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AB$TRACT

The demand for higher accuracy in inertial navigation systems has

pushed the development of more accurate accelerometers and gyroscopes.

Inertial navigation systems (INS) can now be built sith error stemming

mainly from the uncertainty of the vertical along the flight path [Savet,

1970]. The deflection of the vertical is produced by mass anomalies on the

surface of the earth. The error can be corrected by measuring the

gravity gradient and using it in the navigation equations. This possi-

bility has generated intensive interest and research in the field of

gravity gradiometry.

The lower bound of the resolution of room temperature gravity

gradiometers is thermal (Brownian) noise. By lowering the temperature to

4 K, the noise level is smaller by an order of magnitude. A comparatively

simple gravity gradiometer can be built using some newly developed super-

conducting technology.

In this research, the feasibility of a cryogenic gravity gradiometer

is demonstrated. For a baseline of 0.1 m, the instrument has a theoretical

resolution of 1072 E (E~tvos). A pair of superconducting accelerometers

were constructed and tested in a push-pull arrangement. The resolution of

the experimental unit is estimated to be about 50 E.

A theoretical study to model the responses of the gravity gradiometer

to the various external inputs is conducted. The mathematical equations

derived are used in the design of the loaded diaphragm proof mass. The

error sources of the gravity gradiometer are identified. Their error

contributions are reduced where possible; otherwise limits on the errors

are set. Test facilities, especially the gravity gradient generator, are

designed and built.

The theoretical investigations and experimental results show that

the noise-induced vibrations of the proof masses of the gradiometer at

their natural frequencies must be damped. To minimize additional thermal

noise produced by resistive damping, feedback damping is used. The

• -iii-



theory of electronic damping for the cryogenic device is developed. An

experimental circuit for the "noiseless" damping of a single accelerometer

was built. The theoretical predictions were validated by the test results.

In the course of the research, the art of fabrication of the various

gradiometer components are refined and improved to a high degree. For

significant improvement of the sensitivity of the accelerometer, new

technology has to be explored and developed. Building the sensing coil

of the diaphragm by thick film deposition is but one of the techniques.

For some missions, such as geophysical surveys using a satellite-based

gravity gradiometer, the resolution of the instrument required is an order

of magnitude better than those of current room temperature gravity gradi-

ometers. The cryogenic gravity gradiometer is found to be a viable alter-

native.
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Chapter I

INTRODUCTION

A. BACKGROUND

The demand for higher accuracy In inertial navigation systems has

pushed the development of more accurate accelerometers and gyroscopes.

Inertial navigation systems (INS) can now be built with error stemming

mainly from the uncertainty of the vertical along the flight path [Savet,

1970]. The deflection of the vertical is produced by mass anomalies on the

surface of the earth. The error can be corrected by measuring the

gravity gradient and using it in the navigation equations. This possi-

bility has generated intensive interest and research in the field of

gravity gradiometry.

The first gravity gradiometer was built by Baron von E6tvos in 1888.

It was a simple torsion-balance type of device with sensitivity compar-

able to the modern gravity gradiometers. Despite its long integration

time, it was once employed for geophysical survey until it was supplanted

by the more versatile gravimeter. Other than navigation, the gravity

gradiometer may be used in satellite geodetic survey and geophysical

survey from an aircraft. For these purposes, the moving-base gravity

gradlometer must have a sensitivity of 0.1 to I E (Etvos) (, 1log/m)

with 10 sec averaging.

The measurement of gravity gradient involves detection of differ-

ential force of very minute magnitudes typically of the order of 1012

Newtons. It is imperative to isolate the instrument from environmental

noise. In addition, the instrument design must facilitate separating

the signal from the residual noise. The approach to minimize noise

through isolation is exemplified by the flotation gradiometer built by

Trageser (1970] of the Draper Laboratory. The other approach of spectrum

separation through rotation is adopted by Bell Aerospace [1977] and Hughes

(1973]. Regardless of the approach, the fundamental limit to instrument
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sensitivity is the thermal noise of the sensor. For the gradiometer

design outlined above, the best sensitivity achievable for the physical

size allowed is 1 E. Thus it seems appropriate that a totally differ-

ent approach is needed to overcome this problem.

To this end a novel idea has been provided by a recent development

in the field of Superconductive Physics. Paik (1974] developed a super-

sensitive transducer to detect the minute vibrations induced in a 1 ton,

cryogenically cooled and magnetically levitated gravitational wave

antenna. The antenna concept was conceived by Fairbank and Hamilton of

Stanford in 1965, to minimize thermal noise of the antenna owing to molec-

ular Brownian noise. The works of Joseph Weber [1969, 1979] on gravita-

tional wave detection in 1969 intensified the research in this field.

In 1974, Paik reported his resonance transducer.

The transducer is mounted on the end face of the antenna. It

has a thin diaphragm as the proof mass. Vibrations of the antenna

induced by gravitational wave are coupled to the diaphragm which is

tuned to the frequency of the antenna. The vibrations of the diaphragm

are detected using a superconducting quantum interference device (SQUID)

[Lounasmaa, 1974]. At Stanford, diaphragm displacement down to 10 -16m

has been resolved.

As Paik's transducer is essentially a specific force device, it is

straightforward to use it as an accelerometer. In this research, a

gravity gradiometer has been constructed of a pair of these superconduct-

ing accelerometers and some specific superconducting technology has been

developed. At 4 K, the thermal noise of the cryogenic gradiometer is

ten times smaller than room temperature equivalents. In addition, there

is very little creep since materials are very stable at the low temper-

ature. The cryogenic space also eliminates error due to thermal gradient.

Moreover, superconducting materials are perfect electromagnetic shields.

This property and some special circuit technology allow detection of

extremely small signals in a virtually clean environment. A theoretical

sensitivity of 0.1 E for the cryogenic instrument is readily achieved.
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B. THESIS OUTLINE

In Chapter II, a survey of modern gravity gradiometers is given.

It is followed by a review of the properties of superconductivity used

in the superconducting accelerometer. The accelerometer is then des-

cribed and its thermal noise calculated. Using the output relation of the

accelerometer, the condition for optimal performance is determined.

*Although this chapter is primarily a review, the work on optimal per-

formance is original.

The analysis to optimize the sensitivity of the accelerometer is

covered in Chapter III. This leads to the design of a "loaded" dia-

phragm. The equations governing the deflection and the frequency of the

diaphragm are determined. The signal-to-thermal-noise ratio is used

as the criterion for the optimization.

The system descriptions of the two models of superconducting

gradiometers are given. The first model utilized the concept of differ-

encing he output currents of two accelerometers. This is the Current

Differencing Gravity Gradiometer (CDGG) which is the principal research

subject of this dissertation; the second, measuring the displacement

difference of two proof masses directly. It is the Displacement Differ-

encing Gravity Gradiometer (DDGG) which is currently being built by

E. Mapoles at Stanford.

Chapter IV determines the relation between dynamic range, the

sensor Q, and the thermal noise of the cryogenic accelerometer. An

'electronic' cooling technique to reduce the mechanical Q is investi-

gated, and the design of an electronic feedback is given In addition,

various error sources of the gradiometer are given, some design criteria

are derived, and isolation requirements are determined.

In Chapter V the various hardwares and techniques relevant to the

cryogenic gradiometer are described. Topics covered include supercon-

ducting joints, ultra-low resistance and transformers.
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The electronic circuit implementing the feedback damping of the

previous chapter is designed. Some experimental results validating the

theoretical predictions are included.

Three methods of generating test gradient signals are also given

in this chapter.

In Chapter VI, the experimental results of the testing of the

Current Differencing Gravity Gradiometer are documented. The experi-

mental set-up and procedures of these tests are described.

Conclusions and Recommendations are given in Chapter VII.

C. CONTRIBUTIONS

The principal contributions of this dissertation are as follows.

C.1 Accelerometer Optimization

(1) Development and optimization of the loaded diaphragm sensor.

(2) Determination of the optimal values of the variable parameters

of a superconducting accelerometer.

C.2 Gravity Gradiometer

(1) Derivation of the current differencing circuit and the math-

ematical output equation of the gravity gradiometer.

(2) Investigation of the error sources of the gradiometer.

(3) Construction and testing a prototype of the current differ-

encing gravity gradiometer. Design and construction of affil-

iated hardware.

C. Electronic Cooling

(1) Conceptualization of feedback to produce damping without in-

creasing noise proportionally.

(2) Experimental verification of the application of electronic

cooling to the superconducting accelerometer.
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Chapter I

GRAVITY GRADIOMITER FUNDAMENTAIS

The use of a superconducting device to measure the gradients of

a gravity field becomes feasible following the work of Paik (1974].

Paik developed a very sensitive superconducting specific-force meter.

In this chapter, the nature of the gravity field will be analysed and

some of the instruments currently under development will be discussed.

The superconducting accelerometer will be described briefly after the

relevant principles of superconductivity have been reviewed.

A. GRAVITY GRADIENT FIELD

The gravitational field of a mass can be described by classical

potential theory (Savet, 1970). The gravitational field, F, outside

a body is solenoidal and unrotational in nature. Denoting its scalar

potential by U(x, y, z), these basic properties can be written as

S= -F (2.1a)

V U 0 (2.lb)

xF 0 (2.1c)

using standard vector notations. For a point mass, M, its gravi-

tational potential at distance r is given by

U(x, y, z) = GM (2.2)
r

where G is the universal gravitational constant with a value of

6.67 x 10 11 N-m2 /kg 2 .

From (2.1), we deduced that U(x, y, z) and its gradient ;U are

harmonic functions. Hence the first and second derivatives have non-

zero values in space, unless the potential is everywhere constant.
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That is to say, any conceivable field, except the constant field, is

nonuniform in space. Being a vector field, changes arise from both

changes in magnitude and direction. Purthermore, while the field

itself varies as square of the distances, its gradient varies as the cube.

These considerations offer great possibilities for exploration if

the field itself can be eliminated in the measurement of a relativel.

weak gradient.

The term "gravity gradient" denotes the I second partial space

derivatives of the potential, usually arranged as a tensor

r X P yzi (2.3)

rzx rzy rzz

The unrotational structure of the field yields three equations as a

result of (2.1c). They are

* y (2.4a)

Fz = rzx (2.4b)

rzy = ryz (2.4c)

The solenoidal feature viewed in a stationary system yields another,

viz.,

rx+ y + rzz = 0 (2.5)

which is the Laplace equation. This can be derived from (2.1b). Thus

only five gradient components are independent and they form the compo-

nents of a second-rank covariant tensor. One gradiometer of the type

discussed in this thesis can measure two of these components. Thus a
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combination of three gradiometers arranged in the proper spatial orienta-

tion would allow for the determination of the tensor. Since six

quantities are measured when only five are independent, the extra

measurement can be used as a redundandy check. Such orientations have

been worked out by Pelka £1977] and Trageser (1970].

B. GRAVITY GRADIOMERE

Gravity gradiometers can be used instead of gravimeters for de-

tailed geophysical surveys. Unlike gravimeters, measurements using a

gravity gradiometer could be done in a moving vehicle. Such a system is

capable of producing free air gravity anomaly data of essentially the

same quality as those obtained by fixed site gravimeter observation and

leveling (Savet, 1970].

Another application of the gravity gradiometer is the correction

of the deflection of the vertical in inertial navigation systems (INS)

[Crowley, 1959]. The major error source of a state-of-the-art INS

is the uncertainty in the vertical. Roberson (1961] and Diesel [1964]

demonstrated the determination of the vertical using gravity gradient.

A triad of three gradiometers, mounted on the same platform, will

supply the required inputs to reduce this error [Pelka, 1977).

In addition, gradiometers can be orbited in satellites for geodesy

surveys [Forward,1973]. These and other applications (Beyer, 1973]

require an instrument sensitivy of 1 Ebtvos (E) or better (Heller, 1975].

The EUtvos is defined as

I Edtvos 10-9 sec . (2.6)

The baseline (distance between c.g.'s of proof masses) of a typical

instrument is 0.1 meter. Thus a gradiometer of 1 E sensitivity must

be able to measure a force differential of 10711g (earth's gravity)

over its baseline. This is especially demanding in the presence of

earth's gravity field.
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Some of the gradiometers being developed are basically a matched

pair of accelerometers separated by a given distance. The others

sense the torque produced by the gradient field on the sensor. Since

the best commercially available accelerometers have a quoted sensitivity

of 10 -7g, building an accelerometer-derived instrument would not be

easy. Five gradiometers presently in existence or under development

are described in the following sections.

B-1 Hughes Rotating Mass Gravity Gradiometer

* The rotating mass gradiometer is a resonant spring-mass system

with a torsional vibration mode. Figure I-1 gives a schematic of the

instrument [Forward, 1973]. The sensor rotates about its torsionally

resonant axis at an angular rate which is exactly half the torsional

resonant frequency. The differential force resulting from the gradient

of a gravity field excites the vibrational modes of the structure of

the sensor. The differential torque amplified by the resonance of the

structure is coupled into the sensor output at twice rotation frequency.

This instrument has the following features:

* linear acceleration is cancelled mechanically;

* gradient signal appears at twice frequency while system noise
appear at the rotation frequency;

€ signal is preamplified by structural resonance, and

* doubly differential design distinguishes gradient torques

from case torques.

This instrument has achieved a sensitivity of 1 E with its sensitive

axis horizontal. However, it has a significant bias with question-

able stability.

B-2 Bell Aerospace's Rotating Gravity Gradiometer

Bell's instrument consists of four Bell accelerometers mounted

equidistance from the center of a rotating disc platform as shown in

Fig. 11-2. Their sensitive axes are tangential to the circle and are

therefore insensitive to centrifugal acceleration.

The matched accelerometer pairs, al, a2 and a3, a4  sense the

differential acceleration of the gravity field. Similar to the Hughes'
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FIG. 11-1 HUGHES COMPANY ROTATING GRAVITY GRADIOMETER
[from Forward, 1973]. The spin frequency of the
rotating structure, fn, is exactly half the tor-
sional frequency. As a result of the rotation, the
gradient signal has a frequency of twice the spin
rate. This signal is mechanically amplified by
the structure and detected by a transducer at the
torsional spring.
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FIG. 11-2 BELL AEROSPACE CORP. 's ROTATING GRAVITY GRADIOMETER
[Bell, 1977]. The accelerometers are placed at
equal radial distance from the center of the rota-
tion platform and aligned with their axes tangen-
tial. The output difference of a matched pair of
radial accelerometers is a function of the gravity
gradient modulated at twin-spin rate. The gradient
signal is isolated from low frequency noise and
other rotation related environmental noise.
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device, rotating the disc modulates the gradient information which

appears at twice frequency.

The force rebalance accelerometers must be built to achieve an

acceleration sensitivity of 10711g in the narrow bandwidth of the

output from a synchronous phase sensitive demodulator at twice the

rotation frequency. Brownian noise becomes the limiting factor at

acceleration below 1078g in the standard instrument. To overcome

this limit, modification of the proof mass and internal damping were

necessary. Sensitivity of close to I E has been demonstrated and

reduction of many systematic errors is in progress.

B-3 Draper Lab's Flotation Gravity Gradiometer

The flotation technology used in this instrument by Draper Lab.

is derived from their successful flotation gyroscope. Figure 11-3

shows a sketch of the spherical float of the gravity gradiometer

fTrageser, 1970; Trageser, 1975). An earlier model has a cylindrical

float with the dense material forming two diametrically opposite

strips down the inside of the cylinder.

The sensor body is floated in a fluid which fills the gap between

the float and the gradiometer housing. The freon fluid density provides

nearly perfect support for the float by neutral buoyancy. Small cen-

tering forces up to one dyne are applied by means of electric fields.

Temperature control is used to adjust the buoyancy to minimize these

forces. To achieve the buoyancy required, the temperature of the fluid

must be maintained to a few tens of 106 F.

The mass of the float is concentrated in two weights as shown.

The gravity gradient of the earth produces a small torque of close to

1 dyne-cm/E. This torque acts on the float to produce a rotation

relative to the stabilized housing. The angle of rotation is sensed

and is applied as a feedback restoring torque electromagnetically.

This torque is a measurement of the gradient.

The flotation gradiometer has a sensitivity fundamentally limited

by Brownian noise. This limits the sensitivity to 0.104 and 1.07 E

at integration times of 10 and 1.80 sec respectively. Hardware
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FIG. 11-3 DRAPER LAB'S FLOTATION GRAVITY GRADIOMETER
[Trageser, 1975]. The flotation sphere is immersed
in a fluid and held in neutral buoyancy. The feed-
back torque is generated through field windings to
maintain the orientation of the sphere. The feed-
back current producing the torque is a measurement
of the gravity gradient.
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development problems have slowed the experimental evaluation of other

systematic error sources.

B-4 Micro-Balance Gravity Gradiometer

Figure 11-4 shows a sketch of the gravity gradiometer [Thompson,

1970]. The sensor is essentially a sensitive fused quartz balance. The

two proof masses are 10 gm each and a gradient will cause the balance

arm to tilt through a certain angle of deflection. This angle is pro-

portional to the gradient and can be calibrated. It can be measured

optically or by capacitive transducer. The sensitivity is adjusted by

varying a small weight on the central hook.

This instrument is not much different from the torsion balance

used by Baron von Edtvos in 1888 and has the same limitation. Thompson

[1970] claimed that this gradiometer can be operated in a moving vehicle,

particularly in the quiet environment of a submarine or a high flying

aircraft. The assertion is not generally accepted and has not been

demonstrated.

B-5 Horizontal Gravity Gradiometer

The design by Hansen [1971] of the horizontal gravity gradiometer

made use of the ultra-sensitive tiltmeter technology of Hughes Research

Lab. Four servo-controlled tiltmeters are mounted under a single quartz

flat as shown in Fig. 11-5. The horizontal gravity gradient of the earth

produces an apparent tilt of the vertical at each bubble. The gradiometer

contains eight servomotors, two for each bubble. These are controlled

by currents which are driven by the motion of the bubbles, producing

forces to level, bend, and twist the quartz flat until the bubbles

stop moving. The three components of the gradient in the plane of the

quartz flat can be read from the currents in the servomotors. Sens-

itivity of the device was recorded at 10 E.

As a result of its design, the gradiometer is limited to measure

only the horizontal component of the gravity field.

-13-
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- QUARTZ HINGE

FIBER

FIG. 11-4 MICROBALANCE GRAVITY GRADIOMETER [Thompson, 1970).
The angle by which the balance beam deviated from
the horizontal is a function of the gradient of the
gravity field. The sensitivity of the balance
is adjusted by raising or lowering the small mass
attached to the center of the beam.
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FIG. 11-5 HORIZONTAL GRAVITY GRADIOMITER. The gradiometer

consists of four bubble tilt meters placed on an

optically flat quartz disc. To maintain each

individual bubble fixed in its reference frame,

each individual bubble fixed in its reference frame,

the disc is contoured using the electromechanical

thrustors associated witb each bubble. The gradiometer

model will output the gradient using the currents in

all thrustors as input.

-15-
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B-6 Vibrating String Gradiometer

Of all the accelerometer principles, the vibrating string accel-

erometer is the only one that naturally lends itself to the design of

a gradiometer [Thompson, 1965; Thompson, 1966] [Forward, 1973].

The schematic of the vibrating string gradiometer is given in

Fig. 11-6. In this instrument, two proof masses are identically sus-

pended by their supports and restraining springs. The relative motion

of the masses under different acceleration is sensed by the change of

the vibration frequency of the spring as its tension changes. The

requirement for matching masses, maintaining proper bias tension, and

the radial strain sensitivity which is less suited to rotation than the

shear configuration employed by Bell, have made it a less desirable

candidate for development for moving base applications.

This concept is revived in the displacement differencing gravity

gradiometer proposed independently by Paik of Stanford. A brief out-

line of the device is given in a later section.

B-7 Sensitivity Dependence on Size

Two observations are made from the survey of the gradiometer. The

resolution of all five instruments under development are limited by

Brownian noise at their present size.

The second relates the sensitivity of a given instrument to its

size. In all cases, the sensitivity of the instrument, a, is propor-

tional to 1/o where w 0 is the natural frequency of the proof mass.
00

The time constant, -, is proportional to /w C where C is the

damping ratio. The relations are

c a (2.7a)

W0

1 (2.7b)

tor

Combining the two equations give

a/2T constant . (2.8)
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This universal relation shows that to improve the sensitivity of a given

instrument, one has to accept a longer time of response.

Equation (2.7a) shows that the sensitivity of the instrument can

be improved by reducing the natural frequency. The equation relating

the natural frequency of a transducer with its size and weight is typically

nonlinear and unique to the given configuration. Thus detailed analysis

of the dependence of the sensitivity of a sensor upon its size can only

be done on a case-by-case basis. Such an analysis for the diaphragm

proof mass used in the cryogenic accelerometer is given in Ch. III.

On the other hand, small vibrations of the fundamental natural

frequency of most proof masses can be approximated by the simple har-

monic motion of an equivalent simple pendulum. If A is the length
eq

qi the equivalent simple pendulum, the natural frequency can be expressed

as

40  (2.9)
eq

Substituting (2.9) into (2.7), we have

Y a e(2.10a)
eq

and

Peq (2.lOb)

with g being a constant. Thus in the equivalent model, sensitivity

is directly proportional to the size of the instrument.

The Brownian noise of a proof mass in the low frequency range of

the spectrum is given by Eq. (E-5). The acceleration noise expressed

in mean square is given in Eq. (4.1). The equation (4.1) shows that

when the mass is increased or when the natural frequency is decreased,

the Brownian noise power is reduced. Thus, from the consideration of

sensitivity and noise, it is advantageous to have as large and as heavy

an instrument as possible. The designs of some seismographs reflect

these concepts where the long response time is acceptable.
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For the moving base applications envisioned for the gravity grad-

jometer, a design baseline of 10 cm is the size constraint. Given

this constraint on the physical size, reduction in the natural fre-

quency becomes an exercise for ingenuity. For the diaphragm proof mass

studied in this research, the design is given in Ch. III-A-4.

B-8 Gradiometer Design Considerations

The gradiometer studied in this research is built using a pair of

accelerometers. The requirements are

a) achieving accelerometer sensitivity of 1078 g or better,

b) matching the two scale factors to at least 1 part in 108

c) calibration and having a built-in stability such that the scale

factors remain matched with the passage of time,

d) tolerances to large common mode accelerations (1 g or more)
for moving base operation.

Since the force to be measured is extremely small, gradiometer

designs must be immune to the following: magnetic field, electrostatic

field, thermal gradient, and acoustically coupled noise.

These are very stringent requirements. In view of these, the

properties of cryogenics look very promising. The feasibility of using

the cryogenic technology to overcome some of the fundamental limitations

is investigated in the next section.

C. SOME PRINCIPLES OF SUPERCONDUCTIVITY

In the previous section, the sensitivity of an instrument is

related to its natural frequency in (2.7a). The sensitivity of an

accelerometer is the smallest acceleration it can detect in a totally

noise-free environment. Even when all the external noise is eliminated V
by careful isolation, the noise produced by the Brownian motion of the

molecules in the proof mass itself remains. It is noted in the survey

that the gradiometers are currently measuring gradient down to the

thermal noise level. Further improvement in sensitivity will be meaning-

ful only if the thermal noise can be reduced.
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From the Nyquist Theorem, the voltage noise of an equivalent resistor,

R, of a proof mass is

(v 2 = 4kRT f (2.11)

The noise is expressed in mean square volt for a given 1 Hz bandwidth.

The Boltzman constant is k, R is in ohms, and T is in Kelvins.

For room temperature devices, the only way to reduce thermal noise

is to reduce R. This is the equivalent resistance that accounts for

the internal dissipative losses in the molecular structure of the

material. There is no easy way to reduce these losses significantly.

On the other hand, lowering the temperature would reduce the thermal

noise and can be done readily. Most materials undergo a radical change

in their physical properties at low temperatures. The internal

losses of the materials are reduced significantly. A notable example is

lead, which will ring when struck at cryogenic temperatures. From

experimental measurements of the Q's of the resonant vibrations of

niobium diaphragms studied in this research, losses are reduced by a

factor of at least 100. Coupled this with the reduction of temperature,

the root mean square value of noise is at least 80 times smaller at

cryogenic temperatures. Thus the potential for improvement by going

to cryogenics is quite high. Owing to other noise sources, this poten-

tial improvement has not been achieved. Chapter II-D-3 discusses the

actual sensitivity of the cryogenic accelerometer.

Superconductivity also offers some new technology and properties

that are useful in the design of a gravity gradiometer. Niobium, the

material used in the gradiometer is a perfect electromagnetic shield

and has great structural stability when it is superconducting. The

superconducting quantum interference device (SQUID) is an extremely

sensitive flux detector and can be employed to make an extremely sensi-

tive position detector.

H.J. Paik (1974] has developed a very sensitive cryogenic seismic

sensor. The resolution of the readout of this specific force meter is
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10 cm which, at its design resonant frequency of 860 Hz, is equivalent

to an acceleration sensitivity of 3 X 10-1 0 g. This accelerometer is

described in the next section. For those who are unfamiliar with the

properties of superconductivity, a brief introduction will be given here.

The details of these properties can be found in the literature [Rose-

Innes, 1969].

When the temperature of a superconducting material is lowered

gradually, there is a temperature below which its resistance to the flow

of an electric current is absolutely zero. Since there is no resistance

to dissipate the energy, a current flowing in a superconducting ring will

flow forever. The temperature at which the transition from normal to

superconducting occurs is known as the critical temperature (T ). For
* c
niobium, the material used in the construction of the accelerometer, Tc,

is 9.3 IK. This is the highest transition temperature among the metallic

elements.

As the material becomes superconducting, it also expels all magnetic

flux from its interior provided the magnetic intensity is below a certain

level. This property of perfect diamagnetism is known as the Meissner

effect. As the applied magnetic intensity, Hat is increased, it will

reach a critical value, Hc . At this point, the magnetic field will

penetrate into the material and cause the material to revert to normal.

This will occur even though the temperature is kept below T . When thec

transition is abrupt, the material is known as Type I superconductor.

When the transition is gradual, the material is known as Type II. Niobium

lead is Type I and niobium-titanium (T-48) is Type II.

Thus superconducting materials form almost perfect electromagnetic

shield [Cabrera, 1973]. Moreover, the total magnetic flux threading a

superconducting loop cannot change so long as the circuit remains

resistantless. This can be expressed as

S= LI = constant (2.12)

Thus if the inductance L is increased, the persistent current, I,

will decrease to keep magnetic flux $ constant. This relation is the

fundamental principle upon which the accelerometer is designed. We have

-21-
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LII I ' (2.13)

giving the decrease in current as

L - = L L. (2.14)

L1

This change in current can be detected by the SQUID. Figure II-7a is

the schematic of such a circuit.

LSQUID SQUID
L L L

2 3

(a) Single Coil Circuit (b) Twin Coils Circuit

FIG. 11-7 SCHEMATIC OF VARIABLE INDUCTANCES.

The inductance L is modulated by the displacement of a super-

conducting surface in its vicinity. The stored persistent current I

will change per Eq. (2.14). This current flows through the input coil

of the SQUID (superconducting quantum interference device). It is

an unsound arrangement since any inductance changes not associated with

the displacement will produce a current change in L3.

To rectify this, a matched pair of inductance coils are placed

on either side of the surface. It is assumed that the surface is thin

and flat. At equilibrium, the stored persistent current flows through

LI and L2  and none flows through L3 , Fig. lI-7b. Thus I = -1

1I = 0. If the surface is displaced towards L L will decrease and

L1 will increase. The differential current due to this "push-pull"

effect will be sensed by the SQUID. This is the basic transducer prin-

ciple used in the superconducting accelerometer [Paik, 1974]. The

equations relating the differential current and the displacement will

be given in the next section.
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The SQUID referred to above is the most sensitive flux detector

known today. The reader is referred to the literature [Lounasmaa,

1974] for a thorough discussion of its physics. The block diagram of a

radio frequency biased SQUID is shown in Fig. 11-8.

Referring to Fig. 11-8, the single weak link junction which com-

pletes the loop of the superconducting ring is the sensor. A small rf

coil, LrfP is inserted into the hole of the superconducting ring. This

coil forms a resonant circuit with a superconducting capacitance which

is connected in parallel. An rf oscillator driving the Lrf - C rf

circuit at the resonant frequency is loosely coupled to the tuned

circuit by the small variable capacitor. The low frequency sweep

is used to tune the circuit and provides input signal for calibration.

The change in the resonant circuit due to an internal flux is detected

by the phase sensitive detector and nulled by the feedback path of the

integrator. The voltage of the integrator output is then a measure of

input flux.

The sensor is effectively a parametric up-converter in which a

d-c or low frequency input signal is mixed with an rf bias signal.

The input signal appears as sidebands of the bias signal and is detected

as an amplitude modulation of the total signal level.

The flux change tb in the SQUID produced by an input current

lI is

= MAI (2.15)

where M is the mutual inductance of the input coil to the SQUID.

Negative flux feedback is provided by the phase sensitive detector and

integrator to cancel the flux change. The voltage in the feedback loop

provides a highly linear readout of the input.

The commercial SQUID package used in our experiments is provided

by SHE Corporation in San Diego. The output voltage-to-input current

gain is 20 V/AA. The noise in the system is contributed mainly by the

SQUID and has the characteristics shown in Fig. 11-9. In the frequency
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FIG. 11-8 BLOCK DIAGRAM OF AN RF BIASED SQUID [modified

from Lounasmaa, 1974]. In simplest terms, the
feedback circuit comprising the rf amplifier,
phase sensitive detector, and the integrator
will keep the flux inside the superconducting

loop constant. A low frequency current flowing

in Ls  will be detected by the SQUID and the

integrator will drive a current through Lrf

~that will cancel the effect of the input current.

The voltage output of the integrator is a measure

of the input current.
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FIG. 11-9 COMPUTER ANALYSIS OF THE LOW FREQUENCY NOISE

SPECTRUM FROM A TSQ SENSOR AND SHE CORP. MODEL
330 SQUID ELECTRONICS (SHE, 1976]. The rf

bias frequency is 19 MHz. Total noise output,

curve A, contains a contribution of 1.2xlO- 2 8 J/Hz

due to a 29 resistor connected across the sensor
input terminals while the measurements were being

taken. Curve B is the residual "white" noise

attributed to the SQUID and electronics.
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range of 0.1 Hz to 5 kHz, the detector noise is about 1.1 x 10 -5A

rms/z. Note the 1/f noise starting at 0.01 Hz.

