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ABSTRACT

We discuss a number of topics related to the practical solution of ill
posed problems given noisy data as it might arise in an experimental

situation. The model is zi - JK(ti,t)f(t)dt + i = 1,2,...,n, where
0

z - (zI ..... n )' is the data vector, = n ) ' is a vector of

independent zero mean random variables with common unknown variance, K is
known, and it is desired to estimate f given z. We first define the

1

intrinsic rank of the problem where jK(tit)f(t)dt is known exactly. This
0

definition is used to provide insight into the circumstances in which one
may expect to estimate f well, moderately well, or poorly. The sensitivity
of a regularized estimate of f to the noise is made explicit. After giving
the intrinsic rank of the examples of first and second derivative, Abel's
equation and Fujita's equation, it is argued that the first three are only
mildly ill Posed and f should be amenable to accurate estimation by the
method of regularization. The method of Generalized Cross Validation (GCV)
for choosing the regularization parameter is described and numerical
results for the estimation of first and second derivative from noisy data
are given. Two numerical algorithms for obtaining a regularized estimate
with GCV are detailed. The second uses a B-spline basis to allow the
handling of large data sets. Ths use of outside information in the estimation
of f is discussed. Three types of outside information are of interest.
1) Several values of continuous linear functionals on f are known approximately,
2) this same information is given exactly and 3) f is known to be in a
closed convex set, in particular f non-negative. The GCV estimate of the
regularization parameter has to be modified in case 3) if the closed
convex set is not a linear manifold. To do this we develop the notion of
GCV for constrained problems. Next, we discuss the problem of checking
the validity of the "model" K, and Provide a crude goodness-of-fit test.
Finally we end by describing the (known) result that the number k of
iterations in a Landweber iteration for solving large linear systems is
a form of regularization parameter. We then show how GCV can feasibly
be used to choose k in very large Problems like those arising in computerized
tomography.
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1. Introduction

We first consider the model

01zi K(ti't)f(t)dt + ei' i - 1,2,...,n, (1.1)
0

where z - (zI ... zn)' is the data vector, e - (El"" is a vector of

independent, zero mean random variables with common unknown variance, K a K(s,t)

is a known function of two variables and it is desired to recover an estimate

of f given the data z. In Sections 2 and 3 f is assumed to be in an abstract

Hilbert space H, in Sections 4-7 we assume that H is a reproducing kernel

Hilbert space (r.k.h.s.) of functions with specified continuity properties.

An estimate of f in (1.1) will be obtained by the method of regularization,

by seeking fsH to minimize

1 n

i~l((Kf)(ti)-zi
)2 + XjlfHj2  (1.2)

where I.{f is a norm or seminorm in H. The smoothing parameter X will be

chosen by the method of generalized cross validation (GCV), and we will consider

the insertion of various types of outside information into the minimization,

and several algorithmic strategies.

The first goal of this paper is to elucidate and quantify why some ill

posed problems can now be solved with "off the shelf" techniques and why others

are "impossible". The real issue is, whether the data from the experiment

described in (1.1) provides sufficient information concerning f to meet the

experimenter's requirements. If so, then the problem can be "solved",

usually with the aid of sophisticated mathematical techniques and a powerful

computer, and we shall call such problems mildly ill posed. If not, then

sophisticated techniques and powerful computers will not provide the missing

t .. ... ....., ..... .... ..
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information (contrary to uninformed belief!). If the low information

content of the experiment can be recognized, then at least two routes

are available - a) a redesign of the experiment to provide more information

b) the incorporation of a priori or outside information into the solution.

In Section 2 we define the "intrinsic rank" of the experiment

described by (1.1). The intrinsic rank of an experiment is the number of

linearly independent pieces of information practically available in the data

vector z about the function f if there were no errors in the data and K

is known perfectly. Examination of the intrinsic rank of a problem can

provide valuable information concerning whether or not a satisfactory

solution is obtainable. It is computable for the problems we consider in

Sections 5 and 6 and should be done routinely.

In Section 3 we discuss the effect of noise on the solution. This

is most easily done in terms of what we shall call the canonical representers.

The estimated solution will always be in the span of the canonical representers,

and so knowledge of them can be a useful diagnostic tool if problems

appear. We note here that the intrinsic rank as well as the canonical

representers depend on H as well as n, K, and the location of the ti's.

In Section 4 we give the intrinsic rank, as a function of n, for the

examples of first derivative, kth derivative, Abel's equation and Fujita's

equation. It can be seen that first and second derivatives, and solutions

of Abel's equation should be usefully recoverable with reasonable data

sets, while estimation of f by solving Fujita's equation is hopeless in

the geometry that we considered.

In Section 5, we first briefly review the method of generalized cross

validation (GCV) for choosing X. We then note some successful experiments

in which first and second derivatives were well estimated from noisy data.

We propose a method for solving Abel's equation. We note that successful

3 , -.
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numerical experiments on Abel's equation have been carried out using a

somewhat different approach by Anderson and Jakeman (1975). Next, we

describe a "general purpose" algorithm for solving mildly ill posed problems

when n is around 25 or 30 up to around 100 or 125. This algorithm, which

has its roots in Anselone and Laurent (1968) provides what appears

to be a good way of obtaining the minimizer of (1.2) with 11fi(l = f(f"(u)) 2du
0

while simultaneously obtaining the GCV estimate of X. For n larger than

around 130 or so, this algorithm appears difficult to implement on our

present system (Univac 1100). We are limited by the necessity to solve

nxn eigenvalue problems. We then borrow an idea from Locker and Prenter (1978a,b),

Klein (1979) to suggest that (1.2) be minimized in a B-spline subspace of H. GCV

is used to choose X after the dimension N of the subspace is fixed, and

it can also be used to decide between several different N. This approach

appears able to handle N up to about 100 with n larger. Algorithmic details

are provided.

When a problem is not mildly ill posed, but moderately or severely ill

posed, it is generally necessary to make use of outside information to

obtain a satisfactory solution. In Section 6 we consider three types of

outside information:

1) Values of Lkf, k a 1,2,.... are known approximately, where the Lk

are continuous linear functionals, 2) values of the Lk are known exactly,

and 3) f is known to be in a given closed convex set in H. When H is

an r.k.h.s., then the set of f satisfying f(t) > 0, tc[0,l] is closed

convex and this important case is included.

We discuss computing the minimizer of (1.2) using the information 1), 2)

or 3). In each case it is to be expected that the optimal X given the

information 1), 2) or 3) will be different than without it. We show how

GCV should be applied in each case. In particular, if one minimizes (1.2)

......
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subje~t to f in a convex set which is not a linear manifold, the solution is

not linear in z. It is then necessary to extend the usual GCV method to

cover this case. We do that here, and suggest in addition that this

extended version can deal with some other nonlinear and robust problems as well.

With the advent of sophisticated techniques for solving ill posed

problems, errors in the model, that is, misspecification of K, will

increasingly become evident. In Section 7 we make some comments on

the detection of serious misspecification in K and tentatively propose an

ad hoc goodness-of-fit test which may be used in conjunction with other

approaches for checking the model.

In Section 8 we leave Hilbert space and regularization in the form of

the minimization of (1.2) to consider extremely large n, say n > lO, such

as occur in computerized tomography. It has been observed by Miller (1974),

Fleming (1977), Strand (1976), Bjorck anc .lden (1979) that, when a

Landweber iteration is used to solve a large linear system approximately,

the number of itgrations and the constant involved in the iteration play

the role of regularization parameters. We show how the number of iterations

and the aforementioned constant can be chosen by GCV at a computing

cost which is commensurate with the cost of the iteration.

K
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2. The intrinsic rank of an ill posed experimental problem

The intrinsic rank of an ill posed experimental problem as we define

it here depends on the following:

i) the operator K.

ii) The number and location of the data points tI ....tn-

iii) The space H in which the solution is sought.

iv) The minimum computer roundoff, 3 (i.e. 3 l "01 in double

precision.)

The intrinsic rank r, will be the useful number of linearly independent

pieces of information about f in the absence of measurement errors, errors

in K or cumulative roundoff beyond that in iv).

The effective rank will be less than rr and will depend on the above

as well as

i) a2

ii) errors in knowledge of K.

iii) roundoff errors beyond iv) above.

Errors in knowledge of K can be an important source of trouble, we assume

K is known accurately until Section 7. We will assume that computer roundoff

(iii) can be made negligible compared to experimental error (a2 ) by the use

of high quality quadrature formulae, and careful tailoring of the

numerical methods used to the intrinsic rank of the problem*. We shall

generally ignore it in the discussion. The effect of a is discussed in

Section 3.

This means that one avoids division by very small numbers!
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4We now prepare to define the intrinsic rank r I of the problem (1.1).

I We suppose that f is estimated by f ,' the solution to the problem: Find

fsH to minimize

1 n
S(zi-fK(ti ,s)f(s)ds)2 + X! [fj 1, (2.1)

where ilf!! is the norm of f in H. Later we will consider the (usual)

case where is a seminorm (for example !f = Cf(fI(t))adt]l 2)
0

however the exposition is considerably simolified with a norr..

