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ABSTRACT

A repairement assumption called instantaneocus resurrection
is introduced and it is shown that, under this assumption, the
number of failures of an equipment in time t is a Poisson Lrocess
with leading function -log R(t), where R(t) is the reliability
function of the equipment. This fact is used in the estimation
of parameters of prior distributions via the apprepriate Poisson
mir¥tures. The case of the two-way truncated Gamma prior and its
Timiting forms is handled in some detail. A preliminary form of
a goodness of fit test in the case of varying operational time
in attribute failure data is presented.
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EVALUATION

The work described in the report extends previous work by

Dr. Bolis which provided gquides to structuring Bayesian Reliability
Test Plans assuming an inverted gamma distribution of the prior
information and a constant failure rate of the tested equipment., The
report considers cases where these assumptions do not hold. The
previous work is currentiy being incorporated into a standard for
Bayesian Reliability Tests. The results presented in this report will

bé used for modifying the standard.
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ANTHONY CCPPOLA
i Project Engineer

-
i

} s anif K Ei

R O HOF TN

vi

R ) T oA O 2 T MW 5 EWSSERT AL I e b




Q. INTRODUCTION

In this report we introduce a repairment assumption, which we call
resurrection. Under this assumption when an equipment fails and is
repaired, the repair does not bring the equipment to a brand new staqge
but to a stage of a functioning equipment of the same type and age that
had no failures. This assumption may be deemed as a simplicatiaon of the
actual circumstances, but to our opinion, it is a lot more preferable
than the renewal assumption.

We show in theorem 1.2.1 that, under the instantaneous resurrection
assumption, the number of failures of an equipment in time t is a non-
homogeneous Poisson process with leading function - log R(t), where R(t)
is the reliability function of the equipment. If we assume a suitable
form of a prior distribution of the parameters of the reliahility function,
the resulting Poisson mixture (marginal distribution) allows the estimation
of the prior distribution from prior data. When the prior is determined,
Bayesian acceptance sampling plans can be constructed, The above form
the content of Section 1.

In Section 2 we consider the case of constant failure rate, wnere
the resurrection and renewal assumptions coincide. The two-way truncated
inverted Gamma distribution as well as all of its 1imiting forms (truncated
Pareto, uniform, etc.) is assumed and the methods of estimating its
parameters (mainly the method of moments) are presented.

In Section 3 we indicate how the methods of Section 2 can be carricd
out (with minor adjustments) to the case of variable failure rate. As
an example, the Weibull time to failure is considered.

In Section 4 we construct a statistic.akin to the x2 statistic, to
test goodness of fit in the case the failure data do not exhibit the
same total time of operation. The exact mean and variance of this statis-
tic as well as the cumulants of its asymptotic distribution are computed.
We do not know how these quantities are affected when parameters are
estimated from thesamplk used in the construction of this statistic.

This report is of a theoretical nature. It is of interest to check
the resurrection assumption by using failure data o repairable equipment
with known distribution of time to failure other than exponential. Also,
it would be of interest to see tne amount of improvement of fit if the
two-way truncated inverted Gamma prior distribution is used on the mean
time to failure of elactronic equipment in comparison with the use of
the full inverted Gamma, Further, the question of settling the bhehaviour

of the statistic S of Section 4 whern parameters are estimated is important.

Some future effort may be dedicated to these questions.

14
A
[y

addAs e ®

£

ot gy < v — B
PN PPIRPAIT R I N

A S

T T T, T D YsY T, T




1. GENERAL THEORY

1.1 THE DISTRIBUTION QF THE TIME TC FAILURE. Let f(t), t>0 be the
density function of the time to first failure of an equipment. We
assume that the function f is continuous. The function

R(t) = /7 flx)dx, t2o,

is called the reliability function of the equipment under discussion.
It is the probability that the equipment will first fail after time t. '
The failure rate A(t) (or hazard rate, or force of mortality) of this
equipment is defined by

A(t) = - .a:_ log R(t) = f(t)/R(t).

Another measure of reliability is the mean time to failure. In the general
case of an aging repairable equipment, it is more precise to call this
measure the mean time to first failure. If lim tR(t) = 0, t+«, this

mean is given by

(1.1.1)  ay=/" tf(t)dt =/ R(t)dt.
0 2

1.2 THE DISTRIBUTION OF ATTRIBUTE FAILURE DATA. When a repairable equipment
is put to life testing and a failure occurs, two simple and opposite
assumpi.ions can be made with regard to its state after repair: The repair
either brought the equipment to the start of a brand new one (renewal
assumgtion) or to the start of an equipment of a failure-free equipment of
the same age (resurrection assumption). The first case has been extensively
studied in the literature, Although the actual situation lies somewhere
between these two extreme casas, we believe that the rusurrection assumption
is more realistic in the case of nonconstant failure rate.