In a typical setup, the SQUID may be able to resolve flux change
1-15

down to one part per thousand of a flux quantum (2 X 1 Wb). Evi-

dently, meticulous care must be used to shield the SQUID from electro-

magnetic interference. Fortunately, superconductors are themselves almost

perfect shields. A hollow lead cylindrical shield surrounding the

vacuum space is a standard feature of our experiments. Cabrera [1974]

has shown that the magnetic field inside a cylinder with an open end may

be given, on the center line of the cylinder for the axial component, by

-3.4z/r (2.16 a)Hz  = Hoe

and for the transverse component, by

Ht  = Hoe-0e 8zir (2.16b)

where H0 is the uniform external field, z is the depth from the

open end, and r is the radius of the hollow cylinder. For r = 10 cm

z = 20 cm, Hz and Ht are much smaller than the external field.

We conclude the great mechanical stability and superior thermal
isolation at the cryogenic environment minimized the difficulties of

building a sensitive gradiometer. The provision of the cryogenic space

is an inconvenient complication which is a serious limitation for moving

base operation.

D. SUPERCONDUCTING ACCELEROMETER

D.1 Principle of Accelerometer

The accelerometer used in this research was developed by Ho Jung

Paik of Stanford University [Paik, 1974; 1976). It was developed as a

resonant detector of gravitational radiation generated by cosmic events

such as supernovae. It is a passive specific-force meter with a thin

-26-
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(0.017 in.) circular niobium diaphragm as a proof mass. The diaphragm

and its rim support are machined out of a piece of solid stock of niobium.

The flatness of the diaphragm is maintained to optical quality. The

diaphragm is heat treated to relieve stress and electro-polished to

improve the quality (Q) of its resonance. A typical diaphragm is shown

in Fig. II-10. Modified diaphragms with higher acceleration sensitivity

are discussed in the next chapter. The relevant information of the

diaphragm are:

Material: Stanford grade niobium;

Weight (diaphragm alone): 30 gm;

Diameter (diaphragm alone): 3.5in.;

(rim inclusive): 5 in.;

Diaphragm thickness: 0.017 in

Rim thickness: 0.6175 in.

Two pancake-shaped coils are placed very close to either side of

the diaphragm. These coils are wound spirally of 300 turns of niobium-

titanium wire 0.0025 in. in diameter in a single layer on a G-10 former.
The G-10 formers are mounted on niobium backup plates. Niobium-zir-

conium is used when the supply of niobium becomes depleted. A cross-

section view of the accelerometer is shown in Fig. II-11. The G-10 is

used for its magnetic properties and its thermal expansion coefficient

which closely matches that of niobium. McAshan, a research physicist

at Stanford, came up with the idea of winding the coil in the narrow gap

produced by a lucite disk and the G-10 former [Paik, 1974]. Epoxy is

used as the binding agent which also served as the lubricant during coil

winding. The cover plates and the rim of the diaphragm formed a complete

protective enclosure for the diaphragm producing a rugged instrument.

The niobium enclosure also serves as superior electromagnetic shield

against interference.

The pickup coils have the same inductance, say, Lot when placed

at the same distance d from the diaphragm. When the diaphragm deflects
under acceleration, the inductances vary with distance, increasing as the
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[from Paik, 1974].
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spacing increases and vice versa. In the region of interest, the change

of inductance AL, may be considered to be directly proportional to

the equivalent displacement, x, viz.,

L0

-L x (2.17)
Id 0

where 1 is a geometric factor accounting for the curvature of the

diaphragm. Paik [1974] has shown that T is very close to unity.

With reference to Fig. 11-7, if the diaphragm moves to the right,

the inductances becomes

L Ll ( x ) = (0

(x) L (2.18b)

Iftbe currents flowing in the coils at any instant are denoted as Ii,

I2, and as shown in Fig. II.7b, we have

L I + LI (2.9a
1 1 3 3 13 (2.19a)

LIII + L212 = 4) 12 (2.19b)

I1 + 1 + 1 = 0 (2.19c)
1 2 3

where L3  is the inductance of the input coil of the SQUID, 13 and t12

are the constant magnetic flux linking L, L and L, L respectively.
1'3 1'2

The first two equations of (2.19) are the direct result of the flux

conservation principle of (2.12). The last equation of (2.19) is

Kirchoff's current law. The solution for 13 is

L1 12 (L1 2+ L2)1313 =. (2.20)

L1L 2 + (LI + L2)L 3
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Since 13 is typically zero at the null position, (2.20) gives the

instantaneous output current i3 due to displacement. Substituting (2.18)

into (2.20) and simplifying, we have

I2 0i3 - x+e (2.21)

where T is the ratio of L3/(L1/A2 ) where L1//L2  is the parallel

inductance of L and L2. For LI = L= L0  at null, Y is equal to

2L 3/L. I0 is the steady current stored in the loop, L1 and L2 at
x = 0; e is the error term due to the higher-order terms ignored. It

is shown to be very small for small displacements (Paik, 1974]. Equation

(2.21) gives the output current of the accelerometer as a function of

the displacement of the proof mass.

The current flowing into the SQUID for a given displacement is

directly proportional to -.e magnitude of the stored current, lo, per

(2.21). Paik predicted and experimentally verified that the frequency

of the fundamental mode will increase as stored current is increased.

The frequency shift is depicted in Fig. 11-12. This figure is reproduced

* from Paik [1973].

The shift may be qualitatively described as the increase in

spring rate of the diaphragm owing to an increase in magnetic pressure

as the stored current is increased.

The straight line portion of the curve may be described by

2 2 2f r = fo + 10 (2.22)

where f is the frequency with 10 = 0 and fr is the frequency

with 10 0. Paik had verified this equation experimentally. For a
5 2

diaphragm of 850 Hz, the value of r is typically 7.5 x 10 (Hz/A)

In Fig. 11-12, as the stored current is increased beyond 5 amp, the

magnetic intensity in the gap exceeds the critical field strength of

niobium which is about 1 KGauss. After flux penetration has occurred,

the physics of the device would be totally different from that described
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FIG. 11-12 EFFECT OF MAGNETIC PRESSURE ON THE RESONANT
FREQUENCY OF THE NIOBIUM DIAPHRAGM TRANSDUCER.
The deviation from straight line occurs when the
flux begins to. penetrate the superconducting dia-
phragm. Note that penetration once occurred is
irreversible. To recover, the diaphragm must be
warmed to a temperature above the critical temper-
ature of niobium (approximately 10 K).
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in this section. The original state can only be restored by raising

the temperature of the diaphragm above its critical value. Thus it is

necessary to keep the persistent current in loop below 5 A, the critical

value for the present accelerometer design.

The output relation of the accelerometer, (2.21), can be expressed

in terms of the acceleration it experienced. From the implicit first-

order equivalent spring-mass system, the displacement is

a
S (2 2)2 + 2 2' (2.23)

f - r WfWr/Q

where

a = acceleration of the proof mass

Wr= resonant frequency of the proof mass

W f = frequency of the acceleration

Q = quality factor of the proof mass.

If C is the damping factor of the system, we have

12Q (2.24)

Details of this analysis is given in App. D.

When the signal frequency is much lower than the resonant fre-

quency, i.e., wf << 0.22 w r (2.23) may be simplified as

a
x - 2" (2.25)

W
r

This approximation is especially good if Q is large. Substituting

this equation into (2.21), we have

2 1o a

t3 lT d (2.26)

r

This is the equation Paik has derived for the output of the accelerometer.
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The energy transferred to L3 is

12
E 3i3 (2.27)

The maximum energy transfer occurs when -T = 1 and is

1 10 (228Emax = 2 L3(1d0  2,
r

21 L 2/ a... _.
-L 1 2. a (2.28b)2 3 0  rid W 2

D-2 Optimum Performance,

If W in (2.26) were a constant, the output current for a given

acceleration would be proportional to the stored current I It would

be advantageous to make I0  as large as possible. Indeed, in the early

Ipart of this research, great time and effort were spent trying to

achieve a 5 A persistent current stored.

Equation (2.22) shows that wr is a function of the stored

current I . After substituting for wr (2TTf r ) in (2.26), we have

I
3 2 d o (f+2)+ 0 f o 0 2 a ( 2 .2 9 )

where a is

1 1 L0
2 (2.30)

21T? 1+e m(ld)
0

The equivalent mass of the diaphragm is m. Equation (2.30)

was derived by Paik (1974] and has been verified independently by a

different approach. Using (2.30), the output current becomes

-30-
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m d0  I0

3= 2 + 2 a (2.31a)
L0 1 0 + (f a )

0

where = mndo/L0 which is a constant of the accelerometer. The

accelerometer is most sensitive to acceleration when the stored current

satisfied the following equation, i.e.,

fo
I opt - . (2.32)
opt (

With this value of stored current, (2.31) becomes

a

3 1 a .(2.33)

max opt

The slope of the curve in Fig. 11-12 is ax. From experimental

results using three different accelerometers, the optimum current of

each is determined and tabulated in Table 11-1.

Table II-1

TABLE OF OPTIMUM PERFORMANCE FOR THREE DIAPHRAGMS OF

DIFFERENT FREQUENCIES

Diaphragm

Characteristics Mid Freq. High Freq. Low Freq.

m(gm) 13 30 300

f (Hz) 447.2 850 63.8

l.(Hz2/A2  1.37X10 8000 56.43

i otA) 3.82 9.5 8.5
opt

S (A/g) 2.22 2.C 17.6
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In Table 11-1, the sensitivity figure S is defined as

i do

Smax 0 m 1
a L 21 (2.34)a 0 2opt "

Sensitivity, S, may be interpreted as the response gain in A/g.

Identical for all three accelerometers are d and LO . For the first two

diaphragms, i 0.766, and for the last diaphragm which has a solid

central mass, i = 1. The values of m and I used in the calculations

for Table 11-1 are given by Paik [1974].

The results show that good sensitivity can be attained by several

designs. One of these is to increase the mass of the diaphragm sensor.

This is discussed in the next chapter.

D-3 Thermal Noise

In the cryogenic environment in which the accelerometer operates,

the thermal noise produced by Brownian motion of the diaphragm is in-

significant in the output. A detailed discussion of this noise is given

in Ch. IV.

The resolution of the accelerometer is governed by the noise of

the SQUID. This noise is typically characterized by 4N' the equivalent

noise flux referred to the input coil. The energy of this noise is

2
1 N (2.35)EN - 2 L

s

where L is the inductance of the input coil of the SQUID. Thus if
s

the energy of a signal is less than this value, the signal could not be

discerned from the noise. Using (2.28b) and equating it to (2.35),

the resolvable acceleration is

.|= dor (2.36)

The value of in (2.28b) has been set to unity in (2.36).
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Typically, L3  is the equivalent SQUID input inductance reflected

to the primary of a step-down transformer. The schematic is shown in

Fig. 11-13. A transformer is used since input inductance of the SQUID

k,

31 a

SSQUID La-L S QUID

MATCHING TRANSFORMER

FIG. 11-13 STEPDOWN MATCHING TRANSFORMER. The inductance presented
by the SQUID is the equivalent inductance of the circuit
given on the right of the diagram. The matching transformer
is a stepdown transformer since L. is 24H and Lp, the par-
allel inductance of the gradiometer is of the order of 254H.

is not of the correct value for maximum energy transfer. The inductance

and current relations for Fig. 11-13 are

L L b (2.37)
3 La Lb + Ls

I - M (2.38a)s Lb + Ls  3

+ L 3(2.38b)Lb + L s  3

The energy of a signal is

I L 2 (2.39a)
Es  2 s

1 2s 1 a 2L -k '- (2.39b)

7 Wr
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where 2

kt b + 2 (2.40)

Equation (2.38b) is used for i

Similarly the resoluble acceleration is obtained by equating (2.39)

and (2.35). We have

d
a N 2 (2.41)

i0 ts-

For a typical design, d = 10-4m, I 0 5A, E N 2X10 - 2 8 J/Hz,

k = 1, L = 2H, wr = 2TT(50) s , the smallest acceleration discern-

able for frequencies above 0.01 Hz is

6a = 2.8 x 107 1 1 m/s2/i . (2.42)

This resolution is indeed superior to current accelerometers.

E, SUMMARY

The nature of the gravity gradient and the instruments being

built for the measurement of the gradient are discussed in this chapter.

We noted that the theoretical sensitivities of the instruments are

limited to the order of 1 E by Brownian noise.

We suggest that the properties of cryogenics may be used to over-

come the problem. The advantages of a superconducting gradiometer in-

cludes the following:

1. The kT noise is much lower at 4.2K;

2. Materials are less lossy mechanically at low temperature
producing higher Q for a given mechanical structure;

3. SQUID is a very sensitive flux detector;

4. Superconducting materials make superior electromagnetic
shields;
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5. The careful thermal isolation necessary for the cold space
also reduces thermal gradient in the instrument, eliminating
a troublesome error source, and

6. Mechanical creep is negligible at 4.2K.

However, it is necessary to provide a cold space. A heavy dewar

with some kind of refrigeration, either a liquid helium reservoir or

a closed cycle liquid helium system, must be used. The bulk of the

dewar render it difficult to isolate from environmental vibration.

A mechanical test bed to shake the gradiometer sinusoidally would be

very expensive indeed, whether done internally at low temperature or

as a system to shake the dewar.

Moreover, the sensitivity of the superconducting accelerometer

depends on the persistent current stored. Unless the device is kept

*at superconducting temperature, it becomes necessary to calibrate the

accelerometer after each cool-down. The process is very time consuming

and tedious.

Given the superior performance of the superconducting accelerometer,

we concluded that it is a viable component for the gravity gradiometer.

Similar advantages can be obtained for inertial instruments.

Digital computers can be built using superconducting technology. Thus

the possibility exists for an inertial navigation system of great accuracy

incorporating all components in a low temperature environment.
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Chapter III

THE DESIGN OF A SUPERCONDUCTING GRAVITY GRADIOMETER

A. OPTIMIZATION OF THE CRYOGENIC ACCELEROMETER

The accelerometer type used in the gradiometer experiments discussed

in Ch. VI was designed by Paik [1974]. Paik designed the accelerometer

to achieve maximum coupling with the Stanford cryogenic gravity wave

bar antenna which is a highly specialized application. The instrument

can therefore be improved for a gravity gradient application which hap

different requirements. In this section, the dimensions of the acceler-

ometer will be optimized with respect to thermal noise and acceleration

sensitivity.

A-1 Centrally Loaded Diaphragm

The cyrogenic accelerometer is a specific-force meter which deter-

mines the force on the proof mass by measuring the displacement of the

proof mass deflecting the diaphragm spring. It is clear from Eq. (2.26)

that the sensitivity of the accelerometer will improve as the natural

frequency of a given proof mass is made smaller.

One means of achieving this is to reduce the thickness of the dia-

phragm, thus making it more pliable. The mass reduces linearly but

the stiffness decreases approximately as the thickness cubed. However,

it becomes increasingly difficult to maintain the same degree of flat-

ness and uniformity for the diaphragm as the thickness is decreased

during the process of machining. So far the lowest frequency we have

achieved by this process is about 400 Hz with a niobium diaphragm of

thickness of 0.017 in. (0.4 mm), and a diameter of 3.5 in. It is judged

that a 0.010 in. thick diaphragm may be the thinnest machinable, without

incurring exorbitant costs.

Alternatively, the frequency of the diaphragm can be reduced by

attaching centrally located masses to the diaphragm (initially suggested

by Dr. Paik).
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Figure III-i shows the sketches of such a modified diaphragm. In

this way the same improvement in sensitivity can be achieved without

having to work with an inordinately thin diaphragm.

In the analysis of the natural frequency of the loaded diaphragm,

h and a denote the thickness and the radius of the diaphragm; the

same quantities for the central load are denoted as h' and b. The

natural frequency f of this diaphragm is determined by analysing the
0

axial motions of the circular plate. The equation governing the motion

of an axisymmetric body is best derived in polar coordinates. It is

derived as [Handelmann, 1957]

2I Id d I1d dwl

where w = the displacement of the diaphragm

w = the frequency of vibration,

2c = D/ph, D is the flexual rigidity, p is the density of the

plate

D = Eh 3/12(1-v 2), E is the Young's modulus

V = Poisson's ratio.

The boundary conditions are the clamping of the outer edge, i.e.,

%(a) = d. (a) = 0 (3.2)
dr

and the built-in edge of the central mass,

- (b)=0 (3.3)

and the equation of motion of the central mass,

d (Ild rdw) ph, b W2 w
drr 1r dr b 2D (3.4)
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b

h'

h

FIG. III-I CROSS-SECTIONAL VIEW OF THE CENTRALLY LOADED
DIAPHRAGM. The diaphragm of Fig. 11-10 is

modified by attaching a centrally located disc
to the diaphragm as it is shown here.I|
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where p' is the density of the central disk. Equation (3.4) is obtained

by the application of Newton's Second Law of motion to the central mass

and assuming harmonic natural behavior.

This problem has been analysed by Handelmann and Cohen [1957]. The

solution using Rayleigh-Ritz's approximation is given in App. B. In

the following discussion, the nondimensional variables, a, T, and k are

used. The ratio a is the radius of the central mass to the radius

of the diaphragm; Y is the ratio of the thickness of the central mass

to that of the diaphragm, and k is the frequency parameter relating

the natural frequency to the physical dimensions as given in (3.5),

2 Dk 4  Eh k

0- 4- 2 4 (3.5)

Equation (3.5) is derived in App. B. For niobium at room temperature,

E = 15 x 106 psi, and V = 0.397 {Wigley, 19711. Equation (3.5) may be

simplified to

0= dl (3.6)

where c1  has a value of 2.189 X 103 in./sec. The value of k for a

given geometry may be determined using Eqs. (B.4) and (B.5). The varia-

tions of the frequency parameter k as a, the radius ratio, and T, the

thickness ratio are varied, are plotted in Fig. 111-2. Note that at

Q = 0, all curves originate from the same point. This is the value of

k for an unloaded diaphragm. It is clear that as Y, the thickness

ratio, is increased, the frequency factcr k decreases as would be expected

but at a rapidly decreasing rate. We also note that k is rather insen-

sitive to a for large values of T.

The locus of minimum frequency gives the location of the value of

a that will produce the lowest k value given Y. These points are

obtained by the evaluation of the exact solution (B.6) with a computer

program using an iterative search algorithm.
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For sufficiently large ^, the frequency of the diaphragm will

be a minimum at a = 0.37. This is the value for a we will use in our

design for the optimal accelerometer. As a quick estimation of this

frequency, (B.9) can be simplified to

k4 c2 (3.7)
k - Y+3

where c2 = 611.9 and c = 0.8489.

Given the dimensions of the diaphragm in Fig. 11-10, y is of the

order of 100 for a resultant linear frequency of 50 Hz. For a diaphragm

0.020 in. thick, the overall height of the central mass would be 2 in.,

while the rim is typically 0.670 in. high. To preserve the compactness

of the proof mass, the central mass is "folded" down into a dumbbell

shape. The overall height of the central mass is equal to that of the

rim, while the equivalent value of t, the thickness ratio is kept the

same. The resultant configuration is shown in Fig. 111-3.

FIG. 111-3 CROSS-SECTIONAL VIEW OF THE OPTIMALLY SHAPED PROOF

SMASS. To calculate the frequency of the diaphragm

using the model, an equivalent h' which accounts for

the volume of the ring is used.
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A-2 The Ideal Accelerometer Model

In most of the theoretical projections in this dissertation, an

ideal accelerometer is used. This accelerometer is designed as a centrally

loaded diaphragm as described in the previous section. Two of these

accelerometers are fabricated and will be described in Ch. VI.

The design values of the ideal accelerometer with a target frequency

of 50 Hz are:

a = 0.37, the radius ratio

d = 3.5 in., the diaphragm diameter

h = 0.011 in., the diaphragm thickness.

Using (3.6) and (3.7), the mass of the central load is determined. The

parameters of interest are

V = 149.1, the thickness ratio

m = 0.304 kg, the mass of central load.

As the load is rigid, 1, the geometric factor accounting for the

flexure of the diaphragm in (2.17) has the value of unity.

-4
With d = 10 m, and I = 5A, the output current of the ideal

0
accelerometer given by (2.21) is

i3(t) = c x(t) (3.8)

where c has the value of 5 x 104 A/m. The same equation will
4

give the current flowing into the SQUID, i s(t) with c = 1.23 X 10 A/m

incorporating the transformation ratio of the matching transformer (Ch.

V-A-4).

A-3 Static Deflection of the Loaded Diaphragm

As the frequency of the diaphragm proof mass is lowered, it becomes

essential for us to understand the deflections of the diaphragm under

gravity. The stress and strain in the diaphragm would allow us to specify

the operational environments of the specific-force meter.
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The loaded diaphragm may be treated as an annular plate with a

central rigid disk. The differential equation in polar coordinates des-

cribing small, axisymmetric deflection of the diaphragm is given by

Love [1944] as

62P a

+ = 1Tr n -- + c (3.9)

where P = central load

a = outer radius of the diaphragm

D = flexural rigidity

c = constant of integration.

Solving (3.9) for deflection, we obtain

%(r) = _(r 2 an + r 2 ) +1 c r2 + c + c In r (3.10)

where cl, c2, and c 3 are determined from boundary conditions which in

this case are

W(a) = 0, Oa( o'b=0*(.1
a b

The same solution is obtained using the method of superposition as outlined

in Timoshenko [1959). After simplification, the expression for the surface

of curvature under static load P is

W(x) w Lmax Il(x in x-x+l) - A(In x-x+l)] (3.12a)

z - [l(x in x-x.l)-A(in x-x+l)] (3.12b)

max

where
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A1  = in- . A f (3.13a)

0 - )2 - P(In 3)2 (3.13b)

r)2

x r a (3.13c)

and
3 l V2 P2 k a2 ( . 4' max 3ai-v 2 ) Pa2  1 Pa3

x 4Tl EhE3  (3.14)

and

3 [ =1 + k = k
max 2- I - h 2! h2l• (3.15)

The maximum deflection of the central load is wmax' and Cmax is the

maximum stress induced in the diaphragm. Wahl and Lobo [1930] have an-

alysed this problem and given some numerical solutions.

For niobium, we have V = 0.397, E = 15 X 106 psi. For the design

diaphragm discussed in the previous section, we have:

k - 0.04744 (3.16a)

k 0.62257 (3.16b)

Substituting k1 and k2  into (3.14) and (3.15), we have for the diaphragm
3

under its own weight, = Wmax /h = 0.4430, and omax = 3.45 X 10 psi.

Since the tensile stress of niobium is 3 X 10 psi at room temperature,

the safety factor is close to 10.

Section A-1 has shown that for a giveni diaphragm with a central

mass, the frequency will be the lowest at b/a = 0.37. Thus (3.12b)

is plotted in Fig. 111-4 for x ranging from 0.37 to 1. It is denoted

as the curve for flat plate theory. On the same graph, the curvature of

the deflected diaphragm using the Hendelmann approximation (Eq. B.8) is

compared. The closeness of fit indicates that the Handelmann equation is

accurate and the frequency estimate derived thereof in Sect. A-1 is expected

to be good. This is confirmed in actual practice. Figure 111-4 also shows
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some of the approximation equations used in the literature for the curva-

ture of the deflected surfaces. Volmir (19671 approximation is good at

x = 1 but does not reflect the actual curvature of the built-in edge

at x = 0.37. Approximating the curvature of the deflected diaphragm

as part of the surface of a sphere is totally inadequate.

The analysis in this section is valid only for small deflections

of thin plates and becomes inadequate when we try to use it in the optimi-

zation of the proof mass in Sect. A-4. Small deflections give us a

linear model for the force and displacement for the sensor. We would

like to know the effects of rectification on displacement due to small

sinusoidal acceleration, especially in the presence of 1 g. These con-

siderations lead us to the thick plate analysis of the next section.

A-4 Large Deflection of Diaphragm

The differential equations for large deflection of thin circular

plates are given by Karman as

D r r r r d - L r rr Lw+ q (3.17)

r dr dr .r drr drj r r d (.17

r N dr +( -- = 0 (3.18)
dr r dr 2O

where E is the modulus of elasticity, D is the flexural rigidity,

w is the lateral deflection, Nr is the radial membrane stress, and q is

the intensity of the uniform load.

Multiplying (3.17) with rdr and integrating it from zero to r,

we have

d ld dw dwr r= Nr -r + V (3.19)
drr dr dr

where V is the shearing force at a distance r from the center. For

the loading condition of the diaphragm, V P/2vr where P is the central
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load. The boundary conditions are

w =0, .L = 0, r-d r+ (-4)N =O0at r =a (3.20)drdr r

dw _ N

7- drr + (1-i)N =0 at r =b. (3.21)

Yeh [1952] has solved this particular problem using the perturbation

method. First of all, the Karman equations are transformed into dimen-

sionless forms by introducing new variables:

a 2N
x 2 y =3_2) S =3(1-p) 2*r (3.22a)

2 2h

2b3/2 a-2(3 b 2)
4' 1 ' (32b4TI'Eh 4a2

Equation (3.18) and (3.19) becomes

2
d qx+P (3.23)

dx2  dx dx x

d22

dx 2  2 dx = 0.( 24

The corresponding boundary conditions are transformed to

dsy 09 -0,0 2 x -+ s 0 zt x=1 (3.25)dx dx

0y Axds -0 at x-(3.26)
dx =0 dx ~
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In the perturbation method, all the independent variables, as well as the

concentrated load p are expanded in ascending power series of Y Here,

YM is the maximum deflection of the plate, thus

YM = Y1X=3 (3.27)

and

3

adp = IY + V3YM + .. (3.28a)

y = yl(X)YM + y3(x)Y + ... (3.28b)

S = s 2 (x)YM + ... (3.28c)

where "I and Y3 are constant, and yl, Y3 ... I as well as s2

are functions of x to be determined.

The expressions (3.28) are substituted into (3.23) and (3.24), as

well as the boundary conditions (3.25) and (3.26). By collecting terms

of the successive order in YM' we obtain a sequence of linear differen-

tial equations for 'Y1, Yl s2 2 3, Y3 etc., with the corresponding

boundary conditions. These equations can be integrated to provide closed

form solutions. The interested reader is referred to Yeh's work for

details in the intermediate steps. Owing to the lengthy integration

involved, Yeh apparently simplified his results and his solutions are

not accurate when b/a becomes large (b/a > 0.36). It is shown earlier

that b/a = 0.37 is the optimal design value for a low-frequency dia-

phragm.

The author is fortunate to have access to the MACSYMA program of

the MATHLAB group at the Mass. Institute of Technology through the help

of Shahid Mujtaba of the Artificial Intelligence Lab. at Stanford Univer-

sity. This program can perform integration symbolically and is used to

determine the closed form solutions as performed by Yeh. The results are

shown in App. C.

-53-



For the dimensions of the niobium diaphragm described in Sect. A-2,

p = 2.9855 in the earth's gravitational field with the sensitive axis

vertical. From Table C-1 in App. C, the values of Y1 and y3 for p. =

0.397 are 4.2388 and 1.1393 respectively. Equation (3.28a) has only

one real root. Using standard solution for a cubic equation, the dis-

placement Y is given by

= 2y 3 )M3

+ _! _ 1 / 2( 3 2 b
27 ]2 (3.29b)

For the steady 1 g field, YM = 0.6354 which is obtained by substituting

the values of p, "1 , and 73 given the above into (3.29). Using (3.22a),

the equivalent central deflection = =,/h 0.3997. This should be

compared with I = 0.4430 given by linear small deflection analysis for

the same diaphragm.

Owing to this nonlinearity in the force-displacement relation (3.28),

a sinusoidal acceleration superimposed on the steady 1 g will produce a

shift in the steady-state displacement. This is illustrated in Fig. 111-5

where variation in p is the sinusoidal input.

If T1 and T3 are known accurately, the effect of the rectification

can be calculated and compensated. Typically, 'Y1 can be estimated

accurately from the fundamental frequency which can be measured experi-

mentally. Since '3 is difficult to determine, its uncertainty would

be the major source of error in any compensation scheme.

Equation (3.29) is used to calculate the time-varying displacement

Y (t) due to the time-varying load

p(t) = p(l + - cos ",t) (3.30)
g

where w is the frequency of the sinusoidal acceleration of magnitude a.

Since an over-estimate of 13 would produce unnecessary errors, an
3
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under-estimation of 'Y3,est where

T3,es t  = Y3(I- A) (3.31)

is used. Fourier synthesis is then applied to the solution (3.29) to

determine the "dc" value of the calculated value of YM' i.e., YM Using

the parameters obtained for the design diaphragm, the errors in displace-

ments, Y - Y' for different values of A are calculated. The results
M M'

are plotted in Fig. 111-6. When a, the sinusoidal acceleration changes

all the way from 0 to 1 g, the error for a given value of A does not

change significantly even for large values of .. Clearly, in trying to

compensate for the rectification error, the error contribution due to the

uncertainty in y3 dominated those due to rectification.

A-5 Optimization of Dimensions of Proof Mass

The physical dimensions of the current accelerometers are derived

from Dr. Paik's prototype. These dimensions are designed for the gravity

wave antenna experiment in which a resonant frequency of 850 Hz was re-

quired. They are not necessarily optimal for an accelerometer. For a

field instrument, we would like to minimize the physical dimensions,

especially that of the diameter of the diaphragm without compromising its

acceleration sensitivity or increasing unduly its Brownian noise,

In the optimization process, we will assume the following:

(1) The diaphragm proof mass with a central load and radius ratio,
b/a = 0.37, will be used;

(2) The area of the pancake coil Ac, and the number of turns N,
remain constant;

(3) The accelerometer system Q is a constant.

The first assumption is reasonable as we would want the frequency of

the proof mass as low as possible. The second assumption is made because

preliminary calculations have shown that in most cases, the current design

diameter of the coil, 2 in., is not a bound in the optimization. Later

consideration will show that the inductance of the sensor coils are
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independent of the area. Moreover, A is determined by the size of theC

wires used. Currently, the coils are wound of 300 turns, 0.003 in. with

Nb-Ti. wire. Reducing the area would imply either smaller wire be used

or the number of turns be decreased. Reducing the number of turns will

decrease the sensitivity of the pick-up. On the other hand, other than

the mechanical difficulties associated with the thinner wires, one has

to be concerned with the higher magnetic field that will be produced by

a coil of thinner wire. The field produced in the current design with a

5A current is close to the critical value [Paik, 1974, p. 195].

