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FOREWORD

A library of subroutines was prepared in machine language for the Naval Ordnance
Research Calculator. Many of the subroutines have been rewritten in FORTRAN. Those
subroutines in the library which perform operations on polynomials and on matrices
have been documented in previous reports. Those subroutines which compute special
functions are documented herewith. The manuscript for this report was completed by
7 November 1976.

xeased by:

Ralph A. Niemann
Head, Strategic Systems Department
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ABSTRACT

Documentation is given for some subroutines which compute potentials and other
functions. A set of subroutines uses rational approximations to compute Bessel functions
of integral order. One subroutine uses the Debye approximation for the efficient
computation of Bessel functions of complex argument and complex order. Empirical
formulae have been developed to express the limiting boundaries of the modes of
computation.
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INTRODUCTION

On the Naval Ordnance Research Calculator, programs were coded directly in machine
language. It was necessary to provide subroutines for such elementary functions as
square root, sine, cosine, exponential, logarithm, and arctangent. With the advent of
the FORTRAN compiler, versions of such functions were available from the compiler,
and it was no longer considered necessary to provide function routines with each
program.

The function name SQRT has been preempted in FORTRAN for the square root. The
function name CBRT is used on the Univac 1108 computer for the cube root. A new
function routine for the cube root has been prepared for the CDC 6600 computer. It
obviates the inefficiency of exponentiation.

Too many problems have arisen with the four-quadrant arctangent function routines
of the Control Data Corporation. Among the versions and revisions of the
double-precision DATAN2 function routines on Scope 3.3. some have returned nonzero
when they should have returned zero, and some have returned zero when they should
have returned +ir. Even the single-precision ATAN2 function routine on Scope 3.4
returns completely erroneous values for angles outside of that quadrant which straddles
zero. The double-precision DATAN2 function routine on Scope 3.4 returns zero when
it should return +tr.

Patches in FORTRAN have been designed by A. H. Morris, Jr. to cure the arctangent
function routines in Scope 3.4. These patches convert arguments into absolute values
before series expansion and restore signs to the function after series expansion. The
patches do not stand alone, because they depend upon the system function routines
ABS and ATAN.

New FORTRAN function routines have been prepared for both A'AN2 and DATAN2.
When they are included with a program deck, they override the function routines with
the same names already in the system. The new FORTRAN function routines use the
signs of arguments directly to determine the sign of the function. They stand alone
because they make no reference to systems function routines.

The arctangent is a multiple-valued function. If only the projections x, y of a line
on the coordinate axes are given, then the angle which the line makes with the z-axis

is indeterminate modulo 27t. The accepted convention is to assume that the arctangent
satisfies the inequality

7t < tan - ' _ +7 I

Any arctangent function routine must give +7T when x is negative and y is zero.
Otherwise incorrect results will be obtained when real numbers are included in a set
of complex numbers, as often happens in mathematical exercises.

In arctangent function routines the addition theorem is used for various centers
of expansion and the Maclaurin expansion is used at each center of expansion. An
increase in the number of centers permits a decrease in the number of terms. In the
CDC version the range of tangents from 0 to 1 is divided into sixteen sectors. A
five-term expansion is used from one center to the next higher center. In the new
version the range of angle from -17r to +17T is divided into sectors at seven angles
for which the tangents are known to especially many digits of accuracy. The series



expansion runs through eight terms or less from the midpoint between one pair of
centers to the midpoint between the next higher pair of centers.

Bessel functions are given analytically by absolutely convergent series everywhere
in the complex plane, but evaluation of the convergent series by computer is feasible
only in a limited range of order and argument. There are asymptotic series which are
valid for large argument, but evaluation of the asymptotic series also is feasible only

--- in a limited range of order and argument. The Debye asymptotic approximation can
be used to reduce the gap in the range of order and argument to a narrow zone which
straddles the line of equal order and argument. The zone which still is not covered
by the series can be crossed with the aid of recurrence equations. Evaluation of the
Debye series requires a double summation, but the time for evaluation is less than
the time which would be required for recurrence from the classical series. Formulae
for the Debye approximation have been given by Watson' 2 and by Abramowitz and
Stegun 3, while explicit recurrence equations for the terms of the series have been
given by Amos e - 0 .

CUBE ROOT

Analysis

One third of the exponent of z is biased and is attached to I to form an initial
approximation which is larger than the cube root of x. The initial approximation is
diminished by Newton-Raphson iteration until the increment in root is zero or positive
from rounding error.

Programaming

FUNCTION CBRT (X)

FORTRAN FUNCTION ROUTINE FOR CUBE ROOT

The cube root of x with sign is computed by Newton-Raphson iteration and is stored
in address CBRT.

FOUR-QUADRANT ARCTANGENT

Analysis

Let z, y be the arguments of the arctangent function. The given arguments x, y can
be replaced by new arguments u, v through the application of symmetry relations. Let
c be a constant which is added to the arctangent of u, v and let h be the center of
expansion of the arctangent of u, v.

If x, y satisfy the inequalities

yj I 0 < X (2)

then u, v, c are given by the substitutions

u . + X V - + yl C O (3)

2
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If z. V satisfy the inequality

lxI < IYl (4)

then u, v, c are given by the substitutions

c 1 7T (5)

where the sign of c is the same as the sign of y. If x, y satisfy the inequality

1YJ - lxI x < 0 (6)

then u, v, c are given by the substitutions

ux V-,Y c-*+r (7)

where the sign of c is the same as the sign of y.
The parameters c and h are adjusted in accordance with the substitutions

c - c + 0 h -* tan 0 (8)

where 0 is that angle among the angles

02± 7 ±47T (9)

which is nearest to tan-(v/u), and tan 8 is the corresponding tangent among the
tangents

0 (2-,/) ±-- 1 (10)

Then the Maclaurin expansion is given by the equation

tan- = ( 1.
mo(2m + 1):

for which the parameter q is given by the equation
v - hu (2

q u + hv

and the arctangent function is given by the equation

tan-() = c + tan-'q (13)

Multiple-precision values for the constants c and h are to be found in the following
table, which is derived from references 17 and 18.

2 - / = 0.26794 91924 31122 70647 25536 58493 87236

37 = 0.57735 02691 89625 76450 91487 80502 04254

= 0.26179 93877 99149 43653 85536 15273 29191

in = 0.52359 87755 98298 87307 71072 30546 58382

in = 0.78539 81633 97448 30961 56608 45819 87572

lr = 1.57079 63267 94896 61923 13216 91639 75144

rr = 3.14159 26535 89793 23846 26433 83279 50288

3



Multiplication or division of the numbers by small integers can be verified by hand
computation.

Programming
FUNCTION ATAN2 (Y. X)

FORTRAN FUNCTION ROUTINE FOR SINGLE PRECISION ARCTANGENT

The variables x, y are given in the arguments X, Y. The four-quadrant arctangent
of y/x is returned as the function ATAN2.

DOUBLE FUNCTION DATAN2 (Y, X)

FORTRAN FUNCTION ROUTINE FOR DOUBLE PRECISION ARCTANGENT

The variables x, y are given in the arguments X, Y. The four-quadrant arctangent
of y//x is returned as the function DATAN2.

POTENTIAL OF PLATE

Let a plate have unit mass per unit area. Let x, y, z be Cartesian coordinates with
origin at the center of the plate, and with z in the direction perpendicular to the
plate. Let r be the distance to a point in the field from an element of surface ds on
the plate. The potential V at the field point is given by the equation

r __s- (14)

The gradient of the potential is given by the equation

f Vr dsl~- 2 = r (15)

where Vr is a unit vector in the direction toward the field point. The derivative of 0
with respect to z is given by the equation

0_r Vr-dsOz k.Vo= r2  - ' (16)

where k is a unit vector in the direction of increasing z, and w is the solid angle of
the plate. The derivative of p with respect to z also is the potential of a uniformly
polarized plate. Since the derivative of a solution of Laplace's equation with respect
to a Cartesian coordinate is itself a solution of Laplace's equation, both the potential
and the solid angle are solutions of Laplace's equation.

In the definition of a function at a point in the field it is convenient to regard r
as the distance from a point on the plate to a point in the field, while in the
transformation of integrals it is convenient to regard r as the distance from the point
in the field to a point on the plate. In either case the gradients of r differ only in

* sign.
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The field of a unit current along the perimeter of the plate is defined by the equation

( drxVr (17)

while for transformation the field is expressed by the equation

-( = crxV()18

Application of the scalar-vector triple product theorem gives the equation

fdrxV() f drxV(!).I = dr.V(-) (19)

where I is the identity tensor. Application of the Stokes theorem gives the equation

~dr.V(-3iI fds.Vx V-~l (20)r) f rsv l)-l (0

Application of the vector-vector triple product theorem gives the equation

{ds-Vx( V(-xl f VV vv(!>s (21)

Since the gradient of the gradient of a scalar function is symmetric, the field is given
by the equation

-C ={vv(! ). d (22)

Thus the potential of a circuit of unit current is just the solid angle of the circuit.

CIRCULAR DISK

Analysis

Let a be the radius of a disk of unit mass per unit area. Let x, y, z be Cartesian
coordinates with z in the direction of the axis of the disk.

The potential and the solid angle of the disk may be expanded in a series of spherical
harmonics. Symmetry about the axis of the disk requires that only symmetric harmonics
may appear in the series expansion. The coefficients of the spherical harmonics may
be derived by reference to special series expansions on the axis of the disk.

Let u be the radial distance from the center of the disk. Then the potential along
the axis is given by the equation

f udu =21TJ a'+z2 -z) (23)

and the solid angle along the axis is given by the equation

Sa

Let r be the distance from the axis of the disk to the point in the field. Expansion in

5



series of ascending powers of z and identification of the powers of z with spherical
harmonics lead to the equations

2ir=-2(-zt-n2(a -- ('r 2 
- z z < a) (25)

w 27T - 2, -)(n!(,, -' 2n+ (P r +1z a) (26)
i±2.... 0 22(n!)2 an

Expansion in series of descending powers of z and identification of the powers of z
with spherical harmonics lead to the equations

= +rra ' (-i) (2n)! 2a +( z
p+ n Trn 1 -- ) (v- z a) (27)

n=o 22 nn!(n + 1 -r + z r2  2

I-- (2n 1-, a -- ) .- 2n +2p z

The convergence of the series deteriorates as the point in the field approaches a
sphere of radius a.