It is required that H be a space in which the n functionals which map f

to JK(t.,s)f(s)ds, i = 1,2,...,n, are continuous linear functions. If this
0'

is the case, then by the Riesz representation theorem (Akhiezer and Glazrnan (1961)),

there exist n elements r1 ..,, in H called the representers, such that

f"K(tis)f(s)ds = <ni,f> , feH, i =1,..n
0

where <.,.> is the inner product in H. For example if H = L,[0,1] then

for fixed i,

rli(s) s K(ti,s) i = 1,2,...,n.

If H a H R' the r.k.h.s. with r.k. R(s,t), then

ni(s) = fK(ti,u)R(s,u)du.
0

The reproducing kernel space results we use in this paper can be found

in Kimeldorf and Wahba (1971), see also Aromszajn (1950). If H is a finite

dimensional space, then each jiis a linear combination of basis functions.

.1o
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-;The solution f n to the minimization problem of (2.1) ca~n be written

ff; K*(K K *+nXI) -1z,n,, n n

where z (z1, ... 9z n' K nis the operator which maps H into E nas follows:

fK(t1 ,s)f(s)ds0
K fn

jK(t n s)f(S)ds0
K* is the adjoint of Kn in the sense that K*: En H, and K* satisfies
nn n n

(z,K f) = K*z,f>n n

where fC,.) is the Euclidean inner product. It can be verified that

K*z has the representationn

(K~z)(s) = 'zir(s).

K K*: EI - E is the operator of multiplication by the nxn matrix with jk th
n n n n

entry <_'j'1k> - This matrix is the Gram matrix of the representers of the

data functionals. If H =L 2CO,lJ, then

=-I 9T1 k> rjs (s )ds KtjsKKsd,

and, if qH RO then

<r11
=0 ffK(tj~s)R( s,t)K(t k9t)dsdt.
00

The matrix (K K*) is symmetric non-negative definite, and hence has a
n n

decomposition

1P



(KnK*) = (2.2)

where is an nxn orthogonal matrix and D is a diagonal matrix with eigenvalues

(diagonal entries) .l 1 '2 '"" n > .

We define the intrinsic rank rI as the number of eigenvalues \i for
wnich k i/\I > SZI0 "l (computer roundoff). Thus rI is the effective number

of linearly independent data functionals in the experiment (1.1) in the

absence of experimental errors or errors in K.

We make several observations about r1. Firstly, if H is a finite

dimensional space of dimension M, then r, N. This is reasonable, since,

if f is known to be in H, then f is determined by N linearly independent

pieces of information, and the experiment 01.1) cannot deliver more.

Secondly, if H is a space of functions with several continuous derivatives,

then (other things being equal), rI will be less than if H is L,. Again,

this is reasonable, since, loosely speaking, IK(ti,s)f(s)ds and ,K(tj,s) (slds

can be expected to be less linearly independent on smooth functions than on

arbitrary elements of L2.

I -' ,:. ' . v



3. rhe effect of noise. The canonical representars

Let 7and n~,..X be defined by (2.2). We define the canonical

data vector y = l'"Y and the canonical representers ~V*~ n by

nn

Then

Since

we have

wihere

-n 
n
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and, if the E:i are normally distributed, the ei are independent, normally

distributed with mean 0 and variance a2. Since the experiment (1.1) provides

the equivalent data y, one "knows" the inner product of f with the unit

vector pi .i/v2 from the data to an accuracy of, within, say ±2 standard

deviations = 2a/v7. That part of f not in the span of the first r1 canonical

representers is not "seen" by the experiment, even in the absence of measurement

error.

I

.*,A



4. The intrinsic rank of some examples

In these examples we suppose the t i are equally spaced, although no

doubt the results are true for mai -i bounded.

1

4.1 The first derivative, H z H1

11Let H H ,H ; f: f abs. cont., f'=L 2 10,1, and let

t
(Kf)(t) =ff(s)ds,

0

thus, -2-(Kf)(t) =f(t). Here nA1 = (n~) The rate 0(n-') is obtaineddtn1
as follows: A reproducing kernel for H1 is

R(s,t) 1 + min(s,t).

Define

P(s,t) = ffK(s,u)R(u,v)K(t,v)dudv
00

st

00If(l+inin(s,t))dsdt.

Then K nKn is the operator of multiplication by the nxn matrix with jkt entry

P(tj, tk). P is a Green's function for a 4th order linear differential

operator, thus the eigenvalues of the Hilbert Schmidt operator with

kernel P, are O(n -), i.e. inversely related to the eigenvalues of the

associated differential operator. An airgument in Craven and Wahba (1979),

see also Wahba (1977, 1979c) indicates that the eigenvalues of the matrix

* obtained by discretizing P behave roughly like n times the eigenvalues of

P, giving % 1/X1  O (n~ For a carefully developed argument which gives

similar results in a related problem, see Utreras (1979).

owl:
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If n - 10 then X/Xl i0 , and for 5 = 10 , say KnK* is of full

intrinsic rank. Provided that the data are not too noisy, this indicates

that effective numerical differentiation is feasible if the true f is

reasonably "nice".

4.2 The kth derivative, H H m

Let H = Hm, Hm {f: ff, ,rml) abs. cont., f(m) L2 [O,l ] and let

t (tsk-I f(slds,
(Kf)(t) = I s) d

0
)k

thus -k-(Kf)(t) z f(t). Here n/ I = O(n2 k).

For example, if k = 3, m = 2, then An/l = O(lO°). If n - lO 25,

then Xn/A1 , 10" and so the intrinsic rank of this problem will be around

25. If f is a very smooth function without much structure one might expect

to get a "good picture" of f with 25 pieces of information. More precisely,

if f is in the span of the first 25 canonical representers and a2 is not too

big, then a useful estimate of f might be recoverable. Otherwise it probably

won't be.

This indicates, however, that accurate estimation of second derivative

(k-2), with m=l is feasible with good quality data, since in this case

% A 0(106) and will be of full effective rank for n as large as 150.

4.3 Abel's equations

These equations are of the form

b
(Kf)(t) - / kts)f(s)ds

t (s-t)"
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where k(t,s) is continuous on 0 < s < 1 and 0 < a < 1. They behave like the equa-

tions in 4.2 with k - 1 - a, and so they are of higher intrinsic rank than

comparable problems involving numerical differentiation. If H - Hm , then

n 1l 3 O(n 
2 (m+l ' - ))

4.4 Fujita's equation and other severely ill posed problems

Fujita's equation relates centrifuge data to oarticle mass distribution.

See Gehatia and Wiff (1970).

Smax eeeSt
(Kf)(t) = 9e! l-esS f(s)ds t eO,tmax].

With 9 = 4.25 and realistic values of smax and tmax we found this innocuous

looking equation to be severely ill posed. With n = 40 equally spaced

data points, and H = H1 , we comouted the eigenvalues 4l '"*";l" They turned

out to look roughly as in the following table

V
V

1 1 6-24 10l14 to 1015

2 10 3.5  25-41 -l 10l5 to -l0
14

3 10-

4 l0'
0 5

5 10l
14

We concluded that eigenvalues 5 or 6 through 41 were "machine 0".

The intrinsic rank of this problem is between 4 and 5.

The GCV estimate of the optimal X (the GCV estimate is defined in the

next section) was around 101 and was a very good estimate of the optimal X

as measured by how close it came to minimizing
140 i )fiFmx

T M j- (fn,(-Ttmax)f(4Tmax W

! ' 4
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in an experiment with synthetic data where f was known. The estimate f

may be written in terms of the canonical data and canonical representers of

Section 3 as

n Yi
I f~n,X'~

Note that a \ of 10"11 is completely negligible compared to eigenvalues 1-3,

and completely swamps eigenvalues 5-41. We succeeded in obtaining excellent

solutions in some examples and nonsense results in others. See wahba (1979c).

We came to the conclusion that the excellent solutions occurred when f was

effectively in the span of the first 4 canonical representers and the

lousy results occurred when it was not.

Numerical inversion of the Laplace transform can be expected to be

similarly nasty. The problem of inversion of radiance measurements (z)

to obtain temperature profiles (f) from satellite radiance measurements

in the NIMBUS 6 satellite and others also appears to be severely ill posed.

See Smith and Wolfe (1976), Fritz et al (1972).
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5. Solution methods for mildly ill posed problems

5.1 The method of generalized cross validation (GCV) for choosing k

We review this method since it plays a role in the remainder of the

paper. The theory has been developed in Wahba (1977), Craven and Wahba

(1979) and Golub, Heath and Wahba (1979). We will refer to these last two

as CW and GHW respectively. Numerical results concerning the method are qiven

or mentioned in CW, GHW, Utreras (1979), Merz (1979), Welch (1979),

Bjorck and Elden (1979), Stutzle (1977), Colli Franzone et al (1979).