The assumption on system Q is more controversial. Paik [1974, p.

108] has derived relation of the quality of the system Q, to the elec-

trical component Q and the mechanical component Q It is

P T PT (3.32)
QT 0M O

where is the coupling coefficient, and is determined by meas-

uring the decay of the oscillations of the diaphragm alone in a vacuum

at cryogenic temperature. Its value is determined experimentally to be

much higher than 10 6. Since QM is governed by internal dissipative

mechanisms of the crystal structure of the material, it is independent of

geometry. It has been suggested that mechanical Q may depend strongly

on surface effects. If this is so, Q 1 will only increase further as

the dimensions of the diaphragm is made larger.

On the other hand, QT of the accelerometer is determined experi-

mentally to be of the order of 2 X 105 for all the accelerometer systems

tested (unpublished experimental results by Paik, Wang, and Mapoles of

Stanfnrd University). Since %1 is high, it is the electrical losses

that determines the resultant system Q. In the optimization of the

accelerometer, this value of Qr will be used and regarded as a constant.

The inherent thermal noise in equivalent acceleration is given by

(4.1) which is given below for convenience:

= 4kTw\
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The acceleration sensitivity of the accelerometer is given in Sect. II-D-3

as

=a , oM/5 (3.33).- i min 0 k2L Lsl2J
is~ th paale

We will now simplify these expressions. The term Lp is the parallel

combination of the inductances of the coils on either side of the dia-

phragm. The inductance, L, for an accelerometer is given by

,, I1 1

L -L = 1on2 Ado (3.34)

using basic principles, where

0 = magnetic permeability of free space

n = turn density per unit length

A = area of the coil

d = spacing between coil and diaphragm.

In the coils we have constructed, A the area of the coil, and n theiC
turn density are given by

Ac 7 T(R 2- R 2 (3.35a)
c2 1

and
N

- R NR (3.35b)
2 1

where N is the number of turns in the coil; and R2  is the outer radius

and R1, the inner radius of the coil. Substituting into (3.34) we have

L I R2)+R 1 wN2 do (3.36)

Fo R4 2li. R R012 0 0

For R2 =1.0 in., R1 =0.125 in., 40 = 4TT X , N 300, and
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do = 0.005 in., Lp =14.5 pH. The design value is 25 pH.

The natural frequency of the accelerometer is given by (2.22). It

is modified and reproduced here as

2= w + 4 2 2

where a was given by (2.30).

The value of I is (2.30) has been set to 1. Using (2.22),

(2.30), and (3.36), and with 'y 1 for maximum energy transfer, (4.1)

and (3.33) become

2
2 _I4kT)~ 2 0i\/

(a (t)) = 2 + o (3.37)

and

La ktN 2 + bI d (3.38)
min k N IVWq7 F 0 md 0 ,0

Differentiating (3.38) with respect to d and equating to zero, the best

acceleration sensitivity is attained when the spacing between coil and the

diaphragm is

b 10

d. - 2 (3.39)
m w

For the ideal accelerometer used in Sect. II-A-2, m = 0.3 kg, 10 = 5A,-1 -

W0 = 21(50) sec , the value of dmin is 1.5 X 104m (0.0059 in.). For

the 800 Hz diaphragm used in our experiments, dmin = 1.35 X 105m

(0.00053 in.). Owing to the dimensional tolerance of the fabrication

process, this separation cannot be attained. In the subsequent optimiza-

ti,.n it will be assumed that dmin can be realized. With d = dmin'

(3.37) and (3.38) become
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(at2 mQ (3.40)

and

miii -o N m2 (3.41)

where w0  is determined for a dumbbell-shaped proof mass by using (3.6)

and (3.7); m has two components: the mass of the diaphragm and the mass

of the load. The relation is

2 2
m pfa hl+a (Y-1)]

where a, y, P, a, and h are defined in Sect. A-2. For the ideal proof

mass discussed in Sect. A-2, (3.41) becomes

Lca+Cc (3.42)

where

c3  = 0.8489

c4  = 1-a 2/ 2  and has a value of 6.305

c5  = 2VN/ak t  2/Ls(611.9P/PIT), a constant of proportionality

for a given diaphragm

a = geometric ratio of the diaphragm and is different from that

defined in (2.30).

Note that the resolution of the accelerometer improves as h, the thick-

ness, is decreased and a the radius, and Y the thickness ratio of

the load are increased. The bounds on these variables are set by the

fabrication techniques, the time constant of the instrument, its physical

size, and its thermal noise.

Starting with a given dimension of the diaphragm proof mass, we
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would like to determine how small the radius R can be while retaining

the same acceleration sensitivity as h is made smaller. In this optimal

accelerometer, the radius of the central mass is always 0.37 R. As there

are infinite combinations of R and Y, the thickness ratio that will

satisfy this requirement, we would consider two cases within which bounds

all possible combinations must fall. The thickness of the central load,

h' may be kept constant, i.e., 'Y will increase as h is decreased;
0

-Y = (h0 /h)y 0 . The subscript 0 indicates the original values of the

parameters of the basic design. On the other hand, we can keep 'O

constant allowing the thickness of the central load to decrease as h,

the thickness of the diaphragm is decreased. Denoting the radius of the

basic design as a, the relation of R to a for constant ' is

-- = (3.43)
ah_

0

and for constant thickness, h'

R L -O ~ 3 ( T 0h + C 4)- ( 3 .4 4 )
ha (To h0 + c3 h)'roho + c 4h

For the basic accelerometer design, d = 1.75 in., h0 = 0.011 in.,

'O = 149.1, c 3 = 0.8489 and c4 = 6.305.

When the dimensions are decreased, the thermal noise would increase

from its original value of N = 1.3 z 1012m-s / per (3.39). Assum-

ing Q remains constant as discussed earlier, the noise given in terms

of N are

2 a N() (3.*45)
(a2(t)) =N0@ 2 345

for constant T and
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"I
2 j 2 TO r+c -0 +C 3(a Wt) R ( r kroo1 + 4  ( 0hoh 1 + 3)(3.46)

for constant load thickness h; h0 is the original thickness of the

diaphragm. In evaluating (3.45) and (3.46), the (h,R) pairs determined

in (3.43) and (3.44) are used. The results are plotted in Fig. 111-7.

As a comparison, the thermal noise of the SQUID is equivalent to 21.5 NO

(Eq. 2.42) and is a constant in the bandwidth of interest. Thus in the

optimization of the present accelerometer system, the process is not

bound by the thermal noise of the diaphragm.

Since the thermal noise of the system is dominated by those of-the

SQUID, the noise contribution of the diaphragm will be ignored henceforth.

In the design consideration that follows, it is assumed that Y will be

constant. Thus (3.43) applies when the signal-to-noise ratio is main-

tained constant as the size is minimized. The design criteria are

(a) The thickness of the diaphragm, h, is reduced as much as

possible,

(b) Eq. (3.43) is used to determine the minimum value of R that
will give the same signal-to-noise (SNR) ratio.

For design values of h0 = 0.011 in., a = 1.75 in., and h = 0.005 in.,

the smallest R value is 1.53 in.

If the SNR of the accelerometer were to be maximized while keeping

the radius of the diaphragm a constant, then the thickness h must be as

small as possible. In other words, SNR increases monotonically as h

decreases. For the case where the value of the thickness ratio, Y, re-

maining constant,

(SNR) = (SNR)0  . (3.47)

Thus, system improvement through size optimization has certain

fundamental limitations.
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value of 0.011 in., the thermal noise level varies
as shown. The thermal noise is given in terms of
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B. THE CURRENT DIFFERENCING GRAVITY GRADIOMETER

In this gradiometer, a pair of the superconducting accelerometers

are rigidly attached together. They are separated by a given distance.

Their sensitive axes may be aligned along the straight line joining them

or perpendicular to this line. The axes are always parallel. The out-

puts of the two accelerometers are differenced. The ratio of the out-

put difference to the separation is the gradient signal.

The basic configuration adopted for the initial feasibility study

of the concept is with the sensitive axes along the line joining the

accelerometers. The final configuration may be that used by the Bell

Aerospace Labs (Fig. 11-2) in their gradiometer in which the sensitive

axes are perpendicular to the line joining a pair of them. This config-

uration facilitates error tradeoffs through rotating the gradiometer

platform. Diesel [1964] had studied such tradeoffs in a single rotating

accelerometer. The comparison of the advantages of the different accel-

erometer configurations is given in Ch. IV-C-3.

Figure 111-8 shows the three different means of differencing the

outputs from the two cryogenic sensors. In all three cases, coupling

between the two diaphragm proof masses exists. The mechanical coupling

through the gradiometer platform can be reduced by making the platform

massive. To minimize electrical coupling and yet retain circuit simpli-

city, the scheme using direct parallel connections shown in Fig. III-8b

is used. The figure is enlarged in Fig. 111-9, with the appropriate

notations of the different elements.

When the test masses deflects by x1 (t) and x2 (t) under accel-

eration, the modulated inductances are given by

Ll1(t) = L10 (1 + 81Xl(t)] (3.48a)

Ll2 (t) = L10 [I - 1 xl(t)] (3.48b)

L2 1 (t) = L20 [1 + 8 2 x2 (t)] (3.48c)

L22 (t) = L 20(1 - 82 x2 (t)] (3.48d)

where
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FIGs. III-8a,b,c SIGNAL DIFFERENCING SCHEMES. The three feasible
circuits for the current differencing gravity
gradiometer (CDGG) are shown. The direct parallel
scheme is chosen for its simplicity and low cross-
coupling.
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FIG. 111-9 SCHEMATIC OF CURRENT DIFFERENCING GRAVITY GRADIOMETER.
The notation for current flows is used for convenience.

In the ambient mode, 13 = 0, 11 + I12 =. 0, and

121 + 122 =0, a current will flow in L3 when

1
(3.49a)

2 - 1 (3.49b)

where d1 0 and d2 0  are the equilibrium spacings for the two accelerometers,

is the geometric factors accounting for the flexure in the diaphragm

test masses and for all practical purposes may be assumed equal,

11 = 2 (3.50)

These equations were derived by Paik [1974]. The subscripts are self-

evident.

For simplicity, it is assumed that

L11(x = ) = L12(x O) = L1 (3.51a)

L21(x - 0) = L22 (x 0) - L20 (3.51b)
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The errors introduced by these assumptions will be discussed in Ch. IV.

In operation, the persistent current I1 and 12 in the two accel-

erometers are stored independently. The currents are stored such that

when the displacements xl(t) and x2 (t) are in the same direction, the

outputs of the accelerometers cancel one another. The cancellation will

be exact if xl(t) = x2 (t) and the scale factors of the accelerometers

are adjusted to be equal.

Flux is constant in each of the four loops comprising the inductances

to the left of the equal sign in the following equations:

Llllll 1 - L 12 112 = 2LloI 11 = 401 (3.52a)

-L 21 121 + L 22 122 = 2L 20 12 = (02 (3.52b)

L I - L I = L I = (3.52c)

11 11 12 12 10 1 21(35)
1*1

-L I + L I - L 1 =1' 35d

21121 2 23 = 202 2 (352d)

where 13 is zero at the initial steady state.

Summing currents at the node connecting all the coils yield

I + I + I + I + 1 - 0 . (3.53)
11 12 21 22 3-

Solving these five equations simultaneously, we obtain

13 22(L + L) (3.54)-9.-

Lp

where L is the parallel combination of the inductances of the four coils.P

-I -l -l -1 -l
Lp = L-1 + LI2 + L2 1 + L2 2 ... (3.55)
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It should be noted that Lll, L1 2 , L 21' and L22 are functions of dis-

placements and hence time.

Substituting (3.52) into (3.54) gives

2 l~ I2 x2) .

- x2 7 -d 0  9d 20) (3.56)

where 'Y L /L L is given by (3.55) when x (t) = x (t) = 0. For3 p p 1 2
small displacements, errors introduced by ignoring higher order terms are

negligible.

If signal frequency is much less than resonant frequencies of the

diaphragms, wI and w2, the equivalent displacements are given by

al(t)
x l1 t) 1 2 (3,57a)

x2(t) a 2(t) (3.57b)

2 2

where a,(t)s are the accelerations along the sensitive axis of the
1

gradiometer at the wo proof masses. Letting

1 1 (t) + al t)] i(t) and [a 2 (t) - t)] EAa(t)

(3.56) simplifies to

d3 (l+dY) (2 'I
1 d10 2d2 0

(3.58)
If

I1  12
2 2

W1dl 1 2 d20 (3.59)
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holds, then output is given simply as
II

I 3 (t) - 2 2 La(t) ...3 qo-Y 2 d(3.60)
widl

1 10

Equation (3.59) represents the condition when the scale factors of the

accelerometers are balanced. When the "balanced" state is achieved, the

gradiometer is insensitive to the common mode acceleration and responds

only to the differential mode. Even when the two accelerometers are

mechanically different, the gradiometer will balance out if the stored

current ratios satisfy (3.59). The means for adjusting current will be

discussed in Ch. V.

Thus superconductivity offers the dual advantages of cancellation

of common mode before detection and simplicity of balancing. The high

common mode rejection ratio before detection allows the gradiometer to

be operated in noisier environment than it would otherwise.

The frequency w2 is given in Ch. II as (2.22)

2 2 4 ai2
W1 = 10 +  1

Substituting into (3.60) we have

1 (t) 2 1 Aa(t)

(1+-Y) WI0 + 4T W2 C dlo

For a given gradiometer, the only adjustable parameter in (3.61) is 11

. ithe stored persistent current. To maximize current output for a given

*gradient, the current stored should have the value given by

1 - l0  (3.62)
2TTVQ/

This is the same equation obtained for the accelerometer in (2.32). Thus

the electrical spring rate should be equal to the mechanical spring rate

for optimum sensitivity.
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The energy transferred by 1 3(t) into L the output coil, is

E1 2 M 2-Y LI2r~ '(t)1 2

2 (t) 2 Lil[2  (3.63)

Clearly, the energy transfer will be a maximum if 'y = 1 or L3 = L .
P

As shown in Fig. 111-9, L3  is the input inductance of the SQUID.

In general, since the input inductance of the SQUID, denoted as L
s

is rather small (for SHE SQUID, Ls is typically 24H), L3  is the equiva-

lent inductance of the SQUID reflected to the primary of a step-down

transformer. Such a transformer will be discussed in Ch. V.

By considering the transformer action of a zero resistance trans-

former, we have the following relation (2.37) and (2.38b):

AP-~

L L1
3 Lb + Ls

I/LLb
s (Lb + L(L ) 13 (t)

The energy transferred into the SQUID is

1 2Es 2 (t) (3.64a)
2 s a

LLL

S- s Lb 2(t) (3.64b)
2 2 3

(Lb+Ls
2

12N2 Lb 2

- N LsI (t) (3.64c)
22 s 3(Lb+Ls)

using the relation L= N2 Lb for a solenoidal transformer with turn

ratios of N. From a practical consideration, Lb  is chosen, as a rule

of thumb, to be about three times the value of Ls, i.e., 6piH. The value

of N giving the maximum energy transfer may be obtained by equating
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2
(3.64C) to 2 L p I where Lp is given by (3.55).

In an ideal gradiometer, its sensitivity is found by the noise

energy in the SQUID. Equating (3.64c) to SQUID noise energy, EN, and

using (3.60) for I39 the minimum resolution in acceleration is given by

2

('-amin = Lk22L] ( Lb / di (3.65)

Using the design parameters for the ideal gradiometer and SHE SQUID, we

-1 -4 2 -
have wI = 2TT(50)sec -

, 1, d1 = 10 m, k 0.8, L = 25 X 105 H,10 1-28j

I1 5A, Ls = 24H, Lb= 6H, EN = 2 Xl2 /Hz and the turn ratio of

the design transformer, N = 3.23, the minimum resolution becomes

(Aa) min = 1.29 X 10- 1 1  r./s2 i -

= 1.32 X 10-12 gi7

For a bandwidth of 1 Hz and a baseline separation of 10 cm, the

gradient sensitivity is about 0.13 E.

For completeness, the expression for the SQUID input current as a

result of differential acceleration is

Ist_- M 0a (t) (3.66a)

For the same gradiometer with parameters given above,

I (t) 1.097 Aa(t) A (3.66b)

2
where Aa(t) is given in m/s
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The electrical coupling between the two accelerometers has been

investigated by Paik. Any mechanical coupling through momentum transfer

can be made small by making the platform relatively massive. From (3.52)

and (3.53), the equations for I and I12 are

N I22 nd 1/ n by i c a n 1s 37 wh (3.67a)

11!fxe n 2L interchangedL

ll L + 11 L12/ + Ll l\ Y 2 1 L22

12 lt L / 2L 1 I (3.67b)12 T12 + 11 121 12 (21 22/

Note 1I2 and 1I1 are given by identical equations as (3.67) with sub-

222 21

fixes 1land 2 interchanged.

Considering the energy stored in the two coils of the accelerometer

and differentiating with respect to displacement, the forces exerted on'1 the test masses are

1 2d 0  11 2

Using (3.67) and (3.48) the forces are given to the leading order as

F (t) = - K1X1t) - K 12X 2(t) (3.69a)

F2(M = -K21XI(t) K 22X 2 (t) (3.69b)

where

-
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KII= 2  
10 2 1 (3.70a)

2 L3).7b

I~ ~ ~ 2 0 I- a -

22 
1 2

K K 2 K 1 1 75+T L 3). (3.70b)

The coefficients of equations (3.70) give the coupling between the two

diaphragm proof masses.

For the ideal gradiometer mentioned earlier, 'Y , L 3 = LIo=
2L the coefficients of (3.70) become

1 2

K L L (3.71a)

K12 )2 (

K22 = 20 -I d.1

Thus if I1 has the same order of magnitude as 1 2, the cross-coupling

coefficient has the same magnitude as that of the direct coupling. Theu,

the motions of proof mass mI  say, produces restoring forces of roughly

the same magnitude on both m et and m 2,

These restoring forces will be zero if xme and x2(M are zero.

Thus a fore rebalancing, null position accelerometer may be required to

eliminate this effect,
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C. THE DISPLACEMENT DIFFERENCING GRAVITY GRADIOMETER

*The fundamental operating principle of this gradiometer has been

derived by Paik of Stanford. Figure III-l gives the schematic of the

instrument. The two diaphragm proof masses are m1 and m2 ; L1 is the

pancake shaped sensor coil placed between the two proof masses. A per-

sistent current I0  is stored in the loop comprised of inductances LI

and L . The differential deflections of m1 and m 2 in a gradient field
a1 2

will modulate the inductance L As the flux enclosed in a superconducting

'
1 0

~'9 SQUID
L

a L b L

L lx
1 "X

FIG. 111-10 SCHEMATIC DIAGRAM OF THE DISPLACEMENT
DIFFERENCING GRAVITY GRADIOMETER (DDGG)

circuit will remain a constant, I will change as the inductance of
0

coil L changes. The SQUID measures the changes in current through

the matching transformer which carries zero persistent current in its

secondary loop.

The principle of this gravity gradiometer is very similar to that

of the vibrating string gradiometer discussed in Ch. 1I. Instead of the

vibrating string, the persistent current in the coil is used to detect

the relative displacements of the proof masses. However, the distance

between the mass centers of the proof masses of the displacement differ-

encing gravity gradiometer (DDGG) is rather small (of the order of 0.25 mm

or 0.010 in.). This severely limits the sensitivity of the DDGG.
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In the original design, L1  is a self-centering coil such that the

single layer coil will always be exactly midway between the surfaces of

the proof masses. It turned out that such a floating coil is very hard

to fabricate since all materials become very rigid at the cryogenic temp-

erature of liquid helium. The compromise of winding the coil on one of the

surfaces has been adopted by E. Mapoles of Stanford. The degradation in

sensitivity is considered small and acceptable.

In the following discussion, d10 denotes the distance between the

coil and the proof mass, m, on which it is wound. This distance is

fixed. At the neutral position, the distance between the coil and the.

second proof mass, m2 , is denoted by d 20 As the proof masses move

relative to one another, this distance will vary and will be denoted by

d 2(t).

If x (t) and x 2(t) denote the displacements of the test masses

m1 and m2  respectively, then

d2 (t) - d20 = x 2(t) - x (t) (3.72)

Using first principles, the inductance of the sensor coil at any given

time is

(t) n 2 Ac d10 d 2(t)

1 c d + d (t) (373)
10 2

where n is the turn density per unit length, and A is the area ofc

the coil. Substituting (3.72) into (3.73) and expanding, using power

series, we get

Lt) M = LIO [I+ dlO x2(t) - x l (t )

I d20 d10 +d20

- 10 (X 2 (t) - x 2(t) 2 
3 ] (3.74)

d20  l0 + d 2t 00
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where L is the equilibrium value of L1 (t) and is given as

L = on2A d 102 (3.75)10 u c d o + d 2 0 /

To the first order, L1 (t) is linearly dependent on the displacement

difference. The presence of higher order terms, especially the third

order, means that there will be some nonlinearity errors.

To reflect this change in inductance in the pickup coil, a persist-

ent current I is stored in the loop comprising L (t) and La . The
0 1 a-

flux conservation requirement of (2.12) yields

Io[Lo + L2] = I(t)[Ll(t) + L2] (3.76)

where (2.37) gives the value of L2P where L2 is the equivalent in-

ductance of the SQUID input coil seen by Ll(t).

Solving for I(t), we obtain

L(t) 0 [ 10+ Lt2j (3.77a)

1- d +d [x 2 t)x
0  2 1

[i Idlo 1 20 x2 "lt)

0 l+Td 20 d10 2 + d 
720)

(3.77b)

where - = L2 /L10  after substituting for L1 (t) using (3.74).

If the gradient signal frequency is low compared to the resonant

frequencies of the proof masses m and m the displacements xM(t)

and x2 (t) are given by (3.57). Equations (3.77) can be simplified to

i(t) = (t) - [x x(t)
1 0 l+y 0 [ 1  2
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where

d10

20 10 20

If a(t) ta1 (t) + a2 (t)] and Aa(t) = al(t) - a2 (t), (3.78)

becomes

0~ [ "2-.2);t -- 2 + 2

The output produced by the common mode acceleration, a(t), will vanish

if W1 and w2 are such that

2 2 2
WI = W 2 = W0 '(3.80)

Equation (3.80) gives the balancing requirement of the DDGG. The balancing

requirement is much simpler when compared with that of the CDGG, (3.59).

In this case, only the frequencies of the proof masses are required to

be equal. Fine tunings of the frequencies can be done by means of per-

sistent currents stored in two coils placed at the outer surfaces of the

proof masses.

The output current of a balanced DDGG flowing in the primary of the

output transformer is

7I0 Aa(t)
i(t) - +Y 2 (3.81)

The current that flows into the SQUID input coil, L., as a result is

given by (2.38b)

Is(t) = _ 10 Aa(t)
Lb + Ls  L+y 2 (3.82)

Equation (3.81) is identical to (3.60), the output equation of the CDGG

save for some constants.
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The energy transferred to the SQUID is

1 2Es  --LI(t) (3.83a)
12 L [s0

= k (Lb + Ls ) 2 L 5 -j-o 0-- 2 (3.83b)

2 (Lb +L)2s 2 (3.83c)

0

using La = N 2 Lb  for a solenoidal transformer. Energy transferred will
be a maximum when I = or L2 = L10 where L2  is given by (2.37).

Assuming that the sensitivity of the DDGG is limited only by the

thermal noise of the SQUID, EN, the minimum resolvable acceleration is

given by

WO LbL EN
mms Lb2~22 5  (3.84)

2For an ideal gradiometer with design parameters of k = 0.8, WO =

2TT(50)s -
, I0 = 10 A ,2 L = 2S L=, Lb  = 1001X,

d = d20 104 m and N 41.7, the minimum resolvable acceleration

in a 1 Hz bandwidth is

(nis)mi n = 1.29 X 107 1 1 , m/s 2  (3.85)

for a standard SHE Corporation SQUID; EN = 2 X 10-28J/Hz, a design
proof mass separation of 2 cm, the gradient sensitivity for a 1 Hz band-

width above 0.01 Hz is

(LAg) = 0.66 rms E (3.86)
min-

This is not a very impressive figure; Primarily as a result of

the short proof mass separation which SQUID used to improve the
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acceleration sensitivity. There is a SQUID now available commercially

(S.H.E. Corporation Model 330X) with one-fourth the noise energy,

EN  of 5X 10 J/Ha. This will improve the gradient sensitivity to
0.33E for a 1 Hz bandwidth above 0.01 Hz.

Substituting the design parameters into (3.82), the SQUID current

produced by a gradient signal is

I (t) = 1.097 Aa(t) A (3.87)
2

where Aa(t) is given in m/s2

The motions of the proof masses are influenced by the magnetic field

of the pickup coil. The total electro-magnetic energy stored in the space

between the proof masses is given by

1 2

E(t) = -L (t) + L2 ]Ii(t) (3.88a)

1 2 11l0 x2 - x 1

2 10 0 d d + d20 10 20 (3.88b)

d 
d ,x - x 2

+ d2 +ITy d20 10 + d2+ r+ 1+-
20( 1+ 20

where x1 and x2  are time functions of displacements. The forces exerted

on the two proof masses are obtained by differentiating (3.88b) with

respect to xI and x2  respectively. The variable component of the force

is given by

Fl(t) - F2(t)

210 1 10 1 2 1
-L I -1+---a1

10 d20 1IP d20 (d0 + d0)2 (3.89a)

S K (x -x) (3.89b)
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Using the design parameters of the DDGG given earlier, the value of K is

K 3.75 X 105 N/m . (3.90)

This is about 10 times greater than the equivalent mechanical spring rate

calculated from the equivalent mass and natural frequency. This indicates

tight coupling between the two proof masses as expected for such a design.

D. SUMMARY

In this Chapter, the following were covered.

D-1 Gradiometer Design

The optimal configuration of the diaphragm proof mass with regards

to acceleration sensitivity has been derived. Its natural frequency as

a function of its dimensions is determined. The third order nonlinearity

of the displacement is analyzed and found to be small. The optimization

of the proof mass dimensions to produce the best sensitivity has been

carried out. The critical bound on this optimization process is the thick-

ness of the diaphragm. With the relative dimensional accuracy required,

thinner diaphragms require increasingly greater machining accuracy and

great care to avoid buckling during fabrication.

D-2 Superconducting Gravity Gradiometers

The output relations of the two superconducting gravity gradiometers

are derived. The displacement differencing gravity gradiometer (DDGG)

is simpler to construct but is less flexible. The axes of the two proof

masses must be In line and the separation small. Since it is made up of

two individual accelerometers, the current DDGG is more flexible. It also

has an adjustable baseline. Thus it is the most promising device and is

the subject of this thesis. Both gradiometers offer very good gradient

sensitivity. With the development of lower noise SQUID (superconducting

quantum interference device), the sensitivity in the future will be

extremely difficult to match with room temperature devices.
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Chapter IV

NOISE AND ERROR SOURCES

The performance of an instrument is limited by its largest error. In

some instruments, the performance requirements are so exacting that

thermal noise becomes a consideration. It is a fundamental limiting

factor for gravity gradiometers. In the cryogenic environment, the

thermal noise is reduced significantly compared with the three instru-

ments currently under development. In this chapter, the noise which

determines the threshold sensitivity and the means of reducing it will

be analysed and discussed, along with the other error sources which are

identified and evaluated.

A. THERMAL NOISE

The gradiometers currently being developed at MIT, Bell Aerospace,

and Hughes are operating near or at their respective thermal noise limits.

This noise originate from the basic energy dissipation of the molecules

in the devices. One may reduce this noise by building sensors with

low loss mechanism. The trade-offs in doing so are analyzed in Ch.

IV-A.2 . The temperature of the sensor may be reduced to decrease

the thermal noise. This is discussed in the next section. Another

alternative is to start with a sensor with ultra-low loss mechanism.

The low intrinsic damping will then be increased to the value desired

through electronic feedback. The superior noise performance of such

"electronic cooling" is investigated in Sect. IV-B.

A.1 Thermal Noise of the Diaphragm

The thermal noise of a diaphragm proof mass is generated by the

vibrations of its crystal lattice. It is a white noise force and has a

constant power spectrum. The mechanical structure of the diaphragm

transforms the white thermal noise into a highly "colored" noise.

Around the resonant frequency of the diaphragm the noise output re-

sponse can be modeled as a single degree-of-freedom oscillator. The

thermal noise output power spectrum of a 50 Hz diaphragm of Q = 10

is given in Fig. IV-1. A fairly complete analysis of random processes is

given in Crandell & Mark [1963]. In App. D the derivation of Fig. IV-l

for the diaphragm is discussed.
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FIG. IV-1 POWER SPECTRUM OF THE THERMAL NOISE AT THE OUTPUT

OF THE ACCELEROMETER. A Q of 10 is selected

so that a reasonable graph can be drawn. The

Q of the diaphragm used is of the order of 105
or better.

.4
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In the low frequency range of the spectrum, the spectral density

of the noise force, WF(f), acting on the diaphragm is given by

Eq. (E.5). Dividing W F(f) by the square of the mass, m, gives

Wa(f) = (4T4)(4.1)

This is the Nyquist equation for thermal acceleration noise. For an

ideal sensor with parameters Q = 2x105 ,m = 0.3 kg, w0 = 211(50)s-
-13 -the acceleration noise is 1.10 X 10 g/--z (g = earth's average

gravitational acceleration).

From manufacturer's data (SHE Co.) the best available low noise SQUID

has an eqvivalent inpuL noise current of 7 -12 s AIVHz.

Used in conjunction with the cryogenic accelerometer discussed in
-13

Ch. Ill-A, this is an equivalent input acceleration noise of 4.61 X 10 g

per Fz. Thus in the low frequency range, the thermal noise of the dia-

phragm is ten times less than the SQUID thermal noise.

In (4.1), if Q is increased, the acceleration noise power is re-

duced. This is not surprising since higher Q implies lower dissipative

losses. On this basis, Q should be as large as possible.