Let a line be co,-structed through the field point and perpendicular to the plane

of the disk. Let the "ntersection between the perpendicular line and the plane of the
disk be the center of a circular arc. Let the reference line for azimuth angle be the
extension of the line from the center of the arc to the center of the disk. The circular
arc intersects the edge of the disk at a point whose radius from the center of the
disk makes an angle 0 with the reference line. Then the radius of the circular arc is
given by the expression

la + 2ar cos 0 + r (29)

The derivative of the radius with respect to 0 is given by the expression

ar sin
a(30)Il- -2-at cos 0 + r 2

The distance of the circular arc from the field point is given by the expression

Va 4- 2arcos + r2 + z (31)

The potential of the disk is given therefore by the equation

' ,- asin sin do
=2ar tan ' . . ) . -- . . (32)

J 0  \r + acosd )VaZ + 2arcos + rz + zz

The arctangent can be removed from the integrand through an integration by parts.
The interpretation of the arctangent at the limits of integration depends upon whether
the center of the arc is inside the perimeter of the disk or outside the perimeter of

the disk.
If the center of the arc is inside the perimeter of the disk, then the potential is

given by the equation

o2a ( a2 a + rcos¢ ) 2ar cos +±Z z do (r a) (33): - 2lz!+ a , +2,.,rcos@ 0 " + r

6



and the solid angle is given by the equation

o + arcos_ do d
=27r - 2az (r<a) (34)Oz J0\az + 2arCos + -2 /a + 2ar cos + r2 + Z2

If the center of the arc is outside the perimeter of the disk, then the potential is
given by the equation

+ 2af arcos /.)va2+ 2arcos +r 2 + z 2 do (a<r) (35)
i= a + 2 a r c o s + r

and the solid angle is given by the equation
O( " a + r cos 0 do- = - 2az 2 /,/ (a< r) (36)

8 a2+2arc-oso + r 2/ + 2ar COS + r2 + ZZ

A rearrangement of terms leads to the equation

=-(a 2 ) o ,/az + 2ar cos ¢+r +z

+ /a 2 + 2ar cos € + r z + z 2 dO

+(2- rzz do ( <'r) (3'7)
+ (a2 + 2ar cos + re) "/a2 + 2ar cos + r 2 Z (a

and to the equation

-z f_1 '/aO + 2ar cos + r2 + z?

- - z (a< r) (38)
JE (a 2 + 2ar cos 0 + r 2) v'a 2 + 2ar cos +, + +z

The substitution

cos= I - 2 sin-O (39)

and replacement of -0 by 0 leads to the expression of the integrals in terms of
Legendre elliptic integrals. The first and second kinds of elliptic integral are defined
by the equations

F(p, k) = E/1- k(s, k) NT - k 2sin 2 O dO (40)

and the third kind of elliptic integral is defined by the equation

rlO ct ) O (41)
(¢, a, k) = J (1- a~sin2 0) - k 2

sin
2 0()

If the modulus a is defined by the equation

a 2  4ar (42)
(a + r)

2

7



I
and the modulus k is defined by the equation

4ar
k2= (a - )2 + z 2  (43)

then the potential is given by the equation

go-27IzI +2 (a 2 - rz) F(1Ek)+2,/(a +r) +zAE(m, k)
(a+ _ +!

(a - r) zz
+2 (a + r) V(a + r)2 + zz (. k) (r < a) (44)

and the solid angle is given by the equation

27T - F(!!,k)- 2 (ar) a (r<a) (45)_(C+r)2 +Z 2  
(a+r) /(a +r)2 +Z 2

when the field point is inside the perimeter, while the potential is given by the equation

+ 2 (az - r 2 ) F(E- , k) +2/(a + r)2 + z 2E(!, k)
-(a + r) + z 2

+ ( r) z n(-. a, k) (a< r) (46)

and the solid angle is given by the equation
o P z -F(, k) - 2 a- r) z - n(! a k a, )( 7
8z v(a + r) 2 + z2  (a +r) v/(a + r) 2 + 2 2 '

when the field point is outside the perimeter.
The complete elliptic integral of the third kind is expressed in terms of the incomplete

integrals of the first two kinds by formulae on page 228 of Handbook of Elliptic
Integrals by Byrd and Friedman'. If the angle 0 is defined by the equation

a z -2k P2

0= sin-' N -k, (48)

and the parameter A(O, k) is defined by the equation

A(G, k) =[E(!, k)F(O, k') + F(!, c)E(O, k) - F(!, k)F(O, k')] (49)

where the comodulus k' is defined by the equation

k"= 1- 0 (50)

then the complete elliptic integral of the third kind is given by the equation

aA(6, k)

l( , a, k) =2 \1(a - k 2)(1 - a 2 ) (51)

When the moduli are expressed in terms of the coordinates, then 0 is given by the

8
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3 1
equation

zr

0 tan-' ja - (52)

and the moduli can be combined as expressed by the equation

a (a + r) N/(a + r)2 + z(

-,/(a 2 - k2 )(1 -  fa- z(

Thus the potential and the solid angle are reduced to simple expressions in terms of
A(0, k).

Accuracy and efficiency were determined by comparisons between computations by
4 two formulations on a common boundary between their zones of application.

Optimization of accuracy and efficiency limits the use of the elliptic integrals to an
*annular zone between a sphere of radius ia and a sphere of radius 2a.

Programming

SUBROUTINE CDSKP (AA, AR, AZ, FP)

FORTRAN SUBROUTINE FOR POTENTIAL OF CIRCULAR DISK

The radius a of the disk is given in argument AA, the distance r from the axis of
the disk is given in argument AR, and the distance z from the plane of the disk is
given in argument AZ. The potential of the disk is stored in function FP.

SUBROUTINE CDSKO (A, AR, AZ, FO)

FORTRAN SUBROUTINE FOR SOLID ANGLE OF CIRCULAR DISK

The radius a of the disk is given in argument AA, the distance r from the axis of
the disk is given in argument AR, and the distance z from the plane of the disk is
given in argument AZ. The solid angle of the disk is stored in function FO.

RECTANGULAR PLATE

Analysis

Let 2a be the length of a plate and let 2b be the breadth of the plate. Let X, y, z
be Cartesian coordinates with x in the direction of the length of the plate, with y in
the direction of the breadth of the plate, and with z in the direction perpendicular
to the plate. Let a line be constructed through the field point and perpendicular to
the plane of the plate. The perpendicular line intersects the plane of the plate at a
point with coordinates x, y with respect to the center of the plate. Let u, v be the
coordinates of a point on the plate with respect to the point of intersection. Then the
potential at the field point is given by the equation

+b +P(X, Y,. Z) =dudv (54)
f-b-V V- / U2 + 1g+ Z

Initial integration leads to an inverse hyperbolic function, then final integration is

9
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completed with an integration by parts. Introduction of limits of integration leads to
the equation

(b - y) +(- ih ( y
= (a - x)sinh- (a + x) 2 + +(a x)sinh ( ( + y)

/( -x) + /-(a - ( ) + Z2

+ (a + x)sinh - - /(b y ) + z (a + xzin ( +

/(a + x)_ (a + x)

+ (b - y)sinh- (a ) + (b - y)sinh-' (a + )

11(b - )±Z 2  -(b - y)z+ z
(a - x) (a + x)

+ (b + y)sinh- (- + (b + y)sinh-/ )
(b y) 2+z + (a + V) +z

(a -x)(b - y) (a - x)(b + y)• - z tan - ' z tan - '

z z/(a -x) + (b - y) + z 2  zv(a -x)z + (b + y)2 + z2

(a + x)(b - y) ztan (a + x)(b + y) ()
- zx/(a + x)2+(b - y)2 + z2 z-/(a + x)2 + (b + y)2 + z2

Partial differentiation and cancellation of terms gives the components of the gradient
of the potential.

Differentiation with respect to x leads to the equation

S h (b - y) (b + y): - __ =sinh- + sinh -

x /(a - X)z2 + z(a - x)2 + z2

sn (b - Y) (b + y)t-sinh - 1 ) +Z - sinh - 1  (56)

(a+)+z 2 /(a + x)z + (6

differentiation with respect to y leads to the equation

sinh' (a - x) (a + x)sinh-1= + sinh - '
(b - y)z + z2  N(b - y)z 2

(o7 - X) (a + x)
- sinh - 1  - sinh -1  (57)

/(b + y? + z 1(b + y)z + z2

and differentiation with respect to z leads to the equation

. _ tan - (a -x)(b - y) +tan- (a - x)(b + y)

az z, (a - x )+ (b - y)z + 22  z,(a - x)2 + (b +y) z

+ tan~' (a + x)(b -+ tan- (a + x)(b + y) (58)

10



PRIM-

Prograynmng

SUBROUTINE RPLTP (AA, AB, AX, AY, AZ, FP)

FORTRAN SUBROUTINE FOR POTENTIAL OF RECTANGULAR PLATE

The half-length a of the plate is given in argument , the half-breadth b of the
plate is given in argument AB, and the Cartesian coordinates x, y. z of the field point
are given in the arguments AX, AY, AZ. The potential of the plate is stored in function

SUBROUTINE RPLTO (AA, AB, AX, AY, AZ, FO)

FORTRAN SUBROUTINE FOR SOLID ANGLE OF RECTANGULAR PLATE

The half-length a of the plate is given in argument AA, the half-breadth b of the
plate is given in argument AB, and the Cartesian coordinates x, y, z of the field point
are given in the arguments AX, AY, AZ. The solid angle of the plate is stored in function VO.

NONUNIFORM PLATE

Analysis

The potential of the uniform rectangular plate is given by the equation

f +b-v f'+d-X du du (5)

V-b-11 J--z U
2 -" 2 +ZI

and the derivatives of the potential are given by the equations

a I+b u - dudv
- - _ --- - 3 (60)ay S-b- 1 J V2 , ~z2

j2

+-b- z dudv -3(62)
CIZ f-b- _ juz VE 4 Z21

If the surface density of the rectangular plate can be expressed as a polynomial in
the powers of x + u and y + v, then the potential of the nonuniform plate and its
derivatives are expressible in terms of members of a family of integrals of which the
integral

+b-" f +'- (x + u)(y , V)
.......- - du dv (63)

-- -- W V+ z5Iy

is the m, nth member.

.. .