The idea is as follows: Let f be the minimizer ofn,A

ln
n i l((Kf)(ti)-zi) 2 + X1 2

n Z1 1

i k

where l.:' may be d norm or seminorm in H. If X is a good choice, then
(Kf (kj)(tk)-zk should on average be small This is measured by the

n ,,k ) ' shud naerg esal

ordinary cross validation function V0 () given by

V (X) . , i(Kf, Ek])(t )-Zkz.
0 n ki 1 l

The following identity is proved in CW and GHW:

1 n [(Kfn)(tk)-Zk]
2

V('- i (l-akk(\))2

where fn,X is the minimizer of

nn

7 ((Kf)(ti)-zi)" + '.{fIJZil

4 j l
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and akk(\) is the kkth entry of the nxn matrix satisfying

* (Kfnx)(:))

A(X)z.

(Kf nA tn

It is shown in CW and GHW that, from the point of view of minimizing

predictive mean square error (defined later), V0 (.k) should be replaced by

the generalized cross validation function (GCVF) V( ) given by

l [(Kfn ) (tk)-Zklz
V(X) n k (5.1.1)

where

wk(X) - (1-a a.)/(_ a CM.

Note that akk(X) 3 .- (Kfn,)(tk), and that if all the akk(x) are equal,

then V(\) a Vo (X). Collapsing (5.1.1) results in

n1j(I-A(X))zli 2

V(x)= * ~! (I-A())z (5.1.2)

The GCV estimate X of X is the minimizer of (5.1.2). It

is shown in CA and GHW that the minimizer of V(x) estimates the minimizer

of the predictive mean square error T(X),

1 nT( ) n I ((lfn,X)(ti)-(lf)(ti))z

wr,,re f is the true answer in the model (1.1). There are other, possibly

more desirable optimality criteria for X, for example the minimization of

TD(A) 0 f(fn,(t)-f(t))zdt,

see also Nashed (1g79b). One can obtain estimates for k from the data
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which in theory (approximately) minimize T0 ' going this in itself

is however, an ill posed problem. In our numerical experiments

with synthetic data we have generally found that the minimizers of TD(x)

and T() tend to be close, and X, the minimizer of V(k), is generally a

good estimate of the minimizer of T(k). For this reason we have not seriously

attempted to modify the optimality criteria. In a synthetic experiment,

the inefficiency of X can be measured by

T(X)/minT(X) (or TD(X)/minTD(X)).
X X

5.2 Estimation of the first derivative

Here the model is

zi " g(t1 ) + si' i 1,2,...,n (5.2.1)

2
where the are as before and geH . It is desired to estimate g'. 4e

let g n be the minimizer in H2 of

I nl

ijl(g(ti)-zi)z + k(g"(u))Zdu (5.2.2)
0

and estimate g' by g where R is the minimizer of V() of (5.1.2).

gn,A is the cubic polynomial smoothing spline discussed in Reinsch (1967)

and is differentiated analytically. Successful numerical results appear

in CW, Merz (1978), Utreras (1979), and elsewhere.A!
Transportable code is available from Merz (1978), Utreras (1979) and

Fleisher (1979). Our experience with the method indicates that it will do

well for n > 20 or so, whenever g is "smooth", there are at least 7 or 8

data points per local maximum in g' and when 3 is of the order of a fraction

of a percent to several percent of the range of g.

*' - - -- - -
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5.3 Estimation of the second derivative. Numerical results

If g in (5.2.1) has a smooth second derivative, it can be estimated by

differentiating gn - twice. This should give good results in the interior

of CO,11, however g~(0) g 9(l) = 0, for any A, so that one cannot

estimate g"(t) for t in a small neighborhood of 0 or 1 unless g"(0) = g"(1) = 0.

This problem at the boundary can be eliminated by using

1 1
quintic splines, that is, by replacing j(g"(u))2 du by f(g"'(u)) 2 du in (5.2.2).

0 0
To my knowledge a quintic spline using GCV has not been implemented, but it

could be done in a relatively straightforward manner by specializing the

multidimensional results for general m in Wahba (1979a) and Wahba and

Wendelberger (1979).

A Monte Carlo example of the estimation of second derivative of a

periodic function in the presence of noisy data appears in Wahba (1979c),

and we reproduce the example. The results were fairly typical of a large

number of similar unpublished examples with high quality (Monte Carlo) data.

In this example

I
g(t) - !K(t,s)f(s)ds

0

with

K(t,s) 2 t 1 -

K(t,s) is a Green's function for the second derivative operator such that,

if g a Kf, then g is the solution to g" - f, fg(u)du - 0, g(O) = g(l) - 0.
0

The solid line in Figure la is g and the cross marks are the data zi  g(ti) + Ei

where the ei were simulated normally distributed errors, with variance 9.

~1
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Swas about 1/300 of the range of g. f is estimated as fn the minimizer of
n I
: ~((Kf)(ti)'zi) 2 + xf(f'(u)) 2du

0

1 1
in the subspace of H satisfying the (periodic) conditions Sf(u)du - 0,

0f(O) - f(l). The true f also satisfied these conditions. X was chosen

to minimize V(\). The calculation is that suggested in Wahba (1977),

where the fact that j!'i! is a norm on the periodic functions considerably

simplified the expressions. V(X) is plotted in lb along with the mean square

errors T(X) and TD(X) defined by

1 n
T(X) il ((KfnX)(ti) - (Kf)(ti))

and
ln

TO(X) = (fn, (ti)-f(ti)) 2 "

It can be seen that the minimizer of V(X) is a good estimate of the minimizer

of both T(X) and TD(X). The theory in CW and GHW says that V(N) should

"track" T(X) and one can see that this does in fact happen. Figure Ic

compares the true and estimated second derivative. It can be seen that the

results are very good.

Interest in estimating the second derivative was motivated by the

following problem. The Lamm equation

-Lc -~rD4- sw r 2c)

where c a c(r,t) is the solute concentration, 0 the diffusion coefficient,

s the sedimentation coefficient, and w the angular velocity, describes

the behavior of solution concentration in an ultracentrifuge. r is radial

distance from the centrifugal axis and t is time. See Dishon, Weiss and

1 '
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Yphatis (1966). j is known. c(r,t) is measured for a finely spaced set of

r's at a number of values of t. From this data, it is desired to estimate

o and s. The Lamm equation can be rewritten as

c(r,t) 9 ;r 2

i1[ 23r + z 2  -i

where3r

D 1
1 2s 2 2swz

)c 3c
If 2 L and L can be estimated from the data, then I and e2 can ber ;r 3t1ranb

estimated using regression techniques. The idea is to take an r slice

of the data for fixed t and use the smoothing spline technique with 3CV

32Cto estimate and - , similarly with t slices of the data. Cen,rifuger 3 r z

data is frequently of the quantity and quality similar to this examole,

and it appears that estimating I1 and i2 is quite feasible, assuming that

the model 5.3.1 reasonably represents reality and sufficient data is available.

5.4 Abel's equations

These equations have been studied by Anderssen (1976), Anderssen and

de Hoog (1979), Anderssen and Jakeman (1975) and Jakeman and Anderssen (1975a,b).

They have provided solution methods and a number of numerical results.

Anderssen and de Hoog (1979) have called these problems "weakly ill posed".

Some of these equations have inversion formulae involving the first derivative.

For example (Anderssen (1976)) if

Iii

* , I,.
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tmaxmx sfls
g(t) = 2 j .z)/ ds (5.4.1)

t (s2-tZ)

then

max g t
-(s) 

2  Z)1/2 dt. (5.4.2)

In addition to the spectral differentiation - product integration methods

proposed by Anderssen and Jakeman (1975) the following procedure should oe

quite effective. If zi = g(ti) + ei is observed for i = 1,2,...,n, then g

is estimated by gn, and g' is estimated by a' as in Section 5.2. Since-n ,XasnSeto5. Sic

is a polynomial of degree 2 in each interval [ti,ti+l], gn. can be

substituted into (5.4.2) and the integration carried out analytically.

This is possible using formulas 129, 136, and 153 of Pierce-Foster (1956).

In some examples, g is a density and only observations Xl .... Xn from this

density are available. See Jakeman and Anderssen (1975b). Using a spline

density estimate for g (see Wahba (1975, 1976)) would allow the analytical

integration of (5.4.2). These two spline methods do not however as yet

have associated with them automatic methods for choosing the optimal regulari-

zation parameter. Based on our experience with density estimates, we conjecture

that the following method will be effective. Use Wahba (1973) to obtain an

estimate for the density g from X1 .... 9Xn' This method has an optimal

integrated mean square error procedure for choosing the smoothing parameter

as part of the density estimation. The estimate so obtained is "close"

to a spline. Interpolate this density estimate with a cubic spline with

convenient knots, and use the spline interpolant to the density estimate in the

analytical integration of (5.4.2). (This last is, of course, a form of product

integration!).

Fymat and Mease (1978) have also studied first kind equations possessing

inversion formulae involving the derivative of Kf.

.5- -- ,,---...-- -- - -- .-r-,,-
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3.5 A "general purpose" algorithm for 25 < n < 100

in this section we elaborate on Wahba (1977) and give a "general

purpose" algorithmic approach for mildly ill posed problems. (We say

"general purpose" advisedly.) The upper limit on n is determined by

limitations on computing the eigenvalue-eigenvector decomposition of in

nxn matrix. It is assumed that the errors in the data are relatively

small and random and that K is known correctly. Certain integrals below

must either be known analytically or amenable to accurate quadrature.