However, a high Q system will transform broadband input noise

into highly "colored" output noise. In the case of the accelerometer,

a broadband thermal noise will be transformed into displacement noise

with peak power at the resonant frequency of the proof mass. An out-

put power spectrum of a system with Q = 10 and a constant broadband

input noise is given in Fig. IV-I. Higher Q will produce higher peak

power and lower sideband power.

Most signal detectors and amplifiers have dynamic range and slew

rate limits at their inputs. A high Q system will produce large

noise excursions at the input of the signal processing unit (SPU).

These fluctuations at the resonant frequency of the device may exceed
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either the dynamic range and/or the slew rate of the SPU. These

noise excursions are produced by the thermal noise, as well as the

ambient environmental noise. The higher the Q of the system is,

the more acute is the problem. The tradeoff of increasing system Q

to decrease thermal noise vs decreased stability is discussed in the

next section.

A-2 Dynamic Range of Accelerometer

It is known [Crandel, 1963] that a high Q system will channel wide-

band noise at its input into narrow band noise at its output. This pro-

cess is briefly outlined in App. E. Let us consider the output response

of the diaphragm to Brownian noise. From Eq. (E.3), the mean square

response of the diaphragm to thermal noise is

2 =kT .2 2
(x (t)) 2T (x (t)) a E[x (t)]. (4.2)

m 0

Using Eq. (3.8), the SQUID noise current induced by the thermal noise

of the diaphragm is

(in)' = C(x) (4.3)

For the ideal accelerometer discussed in Ch. III, [M = 0.3 kg, w=

2o(50), T = 4.2 K.], the noise current is 5.44 x 1079 A. The noise

is centered about the natural frequency of the diaphragm, f0*

The block diagram of the r-f biased SQUID used in the signal detection

is given in Fig. 11-8. In this feedback mode of operation, the SHE SQUID

system behaves like a linear system with an input dynamic range of

50 x 107 6A peak to peak in the 0 - 120 Hz range with its control set

to 1 sensitivity and FAST mode [SHE]. Above 120 Hz, the dynamic

range rolls off at 40 dB/decade. Unlike linear systems which saturate

when their inputs exceed their dynamic ranges, the SQUID system will

shift its quiescent operation point until equilibrium is established

again in its flux circuit. Forgacs £1967] gave a description on how this

property of the SQUID may be used to extend its dynamic range indefinitely.
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However, in the present implementation, when the SQUID "unlocks", all past

information are lost. Thus it is important to keep the input current be-

low the dynamic range of the SQUID at all times throughouts its frequency

spectrum.

However, thermal noise is not the only noise source at the input.

As will be shown, environmental noise would cause the SQUID to "unlock"

unless great care is taken to provide sufficient vibration isolation.

An estimate of the maximum background noise which is tolerated by

the SQUID can be made if it is assumed to be white. Let A M(f) be this

maximum spectral density of environmental white acceleration. Using

Eq. (E.6), the expected value of the noise displacement is

A (f)Q
2 M(X) - (4.4)

4w

From Eq. (3.8), the displacement, X , that will produce full scale

deflection current of 501A ia 4.07 X 107m. For an order of magni-

tude estimate, we set

(x 2 2 (4.5)e 2 xmax.

5
Solving for A M(f) with Q = 2 X 10 0 = 21t(50 Hz), we have

AM(f) = 5.14 x 107 17  (m/s 2) 2/Hz. (4.6)

In other words, to ensure the stability of the SQUID, the background

acceleration noise must be less than 7.31 x 10- 10 g/qiz. These limits are

derived from the slew rate response of the SQUID to sinusoidal inputs.

In Eq. (4.4) the variables are w0 and Q. Since the fundamental

frequency of the diaphragm should be low to increase acceleration sensi-

tivity, only Q can be changed to increase the tolerable background

acceleration noise (TBAN). However, reducing Q would increase the

thermal noise of the proof mass if it were done passively. Table IV-1

shows that reducing Q readily introduces enough thermal noise from the

mechanical system to exceed the SQUID noise.
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Table IV-1

EFFECT OF Q ON NOISE

TBAN Nyquist Noise

(10 - 9 g/'9Z) (( 10-12 g-z)

2 x 105 0.731 0.112

1.88 X 103  7.54 1.16

300 18.9 2.90

10 103 15.9

As Q decreases, both TBAN and Nyquist noise increase. For high

Q, the SQUID noise limits the resolution of the system. When Q is

less than 1880, the threshold of the accelerometer is limited by the

thermal noise of the diaphragm proof mass. Thus, lowering Q through

dissipative mechanism would degrade the resolution of the accelerometer.

This will be discussed in greater detail in Sect. D.

Table IV-l is very illuminating but not too realistic as the full

scale deflection for sinusoidal input is used to calculate the limits.

A more meaningful measure is the statistical mean time between failures.

Failure is defined as the SQUID losing its quiescent locking point. It

is assumed for the analysis that the MTBF has a Poisson distribution.

Then, T the MTBF is given with a 99% certainty by (4.7) [Crandell, 19631.

0.01 exp [ " (4.7)
0 f 2

where f is the natural frequency of the system in Hz, X is the max-

imum level of excursion, 4.07 X 10710 m, and orx = (x2 ) for the zero

mean distribution assumed here.

For = 5ryx , and fo =50 Hz, T is 54 sec. This is too short
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for practical purposes. Using (4.4) in conjunction with (4.7), for T 0
5

4000 sec, and Q = 2 x 10 , the statistical tolerable background accel-

1eration noise is 1.78 X I -I 0 g z. Comparing this with TBAN of 7.31X-10

g/,9, the statistical tolerable background acceleration noise is a

more stringent requirement.

An interpretation of TO = 4000 sec with 99% certainty is that in

a hundred gradiometers, each operating for 4000 sec, there will be

on the average one failure.

A.3 Q and Dynamic Range of Gradiometer

The two cryogenic gradiometers described in Ch. III wil reject

common mode acceleration in the low frequency range. However, as the

thermal noise of the two proof masses in a gradiometer are white and

uncorrelated, they are not rejected. The power spectrum of the gradi-

ometer noise is

A ) A 2g L2

where I is the baseline of the gradiometer. The subscripts g and a

stand for gradiometer and accelerometer respectively. The thermal

noise are assumed to have zero mean and equal magnitude.

As given above, the acceleration noise is

ea(f) =-,(4.9)

which has a value of 1.12 X 1013 g/,yFz for the ideal accelerometer.

For a baseline of 10 cm., the gradient noise is 1.58 X 10 - 2 E/,z.

The SQUID noise is 0.13 E/VHz for the current differencing gradiometer

and 0.66 E/Iffz for the displacement differencing gradiometer discussed

in Ch. III. The gradiometer threshold sensitivity is therefore governed

by the noise level of the SQUID. Better sensitivity may be achieved by

(Aa2 ((a a2)2 (a2)+ (a = 2(a2 )
1 2-8
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using SQUID with lower noise which awaits superconductivity advances

in the physics.

Unlike thermal noise, linear environmental vibration would produce

acceleration on the gradiometer that is common to both proof masses

if they have matched suspension. Equations(3.57) and (3.80) show that

through scale factor matching, these common acceleration will be re-

jected by the gradiometers. This is true for the low frequency range.

It will be shown that common mode rejaction of environmental noise will

be poor near the resonant frequencies of the proof masses.

For the current differencing gradiometer, the scale factor balanc-

ing is achieved when (3.57) holds. The transfer function of the gradi-

ometer maybe defined as the output current per unit acceleration.

Without using the simplifying assumptions, (3.56) gives

r 2 2
W w

H(w) 1 2 (4.10)

2 2 A 2 2 L w

W ~~ W W J -2 -

where 2 1

2TI(1 + )lo

The spectral density transfer function is simply the square of H(w)

Furthermore, if the environmental is assumed white, and has a constant

power of SW the output power spectrum is

0I

Sout = IH( w)12s0 . (4.11)

In the typical gradiometer, W1  w2 and the Q's are of the order

of 10 5  Under these conditions, (4.11) may be written as

S H + 2(4.12)
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The power spectrum will have two very sharp peaks at the resonant fre-

quencies of the proof masses. The required vibration isolation is the

same as for the individual accelerometers. Table IV-1 shows that these

requirements are very stringent for proof masses with high Q. We con-

clude that in order to build a practical instrument, the Q's of the proof

masses must be lowered. At a value of Q = 300, the Nyquist noise would

be the limiting factor of the resolution of the gradiometer. For the

current differencing gradiometer, the Nyquist noise is an equivalent 0.41

E/ --z (Eq. 3.8). It is preferable to lower Q without increasing the

Nyquist noise. This may be achieved using feedback. The next section will

discuss damping by electronic feedback, sometimes called electronic cooling

since the equivalent resistance added has a noise temperature considerably

lower than the component operating temperature.

B. Q REDUCTION BY FEEDBACK

As discussed in the previous section, the high mechanical Q of

the proof masses places a very stringent requirement on vibration isola-

tion of the gradiometer. This Q must be lowered for a practical

device. Processes by which the energy dissipation is increased to reduce

Q will inadvertently increase the background thermal noise (see Table

IV-l).

By feeding back the signals of resonant oscillations detected

by the SQUID with proper phase shift, Q can be suppressed without

increasing the background thermal noise proportionally. Kittel [1958]

has demonstrated this concept )f electronic cooling. Recently, Hirakawa

[1978] and Forward [1977, 19791 have applied this principle to gravity wave de-

tector and gravity gradiometer, and damping of optical structures. In this

section, the theory of the feedback circuit is formulated. The experimental

circuit and the results obtained are given in Ch. V.

B.1 Thermal Noise and Feedback Damping

To demonstrate the concept, the case of an accelerometer will be

considered. We would model the equivalent circuit of the diaphragm proof

mass at its fundamental resonant mode by the circuit in Fig. IV-2. It in-

cludes the effects of mechanical components transformed by the transducer

into equivalent electrical quantities as seen looking into the pickoff

coils of th- accelerometer.
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FIG. IV-2 ELECTRICAL EQUIVALENT CIRCUIT OF THE RESONANT
MODE OF THE DIAPHRAGM ACCELEROMETER. The parallel
inductance of the pickup coil is L; r is the in-
ternal dissipative resistance of the diaphragm;
C is a fictitious capacitance determined from the

resonant frequency of the accelerometer.

In this model, L is taken as the effective inductance of the

pick-up coils. C and r are defined as follows:

S2 (4.13a)

wOL

r 0 (4.13b)
Q0

where w0 and Q are the measured resonant frequency and quality factor

respectively. For the ideal accelerometer used in our theoretical cal-

culations, C is 0.203F and r is 7.85 X 107 9. When L = 50oH

and w0 = 2TT(50)sec-1"

The thermal noise is given by Nyquist as

2 2 *
(v) = 4kTr-f v (4.14)

Figure IV-3 gives the equivalent circuit with feedback damping at the modal

frequency.

N is the current gain of the pick-up transformer and Nf isp

the voltage gain of the feedback transformer. Rf is the equivalent

resistance accounting for all the noise energy sources in the feedback

path. A is an ideal, infinite gain operational amplifier. This is the

*t *

expected value of the noise voltage
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ANi

p N f

MODAL L N current ratio pickup
EQUIVALENT Ptransformer

Nf voltage ratio feed-

back transformer
r Rf damping resistance

of feedback network

FIG. IV-3 EQUIVALENT CIRCUIT OF FEEDBACK DAMPING OF THE
ACCELEROMETER [from Forward, 1977].

same model used by Forward [1977, 1979].

Considering the ratio of the output voltage to the input current

of the feedback, we can show that the equivalent resistance, R, as

seen by the modal resonance 
is

Req p Nf Rf (4.15)

The resulting damping will give a new value of Qfb which is given by

jfb r r+R (4.16)
eq

For large Req Qfb can be made quite small.

The thermal noise of Rf is given by Nyquist as in (4.14). The

total voltage noise of the circuit with feedback becomes

(v) (4kTr + 4kTRf Nf2 )Afn2 f)f (4.17a)
= 4kT(r + Nf Rf)Af
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Had the reduction in Q we've achieved by using a dissipative element

of magnitude equal to Req , the corresponding thermal noise would be

(v ) = 4kT(r + Req)Ln = 4kT(r + NpNfRf)Af . (4.17b)

Feedback will be better in damping the vibrations so long as the noise in

(3.18) is less than that in (4.17b), i.e.,

2r + N fR f

< 1 (4.18)
r + NpNfR

This can be simplified to

Nf < N (4.19)
f P

The thermal noise of the feedback circuit has been ignored. This is a

justifiable assumption with modern electronic components [Forward, 1977].

This assumption will be examined in Ch. V-B.

B-2 Feedback Circuit Design

The block diagram of the feedback circuit for an accelerometer is

shown in Fig. IV-4.

The bandpass filter is used to select only the resonant mode. The

VIC is used for current feedback and its low noise pickup. The SQUID

control unit (SCU) produces a voltage v that is proportional to thes

input current i0 , i.e.,

vs(t) = -Gs i 0(t) . (4.20)

For simplicity, the bandpass filter is assumed to have unity gain and

zero phase shift. If the gain of VIC is G, the current flowing in

the feedback transformer is
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CRYOGENIC SPACE, fb Vic

.vvv)FEEDBACK
PROOF TRANSFORMER

MASS

SQUID
MATCHING TRANSFORMER I

- - . - - - - - - - - -

BPF bandpass filter
SCU SQUID control unit
VIC voltage-to-current converter
H(s) transfer function of feedback circuit

SQUID superconducting quantum interference device

FIG. IV-4 BLOCK DIAGRAM OF FEEDBACK CIRCUIT. The voltage output
of the SCU is filtered by the BPF which is turned to
the frequency of the diaphragm mode to be suppressed.
The output of the transfer function H(s) drives
the VIC which provides a feedback current ifb. Cur-
rent feedback is used for noise suppression.

i ib(t) -G h(t) * Gs i 0(t) , (4.21)

where * stands for convolution. Now the voltage feedback seen by i

in the feedback transformer is given by

(ifb(t)
Vfb(t) =-
fb a

where M is the mutual inductance by the feedback transformer.

In the Laplace domain,
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V fb(S) = -SMIf(s) = SMGvH(s)GsIo(s )  (422)

For an equivalent resistance feedback, the ratio of Vfb(s)/Io(S) must

be purely real, i.e.,

V fb (S)

eq I (S) H(s )  (4.23)

Alternatively, H(s) must be given by

R
H ( (4.24)I( GM G G M s (

vs

thus the feedback circuit must include an integrator. There will be a

pole-zero cancellation in the overall feedback transfer function. The gains

of VIC and SCU can be adjusted to obtain the desired equivalent re-

sistance.

The same circuit may be used for damping the two modes of a gradi-

ometer. A simple method of doing so is to build a bandpass filter with

two pass bands, one at each resonant frequency. The output signal of

the filter will be fed to same integrator and voltage-to-current con-

verter as before. This will perform satisfactorily but one would not

be able to adjust the dampings of the two modes independently. One way

to do this is to replace the bandpass filter and integrator in Fig. IV-4

by a parallel circuit as given in Fig. IV-5.

AB
FROM
SCU TO

BPF (f2) VIC

FIG. IV-5 BLOCK DIAGRAM OF FEEDBACK FOR GRADIOMETER. For a

gradiometer with two diaphragms, the feedback circuit

shown here may replace the circuit between points

A and B in Fig. IV-4.
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By designing different gains into the two paths, the feedback resistance

for the two modes will be different. The analysis will be the same as

for the accelerometer.

B-3 The Minimum Q Achievable

Using Eq. (4.23), R may be as large as we want through the simpleeq

process of increasing the gain of the feedback path. Thus it would seem

that the Q of the oscillating system can be made as low as desired.

This is not true since the current induced by the feedback in the SQUID

is not considered in this model.

The induced current is in quadrature with respect to the signal

current. The current detected by the SQUID is the difference of the

signal and the induced feedback current. The block diagram of the

closed-loop feedback is shown in Fig. IV-6. The Laplace operator is s,

and M is the mutual inductance of the feedback transformer.

I s(s t e i

fb(S

G s the curnsedakfco, I a edrvdb h osd

CURRENT

FEEDBACK FEEDBACK

FIG. IV-6 BLOCK DIAGRAM OF CLOSED-LOOP FEEDBACK.
The effect of the feedback current is included

in this block diagram.

Gfb(s) is the gain of the feedback path comprising the SQUID control,

the bandpass filter, the integrator, and the voltage-to-current converter.

GM is the current feedback factor. It can be derived by the consid-
M

eration of the inductances of the system given in Fig. IV-7.
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MATCHING
TRANSFORMER

P

PICKUP (i.
COIL

I I I ip SQUID

p d c bM=lt s

-K La ifb ] FEEDBACK TRANSFORMER

TO VIC OF

FEEDBACK CIRCUIT

FIG. IV-7 THE INDUCTANCES OF THE FEEDBACK DAMPING CIRCUIT.

The parallel inductance of the accelerometer is Lp
Lc and LU are the inductances of the matching

transformer; La and Lb are the inductances of the

feedback transformer; Ls is the inductance of the

SQUID.

The induced current flowing in the primary circuit is i , which is due

to ifb flowing through La

Using flux conservation rule for superconducting loops, the inductance

to the left of terminals p and q may be given by

L L[ k2  LdL (4.25)
eq cLp +Ld

where k is the coupling coefficient of the matching transformer. Using

the same rule, ip is related to ifb by

i =M (4.26)

p (Leg + Ls + L) ifb (
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Thus, GM  is given as

M i

GM -: -- = (4.27)
GM

fb (L +L + L )

GM is a constant of a given circuit and is independent of frequency.

Solving the closed-loop equation, the feedback voltage is

Vfb(s) as  I(s) (4.28)-b GM s + a s()4.8

where a = G fb(s) • G . The impedance seen by the input circuit is

Zfb(s) = - aM )Is(s) (4.29)

1For a high Q diaphragm, only the impedance at the resonant frequency

need be considered. Substituting jw0 for s, the impedance is

2 a 2W

Zfb(W) = M(\ 0 Ja 0)0(4.30)
\ 0

where a = G fb(W0)GM .

The real part of Z fb(W ) is the equivalent resistance feedback

where the imaginary part increases the inductance of the resonating circuit.

They are

Rfb = a0  (4.31a)

2

L = 0 ) (4.31b)Lfb G GM 2a +2w0 0
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Note that as the feedback gain Gfb(W O) is varied, Rfb attains a

maximum at a0 W 0 while Lfb will increase asymptotically.

ffo

Rfb ao= G M (4.32a)

M (4.32b)
Lfb 0 - G

0 M

Hence the effects of increasing feedback are twofold. The resistive

feedback will increase energy dissipation while the inductive feedback

will pump energy back into the system. System Q will be minimum when

these two effects are balanced.

From (4.13), the expression for Q is

Q (4.33)
Q -r "C

In this feedback scheme, both r and L are effects of the feedback gain

G fb especially

~ 2

r r +R fb(Np/N) (4.34a)

L = Lint + Lfb (N/N (4.34b)

where Rfb and Lfb are given in (4.31), int stands for "internal",

and (N /N ) is the turn ratio of feedback transformer.

p s

Differentiating (4.33) with espect to Gfb, and equating to zero,

we get

dr r dL (4.35)

dG 2L dG
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for the condition of minimum Q.

The exact solution of (4.35) is rather complicated. Since Lfb

is typically very small compared to Lint' we can assume that WO

remains constant. Equatiors(4.35) would be reduced to

S2 _a 2 a +2 ) + _.E) 2 (aa0 +2 2(o-.ao)[Lint 0 0 G s\2 = GMa r 0 4.3)

L M s5 O ~ nO Ms

(4.36)

The value of a0  satisfying this expression would give the feedback gain I|
that produces the minimum Q.

Replacing the integrator transfer function of s in Fig. IV-7 by

H(s), the transfer function from Is(s) to Vfb(s) becomes

V fb(s) sMGfb H(s)

(4.37)

I (s) [1 + G GM H(s)]
s fbM

Setting this ratio to Req , the transfer function for a purely resistive

feedback is

R
H~) =eq M](4.38)

H~s - fb[S -eqGM

This transfer function has a positive pole rendering it inconvenient for

implementation.

The feedback scheme of Fig. IV-7 is adequate for the purpose of

noiseless damping. The fact that inductive feedback will eventually

dominate does not diminish the usefulness of feedback damping.
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C. ERROR SOURCES

The various error sources of the cryogenic gravity gradiometers

are identified. The requirements to keep the error of each source below

the maximum allowed are discussed. The nature of the drift and bias

of the SQUID based system are unique. It is assumed that the gradiometers

are operating in a quiet environment unless mentioned otherwise.

C-I Drift

When the cryogenic space is maintained at the constant boil-off

temperature of liquid helium, the structure of the gradiometer has

great mechanical stability. Unlike the room-temperature gradiometers

being developed, the need for an elaborate enclosure to reduce thermal

gradient across the instrument is avoided. The two major sources of

drift in the cryogenic gradiometers are: (1) the drift of the SQUID

electronic circuit, and (2) the flux creep in the pickup coils of the

accelerometers.

The drift of the electronic circuit can be minimized by proper

design. The SHE Corp. SQUID is a well designed package. According to

manufacturer's data (SHE], the SQUID has a drift referred to its input

of + 2 x 10740/hr and + 3 x 10740 over a 24 hour period on the most

sensitive range. This drift rate is measured when the input terminals

are shorted by a superconducting wire. These drift rates are equivalent
- -3 -03Eto + 1.84 x 10 E/hr and + 2.76 x 10 E over a 24 hour period for the

current differencing gravity gradiometer (CDGG). These drift rates

are rather sensitive to the operating temperature of the SQUID. They

are, however, negligible when the sensitivity of the gradiometers is

in the range of 0.1 E.

When the pickup coils of the gradiometers are connected to the

SQUID, the performance of the system is degraded by the noise thus intro-

duced. The drift of the detector system would be drastically increased.

Fortunately superconducting materials are superior shields against

electrostatic and electromagnetic interferences which are the main source

for the noise. A lead cylinder with closed bottom surrounding the
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vacuum can of the gradiometer is a standard item. Leads that are part

of the superconducting loop are shielded with strip-lines formed of lead

foils. Noise introduced through telemetry leads may be bypassed by

a short length of resistive wire (connected across the inputs of the

SQUID). This resistor ( 2 n ) forms a R-L filter which will bypass

most high frequency noises. When all these measures are taken, flux

creep remains the major source of drift. Most of the pickup coils of

the accelerometers are wound of niobium-titanium (T-42) wire which is

a Type II superconducting material. It is a well known phenomenon

that flux enclosed by a Type II superconductor will "leak" out of the

loop as discrete parcels known as fluxoids [Rose-Innes, 1969]. Luckily,

this creep decays logarithmically with time. For these gradiometers,

within a half hour of any current adjustment, drift due to flux creep

should stabilize to an negligible value. The drift due to flux creep

1 . is not as serious in the CDGG since the creeps in the two accelerometers

would tend to cancel one another. The displacement differencing gravity

gradiometer (DDGG) does not have this tolerance as it has only one pick-

up coil.

Flux creep may be eliminated in the first place if pure niobium

were used to wind the pickup coils. Pure niobium wire is harder to

work with as the wire tends to break readily during coil winding. The

performance of such coils is being investigated by Mapoles (of Stanford).

In summary, the stability of the SQUID-based gradiometers can be

truly unsurpassed when proper care is taken.

C-2 Bias

The SQUID is an integral part of the cryogenic gradiometers. It

has many unique characteristics [Forgacs, 1967] as a detector. When

operated in the flux-locked loop mode, its quiescent operating point

can be reset to remove any steady-state bias. For the SHE SQUID used

in our gradiometers, the residual steady-state bias is within + 20 mV

in a full-scale output of + 10 V. This bias (or any other bias voltage)

does not affect the linearity or sensitivity of the SQUID. A large bias

voltage does degrade the dynamic range of the SQUID. Thus the SQUID is

-103-



reset routinely to maximize its stability. Under such conditions, a

meaningful output bias cannot be defined.

The diaphragm proof masses of the gradiometer have some mechanical

bias. Although great care is taken during fabrication to assure uni-

formity, it is inevitable that some mechanical bias exists in the dia-

phragm proof mass. The standard practice in the industry is to measure

bias in accelerometers by rotating them through 3600 in the earth's

field; this is not possible in our laboratory setup. The cryogenic

gradiometers are designed to have a 0.1E sensitivity. The displace-
-16

ments of the diaphragm proof mass are on the order of 107 m for

O.1E though the earth-field gradient is of the order of 3000 E.

In Chapter III, Sect. A-4, it was shown that linearization about

large deflections of the diaphragm proof mass would produce negligible

errors. Thus, mechanical bias is not a significant source of error.

In addition, the ability of the SQUID to detect incremental flux changes

with equal sensitivity irrespective of the actual flux has eliminated

electrical circuit bias as a source of error.

C-3 Effects of Rotation on Noise

The power spectral density of the noise of a SQUID is given in

Fig. 11-9. Below the cross-over frequency of 0.01 Hz, the noise is

dominated by 1/f noise. Above the cross-over frequency, the noise

is primarily thermal noise and has a constant amplitude up to I kHz.

This constant power level is used to determine the minimum resolution

of the cryogenic accelerometer and gradiometer in the previous sections.

If the gradiometer were used to measure gradient signal with

frequency component below the cross-over frequency (0.01 Hz using this

SQUID), the resolution is degraded inversely with the frequency. One

way to overcome the 1/f noise is to rotate the gradiometer about its

geometric center.

For a rotating gradiometer comprising pairs of accelerometers,

there are two possible axes alignment schemes. They are represented

by the sketches of Fig. IV-8.

-104-

_J =. . .. ..



t

(a) Tangential Alignment (b) Radial Alignment

FIG. IV-8a,b ACCELEROMETER AXES ALIGNMENT FOR A ROTATING GRAVITY
GRADIOMETER. The two configurations of aligning

two pairs of matched accelerometers on a rotating I*
platform to measure gradient are shown. The con-
figuration given in (a) is used in the Bell Aero-

space rotating gravity gradiometer.

In Fig. IV-8a, the accelerometers have their sensitive axes per-

pendicular to the line joining each pair. In Fig. IV-8b, the axes are

along the line joining the pair. In both cases, the accelerometers are

placed equidistant from the center of the rotating platform.

Figure IV-9 gives the notations used in the derivation of the
gradiometer output equation. The gravity vector, g0, is at the origin

of the platform axes.reference system and defines the local horizontal

plane. At any of the point, say Pl, the gravity vector can be written

in terms of gO as:

0
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93  r 3

rp

n1
0

r
2 r2P2 0_g r4

792

P4

FIG. IV-9 PLANAR PROJECTION OF THE GRAVITY FORCES ACTING ON
THE PROOF MASSES OF A ROTATING GRAVITY GRADIOMETER.
The gravity force acting at the center of the rotat-
ing platform is go. The resolutions of the forces
at the four proof masses give an indication of the
gravity gradient.
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bO x +g g

g &g x  Ax + Ay + Cz (4.39a)

gl = goy + 6- AX + 6-y Ay + ; A-  " (4.39b)

= g0  +3;- Ax + T Ay + ;,-6z .(4. 39c)

Defining r as the gradient tensor of Eq. (2.3), and

Ar = (Ax, &y, z) T  (4.40)

the gravity at pI may be written as

-1 = 0 + -r (4.41a)

In the rotating gradiometer,

- (4.42)

and (4.41a) becomes

+= o+ "  (4.41b)

We shall define the unit vector nI such that

r 1 X n1  = 0 (4.43)

where r 1  is the unit vector of r1 .

In Fig. IV-8a, the acceleration a sensed by the accelerometer

at point 1 is
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a1  9 n, a (4.44)

Thus the output of the gradiometer is given by

(a +ia)- (a3+a) = (i n +i2  n)- (g3' n+g n4  (4.45)

where

n (-sin el + cos e3) (4.46a)

and

n _n (4.46b)
2 1

where n3and n4 are similarly defined. The rotation angle 4 is

9 nt (4.47)

Substituting and simplifying (4.45), the gradiometer output becomes

(a I+a 2) - (a3ia4) Y]r[ cos(2wt) +i r~ry - I' sin(2t (4.48)

where r is the distance of the accelerometer from the center of plat-

~ j form axis. This is the same equation derived by Bell Aerospace [1971].

For configuration IV-8b, the acceleration sensed by the acceler-

ometer at point 1 is

a, 1  r,(4.49)

The output of the gradiometer is given by

(aI +a 2  3 (k+a 4) g I* r I+g2 , r -2 (g3  r 3 +g 4  r 4) (4.50)

where

r (cos OT + sin e)(4.51a)
and

r = -r1  (4.51b)

-108-



where r 3 and r4  are defined similarly. Simplifying (4.50), the out-

put of the gradiometer becomes

(a1 +a2 ) - (a3+a4) r[Pxx +ryy +2r xy] +r[ir xx-r yy]cos(2t) * (4.52)

Equations (4.48) and (4.52) show that when the gradiometer is

arotated, the gradient signal is shift spectrally to a frequency twice

the rotation rate, 9. Thus by rotating the gradiometer by a frequency

P such that 2g is more than half the bandwidth of the detection cir-

cuit above the cross-over frequency, the gradiometer will operate in the

white noise region.

However, rotating the gradiometer introduces another set of prob-

lems. Amongst them are the noise and error sources associated with

rotation. These tend to be more prominent as the rate of rotation is

increased. Fortunately, most of the noise associated with rotating such

as bearing noise have an output frequency equal to the rotation rate.

They are inherently separated in the frequency domain from the output

signal and may be selectively filtered.

Of the two possible arrangements shown in Fig. IV-8, Bell Aero-

space has picked the first configuration. In this arrangement, there

is no steady force acting on the accelerometers in a steady state. In

the second configuration, the proof mass experienced a constant cen-

trifugal force. This "pre-loading" of the accelerometers may introduce

dynamic range problems and other problems related to a constant bias.

However, in this arrangement, the gradiometer is unaffected by the fluc-

tuations in the rotation rate since these are cancelled out. This is

not the case in the first configuration. In fact, any fluctuations is

enhanced by the gradiometer. On the other hand, very precise frequency

control is relatively easy to achieve and this error can be kept small.

