1,2,3.

By eliminatinq b we obtain the quadratic equation
(2.2.18) (Ym( 2 )-(X+1)Tm( 1 ))2 = (Ym( 1 )-xT)(Ym( 3 )-(x,+2)Tm( 2 ))
from which y can be expressed as a simple function of x,i.e. y y(:x). The

parameter b is given by

13



(2.2.19) b-T(Ym(l) - ,T)l(m( 2)Y- (,+l) m(l) T) -b()

Thus we have both Y and b exoressed in terms of X and we only have to
solve the equation (first of (2.2.10A))

(2.2.20) ["(X)m( 1 ) - XT] r(x, Y(X)/b(X)-T iY(X)/b(X)]X exp(-Y(X)/b(X)=o

This can be done by using interpolative methods and Pearson's tables (7)
for the values of r(x, x) (in conjunction with formula (2.2.5)). We omit
the details for type II data.

Case (B): b-xv. In this case the method of moments yields the following:
The-quadratic (2.2.18) remains unchanged, in (2.2.19) b is replaced by a
and (2.2.20) is replaced by

(2.2.19)[Y(X) m(,) - XT]1r(X,y(X)/a(X))+T Ey(X)/a(X)] Xexp(-y(X)/a(ý)=o.

Case (AB): a-.o and b--c. This the classical case. The marginal distribution
for type I data is a negative binomial distribution. The moment estimates
as well as the maximum likelihood estimates of y and X are well known. In
(6) we give a sufficient condition for the existence of the generalized
maximum likelihood estimates of Y and X when the test time for each
equipment is not constant.

Case (r): y-o. The marginal distribution for type I data (with

re-pacement) is

(2.2.8r) PT(r; o, X, a,b) = ;T" [r(X+r, T/b) - r(X+r, T/a)]/r!(a-X-b-X).

where W/(a'-b ) must be replaced by I/log (b/a) if -1=o. If Xo, -1, -2, -3,
the method of moments yields

(2.210r)M~k) X~k (a- (X+k) -b- (X+k) )/(a-X b-X), k=1,2,3.
(2"2101• m~k - +k ,

From these equations we obtain

a=T [A-(A 2 
- 4B)1/2], b= - [A + (A2 - 4B) 1/2]

where

A[Cm( 3 ) X(X+3)- m(2 ) (X+l) (+2)]//fm( 1 )m(3 ) (X+l) (X+3)-m( 2 ) (A+2)]

B=[m 2 X( +2)-m( ) (,+l 2]l[m( M ( I -+3 ,1+2)42( 2 )• m (3 ) ( X- m3 )"

!!'l <• 1 i -- - " 1 • I .. .... i ... 1 <1 4'I " i. .. . ... .. • '



These values of a and b can be substituted into the first of (2.2.10r)
(which can be written in the form

(b/a)\+I = [(,X+I) bm(1) - XT]I [((+l) am -( T]

and then solve numerically for X.

If ý:o, we get the two equations

"m(1) = T(a- - b- 1 )/log (b/a), m(2 ) ,2 (a 2  - )/2 log (b/a)

which yield

am(l) (2m( 2 ) - aTm( 1 ))log (2-m(2 - 1) = 2T (m( 2) - aTm(l))
aTm(

1 )

b = 2m (2)/m(1 )T - a.

If X=l (the case of uniform distribution), we get

m(1) -a-- log b/, a m(2) = T2 /abm~l ) b-a

which can easily be solved numerically.

If -2 we get

m(l) = 2T/(a+b), m( 2 ) = 2T 2 log (b/a)/(b 2 - a 2 ).

Finally, if X = -3 we get

m() : 3T (a+b)/2 (a 2 +ab+b2 ), m(2) = 3T 2 /(a 2 +ab+b2 ) which

imply that a and b are the two roots of the quadratic equation

m2 x2 -2m i T x + (4m2 - 3m ) T2  0.
(2) (1) (2) I) )

Case (TA): y-•o, a--o. In this case the distribution is defined if
X<o and the method of moments is applicable only if )<-2. Under
this assumption we have

m(l) =XT/(X+I) b, m(2 ) = \T 2 /(<?•) b

15
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which imply that

I = 1 ](2)/(m(2) - I)12 b XT/(X+I) m(l)m~z~~m(2 _ m(1)_

2 < 9 m2
provided that m(1) < 2) m m (I)

Case (7B): y-o, b-., X>o In this case we get the estimates

X 1+ (m(2 )(m2)_ m(l)) , a = AT/(X+I) m(l)

> 2
provided that m( 2

(2) (1)

Before closing this section, we observe that the question of identifiability
of Poisson or Gamma mixtures is affirmatively settled by methods akin to
the proof of uniqueness of Laplace transforms.

2.2.2. ACCEPTANCE PLANS BASED ON POSTERIOR RISKS. Let %, be the
mini~mum acceptable mean time to failure. In the notation of section 1.3.2,
Go = [0,, b], G1 = :a, b] and the equation (1.3.4) is reduced to

r* r*

(2.2.22) q - E PT* (r; y, X, a, e,)/ Z PT* (r; y, X, a, b)
r~o r~o

from which (r*, T*) with r* or T* minimum can be computed if a solution
exists.

2.2.3. OTHER PRIOR DISTRIBUTIONS. Numerous types of distributions
(e.g. truncated normal, log-normal, etc.) can be tried as prior
distributions of 9. There is an extensive literature on the resulting
Poisson mixtures. Because of lack of space, we will not deal with them
in this report. Most of the information can be found in the encyclopaedic
work of N.I. johnson and S. Kotz (9), Chapter 8.