The approach is the "Eastern" route described by Nashed (1979) in

.,nich discretization beyond that imposed by the data is done as late as

:ossible. in the approach we take, any required numerical quadrature is

isolated, and hopefully quadrature errors can be controlled so that they

are negligible compared to experimental errors in the data. 'This may

not always be true, for example, with K such as found in scattering problems

like those considered in Fymat and Mease (1973)).

The algorithm is based on the following:

Theorem: Let H :f: f,f; ... f(m-1) abs. cont., f(m),L 2101]'. Let

'I ..... span the space of polynomials of degree m-l, and suppose the

nxm matrix T with i, t h entry [T]Ji given by
1

[T]i = fK(ti,s)w,(s)ds
0

is of rank m. Then the solution to the problem: Find frHm to minimize

1 n  1
in l((Kf)(ti) zi) + o(f(m (s))2ds (5.5.1)

is unique and is given by

1 ---



n m

f i(s) ci~i(s) + d, (s)

where

ni ( s ) = ;Kit i ,u )R (s ,u )d u0 11
~0

(u-x)M-l (v-x)+ dx
R(u,.v) f TM-T T- T!dx

0M

and c (c1 .... Cn)', d = (di ..... dm)' are determined by

I"I I (Kn+nXl)c + Td = z

T'c = 0,

where K is the nxn matrix with jkth entry

n

[Kn]jk 2 ffK(tj,u)R(uv)K(tkv)dudv.
00

A proof of this theorem may be found in Kimeldorf and Wahba (1971) Lermma

5.1 where a different but equivalent system of equations is given for c

and d. See also Hilgers (1976).

We now turn to the computation of f n, ' where ) is the minimizer

of I(?x). It is desirable to formulate the calculations in terms of a

convenient nxn-m matrix U with the properties

U'U n-mxn-m

UT = On-mxn

Given such a matrix, it can b.e shown (see Anselone and Laurent (1968))

that

iL 9f

, *, 1
|4.,.
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c = U(U'KnU+nXI)- IU'z

n

and (Wahba (1979a))

I-A(\N) anXU(U'K nU+nXI) _lug.

In Wahba (l979a) and Wahba and Wendelberger (1979), we have successfully

computed c,d and '1(X in some two dimensional spline problems which have

equations of the same structure, in the following manner, using double

precision EISPAC (B.T. Smith, et. al. (1976)). U is obtained with EISPACK

as the matrix whose n-rn columns are the n-rn eigenvectors of the rank

n-rn projection matrix I - T(T'T) 1rT' corresponding to the n-rn unit eigenvalues.

These eigenvectors are not uniquely determined, any set spanning the space

oer~endicular to the columns of T are allowed. Letting 8 be the n-rn n-rn matrix

JlK nU, with eigenvalue decomposition U'K nu = 701', with 7 and 0 again found

by EISACK, then

c a ur(D+nAl-I 1 2ulz

and

n-n '2.

I nA

V~x) = (d +n) Y

where

y =(yl1,... lyn-rn)' U= Uz

and 0 igd ,., -)
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.4

For m l

R(u,v) u, u < v

V V, U > 14

and for m = 2

R(u,v) u2v U3 U < V

UV
2  V

2

2TT u> v

The calculation proceeds by computing Kn by a high powered quadrature formula

and ri(s) also by quadrature, on a fine grid in s.

In the work on second derivative and Fujita's equation noted in Sections

4.4 and 5.3, we computed Kn and the ni by quadrature with great success

in the second derivative experiments and failure with Fujita's equation.

The failure was not in the determination of Kn , ,ti and di, since in fact

excellent solutions were obtained in certain "lucky" cases, see Wahba

(1979c), but the general failure is explainable by the severe ill posedness,

as already noted.

The numerical quadrature can be expensive, as far as computing goes,

since there is a lot of it, but we were able to perform it with sufficient

accuracy that quadrature error was not evident in the results. "Expensive"

of course is relative, because an "expensive" S20 computer run is frequently

"cheap" compared to the cost of data collection.

These computations have also been successfully carried out in a multi-

dimensional smoothing context with n as large as 130. (Wahba (1979a),

Wahba and Wendelberger (1979), Wendelberger (1980). In these problems

K was the identity and ni and Kn are known analytically. We found that

double precision EISPACK returned the 130 eigenvalues of I-T(T'T) 1IT',
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(which are known to be 0 or 1) to seven or eight digits.

Thus, although the above procedure has not been implemented as a

whole, it appears promising for medium n, mildly ill posed problems

where K is such that either Kn and ji are known analytically or computed

accurately by quadrature.

5.6 Canonical form of fn,' using the seminorm (f(f(m(u))du)I Choice of m.

0

The solution fn, to the minimization problem of 5.5.1 can be written

in the form

f = (W ',M (1'(K +nXIy) T"T'(K +nMI) -l z
n,X 1' m n n

n-y Yi

i=ld +nA

where

y (yl...Yn-m )  "U'z

and

(*l" "'*n-m) ' "U' (n1 ,.. . ,n1n).

and 1,U and 0 = diag(di} are as in Section 5.5. (Note that while U is

not uniquely determined, 7'U' is (if the di are distinct). Here the

canonical representers are Wl ... 'm and (*I' .. n-m)" The intrinsic

rank r, of the experiment is m plus the intrinsic rank of D. Note that

as X - the solution tends to

f (wl, "',wm) ( T ' T ) ° i T ' z ,

the least squares regression of the data onto the span of the polynomials

of degree m-l or less.

U ..t.'.JLlE~*~v~*

Ii~k
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In the above expressions dependence of TKn ,U,7, and { on m has

been suppressed. As m increases, the number of "special" functions

' increases while the di will go to 0 faster. :t is "customary" to use -2,

however, a choice between competing m's can be made by comparing infV (k),
X M

for the different m's. This is done in Wahba and Wendelberger (1979), see

also Gamber (1979).

5.7 A "general purpose" algorithm for larger n. Regularization with a

B-spline basis

We now continue with the type of problem considered in 5.5 where n is

too large for the convenient solution of an nxn eigenvalue problem. Locker

and Prenter (1978a,b) have suggested solving regularization problems in N

dimensional subspaces of Hm spanned by splines, and have given some convergence

theorems. See also Klein (1979). We will take the suggestion and combine it with

GCV for choosing k to provide a "general purpose" algorithm for large n. The upper

limit on n will no doubt be determined by storage requirements in storing Nxn

arrays.

We seek the minimizer of

1 n 1 (u)d((Kf)(ti)-Ziz f(f(m)(u))zdu

i~l 0

in H , the subspace of Hm spanned by spline functions, which are piecewise
ii+1

polynomials of degree 2m-1 in each interval T,-]-, i

joined together so as to have 2m-2 continuous derivatives. It is well

known (Curry and Schoenberg (1966)),de Boor(1978) that this subsoace is

of dimension N-N'+2m-l, and it follows from the results of Curry and

Schoenberg that it is spanned by the B-sdines B.(t), j 1 1,2,...,N, where,
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for t-:E0,1) the B. are defined by
j

B(t) 8 B(t4 'J), j 1,2,... ,N

B (t) 8 B(.'t

2m-

=0 otherwise

where kx)4 ax, x > 0, - 0 otherwise.

Figure 2 shows B.i(t) for m a 2 and j x 1,2,3,4,N-24,I-1,N.3-spline bases
3m

of degree 2m-1 are well known to have good approximation properties in q~

Given

N
f ZC. B-(t)
jul

one seeks c =(c,, ... 9Cn)' to minimize

1 1m

= N .(B) (), z) + "k ~ CJtJB.t)k2td

3 10 1

adLet X be the nxN matrix with jth entry

aj 1 8B5m)Cs) B~m)(S)ds.

jk f
0 p
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2B

/ N-2 .N-1

12 3 11N-3 41I-2 N'-l
Tr- ~- -7

Figure 2. B~ (t), for m 2
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The 7jk for m - 2 are given in Table 1. It may be necessary to obtain

the entries of X by a high-quality quadrature routine. We must find c

to minimize

l1z - XcH, + Xc'Zc.
n

This may be done as follows:

We first note 7 is of rank N - m. This follows since the B

are linearly independent in Hrn, however l,t,... ,tm'l are in span

N
so that c'Zc = 0 if L c.B.(t) is a polynomial of degree m-l or less.

jul

We next decompose c into a component in the null space of Z and a component

in the null space perpendicular of Z as follows. Letting

S= PSI,

where 7 is the NxN-m matrix whose columns are the non zero eigenvectors of

and S the N-mxN-m matrix of non zero eigenvalues of 7, and a the Nxm

matrix whose columns are the zero eigenvectors of Z, then c has a unique

representation as

c -7S1/2y + Ad (5.7.1)

for some y = (YIl....,yNm ) ', d - (dl ,....dm)'.