C-4 Axes Misalignment

In the fabrication of precision instruments, parallelism is always

costly to achieve. It is no exception for the two cryogenic gradiometers

despite their simple construction. The requirements of the parallelism
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of the diaphragms for a given error in the gradiometers will be determined.

Figure IV-10 gives the rectangular coordinate system of the gradi-

ometer. The origin of the coordinates is the geometric center of the

gradiometer. Unit vectors n1 and n2 are the normals to the planes

of the two diaphragms. They are not in line when the planes are not

parallel to each other. The z axis is the sensitive axis of the

gradiometer. The x and y axes are arbitrarily fixed to the body. The

baseline of the gradiometer is 1.

Z

n2

FIG. IV-10 COORDINATE FRAME OF THE GRADIOMETER. Unit
vectors n, and '12 are normal to the planes

of the two diaphragm transducers. The z
axis is the nominal sensitive axis; s is the
distance between the centers of the two proof
masses. That n1 and -n2 may not coincide with
the z axis produces the "misalignment" error.
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The unit vectors of the normals are given by

a = +E 3 (4.53)

np xp yp

where p can be 1 or 2. The acceleration vectors at the same points

as the normals will be denoted by a p(t). These acceleration vectors

may be due to the constant earth's field or a time-varying fie)d gener-

ated by an external device, to be discussed in Ch. V, Sect. C-2.

A generalized equation for the output current to the SQUID for

the two gradiometers may be derived from (3.56) and (3.78). It is

i(t) n -( a2(t )  R2 (4.54)

For the CDGG,

= ai

For the DDGG,

XI0

S= 0=

For both cases,

10 d o
1 5 d 1 , h 1.08 X 10

II0
To balance the gradiometer, a common sinusoidal acceleration

a (t) = a (t) = A cos wt 1 is applied along the sensitive axis. Using
I i
(4.53) and simplifying, the output becomes

isb(t) = PiY eClzl - Cz2 ]A cos wt . (4.55)

The parameters v1 and/or a2 are adjusted such that the output due to

a common acceleration vanishes. The condition is
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alEZI. 2 EZ2 0. (4.56)

The balanced gradiometer may now be used to measure gravity gradient.

Let the gravity vector at the center of the gradiometer be

go =9 O I +goyJ + Oz(4.57)

The displacement vectors, nAr - (0, 0, 1/2 )T and r 2  ~(, 0

Using (4.41a), the gravity vectors at points 1 and 2 are

A
(g 0 +Pr 3)i +(g-P 1 g +P )(45b

2x O z 2 + ( Oz zz 2(45a

Using (4.54), the output of balanced gradiometer is

i(t) r e r A+ eJ (4.59)

where

el (cgO +' 2' X1 Oy yz 2 Yl (4.60)

I Ox x+ (g r )~

-ar2[ (gx - rx 2 x2 0  -y 'yz 2 ~

For any ideal gradiometer, the output would have been

s (t) = 7 r .z (4.61)

Equation (4.60) shows that when the sensitive akes are not aligned,

gravity gradient perpendicular to the sensitive axis of gradiometer will

produce errors.

To get an idea of the constraints on parallelism, let the normal

of diaphragm No. 2 be parallel to the sensitive axis of the instrument, i.e.,
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I
n 2 = (4.62a)

ex2 = Cy2 P ' 6z2 = (4.62b)

If we further choose the body axes such that

e =0 (4.62c)yl

the error term, eI of (4.60), is simplified to

1(gOX + rxz 2 x1 (4.63a)

and for earth-bound application, it becomes

e, = a1exlgox (4.63b)

since

gOx >> r"xz e (4.63c)

The relative error F is given by the second term of (4.59) divided

by the first. For eI given by (4.63b), is given as

OX Exl
= I (4.64a)

gox (4.64b)
zz

where is the angle (rad) that n1 makes with the z axis. It is as-

sumed that e is small and the error is not spectrally separated from

the signal.

Table IV-2 tabulates the gravity that will give a 1% error for
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a given 9 in a field where r = 50E and i = 0.1 m.zz

Table IV-2

THE TOLERABLE GRAVITY FOR 1% ERROR

9 (deg): 0.5 0.1 0.01 0.001 0

g (o9g): 0.57 2.86 28.6 286.4 0

In determining the tolerable misalignment of the two accelerometers,

it is necessary to specify the environment in which the instrument will

be used. For the experiment described in Ch. VI-B using a swinging

ball as the gradient generator, 9 should be less than 3 arcmin for

a 1% measurement error. If the gradiometer were used for geodetic

survey on a moving base vehicle, the limits become rather severe. When

operated with its sensitive axis vertical (SAV), 9 < 0.5 arcsec. In the

sensitive axis horizontal (SAH) mode, 0 < 3.4 arcsec. It is assumed

that the displacement of the gradiometer from its balancing location is

100 m in the SAV mode, and + 1 m in the SAH mode.

For our laboratory experiment, the tolerance of parallel surfaces

are readily achieved by careful machining to approximately 3 arcmin.

C-5 Scale Factor Matching

Unless the two scale factors of the proof masses are matched, the

output of the gradiometers include error proportional to gravitational

acceleration. The degree of matching for agiven level of accuracy will

be investigated using a gradiometer with no axis misalignment. In other

words,

n1  k (4.65a)

n k .(4.65b)

41 The instrument is balanced if

(4.65c)
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Substituting (4.58) and (4.65) into (4.54), the output current is

±s(t) = go(a - a ) + (a + 2)r z t] . (4.66)
sOzi 1 '2 21 2zz

Subtracting the output of an ideal instrument, (4.63b) from (4.66) gives

the error term

e = 02)[go - " A] " (4.67)

The percent error 2 due to scale factor mismatch is

4g

O " 1
gi (102( =~ ~-a2) )~2 ' (a (4.68)

since goz > rz i typically. Evidently, the scale factors a, and 0

must be better matched if a, the common axial acceleration becomes

~bigger.

*j In the laboratory experiment using the swinging ball (Ch. VI-B),

we have r =50 E, A =0.1 m and go =10 g. Equation (4.68) shows

that for a 2% error, balancing must be close to one part per thousand.

The output of the gradiometer at different levels of scale factor

matching can be determined. When the gradiometer is shaken by a common

sinusoidal acceleration along the z axis, the gradient term may be

ignored. The output current is derived from (4.66) by setting rzz = 0,

viz, iCT -a1 a2 a() 1
is(t ) =f 1(r-a) a (t) = 13a-----)A cos wt. (4.69)

Using the DDGG as an example, = 1.08 X 105, Y = I/W2, where

-1
Wl = 21T(50)sec . With the SQUID sensitivity of 200 kV/A, the

amplitude of the shaking acceleration, A, for a peak output of 100 mV

and a scale factor balancing of I in 1000 is 4.7 x 10 5g. The voltage

output is suggested for easy detection. Thus the balancing common
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acceleration is small. For a scale factor balancing of 1 in 10, the accel-

eration will be ten times smaller for the small output voltage.

In (4.69), the scale factors 1 and o2 are assumed to be constant.

The analysis of the gradiometer given in App. D-4 shows that they are

functions of frequency, damping factors, and persistent currents. For

a pair of 800 Hz diaphragm, the scale factors at the low frequency range

are plotted as solid lines in Fig. IV-11. The intersection gives the

frequency at which the two scale factors are balanced. When the per-

sistent current in accelerometer 1 is changed, the plot of 'I shifts as

shown by the dotted lines. The balance point shifts to p1  when the

current is increased, and to p2 when the current is decreased. Since

the balancing conditions are different at p1 or p2 ' the gradiometers
5will be balanced only at one frequency. For a high Q (Q a 10 ) suspen-

sion, the error introduced in measuring gradients at frequency different

from that of the balancing frequency will be smaller than the resolution

of the instrument (0.1E). See App. D for details.

We conclude that the gradiometers must be balanced at a frequency

as close to the operating frequency range as possible. However, it

becomes increasingly difficult to do the balancing experiment as the

forcing frequency is reduced. These difficulties arise from the prac-

tical problems of the mechanical shaker and the detection of a low fre-

quency output signal.

D. SUMMARY

The high Q of the diaphragm proof mass suspension of the acceler-

ometer should be reduced. A method to accomplish this without unduly

increasing the thermal noise is devised.

The isolation required to limit error contribution from environ-

mental vibrations is determined. These requirements are very demanding

unless precisely matched accelerometers are used in the gradiometer. An

alternative way to remove error is to model them mathematically using

additional measurements. The block diagram of a simple scheme is given

in Fig. IV-12.
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0 10 100 f(Hz)

SIGNAL FREQUENCY

FIG. IV-11 FREQUENCY PLOTS OF SCALE FACTORS OF THE TWO
GRAVITY GRADIOMETER ACCELEROMETERS. As the
scale factor, a, of the No. 1 accelerometer
is changed, the balancing points change to p1 or p2.
The plots are theoretical curves for a pair of
accelerometers.
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GRAVITY CA--RT O
GRADIMETER

EMEASUREMENT +} MODE GRADIENT

11 c AL IBRAT ION

a x GRADIOMETER MODE
~MODELED

i ay ERROR

ERROR~MODEL
z PARAMETER

- ACCELERATION ADJUST

MINIMIZATION
~SCHEME

FIG. IV-12 GRADIOMETER ERROR COMPENSATION MODEL. The
calibration of the error model is performed

by placing the gravity gradiometer in a known
. gradient field. Three accelerometers are

mounted orthogonally on the gradiometer platform
to determine the accelerations experienced by

the gradiometer. These measurements are input

into the error model where parameters are ad-

justed using an on-line computerized algorithm

to minimize error.
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In this scheme, the gradiometer is mounted on a stabilized platform

together with three accelerometers. The error model transforms these

measurements into an equivalent error signal which can be used to remove

the actual error. The parameters of the model may be adjusted in the

calibration mode through an optimization algorithm using an on-line compu-

ter. During calibration of the error model, the platform is shaken

with known sinusoidal forces.

The drift and bias of the cryogenic gradiometer are examined and

found to be favorable. We concluded that the cryogenic gradiometers

are superior to room temperature devices in most respects. The price

we pay is the provision of a cold space. In some applications where

increased sensitivity is required, a cryogenic design may be the only

instrument of acceptably small size.
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Chapter V

SUPERCONDUCTING HARDWARES

A. CONSTRUCTION OF THE CRYOGENIC GRADIOMETER

The two cryogenic gradiometers operating on different principles

are discussed in Ch. II. Results of the experiments using the current-

differencing device will be reported here; those of the displacement-

differencing device will appear in E. Mapoles' dissertation.

The cryogenic gradiopeter comprises two accelerometers separated

by a fixed baseline of 10 cm. *The accelerometers are of the design devel-

oped by Dr. Paik. They are described in detail in his Doctoral thesis [1974].

Only a brief description will be given here. In our experiments, the

accelerometers are mounted with their sensitive axes aligned.

The individual accelerometer consists of a niobium diaphragm shown

in Fig. V-1. On each side of it a pancake-shaped coil is placed a small

distance of 0.1mm (0.004") away. These coils are wound with 300 turns of

Nb-Ti 48 wire of 0.002" dia. Under these conditions, the wire should be

carrying at least 5 A at T = 4.2 K before the critical field at the

surface of the diaphragm is exceeded.

The output leads of the accelerometers and the input leads to the

SQUID are connected in parallel. The electrical schematic is shown in

Fig. 111-9. To facilitate assembly and disassembly of the gradiometer, a

common bus-bar concept (suggested by Paik) for making connection is used.

The construction of these joints is described in the next section.

The cross-sectional view of the assembled gradiometer is given in

Fig. V-2. Titanium* studs are used to hold the'assembly together. The

other components in the assembly are machined out of niobium or niobium

zirconium stock.

Ti is used for strength and its close thermal coeffient expansion with
Nb.
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SCALE ' ,
0 1 2 3 4 5cm

FIG. V-2 CROSS-SECTIONAL VIEW OF THE CURRENT DIFFERENCING
GRAVITY GRADIOMETER (CDGG). The distance between
the diaphragm is about 5 cm here. It was increased

to 10 cm in the experimental gradiometer. The
piezoelectric shaker to produce the linear accel-
eration is shown attached to the assembly.
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In the majority of our experiments, a pair of closely matched

diaphragms of frequency of 855 Hz were used. We decided to build a

matched pair when we encountered difficulties when we tried to demonstrate

the current-differencing concept. The frequency was selected so that the

diaphragms can be used as sensors for the gravity wave experiment going

on concurrently at Stanford. We were to pay heavily in this compromise

in the reduced sensitivity of the sensors.

The theory discussed in Ch. III-A-1 is used to determine the thick-

ness of the diaphragm after its resonant frequency is chosen The dia-

phragms are then machined, cleaned, and vacuum annealed for stress release.

They are electro-chemically polished to increase its Q factor [Paik, 1974].

The polishing is done in a mixed solution of sulphuric and hydrochloric

acid in a procedure outlined by Drepers et al.119711. The same process

may be used to fine-tune the frequencies of the diaphragm.

Four pancake coils are wound following the procedure in Paik's

thesis [1974). The idea is to leave a shoulder near the center of the

coil form such that when a lucite disk is pressed against the shoulder,

a well defined gap is left to wind the coil. The plates are held together

by means of a dowel pin pushed into a hole which is bored through the

centers of both plates perpendicular to their surfaces. The shoulder

0.0005
height is 0,003 0.0000 in. and the hole size is 0.1870 in. (4.75 mm)

with the dowel pin 0.1875 in. (4.76 mm). The improvement we made is to

machine the backup plate, the G-10 coil, form the hole through the G-10

and then the lucite disk all in one setting of the work tool and the chuck.

With care, almost perfect coils of 300 turns of 0.0025 in. Ti-Nb wires are

obtained. We have also tried to replace the G-10 coil form with machinable

ceramics. Although satisfactory in most aspects, the ceramics are

brittle and chip easily. Moreover, the coils tend to peel off easily

from a ceramic coil form.

When assembled, the gradiometer is totally shielded from external

interferences by its superconducting cover. It is compact and rugged.

Current leads into the gradiometer and output leads to the SQUID are

shielded by lead tubings.
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A pair of loaded diaphragms of design described in Ch. III were

built by Dr. Paik. These sensors were built before the analysis was done.

The schematic is given in Fig. V-3. Note that a = b/a = 0.286. The

sensor was constructed by electron-beam welding a central post to a corres-

ponding hole cut at the center of a diaphragm. Additional annular

disks were then welded onto the posts to increase the central load.

Electron-beam welding is done in vacuum. The heat generated inevitably

tends to warp the annular portion of the diaphragm. Heat treatment for

stress release must be carefully done since the central mass is heavy.

A permanent sag could easily occur. Correction measures have been taken

for both sensors so fabricated. Despite these problems, welding is chosen

because the resultant sensor will have high Q. It has been pointed out

in Ch. IV that high Q is not necessarily favorable in all respects.

Clamping the load on to the diaphragm would be an alternative if lower
4

Q (say, 10 ) is acceptable. It is indeed the method adopted by Evan

Mapoles* in the design of a new sensor. The loaded diaphragm proof masses

ANNULAR NIOBIUM

/ RINGS ELECTRON BEAM

FIG. V-3 CROSS-SECTIONAL VIEW OF THE CENTRALLY LOADED

DIAPHRAGM. The diaphragm comprises 4 individual

components: a diaphragm with a centrally located

hole, a cylindrical post, and 2 annular rings.that

are welded onto either ends of the post. All parts

are made from Stanford-graded niobium.

Ph.D. Candidate in Physics Dept, Stanford University
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built are used mainly in the displacement differencing gradiometer. The

experiments are performed primarily by Mapoles and will be described in

his dissertation.

B. SUPERCONDUCTING JOINTS

Making high current density superconducting joints has always been

an art especially in the construction of the superconducting accelerometer.

To maximize sensitivity of the pick-up coils, tiny wires (0.002 in dia.) are

selected. To achieve its theoretical sensitivity, the coils should have

a persistent current of 5 A . The method developed by Paik is to twist

the ends of the wires together and clamp the twisted bunch tightly between

two washers. The surface areas of the wires in contact with one another

provide the conduction. Joints made this way have been satisfactory. For

an assembly of ten joints or more, a few iterations of cooling down and

identifying the faulty joints are normally required since there is no way

to check at room temperature whether the joints will be superconducting

when cooled. However, every time the accelerometer is dismantled, all

the joints have to be remade. One should minimize the number of joints

disturbed during disassembly.

Paik suggested the bus-bar concept. The resultant design is shown

in Fig. V-4. A joint for three wires is picked as the design since it is

most common in our work. The base, a brass slab of 3/16 \ 1/2 x 1 in.

has three 8-32 threaded holes to hold three short screws. It also

serves as the heat sink. The proper spot for the joint holes are drilled

in the two 1/2 X Ii in., 0.002 in. foils such that they may be- assembled

as shown in the figure. The wires to be jointed are placed between the

foils with one wire to each screw. The "sandwich" pile is then pressed

together by torquing the screw to 13 in.-lb. To prevent the washers from

cutting the wires, their edges are rounded on the sides touching the foils.

The niobium foils serve as the common bus between the wires. To im-

prove reliability, the two foils should be a continuous piece bent-double.

To ensure good surface contact, the foils and the ends of the wires are

cleaned by dipping into concentrated nitric acid just before they are put

together. This procedure has been successful in reducing the turn-around

time between trial runs.
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BRASS SCREW
BRASS WASHER (8-32)

Z IRE

f NIOBIUM

BRASS SLAB FOILS
(0.005 in)

FIG. V-4 CROSS-SECTIONAL VIEW OF THE SUPERCONDUCTING "BUS-BAR"
CONNECTIONS. The joints are formed by pressing the
niobium coils. The actual joints are made between
the wire and the foils. By using a continuous strip
of foil, a superconducting bus-bar joint is made.

B-1 Ultra Low Resistance

The analysis for the current-differencing gradiometer (Ch. III)

shows that the persistent currents in the two accelerometers should be

adjusted for common mode rejection. In superconductivity work, small

current adjustments are typically done using an external coil that is

coupled to the first coil through a transformer link. By storing current

in the external loop, the net flux in the first coil can be reduced. This

scheme cannot be used in the gradiometer which makes use of the same flux

conservation principle for detection. Instead ultra low resistor is used.

The idea is to switch an ultra-low resistor on command in series

with the coil in the loop. If we can achieve an L/R time constant of

1000 sec or more, balancing the currents to one part per thousand is easily

achieved by manual control. With L of the order of 100 "H, the re-

sistance required is of the order of 0.1 p. This is a rather low re-

sistance value. To achieve this, the following circuit element is devel-

oped.
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A piece of copper clad niobium wire is non-inductively wound a few

turns about a carbon resistor (150 n). The wires are then soldered using

ordinary lead-tin soldered on to a copper block with a 10 mm wide step, see

Fig. V-5. At 4.2 K, the solder will be superconducting while copper is not.

HEATER
RESISTOR

COPPER FOIL
HEAT CONTACT

COPPER BLOCK
COPPER CLADDED

NIOBIUM WIRE

FIG. V-5 PICTORIAL SKETCH OF THE ULTRA-LOW RESISTANCE
RESISTOR. The resistor is heat activated. A
current flowing through the heater resistor will turn
the niobium wire that is wrapped around the resistor
normal. Any super current that flows in the wire

will be forced to flow through the copper-niobium
bond in the copper cladded wire, the solder plug, and
the short length of copper of the copper block. The
resistance of this path at cryogenic temperature is
about 1O-7f)
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The copper cladding at the ends of the wires are removed by dissolving

the copper in concentrated nitric acid. The exposed niobium core may

be used to connect to the other elements through a superconducting joint.

The copper block also serves as a heat sink for the element. A circuit

diagram of a typical arrangement is given in Fig. V-6.

SUPERCONDUCTING
SWITCH -

L ULTRA LOWL 2RESISTANCE

FIG. V-6 SCHEMATIC OF TUNING CIRCUIT.
L and L are the superconducting

1 2
The sketch of the ultra-low resistance

and the superconducting switch is given
in Fig. V-4.

L1 and L2 are the superconducting pick-up coils of the accelerometer.

At 4.2 K, the niobium core of the copper clad is superconducting

and a persistent current may be stored in the loop. To change the per-

sistent current, the superconducting switch is opened by passing a small

current (10 mA) through the carbon resistor. The current will either

flow through the "normal" part of the niobium wire (- 0.1 !1) or crosses

the niobium-copper interface, the superconducting solder joint and the

raised step of the copper block.

Experiments were performed to determine the decay time constant

of the arrangement. Current was stored in an accelerometer and the
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frequency of the diaphragm determined. The heater was turned on and the

current allowed to decay for a given time. The frequency of the dia-

phragm was then determined and the process was repeated. The experiment

can be performed using an accelerometer or the accelerometer half of a

gradiometer. A typical result is given in Table V-1 and plotted in Fig.

V-7. The energy decay time constant is 630 sec giving a resistance value

of 2 X 107f.

Table V-1

ENERGY DECAY OF INDUCTANCE COIL
(f = 855.1 Hz)

0
2 2

1 fl 0 0

0 857.8 4625

200 857.05 3339

400 856.5 2396

600 856 1 1711

800 855.8 1198

1000 855.6 855

Adjusting current by means of the ultra-low resistor has been demonstrated

successfully. This procedure is used in our gradiometer work. Another

possibility is to connect a resistor in series through a transformer link.

This method has been successfully employed by Prof. Goodkind but is not

developed further here.
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Cumulative Heater On Time

FIG. V-7 ENERGY DECAY OF PERSISTENT CURRENT. The plot
showing the difference between the square of
the frequency with current and that without vs
the cumulative time the ultra-low resistance is
switched into the circuit is plotted on log-
linear scale. The slope of the line gives the
decay time constant of the stored energy.
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0-2 The SQUID (Superconducting Quantum Interference Device) Detection System

The operation principles of an a-c SQUID [Zimmerman, 1972] are

described in the literature [Forgacs, 19671, [Lounasmaa, 1974], [Rose-

Innes, 1967]. The SQUID used in the initial phase of this research is

the toridal SQUID developed by Paik who described it in detail [Paik, 1974].

Since it is custom designed for the accelerometer, it has very high sens-

itivity. However, it is dropped in favor of the commercially available

SHE SQUID System 330 for its simplicity and reliability. The reader is

referred to the manufacturer handbook for the complete description of the

SHE system. Some salient characteristics are listed in Table V-2.

Table V-2

CHARACTERISTICS OF (SHE) SYSTEM 330

maximum equivalent input current 2 x 10711
noise 10 (rms A/V/4z )

input coil inductance, L ("H) 2

mutual inductance between input coil

and SQUID, M (nH) 20

guaranteed energy sensitivity, 10-28

LI' (Joules/Hz) 4

maximum input signal without reset-

ting output I (Ap-p) 10-m

dynamic range Iml 0 (V/,'G4y) 5 10

This is indeed a very sensitive detection device with a maximum theoretical

sensitivity of 20V/4A for a full scale deflection input of 0.5 pA.
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This system also provides a suitable voltage with 100&1 output

impedance, + 5mA maximum current and +lOV range for external feedback.

This is very important since this output was used in the implementation

of the feedback damping scheme described in Ch. V-B.

In the experiments to verify the feedback damping scheme described

earlier, the SHE multiple-function probe (MFP) SQUID is used as the sensor

as well as the feedback element. The MFP has a built-in transformer which

is ideal for feedback purposes. The input leads of the feedback trans-

former has noise suppression ballast inductors and bypass capacitors.

The mutual inductance of the feedback transformer is 14H.

Note that the inductance L of the gradiometer has a theoretical
P

value of 251iH while that of the input coil of the SQUID is 2uH. A

matching transformer is designed and built to maximize energy transfer

to the SQUID. The transformer is of the solenoidal design of Prof. Giffard

(Stanford University).

The coil form is made of G10 rod and its dimensions are given in

Fig. V-8. The solenoidal coils are wound on the thinner rod in the center.

The primary of the transformer are wound first, consisting of 282 turns

of 2 mil niobium T48 wire. The secondary is wound on top with 79 turns

of the same wire. Being superconducting, the gauge of the wire in the

secondary needn't be larger. This gives a turn ratio of 3.57, the square

of which is 12.7 which is fairly close to the desired value of 12.5. The

number of turns of the primary is selected to give an inductance about

three to four times that of the gradiometer.

* 02a
inductance of solenoid is L =LON a/A
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G10
O. 62

I I 0.55 - 0.4 - 0.55

IMBEDDED NIOBIUM

PADS FOR JOINTS

FIG. V-8 MATCHING TRANSFORMER COIL FORM. The transformer
windings are wound in the central portion of
the coil form. The imbedded niobium pads at
either end allow external leads to be connected
to the windings of the transformer. All dimen-
sions are in inches.
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To improve coupling and shield against interference, a 5 in. length

of 0.002 in. lead foil 1.45 in. wide overlayed on a slightly bigger strip

of 0.001 in. mylar is wrapped around the central portion of the form.

The mylar prevents shorts between layers of this continuous cylindrical

superconducting shield. The transformer is encased in a copper enclosure

which has a thin solder film covering its entire surface. The cylindrical

enclosure is designed for mating with the SHE SQUID.

The parameters of this transformer is determined in a simple test

*performed by Hollenhorst of Stanford. The schematics is given in Fig.

V-9.

The primary is connected across a superconducting capacitor of known

value. The frequency and Q of the resonance are determined from the

resonance as seen from the SQUID connected by the secondary. The value

of resonance and Q are 48013 and 1726 kHz respectively. This works

out to be an inductance of 92 IH for the primary. The secondary is then

determined from the turn ratio. Using the same procedure, the coupling

constant for the transformer without its lead shield is determined to be

0.927.

The parameters of the transformer are also measured at d-c using

the SQUID. Figure V-10 gives the experimental setup under cryogenic

conditions.
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300 pF 500 pF

V

Ii aF CRYOGENIC
La Lb SPACE

FIG. V-9 CIRCUIT FOR THE TESTING OF TRANSFORMER

[courtesy J. Hollenhorst]

With this setup, the resonant frequency

of the L - C circuit in the transformer's
secondary winding can be determined. The

inductances may be calculated.
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CRYOGENIC SPACE

r--. - ------ 1I I

!t CONSTANT

I CURRENTLII SOURCE
I MLA L s

Lb

- QUID
B TRANSFORMER

FIG. V-1O CIRCUIT FOR INDUCTANCE MEASUREMENTS
OF THE MATCHING TRANSFORMER. By
pumping d-c current in the primary of
the feedback transformer and measuring

the corresponding voltage change in the
output of the SQUID, the inductances of
the matching transformer can be determined.
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The SHE Corp. SQUID used has a current sensitivity of 0.0980 LA/4 0

and a flux sensitivity of 19.9 mV/ 0. The mutual inductance M and L

+ Lb are determined by Jim Hollenhorst for the SHE multiple function

probe as 0.967 H and 2.56 pH respectively. The terminals A & B may

be shorted by a piece of superconducting wire. A given current, I,

may be forced through the external circuit using the precision SHE

constant current supply. The corresponding rise in the SHE control unit

is then noted. From the quoted sensitivity, the loop current I1  is

I 0.98x0 A AV (V) (5.1)
19.9

where AV is the change in the d-c output voltage of the SQUID control

unit. From the consideration of flux, we have

11(L + Lb + Ls) = IM (5.2)

when the terminals A and B are open. When they are shorted, the rela-

tion is

11[L(l - k2) + Lb ) = IM (5.3)

where k is the coupling coefficient of the matching transformer. Table

V-3 gives the experimental results.

Table V-3

DATA OF TRANSFORMER TESTING
erminal AB Open Closed

Winding
Connected LI AV

to SQUID

primary 1 V 0.261 * 0.2mA 1 V 0.096 * 0.2A

secondary 0.6 V 0.275 * lmA 1 V 0.392 * 0.2mA
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Using the data and the Eqs. (4.2) and (4.3), the parameters of the

transformer were determined to be

L, = 87.4t.iH

L2 = 7.69 (2 (5.4)

k = 0.924

M = 23.941

D. DAMPING BY FEEDBACK

D-l Test Circuit for Feedback Damping

An experiment to demonstrate the concept of "noiseless" damping in

a cryogenic environment is shown in Fig. IV-4. The SHE Model 30 SQUID

control unit provides a voltage output for external feedback purposes

with a transfer function given by

v(t) = -G i (t) (5.5)

where i s (t) is the input SQUID current and G is the constant gain.

The constant gain, G, can be one of three values: 200 V/mA, 2,000 V/mA,

or 20,000 V/mA depending on a front panel selection. This external

feedback voltage is unfiltered. The package arrangement of SHE SQUID and

the transformer available in the SHE multiple function probe SQUID is

used for the sensor and feedback unit. Ballast inductances and bypass

capacitances are built into the transformer for noise suppression. The

compact unit is well-shielded against interference and spurious pickup.

The inductances of the circuit as given in Fig. IV-7 are determined:

Lb = 0.56liH, Ls = 21X, Lc = 74H, Ld = 92p11, and k = 0.927. The

design value of Lp, 100 IX, is used for the inductance of the pickup

coil for a high Q diaphragm of resonant frequency 418 Hz. The Q

of this diaphragm was determined as the feedback was varied. The feed-

back scheme of Fig. IV-4 was implemented and the parameters picked to

produce a theoretical Q of 6.6. For this diaphragm, this meant an
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equivalent resistance of 200 mQ using the simple theory formulated in

Ch. IV-B.

The circuit of the bandpass filter, the integrator and the voltage-

to-current converter is given in Fig. V-11. Using (4.24) with M = 14H,

Req = 200mQ, Gs = 200 V/mA, it becomes

H (s) (5.6)
I Gs

V

For the voltage-to-current converter, the load current is approximately

10 mA for 5V input. Thus,

1
G v - - (5.7a)v 500

and 500H (s) - s 
(5.7b)

I

The resultant RC time constant of 39 mO is obtained by setting

R = 39 k9 and C = 1 F.

In actual design, a voltage-controlled-voltage source non-inverting

filter was selected for the bandpass filter with a Q of 8 and a gain

at the passband of 27.3. The design of these circuits are taken from the

Burr Brown source book [Graeme, 1971]. The gain of the bandpass filter

has been assumed to be unity in the design. To compensate for this dis-

crepancy and to adjust the overall feedback gain, an attenuator is in-

serted in front of the bandpass filter. The actual gain of the feedback

loop was determined experimentally.