When a repairable equipment is tested, we shall assume instantaneous
repair, i.e., either the repair time is negligible or it is not included
as test time. Two quantities anter in such testing: the test time T
and the number of failures r during the time T. We can either fix the
test time T in advance and observe the random variable r (type I censoring) :
or test the equipment until a specified number of failures occur (type IT b
censoring), While a type I censored test has obvious advantages (test h{
time and cost well controlled), a type II censoring has theoretical as well
as practicai interest. For example, if only r repairs are possible, then
one would be interested in the distribution of the waiting time for the
{(r+1) th failure.

1.2.1 TYPE I CENSORING UNDER THE INSTANTANEOUS RESURRECTIOM
ASSUMPTION. It is surprising that the distribution of the number of
failures r in constant time T under the instantaneous resurrection




assumption is always a Poisson distribution with mean - log R(T). We
formalize and prove this result in the following:

THEQCREM 1.2.1. Under the instantaneous resurrection assumption, the
distribution of the number of failures of an eguipment with reliabilitv
function R(t) i1 in a fixed time T is the Poisson distribution with mean

- log R(T).
PROOF: The density function of the time t; of the first failure is of

course f(ty), t;>0. The cumulative distribution function of the time t, of
the second failure is given by

Prob {tp<x|ty>ty} = Prob {ty<t,<x} / Prob {tp>t7} = (F(x) - F(t1))/R(t),
X>ty,

where F denotes the cumulative distribution function of the time to
failure. At this point we used the instantanegus resurrection assumption.
Thus, the density function of ty is f(t2)/R(ty), ty>ty. Similarly, the
dens1ty function of the time tj of the ith failure is f(t;)/R(tj_7),

1>t1 I<ig<r, Finaliy, the probability that no fa11ures occurred between
times tp and T is R(T)/R(tr) Thus the joint density function of the times
t1, tos ..., tp With 0Sty<to<.. . <tp<T s

flty) f(t2) . .. flte) R(T) ) "
] R(ty) R(t,q) R(t) ~ R (1) ... 2 (tr),

Therefore, the probability that r failures occurred in fixed time T is

T T T
= e t 2 e
Pr(r) = R(T) /1 ft] ftr-1 A(ty) Altp) A(tn) dt,. dt,
T T T R(t1)
=R(YY £ 1 .../ A(t1) .o k(tr~!) Tog "itp1 dt,._y ...dt,
0 t‘l tr._z R(T) L
- —l' R(T) Tog" (1/R(T), r=o, 1, ... q.e.d.

re

More generally, let £(t) be the number of failures of the equipment in
time t. By reasoning as in theorem 1,2.1, we obtain

(1.2.1) prob (£(£) - &(s) = v} = g1 R tog™ (RGIR(D)) s,

i.e, the stochastic process I(t) is a non-homogeneous Poisson process with :
leading function -log R(t) (cf. page 46 of (1}). L




1.2.2. TYPE II CENSORING UNDER INSTANTANEOQUS RESURRECTION. Let T
denote the waiting time until the rth faiiure {r fixed). We shall show
that the randem variable - iog R(T) has the Gamma distribution with shape
pardameter r and scale parameter 1. In view of theorem 1.2.1 this does
not seem surprising.

THEQREM 1.,2.2. Under the instantaneous resurrection assumption, the
density function of the waiting fime T until the rth fajlure is given

by

-1

(1.2.2)  £.(T) = Tl_-l)! £(T) Tog" ™" (1/R(T)), T>o.

PROCF: By reasoning along Tines similar to these of the proof of
theorem 1.2.1 we cbtain that the cumulative distribution function of T
is given oy

' X
Prob {Tex} = /° /7 ... I Atg) oo At ) flr)) dt
0 « - r

dty.
trad !

r -

[y differentiating this function with respect to x and replacing x by T
we obtain (1.2.2). g.e.d.

The average waiting time to the rth failure will be called the mean time
to rth failure and it will be denoted by O,.

Thus,
1 ® r-1
1.2.3) 8, = — J T 1lo 1/R(T)) £(T) dF r=1, 2,
( T Gy e Tles R M)

This agrees with the formula (1.1.1).