Letting

y= xrs " 2  (5.7.2)

T - X& (5.7.3)

and assuming that T is of rank m, we have

Xc = Yy + Td (5.7.4)

-jjI
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1 2 3 4 5 6 N-3 -2 N-l N
2 -3 0 l 0

2 -3 8 -6 0 1 0

3 0 -6 14i-9 0 1 0

4 1 0 -9 16 -9 0 1 0

5 0 1 0 -9 16 -9 0

6 0 1 0 -9 16 To get i's)B k(s)

0 1 0 divide Table entry

00.0 by 6.

,0 1 0

4-3. 16 -9 0 1

.-2 *, 0 -9 14 -6 0

N-1t 0 1 0 -6 8 -3

N 0 1 0 -3 2

Table 1

6cjk M 2

T --I 4
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and y and d are obtained by minimizing

n1((Kf)(ti)-zi)2 + nXK(f m)(u))2du _ z-Y-Tdl I + nAy'y.il 0d

Differentiating with respect to y and d and setting the result equal to 0

gives the following equations for y and d:

(Y'Y+nXI)y + Y'Td = Y'z (5.7.5)

d = (T'T)'IT'(z-Yy). (5.7.6)

Defining

P = T(T'T)'IT'

W = (I-P)Y

and substituting (5.7.L) into (5.7.5) gives

Y ( 'W+nXI)l''z. (5.7.7)

Let

=W'W VDV'

where V is an N-mxN-m orthogonal matrix and D is diagonal. Then

= 'I(0+nUk) VV'z (5.7.3)

and c is obtained by substituting (5.7.8) and (5.7.6) into (5.7.1).

To obtain V(%) we note that

(J-A(x))z z - Xc z - (Yy+Td) - z - (Yy R(z-Yy))

(I-P)z - (I-P)Y-

= (I-P)z-W(W,4'W+nXI)",' 1Wz.

'1.



-34-

Th us

(I-A) = (I-P) -W (W'W+nXI)Y
1W'

and, letting d ..... dN-m be the diagonal entries of D, gives

N-m d.
Tr(I-A) -n -m - Zd

j=l dj+nX

n N-m n
-N+ d +n .

The intrinsic rank of this experiment is m + the intrinsic rank of D.

Finally,

(I-A)zi l2 - (I-P)zI 2 - 2z'W(W'W+nXL) 'W-z

+ z' W(W,, i) W, W (w, W+n I) , z

N-m(-2nX+d.)

l ( I -P )z H 2  - 1 x j -

where x = (x l ,... xNm)' = V'W'z. Thus
N-. (2n+dl){FI )(I-P)zI (2 jl (nX+djI x j

'1(x) = N-M

(n-N+ Z n )
j=, (nX+dj))

The calculations are summarized in Table 2.

"4
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Table 2

Summary of Calculations for

Regularization and GCV with a B-spline basis

= rsr'

y = xrs-11
2

Let A satisfy ' ON-nmxm

P = T(T'T)'IT'

W= (I-P)Y

WW' = VDV' , D = diag(d I .... d"m)

= V(D+nXI) 'I' wz

d = (T'T)-l T'(z-Y-")

C Z TS'I1/2 y + ,_A

x = V'W'z

N-m 2nX+d.
!!(I-P)zi'Z  .1 )Z x  2

nX
H ~V(X) Nr

(n-N+ nd
j (n+d.j

Note that T'T is mxm, S is well conditioned. The eigenvalue decompositions

at (*) can be done in double precision EISPACK for N up to 100 or more.

~ ~ p.
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6. The use of outside information. GCV in constrained regularization

"estwater (1979) and Jackson (1979) have described experiments where

outside information has greatly improved the estimate of the solution.

For example Westwater described how external measurement of the temperature

inversion height aided in the determination of atmospheric temperature

profiles.

In this section we consider first the situation when the values of

one or more continuous linear functionals of f are known, either approximately

or exactly.

Then we consider the situation where it is known that f is in a

given closed convex set in H. If H is a reproducing kernel soace then the

important special case f(t) > 0, tz[0,l] is included here. Chambless

(1979) has used positivity constraints in a form similar to that which we

discuss here. See also Wegman (1980). Sabatier (1977) considers positivity

constraints from an entirely different point of view.

A third situation arises when detailed information concerning the

possible shapes of the solution is available, for example, as mentioned

in Section 4.4 when libraries of temperature profiles obtained from balloon

measurements are available when attempting to estimate the temperature

profile from satellite radiance data (Smith and Woolf (1976)). It is

possible to add various constraints, do regularization, etc. in this context

but we will not discuss this situation further.

In this section we assume that n is small enough that an nxn eigenvalue

problem can be solved, and we ooerate in the general context of Section 5.5,

with some simplifications. Everything can be carried over to the B-spline

basis approach in Section 5.7 but we omit the discussion.

j* .-?r -
• "" ° -. . ." ' " ' . . . - , , w ,- . - - ..
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6.1 Values of continuous linear functions ire known approximnately

In this section we use the notation and methods of Section 5.5. 7t

is assumed that one observes

zi = JK(t i S)f(s)ds + -i i = 1,2,...,n (. l

as well as

y. jf + . I 1,2,......6..2

wnere the N. are continuous linear functionals on q2' and the -nl --

are independent zero mean random variables with variance IS 2 j = 1,2 ...,.

7o assign appropriate weights to the data it is helpful to have some Idea
-, m

of the factor z 7. en one seeks f n, in -f to minimize

1 (f(j-i- nN 1j (u))zdu(6.3
1+ 1 j~l *

einere

j -N, y. j -y

T7he minimization problem is now formally mathematically the same as that

of Section 5.5 with n replaced by n +- . It can be shown (see Kimeldorf

and WJahba (1971)) that the minimizer of (6.1.3) is

Z n i

f (s) b.. (s) + C c.(s) +- d, (s

where the 7. and are as in Section 5.5,

and b =(b 1,... ,b ZY, c and d are given by
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n L\: T/ (

(T' T1)(c) =0

th

where the nxt, Z.xZ and Zxm matrices L, M and T1 have their i
tj entries

given by

1CL] ij = Nj(s)fK(ti,u)R(u,s)du

cm] ij = Ii(s)N i(t) R(s,t)

[T I Ii j = N j, i ,

where Ni(s) means the linear functional Nj applied to the argument expression

considered as a function of s. The calculation proceeds exactly as in

Section 5.5 upon replacing K and T by

n

(! - -- and

I M) kT

Note that

Njf f(s.)

fm
is a perfectly legitimate continuous linear functional in H (but not in

L2 ). If 'lf : f(s.) then

0 (s) R(s.,s).

3°

-7..-I 9~* **,~. A*
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Frequently the values of f are known, say, at the endpoints, or other

selected points and this can be an important source of information.

The GCVF is computed as in Section 5.5 and now estimates X which minimizes

n Z
T(\) Z 7 ((Kf )(ti)-(Kf)(ti)) 2 + 7 (Njfn, Jf) 2n+'Zi~l n".X j~l ifnk '

6.2 Values of 2. continuous linear functionals are known exactly

Next, we suppose that the z i are given by (6.1.1) but that outside

information

Yi f '  i l,... fZ (6.2.1)

is known exactly, or at least with an error that is negligible compared to
the -i" We will assume here that Z is small enough and the Ni's are

sufficiently linearly independent that explicit accurate numerical

inversion of the Zx Gram matrix M appearing in (6.1.4) is possible. The

estimate f n, of f that we seek is then the solution to the problem: Find

fsHm to minimize

1 n 1
n i ((Kf)(ti)-zi) 2 + Xf(f"(S)) 2ds
il I0

subject to

3jf yj, j

It can be shown (see Kimeldorf and Wahba (1971)), that if T is of rank m

and M is of rank Z, then the solution f to this minimization problem

is unique and has the representation

Z n m
fn,x(s) jl b j i (s) + J--cICnj (s)+ .7l dv'> (s) (6.2.2)

f (s

ark6
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where b - (b I .,bL)', c and d are determined by

. K + n...... /c] /17/ f
K X) - T - d -z ( 6 .2 .3 )

T'c + T, b = 0.

Appropriate methods for solving (6.2.3) in such a way that k can be

separated out to ease the calculation of V(X) depend on whether Tl is of

rank m, is 0, or is of rank between I and m. To avoid tedious details, and

also to provide a more unified approach to constrained regularization which

we can use in Section 6.3, we will replace the seminorm

1 ] 1

[f(f"(u))2du]
0

on H2 by the norm defined by

1

!IflV = 4(f 2 (O)+f 2(l)) + f(f"(u))Zdu (6.2.4)
0

which will simplify the arguments as well as the calculations considerably.

This particular method of augmenting the seminorm by adding i(f2(0) + f2 (1))

reflects a prior belief that the true f is near 0 at the boundaries, if this

is not the case, then i should be chosen large, or a different augmentation

, may be chosen. As i - 0 the solution is forced to be 0 on the boundaries,

and as 9 the solution tends :o (6.2.2).