Integrations of lowest degree with respect to u are given by the equations

f du u
j = --(64)

u2+v2+z2ji (z22+v2)
i u  64+)z

f (x + u)du xU (65)

ffu2 + v 2 + z2}  (W" + v2) ++u2 +v 2 U2  + v + zz
f (x + u)du x u 2x + u u

j =  - - + sinh - ' -  (66)
f lu a + v

U
2 + z 

21
2 

(Z
2 + V 2)  a +  2 +  

". + / 
+  2

Integrations of higher degree are given by the recurrence equation

f (x _+ u) - (x + m)d--

J u2 + V2 + z 212 (m - 2),/u2 + 0' + z2

(2m- 3) f (x + u)-'du

(m - ) f U 2 
+ Vi, + Z1

( Mr0-i) 2~ +~ Z ) (x4 I . u)in U 3(67)

(m - 2) v + 21

Inasmuch as the square of v satisfies the identity

x2± v 
+ z,

- x 2  
4-yZz - 2y(y +v) + (y v)2  (68)

it follows that the recurrence equation replaces the integrals of lowest degree by the

products of power polynomials in y + v and the three basic functions
U I U

sinh-1 --- 2 (69)
(z±v 2 )x / U Z +V 2 + z 2  2  2 .  (

Thus integration with respect to v is completed with the aid of three sets of integrals.
The integrations of lowest degree with respect 1o v for the first set are given by

the equations

l)dv - tan-' uv (70)
( 2 4 ( 

v
2
) /U

+v z
2  Z z,/- '+V2

+

S (y+v)dv = Ytan- uv + Ilog v
2

-'z
8  

(71)
(z +v 2) 

2 +z Z z Vi
7 7 7

4-z;2 V (71), (- u +  z . z  , + + z U,

while the integrals of higher degree are generated by the recurrence equation

(y + v)ndv f (y + v)
- 2 dv

uJ (z
2 +

v
2

)
!

u
8

+ v,+z
2  

/!-u2+ 
z

+ 2yu, ( + V)n-,d

fY(y + v)" -'dv(72)

- (y + z')uf (Z2 + ) Y2 ;V (72)

12



This recurrence is cycled in the direction of ascending degree if the arguments satisfy

the stability criterion

(V2 + z 2 ) S 3(y + v)2  (73) :1

Otherwise the recurrence is cycled in the direction of descending degree as expressed
by the equation

-f (y + v)ndv U (y + v)ndv

2y±+ (y + V)n+'dv

Y 2 + Z2 f (Zf + Vj)j,-u 4- V2 + Ze

u ( (y + v)n+2dv
aJ +- ZJ (z + )v-(74)

The integrations of lowest degree with respect to v for the second set are given by

the equations

f dv sinh-' V (75)

fiu 2 + v 2 + z 2  u - zi

f (y + v)dv V vi (76)

fJ _ V7Z(76)

while the integrals of higher degree are generated by the recurrence equation

(y +v)
Thdv (y_+___-

IIf V2+ V2t+Z2  n ~ -v z

(2n - 1) (y + v)"'dv

(n - ) (u -
2 +z 2 ) f (Y-4V)n -'d1 (77)

n ' 4 2 + z2

This recurrence is cycled in the direction of ascending degree if the arguments satisfy
the stability criterion

(u 2 + y2 + z 2 ) - 3(y + v) 2  (78)

Otherwise the recurrence is cycled in the direction of descending degree as expressed
by the equation

f (y + v)"dv (y + )n*, 2U - V
2  

2

(2 n * 3 )y _ (y + v)n'dv

+ ~ ~~~~ 2 +YL -- 2) -"'Ua + V2+Z

(n + 2) n- f y+ )dv

-(n + 1)(U2 yl Ze J \,U2Le4 V2 Z (79)
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The integration of lowest degree with respect to v for the third set is given by the
* .equation

sinhn h -= v s /n- +uf du2+v a z 2u + dv -(80)

while the integrals of higher degree are generated by the recurrence equation
fC _ u__ _ Cz2 ±+v2 )Cy + v) " -' u

(y + v)-sinh' u dv= (+ ) sinh-1  +

f 77+ 2 (n+l1) r 2 -+ ~2

+ u (y + v)"dv

yu (y + V) "- 'dv

(n+ 1)J IV -2 z

+ 2n f (y + v)'-Isinh - ' U dv
(n + ) f jz +

(n-I1), s u
(n+- (y +Z ) fj(y+ v)'-sinh' - dv (81)

This recurrence is cycled in the direction of ascending degree if the arguments satisfy
the stability criterion

(y2 + z
2

) -5 3(y + v)
2  (82)

Otherwise the recurrence is cycled in the direction of descending degree as expressed
by the equation

f c( ii (z2-+ v2)(y +v) "+1 sih- u__
+ v)'sinh - I  u dv (n + l)( y + z) sinh- +

yu f (_y+_v)"+'dv
(n + 1)(y2 + z)J V 2 +22

(n )(y2 +Z) f (f + v)" 2 dv

+ (Y + 1) + z 
)

J -V
2 

+ Z
2

2(n + 2)y f" u
(n + 1)(y' + z 2)J (y +  v)n+'sinh - ' - --z/ - v dv

(n +± z3 ) (y + v)a+sinh - ' ;.v 2 dv (83)

The cycling of each recurrence equation in the direction of descending degree is
started at the 64th integral in order to achieve full accuracy at the lowest degree.
Validity of all formulae for indefinite integrals may be verified directly by differentiation.

Definite integrals are evaluated by an external subroutine which refers to an internal
subroutine for the evaluation of indefinite integrals. References are made to the
internal subroutine with arguments set equal to the limits of integration. The definite
integrals are stored in a matrix. Accuracy of computation can be verified by comparisons

14



between evaluations by subroutine and high-order numerical integrations, if the value
of z is not too small.

If the arguments satisfy the inequality

Z2 + y 2 + z2 -- 2(a2 + b 2) (84)

then the integrals are evaluated with 16-point Gaussian integration. The m, nth member
of the family of integrals,

fubf-- u'v 1, dudv (85)
+bJ J- a I(u- X), + (V -y), - Z2

is derived through change of variable from x + u to u and from y + v to v.

Programming

SUBROUTINE RPLTM (AA, AB, NA, NB, AX, AY, AZ, FM)

FORTRAN SUBROUTINE FOR POWER INTEGRATION OVER RECTANGULAR PLATE

The half-length a of the plate is given in argument A, and the half-breadth b of

the plate is given in argument AB. The number of powers rn of x + u is given in the
argument NA, and the number of powers n of y + v is given in the argument NB. The
Cartesian coordinates x, y, z of the field point are given in the arguments AX, AY, A_.

The subroutine constructs three arrays of integrals with respect to v, then synthesizes

polynomials to complete integration with respect to u. The definite integrals are stored
in the m x n matrix FM. The maximum order of matrix is limited to 32x< 32.

SPHERICAL POLAR COORDINATES

Analysis

Let x, y, z be the Cartesian coordinates of a point in space and let i, j, k be unit
vectors in the directions of increasing x, y, z. Let r, 0, 0 be spherical polar coordinates

and let C1, 2,C3 be unit vectors in the directions of increasing r, 0, 0. The Cartesian

coordinates are expressed in terms of the spherical polar coordinates by the equations

x -- r sin 0 cos 0 (86)

y - r sin 0 sin ¢ (87)

z r cos e (88)

The spherical polar coordinates are expressed in terms of the Cartesian coordinates
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by the equations

r = x 2 + y+z 2  (89)

e= tan' (90)
z

= tan -'y  (91)
X

The position vector r is given by the equation

r=rsin cosoi + rsin~sin j +rcosOk (92)

and the differential element of volume is given by the equation

tdrj = r2 sin 0 dr dO do (93)

The unit vectors E , 6 2 , C3 are expressed in terms of the unit vectors i, jk by the
equations

el 
= sin0cos¢ i sin0sin¢ j + cosOk (94)

E 
= coscos i cossin j - sin0 k (95)

C3 = - sin 0 i - cos (96)

The unit vectors i, j,k are expressed in terms of the unit vectors C,, 4 2 , E3 by the
equations

i = sin 0 cos EC +cs 0 cos E2 - sin 0 E3  (97)

j= sin0sin¢ iE + cos0sin C 2 +cOs0C3  (98)

k = cos 0c-- sin 0 z  (99)

The unit vectors are right-handed and orthogonal. Any vector or tensor invariant can
be referred interchangeably to either set of unit vectors. The components of the
invariant are derived from the scalar products of the invariant with the unit vectors

Let 4, be a function of r, 0, € as expressed by the equation

1, = f(r, 0, 0) (100)

The gradient VIP is expressed by the equation

v * - e l -or + . . 3 - - - € (1 01 )

ar r- M r sin9 0 a
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The gradient of the gradient VV, has the matrix

, 2 r 8r +  O( r sin 0 e

1 ai~ 81 1 8a\ 1 Cos 0 ?P 1 8'P
Or rsin8 0 088 arsinO 0 r r r 2sinO 88 r 2sin8Or0/

The trace of the matrix is the Laplacian,

V-I 12- (r2 Ol\ ) I a (. 8 8V + 1 a 2p (03r Or\ + rs2 sin 8 n8 88 r 2 sin 2
0 a02

Laplace's equation is

V.?1P = 0 (104)

It may be solved by the method of separation of variables.
Let 4 be represented by R04 where R is a function of r alone, 0 is a function of 8

alone, and ( is a function of 0 alone. Substitution in Laplace's equation shows that
the factors are solutions of ordinary differential equations which are linked together
through arbitrary constants n, 7n. The constants n, m must be integers in order that
the functions shall be cyclical with respect to 8, €.

The equation for R is

Id( 2 dR\ _ n(n 1)

r2R dr d r - (105)

The function R is any linear combination of the functions

1
rrn+ (106)

The first derivatives of the functions are given by the equations

d (r ) = nrn1(10 )
dr

- (107)
dr r~ +

(ii - (r± ) (106)

and the second derivatives of the functions are given by the equations

d2 (r) =n(n - 1)r"- (109)

drekr.+i/ = r (110)rP
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The equation for 0 is

1 dsindO )  me

siO sine 6 + n(n + 1) n-- - 0 (111)
sin89 d9( de sinze

The function E is any linear combination of the functions

P:'(cos e) Q (cos 0) (112)

where P,(cos 0) is an associated Legendre function of the first kind and Q'(cos 9) is
an associated Legendre function of the second kind. The associated functions are
defined in terms of the regular functions by the equations

d'Pn(cos 0)
P"(cos 9) = sir]'9 d(cos) (113)

d(cos 0)'m

d'Q,(cos 0)
Qn(cos 6) sin m e (114)

d(cos e) m

An analysis of Legendre functions is given in Appendix A.
The function P,(cos 6) is expressed by the Rodrigues formula

(-1)n d'sin 2nO
P, (cosO)= 2'n! d(cos9), (115)

The function P,(cos 9) is a power polynomial of the nth degree in cos e. The function

Q,(Cos 0) is given by the equation

Q(cos ) P(cos )1 1 +Cos W, 1 (cos 0) (116)

where W,-_I(cos 9) is a polynomial of degree n--- 1 in cos 0. The functions of the first
kind are finite everywhere whereas the functions of the second kind have logarithmic

singularities at the poles. When sin 0 approaches zero the associated functions of the
first kind approach zero like sinm9 whereas the associated functions of the second
kind approach infinity like csc'm . When sin 0 is not zero both functions with increasing

n approach asymptotic values where the ratio between the amplitude of the second
kind and the amplitude of the first kind is liT.

The functions of lowest order are relatively simple and the functions of progressively
higher order may be generated from them with the aid of three-term recurrence
equations. When an error has been introduced into the recurrence at the kth cycle,

it may be represented by a linear combination of Pm and Q' such that the error is
equal to zero for the (k l)th cycle but is equal to c for the kth cycle. Application
of the recurrence equations to the linear combination of Pn and Q' changes

progressively the order of each term. If the recurrence is used to generate PZ, then
the recurrence must be cycled in that direction in which the ratio Q,/PZ decreases,

or if the recurrence is used to generate Q', then the recurrence must be cycled in
that direction in which the ratio P, Q,' decreases. Otherwise the relative rounding

error will not remain bounded.