1.2.3 THE INSTANTANEQUS RENEWAL ASSUMPTION. The distribution of
attribute failure data under the instantaneous renewal assumption is
well worked out in the literature (cf. e.g. (1), (2), (3)). In the
type I situation we have

T T
(1.2.4) Po(r) = j‘o ft] ftr-l f(t1) fty=ty -R(T-t.) dt_ ... dt,

whereas in the type II case we obtain

T T T
(1.2.5) f.(T) =/ 7T cee f f(ty) Flt,y-ty) «++ Ff(T-t
r 0 t] tp.2 1 2711 r-1) dtr-1
T>o0, r=2, 3, .
f1(T) = £(T)
If we set FO(T) =1, Fr(T) = IZ f.(t)dt, r =1, 2, ... {T>0), we get

- dty
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[

Prir) = F(T) = F_ ., (T).

r+l

In general, the integrations occurring in (1.2.4) and (1.2.5) are difficult
to carry out in closed form, It is well known that the instantaneous
resurrection assumption is equivalent to the instantaneous renewal assumption
if and only if the distribution of the time to failure is exponential.

1.2.34 CENSORING WITHOUT REPLACEMENT. Suppose that n identical equip-
ments are put to life testing until a beforehand specified time T. Suppose
further that r equipments failed at times ty < tp < ... <t < T. The
Joint density of these times is given by

nLof(ey) L f(e) R

Oit] < ..
{n-r)!

Stp T

and the probability function of the numer of failures r is bpinomial:
(1.2.8) Prlr) = (1) (-R(TN" R(TI™T r =0, 1, .0y n,

Similarly,if n equipments are tested until the rth failure occurs (when an equip-
fails,it is discarded),the times of failure 0 < t, < ... te.p <t =T have joint

_ ) 1 - r
density functian

n-r i
(",:"i',-)n Flty) oo F(t ) FDR(TY L0 2ty 2 ves Sty 21

anu the density function of T is given by

(1.2.7) £.(T) = r (1) £(T) (-R(THTT RMMT, T20

i.e. the random variable R(T) has the Beta distribution with parameters
n-r+l and r.

1.3 BAYESIAN ESTIMATION TECHNIQUES OF RELIABILITY CHARACTERISTICS. Usually
the time Co failure distribution depends on a (possibly vector-valued)
parameter «, i.e. f(t) 1s of the form

Fltla), t20, asG) e R

where G 1s the range of the parameter o (usually a nice subset of the
Euclidean space RX). Knowlodge of the parameter o entails complete

knowledge of the reliability characteristics of the equipment. C(lassical
estimation techniques apply to failure data of the different kinds mentioned
in the previous iection 1.2 to yield point estimates and confidence regions
for x. Also tests of hypothesis (reliability demonstration) can be devised
for a. These latter tests can be acceptance tests with their power functions

[$2)




delineating the producer's and concumer's risks., Here, we confine our-
selves to Bayesian techniques.

1.3.1 DETERMINATION OF THE PRIOR DISTRIBUTIQN, The choice of the
form of the prior distribution of o is made on the basis of computational
tractability, sufficient flexibility to accommodate a wide variety of
distribution shapes and, if possible, on whether it gives rise to conjugate
pairs, i.e., on whether the posterior distribution of o given the failure
data will be of the same form as the prior. Once the form of the prior has
been decided upon, it remains to determine its parameters. We shall assume
that prior failure data of the equipment in question are available, Since
a is unebservable, the parameters of the prior can be estimated from the
marginal distribution of the available failure data, provided that this
marginal distribution is uniquely determined by the prior. In this case,
we say that the prior distribution is identifiable by the marginal distri-
bution of the data.

Let us be more specific, Let
g(a;8), aeGjeR K, BeGycR™

be the prior density of a, where 8 is a (possibly vector-valued) parameter
to be determined (estimated). If the available failure date are attribute
data of the type I censoring, then the marginal distribution in question
will be

(1.3.1) é pr (rlaj g(a;8) da
1

where PT(rla) is given either by theorem 1.2.1 or by (1.2.4) or by (1.2.6)
depending on the nature of the available data. The parameter 8 can be
estimated by classical methods under the hypothesis of identifiability.
The appropriateness of the prior can be checked by a XZ - goodness of fit
test. If the data are of the type II censoring (a rare situation), a
similar procedure can be applied.

The procedure described so far in this section was initiated by
Schafer et.al. (4) for the case of exponential time to failure with an
inverted Gamma prior distribution for the mean time to failure, The
method of moments was used in (4) whereas Goel (5) used the maximum likeli-
kood method in the same situation. When the available failure data are
of the form (ry, T.), i=1, 2, ... n (the ith equipment had rj failures in
time T.;) it was pr&posed by us in (6) that in order to estimate the
parame%er (s) of the prior distribution, the following generalized likeli-
hood function

(rila) g(a; B8) da

(1.3.2) m /s, P
i O

should be maximized. Since this method coincides with the maximum Tikeli-
haood method in case all T1 are the same, we called it the generalized
maximum likelihood method. A preliminary form of a goodness of fit test




for this situation is discussed in Section 4.