11112
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A reproducing kernel Q(s,t) for H 2 with the norm (6.2.4) is given by

1Q(s,t) i(st+(l-s)(l-t)) + 6C-s3(l-t)+st(t-l)(t-2)], s <t

3 (st+(l-s)(l-t)) + 6[slt-3S2t+S(2t+t3)-tl], S>t

Using this r.k., one obtains the following:

2Theorem: The solution fnXto the problem: Find fE:H to minimize

7((Kf)(t.)-zi)z + x[i(f2(O)+f2(l))+r(f"(u))zdu] (6.2.5)

subject to

14 if yj, j =1,2,... ,z

is given by

f =S 7 b.. (S) + cii.(s) (6.2.6)nx j1l j il 11

where now

Ds) - Nj(t)Q(t~s)

=is f K(ti,u)Q(u,s)du

and c and b are given by

2JTo verify that this is a r.k. for H2 with the norm of (6.2.4) one must establish

that Q(.,t'.H 2 and <Q(.,s),f> - f(s) for any feH , where <,> is the inner product

induced by (6.2.4). This verification is tedious but straightforward. R(s,t)

in preceeding sections is a reproducing kernel for a subspace of H2 of

codlmension 2 (the polynomials having been subtracted out.)
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(inx %n () (ZI

' tth
where K., L and M have their ij entries given by

Cl n]ij -O0HK(ti,u)Q(u,v)K(tj,v)dudv (6.2.7)

1
L]i j = N (s),tK(ti,u)Q(s,u)du (6.2.8)

CMij 2 Ni(s)Nj(t)Q(st). (6.2.9)

* To obtain V(X) we shall use a different representation for f than

(6.2.6). This representation and what follows is computationally useful

provided Z is small and M is well conditioned. If M is not well conditioned,

then some of the "exact" data is redundant and should be eliminated. We

have

fi (s) 2 T"L i(s) + lc (s) (6.2.10)

where-I

6-- Mb 1

the vector ( ( S ... ,(s)) is given by

'I= n - LM*I

where r ('l ...,nn)', = (¢i,...,)' and c satisfies

(i+nX1)c z - LM-Iy

II

AA , q
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where

K K n - LL

To obtain V() note that

I (Kf n,\) (tl)

z - | z - (L +Iy) K(Knl)- (z-L Y)

(I-A(x))(z-LMIy) (6.2.11)

wvhere

AMX - K(K~nXl) "l

Since LM'ly is known exactly, it is reasonable to view z - LM'y as the

"data vector". Then the GCVF is

!I ( -A(A)) (z-L'y) 2

v(x) . n (6.2.12)

Letting K = UDU' with 0 = diag(A I,...,A n) and x = (xl,...,x' U'(z-LM-ly)

gives

iB Udi+n,

'1(x),) il '(6.2.13)
1 nA zi,.i~ ~ 3, i -d+n,

Before using this approach the experimenter should verify that errors in

LM' y are in fact entirely negligible compared to a2 , and errors in

computing M-1 are negligible. If this is the case, then the intrinsic

rank of the problem is z + the intrinsic rank of D.

.. .... .... .... ..-. .... ...
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6.3 feC, a closed convex set in H

If H is an r.k.h.s. then

C = {f: f(t)>c(t), te[0,1]} (6.3.1)

is a closedconvex set in H for any continuous a(t), in particular, for

a(t) 0. More generally sets of the form

k()
C :{f: k(t)<f k(t), t [a,b]}

C = {f: f(k)(t)g k(t), te[c,d]}

etc. are closed and convex in dn[,1] for k < m - 1. This type of information

is frequently known a priori. For example if f is a particle size distribution

then f(t) > 0.

Since

in
I ((Kf)(ti)-zi)Z + klifi 2 (6.3.2)

with ji.12 a norm is a strictly 2 convex functional in H, it always has

a unique minimizer on any closed convext set C.

We will consider C as in (6.3.1) in some detail although much more

general cases can be treated similarly.

Intuitively, if H is a space of continuously differentiable functions,

the closed convex set of (6.3.1) can be replaced for practical purposes

by the closed, convex set Cr,

2 In Hm with the seminorri J.(f(m)(u))zdu it is sufficient that the matrix

0
T in Section 5.5 be of rank m. In what follows we are always assuming the

strict convexity of (6.3.2) and the analogous expression with the kth term

in the sum omitted.

.N ai'" "i "' t. " m i i
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C f f: '(s.)ff(s.) j 1 ,2,...,r!

where si~S2 , ... Sr is a sufficiently fine mesh in [0,1]. For related

convergence theory see Laurent and Martinet (1969), Wahba (1973).

rhe solution fn, to the problem: find feH 2 to minimize

S((Kf)(t _)-z~ + X(5(f2(O)+f2(l))+ f(f"(U) )2du} (6.3.3)

subject to

is given by

r n
n, bL~~s cii(s) (6.3.4)

j=1 i=l

where b anc c are solutions to the quadratic programmning problem: Find b

and c to minimize

1 I ILb+K c-zH12 + X(b'ikb+2bLc+c'K c

subject to

Qb + L'c > a

where IH is the Euclidean norm,a = (as1'..as is given by

(6.2.7) and the ii th entries of L and M are given by

[Lij1  - fK(titu)Q(u's. )du
0

[l -Q(s.,s.).

(See Kinmeldorf and Wahba (1971)).

If n + r is under around 150 the solutions b and c to this problem can

usually be obtained numerically, for fixed X, from available library

quadratic programmning routines (for example, Madison Academic Computing

Center (1977)).
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We suggest the following procedure, provided that it is sufficient

to consider fairly small r. Here % is fixed. Solve the unconstrained

problem. If the solution f satisfies all the constraintsn A
fn .(s.) > 1(s.), j 1 l,2,...,r, stop. Otherwise, find j - j, for which

f (s1) - I(sj) is most negative. Minimize (6.3.2) subject ton .k ( J l )
f(s. ) - a(s. ) > 0. If the solution, call it f (ii) satisfies all the

constraints, stop. Otherwise find j 2 such that fn,X (s) - (s.) is

most negative. Minimize (6.3.2) subject to f(s. 1)) - A(s. ) > 0, v = 1,2.

If the solution satisfies all the constraints, stop. Otherwise proceed

to add one (or possibly several)of the most violated constraint(s) until

a solution satisfying all the constraints is found.

A much more elegant iterative procedure, where one only has to carry

along two linear combinations of active constraints,can be developed based

on Laurent and Martinet (1969) (personal communication, P.J. Laurent).

It is intended that this will appear separately.

If the solution to the unconstrained problem with a good choice of \

satisfies the constraints, then of course, one is finished. If it is

necessary to impose constraints, then it is not necessarily true that one

wants the same N, since the imposition of constraints is in a sense a form

of regularization. From this point of view, an optimal A for a problem

with active constraints is likely to be smaller. We discuss the choice

of % for constrained problems next.

6.4 Generalized cross-validation for constrained problems (GCVC)

We now discuss the establishenent of a generalized cross-validation

function for constrained problems (GCVFC). Theoretical results for GCVC

have not been established, but we believe they can be. At the end we
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discuss some possible computational strategies. In the following discussion

we return to general H, where may be a norm or a seminorm.

We believe the correct (first order) generalization of the GCVF is

the generalized cross validation function for constrained problems (GCVFC)

given by
n" i ((Kfn' )(ti)'zi ) '

V() =n n (6.4.1)

(l~ 9a.. (X,z)) 2nln

where

aii(X,z) : ziKfn )(ti )l 642
)z (6.4.2)

and % should be chosen by minimizing (6.4.1)

The expression for V(') reduces to the GCVF in the unconstrained case.

In the unconstrained case (or in the case C is a linear manifold as in

Section 6.2) (Kf n,)(tk) is a linear function of zk and akk(.A,z) is the kkth

entry of the appropriate matrix A(X). It will be shown later than when

C is determined by a finite number of linear inequality constraints,

akk( z) is piecewise constant in z, and, as a consequence, a relatively

straightforward algorithm for computing V(X) can be established.

Let C be any convex set in H and let fCk] be the minimizer in C ofn,X
n

1 i ((Kf)(ti) z) 2 + x fI 2, (6.4.3)
n i-l 1

i~k

where either ' is a norm or (6.4.3) is strictly convex for each k.

The "ordinary" cross validation function or "leaving out one" function V°(\)

may be simply defined as
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ni

V"x) = (Kfn k' (6.4.4)

However V0(X) will be prohibitive to compute in most cases, and it reduces,

in the unconstrained case, to a procedure which can have inferior properties

to the GCVF. See GHW, CW.

The rationale behind (6.4.1) is a consequence of the following lemma

which generalizes Lemma 3.1 in Cd.

Lemma: Let C be any closed convex set in H and let f . and f rk] ben,A

the minimizers of (6.3.2) and (6.4.3) and respectively in C. To indicate

emphasis on z, write fn,(t,z) = f (t) ThennX n,X

f[k](t),fn~x t  -k fn,

where 3 = (0 .... O' kO'....' 0 k is in the kth position, and

k (Kfn,k) tk) Zk

[k](tk z Te
Proof: Denote fn, by h

1rn h
j~l(Kh)(t.)-z.)2 + ((Kh)(t

jik

n
=" Z ((Kh)(t.)-z + i h lzn j I)-

j-ik

1 n

< n" jT:((Kf)(tj)zj)
2 

4 X fJ a, for any fC other than h

j k

n ((Kf)(tj)-z )) + ((Kf)(tk)-z k) \ (6.4.5)

- nj-l
j~k

.1d
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Thus h =f [k] is the minimizer of (6.4.5), which is also minimized uniquelyThush : n,Xk"

by f nX(t,z+i).