Using the notations for voltages in Fig. V-11, the voltage ratios

V4/V Iand V2/V were determined at different frequencies for a particular

adjustment of the bandpass filter. The results are plotted in Fig. V-12.

By considering the loop gain, we obtain:
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FILTER
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FIG. V-12 TRANSFER FUNCTIONS OF THE BANDPASS FILTER AND
THE OVERALL FEEDBACK. The bandpass filter

is tuned at 417.9 Hz which is the resonant

frequency of the resonance of the diaphragm

proof mass.
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Z fb = 8 V ld0-4 antilog G (5. 8a)
fb I V IAe1

and Gf = Zfb = 10 6Zfb 
(5.8b)

where Zfb is the feedback voltage seen by the input current Ie  and

IGfbI is the magnitude of the feedback loop gain, Gfb; GA is the

attenuation of the attenuator expressed in db. For zero db attenuation,

Zfb was 713.1 mP at the resonant frequency.

The calibrated circuit was then used in the feedback loop with

different GA . The Q of the diaphragm at the different feedback gains

were determined. The results are plotted in Fig. V-13. It shows the

initial decrease in Q and its subsequent increase as the feedback gain

is increased. This is predicted by the discussion given in Ch. IV-C.

The minimum time constant of 1.85 sec (Q =2430) occurs at G = -45 dB3.
min A

Using (5.8a), the resistance produced by the feedback circuit is 4.01 mi.

This is the resistance seen by the input SQUID circuit. Assuming perfect

coupling, the resistance seen by the diaphragm is given by (4.34a). For

(N p/N ) = (282/79), the equivalent resistance is 51.1 mP.

We shall check the accuracy of the predictions of (4.36) which

give the theoretical value of Gfb that will produce the minimum Q.

Using (5.8b) and Rfb = 4.01 mP, the experimental value of Gfb is

GfbI = 4010 . (5.9)
f-fo

For the inductance values given in the beginning of this section in

Eqs. (4.25) and (4.27), we have

L = 4.118tH (5.10a)eq

and
GM = 0.1498 . (5.lOb)

Furthermore,
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FIG. V-13 THE VARIATION OF THE RESONANCE DECAY
TIME VS FEEDBACK GAIN. As the feedback

gain is increased, the Q of the
resonance decreases to a minimum and then
starts to increase again. The minimum
Q occurs approximately at the attenuator
setting of 45 dB.
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L in t  1 0gH (5. Ila)

2L t
r = lgo (5.lIb)

where Lint is the inductance of a single coil, T is the time constant

of the resonant decay without feedback. The parameters of the feedback

transformer and the matching transformer are

M 14jH (5.12)

and
N

282
N - 79 (5.13)

S

Substituting these values into (4.36) with w = 2T(418)sec -
, we obtain

a quartic equation in a0,

1 a0 + 5.404< 3 a3 + 3.727X4 a0 - 2 .5 7 1
,N 13 = 0 (5.14)

0 0

The solution for a0  is dominated by the last term in (5.14). It is

3 ,a = 2.252N 3. Using a0 = GfbGM, the value of Gfb is 1 .5 0 3 
4 . This

is 3.7 times the experimental value determined in (5.9).

When deviations of the parameter values of (5.11) to (5.13) are

considered, the optimistic estimate of Gfb is slightly less than twice

(1.7) the experimental value. For the simple modal equivalent model in

Fig. IV-2, the agreement between these values is good. The experimental

result confirms the theoretical basis used for the feedback design, thus

fulfilling the aim of the experiments.
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D-2 NOISE OF FEEDBACK

Equation (4.19) gives the condition under which feedback damping

is advantageous compared to damping by dissipative mechanisms. The two

schemes are compared using the noise each produces at the sidebands as

the criterion.

For the experimental circuit designed and used in the previous

section, the feedback transfer Nf is

N WM (5.15)
f - RL

where M is the mutual inductance of the feedback transformer, and RL

is the load of the voltage-to-current converter. For the feedback circuit

f at the resonant frequency, Nf is 5.25x10-6 .Under the same circumstances,

the equivalent resistance feedback at minimum Q is R = 1.036 meq

at the low frequency band. Equation (5.9) is used. Now from (4.15), we

need only know R to determine N . R must be considered as the
f p f

equivalent resistor in the feedback path that generated all the noise

in the feedback circuit. The noise produced by the feedback is

(V 2 4kT N Rf A f (5.16)

which is part of (4.17).

The noise of the SQUID at low frequency is given by manufacturer's

data as

[(V )/Af2= 1.44LV//fz . (5.17)

It is assumed that the circuits in the feedback path are well designed

and have a voltage noise

(V2)/I 0. 03162 ±V/,(518

per stage. This is a rather simplified assumption but should suffice for
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this discussion. Using the stage gains of the experimental circuit, the

voltage noise due to SQUID noise feedback is

[N2)/Af] 0.1850 pV/Ai (5.19)

Equating (5.16) and (5.17), and using Nf = 5.26 -, the value of Rf

is

Rf = 74.96 I (5.20)

at 4 K. Using (4.15), we have

R
N e = 3.51l -5  (5.21)p NfRf

Thus N is greater than Nf, justifying the use of feedback. However,

the difference is not very large. It is due to the large Rf introduced

by the feedback circuit. At the level of feedback gain in the circuit,

the amplifier's noise dominated.

The power spectra of the accelerometer with and without the feed-

back circuit are determined using digital technique. The data are

sampled and stored using the SPASMADAM (semi-portable data recording de-

vice), and later fast Fourier transformed in a PDP-ll computer. The

increase in sideband noise is not evident as the resolution of the system

is not high enough. Noise peak due to resonance is suppressed by 35 db.

Unfortunately, noise peaks due to harmonics of the power frequency are

introduced by the feedback. It is felt that with proper care, the per-

formance of the circuit can be drastically improved.

We conclude that to improve the dynamic stability of the accel-

erometer system using SQUID as the detector, feedback damping of the

resonant oscillations is necessary.
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E. GRAVITY GRADIENT GENERATORS

To test the cryogenic gradiometers, a detectable gravity gradient

signal must be produced. Since the resolution of the test gradiometer

is expected to be low (50 E), a periodic signal is preferred. Standard

methods of synchronous detection may then be used to process the output

of the gradiometer. One of these methods is signal averaging whereby

repetitive outputs are added to reduce noise.

Three methods of signal generation are considered. A mass ball

(50 kg) at the end of a piano wire swinging as a pendulum is used for the

first two methods. The ball is swung to and from the gradiometer which

lies in the plane of the swing. Alternatively, the ball is swung across

the gradiometer with the plane of the pendulum a given distance from the

gradiometer. Lastly, a mass quadrupole can be rotated to generated the re-

quired signal. The gradient generated by each method will be derived

in the subsequent section.

E-1 Planar Swing

The sensitive axis of the gradiometer is vertical. The coordinates

of the planar pendulum system are given in Fig. V-14 with vector notations.

Thus the vector from the center of the ball to the center of the gradio-

meter is

[-d - Lsin]

R = 0+d-L = (5.22)

-H + Lwo

Assuming that the baseline of the gradiometer is small, the accel-

eration due to the ball at point 1 is

a = a0 + R (5.23)

where LR is the vector from the center of the gradiometer to the upper

* proof mass. With the sensitive axis vertical, !R is
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x

122

FIG. V-14 VECTOR DIAGRAM OF "IN-OUT" PENDULUM
SWING. The pendulum is swinging in
the x,z piane. The gradiometer is

placed at (-d, 0, 0) in this coordinate
frame. The position vectors, LandR
are a function of time.
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=sk (5.24)

and
= MGA

-(1 - Ali) (5.25)R3 "
R

where G is the constant of gravitation, M is the mass of the ball,

1 is the idem vector, and R is the unit vector of R. Similarly,

a =a - r(5.26)
2 0

Hence the gradient produced along the sensitive axis is

a -a 2

G - . . . k (5.27)z 25 {

2s

Substituting (5.25) into (5.27) and simplifying, we have

MG3)2]

G MG [-1 + - (L cos 9 - H ) (5.28)
z R3  R

where R is the amplitude of the vector given in (5.22). To second

order in 9 with 9 small, it is

R2  2 Ll2= R0 + 219 + LHO (5.29)

where 2 2 2
R = (L- H) +d (5.30)

For L approximately equal to H, (5.28) can be simplified to

[ L L. 22 ..

z I + 3  6 + (5.31)

For a swinging pendulum,

9 = 0 sin wt . (5.32)
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Thus the gradient sensed by the gradiometer with its sensitive axis vertical

is

z dG - ; o w M 2 3Psin wt 3~3 2 w (5.33)

where

o  L o .(5.3)

Note that when 0 1, the twice-frequency signal has the same magni-

tude as that of the once frequency.

Using the same arguments, the gradient sensed by the gradiometer

with its sensitive axis horizontal is

G = i F.x

2 R- [I+ 3 2
- 3o sin wt - 3 cos 2 wt + (5.35)

d 3 P

The signal along the horizontal is twice the magnitude of that along the

vertical. There is significant gradient component along the y coordi-

nate axis at the site of the gradiometer since j R = 0.

E-2 Symmetric Swing

The gradiometer is placed symmetrically with respect to the swing

of the pendulum, a distance d from the plane of the swing. The dis-

tance from the point of support of the pendulum to the center of the

gradiometer is H. The length of the pendulum is L, and R is the

instantaneous center-to-center distance from the ball to the gradiometer.

The coordinates system of this set-up is given in Fig. V-15 where the

plane of the swing is the y, z plane.

Summing the vectors, the vector R is

R= H+ = -Lsine (5.36)

B H -L cos -H
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FIG. V-15 VECTOR DIAGRAM OF CROSS PENDULUM SWING.
The plane of the pendulum swing is the y,z

plane. The gradiometer is placed in the x, z
plane at a distance d from the y,z plane.
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With the sensitive axis vertical, the gradient sensed by the grad-

iometer is given by (5.27). In this case, the magnitude of the vector

R is, to second order in e,

2 2 2
R R0 +LB (5.37)

2 2 2
where again, R0 = (L- H) + d

Substituting and simplifying, the gradient at the gradiometer

along the vertical axis is

P O (5.38)

d

where is given as per (5.34). The most significant aspect of (5.38)
is the absence of the term of the fundamental frequency. This is very

advantageous as most noise produced by the pendulum are of the fundamental

frequency. This allows for better identification of the gradient. It

may be noted that the coefficient of Cos 2wt term in (5.38) is four

times smaller than that of (5.33). However, the distance d here can

be significantly smaller than that in (5.33). For d here, about half

of the planar swing system, the gradient signal is about eight times as

large.

If the sensitive axis of the gradiometer is set horizontal, the

gradient produced by the pendulum is either

- (2- 3p2 + 332 cos 2wt +.
d (5.39)

or
oy =

G = (1 + ! 2 9 cos 2wt + ... (5.40)

d0

or a combination thereof.
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E-3 Mass Quadrupole

Two identical balls are attached to the ends of a bar and the dipole

formed is rotated to produce the required signal. The coordinate system

for the analysis is given in Fig. V-16.

ZJ

d ;A

B

FIG. V-16 VECTOR DIAGRAM OF ROTATING ARM. The plane

of the rotation of the demb-bel is the
y,z plane. The gradiometer is placed on

the x axis at a distance d from the

origin of the coordinate system.
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The vector RA is

r-d
RA Adr = -r cose (5.41)

-r sinG

Similarly, that of R B is

-d

R r rcosG * (5.42)

r sin 1
With the sensitive axis of the gradiometer vertical, it is readily shown

that

whreG + ^k~1 : ) (5.43)

and ~B has the identical form except for fBreplacing R A* Simpli-

(5.47), we obtain

G ( - 2R 2+ 3r 2- 3r 2cos 2wt) (.4
z R5

where w is the angular velocity of the rotating arm. By the same ar-

guments, the horizontal components of the gradient are

MG 2 2

G MG (-2 + 6d 2 (5,46)
ov R
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Note that the x component is a constant and the y, z components have

no fundamental frequency term. As mentioned earlier, this is advanta-

geous when noise is considered. In (5.44) and (5.45), the coefficient

of the cos 2wt term is

A2 3MG 2 (547)

4 R

but
2 2 2
R = r +d (5.48)

where d is typically made as small as possible, the limit being struc-

tural constraints. Thus expression (5.47) can be optimized by choosing

r given d. We have

ropt = d . (5.49)

With this value for r, (5.44) becomes

G (3)5/2( - - 2 cos 2 wt) (5.50)
z,opt d3  -

A similar expression for the optimal value of G can be obtained.Y

Table V-4 compares the three systems of generating gradients using

the gradient along the z axis as a criterion.

Table V-4

COEFFICIENTS OF THE HARMONIC COMPONENTS OF THE GRADIENT GENERATORS

G I x1, 2.\ -(Xt

Pen~dul um In-Out Lo Lo2

Pendulum Across 0 _ 20-
4 d

Rotating Arm 0 2 52
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Note that for L9 O/d close to unity, the fundamental and the twice

frequency component for the first system are of comparable magnitude.

The next two systems are preferred since the signals produced would be

spectrally separated from the noise generated by the motions. Since the

value of d in the second system is about half that of the first, the

signal strength produced is close to eight times that of the first and

six times that of the third in practice for the same M. Thus the system

where the pendulum swings across the gradiometer seems favorable. How- I
ever, the frequency of the signal is still low, not easy to change, and

not readily separated spectrally from other low frequency noise. For

our future tests, a rotating mass quadrupole is built.

Most of our initial testingof the gradiometer are performed with

fS the signals generated by the first method. This is done primarily for

AP_ convenience.

A photograph of the mass quadrupole gravity gradient generator is

shown in Fig. V-17.

F SUMMARY

The cryogenic accessories of the gravity gradiometer developed

during the research have been described. The ultra-low resistor developed

for scale factor matching works well. High current density joints have

been developed with probability of success being about 0.9.

The 'cold' damping concept has been demonstrated successfully using

a simple circuit. Q was reduced significantly without introducing pro-

portionally higher thermal noise.

Three simple means of producing gravity gradient signals for cali-

bration of the gradiometer are compared. The mass quadrupole is pre-

ferred since it provides greater flexibility. Both systems have been

built and employed experimentally,
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Chapter VI

TESTING OF CRYOGENIC GRAVITY GRADIOMETER

The current differencing gravity gradiometer (CDGG) has been tested

in a series of experiments performed over the past three years. The

experiments were performed by the author in close cooperation with H.J. Paik,

T. Orlando, and E. Mapoles, all of the Physics Department at Stanford

University. The experimental results of the tests of the CDGG will be

discussed here. Those of the displacement differencing gravity gradiometer

* (DDGG) which is briefly discussed in Ch. III will be reported in Mapoles'

dissertation (to be published).

A. EXPERIMENTAL SETUP

A-I Cryogenic Space

The cryogenic space for the experiment is the interior of a cylindri-

cal copper vacuum can immersed in liquid helium. The helium is stored

in a helium-vapor-cooled nonmagnetic dewar manufactured by Cryogenic

Associates, Inc. The helium space is 8 in. in diameter and 45 in. deep.

The schematic of the dewar and the dewar insert is shown in Fig. VI-l. The

bottom plate of the dewar insert is the cover for the copper can which is

sealed using indium wire. Telemetry wires feed into the helium space

through the 2 in. outer diameter stainless steel tubes and then heat-sunk

by means of sapphire heat sinks attached to the cover. Aluminized mylar

baffles are located inside the stainless steel tubes to reduce radiation

heat loss. The earth's magnetic field is screened using three layers of

mu-metal shields. A superconducting lead shield in the form of an open

can is provided to attenuate any remaining field changes.

The gradiometer is suspended by a spring from the end of a rod

which slides between guides and has two lockable positions. During bal-

ancing, the rod is raised so that the gradiometer is freely hanging.

After the balancing has been accomplished, the rod is lowered so that

the gradiometer is sitting squarely on the bottom of the can. Doing so
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TO HELSTAINLESS STEEL
TVAPOR HELIUMRN LIFTER ROD

t_- SUPPORT BRACKET

---. TO DIFFUSION
b --T- PUMP

STYROFOAM
VAPOR GUIDE

VACUUM AND COPPER RADIATION
SUPERINSULATION SHIELDS

LIQUID HELIUM

2"OD STAINLESS
LEAD SHIELD STEEL TUBING

--tALUMINIZED MYLAR

-RADIATION BAFFLES

ELECTRICAL A _TEFLO GUIDE

LEADS SUSPENSIONLEAD--BRACKET

COPPER
AMTAL EXCHANGE CAN
SHIELDS

SUSPENSION -- jGRADIOMETERSPRI NG ASSE MBY I

- BENDER PLATE

FIG. VI-1 CROSS-SECTIONAL VIEW OF THE EXPERIMENTAL SETUP. The
gradiometer assembly is suspended from the suspen-
sion bracket by a spring which facilitate the shaking
of the assembly by the bender plate.
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reduces the swing motions of the gradiometer produced by the environment.

A typical cooling cycle for experiment is described here. The vacuum

can is evacuated to a pressure of about lOpm Hg (micron). Outgassing from

the more volatile materials limits the vacuum attainable. The pump is

shut off and an exchange gas of helium is introduced through a valve to

about 500 micron pressure. Liquid nitrogen is then transferred into the

dewar to precool the interior to 77 K. The time required for this pre-

cooling is typically four hours.

Given this lengthy preparation time, liquid nitrogen is transferred

in the morning before the experiment to allow overnight cooling. Early

the next morning, the excess liquid nitrogen is removed by generating

high internal pressure through vaporization inside the dewar using a

heater immersed in the liquid. The high pressure will force the remain-

ing liquid nitrogen out through a tube inserted into the dewar to a level

beneath the surface of the liquid nitrogen. Any remaining nitrogen

would vaporize through the normal heat leak of the dewar and is vented.

When the pressure in the dewar becomes atmospheric, liquid helium

is transferred slowly into the 77 K environment. The cooling from 77 K

to 4 K requires another 2 to 3 hours. Enough helium is transferred to

allow a 6-hour period for experimentation. Additional helium may be

added as necessary.

After an experiment, the vacuum can is allowed to warm up slowly

over a 24-hour period. Gradual warm-up is desirable to minimize thermal

strain and water condensation (and absorption) on the porous components

of the gradiometer.

With these cooling and warm-up times, the minimum turn-around time

for an experiment is close to two days.

A-2 Shaker and Vibration Isolation

To excite the resonant mode of each diaphragm and to provide the

common mode acceleration for the balancing of the gradiometer, a piezo-

electric bimorph shaker is used. The bimorph is formed by cementing two

PZT discs together. These discs have been polarized to contract radially
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when a voltage is applied across its surfaces. If faces of the same

polarity are cemented together, the composite plate will flex axi-

symmetrically upon application of a sinusoidal voltage. The bender plate

is mounted axially on to the gradiometer using a bolt.

The gradiometer assembly is suspended from the top plate of the

vacuum plate by a stiff spring as shown in Fig. VI-2. The resonant

frequency of the resultant spring-mass system is about 7 Hz. This simple

arrangement allows the gradiometer to be shaken axially using the bender

plate. The suspension also provides some measure of vibration isolation.

Since the gradiometer has multiple degrees of freedom with respect to

the suspension, portions of its motions could be rotational. These may

* be reduced by lowering the gradiometer so that it rests on the bottom

of the can after it has been balanced. The helium dewar is then suspended

-from the ceiling using surgical tubing to provide additional isolation.

Figure VI-3 shows the dewar suspended from the ceiling by the tubing.

Three tubes attached to the ceiling at the corners of an equilat-

eral triangle are used to provide stability. Also shown in the diagram

A
SQUID

S I CONTROL SENSITIVESPIN UNIT DETECTOR

I ~ ~ -GRADIOMETERREREE
I I

PIEZO-
ELECTRIC '---------
BIMORPH CRYOGENIC

SPACE

FIG. VI-2 BLOCK DIAGRAM OF THE BALANCING GRADIOMETER.
The gradiometer is shaken using the piezoelectric

bimorph. Its output is detected by the SQUID
control unit. The phase sensitive detector would

selectively detect the signal component that has
the same frequency as the oscillator.
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FIG. VI-3 GRADIOMETER CALIBRATION SETUP. Surgical tubing
provides the vibration isolation of the test set-
up. The gradient generated by the swinging ball
is the signal used in the calibration.
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is the swinging pendulum used for generating gradient signal (Ch. V-C).

A signal generator is used to supply the voltage to the bimorph.

As the frequency of the driving voltage approaches the resonant frequency

of the diaphragm, the mechanical reluctance of the bimorph decreases.

The sudden change in bimorph reactance is an easy meansto determine

resonant frequencies of the diaphragm as well as those of the whole

assembly. Figure VI-4 shows the capacitance bridge used to drive the

bimorph and to measure its response. The output of the bridge is con-

nected to the vertical plates of an oscilloscope with the horizontal

plates connected to the signal generator. The Lissajous figure on the

oscilloscope provides a ready indication.

A typical procedure is described as follows. For a given bimorph,

the value of C3 is selected by trial and error such that the bridge

can be roughly balanced as C2 is adjusted over its range. The resistor

R is adjusted to compensate for the resistance in the circuit. As the

frequency of the driver signal source hits that of the diaphragm, the

equivalent element in parallel with the bimorph becomes purely resistive.

A sudden phase change and an accompanying ringing of the Lissajous figure

will characterize a resonant mode.

Using this procedure, the modal frequencies for different values

of current stored in the accelerometer are determined. A typical plot

is shown in Fig. VI-5.

A-3 Persistent Current Storage and Adjustment

The construction of the CDGG is described in Ch. V-A. Figure V-2

showed a sketch of the assembled gradiometer. A cup-shaped aluminum

structure is bolted onto the assembly over the matching transformer. An

eye bolt is mounted centrally on the cup to suspend the assembly. Most

of the experimental results reported in the next section were performed

using a high frequency (850 Hz) diaphragm pair. The last experimental

4W
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4 MATCHING I C 3

TRANSFORMER

~50pF

SIGNAL

GENERATOR 
0 50pF

C 2

FIG. VI-4 CAPACITANCE BRIDGE TO DETECT RESONANCES OF
BIMORPH (courtesy H. Paik]. The matching trans-
former provides impedance matching between the
signal generator and the capacitance bridge. The
capacitance of the proper range for a given
bimorph is selected by the switch. A balance is
indicated by the ringing in the detector as the
frequency of the generator is changed slowly.
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FIG. VI-5 SHIFTS IN THE RESONANT FREQUENCY OF THE
NIOBIUM DIAPHRAGM. The deviation of the
upper plot from the straight at higher
values of the stored current is an indi-
cation that the current actually stored
in the loop is less than the current driven

C through the coil. Flux penetration occurs

at much higher current levels.
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run made use of the low frequency (50 Hz) loaded diaphragm pair. The

sketch is identical with Fig. V-2 with the thin diaphragm pair shown

replaced by the loaded diaphragms of Fig. 111-3.

The schematic of the circuit connection of the CDGG was shown in

Fig. 111-9. A more elaborate circuit with charging leads and heater

switches is given in Fig. VI-6. Leads A and B are two lengths of copper-

clad niobium wires which are soldered to external current leads. The

external leads are heat-sunk to the copper top-plate to minimize

heat loss. All connecting wires are shielded either by the niobium

enclosure of the gradiometer or lead strip lines.

There are two types of heat switches in the circuit: the high

resistance switches denoted by Hi, and the low resistance switches,

LH.. When power is supplied to the heater element of the high resistance1

switch, no current will flow through it when there exists a superconduct-

ing path in parallel. On the other hand, when the low resistance heater

is turned on, the R-L time constant of the circuit is about 2000 sec.

The construction of these switches was described in Ch. V-A.

To 'charge' the persistent current loop, the heat switches H and H2

are used, either separately or in tandem. When both heaters are turned

on, the charging current, supplied by an external source, will flow

through A, Lll L12, L22' L21 and B, in that order. Note that

for a pair of identical accelerometers, the currents stored in the loop

are such that output due to equal acceleration will be zero. When H1

and H 2 are used singly, the same charging leads A and B can be used

to charge either accelerometer to its deserved current level. During

the charging process, H3 is turned on to confine the charging current

to its designated path as well as to protect the SQUID.

Equation (3.57) showed that the accelerometer pair of the CDGG

can be balanced by adjusting the stored current ratio if their responses

to common acceleration are unequal. Once the nominal persistent current

is stored in the loops of the gradiometer, adjustment of the currents

may be done using the appropriate low resistance current switch.
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The procedure for adjusting current is described, using Fig. VI-4.

We shall assume that the persistent current stored in loop L11 and L12

is to be reduced for balance. Heater H 3 is turned on first. This

isolates accelerometer 1 from accelerometer 2 and protects the SQUID

from circuit transients of the current adjustment. Ultra-low resistance

LH1 is then turned on and the current stored in loop L and L12

will decay with a time constant of about 2000 sec. After the pre-deter-

mined decay time, heater LH is turned off and the persistence loop re-
1

established. The time decay of the heater is about 1/2 sec for warm-up

and 1 sec for cool-down. Thus the current may be adjusted to an

accuracy of about 1/1000.

B. GRADIOMETER EXPERIMENTAL RESULTS

Most of the results reported in this dissertation are obtained from

experiments using a pair of the high frequency (850 Hz) accelerometers

described in Ch. V-A. When a different accelerometer pair is used, it

will be specifically mentioned.

The frequency curve of each accelerometer as a function of the

stored current is presented. The gradiometer balancing results are then

presented. Lastly, the attempts to measure gradients using the balanced

gradiometers are described.

B-1 Frequency-Current Relation

The experiment to determine the frequency shift of the accelerometer

with respect to the persistent current also yields information regarding

the state of the accelerometer. Any circuit faults such as breaks in

coil windings and leads, faults in superconducting joints, etc., will be

revealed. From the frequency shift the actual persistent stored (which

can be different from the current carried by the circuit) is determined.

Thus this experiment is performed for every cool-down of the gradiometer.

The determination of the frequencies of the diaphragm was described

in VI-A-2 using the bender plate. Currents are stored using leads A, B,

' and the heater switches as given above. Figure 11-12 showed the general
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form of the experimental results although only the linear part of the

curve is determined most of the time. The frequency variations of the

two diaphragms as the current is changed was shown in Fig. VI-6.

The slopes of the straight line curves under the different conditions

are given in Table VI-l.

Table VI-I

CHARACTERISTICS OF THE ACCELEROMETERS

Condition Accelerometer 1 Accelerometer 2

2 2
Slope (Hz /A 8000 3800
H3 ON

I 9.5 13.8

S(A/g) 2.06 1.42

Two facts are noted in the results. The maximum current storable in

Accelerometer 1 is only about 1.34 A . This is significantly below

the targeted value of 5A. The problem probably lies in a poorly made

joint. Using Eq. (2.32), the optimal currents for the accelerometers

1 and 2 are 9.5 A and 13.8 A respectively. Although the optimal

currents are much higher than the value of the critical current of the

diaphragm, the maximum sensitivity of the accelerometers is not attained.

The maximum theoretical sensitivity is calculated using (2.34). Secondly,

it is evident that the two accelerometers are quite different.

The frequency response of the two accelerometers was de-

termined by Paik. They are given in Fig. VI-7. The setup given in Fig.

VI-2 was used in the experiment. Persistent current of 1 A was stored

in the accelerometer being measured with zero current in the other

accelerometer. The gradiometer assembly was shaken using the bender plate

which was driven by a sinusoidal voltage with a constant amplitude of

1.5 V p-p. The large peaks of the PSD at about 1150 Hz are due to the

resonant response of the bender plate. The resonant frequencies of

the diaphragms (about 850 Hz) were avoided. Note that the difference
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between the characteristics of the two accelerometers is not reflected

in their PSD.

The theoretical minimum resolvable acceleration a can be calcu-

lated using (2.41). With do = lO-4m, I0 = 1.3A, L = 24H, w =

27(8 50)s - , kX L, El = 2 X 1O72 J/Hz, we have

5a = 3.27 X 10-9g . (6.1)

The cryogenic accelerometer is very sensitive indeed.

B-2 Gradiometer Balancing

A major advantage of CDGG is that the unbalance between the accel-

erometers to a common mode acceleration can be nulled by adjusting the

persistent currents. By this simple means the common mode rejection

ratio of the gradiometer can be made very high.

*The ideal vibration isolation requirement of the gradiometer in

the measurement mode are set out in Ch. IV-a. In addition, the balanc-

ing of the gradiometer should be performed on a linear shaker which

produces negligible errors. A platform that satisfies both requirements

is by its own right a major undertaking and costly. The design of a

shaker costing half a million dollars is given by Bell Aerospace [1978].

In our experiment, a simple spring-mass system with the piezoelectric

vibrator is used as the shaking mechanism for the balancing of the

gradiometer. It is the same setup used for determining the resonant

frequencies. In this case, the SQUID is used to measure the resulting

current flowing in coil L3 (Fig. VI-6) as the assembly is shaken.

The block diagram of the detection scheme is given in Fig. VI-2. The

output of the SQUID is demodulated in the SQUID control unit. The output

of the SCU (SQUID control unit) is fed into a phase sensitive detector

built by Princeton Applied Research. The reference input of the phase

sensitive detector is taken from the same oscillator that drives the

bimorph. The steady-state output of the phase sensitive detector is the

amplitude and phase angle of the component of the gradiometer output
having the same frequency as the shaker. A built-in feature of the phase
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sensitive detector also allows the tracking of the twice-frequency com-

ponent in the SQUID output.

A typical balancing process is outlined here. Initially, the same

currents are stored in the two accelerometers using leads A and B,

and heaters HI H2 and H 3 (Fig. VI-6). A shaking frequency is selected

based on the responses of the bender plate and the diaphragm when they

are shaken. The lowest frequency which still provides a detectable

output will be the frequency used in the experiment. For the

experiment using the 850 Hz diaphragm pair, the shaking frequency is

200 Hz. Since the gradient calibration signal used has a very low fre-

quency of J Hz, it is very probable that the gradiometer will be un-

balanced at this frequency.