18

A



The functions of lowest order are given by the equations

PO = 1 Q0 =PQ 0 -og( I -Cos;) (117)

P, = cos 0 Q, = PQC - 1 (118)

The functions for m = 0 then satisfy the recurrence equations

nP,_1 - (2n + l)cos 8Pn + (n I)P, t - 0 (119)

nQ- -(2n+l)cose 0Q (n 1)Qn- 1  0 (120)

Except for the logarithmic singularity in Qn the regular functions do not differ greatly
in magnitude and both recurrences may be cycled in the direction of increasing n.

The associated functions satisfy the recurrence equations

(n tm)P, -(2n+ l)cos0P' ' (n -m I)P' 1  0 (121)

(n+rm)Q,"_,-(2n+ l)cos0Q~n (n-m )Q , 0 (122)

The recurrence becomes more sensitive to direction with increase in m and must be

cycled toward increasing n for Pn' but toward decreasing n for Q,'. In the case of Pn-
•the recurrence is started with the equations

P.,- (cos e) 0 (13)

(2m)!
P,(cos 0) = ( sin'6O 1121)

and then the functions are generated at constant m for progressively increasine rn

If sin 0 is very small, and m is very large the value of P' can be below the index

range of the computer. Such a situation is avoided when the recurrence is applied to

the derivatives of P, prior to multiplication by the powers of sin 0.

The functions with common n satisfy the recurrence equations
cos0

(nr4-m)(n-m+ 1)P'- -2m os Ptm  PM-' 0 (1251
sin0
Cos

(n - m)(n - l I)Q-. 2m - 'Oin QM  QM"' 0 (12.1
sinO0'

which must be cycled toward decreasing m for Pn but toward increasing m for Q,,"
In the case of Q' initial values are derived from Q0, Q1, through the use of thc

recurrence equations

n..- (2n+ 1)cosOQ, , (n )Q.,, 0 (127)

Qr 1 
+ (2n+)sin0Q-- Q,, 0 (128)

and then the functions are generated at constant n for progressively increasing ni

The associated function of the first kind is defined by the equation

Pn(cos 0) = sinmO d m P(cos) (129
d(cos 0)"'
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The first derivative of the associated function is given by the equation

dPn d-Pn
dP n m sinm- 18 Cos 0 d
dO d(cos 0)'

dn+tIp,
-sinm+IO (130)~

-in'+'o d(cos6)-+' (130)

and the second derivative of the associated function is given by the equation

d 2 Pm d m Pnd62 m(m - 1)sinm-2o dco0
dO2  d(cos 0)"'

dm m pP

- lrn - n(n +r 1)}sin"m O dmo 9)

+ sin"mO cos e (131)d(cos O)"+'

Other derivatives which are important for the computation of space invariants are
given by the equation

. m -- = m(m - 1)sin'- 2 0 cos 0 do s)
Z dO \sin 0 co0)

m sin'O dm+Pn(132)
d(cos 0)" + ' 12

and by the equation

n2 P," cos 9 dP,' d-P,
sin 2

o sin 0 dO d(cos 0) '

I sin O dc s )

SsinmO cos 0 (133)

The function 4' is any linear combination of the functions

Cos MO sin m (135)

The first derivatives of the functions are given by the equations

d-cos- = -msinm m (136)

€de

d sin mO
do.. +mcosm (137)
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and the second derivatives of the functions are given by the equations

d 2cos m = m2 cos mO (138)
de

2

d0sinm _ sin m (139)
dceA

Let ' be expressed by the equation

c0 PVcos 0) eimO (140)

All m derivatives of P,(cos 0) are computed and are stored in an array. Initial

. summations with respect to n establish five arrays with the elements

c,' d'Pn(cosB) 
(142)

r+ d(cos 6)' 4

ncc d mP,(cos 0)

r d(cos 0)'m (143)

c+ d'P(cos O) (143)

r'c' d(cos 0)'
nc, n, t d(cos) (144)

r~' d(cos 0) ~nc' d'+'P,(cos e)
2 r+ cosO.,+1 (145)

Final summations with respect to m consist of complex polynomial evaluations in
t powers of the argument sin 0 eto.

Programming

SUBROUTINE SPHPDV (MO, AP, AQ, AF, NC, SC, CC, RP, PF, DF , DD)

FORTRAN SUBROUTINE FOR SPHERICAL POTENTIAL AND ANGULAR DERIVATIVES

The mode of operation is given by V0. The radius r is given in the argument AP, the
polar angle 6 is given in the argument AQ, and the azimuth angle ¢ is given in the

argument AF. The order of the matrices of coefficients is given in argument C, the
matrix of coefficients for sin mo is given in the array SC, and the matrix of coefficients
for cosm is given in the array CC. The matrix of Legendre functions is stored in the
array PP. In each matrix the rows are numbered in the direction of increasing n and
the columns are numbered in the direction of increasing m. The upper right-hand

half of each matrix is padded out with zeros. The potential W is stored in the function
PF if the mode of operation MO is 0. The potential and the first derivatives 0lo 0M,
a /ld are stored in the function DP and in the 2-array D' when the mode of operation
MO is 1. The potential, the first derivatives, and the second derivatives app aO 2 , ao,
a2p/a€ 2 are stored in the function PF, in the 2-array DR. and in the 3 array DDK when
the mode of operation MO is 2.
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SUBROUTINE SPHPGD (MO, AR, AQ, AF, NC, SC, CC, RP, PF, GF, DF)

FORTRAN SUBROUTINE FOR SPHERICAL POTENTIAL AND SPACE GRADIENTS

The mode of operation is given by MO. The radius r is given in the argument AR, the
polar angle 0 is given in the argument AQ, and the azimuth angle 0 is given in the
argument AF. The order of the matrices of coefficients is given in the argument ',C,
the matrix of coefficients for sin mo is given in the array SC, and the matrix of
coefficients for cos mr is given in the array CC. The matrix of Legendre functions is
stored in the array RP. In each matrix the rows are numbered in the direction of
increasing n and the columns are numbered in the direction of increasing m. The
upper right-hand half of each matrix is padded out with zeros. The potential r* is
stored in the function PF if the mode of operation MO is 0. The potential and the
gradient Vp are stored in the function PF, and in the 3-array GF when the mode of
operation MO is 1. The potential, the gradient, and the gradient of the gradient VVia
are stored in the function PF, in the 3-array GF, and in the 9-array DF when the
mode of operation MO is 2.

ERROR FUNCTION

Analysis

The error function erf z is defined by the equation

erf z = --_ e U du (146)

The Dawson integral H(z) is defined by the equation

H(z) e"
2 du (147)

and is expressed in terms of the error function by the equation

11(z) =- i t erf(+iz) (148)

The conventional Fresnel integrals C(v) and S(v) are defined by the equation

C(V) + iS(vl) { e 'r du (149)

and are expressed in terms of the error function by the equation

C(v) + iS(v) = --- erf(!-2 /'TV) (150)

Expansion of the exponential function in series and term by term integration leads
to the equation

erf 2  (-)z (151)
7T (2m + l)m!
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which expresses the error function as an absolutely convergent ascending series. The
complex Fresnel integral is defined by the equation

E(z)= - dt (152)

where the path of integration lies within that part of the complex plane from which
the positive real axis is excluded. The phase of z is limited to the range 0 to 27T, and
the phase of z1/2 is half the phase of z. There are convergent series, rational
approximations, and asymptotic series for the complex Fresnel integral. The convergent
series is given by the equation

E(;z) , + (2m (153)
Tr (2 - I)m

The substitution z -Z
2 converts the series for Fresnel integral into the series for

* error function as expressed by the equation

err z = I - iv/2E(-z2)  (154)

If the argument x + iy satisfies the inequality

S.+y2  1 (155)

or both of the inequalities

I < x2+y 2 <38 X2 -y 2 +O.256x 2y 2 O (156)

then the error function is computed with the ascending series.
If the argument x + iy satisfies both of the inequalities

I <x
2 + y 2 <38 x 2 - y-0.256xzy z0 (157)

then the error function is computed with the rational approximation of the Fresnel
integral. The error function is expressed by the equation

ze-z
2  

18 _

erf\zT I - - i z 2 --- (158)

where the phase of z is limited to the range - 17 to 17T, and the positions 6, and the
residues E, are for the approximation of the Fresnel integral by sets of poles.

If the argument x + iy satisfies the inequality

x2 I yz e 38 (159)

then the error function is computed from the asymptotic series. Repeated integration
by parts leads to the equation

N 2

erf z - 1 - - (160)N 7T --
0 

2
:'r L~ !2 m l

for which the phase of z is limited to the range - r to +7, and N ' 38.
Extension of the range of phase beyond these limits is accomplished with the aid

of the equation

erf( z)= erf(z) (161)
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which expresses the symmetry of the error function.

Programming

SUBROUTINE CERF (MO, AZ, EF)

FORTRAN SUBROUTINE FOR COMPLEX ERROR FUNCTION

The mode of operation is given in MO. The real and imaginary parts of argument z
are given in array AZ. The complex error function is computed by series expansions
and rational approximations. If MO = 0, the real and imaginary parts of the function
erf z are stored in array EF. If MO = 1, and the phase of z is in the range -- Tr to +17T,
the real and imaginary parts of the function I - erf z are stored in array EF.

COMPLEX GAMMA FUNCTION

Analysis

The gamma function P(z) is defined by the equation

(z) = [ ] (162)z n= l+

where y is Euler's constant. The gamma function has poles at the negative integers
such that the residue of the nth pole is (-1)n/n!.

For a small argument the reciprocal of the gamma function is given by the Bourguet
convergent series and for a large argument the logarithm of the gamma function is

t given by the Stirling asymptotic series. Intermediate regions can be spanned by
recurrence relations. A rational approximation is not necessary.

The gamma function of an argument with a negative real part is expressed in terms
of the gamma function of an argument with a positive real part by the reciprocal
equation

r(z)r(1 - s) = - (163)sin 7Tz

It is necessary to evaluate series expansions only for arguments with positive real
parts.

If the argument x + iy satisfies the inequality

x2+ y2  1 (164)

then the gamma function is derived from an ascending power series. The reciprocal
of the gamma function is given by the equation

1 = Ez cruz- (165)r(I + z) , ,

for which the coefficients cm are derived in Appendix B.
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It the argument x + iy satisfies the inequality

xz + y? 32 (166)

then the gamma function is computed from a descending power series. From the
equations on page 252 of reference 1, the logarithm of the gamma function is given

by the equation
N B 2 1.

log F(z) (z -) logz-z+log (2Tr) + --- ---- (167)
,,=1 2m(2mn- l)z~m

for which the Bernoulli numbers B2rn are derived in Appendix B. Summation of the
series is continued until there is no change in sum or until m 18.