It follows that

Kfn,kk( tk) (Kfn,X)(tk) + [(Kfn. )(tkZ+ ) - KfnA(tk,z)]. (6.4.6)

Assuming that (Kf n,)(tkZ+3) is twice continuously differentiable in 5k

in the neighborhood of 3 = 0, expanding the second term on the right in

(6.4.6) in a Taylor series in 3k gives

Kf Ek](tk) (Kf )(tk) + 3k a-(Kfn :)(tkZ) (

n,,X k 'n,, 3z k  n k

(Kf n.)( t) + (Kfn \]tk)-Zk) z(Kf )(t z) + Q(3).
nA , tk k3 k fA k'

Setting 0(62) = 0 some algebra results in the expression

Kf k] (t ).zk  = ,f ) -k)-z k

Kfn , A k ka k k

giving a first order approximation to the ordinary cross-validation function

of (6.4.4),
: 1 n ((Kf n  ) - z

)1 tk,Zk ~(6.4.7)
k=-- (1-a kk(,\'z))z

Provided that the map A(M): En En which mas z- ((Kfn )(t l ) .... (Kf n(tn)

is locally nearly linear and the k are small, the same reasoning which led

the substitution of V0(X) by V(X) in the unconstrained case should work

here. (See Wahba (1977), CW, GHW). For that reason, and because V(x) is

much easier to compute, we adopt it here.

We now study the behavior of Kfn,A(tk,z+) as a function of Sk' where

3 (0 ,O,3 ,O ....,O). Suppose fn * is the minimizer of (6.3.2) in Cr

, 'L r,*'°'" ° "



and it is found that the constraints f s) > :4(s. are acti ve for

-. f if) . . . Then f " is also the solution to the minimization

Problem: Find f to minimize (6.3.2) subject to th'e equality constraints

f(s. ) = (s. ), 1 ,2,.. z

Thus, except in the neighborhood of some critical points z wnere the

constraints Just" become active, the dependence of Kf i t. z+6 onn,.k KA

is linear, as can be seen by examining the results of Section 6.2, equation

(6.2.2) where Z linear equality constraints are imoosed.

The following artificial example with qH E n is illuminatina. For

this examole z, k = (fi(f...,...,)"n)) and a~

are n vectors. The minimizer f, =(f~(). ( fn))' of

n n
S(k~f(i)-zi) 2 + 7 -2(i)

i~l izl

subject to

is given by

k. . I

Thus,



k k.
k f , i _ z i ,  z > J ( i )

k 

1

k i i\ k i <

k 
.k

Ki i , I--] -- i . L(i}

Thus, for

aSeZ) k f (i = (k ,2 - ) i of
ki z1

iki ,.

k.

undefined i i

k"i
See Figure 3 for a plot of f (1) and dz ,i : ), as a unction of "I "

For fixed z, the denominator (1-- i i(\,z))2 in cne 3C'IFC, can e

discontinuous function of ' as constraints become active or inactive with

varying N, that is, as ., satisfies

k. : i i , i : 1 2. . . ,

can be conJectured that if n is lare that this will not be a serious

practical problem, but no numerical evidence is available at this time.

The GCVF of (6.4.1) for fixed \ is obtained as follows. or concreteness

we supoose H = H 2 with the norm given by (6.2.4). For given "

supoose the solution f n,, to the constrained minimization problem with

constraints f(sj) ' ,a(s.), j 1,2,...,r has been obtained and the Z

3 .7
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k I +X ~1

(a) fx(1 as a function of z1

k 1

(b) k 1 )1 as a function ofz

Figure 3
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constraints corresponding to j =jl.,...,j2, have found to be active. Hopefully

Zwill not be too large. Then applying the results of Section 6.2,

equations (6.2.11) and (6.2.12) give

F (Kf nX(t1 ) )= A(k)(z-LM- Ia) + Ul- 1

(Kf .(tn)

with a' (( 1 , where

A(X) K(K+nAI) -

K Kn -LM L

where K n is given by (6.2.7) and L and M are nxt and zxz matrices with

entries given by

and

MJ =Q(s. is. u,v 12..,

Therefore, by (6.2.12)

11i I(I-A(X))(z-LM-t l 2

v(X) 2 1' (6.4.8)

and it can be computed as in (6.2.13), provided Z is not too large.

.~~j :etq.,~. 7 "4
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One could define the intrinsic rank of this problem (now dependina on z)

as was done following (6.2.13), however, the meaning is now somewhat blurred.

An outline of the numerical determination of V(,) follows. it is

clear that there is room for the development of an efficient overall

strategy.

1) Minimize V(.) for the unconstrained problem. If the solution to the

unconstrained problem satisfies the constraints, stop. If not, let

0 be the minimizer of the (unconstrained) GCVF, V(; ).

2) Solve the constrained problem with k 0 0 Determine the active

constraint indices Jl ... ,j, for 0 and compute the GCVFC V( O )

according to (6.4.3).

3) Repeat 2) with I =l < 0*

4) If V(xl) < V( 0), continue to decrement k and repeat 2) until a (global!)

minimum if found. If V(Xl) > V(XO), increment % and repeat 2) until

a minimum if found.

It is possible that the discontinuities in V(\) and the fact that the

GCVF involves first order approximations may lead to meaningless local

minima, particularly for small n. We remark that, since the set of active

constraints is likely to vary slowly with X, it is desireable to build this

into the computational strategy. We have found it convenient to work in

units of log k.

"A" -t
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6.5 Other generalizations of the GCVFC

The definition of the GCVFC extends to other problems where (Kf n)(t

is not linear in the data.

There has been recent interest in robust smoothing, which is appropriate

if the errors cannot be considered to have normal distributions, but may

have outliers. For example, a robust smoothing spline is defined as the

solution to: Find ftHm to minimize

n P(f(ti)'z i) + ;(f m)(u))du (6.5.1)

i=l 0

where o(.) is a suitably chosen convex functional. Once can define the

GCVFN (Generalized cross-validation function for non linear problems)

exactly as in (6.4.7), or as

11p((Kfn )(t )-zi)v(X) = n,
1n(1-i Z~laii (A z))'

where aii(x,z) is as in (6.4.1). See Huber (1979), Lenth (1979). When

iterative methods are used to minimize (6.5.1) A(X,z) may be available at

the last step of the iteration. The definition (6.4.1) of V(X) is likely

to be useful in some cases where K is a (mildly) nonlinear operator,

but the state of the art of nonlinear ill posed problems appears not

very advanced at this time.

_1 .
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7. Checking the model

With the advent of sophisticated techniques for recovering f from z,

accurate specification of the "model", i.e. of K becomes increasingly more

important. Frequently K is established from physical principles where

simplifications, approximations and possibly erroneous assumptions have been

made.

In the past it has been commonplace to blame an inability to recover

a reasonable f from z on the failure of the mathematical techniques used.

With better techniques this "excuse" is no longer available.

lerz (1979) and Colli Franzone et al (1979) both discovered serious

inadequacies in their model after satisfactorily testing the validity of

their regularization programs on simulated data. We feel this testing

procedure is an obvious and important step in the analysis of data from

any experiment. The experimenter should be able to construct one or several

test f's that could reasonably represent the major features of f's that might

in fact be present. One then simulates "data" by computing (Kf)(t.) using

the K that will be used in the numerical inversion formula, and simulating

measurement or instrument errors in a realistic manner by %Ionte Carlo

methods. One then applies the numerical algorithm to the simulated data

and determines how well the (known) f is recovered. Aside from easing

the (non trivial!) task of the debugging of the computer program this gives

the experimenter a "feel" for how well f can be recovered from the experiment

assuming that the model K is accurate. At this point inadequacies in the

number and placement of t, ... tn can sometimes be identified.

We always print out the eigenvalues di, from this the intrinsic rank

r can be determined by inspection. In problem cases, it is also a useful

- - - .- - ~ ''A~a' Ir
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diagnostic tool to print out the canonical representers which are associated

* with the largest eigenvalues. Chambless (1979) in a regularization method

involving the "Western" route, or discretization first was able to explain

poor performance of a certain quadrature rule compared to another, by comparing

the associated canonical representers. Once this testing with a "mathematical"

K and synthetic data has been successfully carried out it is very desirable

to run an experiment on the real apparatus with known f. This option is

not always available, but if it is, it can be very valuable, because if f

has been successfully recovered in a synthetic experiment and the same f

cannot be recovered from "real" data, the source of the problem is

pinpointed in an inadequate representation of K or inadequate understanding

of the experimental error.

It would be nice to have a "goodness-of-fit" test for the model K

(more precisely, for Kn). Goodness-of-fit tests of the classical statistical

form cannot be rigorously derived in the context of most ill posed problems

because there are no degrees of freedom for error. However, we will describe

a loose aoproximation to a goodness-of-fit test, based on an analogy with

regression.