1.3.2. BAYESIAN ACCEPTANCE PLANS. 1 this section we assume that
the prior distribution is known. We further assume that equipments with
values of the parameter & in some subset Gy, of Gy are acceptable. We
confine ourselves to acceptance test plans of the form (T*, r*), i.e,, if
in test time T* the number of failures of the equipment is less than or
equal to r*, the equipment is accepted. If this number of failures i3
greater than r*, the equipment is rejected. The quantities

p = Prob {acGq|r>r*}

q = Prob {aéG,|r<r*}

are called the producer's and the consumer's risk respectively. These

risks are usually referred to as posterior risks (cf. Goel and Joglekar (5)).
These risks are given by the following formulas

-‘-w * ) . x \
(1.3.3) » L iy Tao P17 (rla) g(w:8) day Loy TGy P (rla) g(x;3) da
r*
(1.3.4) = f Pra(ria) 9(o;8) da / r*
V7 hm TGNG T la) o /¥ g Pr* (rlalg@is) da
r=o

Once the consumer decides on q and G., he can determine T* and r* from
(1.3.4) (with T* smallest possible) and thus obtain an acceptance test
plan. The equation (1.3.3) will then determine the producer's risk.




2. EXPONENTIAL TIME TO FAILURE

2.1 THE CXPONENTIAL DISTRIBUTION. The most widely used distribution

for the time to failure is the exponential distribution. This distribution
is deemed appropriate for electronic equipment. We will not enter into

the discussion on when its use is appropriate and when its use constitutes
a misuse.

The density function is given by
(2.1.1) f(t;e)=-€;—exp (-t/8) t>o, 6>a,
the reliability function is

(2.1.2) R(t]|8) = exp (-t/0)

ard the failure rate is constant
(2.1.3) A(t) =1/8 t>o.

It follows from (1.1.1) that the mean time to failure is 6, i.e.,
(2.1.4) 8, = 6.

Because of the strong Markov property of the exponential distribution
(2.1.5) Prob {t>a+b[t>a}= Prob {t>b} (a, b>a),

the instantaneous resurrection and the instantaneous renewal assumptions

Tead to the same distributions of the attribute failure data. Thus,
theorem 1,2.71 and formula (1.2.4) yield

(2.1.6) Pr{r[9) = —- (T/8)" exp (-T/8),
whereas theorem 1.2.2 and formula (1.2.5) yield
(2.1.7) f.(T[8) = — (T7°1/67) exp (-T/6).
I'(r)
Also formula (1.2.1) is reduced to

Prob {£(t) - £(s) = 3 = = (555)7 exp (~(t-s)/8),

i.e., the stochastic process £(t) is, in this case, a homogeneous Poisson
process with constant 1/8. The formula (1.2.3) yields

(2.1.8) 8, = r9

Because of (2.1.5) the mean time to failure equals the mean time between
failures. The formula (2.1.8) tells us that the mean time to the rth
failure is r times the mean time to failure.

~o—
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2,2, THE TRUNCATED INVERTED GAMMA PRIOR DISTRIBUTION AdD ITS LIMIT FORMS.
The parameter of the exponential distribution is the mean time to failure
8. In the set-up of section 1.3, k=1, a=6, Gy = (0, + = ). We propose

as a prior distribution the truncated inverteé gamma distribution

(4]
(2.2.1) g(3:7,, a, b) = ¥\ gmin ) exp (~v/8), 3<o<b
r(x,¥/b) - T'(x,Y/a)

where Y>o and

22, ) =" 1674 du, x>o.
X

If x=o in {2.2.2), we must have A>o and, in this case, T'(\,0) =T(})

If A>0, T(A, x) can be computed either by numerical integration by using
the formula

(2.2.3) T(r, x) =T (}) - fﬁ A1 et

du

or by using Pearson's tables (7), where the function

(2.2.4) 1(x, p) = - rx /PF uP e~Y du
I'(p+1) ©
is tabulated. From (2.2.3) and (2.2.4) we abtain

(2.2.5) r(x, x) =T(A) (1-1 (x/¥X, A-1))
The recurrence relation
(2.2.6) T(M1, x) = x> e + AT}, x),

the asymptotic formula
T X e (1w AL +Q-__‘_L2@_-§_L+ ...) as xoe
X X

as well as the limit

o if x>
Tim T(A\,Ax) = { 1/2 if x=1
pe] r(A) 1 if - .27846, . .<x<1

shed some light into the behavior of this function (cf. for example
Chapter 6 of (8)).

The kth moment about zero of the distribution (2.2.1) is

(2.2.7) “Q = Yk.jgik-kl_ilb)- T{\-k, v/a) , k=0, 1, ..
r('\y Y/b) - I‘(’\’ Y/a)




We now Took at some interesting limiting forms of (2.2.1).