If the argument x ± iy satisfies the inequality

I < xe + yz -- 32 (168)

then the gamma function is computed with the aid of the difference equation

P(1 - z) = zP(z) (169)

If n is the integer which is nearest in value to x and if n satisfies the inequality

S- n! 1 (170)

then the gamma function is given by the equation

I'(z) =(-) (z - n+ 1)(z -n + 1) (171)

for which r(z - n -4 1) is evaluated from the convergent series. If n is the smallest
integer which satisfies the inequalityIz z-. 32 (172)
then the gamma function is given by the equation

, C(z + n)
r(z) - z +- ) (173)

for which F(z -+ n) is evaluated from the asymptotic series.

Programming

SUBPOUTNIE CGAVVA (O, A-', 0G)

FORTRAN SUBROUTINE FOR COMPLEX GAMMA FUNCTION

The mode of operation is given in YO. The real and imaginary parts of the complex
argument z are given in array ."-- The complex gamma function is computed by series
expansions and recurrence relations. If MO -0, the real and imaginary parts of the
complex function [(z) are stored in array 1C. If %O - 1, the real and imaginary parts
of the complex function logF(z) are stored in array rG.

SUBPOUiT 'ng_ DZG '\V, (VO, A:, :G)

FORTRAN SUBROUTINE FOR DOUBLE- PRECISION GAMMA FUNCTION

The mode of operation is given in 1.10. The real and imaginary parts of the
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double-precision argument z are given in array AZ. The complex gamma function is
computed by series expansions and recurrence relations. If MO = 0, the real and
imaginary parts of the double-precision function r(z) are stored in array FG. If MO = 1,
the real and imaginary parts of the double-precision function log r(z) are stored in
array FG.

COMPLEX DIGAMMA FUNCTION

Analysis

The digamma function +l,(z) is defined in terms of the gamma function F(z) and the
derivative of the gamma function r'(z) by the equation

4(z) = (174)r(z)

For a small argument the reciprocal of the gamma function is given by the Bourguet
convergent series and for a large argument the logarithm of the gamma function is
given by the Stirling asymptotic series. The derivative of the gamma function is derived
by differentiation of the series.

The digamma function of an argument with a negative real part is expressed in
terms of the digamma function of an argument with a positive real part by the
reciprocal equation

(z) := +(I - z) -- T cot rrz (175)

It is necessary to evaluate series expansions only for arguments with positive real1parts.
If the argument x + iy satisfies the inequality

z" + yZ 1 (176)

then the digamma function is given by the equation

+(1 + z)= -I'( + z) mcmzm '  (177)

for which the coefficients c,,, are derived in Appendix B.
If the argument x + iy satisfies the inequality

xz + y2 - 32 (178)

then the digamma function is given by the equation

I N Bz
(z) = log z - - B(179)

z n,2mzem
for which the Bernoulli numbers B2, are derived in Appendix B. Summation of the
series is continued until there is no change in sum or until m = 18.

If the argument x + iy satisfies the inequality

1 <xZ+yZ<32 (180)

then the digamma function is computed with the aid of a difference equation. If n is
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the integer which is nearest in value to x and if n satisfies the inequality

i- 1 (151)

then the digamma function is given by the equation

+(z)=1 + -+ ++(z-n+ 1) (182)
z--1 z-n+l

for which 'l(z - n + 1) is evaluated from the convergent series. If n is the smallest
integer which satisfies the inequality

iz + *2 32 (183)

then the digamma function is given by the equation

4'(Z) + 4+(z +n) (184)z z+n-1

for which 4l(z + n) is evaluated from the asymptotic series.

Programming

SUBROUT(NE CPS1 (MO, AZ, PS)

FORTRAN SUBROUTINE FOR COMPLEX DIGAMMA FUNCTION

The mode of operation is given in MO. The real and imaginary parts of the argument
z are given in array AZ. The complex digamma function is computed by series expansions
and recurrence relations. Calls are made when necessary to Subroutine CGAMVVA. If
MO = 0. the real and imaginary parts of the function P'(z) are stored in array Ps. If
MO = 1, the real and imaginary parts of the function l(z) are stored in array PS.

FIRST ORDINARY BESSEL FUNCTION
Analysis

The ordinary Bessel function of the first kind J,(z) is given by the absolutely
convergent series in the equation

J. (Z) -(185)()__

,,0 m!(n + m)!

The convergent series is used if the order and the argument satisfy the criterion

jn 2; !Izj (186)

A descending recurrence is used to extend the range of orders to lower orders.
The Bessel function is given by the equation

J(z) "'K,(iz) - e-!-'K,(-iz)I (187)
"T

in which the modified Bessel functions of the second kind can be expressed by rational
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approximations. Thus the Bessel function is given by the equation

1 t 1 + - - cos(z - 1n7T - '7r) + isin(z - 'nn - 17)
(2- 6z) 2 1 -

2 4

+ 1 + --±cos(z- 7T -- 1Tr) -isin(z - 'nir-'r) (188)
(2Trz) 2  k=i

where the phase of z is limited to the range -T to +17T, and the positions 6 t and the
residues ct are for the approximation of the modified Bessel function by tets of poles.
The rational approximation is used if the argument x + iy satisfies the inequalities

(xz + y 2 ) 5_ 17.5 - jye + 0.096 xz > 0 (189)

The rational approximation is available for orders 0 and 1,
The Bessel function is given by the equation

J(Z) (- )z P,(z)cos(z - innr -- '7) - Q,(z)sin(z -- ir -- 't) ~ (190)

where P.(z) is the sum of the even-ordered terms and Q,(z) is the sum of the
odd-ordered terms in the asymptotic series in the equation

PN(Z) -- 1() in . (.. .i) (191)

m=o!(-2iz)

with N 36. The asymptotic series is used if the order and the argument satisfy the
criterion

zI 17.5+in' (192)

An ascending recurrence is used to extend the range of order to larger orders if the
order satisfies the criteria

Iz 17.5 (193)

and

V'2cz- 17.5) < In! 11zI - 197n z' + 111zI - .?m z!h (194)

Otherwise the ascending series is used with a descending recurrence.
Use of the series expansions is limited to positive orders and to arguments with

phase in the range -r to +17. Extension of ranges of order and phase is accomplished
with the aid of the equations

J-n(z) = (-1)nJ.(z) = Jn(- z) (195)

which express the symmetry of the Bessel function.

Programming

SUBROUTINE BSSLJ (AZ, iN, FJ)

FORTRAN SUBROUTINE FOR ORDINARY BESSEL FUNCTION OF INTEGRAL ORDER

The real and imaginary parts of the argument z are given in array AZ, and the

28

i



integer order n is given in IN. The ordinary Bessel function of the first kind is computed
by series expansions and recurrence relations. The real and imaginary parts of the
function J,,(z) are stored in array Fj.

SECOND ORDINARY BESSEL FUNCTION

Analysis

The ordinary Bessel function of the second kind Y,(z) is given by the absolutely
convergent series in the equation

I1n- (n-- 1)
Yn(Z) -- E 2_( - - )(_m,=O rn!

- E y + log(1 z) - -- V 1 -l) ~ 2 m  (196)
Tr =0 2 -k 2 k-'kk m!(n * m)

The convergent series is used if the argument x + iy satisfies the inequality

X2 - y 2 1 (197)

or both of the inequalities

xe + y 2 < 289 - y t0.096x2 .0 (198)

The evaluation of the convergent series for Y (z) is continued to convergence of the
associated series for Jn(z).

The Bessel functions are given by the equations

e" K, (iz) - e-2 K,(- iZ) (199)

...... = ei""rKn(iz) - e- 2 i (-iz) (200)

in which the modified Bessel functions of the second kind can be expressed by rational
approximations. Thus the Bessel functions are given by the equations

J(Z)+ --- I - cos(z -- 'nT - i) - i sin(z - 'ni
(2Trz) 2  k= - -

-i + _ 8zos(z - tr- lir) -- t sin(z - tr~n- n r (202)
(2irz)2  

k= + iZ - 6k141

where the phase of z is limited to the range -ir to iT, and the positions 6k and the
residues Ck are for the approximation of the modified Bessel function by sets of poles.
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The rational approximation is used if the argument x + iy satisfies the inequalities

x 2 + y2 < 289 -LyI + 0.096 X2 
> 0 (203)

The rational approximation is available for orders 0 and 1.
The Bessel function is given by the equation

12

Y.(Z) - )P(z)sin(z - innr - !Tr) + Q.(z)cos(z - 'nir - 17T (204)?T 2

where Pn(z) is the sum of the even-ordered terms and Qn(z) is the sum of the
odd-ordered terms in the asymptotic series in the equation

-i I,- )...In' - (m - '()05
P'(z) + i Q (z= (205)

m!(-2iz)m

with N _ 36. The asymptotic series is used if the argument x I iy satisfies the criterion

X2 + yz ! 289 (206)

The rational approximation and the asymptotic approximation are used only for
arguments with phase in the range -!Tr to +17T. Extension of phase to other ranges
is accomplished with the aid of the equations

Y.(z) = e-" Y.(ze -" ) + 2i cos ni J(ze-%) (207)

Yn(z) = e nwi Y,(ze+w€ ) - 2i cos n7r J(ze i) (208)

where the first equation is used if z is in the second quadrant and the second equation
is used if z is in the third quadrant.

The series evaluations are used only for orders zero and one, and an ascending
recurrence is used if the order is greater than one. The extension of order to negative
orders is achieved with the aid of the equation

Y-n(z) - ( n- 1YY, (z) (209)

which expresses the symmetry of the Bessel function.

Programming

SUBROUTINE BSSLY (AZ, I%, m7')
FORTRAN SUBROUTINE FOR ORDINARY BESSEL FUNCTION OF INTEGRAL ORDER

The real and imaginary parts of the argument z are given in array '\., and the
integer order n is given in %. The ordinary Bessel function of the second kind is
computed by series expansions, rational approximations, and recurrence relations.
The real and imaginary parts of the function Yn(z) are stored in array

FIRST MODIFIED BESSEL FUNCTION

Analysis

The modified Bessel function of the first kind 1,(z) is given by the absolutely
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convergent series in the equation

In(z) - (z) (210)

m m + m)!
The convergent series is used if the order and the argument satisfy the criterion

,nj -!jzje (211)

V A descending recurrence is used to extend the range of order to lower orders.