After the amplitude and phase of the synchronous output are meas-

ured, the current in the more sensitive accelerometer is reduced and the

process is repeated. Current reduction is achieved through slow energy

dissipation in the ultra-low resistor switch. Using the output of the

phase sensitive detector as the criterion, the currents in the accel-

erometers are adjusted to reduce the amplitude of the output. As the

gradiometer becomes better balanced, the output signal of the phase

sensitive detector becomes smaller. When the signal becomes difficult

to track as the signal-to-noise ratio is decreased, the voltage of the

bimorph is increased to produce a larger shaking motion. The process

is repeated until the output starts to increase instead of continuing to

decrease.

The results of one experimental run using the 850 Hz diaphragm pairs

are given in Fig. VI-8. The output of the detector reaches a minimum of

1.3 volts after the current in loop 1 has decayed for an accumulated

time period of 500 sec. Further changes in loop 1 produces greater un-

balance. As shown in the figure, the resulting unbalance is reduced

by decreasing the current in loop 2. The different output response

times of the two loops are due to their different decay time constants.

One amp is initially stored in the loops.
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The SQUID used in this experiment is the toroidal point contact

SQUID developed by Paik. The SQUID control unit is built by DEVEWO.

The transfer function is 4.65 V/40 which has been determined in an

earlier experiment.

After the gradiometer is balanced, its output power spectrum is

measured using a Hewlett Packard spectrum analyzer (HP 3580A). The

ramp tracking signal of the spectrum analyzer is used to drive the bimorph

while the analyzer is sampling the output of the gradiometer. The re-

sults of the measurement are presented in Fig. VI-9(b). The point

where the output of the gradiometer exceeds the dynamic range of the

SQUID is indicated by the vertical arrow. The power peaks that occurred

at 180 Hz, 300 Hz, and 600 Hz are the power density of the harmonics of

the power line frequency. As a comparison, the power spectral density

of a gradiometer with known slight unbalance (no current in accelerometer

1 and 0.1 A stored in accelerometer 2) is given in Fig. VI-10a. In

the figure, the gradiometer was driven by the bender plate using the

ramp tracking output of the analyzer as it is in Fig. VI-8b. The "noise"

power spectra of the gradiometer determined with the drive of the

bender plate cut off are given in Figs. VI-10a and b. The current stored

in the accelerometers are the same as those in Fig. VI-9a. Figure VI-10a

gives the power spectral density (PSD) from d-c to 50 Hz, while Fig. VI-10b

covers the PSD up to 1 kHz. The switches setting of the analyzer are

the same in the four plots.

When the gradiometer is balanced, the output is essentially flat
to 650 Hz while a slightly unbalanced gradiometer shows an output

magnitude increase starting at 300 Hz until the SQUID unlocks at 770 Hz.

The improved linearity of the balanced gradiometer is demonstrated here.

From these readings, it is estimated that a balancing of one part in 300

had been achieved.

B-3 Gradiometer Calibration

In this section, the laboratory setup to provide a calibration

signal for the gradiometer is described. The calibration results using

the gradiometer which has been balanced as described in Sect. B-2 are pre-

sented.
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a wide frequency range, d-c to 700 Hz, when the
gradiometer is balanced.
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The two different processes to produce a calibration signal with a

periodic cycle was discussed in Ch. V-C. At the time when the calibra-

tion experiment is performed, the rotating quadrapole is still only a

design concept. The gradient signal is produced by a massive ball

swinging at the end of a pendulum. The experimental setup was shown in

Fig. VI-3. The pendulum swings in a plane freely about an axis supported

by bearings which are mounted in a bracket. The bracket is fixed rigidly

onto the ceiling. The helium dewar is suspended from the same ceiling

using surgical tubings. By changing the points of suspension, the dewar

may be positioned so that the ball may swing across or to and from it.

These two modes are analzed in Ch. V. The to-and-fro mode is used in

the experiment and the ball is made of iron instead of lead as shown in

Fig. VI-3.

The mass of the iron ball is close to 40 kg. The position of the

ball is adjusted such that at the top of its swing, it is at the same

level as the mid-point of the gradiometer and as close to the dewar as

physically possible. The gradient signal may be calculated using (5.33).

For the experimental setup, the maximum magnitude of the gradient signal

is approximately 50 E. The expected waveform of the signal is given in Fig.

VI-11 for a 10 cm baseline gradiometer. The waveform starts at the point

when the ball reaches its lowest point of the swing and starts swinging

towards the dewar. On the same plot is a phase-shifted output expected

at the output of the SQUID control unit.

For the gradiometer balanced discussed in Sect. B-2 above, the

resolution of the instrument is estimated to be about 50E. Even when

the signal strength is at its greatest, it is barely resolved by the

instrument. Fortunately, the swing of the pendulum is repetitive and

regular. By adding the output signals repetitively, the noise can be

reduced. When N replications of the output signal are added, the noise

is reduced by a factor of vV if it is random and uncorrelated with the

signal.

The output signals are added using a HP signal averager (HP 5480A).

The averager is triggered by a pulse generated by a photo sensitive

* -179-
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diode when the pendulum intersects a light beam at the lowest point of

its swing. The averager then takes 256 samples of the signal at a 128 Hz

rate. The digitalized samples are stored in memory of the sampler. When

the next trigger pulse occurs, the sampled data are added to those in

memory. After the 2Nth sample, where N = 1, 2, 3 ... Np, and 2N p  is

the total number of addition to be performed, the magnitude of the

stored values are halved. Thus at the completion of the addition, the

stored sample data are the average of the desired signal. This is the

operation of the averager in the summation mode. The other functions

of the averager will not be discussed.

Several experimental runs using the balanced gradiometer were re-

corded and averaged in the HP5480A. They are shown in Fig. VI-12. Un-

fortunately, the theoretical wave shape of Fig. VI-ll cannot be dis-

cerned.

Paik performed a manual averaging of these data and the results

of his analysis are given also in Fig. VI-12. Using the rough estimate

of the resolution of the gradiometer, the expected gradient signal due

to the swinging ball is also plotted. Given the accuracies of the

experiment, we may deduce that the common mode acceleration is not sensed

by the gradiometer. This is to be expected as the balancing is done to

about one part in 300, while a part in 1000 is the desired goal.

The calibration of the gradiometer is repeated twice and the re-

sults are similar to those presented here. Thus it is concluded that a

detectable signal source will be provided and the sensitivity must be

improved. A rotating quadrupole is designed and built. This device

is capable of generating a gradient sensor of 40E at 5Hz. The high fre-

quency improves the detectability very significantly. Efforts are also

diverted to improve the design of an improved gradiometer, the displace-

ment differencing gravity gradiometer.
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C. DISCUSSION

The results of the various experiments performed with the current

differencing gravity gradiometer are presented in the previous section.

In this section, some conclusions derived from the experiments are dis-

cussed.

The major shortcoming of the present gradiometer is the limited

* sensitivity of the instrument. This is due to the high resonant fre-

quency of the proof mass, high noise level due to poor balancing,

and poor dimensional tolerances as a result of mediocre fabrication.

The sensitivity of high frequency diaphragms may be remedied by

using loaded diaphragms as described in Ch. I1-A. Despite repeated

attempts to develop a procedure for the construction of a reliable, high

current density joint, none has been found to be satisfactory. Twist-

ing the wires together and clamping them remains the only reliable method.

As shown in Eq. (2.21), the output current flowing through the

SQUID input coil is inversely proportional to the separation d, between

the diaphragm and the coil. One of the reasons that d cannot be made

smaller than the current value of 0.006 in. - 0.008 in. is the limit

of fabrication. The planes of the coils and diaphragm are not exactly

parallel to each other. Even if all mating surfaces are machined

parallel, the current method of winding the pancake coil would not produce

a perfectly aligned surface. Attempts to plane the finished coils on a

lathe have not been successful. An alternative that may produce better

coil is the technique of vapor deposition. Paul Worden of Stanford had

produced some experimental coils using thin film deposition technique.

His experience may be explored for future use. Since niobium cannot

be soldered, the fabrication of a high current density joint to a thin

film coil is a difficult problem.

At present, the method of reducing persistent current through decay

in a resistor is done manually, and the accuracy is about 1 part in 2000.

A target accuracy of I part in 105 is desired. To achieve this, elim-

ination of noise and erroneous signal and feedback control of the current

reduction in the calibration process is necessary. The first part
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would be hard to do, requiring the installation of expensive vibration

isolation platform and linear shaking mechanism. The second requires

an on-line computer feedback control incorporating the characteristics

of the resistors and heater turn-on time delay.

.
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Chapter VII

CONCLUSICNS AND RECOMENDATIONS

The mathematical model of the cryogenic gradiometer is developed in

this research. Error sources of the instrument are identified. Based

on the response of the gradiometer to background noise, an electronic
damping scheme is implemented. The current differencing gravity gradi-

ometer (CDGG) is designed, constructed, and tested. The model is

validated by the experimental results.

A. CONCLUSIONS

The experimental results show that scale factors of the component

accelerometers in the CDGG can be adjusted by changing the stored per-

sistent currents. The currents are reduced through energy dissipation

in a L-R network. Tighter control on the duration of energy decay is

required to achieve the desired accuracy in the balancing of the gradi-

ometer. A computerized decision scheme implemented in an adaptive

feedback loop may be required. The results also show that as the gradi-

ometer becomesbetter matched, its common mode rejection ratio improves

significantly. The concept of the CDGG is thus shown to be correct.

The mathematical model of the CDGG is used in an effort to optimize

the performance of the gradiometer. Changes in the size and dimensions

of the diaphragm proof mass are considered. These efforts lead to the

development of the centrally loaded diaphragm and its model. Operational

limitations of the gradiometer are also identified, the most demanding

of which is the vibration isolation required to reduce background noise.

The high Q diaphragm transformed the ambient environmental noise into

highly colored noise centered at the resonant frequencies of the dia-

phragms at the input of the SQUID. To prevent the system noise from

exceeding the dynamic range of the SQUID, damping has to be introduced.

Passive damping which increases thermal noise would eliminate most of the

additional sensitivity of the cryogenic gradiometer. The idea of
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electronic feedback damping has been conceived and successfully imple-

mented using the model. The results of the feedback experiments have

shown that there is an optimal feedback in the damping of the gradiometer.

Error sources of the gradiometer have been determined and their

contributions incorporated into the model. The major error sources are

fabrication, alignment, calibration, an ectification errors of the

diaphragm. Errors due to angular motions the gradiometer typically

have twice the rotational frequency and cai. be separated spectrally from

the signal. Consideration of linearity leads to the investigation of

a more linear spring support. A null position accelerometer using feed-

back techniques may be needed eventually to retain the very high sens-

itivity of the cryogenic accelerometer without the disadvantages of

nonlinearity as a result of displacement.

Given a theoretical error budget, the tolerances in the fabrication

and the assembly of these components of the gradiometer have been deter-

mined. In view of these requirements, the techniques currently employed

to fabricate the parts of the accelerometers are strained to the limit.

New procedures and technologies must be explored for the sensing coils,

high current density joints, and low frequency sensors. In the case

of the coils, thick film deposition seems like a viable technique.

Automatic on-line methods of determining alignment and correcting it,

and similar compensation for nonlinearities, may be necessary as it had

been for the Bell instrument.

In the present setup, the gradiometer is balanced with its sensitive

axis vertical. In this mode the earth field is acting directly on the

proof masses, producing a 1 g deflection on the diaphragms. It is

expected that in its sensitive axis horizontal mode, the gradiometer

may be more sensitive.

A persistently troublesome problem in the experiment has been the

flux creep. Since the coils are wound of niobium-titanium wire, which

is a Type II material, the flux stored in the loops gradually decreases

as the fluxoids migrate through the wires. Fortunately, the rate of flux
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creep decreases logarithmically with time. In the CDGG, the effects of

flux creep tend to cancel out. Niobium wire will be used in future coils

although it is somewhat mechanically weak.

B. RECOMMENDATIONS

This research revealed a number of technological developments which

will improve the sensitivity of the gravity gradiometer. There are

* . other areas of technology which are not considered or are briefly men-

tioned in this thesis. Some of them could have significant impact on

the potential of the cryogenic gravity gradiometer. It is recommended that

additional research be performed in the following areast

1. Improvement on high current density joints;

2. Fabrication of a low frequency proof mass that is easy to fabri-
cate;

3. Design of null displacement cryogenic accelerometer using force
rebalancing feedback to improve linearity;

4. Design of an active feedback to adjust storage current for
accelerometer scale balancing;

5. Design of vibration isolation platform and linear shaker for
the helium dewar;

6. Gradiometer configuration with axes of the accelerometers in
parallel rather than in line;

7. Active damping by other feedback techniques capable of produc-
ing critically damped instruments with negligible increase in
noise;

8. Technology for rotating a gradiometer at a frequency near the
minimum of the SQUID power spectral density;

9. Techniques for altering the orientation of the sensitive axes
of accelerometers to provide for on-line alignment of a gravity
gradiometer;

10. Technology for producing coil by vapor deposition and making
high current density Joints with the deposited superconducting
circuit.
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Appendix A

SCALE FACTOR OF THE CRYOGENIC ACCELEROMETER

Equation (2.31) gives the output current of the cryogenic acceler-

ometer as a function of the stored current, Iop and the acceleration

sensed, a. It can be simplified to

2 + X (A.1)

2

where = f2/a (A.2)

= m ndo/L 0 . (A.3)

The variables were described in Ch. [1-D-2. Simplifying (A.3), we have

f(I) = - - (A.4)i2 +

To determine the value of I that will give a maximum value of f(I),

(A.4) is differentiated with respect to I and set equal to zero. The

optimal condition is

I = (A.5)
opt

The curves of f(I) for different values of ), are given in Fig.

A-i. The magnitude of the maxima increases as 'K becomes smaller; ),

can be made smaller by reducing fof the resonant frequency, or increasing

a, the electromagnetic coupling coefficient.
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-190-



..

Appendix B

MOTIONS OF DIAPHRAGM WITH CENTRAL LOAD

The equastions (3.1) and (3.4) may be simplified by introducing the
following nondimensional variables:

x = r/a

u = w/a

a = b ,a

for a uniform density plate. The set of first four equations becomes

( x - k 4x (B.1)
x dx dx x dxd

U(l) U = 0 (3.2)
1

=0 (B.3)

d I d du 1
x- dx1  -1kOj(0(B4

dx dx xka i(a) (B,4)

where

= (W 2 ha4 )/D . (B.5)

The general solution for n = 0 to (B.1) can be expressed as a

linear combination of the four Bessel functions J0 (kx), Y (kx), 10(kx) ,

and K0 (kx). As is customary, J represents the Bessel function of the

first kind, Y the second kind, and I and K are Bessel functions of

purely imaginary arguments of first and second kind. After applying
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boundary conditions (B.2), (B.3), (B.4), and the standard recursive formula

of the derivatives of the Bessel functions, the resulting transcending

equation for the eigenvalue k can be reduced to

[ J0 (k)I I(k) + Jl(k) 0 (k)] [4kYl(ka)Kl(ka)

+ Ok 2r(YI(kW)K0 (ka) - KI(ka)Y0 (kot))]

+ (Jo0(k)k 1  - K0 (k)J1 (k)] 4kIl(kC)Yl(W)

2

Ii - ak2 (Il(kcz)Y0(ka) + I0(ka)Yl( a))
i + Yo0 (k)k) + 10 k)Y(k)J (4kJl(ka)K (ka)

+ ak "(J (ka)K (ka) - K (ka)J (ka))]

+ (Y0 (k)K1 (k) - K0 (k)Y1 (k)] [-4kJ (ka)I (ka)

+ yk2 (J (k)I0 (ka) + ZI (ka)J 0(k))]

IT (B.6)

Equation (B.6) is very tedious to solve. Fortunately, the lowest frequency

may be approximated by a Rayleigh-Ritz approximation. Let

D(u) a _ x dxj dx (B.7a)

H(u) fo g det+ ; - t xu2dx + {2 Yu ( B.7b)

then k 4 minu D(u)/H(u)]. The reader is referred to the original refer-

ence for greater details.
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The simple trial equation, (B.8) is used.

ux) = [1 -- )2] 2 x k a (B.8)

Then

D(u) 16 [I + 121
(1- a)

where

I( - (-a)(5- 3a)
1 15

1 = AI + A2 + A3

2 10 2a

A( Ln(aa) - 2  1

(1-()2 2+4

2 - 22 3a2)

A - (G--A a + 0 - 4a 3 +- Oa4 )

and

H(u) (1-a) --= - fu2(x)

To ninimize the ratio of D(u)/H(u) for the trial function u(x), H()

must be as large as possible. Note that D(u) is a constant. This occurs

when x = a and u(x) = 1,

k D(u) 1 2 (B.9)
(I-a) (O a - 7) + - a'Y

The accuracy of this approximation is shown by Handelman & Cohen (1957].

,
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The trial function used as given in (B.8) described approximately

the shape of the bent surface when u(O)/h is less than 0.72 [Votmir,

1967].
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Appendix C

LARGE DEFLECTION OF THIN PLATES

The analysis of the large deflections of the loaded diaphragm was

discussed in Ch. III-A-4. The solution of (3.23) and (3.24) is given in

Yeh's [1952] paper. As his paper is published in an old Chinese journal

with some typographical errors, the solution is reproduced here.

The solution of Karman's equations by perturbation requires that

(3.28) be substituted into (3.23) through (3.26). By collecting terms

and equating coefficient of Y, the following equations are obtained.

For 'yl' y, the relation is

d 2  dy1  _ (Cx - (C. la)
dx dx x

Y(1) = 0, dy(y() = 1, 1 ( ) 0 . (C.Ib)

The solution of (C.1) is

dy
dx = n x + A - - (C.2)

yl = 1 x in x + (A-r 1 )x - A n x + r 1 - A (C.3)

where

1I - A &n (C.4a)
I- A A

A)2 _ (Ln P) . (C-4b)

E4uation (C-3) describes the surface of the deflection plate for small

deflection. It is the same equation as (3.12).
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For S 2  we have

22

dx 2 dx (C-5a)

dS1(1) dS ()

2) --- + S(1) =0, 2A dx S 0) 0 . (C-5b)

Integrating equations (C-5) and using the boundary conditions, the

solutions are

Sdy1 )2 /2X-1 l dy 1 )2

2(1-)(2-1) dx (C.6)

1 I fldyl)2  1 /dy, 2

S - 2 dx + mf\2-l.) + (C.7)
$2 = 2 , -dx - i- dx

x x

The next approximation gives the equations

d 2  dy3  dy1  3

2 x - S2 ( + (-8)
dx dx dx x

- x -Y30 )  - x0 . (C.9)
y3(i) dx

Integrating (C.9) twice, we have
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dy3  1 x x' IdyA

dx -~ dx' ~1 ~~rdx" + .1+ y3 An x + (C. 10a)dx - x " 1 S2k l + 3

and

3 5 x i dx" dx' + T in x + r3 (xinx-x) + rlu + U

1 1 1

(C.lOb)

At this point, Yeh's solution is inaccurate. The boundary conditions yield

= -(C.11a)

r3 = U + (C.lib)

= [(A + 1)11 -Al 2] (C.11c)

U ((A - r1 )12 + A(- - I)II (C.lld)

where

II = dX S dy1  x' (C.12)
1 1 2dx d

'Sdx (x Ix' dYl 1
12 = dx' x S2 d dx'. (C.13)

1 x 1 1

Equation (C.11) may be rewritten as

xdx' X d x itd

Y3 5 $dxV 2  dy dx" + -r3 (x An x-x+l) -j(n x-x+l)
(C .14 )

1 2' I x '

r3= -- "1 2 + (Y I + A/0)I1I (C.15)

Expressions (C.12) through (C.15) are tedious and cumbersome to solve
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manually. The MIT university program MACSYMA is used to evaluate the

integrals and solve the equations.

Table C-i tabulates the values of -y and Y3 for two different

values of Poisson ratios. When compared to the results of Yeh's work,

we conclude that Yeh has made some simplifying assumptions that are non-

trivial for values of b/a > 0.4.

To check our results, MACSYMA is used again to calculate the curva-

ture of the deflected surface at different values of b/a. It is deter-

mined using (3.28b) that the yS3  calculated in (C.15) satisfied boundary

conditions at r = b and r = a; Ys3 calculated using Yeh's results do not.

Table C-1

COEFFICIENTS -Tl, ' ' 3

b Lk = 0.30 = 0.397

a 1 y (Yeh) 'Y _ _ 73

0.1 1.289 - 0.2536 - 0.2770

0.2 1.893 0.418 0.4184 0 0.4586
0.22 2.061 4.463 0.4632 - 0.5080
0.24 2.250 0.513 0.5132 0 0.5631

0.26 2.462 0.569 0.5692 0 0.6250
0.28 2.701 0.632 0.6322 0 0.6944
0.30 2.971 0.703 0.7031 0 0.7127
0.32 3.277 0.785 0.7833 0.002 0.8621

0.34 3.624 0.878 0.8744 0.004 0.9617
0.36 4.020 0.984 0.9780 0.006 1.0761
0.37 4.239 - - - 1.1393
0.38 4.473 1.109 1.0965 0.012 1.2069
0.40 4.992 1.258 1.2324 0.026 1.3570
0.50 9.141 3.252 2.3187 0.933 2.5562
0.60 18.911 48.982 4.8812 44.102 5.3857

0.70 47.421 3865.056 12.3745 3852.681 13.6610
0.80 169.029 1228192.0 44.3926 1228148.0 49.0239
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PROGRAM LISTINGS

The symbolic integration of the equation (C.12) and (C.13) are per-

formed by these programs. Using these solutions, (C.15) is evaluated.

The listings of the computer programs are given here. The interested

reader is referred to the MIT Math Lab MACSYMA Manual [MAC SYMA, 1975]

for details on the syntax of the language.

The following list gives the variable symbol in (C.1) through (C.15)

and their corresponding character strings in the programs.

Variable Character String

ALP

T GL
1

'3  G3

X LAM

iM

NETA

A A

x X

12 in the program listing is (C-13).

The program SESS7-MAC determined the coefficient Y3 (X) in Eq.

(3.28b). This provides a check for the accuracy of the integration. At

x = 1.0, the outer radius of the diaphragm, the displacement is zero;

thus y1(1) and y3 (1) are both zero. At x = r, the inner radius of

the annular diaphragm, y = YM' thus yI(r) = 1 and y3 (r) = 0. The

program SESS8-MAC shows that y3 are indeed zero at the boundaries of

the diaphragm for all values of r starting with r = 0.8 to r = 0.1

where r is the ratio of the inner radius to the outer radius. These

are determined for a standard Poisson ratio of 0.3.

• 'The Program SESS1l-MAC determines the values of 'V1 and 'Y3 , and
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some intermediate results for = 0.397 which is the Poisson's ratio

for niobium. Program SESS13-MAC provides an additional value at r = 0.37

which is the value which will provide the low frequency of the diaphragm.

Program SESS20-MAC determines the same constants for a range of r

between 0.2 and 0.4.

The following is the MIT Program.
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go cat 1978 6142 s!SSf.MACV I.WXY2 Oass 1-2

ie) NONE

t0~) CP(ALPeAGI) gcG?.2e( (2.ALP,#2.LoQ(ALP) .2a2.ALP,2eLOG(ELP).ALP,92-ALP,'(2.L
£I~I.)44ALP2LOGALP)92-8.AL2?2oLOS(*IP).8ALP2-8e*ALP)4Gt~jiU4*A.ALP92.8OAeA
LP~eLOG(ALP).2.A.ALp,,42.A.ALP).12.LAN.1,.4.A.ALP.LOG(6LP),1248.A.ALP92eLOG(ALP

A92eALP.LOG(ALP)*4OA,~.ALP24A'3)'( IS.ALP-B).(2eLAM.S) )S

(077) i2(X#ALP,A, MtE.PG ,I.'2Gi3eX3(9LG(X)3.9Lo-O),.eLGXb

#2&c2*LCGIX)#2 2 .Otcx41,3A2GiGX?(2LOiX)t2-2.LOGcn1t)8#*cPGi~xe(LOG

3.S.9C.G1(X't.O -Xg /3'2X'2/4 ).40.ALOl.GX..LCG)/2*A-.2/4 .8A'3 .LOC CoX2

X)12.X.2/4)428.CP.G ., XeLOG(XtuX)4i6.A *2.G1. CX.LOGCX)wZ).l16.A.CPe( WeLOCCY )-X)+
16eAoBMCe(X*LOG(XWX)8A3(XeGX)X)74*G,930LOG(XI27438OAOG1,2eLOG1X)/9+
164CP.G1.LOGCX)*4.SmC.Gi.LOGCl)4i6.A92.G1.LOGC W)/3.32.A.CpeLOG(X)4.ROA.BMC.LOG(
9)s3S.A,3eLOG(X)/3u14 .G193*Xt3/PI1470ejeO192oX93/27e11gA92eG1*Xt3/94: eA93*X93/9

61,2.X.16eCP.Gi*X.16.RMCG*X37A2oGiX32ACPX24.3,c-4I3.G1.#3b8i1-2.A*
G102/9448*CPOGI16.9MCaGj4274eA.2.Gi,9.4S.AeCPb22*AeBMC6227.A ,39) /i6S

We7) G3(ALPDA.BMC,CP:Gi) luGl*(2GALP,3.(9eLOG(ALPY93;94LOGCALP)q24AeLOCCALP).2
G1.l3i8111ALP3.9LGALPJ26LagiALP2).$1.3/ LZ7*ALP#3*LMGALP)/3-AL

Pp3/9)OGI@3/9374eLOG(ALP)eG3,3/27.1i424LP93eG19v3/61.8.ALP.Ci,3.410.G193/81-A.A
LP,20(4.LOG(ALP) 3'L'OG(ALP) t246*LOGIALP)-3)00192/2422A0ACP,3*(9910C(ALP) '2-6

*I OG(ALP92)*Q1#2/7.'6A.ALP.2.(2tLOGliLP)92-2&LOGCALPI~i).G1,2-22.A.*ALP'3.LO6(ALP)/3.ALP93/9).Gi9i/;s54*At(ALIp92.ooG(ALP)/2.ALP92/4)eGit243BeAeLOG4ALP)oG1
92/97lAALP93Gjit/725*AALP,2,Gh2s62AAL':G1t2,2AG12/986ALP(LOG(
4L!),2.2.LOG(ALP).2',eCP.Gl..16(ACP.LOG(ALP)-ALP).CP*O1'16*LOG(iLP)*CP#G1-16*AL
PeCPoG1.48eCP#GlsaecAiP,2.LOG(ALPi2.*CP9,2/4)*AIMC.G~I-4ILQG iLPj*BMC*Gi*6*ALPs2
o3MCeGl.16.ALPo8MC.*1..8.BMC.G1.3A92.*CP92e(2.COGCALP)E2-2.LOG(ALP).1).G1-8.At
2.ALP.(LoG(ALP)12.2.LOG(ALP).2).G1.2.At2.(ALP.3.LOG(ALiR)/3 ALPt3d9e*G.4J*A'20
(ALP92OLOG(ALP)/2-ALP,2/4).G1.16.A2.IiLPLOG(LPYALP1OG1.26OA92et- OG(hLPI*Gi/!

O(ALP)-ALPIBC.A.LoG(ALP)*BMC;4.A.4LP#2o9M'420.A9MG4*i93.LoG('ALP)3/344A
093.ALPe(LOG(ALPht2w.i'OG(ALP).2)m4,A.3.LOG(ALP)9,2u8*A.3*(ALP.2eLOGtALP)/2-ALP9
2/4)-8*Af3*(ALP LOGAi'P).ALP,.;38*A''3.LOG(ALP)1342oA93.ALP,3/9.5eA93eALP9242oA*
3#jLP-227*A93/9)/6(1,AALPYOetALpts4C9LOGAL?)3#.Loq'AL)9246.LOG(ALP).
2).G1,3127.ALP.3@(9.LOG(ALP) ,2.6.LOG(ALP)*2)*-'193/3416itALP,3.LOG(ALP)/3.ALP,3
/9).G1.3.8.ALP.J3*Gc1,3,3.8.ALP.Gi.374t.al3/27-A.ALPt2et4.L6GeALP)93-e.LOn(ALP1
,2*6LOG(ALP)o3)G9#24p2,ALP93i9*LoG(ALP)26LQG(ALR)*2')192/94+9oAA1P(

* - ~ t*LCGCALP)/2PALP,2/42 .G1.2416eA.ALP.30G1 92/3.23.&.ALP12eGi.2.62.A.At P.Gi 92438
*AeGl,2/9'8@ALP(CLOCG(LP),2-29LOGiALPt42).CP*Gi*16GCPOGI1&:CALP92LGALP)/2
ALP#2/4)#SMC*61 8*ALP.o2*9NCOG1U16lALPG3NC*G1*4*INCOGS#@A,2 AL0*2#i2*LOG(ALP)q
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t3 act 1976 61i2 ugssf'whct i.wK(Y2 isel*

*2.!2.LOG(ALP)*1)*Gjsa.I.2.ALPtLfLOOP*2u2. LOGjALe.2Gi'6A,2e(AP'3.LOG(ALP
)13.ALP.3/9) eG156eA.?e(ALP.2,LOC(ALPii;2.ALP92.4913A92e'LP3Gi22.A.2oALP

OAAPC(3**P1&*APLGiL AP*M-*:L,*m.6~A AP)CP416*

j*2.ALP92/4)68*A'3.LoGfALP).2*A93.ALPt3/346eA95eALe$2m6hA93eALP'u3B*A93L3)/165

ft79) NE7A(ALF.A.9NC.ap.G1, :3Ae(i.iLPI3.(9.LoG(ALe),3.#.Lan(ALP)92.6.LoGtALP1-

LPV3/9)*Clq 3/ 9 ?4eLoGeALP).G1 ,3/24-42ALP.3.G1 e3Z$6'5ALPeCit3-41Ueo1 t3/81.A*
ALP,2e(4.LOG(ALP)T3'!6.LOG(ALP1,2'.8.LOG(ALP)-3)eG1,2/2.,2*A.ALP,3O%9.LOG(AL ,P)i.2o

QG(ALP)/30ALP93/9)OGI,2,3.54.A.(hLP$2II.OG(ALP3/2.ALP9204 I.ai,2.38,A.(.OG(ALP ).G
l 12/9.7UAALPO,3G122725*ALP2G2#2'62&AALPG19212A.G192/9S*AL'(LOG
(ALP) .2m2iLOG(ALP?42).CPeG1.16e(jLP.LS(ALP)-ALP).CPeG1.j6.LOG(ALP) .CP.Gi-16.A
L~C*j4*PGj8tLf*O AL)*i'~24*M*I4L ALP)09t4C.GI'8.ALP9
2*BNC*GIm16*ALP 11 4C.G .S.BMC.I41.3tA*2t&LP92.tZ.LOG(ALPI.2-.*.LOG(ALP ),1).oi-8.A
.2!ALPe(LOG(ALP) '2'201-OGCALP)42)eGi*2tA920( ALP.3.LOG(AUP)/3.ALP.3I@).Gi*40.A.2
*CALP,2eLOG(ALP)/2-ALP,2/4).C1*16iA92etAL.P*LDG(ALP)-ALR).Gi,26OAt2.LoGCALP2.GI
/3*1A2AP3Gl9 *9*Lt4L 7*#*L*l24A *i9SAQ( ALP).2
*CP*16eAe( ALPOLO (ALP j ALP ) CP-32IAtOLO ALP) .LP'32.A.ALP.CP.4S.AeCP~i6.A.( ALP*

LOG(ALP)ALP)*BMC,6ALG(ALP,8?MC4.AALP,20me,2g.A*OC4Ai3LG(ALP) .3/3.#4

e,2/4).S*At3*lALP *L6G(ALP)-ALP).3O4.A3eLOG(ALPI/3*2eA.3.iL! . /9+5#At3#ALPv2+2*
A .9eALPe227*At3/9/i6.(G*A)*(2ALP3(9LOGAL)939tDOG(A1P)9246eLOG(ALP).?)