Case (A): a+o. 1In this case (2.2.1) takes the form

(2.2.1A) g(8; v, A, 0, b) = Y*~ (A1) ayp (= vs0) /T (A, Y/b)
0<8<h, Y >0
and its moments about zero are
(2.2.7A) wr = v o (ak, T/b) 7 T(A, Y/b), k=0, 1, ...
Case (B): bwo. Here, the formulas (2.2,1) and (2.2.7) yield

v 6'(k+])exp (~v/8)
T (x) - (X, v/a)

(2.2.1B) g(8; v, A, 2, =) = » a<8, Y >0, A>0

(2.2.78) u” = y & _T(A-k) - T(A-k, Y/a)
K T(x) - T(A, Y/a)

o§£k<x

Case {(AB): a-+o and b+, This is the case of the inverted Gamma
distribution,

(2.2.1AB) g{9; Y,\, 0, =) = yke'(l+]) exp (=v/8) 7 (), 830, Y>0. A>0;

(2.2.188) us =¥ /(1) (-2) ... (hek), ogkeh,

Case (T'): y-o. In this case we obtain

(2.2.17) g(8; 0, A, a, b) = A8~/ (a-hp™Hy 45 550,

(2.2.1FA0) g(8; o, 0o, a, b) =1/8 log (b/a), o<a<d<b .

This is a two-ways truncated Pareto distribution, Tf <o, b can be taken
equal to + ® in !2.7TTT), whereas if A<o, a can be zero. If A==l (2.2.1T)
yields the uniform distribution. Thus

(2.2.1TA_q) g(83 0,-1, a, b) = 1/(b-a)}, o<a<e<b.

If beeo in (2.2.1TA_1) we obtain an improper distribution.

The moments are easily obtained:
(a- (k)5 (K )y (a=Aep™) i F ke

—

A
(2.2.7T) u/ = { r-k
k A A
A Tog(b/a) / (a~ -b™ ),if k= A,
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k

(2.2.712) =-—{%— (6% - a¥) / loa (b/a), k=1, 2, ... ,

1]

(2.2.7TA,8) up = Aa/(x = k), ozker,

k

(2.2.7TA A) ug = b

!/ (k=X), k=0, 1, ...

(TA,B means that in 2.2.7T, Ais positive and bwe whereas TAA

means that Ais negative and a-vo. The uniform case is included in
! 2.2.7T with X =-1).

2.2.1 ESTIMATION OF THE PARAMETERS. B8y virtue of (2.71.6) and (2.2.1),
‘ . the marginal distribution (cf. formula (1.3.1))has the form

(2.2.8) P (riv, 2, a, b)= v T [T 0%, (Tay )/B)~T(kr, (Toy )/a) I/

et (T+)MT (v /b)Y - T(X, v/b)]

In terms of the incomple Gamma ratio (the function aiven by (2.2.4)),
(2.2.8) takes the form

(K+r-1) L((T+y ) /a0, A+r-1)-1((T+ )/b VK Atr-1)

P ( Y3 Yy A a!b) =(—__') ( —
T T T*Y 1(Y/a/%X, A-1) = T (y/b/%, A-1)

The (descending) factorial moments cf tnis compound distribution are
(2.2.9) wgyy a(T/4 )% [P, /b) =T (M, Y/2) I/IT(A,Y/B) ~T(A,Y/a)]
" k=0, 1, ...

There are four parameters to be estimated. If we have a sample with T
fixed, the method of moments can be used. Letm denote the factorial
sample moments. Thus, by matching moments we geg

(2.2.10) I v=(T/4) [F(A+k; Y/b)-T(A+k,v/a)1/[T (A, v/b)-T(X,v/a],ke1,2,3,4 .

By dividina the kth equation in (2.2.10) by the (k-1)th (remembering that
Mo) = Yo) = 1) and using the recursion (2.2.6) we obtain

(2.2.11) m(k)/m(k_])-(k+k-T)T/y=(T/Y)[(Y/b)k+k-]e-7/b ~(17a)M*Te/als
[r(>\+k-]1 Y/b)'r(}\+k_]i Y/a)]a k=]72s394 ¢

m
1

(A+k-1) T/, and consecutively divide the
In this way, we obtain the equivalent system

We set W = m( k)" M(k-1)

the equat1ons (2.2.11).