V The Bessel function is given by the equations

i (z) = - K,(ze") - e-'K,(z (212)
7T

In(z) . . Kn(ze-') -- e""'K, (z) (213)
TI7T

where the first equation is used if z is in the fourth quadrant and the second equation
is used if z is in the first quadrant, The modified Bessel functions of the second kind
can be expressed by rational approximations. Thus the Bessel function is given by the
equation

14 14l ,z) 1+ ck e € (214)
... .. 4- 1__ -6 --(27Tfz)2 k=l - Z - k (27Tz:)z k=1 -

where the ± sign is the same as the sign of y, and the positions 6 k and the residues
Ek are for the approximation of the modified Bessel function by sets of poles. The11 rational approximation is used if the argument x + iy satisfies the inequalities

(xZ + yl)2 - 17.5 - ixi + 0.0 9 6 
a 
:2 0 (215)

The rational approximation is available for orders 0 and 1.
The Bessel function is given by the asymptotic series in the equation

(, e n ' - (')
a 

[
...
In' 

-
(m - ')_ jIn (Z) .2-2

(2nz)2 M=o m!(--2z)
m

....... - - ()}...jn 2 
- (m - 1) 2

(2nz) =o m!(2z)"(216)

for which N _ 36. The asymptotic series is used if the order and the argument satisfy
the criterion

z2 17.5 - (217)

An ascending recurrence is used to extend the range of order to larger orders if the

order satisfies the criteria

'.e z' I- 17.5 (218)

and

\' .
z 17.5) ni !jzj - !l e zi - e z, (219)
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Otherwise the ascending series is used with a descending recurrence.
Use of the series expansions is limited to positive orders and to arguments with

+phase in the range -!Tr to +r. Extension of ranges of order and phase is accomplished
with the aid of the equations

I-_(z) = (-1)nI,(-z) = In(z) (220)

which express the symmetry of the Bessel function.

Programming

SUBROUTINE BSSLI (MO, AZ, IN, FI)

FORTRAN SUBROUTINE FOR MODIFIED BESSEL FUNCTION OF INTEGRAL ORDER

The mode of operation is given in MO. The real and imaginary parts of argument z
are given in array AZ, and the integer order n is given in IN. The modified Bessel
function of the first kind is computed by series expansions and recurrence relations.
If MO = 0, the real and imaginary parts of the function I(z) are stored in array Fl. If
MO = 1, and the phase of z is in the range -- 1T to +lr, the real and imaginary parts
of the function e-'In(z) are stored in array F.

SECOND MODIFIED BESSEL FUNCTION

Analysis

The modified Bessel function of the second kind K,(z) is given by the absolutely
convergent series in the equation

K ( ) = - E 2om( z
2 m0 n

()og2 z 2 - k 2 2 (221)
2 k=1ok 2 ):= I k I m! (n +r± )!

The convergent series is used if the argument x + iy satisfies the inequality

X+ y2  1 (222)

or both of the inequalities

x2 + y2 < 289 --x + 0.096 yz E_ 0 (223)

The evaluation of the convergent series for K,(z) is continued to convergence of the
associated series for I,(z).

The Bessel function is given by the rational approximation

K,,(z) 14 I ± (224)

for which the positions 6 A and the residues Ek are for the approximation of the modified
Bessel function by sets of poles. The rational approximation is used if the argument
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x + iy satisfies the inequalities

x 2 + y 2 < 289 + x 0.096 y 2 0 (225)

The rational approximation is available for orders 0 and 1.
The Bessel function is given by the asymptotic series in the equation

2 = zrn!(2z)'

for which N < 37. The asymptotic series is used when the argument x + iy satisfies the

inequality

x + y 2 > 289 (227)

The series evaluations are used only for orders zero and one, and an ascending
recurrence is used if the order is greater than one. The extension of order to negative
orders is achieved with the aid of the equation

K.-(z) = K,(z) (228)

which is an identity for all orders integer or complex.

Programming

SUBROUTINE BSSLK (MO, AZ, !N, FK)

FORTRAN SUBROUTINE FOR MODIFIED BESSEL FUNCTION OF INTEGRAL ORDER

The mode of operation is given in MO. The real and imaginary parts of the argument
z are given in array AZ, and the integer order n is given in IN. The modified Bessel
function of the second kind is computed by series expansion, rational approximation,
and recurrence relations. If MO = 0, the real and imaginary parts of the function K,(z)
are stored in array 'K. If MO =- 1, the real and imaginary parts of the function e'K,(z)
are stored in array FK.

COMPLEX BESSEL FUNCTION

Analysis

Bessel functions of complex order v and complex argument z are expressed by
absolutely convergent series. The Bessel function Ju(z) is given by the equation

J() - Z (229)

and the Weber function Y,(z) is given by the equation

J (z) cos ViT - J_,(z)Y (z ... ... .. :. .. . .. .(230)
sin v1"

If v is a negative integer - n then all terms with m < n arc zero in the series for J.,( z )
because the gamma function of a negative integer is infinite. Thus the Bessel functions
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satisfy the equation

J_(z) (-1)'Jg(z) (231)

and the Weber function is given by the equation

Y,(z) = lim Y (z) (232)

The Weber function Yn(z) must be expressed by a special series.
If z is replaced by e"'z in the convergent series then J,(z) is replaced by eVViJ'(z).

The phase of z is limited to the range from -r to +7T in the evaluation of J,(z), but
the factors e"" may be applied to J,(z) in order to extend the range of the phase
of z outside the range from --7T to -r. If v is real the absolute magnitude of eO'r is
unity, but if v has any imaginary part, then the magnitude of e"" may be small or
large according to the sign of the imaginary part of v.

The ratio between the absolute value of the mth term aod the absolute value of
the (m- 1)th term is given by the expression

1z2
2....(233)

mip 4 mf

The ratio is unit) wherever the terms in the series have a minimum or a maximum.
If v is negative and real, the terms of the convergent series may increase, decrease,

increase, and decrease with increasing order 7,t. The value of m for a unit ratio between
terms is estimated by the equation

?n (r -- ( v : (23]4)

and by the equation

.. . . (m . P)(235)

2

The requirement that m be real and positive limits the number of minima to one arid
the number of maxima to two unless ,z -,v'.

If Ll is positive and real, the terms of the convergent series may increase before
they finally decrease with increasing order m. The value of 7n for a unit ratio between
terms is established by the equation

.1 V Z
m .. . (236)

2

The requirement that m be positive limits the number of maxima to one. When 1, is
complex the values of m become the roots of a quartic equation.

The absolute rounding error in the convcrgent series is determined by the relative
rounding error in the largest term of the series. In order to control the relative
rounding error in the series itself it is necessary to limit the evaluation of the scrics
to conditions where the terms diminish after the first term. The full accuracy of the
computer is guaranteed only if the order and the argument satisfy the criterion

,_2
ja ' (237)

A practical accuracy of computation still may be achieved if this criterion is relaxed.
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especially when the order is negative or the argument is imaginary.

The Bessel function is given by the equation

J,(z) ( - P(z)cos(z - - in) - Q,(z)sin(z - !V- Tr (238)

where the function P,(z) is the sum of the even-ordered terms and the function Q,(z)
is the sum of the odd-ordered terms in the asymptotic series

P )= m!1(v - m + )(-2iz)"  (239)

The ratio of gamma functions is computed from the product

- v - (k--) (240)

.1 If v is half an odd integer the series terminates after a finite number of terms.
If z is replaced by e 21i z in the asymptotic series, then the terms of the series are

reversed in sign, whereas the actual value of J,(z) may be smaller or larger according

to the sign of the imaginary part of v. This failure of the asymptotic series is related
to the Stokes phenomenon. Its effect is diminished if use of the asymptotic series is

limited to arguments with phase in the range -- TT to 4 1 r, whence the asymptotic
series is corrected by the factor e ' "" when the actual phase is outside the range
from -1Tr to +I7.

If v is real the terms of the asymptotic series may increase, decrease, and increase
with increasing order m. The ratio between the absolute value of the mth term and

the absolute value of the (m . I)th term is given by the expression

m )(241)

mi2z'

The ratio is unity wherever the terms in the series have a minimum or a maximum.

When v is real, the value of rn for a unit ratio between terms is estimated by the

equation

•rn__ ~~~~~Z:=  z ,z ::,' ,  (m - v • ) (2-42)

and by the equation

in *'zj± z'  z - !V2  (m-- v) (243)

The requirement that rn be real and positive limits the number of minima to one and
the number of maxima to one unless ' . and ;z satisfies the inequal'ty

S I --- 41V 2  1 v - 4!V
. . 2 - iz (244)

2 2

When v is complex the values of rn become the roots of a quartic equation.

The absolute rounding error of the asymptotic series is determined by the relative
rounding error in the largest term of the series, while the absolute truncation error
of the series is determined by the magnitude of the smallest term of the series. In
order to control the relative rounding error in the series it is necessary to limit the

evaluation of the series to conditions where the terms diminish after the first term
The full accuracy of the computer is guaranteed only if the order and the argument
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satisfy the criterion

J.JI
--- _ 1 (245)jzj

In order to control the truncation error in the series it is necessary to limit the

evaluation of the series to conditions where the smallest term is on the order of
rounding error. For the CDC 6600 computer the argument must satisfy the criterion
!z. 2 17.5.

The criteria for full accuracy severely restrict the range of order and argument in
which the classical series may be applied.

Required for the Debye approximation are polynomials u,(t) which are expressed
by the equation

U m(t) "cm t-
+

k (246)

for which the coefficients are given by the Amos 8- 0 recurrence equations. The evaluation
of the coefficients is started with the equation

CO= 1 (247)

and is continued with the equation

[ C mm -2k k1 8 F m- 1k 1 (248)

+m Lm2k 2 j m-2k 2 ]

A parameter y is defined by the equations

tanhT: 1 -b (249)

and

- log -- - - (250)

1 + \1

Let functions s, and s2 be defined by the equations

ev (a nh- -') IN'~~tysu(coth y (251)
\ - 2Ttanhy 0

e 48nhi -) ~2um(cothy)(2)
\ 27TL talh7 Y~ ( 0 m

Thus sa is obtained from s, by a reversal of the sign of v. Both functions are the
product of a factor and a series. The factor contains two radicals and a logarithm.
while the series is asymptotic. Let s, be the Debye approximation with a positive sign
assigned to the radical

\1 (253)

and let s2 be the Debye approximation with a negative sign assigned to this radical.
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Reversal of the sign of the radical replaces the argument of the logarithm by its
reciprocal and reverses the sign of the logarithm. Reversal of the sign of the radical
replaces the exponential function by its reciprocal. Thus where s, is large, s 2 is small,
and vice versa.

The radical is zero at branch points in the complex v-plane where v = ±z. In the
vicinity of each branch point the logarithm may be expanded in powers of the binomials

Z Z
or 1 + - (254)

Cancellation of the lowest order terms and omission of the highest order terms lead
to the approximation

Z
'2 z

1 I 1Z

Three nodal lines emanate from each branch point. On each nodal line,

s'l or 'e s' I ' (256)

For the exponential functions in the approximations to have the same absolute values
it is necessary for their arguments to be pure imaginary. For the approximation of
the argument to be pure imaginary the order must be given by one of the equations

v- z A ve' (v - z) (257)

L/ t, Z A 0 e3 (v - z) (258)
where A is a real parameter. Thus the nodal lines emanate from the branch points in

t 'the directions of the three roots of 1 with respect to a line which makes an angle

with the real axis equal to one third of the angle which z makes with the real axis.
As z rotates the nodal lines rotate at one third the rate of rotation of z.