)OG*3-OAL93*i'9 3**AL*GI3'7;Gt3/2-A:L~t*(4LO~,A .3#-A.LOG(ALP .2

*L9G(ALP)/2-ALP'2i41ol21*O '3*i232**L 24;'26**i'*i?3*
*GI,2/9..SALP(CLOGCALP) 22LGiO+)CPG~SC*I1*AL**O(L)2i

.ALP9-94 16A,2LP'LOG(/iLt2I)*L3AL,9OALPS6#i3*12A'2'GAL92

ALeCP-32.AOCP416eA.(PLOG(ALPLALP.MC-8.AALP2BtCI6A.ALPP4C.S.i*MC+
44.*,3.ALPA(LQGCALP).2.2.LOG(ALP).2u?4.A.3.LOG(*LPY,2.16.A,3.(ALP.2.LOG(ALP) '2-
ALP.2/4).6.AJeLOG( ALP).2A3ALP'3/3t6eA'3eALP92.6eAIOALP-380A'3/3)/i61

(Ci23) FYCI4M) igO~cA8,CiMCGPL,26.Nt4G3iETl Y.~.
ALP3,LANII.,081/(1.0B0.Mg,NIS.LOOPI.ZV i , 0 TMEN ;O(LODPi.l.F N > 6 TWEN GO(L
00P5),.xPI1.0a.IeN,Gotij00P6).LoaP5aXP:5.3NLOOP6.AAPIxP.XP.oCLTA: (1.U59-AA
LP)92.AALP.LOG(AALP,4,5GG1I(1.a90l-AALP)/cCLTA.hAAAALPeLOG(AALP)/oE TA.99MC:RMC
(AALP.AAG1) CCP:CP~aALP. AA.GG1,.GG31:3(AALP,AA.89MC.GCP.LaC1) NNEYA:NETACAALP
,Ai,88MC,CCP,GG1).Pi!NTjXP IGGI.AA&BUMC1 CCP.GGS),L1IO,LOOP2.jO C9 N THNNGCCLO

9)-NNETAe(LOG(L2)..LP.l.U0 ~R1NTILU.Y3) .LIL;..OLOBP2) .LOOP3.NiN-h.GO(LOOP
I) .OPOIS

CiiV) KILL(C119,61i9;CisO120.6121.9i21.C122.D122)i

US ILA= IS BS OT
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as Oet soft ouii USs?,wAct 1.WKr3 it iw3

(Ci26) UMC(ALP.A.01iO~~lEAPIt0( P) 0002C4i)(*LWiL
OL96(ALP)G1,t2e(2eLAM1)(4OALPi41ALI2G122LAN1/i(SALP8)G19dl2*(;AMo

$1j(ALP eAALP9E1(2LAM)/4AL
4 )3A(2LAM-1)(4ALP9.)AALP*G1

tLApK.j)/ALFP.1A*2LOG(AL )O(2LAM'-1)/(2OALP-2YA2±ALP*92O(2.LAM-1 /(4OALP-

j LP) 2 L/(2 LP2j**ALP,2.LOGALP)GII(ALP)-API *Gti(ALP1)A*ALPGI/(
ALP.1).A,2*ALp.LO CALP)/(ALP.1)4A,20AUP$2/(2OALP.2)4Ata/(2.ALP.21.A92*ALP/(ALP

Cib!2) KILL(CVO2*Cj2iDj29.Dj26)b

6Wll) ONIE

iCil) PLAYBA;K()s

1428S) GONE
10129) Sl
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to cat 197S 8 3u~e4~ ~WY lagiI

8.961 1.6902947193iS41732 . i1.3i$063622626732 1'.1595966big58i5

1 C;7708340i539.0 i0.076162i1212792a94 W.43926029494237681

1,691 g793495,.1
9,66.1 1,99461717W690323-4
Ili 8:1 1 6207187259920989
7:98.1 4.7421350806.9s6af1 . 3.242644459958591 16190642iij268193

i~i916,7717227~937~9.1j 4.0811600763616683 1.i374463236280079i
9.68.1 i.293905999159.3
0.68-1 . 2'.03127822i8385438-3

7.39.1 9 .1798790791j3j079.12 ,109a41Sq

4,7968862813341382 i'.A8819149486400S90
f~iel 1',7670309659933999-12
9,189-l 2.2990B8017600639.3
6,1982, 4,1199988j99688.4
7,39.2, . 2.32641429s3soo859.3
6.09.1 1 5985823779W2478.12
5.39.1 9.141103661932i7893 - 4.2iOI19259u38793 60708292857335376R1

; ff*1724J2134462558i F.318702i7477134486
i*.681 1'312,V2050399i6 28.13
9:69.1 1.6993957141j49199.3
6.s9.1 i.6808 3883i5j43468.3
7,09.2, - 1,1069079639489899-3
691.1 . 2,174896i962T90929.3

9,06:1 8,2239770549 i,0$479 14
4.69.1 4,9921780%12764078; - 1'.74X5S3279064598 21.277I16475649066!

1,39 6.31S51566470~703915 1*i271643844331hj Vi.3i436i$525j6380
9.16.1 1,49240651jS 59289*3
1661 2.333663677069ilig-3
7.69.1 5,7937607658358369-4
6,161 .1,942l632495671939.3
5,39.1 .1*9799160235923349-3
4.68.1 a I76872504148ii4a2,5
316.1 2.971313938188se198 . 7,6901383973059258-1 8.931220ii$02433i81

i'401 4,423544863 400j8B16 v932538 3 37jjg61j59-
9.68-1 1.1465393184j49628-3
I668. 2.263271087178429.3
7,69.1 1.567626662 7BOA759.3
069.1 . 6,2334053073i80523-4

* ,9,a a 2.43564i234i78629.3
*4.68-1 w 1,8659944j9259198-3
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to act 1978 bli3 SuSSi,gACf i,W'KY- P age12

3'9. '.575673581391j70-1i6
2.3.3 .62911G5389869i82 - 2.53677e)72S924490m1 3.944@i4i37136698@

i''4i26;67 6V44.i!i5P45B

9,68.1 S.W54737372 9738B.4
$h#9.1 1,9340466028&2669.3
7,861 1 .15256036s13e3i9.
6,06.1 3.6210513151603569%4
3,39.1 . 1,733009 2 g 3 2 4 4 019-3
4.69.1 . 2.91316625j15498.3
3 30.1 - 1,.874587603664VOSS-3
1.0:1.;.83266726846886748-17

1.81 1.28902239j2j3.51'30 - 5,99Gj2?26373!;9.2 1,963627i853355390

V6'*2;244298497j449949.07 *3~l37UU1iL2256838784-
9,68-1 5.9416083493i36489.4
8.39.,42a5$161g7M2j69B-3
7.6 .5 *22145728535833
6491 5,0596912522639338.4
4,58.1 * 143547505l18 65578.3

4.581 -3,19958735j3t4668.3
3.58.1 3:793448950962179o3
2,8.1 -2,2010318S2$2960668-3

(C644)

4
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26 cat 197 7109 SiSSbil4AIt 1.WKY3 hs 1.1

'C;)2 CP (ALP: A;GI) facG! #2*f (2*ALP*.2oLOG ALP) .2.2.*ALP 92960p ( 10) ALP'#2-&LP)c 2*L
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P4*,A/27tALP(9LoGALP)-A2L-6oA3ALPRl133,2.A9*LPt,3LOG(A'3*ALP.3/Q9

'G132ALP*G1.23/)/6.A,2G1/3A16.AAL3eLOG(APCA).P-i6.A.OGAIP.C+6LotAP)-2
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4*L4G.A.2.(*LA)I4.ALP4)O(AAP.I22*LOAC)L2.)G$A' 2*LO~P'*LOG(AL2/3

2el5ALP.2ALPG2eLOGAP)GI./-6i(o(ALP'i.L.2G9/ALP.).G1,2/ALP1-Al.AP.lCGA
AL*P-32G/AP.24oieLP.LOG()ALP)i/(AL-i0iALP2.G1/C6*AAtLP1)4+A*PG1/C
4*4 ' 93Aa.ALOG(ALP)/(2*OGALP).A2.AUP.2/*LO(2ALPZ)4A6ta/(ALP2-9L(ALP2

*Cdi47) FYC(LPA)IBO ;KjCAA.98.CCP9M,UGCPL.L2.L.NNC? A 3.y3.OEL.p-Pi)A-2
OLAP)AH1 1 IBI(1IIM~Ni)/ *LOP4147 N U 2*I THEN OLOilOA P-87-IR.2PAP

*I(OL 8+ LI0'GAP*l(*Aw)(*L-2'AAPiO LIn*PLM

IIIALP11-*ALt2*i;(*LA-I)i4.AL-11-3AGo2LMi OLP')AAP*l

(2L. I/(LP ___________________LP27A9tAP#2(2LA-I/(*AP

4 *A1212LA 1)i*Lo)A2APIOA41 AP1;Lo*O(i ii2*n iin
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21 Oct 1978 18:34 SESS2O.MAC[ 1,WKY] PAGE 1-1

fyeh(.397be);

2.08-1 1.89291788389860188 - 2.5387781728924498-14.8441116646514718

- 5.171064889871916-1 4.586123787194293B-1
2.28-1 2.06188517787725989 - 3.1745295782841898-1 4.7691558441865858

- 7.696496698827404B-1 5.0797472427145548-1
2.48-1 2.24985711681358 - 3.924926452864821B-1 5.589868762588557B0

- 1.1269563388953988 5.6313884735288018-1
2.6B-1 2.4621077581666648 - 4.809199837256092B-1 6.47465190159972880

- 1.62877321258696980 6.2495195255533358-1
2.88-1 2.70124454666685280 - 5.850381524454815B-1 7.6447871426623480

- 2.329767149625680 6.9441781391208448-1
3.8B-1 2.97131393818850180 - 7.876138587305925B-1 9.868805855433583B8

- 3.30536344384158888 7.72728886654628-1
3.28-1 3.27713493491367380 - 8.5198257864668188-1 1.08896477874987781

- 4.66062585302823188 8.6126558661697458-1

3.4B-1 3.62446782330674480 - 1.022181864837844B8 1.29481821299313581

- 6.53967669926539588 9.6173289620139188-1
3.6B-1 4.82022801353022588 - 1.22312113307455980 1.55885450469123281

- 9.14572105523893880 1.67613480515900960
3.88-1 4.47275835784441788 - 1.4607992557987338 1.88667659664549381

- 1.27657292487895B1 1.28689769871391480

4.08-1 4.99217887127640780 - 1.74258533279084588 2.29687378631168381

- 1.78035858224183681 1.3569631811485898
(D157) 0

(Cl58)

2
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21 Oct 1978 18:34 SESS20.MAC[ 1,WKY] PAGE 1-1

fyeh(.397be);

2.08-1 1.89291788389800180 - 2.538778172892449-14.044111664851471B0

- 5.171064809871918-1 4.586123787194293B-1
2.28-1 2.86108517707725980 - 3.1745295782841890-1 4.70915584418658580

- 7.6964966988274048-1 5.8797472427145548-1
2.48-1 2.2498571168135B0 - 3.924926452064021D-1 5.50906876258855780

- 1.12695633889539B0 5.6313804735288818-1
2.60-1 2.46210775816666488 - 4.809199837256092B-1 6.47465190159972888

- 1.62877321250696980 6.2495195255533358-1
2.88-1 2.70124454666685280 - 5.8503815244548158-1 7.6447871426623488

- 2.329767149625680 6.9441781391288448-1
3.88-1 2.97131393818858188 - 7.0761385873059258-1 9.06880585543358388

- 3.305363443841588B 7.72720086654628-1
3.28-1 3.27713493491367380 - 8.519825786466818B-1 1.08896477874987781

- 4.660025053028231B0 8.6126558661697458-1
3.48-1 3.62446782338674480 - 1.82218186483784480 1.29481021299313581

- 6.53907669926539580 9.6173289620139188-1
3.6B-1 4.02022801353822588 - 1.223121133074559890 1.55885450469123281

- 9.14572105523893888 1.07613488515908980
3.88-1 4.47275835784441788 - 1.46079925579873380 1.88667659664549381

- 1.27657292487095B1 1.28689769871391488
4.88-1 4.99217887127640780 - 1.74258533279884580 2.29687378631160381

- 1.78035858224183681 1.35696318114858980
(D1S) I

(Cl58)
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21 Oct 1978 18:34 SESS2.AC[ I.WKY] PAGE 1-1

fych(.397bo);

2.8B-1 1.892917883898601B0 - 2.5387781728024498-1'4.0441116640514718B

- 5.171064809871918-1 4.5861237871942938-1
2.28-1 2.86108517707725989 - 3.174529578284189B-1 4.70915584418658580

- 7.6964966988274048-1 5.0797472427145548-1
2.48-1 2.2498571168135B80 - 3.9249264520640218-1 5.50906876258855780

- 1.12695633889539B0 5.6313804735280018-1

2.6B-1 2.462107758166664B8 - 4.80919983/2560928-1 6.47465190159972888

- 1.62077321250696980 6.2495195255533358-1
2.88-1 2.7012445466668528 - 5.850381524454815B-1 7.6447871426623488

2.329767149625680 6.9441781391208448-1
3.08-1 2.97131393818858188 - 7.076138587385925B-1 9.06880585543358380

- 3.30536344384158888 7.72720886654628-1
3.28-1 3.27713493491367388 - 8.5108257864668188-1 1.08896477874987781

- 4.66002505302823180 8.612655866169745B-1
3.48-1 3.62446782330674480 - 1.0221818648378448 1.29481021299313581

- 6.53907669926539580 9.6173289620139188-1
3.68-1 4.82022801353022580 - 1.22312113307455980 1.55885450469123281

- 9.14572105523893880 1.0761348051598898$
3.88-1 4.472758357844417B0 - 1.460799255798733B8 1.88667659664549381

- 1.2765729248709581 1.20689769871391488
4.00-1 4.99217807127640788 - 1.74258533279084580 2.29607378631160381

- 1.78035858224183681 1.35696318114858988(D157) 8

(C158)
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21 Oct 1978 18:34 SESS20.KAC[ 1,WKY] PAGE 1-1

fyeh(.397b0);

2.8B-1 1.89291788389860180 - 2.5387781728924498-14.04411166405147188

- 5.171064809871918-1 4.5861237871g42938-1
2.2B-1 2.86108517707725988 - 3.1745295782841898-1 4.70915584418658588

- 7.6964966988274048-1 5.0797472427145548-1
..4 2.4-1 2.2498571168135B0 - 3.9249264520640Z18-1 5.50006876258855788

- 1.1269563388953980 5.6313804735280618-1
2.68-1 2.46218775816666400 - 4.809199837256092B-1 6.47465190159972886

- 1.62877321250696980 6.2495195255533358-1
2.88-1 2.761244546666852B6 - 5.8503815244548158-1 7.6447871426623480

- 2.329767149625680 6.9441781391286448-1
3.08-1 2.97131393818850180 - 7.0761385873059258-1 9.06880585543358380

- 3.30536344384158880 7.72729086654628-1
3.2B-1 3.27713493491367388 - 8.5198257864668188-1 1.08096477874907781

- 4.66002505302823180 8.6126558661697458-1
3.48-1 3.62446782338674480 - 1.02218186483784480 1.29481021299313581

- 6.53907669926539588 9.6173289620139188-1
3.68-1 4.02022801353022580 - I.Z23121133074559B0 1.55885458469123281

- 9.14572105523893880 1.076134805159809B#
3.88-1 4.47275835784441780 - 1.46079925579873380 1.88667659664549381

- 1.2765729248709581 1.2068976987139148S
4.88-1 4.9921780712764078 - 1.74258533279084580 2.29607378631160381.

- 1.78035858224183681 1.35696318114858980
(D157) 6

(C158)
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Appendix D

VIBRATIONAL MODELS OF THE GRADIOMETER

D- Simple Spring Mass System

The notations used in the models to be developed are established

using the first-order example in Fig. D-1

AC k

M 
1T

T m

FIG. D-1 SIMPLE DAMPED SPRING-MASS SYSTEM

The equation of motion is

+ S +-k X = 0 ... (D.1)
m m

where the solution is

x e[ -[ (c/2m) q'Tc/2m) -k/m] t ... (D.2)

Defining 1, the damping factor = c/c ;c, the critical damping constant,

equals 2mn 171n ' : Equation (D-2) can be simplified to

-221-



x = c I e('tWP (A17 unt + c2e('ujnt (D.3)

Since our diaphragms have high Q, < 1, (D.2) can be written as

x = A n t sin t2 Lnt+ () ... (D.4)

We can relate Q and 1, the damping factor, by the definition of Q:

Q != it T ... (D.5)

where T is the time required for the amplitude of the resonant oscilla-

tion to decrease by a ratio of e, the natural number. From (D.4)

-twn -1
e = e

1

Cn

Q Q = =nf ... (D.6)

D-2 Dynamics of Accelerometers

The motions of the diaphragm may be modeled by a simple spring-mass

damper system with moving support as shown in Fig. D-2 [Crede, 1961].

Define

x(t) = z(t) - y(t)

where z(t) and y(t) are time displacements with respect to a fixed

reference, and x(t) is the measurement of acceleration. The equation

of motion is

* x + 2ti + 2x = -y ... (D.7)
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z(t

c- k

FIG. D-2 SIMPLE MODEL OF ACCELEROMETER. The movable
support in this model is analogous to the

motions of the case of the actual accelerometer.

1 1-

For sinusoidal forcing function y = Y j ft we can write

x Xe _ This leads to

2
X r
-- 2= ( D .8 a )(1_r2 +(2er,)23

4' tan 2 (D.8b)
S-r

where r w (f/W

Differentiating (D.8a) with respect to r and equating to zero,

the maximum value of X is

X 1
max -(D.9)

for << 1.

max (D.10)

-223-
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For acceleration measurement with

y = Ye 
f

yj= w~y

If

and for perfect correlation of X with w2Y

X 2

y- K~f ... (D.I1)

where K is an arbitrary constant.

Equation (D.11) describes a family of parabolas. A study of Fig.

D-3 will show that for a value of r << 1, all curves irrespective of

damping, are good approximation of parabolas. It can also be noted that

when r > 1, no curve even remotely resembles a parabola. Thus seismic

(spring-mass-damper) systems used to measure acceleration will be "stiff"

systems with relatively high natural frequencies. That is, if we lowered

the natural frequency of the system to increase its displacement under a

given acceleration, the useful frequency range of the device is reduced

proportionally.

Although the degree of damping does not appear to be critical

with respect to amplitude, the question of phase angle must still be

addressed. Valid results for motion that are not simple harmonic will

be given only when the phase angle is zero deg, + 180 deg or varies

linearly with the frequency. Referring to Fig. D-3b will show that for

r < 1, 0 (deg) for 0 and the curve for slightly less than

0.7 is almost a straight line. Therefore the only amplitude ratio

curves we need to consider further are those for = 0 and 0.65.

The acceleration error will be

-224-
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4

3
.i.

=1.0

12 3 r

(a) Transfer Functions of the Accelerometer

deg

=0

i. 180,

0 ~~~ 17 3

90

0

(b) Phase Shifts of the Accelerometer

FIGs. D-3 FREQUENCY RESPONSE OF THE ACCELEROMETER UNDER
DIFFERENT DAMPING RATIOS.
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J2

X - Kw Y
e -2 x 100%

Kwf Y

l/W2

= - x 1000 (D. 12)

1 (I-r2)2 + (2tr)2 J

after substituting (D.8) for X/Y. The optimum value of K will depend

upon the definition of optimum value with respect to an error which is a

function of frequency. However, K will not differ greatly from
/ and that value will be used. For K =/w 2 , (D.12) becomes

e _ _ _ _ _ _- 1 (D.13)

Lkr2)2 i 2)J

and the curves for 0 and 0 = .63 are given in Fig. D-4.

12

rN
Go

8
X

0.2 0.4 RI O 10 r

2-4
O. 65

FIG. D-4 VARIATION OF THE ACCELERATION ERROR WITH FREQUENCY.

. The largest range of frequency at which the acceleration

error stays within set bounds is largest at =0.65.
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As can be seen, if a 5% error can be tolerated, an accelerometer with zero

damping will be good up to r V 0.22 while if damping is 0.65, the

range will be extended to r = 0.74, approximately three times the

useful range of the undamped system. In our diaphragm accelerometer, the

system is undamped. Typically the useful range is then below 0.22 Wn

about 180 Hz for 850 Hz diaphragm and 20 Hz for 50 Hz diaphragm. The

system suffers from the typical disadvantages of an undamped system,

i.e., the response near w is many times greater than those of low

frequencies and ringing introduced by transients will be great and will

not die off quickly.

When two accelerometers are combined in the gradiometer, the useful

range may be extended by the differencing action. This will be investi-

gated in the next section.

D-3 Vibrational Analysis of the Gradiometer

Since the diaphragm with the lowest Q has a damping factor

on the order of 0.0001, the gradiometer can be modeled as an undamped

spring mass system of two degree-of-freedom as given in Fig. D-5.

k T

1
k

m2

2

FIG. D-5 SIMPLE MODEL OF GRADIOMETER. The spring constant, k,
models the coupling between the two proof masses in

* the assembly.
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The constants k and k2  are the equivalent spring rates as in diaphragms

1 and 2, and mI and m2 are its equivalent mass; k accounts for the

coupling between the two diaphragms; y(t) is the displacement of the

frame and is sinusoidal with amplitude Y; xI(t) and x2(t) are coordinate

systems relative to a frame of reference fixed to the support.

The equations of motion are

M ml1 + (k + klI)X 1I -kx 2  = -m lY (D.14a)

+ m 2x 2 + (k+k2 )x2  m2Y (D.14b)

Since there is no damping, we have

y(t) = Y cos Wft (D.15a)

x (t) = X Cos Wft (D.15b)

Sx 2(t) = X 2cos w ft (D.15c)

where w f is the angular velocity of the forcing function.

Substituting these equations into (D.14) we get

1 2
-k -M 2 + (k+k2  [X1 LJ Y(D.16)

-k- 2  2 . 2

The determinant D is

4 2D = f 2(a% + P)- + 4c4 -Ye (D.17)

i where
k+kI  k+k2

2(x m 2P - (D'lsa)
1 n2

=n 2  - m--2 . (D.18b)
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Equating (D.17) to zero, we have for the resonant frequencies of the

grad iometer

W 2 = (1 0)+')2 + 7 (D.19)

The displacements X and X2  are derived from (D.15). They are

2xI  _2/3 + '- - (D.20a)

wfY D
x2  2J3 + ' -Y f

22

2 2 D 
(D.20b)

2
where D, a, p, and w f are defined above; w fY is the acceleration of the

frame.

Using the output equation (3.75) for the DDGG, and (D.20), the

result becomes

2 2
it = L2(P-CI) + 7-e] D = ( W) - (D.21)

where 2 I (D.2:)

w2 = 2 (D.22b)

2 2

Thus if w2 = W2, output due to common acceleration will be zero inde-

pendent of the forcing frequency. This is not true for the CDGG whose

output is

2

) W 0a (20 + Y ) - a (2a + e - 2) WY (D.23)

where 2  =
- 2h 9
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. .... . ...... ... . .......... -r . - ::__ --: ."'- 0' w °  
- ,I,..q -:

and i, d, and h are defined in Eq. (4.40). The balancing condition is

2 2

or (2P + ' - b) 2 or(2a + F- 2. ) (D.24)1 b 2 b

where wb is the frequency of the balancing acceleration. Thus the scale

factors adjusted at the balancing frequency are not matched at any other

frequency. The output owing to this mismatch is

2213 + 'Y \.f 2aI+ e - v I
is(t) [U2 (2a+e- - 2 - - (D.25)

26 + - 2c + e- D

Using this simple model, the DDGG will remain balanced over a broad

range of frequency after it has been balanced. On the other hand, CDGG is

balanced only at one frequency. The degree of unbalance at a frequency

different from the balancing frequency depends on how close the two dia-

phragms are matched. The CDGG will be matched over a broad range of

frequency below the resonant frequency if the two diaphragms are identical,

i.e.,

2P + Y = 2a + c . (D.26)

Equation (D.19) may be rewritten as

2 2 2 + J( 2 2 + 22 , = w + 2 + (Y + E) - + ) + 4( .n 1 2Yl 2
(D. 27)

2 2 2 2 21+ '2 -+ "W 2 ) + 47e

since V and e are almost equal and small.

When the lower of the two frequencies is increased, typically by in-

creasing the current stored in the current loop, the curve of 2  is as

sketched in Fig. D-6.
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g2

1W
- 2

W 2

2

-
W,

2

0 10 20 30 I

FIG. D-6 VARIATION OF RESONANT MODES OF THE GRADIOMETER. The
results are obtained when the frequency of the lower
frequency proof mass is increased while that of the
second proof mass is left unchanged.
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D-4 A More Detailed Model

The model given in Fig. D-3 is not accurate for vibrational frequency

close to the natural frequencies of the diaphragms. Since we frequently

excite the resonant frequencies of the gradiometer assembly, the following

equivalent model including damping is outlined, see Fig. D-7. With

y(t) 
= Ye

J 1I
t

and xl(t) = 1e X Xe

S1 f 1 e

x2 (t) X2 e , X 2  e'2

The equation of motion in matrix form is

2

-k-m 2wf +(k+k 2 ) + jc2 wf X M(D.28)

Using the notation of w= k/m = k/mn, cl/m = 2 1 il, W2 =k

= k/'m2, c2 /m2 = 212W2, we have

x u 2  2

X1 1 2 + + V W f + j2 22tf] (D.29a)

2 2

X2  El + V + e - Wf + j2 1 WI Wf]

I D

'"whereD I= - 2( + 4Q -Ve-4 w

2 (D. 29)[ _4 22
+J 2 llj, - 2 2 2 3f + W Olf + W2 W2 f
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CI M 1I

k

C4 
k

FIG. D-7 A REALISTIC MODEL OF THE GRAVITY GRADICUEER.
In this mnodel, the damping elements are intro-
duced to model the finite Q of the resonance
oscillations of the proof masses.

40
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k + kc1

2C - (D. 29d)m 
1

2 c +2 (D.29e)
m2

From Eqs. (D.29)

x -x ~ 2 2 + j 2

1 2 2 1 221 f (D.30)

2
~fY

:.4-

4

N? 
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Appendix E

SPECTRAL DENSITY OF RANDOM VIBRATIONI OF A SINGLE

DEGREE OF FREEDOM SYSTEM

Consider the spring-mass-damper system given in Fig. D-1. The

transfer function, H(w) between force and displacement is given by

F(w) 2 m( 2  
2

mWn W + ~tw

using standard notations.

If the mean square spectral density SF(w) of the actuating force f(t)

is white and wideband, the mean square spectral density of the displace-

ment Sx (w) is given by [Crandel, 1963]

S (W) = H()2S. = 1
S(W) 2 i_ 2+ 12 So (E.2)

where SF(w) = SO  is a constant.

Using equipartition law in physics, we have

1 2 1
I (x ) -kT (E.3)

-2

where K is the spring rate, k is Boltzmann's constant 1.38 X 10 J/ K,
and T is the temperature. Simplifying, the relation is

(X 2 . (E.4)

4r
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As
(x2) = Sx (w)dw

for a constant S (w) we have
F

2 50 T I
(x2 2 3 (E.5)

m 
n

Equating (E.5) to (E.4), we obtain

2 3 2 kT

S O  = Te n K

2

However, K = mwn, and using experimental units, the above expression

becomes 4kTmw

W0  = 4M 0 = 8tmwnkT - Q (E.6)

where 1/2 = Q, which is the Nyquist theorem. The force spectral density

is WO. If A0  is defined as W0/m2 , (E.4) becomes

(w2 0 1 0 (E.7

mx) - 2 4 3 - 3(E.7)
n n

The spectral density of the input force and one of its possible time history

is plotted in Fig. E-1. The diaphragm is a sharply resonant system with

high Q (Q = 2x105 ). Using the single DOF model, the spectral density and time

history of the displacement of the resonant circuit due to the thermal

motions are plotted in Fig. E-2.
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FIG. 3-I POWER DENSITY AND THE TIME FUNCTION OF A
BROAD-BAND NOISE.

-237-



S (w)

* (a)

Envelope one "Cycle"

~~(b)

FI.E2PWRSETU N IMiUCINO ARWBN
NISE Teergis nee bu heoac

frqec w

* .. S0

-238-



Using Eq. (E.2), the spectral density in experimental units is

4kTu
w (f) = 2 (E.8)

QM (w - -22 + n2

n ~ Q2

For f < f and Q >> I
n

W (f) 4r (3.9)

mQW

At f =f n

4kT
W- 3 Q • (E.1o)

~m~ n

At;,
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