16



3. THE CASE OF NONCONSTANT FAILURE RATE.

Under the instantaneous resurrection hypothesis, which is usable in the case
of repairable aging equipment, the whole procedure of using prior distributions
for acceptance plans is reduced to either Poisson mixtures (theorem 1.2.1)
or to transformed Gamma mixtures (theorem 1.2.2) just as in the case of
censored tests without replacement the theory of Binomial mixtures (formula
(1.2.6)) and transformed Beta mixtures (formula (1.2.7)) is the relevant
set-up.

As an example, consider the Weibull time-to-failure distribution
(3.1) f(tJ0), c) = cSg1l(t/6)c-l exp (-(t/9))c), t>,, e>o, c>o.

The reliability function is

(3.2) R(tle, c) - exp (-(t/O)c)

and the failure rate is given by

(3.3) X(t) = c9-1 (t/e)c-l.

By the theorem 1.2.1, the distribution of the type I censored failure data
under the instantaneous resurrection assumption is given by

(3.4) PT (rJ6, c) = -L (T/ie)cr exp (-(T/O)c)

By supposing c known and assuming a Gamma prior distribution of e-,
we obtain a situation almost exactly the same as in the case of exponential
time to failure. The difference is that 8 now is not the mean time to
failure. The mean time to failure is given by

(3.5) 81 a F (c" + 1).

i.e. there is a change by a factor of r(c-l + 1). In the formula for the
marginal distribution as well as in the formulas of the moment estimators,
maximum likelihood estimators or generalized maximum likelihood estimators
th. ,,, Change ,, S the replacement of TI by I-. An dditiUlnal minor adjust-
ment has to be made to the formula determining the acceptance test plans.

Further results on Bayesian techniques in connection with the Weibull
distribution can be found in (10).

17



4. TOWARD A GOODNESS OF FIT TEST WHEN THE GENERALIZED MAXIMUM LIKELIHOOD
ESTIMATORS ARE USED.

When the available attribute failure data do not exhibit uniform time of
operation, the only way available for the estimation of the parameters of
the prior seems to be the generalized maximum likelihood method (cf. section
1.3.1, formula (1.3.2)). In order to test goodness of fit in this case,
the ordinary y2 will not do simply because the usual statistic is not
asymptotically X2 - distributed in this case.

Suppose that we have decided the ranges of the cells and let Cl C2, .. ,

be these cells (e.g., suppose that all equipments, which had no iures
belong to cell C1 , the equipments which had one or two failures belong to
cell C2 etc.). Suppose further that the sample size is n and that the ith
equipment had ri failures in time Ti, i=1, 2, ... n. Let Pi. be the
probability that the ith equipment belongs to the cell Cj i.e.

(4.1) Pi Z rC T (r) i=l, 2, .. ,n ;j=l, 2 . .. k

Obviously,
k

(4.2) = P. = 1.

We set

(4.3) P. n i:l lij"

Then, obviously
k(4.4) Z Pj I l,

j~l

and the expected cell frequencies are nPj, j=l, ... , k.

Let yi, Ji-l, ... , k be the observed cell frequencies. The joint moment
generating function of yl, ... , Yk is

n kr1 Pijetj

i=l j~l

Therefore, the joint moment generating function of the random variables
xj = yj - npj is k nl k

(4.5) tp (tl, ... , tk) = exp (-n Z P. t-) 11 Z Pijetj
j~l i~l j~l

From the McLaurin expension of this function we obtain the following joint
moments that are of interest to us (the indices range from 1 to k).

18
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(4.6) m .nP 2
aa a - i ia' mab Z " ' PiaPib, (a~b)

(4.7) maaaa = 3n2p + npa - 6nPa ZPa 7Z7Pia + 12 EPia +

+3(aP a)2 6aiia4

22 2
-a SZia2

(4.8) maabb = n2paPb - ZPiaPib - nPa ZPib 2 nPb Pia + 2 ZPiaP b

ia 2a (•~ 2 ia~ib) - ~ ia ib2

2 n 2
(4.8) S = Z x i/wi, wj = (nPj - • Pi )/(l-Pj)i=1

The mean of this statistic is given by
k k k

(4.9) E(S) = EZ /w. = Z (I-Pj) = k - Z Pj = k-I
j= 1 j=1 j=l

where (4.6), (4.8) and (4.4) have been used. The variance is given byk 2(4.10) Var(S) E(S2 E(S)2 m= 2 2
a=l a b aabb/wawb

where the values of mp aa and maabb are given by (4.7) and (4.8) respectively.
The Chebyshev inequali y can be used to obtain a (weak) probabilistic
statement about the goodness of fit.

If we adjust 4.5 because of the weights wl (i.e., if we consider the joint

moment generatina function of the variahl ./- jWl. ) ake its
logarithm and expand into Taylor series-about theJorigin, we'obtain-that-
for n- -, the variables are asympotically normally distributed with
variance-covariance matrix of rank k-l

A (mab/

The non-zero eigenvalues of this matrix are not all equal to 1 (in general)
and therefore the asymptotic distribution of the statistic S is not a (
distribution. The cumulants of the asymptotic distribution of S are given
by (cf. Chapter 29, Section 3 of (11)).

(4.11) Km = 2m-I (,-l) ! tr(Am) m=l, 2, t
Thus, in particular

K 1  U = E(S) = tr(A) = k-i

19



2
K2 = P2 : Var(S) :2tr (A)

K3 - 43 - 8tr(A3 )

1C 4 = 14 -3 .= 48tr(A4 ) etc.

It is sometimes more convenient to approximate the variance of S this way
than compute it through (4.10).

We did not study the effect on S of the estimating of parameters from the
data used to form S. Hopefully something not very far from the classical
case of "reduction of degrees of freedom" will occur.
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