On the positive side of the imaginary axis computation shows tb-t the Bessel function
is given by s, alone along the nodal lines which emanate to the right of z, but the
Bessel function is given by s, , s2 along the nodal line which emanates to the left.
The boundary between the regions where s, alone is used and where s, i s2 must be
used presumably is intermediate between nodal lines, where s2 is so much smaller
than s, that the difference in formulation is immaterial.

On the negative side of the imaginary axis computation shows that the Bessel
function is given by the sum

-s ' S2 4 e*2 st (259)

on the left of an hyperbola and is given by the sum

+ s s2 - e± 2 W"'ist (260)

on the right of the hyperbola. In these formulae the ± sign is - in a region
counterclockwise from an outward extension of -z and is - in a region clockwise from
the extension of - The boundary of the region where e 2"'s, must be included
presumably is on a line midway between nodal lines, where e*rvi s, is so much smaller
than s, I s. that the difference in formulation is immaterial.
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For a large value of v on the positive side of the imaginary axis the signs of radicals
aepositive and the logarithm requires no correction, but in other regions corrections

are required because the radicals and logarithm are evaluated on the assumption that
their arguments range from a value just more than -T through the value -Tr. The

-v conditions for correction are determined from Argand diagrams in the complex V-plane.
Let z and v be expressed in terms of their components by the equations

z = x - iy V = X + 'LA (261)

Let X diminish from - oo with the other components constant. Then the trace of V is
a straight line parallel to the real axis and the trace of /1v is a circle of radius 1 2'U
which starts at the origin and has a center offset along the imaginary axis to a distance
-- 1/2,u. Multiplication by z amplifies and rotates the circle. The ratio z v is a circle
which intersects the origin and is rotated through an angle equal to the phase of z.
The trace of the square z2' v 2 is a cardioid which is rotated through an angle equal
to twice the phase of z.

The sign of the radical

1 u2 (262)

is positive for large Ii but must be reversed whenever its argument crosses the
negative real axis. Let the argument be expressed by the equation

2
2

1 r 2  (263)

where r is a real variable. Solution gives the equation

- -1 (264)

For the ratio z 'i' to be real it is necessary for the components to be related in
accordance with the equation

_Y . A (265)

x A

Then the ratio z,' is given by the equation

S x r2 (266)

The argument crosses the negative real axis therefore on the line where v is congruent
to z and A' - y".

The argument of the logarithm is

2

l .\ ,.(267)

V2

Even when Iv is large, the argument crosses the negative real axis when pi and 7, are

38

_ _ _ _ _ _



opposite in sign. Let the argument be expressed by the equation

Z

= (268)

Vr i+ L/2

where r is a positive real value. Solution gives the equation

z + r2  (269)

This function of r ranges from zero through a minimum and back to zero as r ranges
from 0 to -. The minimum is located where the derivative with respect to r is zero.
The minimum value is - 1. For the ratio z/v to be real it is necessary for the components
to be related in accordance with the equation

=_ /1 (270)z A

Then the ratio z/v is given by the equation

z Yt 2r- = + (271)

The argument crosses the negative real axis therefore on the line where v is congruent
to z and A, y have opposite signs with jul > -yI. At the crossing the logarithm is corrected
by T-2i.

The sign of the radical

,.1 1
-= 1 (272)

Z
2  (v 2

- z 2 )j

is positive for large 4/' but must be reversed whenever its argument crosses the

negative real axis. Let the argument ba expressed by the equation

V 2z = _ r z 2(273)

where r is a real variable. For the argument to be real it is necessary for the components

to be related in accordance with the equation

X,. = xy (274)

Then the argument P" z" is given by the equation

LA 2z l 2_ x ± (275)

The argument is positive only if JI < Jy whence its square root can be real. The trace
of the condition for correction is an hyperbola with the equation

N - XY y(276)
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Whether a correction is necessary depends upon the sign of the radical

z (277)

The correction is necessary only if the radical has a direction opposite to the complex
conjugate of v. The condition for the correction is not met when the sign of the radical
has been reversed.

The Debye approximation is not useful inside a boundary where the smallest term
of the series would be greater than rounding error. Exploratory computations have
shown that the limiting boundary for large argument and order is a cubic parabola.
An empirical criterion which defines the limiting boundary for accurate evaluation is
given by the equation

- I 3 3

-Z z
41=2 1 ----- *, (278)

where the constant A - 0.004. This criterion matches the true boundary for extreme
arguments and does not deviate significantly from the true boundary at intermediate
arguments. If the criterion is not met for a given value of L,, then unit increments

are added to v until the criterion is met.
Inasmuch as each term of the Debye series is itself a polynomial it has a number

of roots equal to its degree. In order to avoid a premature termination of the series,
the polynomials are evaluated both with the complex arguments and with their absolute

values until the summation of the absolute values of the terms remains stationary.
Values of the order and the argument which are outside the range of the classical

series still can be reached by an application of recurrence equations which are started
within the range of the classical series. The Bessel functions and the Weber functions
satisfy the recurrence equations

t.
J" J-, (Z) + 4Jv' (Z) = V Z~uJ ) (279)

z

Y ,'(z) + Y ,(Z) = 2v Y'Az) (280)

and the recurrence relation

J(z)Y,," (z) -J"'I(Z) 1 . (Z) - (281)

Let e, be the rounding error which has been introduced in the A.th cycle of iteration.
The persisting error in the vth cycle is given by the expression

2 z Y".I(z)J(z) - J,,.,(z) YV(z) EA (282)

for a descending recurrence, and by the expression

+ z W4'_.(z)J~() - JJ, -(z) Y(z) E, (283)

40



for an ascending recurrence. In the computation of J,(z) the recurrence must be
cycled in whichever direction 1'.(z)l diminishes relative to ;J,(z),.

The recurrence is applied actually to r(v + 1)(2z)-,J,(z) when the convergent series
is the origin of J,(z) in order to keep the recurrence within the index range of the
computer. The recurrence is applied actually to (rz/2)' 2 J,(z) when the asymptotic
series is the origin of J,(z) in order to improve the efficiency of computation.

The convergent approximation is used when z1- 17.5. There are two modes of
computation with the convergent approximation. In the first mode the convergent
series is used for orders with large positive real parts, and descending recurrence is
used to bring the order down to orders with less positive real parts. In the second
mode the convergent series is used for orders with large negative real parts, and
ascending recurrence is used to bring the order up to orders with less negative real
parts. The relative error in either recurrence increases until the order crosses a nodal
line, then the error remains constant thereafter.

Boundaries between modes are located where the errors are the same for both
modes. The ideal boundaries between modes are represented by complicated surfaces
in the four--dimensional space of order and argument. Information about the location
of boundaries is derived from comparisons between single-precision and
double--precision computations. The boundaries can be perceived only dimly in the
computations because of random fluctuations in rounding error. Within the random
fluctuations the boundaries can be simulated by surfaces with polygonal sections.

In the first mode of computation, recurrence is started with that order with a
positive real part which satisfies the criterion

2 (284)

In the second mode of computation, recurrence is started with that order with a
negative real part which satisfies the criterion

• Re v (V ' .- mY ) (285)

The first mode is used in preference to the second mode when the order and argument
satisfy both of the criteria

!?MV Jmz Z ' JnV) (286)

and

Rec ' ,'z ! z YJmV -Ymz z Yrmv -Ynz' (287)

The two criteria combine to give polygonal sections on planes of constant z in
accordance with the computations.

The Debye approximation is used when z , 17.5. A zone in the v- plane from which
the Debye approximation is excluded can be traversed by descending recurrence when

the zone is on the positive side of the imaginary axis. Only part of the zone can be
traversed by descending recurrence when the zone is on the negative side of the
imaginary axis An ascending recurrcnce with the Debye approximation gives too much
error. Within the zone of exclusion it is possible to use the convergent approximation.
Insofar as the descending recurrence starts with equally accurate initial values for
either the Debye approximation or the convergent approximation, the error during
descending recurrence is the same for both approximations. The same boundaries
apply between descending recurrence from the Debye approximation and ascending
recurrence from the convergent approximation. The Bessel function is computed with
a combination of Debye approximation with descending recurrence and convergent
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approximation with ascending recurrence.
The relative error is not uniform over the complex v-plane. Wherever the Bessel

function approaches zero the relative error approaches infinity. The relative error is
large over a nodal line where the Bessel function is small. When z is real, the Bessel
function can be computed with full machine accuracy. When z is rotated out of the
real axis a zone of rounding error appears and grows. The zone of rounding error
straddles the negative real axis. Eventually the zone of exclusion cuts off the zone of
rounding error.

Programming

SUBROJ71NE CBSSLJ (AZ, CN, FJ)

FORTRAN SUBROUTINE FOR COMPLEX BESSEL FUNCTION OF FIRST KIND
The real and imaginary parts of the complex argument z are given in array

and the real and imaginary parts of the complex order nz are given in array A',. The

complex Bessel function is computed with series expansions and recurrence relations.
Calls are made to Subroutine CGA%1M.1. The real and imaginary parts of the complex

function J,(z) are stored in array r-J.

SUBROJThN DBSSLJ (,V-, CT, FJ)

FORTRAN SUBROUTINE FOR DOUBLE-PRECISION BESSEL FUNCTION OF FIRST KIND
The real and imaginary parts of the double precision argument z are gien in array

: ,Z, and the real and imaginary parts of the double precision order , are given in

array C', The double-precision Bessel function is computed with series expansions
and recurrence relations. Calls are made to Subroutine CCA.'.,,. The real and imaginary
parts of the double precision function J,(z) are stored in array

DISCUSSION

The incomplete beta function B(p, q, x) is defined by the equation

B(p, q, x) tP '(1 - t)q  1dt (288)

and the incomplete gamma function V(p, x) is defined by the equation

F(p. x) JtP' e ' dt (289)

A new subroutine BHTA computes directly the incomplete beta function and a new
subroutine OAMMA x computes directly the incomplete gamma function for arbitrary
real order and real argument. More efficient subroutines for the incomplete heta ratio
of half integer order and the incomplete gamma ratio of arbitrary order have been
prepared by A. R. DiDonatoZ

5'.

The potential of a rectangular plate is useful for the computation of flow around
struts

27 and hullsas.