To describe the regression situation, let K be an nxp matrix,

o < n, of rank p, and f be a p vector. The classical regression model is

z = Kf +e.

e is as before.

The Gauss-Markov estimate of f is f,

f (K'K) K'z.

-4L

iw
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The data vector z is partitioned into "signal" Kf

Kf = Az, A % K(K'K)- K'

and noise .,

e (I-A)z.

If K is the correct model, then il given by

02 = Jj(I-A)z1 . 
2z

2

n-p Tr(I-A)

is an estimate of 71 and X' = (n-p)az/a2 has the chi-squared distribution

with n-p degrees of freedom. Assuming z2 is known, then x2 can be compared

to the upper 99% point, say of the X2 distribution with n-p degrees of

freedom. Since (I-A)K = 0, (I-A)z - (I-A)c assuming K is the correct model,

and if the true model is actually K* with (I-A)K* t 0, then a2lz2 will tend

to be too large.

By analogy in the regularization case (and reverting to the notation of

earlier sections) the data vector z is partitioned into signal

((Kf n, )( )  .,(Kfn,x n

and noise

S= (I-A(X))z,

where X is the minimizer of V(X). Then

Tr(I-A() )

is an estimate for 9z. Letting Kn: H- En be the operator defined in
eA)

Secion2,it anbe ee tht ome"sgna" cees ito sine I-A,'))4f.
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even if Kn is the correct model. However, II(I-A(X))Knfil should be small

compared to (I-A(x))e!12 for large n. Usually the experimenter has some

idea about the size of 71. Then x(2 : Tr(I.A(X))a 2/aZ can be compared to

the upper tail of a X2 distribution with approximately Tr(I-A(X)) degrees

of freedom. If a2/a2 is very much too large this may be some evidence that

the Kn is inaccurate. If 2/oG2 is too small, the GCVF may be erroneously

attemoting to interpolate the data. Results of any such tests should be

taken with a grain of salt until the properties of the test have been

verified on synthetic data. We also remind the reader that sparse poor

quality data will support or fail to reject a bigger class of models than

plentiful, good data.

L

-
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3. Regularization in extremely large problems. The Landweber iteration and GCV

In computerized tomography (CT) and related indirect sensing problems

the number of data points can be in the many thousands. The computerized

X-Ray tomography problem is actually very mildly ill posed, and there

exist inversion formulae similar to Abel inversion formulae in two dimensions.

See Herman and Naparstek (1977). It is fortunate that the problem is only

mildly ill posed, since this allows the reconstruction of complex images.

The 1979 Nobel Prize in Physiology or Medicine was awarded for work in CT,

see deChiro and Brooks (1979).

Most recent computerized CT systems use transform methods and the

amount of regularization is chosen at the design stage by trial and error

qith real or "phantom" data. This choice typically involves both subjective

and objective evaluation of the resulting picture. (Artzy, Elfving and

Herman (1979), Naparstek, personal communication).

The first commercial machines discretized the problem at the start

and solved the resultant large linear system approximately by Kaczmarz

iteration, also known as "ART". In this Section we discuss only the

Landweber iteration although it appears that similar results can be

obtained for other iterative methods. It has been observed by Miller

(1974), Strand (1976), Fleming (1977), Bjorck and Elden (1979) that the

number of iterations in a Landweber iteration for solving a linear system

plays the role of a regularization parameter. We will elaborate on some of

the ideas in those papers and show how GCV can be used to choose the number

of iterations and other regularization parameters in such a technique

without actually solving an eigenvalue problem.

In this section, Nashed's "Western route" has been taken and the

operator K is assumed to have been discretized to an nxr matrix, say, where

r<n, and n and r are very large. K is considered as an operator from Er
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to EfEr and the model is

z Z Kf +

Let Q be a given strictly positive definite rxr matrix with symmvetric

square root Q /, and let the singular value decomposition of KQ 1/2 def

where 0 is r'xr with diagonal entries d . and let u1,... ur and v1,.. vr be the r

columns of U and V respectively. The ui are n-vectors and the viare r vectors.

Not to worry, we are not actually going to compute U,D or V. The Q-9eneralized

inverse solution K~z of the equation z =Kf is defined as that element f in
Q

Zwhich minimizes f'Q- f subject to Kf = ,where z is the orthogonal projection

of z onto the range of K. is given by

K +z QK'(KQK')+= Q112K' ( KK' ~z

Q

where I&S denotes the usual Moore-Penrose generalized inverse.

Now consider the generalized Landweber iteration

k .f kl SQ'(zKfk-l),k =1,2,...

- (I-SQK'K)f k + SQK'z

with f, 0.

It is necessary that 3 satisfies 3 <2/d~ I . Then

Q_ 1/2 fk (I-3Ql1/2K'KQ 1/2 )Q /2 f kl + 3Q1/ "K'z.

L _ ' ,, v. va
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Let

k Q1/2fk.

SKQ1/2

Then

k (1.aK)fk- + 3'z (3.2)

and for this (ordinary) Landweber iteration it is not hard to show, using

the identity

FI+(t-B)+...+(I-B)k'I]B= -(-B k

for symmetric matrices (see Miller (1974)) that

k= (l-(l'8d3)k-I (z.)

j:d:.j

hence
- 2) ~k-l (z,u1)1/

fK aj:d >0 (l-(1-8d) d)- - Ql/2v (8.3)

To get f k from Kz, the component of K'z in the direction of 01/2v is

"damoed" by the factor (l-(1-8d z)kl), which decreases to 0 as d

decreases and clearly provides a useful form of regularization. For

comoarison, the minimizer of

1 - KfJI 2 + ,fQ

is

= 1 ( ) Q1/2v
n,X j:d.>0 l+nX/d.2  dj

3AV"

* ~ IAT ".' -
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so that in the Landweber iteration the "damping factor' (1-0-23d, )k

replaces the "damping factor' l/(1+nXld.2 ) which occurs in regularization

in the form in which we have been studying it earlier.

One can obtain the GCVF for f without solving for the d.j or u.

explicitly as followrs: Since KO 1 v.i diu., we have

Kf (1-(1-3d 2 )k-I )(z,u.)u.. (8.4)
j:d.>0 3

This equation (8.4) defines the nxn matrix A(k2a) which plays the role of

ACO\ in the GCVF. Here A(k,2) JAW', where A is the rxr diagonal riatrix

with 22 t entry (1-(1-8d.-) Z). Thus, the GCVF 11(k,3) is given by

V~k,3 Jz-Kf' ,

v~k,3) [3Tr(I-iKQK' )k-lJ2
n

Assuming that (1-&KOK') can be multipled by itself k-i times, the GC'IF can be

computed for large problems of this type. One computes '/~s, (2,3),....

until a minimum is found. The choice of Q is made, if possible, based on

the belief that the true but unknown f has the property that f'01f, is

relatively small. This is completely analogous to choosing an r.k.h.s.

with r.k. Q(s,t) with the belief that !f:is small, where is the

iorm induced by Q.
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ABSTRACT

We discuss a number of topics related to the practical solutidn df ill
posed problems given noisy data as it might arise in an experimental

1
situation. 'he model is zi= 1 K(ti tt)f(t)dt + 4 i 1, .. n, where

<__---* 0

z zzl . 1)' is. the data vector, (s ) is 3 vector of

>deoendent zero mean random variables w,.ith common unknoiwn varia~nce, K is.J k on, and it is desired to estir-ate f giiven z. '.e first define the

in~trinsic rank of the probl:2m .here f'K(t. ,t)f(t)dt is .nown exactly. Th is
01

~etlni"ion is used to provide insight into the circumstances in .-hich one
may expect to estimate f -..ell, -noderately ,-ell, or- poorly.1'The sansitivity

*of a rec-ilarized estimate of f to the noise is made explicit. After giving
the intrinsic rank of the examples of first and second derivative, Abel's

* equation and Fujita's equation, it is argued that the first three are only
mildly ill posed and f should be amenable to accurate estimation by the

athod of renularization. The method of Generalized Cross Validation lr"CV)
for choosing the regularization parameter is described and numerical
ra sult-s -or the estimation of first and second derivative from noisy lata
are given. Tw.-o numerical alaorithms for obtaining a regularized estimate
with !3CV are detailed. The second uses a B-spline basis to allcw !-he
,handling of large data sets. 7hs use of outside information in the estimation
of f is discussed. ,,Three types of outside information ire of interest.
1) Several values of~mo-tirutts linear functionals On f 11re koon approxi mataly,
2) this same informatiO is Given exactly and 3) f is '%how-.n ta be in a
closed convex set, in particular f non-negative. The GCV estimnate of the
reaularization parameter has"t- be modified in case 3) ifr the-closed
convex set is not a linear mani'*o4, To do this -ae Idevelop the notion of
GCV for constrained problerms. Next, we discuss the probl:2m of. checking
the validity of the r~dl K, and priovide a crude goodnes s-of-fi-t test.
Finally we end by describing the (known) result that the nurber k of
iterations in a Landweber iteration for solving large linear systemns is
a orm of regularization parameter. Wle then show how GCV can feasibly

be used to choose k in very larga problems like those arising in ccomoutari 7ed
t.. ography.
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