MM, = [1-(6/2)"™ exol (b7 -a™")v 1/ (1-(b/) ™ expl (07 -a7 1)
k=1,2,3,




(2.2.12)
= -y/b -1 -
M=) (/T P 11-(b/a) exp 1067 -a™1)411/ 10 (A vu/b) -2 (2, v/a) ]

A little more algebra with the first three of (2.2.12) yields

+ T = 0

L]

apM, - (ath) TM2

abtt, = (a+b) M, + G

4 M

#
O

2

(2.2.13) (b/a)X+1 exp [Y(b']-a'])] = (bM2 - TM])/(aMz-TH])

The first two of these yield

ab = TZ(M1M3 - Mg ) /My My - Mg ) = T28 1,2, T)
- 2 -
b = TN - ) /(M < D) = TA(y,a,T)
which imply

(2.2.14) a = 5T[A - (A2 - 48) b = ;-T [A+(A® - a8)'/27,

Thus we have a and b exclusively in terms of ¥ and A\. If we substitute
these values of a and b in (2.2.13) and the fourth of (2.2.12), we
obtain two equations in ¥ and XA which can be solved numerically.

/e now describe a simpler estimation method. We can take as a and b
the lower and upper confidence bounds for 8 as estimated from the failure
data. If the data are ris i=1, e My and if r=2ri,then 8 = nT/r and

a two sided confidence interval for 6 at confidence level 1-¢ is

(2.2.15) __2® 2re 1
2 y 7 :
X (2r)
1eayz (2re2) a/2

(cf. p. 181 of (2)).

lle can take a very small and put a equal to the Tower confidence bound

and b equal to the upper confidence bound. Then, we can proceed to
the computation of Y and A.

It is easy to .rite down the maximum 1ikelihood equations or the
generalized maximum likelihood equations for this situation. They turn
out to be very complicated to work with although this complication is
considerably reduced if we assume that a and b are known. The main
disadvantage is that numerical integraticn is necessary in order to
compute integrals of the form
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\ t+m - - \
5 (A, X) = fx -1 Toa u e du = r(Ao(r)- & ur=1 Toque™ du.
0

However, if \ is assumed known, this difficuly is overcome. If )\ and vy are
assumad known, the situation is quite manageable. \le omit the details.

In the situation of type Il censored failure data we obtain
. = I .
(2-2.16) .Fr(T, ‘Y, x, a,b) T PT (r, Y; K, a, b)

where PT {(ri v» X\, a, b) is given by (2.2.8). The moments about zero are

(2.2.17) u o= Yk T(r+k) T(A-K, v/b) - T(x-k, 7/a)
k r(r) T{x, Y/b) - T(A, Y/a)
An analysis similar to that of the case of tyoe I data can be carried out
in using the method of moments to estimate the parameters. Incidentally,
(2,2.16) shows that the generalized 1ikelihood equations will have the

same form as that of type I data (since r/T does not depend on the
parameters).

We observe that the posterior distribution is again a truncated inverted
Gamma distribution with parameters T+y, Atr, 2, b, i.e.

he (1) = h_ (8]T) = (Te) M To™ 1) oep [-(741)/07

[r(x+r, (T+y)/b) = T(A+r, (T+v)/a)l.

The pusterior mean is given by (2.2.7) for k=1, v replaced by T+¥ and X
replaced by A+r.

We now turn to the more hospitable Timiting cases of the truncated inverted
Gamma prior distribution.

Case

——

A): aso. The marginal distribution for type I attribute data is

(2.2.8R) PT(r;y, Ay 0, b)= YATr T(A+r, (T+Y/b)/r!(T+Y)A+r T(x, Y/b)

and the equating of sample factorial moments with the theoretical ones
yields

(2.2.100) my= (/0% TOwk, ¥/b) 7 T( Y/b) k=1,2.3.
By eliminating b we obtain the quadratic equation
2
({ - = (- - -
2-2:18) (M) =OL)Tngy))™ = Gmyy ) -AT)(vm5)=(002)Tm )

from which v can be expressed as a simple function of x,i.e. v = v()). The
parameter b is given by

13
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(2.2.19)  b=TOrM(y) = AT/ (mepyr= (A#1) meqy T) 2 b(2)

-

Thus we have both y and b expressed in terms of X and we only have to
solve the equation (first of (2.2.10A))

(2.2.20) [\'(A)mm -~ AT] ©(x, Y(A)/6(X)-T [wr(x)/b(x)]A exp(-v(1)/b(A)=0
This can be done by using interpolative methods and Pearson's tables (7)
for the values of I'(A, x) (in conjunction with formula (2.2.5)). U4e omit
the details for type Il data.
Case (B): b»w. In this case the method of moments yields the following:
The quadratic (2.2.18) remains unchanged, in (2.2.19) b is replaced by a
and (2.2.20) is replaced by

(2.2.19)[7(3) mgy) = ATIEOGv(0/20)#T Ty (0)/a(0) exp(-v (M) 7a(3)=o

Case (AB): awo and bww. This the classical case. The marginal distribution
for type I data is a negative binomial distribution. The moment estimates

as well as the maximum likelihood estimates of v and A are well known. In
(6) we give a sufficient condition for the existence of the generalized
maximum likelihood estimates of v and A when the test time for each
equipment is not constant.

Case (T'): y-+o. The marginal distribution for type I data {with
replacement) is

A -l).

(2.2.8r) Po(r; 0, A, a,b) = AT™® [T(x+r, T/b) - T(A+r, T/a)I/ri(a™ b

where A/(a’k-b'k) must be replaced by 1/Tog (b/a) if X=0. If A%0, -1, -2, -3,
the method of moments yields

k L]
(2.2.107) mpy - AT (@ kg () (A, ket 2,3,
From these equations we obtain

a= 1 1A% - 48) /20, b= L (a e (a2 - ap) T2

where
Aslm gy A(M3) = mpy (1) ()17 Impymsy (441) (A+3)-m%2) (1+2)%]

, (e2)°1.

~r Mo

- : 2
3=[mgy A(ar2)=me g (A+1) ]/““(1\ (%)

(A+1) (A+3) -y




e vy

These values of a and b can be substituted into the first of (2.2.10T)
(which can be written in the form 1

(ora)* ™! = L0u1) My NI () amgyy - AT] |

- T

and then solve numerically for A.

If A=0, we get the two equations

, ey = Ta™' = b71)/T0g (b/a), my,y = T2 ("2 - b°2)/2 Tog (b/a)
i (1) (2)
which yield

Zm(z)
aTm(])

foadV ~sushaty 2t o ) Lol Btei et SN

am (1) (Zm(z) - aTm(1))log ( - 1) =27 (m(z) - aTm(]))

b = 2m(2)/m(])T - 3.

o d UL u

If A=1 (the case of uniform distribution), we get

b = T2
= 1 , =T

which can easily be solved numerically,

If A = -2 we get

mpy = 2T/ (%), m(py = 272 Tog (P/a)/(b? - %),

Finally, if A = -3 we get

) mpy = 37 (a+b)/2 (a®+ab+b?), m, . = 3T%/(a2+ab+b?) which

(2)
imply that a and b are the two roots of the quadratic equation
‘ 2 2 2 2 .
m(z) X Zm(]) m(z) Tx + (4m(1) 3m(2)) T 0.

Case (FA): y=0, a~o. In this case the distribution is defined if
A<o and the method of moments is applicable only if A<~2. Under
this assumption we have

- e AT2 /(1 47) B2
m(1) = \T/(,\\+]) b, m( - \T /(,\*.) b

2)
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which imply that

R TR AR
provided that mi]) < m(z) < % mf1) .

Case (I'B): y»o, b+, A>0 . In this case we get the estimates

A= 1+ ["‘(2)/(m(2) - mz('.n)j% . as AT/ (A+1) LT

provided that m( > m2

2) 1y

Before closing this section, we observe that the guestion of identifiability
of Poisson or Gamma mixtures is affirmatively settled by methods akin to
the proof of uniqueness of Laplace transforms.

2.2.2. ACCEPTANCE PLANS BASED ON POSTERIOR RISKS. Let g, be the
minimum acceptable mean time to failure. In the notation of section 1.3.2,
Gg = [9,, b], Gy = [a, b] and the equation (1.3.4) is reduced to

r* r*
(2.2.22) q=7¢ PT* (r5 v, A2, 85)/ L PT* (r; v, A, a, b)
r=o r=o

from which (r*, T*) with r* or T* minimum can be computed if a solution
exists.

2.2.3. OTHER PRIOR DISTRIBUTIONS. Numerous types of distributions
(e.g. truncated normal, log-normal, etc.) can be tried as prior
distributions of 9. There is an extensive Titerature on the resulting
Poisson mixtures. Because of lack of space, we will not deal with them
in this report. Most of the information can be found 1n the encyciopaedic
work of N.I. Johnson and S. Kotz (9), Chapter 8,

16
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3. THE CASE OF NONCONSTANT FAILURE RATE.

Under the instantaneous resurrection hypothesis, which is usable in the case
of repairable aging equigment, the whole procedure of using prior distributions
for acceptance plans is reduced to either Poisson mixtures (theorem 1.2.1)

or to transformed Gamma mixtures (theorem 1.2.2) just as in the case of
censored tests without replacement the theary of Binomial mixtures (formula
(1.2.6)) and transformed Beta mixtures (formula (1.2.7)) is the relevant
set-up.

' As an example, consider the Weibull time-to-failure distribution
(3.1) f(t]e, c) = 5™ (£/6)¢"1 exp (-(t/8)%), t>0, 9>0, c¢>0.
The reliability function is
(3.2) R(t|e, c) = exp (~(t/0)%)
and the failure rate is given by
(3.3) A(t) = col (ts9)c1,

By the theorem 1.2.1, the distribution of the type I censored failure data
under the instantaneous resurrection assumption is given by

(3.4) Pr(rls, c) = = (1/8)T exp (-(7/8)°)

By supposing ¢ known and assuming a Gamma prior distribution of 8¢,

we obtain a situation almost exactly the same as in the case of exponential
time to failure. The difference is that 8 now is not the mean time to
failure. The mean time to failure is given by

(3.5) & =8 T (c=1 +1).

i.e. there is a change by a factor of T(c'] +1). 1In the formula for the
marginal distribution as well as in the formulas of the moment estimators,
maximum Tikelihood estimators or generalized maximum Tikelihood estimators
the only change is the replacement of T by 7°. An edditional minor adjust-
ment has to be made to the formula determining the acceptance test plans.

Further results on Bayesian techniques in connectiaon with the Weibull
distribution can be found in (10).




4., TOWARD A GOODNESS OF FIT TEST WHEN THE GENERALIZED MAXIMUM LIKELIHOQD
ESTIMATORS ARE USED.

When the available attribute failure data do not exhibit uniform time of
operation, the only way available for the estimation of the parameters of
the prior seems to be the generalized maximum likelihood method (cf. saction
1.3.1, formula (1.3.2)). In order to test goodness of fit in this case,

the ordinary ¢ will not do simply because the usual statistic is not
asymptotically x2 - distributed in this case.

Suppose that we have decided the ranges of the cells and let Cy, Cp, ..., Ck
be these cells (e.q., suppose that all equipments, which had no failures
belong to ce]] Ci, the equipments which had one or two failures belong to
cell Cyp etc. %uppose further that the sampie size is n and that the ith

aquipment rad ri failures in time Ty, i=1, 2, ... n. Let Pij be the
probability that the ith equipment belongs to the cell Cj, ie.

(4-]) p-{j = 'Z.ECJ PT.I (r) 13]: 2) wevy N5 ngn 2: ccey k

Obviously,
k
(4.2) ¢ P.. =1,

We set

= L
(8.3) Py = — I Py

Then, obvicusly

k
(4.4) L py=1,
3=

and the expected cell frequencies are NPy, J=1, ..., k.

Let y;, j=1. ..., k be the observed cell frequencies. The joint moment
generdting function of yy, ..., ¥y is
n k
t.
T L Pyjed.
i=1  j=1

Therefore, the joint moment generating function of the random variablas
Xj = Y¥; - npj is ) .
(4.5) v (t1, ..., t) =exp (enZ Pyt )N I Pjjetd
s J . .
j=1 i=1 j=1
From the MclLaurin expension of this function we obtain the following joint
moments that are of interest to us (the indices range from 1 to k).
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2 -
(4.6) Mg = Ma -2 440 Map = - I pjapib» (azb)

= 3022 2 p2 2
(4.7) Misaa = 3n®py + nPy - 6nPy Ipi, - TIPj, + 12 Py, *
2 4
+3(25,)7 - 620,
2 2 3
. 2 : 2

We consider the statistic

2 n 2 _
(4.8) S=ZIx J/w_]’ wj = (nPj - f=] PIJ)/(]-PJ)

The mean of this statistic is given by
k k
(4.9) E(S) =z mJJ/wj = §=

k
(1-P5) =k - L Py = k-1
j=1 j=1 J

‘g 3
where (4.6), (4.8) and (4.4) have been used. The variance is given by

k
(4.10) Var(S) = E(5%) - E($)2 = g ¢
a=

2
. maaaa/wa e §,b maabb/wawb - (k-1)

where the values of m and m.,., are given by (4.7) and (4.8) respectively.

The Chebyshev inequa]?%§acan be used to obtain a (weak) probabilistic
statement about the goodness of fit,

If we adjust 4.5 because of the weights w; (i.e., if we consider the joint
moment generating function of the variablds x./ A, =1, ..., k) take its
logarithm and expand into Taylor series aboutJtheJorigin, we obtain that
for m- =, the variables are asympotically normally distributed with

varfance-covariance matrix of rank k-1
A= (my,/ anﬁﬁ;).

The non-zero eigenvalues of this matrix are not all equal to 1 (in gene5a1)
and therefore the asymptotic distribution of the statistic § is not a yx
distribution., The cumulants of the asymptotic distribution of S are given
by (cf. Chapter 29, Section 3 of (11)).

(4.11) k= 2™ (ma1) 1 ee(A") w1, 2, Ll

Thus, in particular

A PO R *




var(S) = 2tr (Az)
gtr(A3)

Fat
3
N
=
(%)
i

K, "My - 3u§ = 48tr(A4) etc.

It is sometimes more convenient to approximate the variance of S this way
than compute it through (4.10),

We did not study the effect on S of the estimating of parameters from the
data used to form S. Hopefully something not very far from the classical
case of "reduction of degrees of freedom" will occur.
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