The single precision Bessel functions were checked by comparison with
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double--precision computations. The single precision J,(z) was compared directly with
the double precision J,,(z). The single- precision Y,(z) was compared with
double --precision values from the equation

Y" (Z) 1 -I[ .j(z) I8J,(z) 1(290)

where the partial derivatives with respect to v were estimated by finite differences
between values with v - n : c. The single precision In(z) was compared with
double- -precision values from the equation

In(Z) = (-)'V,(iz (291)

when y was negative and from the equation

I,(z) i'J,(- -z) (292)

when y was positive. The single precision K,,(z) was compared with double precision
values from the equation

K(Z) (l),lJIz) Oz) (293)

where the partial derivatives with respect to v were estimated by finite differences
between values with P - n t c. The values of the functions I,(z) were derived from the
equation

,z) - e v"J(iz) (29-)

when y was negative, and from the equation

I,(z) e'2J ( iz) (295)

when y was positive. The first order difference across a point is in error only in the
third order, and the accuracy of the difference is one and a half precision when the
difference in argument is at the half precision level.

On page 265 of Theory of Bessel Functions by Watson 2 there is a figure which gives
the boundaries for various combinations of s, and s 2 in the u z-plane. This figure
agrees with the analysis herewith for real z but does not show the 1 tation of boundaries
at one third the angle of rotation of z which is characteristic of the nodal lines

Subroutines for J,(z) and I,(z) have been programmed by Amos, Daniel, and Weston' 0 .
Their subroutines are valid for positive real argument and positive real order. They
supplement the classical series with the Debye approximation, and they use the Olver
approximation where the Debye approximation is ineffective. A subroutine for )',(z)
has been programmed by Cody, Motley, and Fullerton". Their subroutine is valid for
positive real argument and positive real order. It uses a sequence of Taylor series
expansions for lowest orders, and it uses ascending recurrence to reach higher orders.
The names of the subroutines for all four Bessel functions are

B S" '3 S S

The first three subroutines have been checked against double precision computations
Four subroutines in the present project. are valid for complex argument but for

integer order. They supplement the classical series with rational approximations at
small orders and use recurrence to extend the range of orders The names of these
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subroutines are

BSSLJ BSSLY BSSLI BSSLK

The new subroutines are more compact than the other subroutines. They are more
efficient where they use rational approximations. Otherwise the new subroutines are
as efficient at low orders as the other subroutines would be if they were converted
to complex arithmetic. Conversion of arithmetic from real to complex may increase
the time of computation by 12 on the CDC 6600 where there can be parallel processing.
The accuracies of the new subroutines for low orders are within one digit of the
accuracies of the other subroutines. The efficiencies and the accuracies of the new
subroutines deteriorate with increase of order into the range of order where the Debye
approximation is used.

CONCLUSION

The Debye approximation can be used for the computation of Bessel functions of
complex order and complex argument everywhere except in a zone of rounding error
where the value of the Bessel function is relatively small. In the zone of rounding
error the convergent series with asctcnding recurrence gives better accuracy than the
Debye approximation with descending recurrence,
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LEGENDRE FUNCTIONS

An analysis of Legendre functions of integral order is to be found in Modern Analysis

by Whittaker and Watson'. The differential equation for the Legendre functions is

I-) dz2
W -2z --- rn(n + 1)w 0 (1)

r The Legendre function of the first kind is given by the Schldfli integral,

1 P (t 2  1)-
Py(Z) f dt (2)

where the contour of integration encircles z once counterclockwise. That this integral
satisfies the differential equation is easily verified since substitution in the differential
equation leads to the circuit integral,

(I 2z 4P al n(n - 1)P, ---1 - d(tz (3)
dZ2 dz 2('3)t (

That the integral coincides with the Legendre polynomial is verified when the integral
is evaluated for z 7- ± 1.

The Schlafli integral may be derived by n- fold differentiation of the Cauchy integral

(z )" I- f (t2  1) dt 4)
27TiJ (I z

Thus the Legendre polynomials are given by the Rodrigues formula,

I dn 2--(Z (Z2  ) 5
2n .~

t Expansion of the identity

f d (0 0 (-'

2 i dt (t z) 
1  dt 0

leads to the equation

P,,(z) z P,(z) 2 w di 7)

Expansion of the identity

d (t 1) n l
9fl d (t )" dt 0

leads to the equation

n,. Pn(Z) n 1'n ,(z) * f (l dt (9)

Elimination leads to the recurrence equation

nl', (z) (2n , I )zPn(,) (n ' l)f'n,,(z) 0 ( 0)
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and differentiation leads to the recurrence equation

(2n + I)P,(z) = P;,.,(z) - P ,(z)( )

Thus all of the Legendre functions and their derivatives may be synthesized from the
two functions of lowest order.

Differentiation of the recurrence equations leaves one term of lower order in each.
Repeated differentiation with elimination of the term of lower order leads to the
recurrence equation

( mnP--m) de d(+1P,r(rt- m ~~t(2n.+ 1)z 1 -z.T +(n--- r)--+-dz-n'- 0  (12)
dzm dz' dz'

which connects the derivatives of functions of progressively increasing order. Repeated
differentiation f the differential equation leads to the recurrence equation

dm dP dm p(n - rn)(n m 1) d-,- n 2mz -- - az2r fl 0(3
dm1 dzm dz"~

which connects the progressively higher derivatives of functions of common order.
The Legendre function of the second kind is given by the integral,

i .r+1 (1-ta)'Q (Z) = .- i f (1 t2)-* dt (14)

Substitution of the integral in the differential equation and in the recurrence equations
shows that Q,(z) satisfies the same equations as P,(z) provided that Ae(r - 1) 0.
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MULTIPLE- PRECISION COMPUTATIONS

Formula Algebraic Processor

FLAP, or Formula Algebraic Processor, is a computational system which has been
developed by Morrisle for the manipulation of mathematical expressions. The FLAP
system refers to LISP, or List Processor, which manipulates lists of numbers or symbols.
As a checkout of the numerical feature of FLAP, high- precision values of Bernoulli
numbers and Riemann zeta functions have been computed. Values were computed to
80 digits with an accuracy of 75 digits, and then the values have been truncated back
to 64 digits. The values have been punched on cards and are printed in Appendix C.

Bernoulli Numbers

£ There are two principal versions of the Bernoulli numbers. The older version is
derived from the definition

- 2n

~Zcot Z 1- BD,---(1
n= (2n)!

where B,. is the nth Bernoulli number in the older definition. The newer version is
derived from the definition

Z -n

e6 - B (2)

where B,. is the nth Bernoulli number in the newer definition. The Bernoulli number
B,. in the older definition is equivalent to (- 1)n- B 2 . in the newer definition. The

- change of definition adds one number to the set and makes some formulae more
compact.

t Values of B, in the newer definition can be obtained by the division of z by the
series expansion for e' - I. The first few values are given by the equations

Bo =I, B, , B2 e B, - 0, B, - -, B, 0, B, ' (:3)

If z is replaced by -z in the definition equation to give terms which are subtracted
from the terms of the definition equation, then cancellation of terms leads to the
equation

00 2n- 1

z 2 BE n I--
- 0 (2n )()

Comparison of coefficients of powers of z shows that the Bernoulli numbers of odd
order satisfy the equation

BnL-0 (n 0) (5)

If z is replaced by --z in the definition equation to give terms which are added to the
terms of the definition equation, then cancellation of terms leads to the equation

- Z n

iz coth 1z- Be, -- (6)
n-0 n)



Substitution of 2iz for z leads to the equation

cot Z = ( I" Z' 2 2 -  (7)
S=0 (2n)!

which gives the Maclaurin expansion for the cotangent. From the identity

2 cot 2z = cot z - tan z (8)
j.

*may be derived the equation

• -I)n 2
: tan z = - (22n )B z2n- 1 (9)

n=1 (2n)!
which gives the Maclaurin expansion for the tangent.

A- If z is real, then integration around a contour which is bounded by the real axis,
a line at i parallel to the real axis, and the imaginary axis, but does not contain the
points 0, i, leads to the equation

sin zt 1 , 1

J0 e2 '7 
- c~t = 7 coth 2z - (z real) (10)

Substitution for cothiz its series expansion in terms of Bernoulli numbers, substitution
for sinzt its series expansion in powers of zt, and comparison of coefficients shows
that the even-ordered Bernoulli numbers are given by the equation

o- t2n-I
B, - (- 4n Ict(1

A change of variable in the integrand expresses the Bernoulli numbers in terms of
- .Riemann zeta functions of even order.

Values of Bernoulli numbers ive been obtained from Tables of the Higher
Mathematical Functions by Davis 23 . They are listed in Table I at the same level of
accuracy as the other numbers which have been obtained through FLAP. Values of
Bernoulli numbers for use in the computer were computed by the method of Knuth
and Buckholtz2 2 . The derivative of the nth power of the tangent is given by the equation

d
- tan'z = n tan n-z(l + tan2 z) (12)dz

Thus the derivative of a polynomial in powers of tan z remains a polynomial in powers
of tan z. The derivative of the power polynomial

N

' a, tan~z (13)
n -O

is obtained by the transformation

an - (n - l)a, + (n + 1)a0 . 1  (14)

If a, is unity and all other coefficients a, are zero initially, then iteration of the
transformation gives all of the derivatives of tan z, from which numerical values for
the coefficients of the Maclaurin series can be computed. From the coefficients of the
Maclaurin series are computed the Bernoulli numbers.
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Bernoulli Polynomials

Bernoulli polynomials were derived from an unconventional generating function by
Whittaker and Watson'. Their polynomials were terminated with terms in z or Z

whereas the conventional polynomials are terminated with terms in I or z The
conventional definition is to be preferred because then the polynomials are terminated

automatically when factorials of negative integers appear in the denominators of their
terms.

Bernoulli polynomials are defined by the equation
ezt t tn

t B-  n!(z)- (15)

where B,(z) is the nth Bernoulli polynomial. Term by term multiplication of the series
expansion for t,/(e' - 1) by the series expansion for ez, and comparison of coefficients
leads to the equation

-- ~j B (16)

Thus the nth polynomial B,(z) is of the nth degree. Differentiation of the terms of
this polynomial n -- m times is expressed by the equation

B(n 1) (Z) B, m ~ BZm-k (
k O m

Special values for z 0 are given by the equations

a dB n(O) Bn (rn n ) (18 1

and

n B--~0)- Bm (Yn H (19)
m! M

Thus the Bernoulli numbers are the constants in the Bernoulli polynomials
Subtraction of the terms in the generating equation from the same terms with z

replaced by z + 1 leads to the equation

t ., E O,,(Z-+ 1) B,(Z)t
, =o ) n!

Series expansion of ez and comparison of coefficients lead to the equation

Bn(Z + 1) - B,(z)-- n: __ - (2 1)

Differentiation of the terms of this equation n - m times is expressed by the equation

Bn, -(Z + 1) _B (n m)(z) __ _ n! Z-
n n M 0!(22)(m- 1)!

Special values for z 0 are given by the equations
'n"- (l )" "(0) n! (m 1) (23)

and

B " )(1) 1( m)(0) o (m 1) (21)

3
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Thus the Bernoulli polynomials are the same at both ends of the range 0 z I if the
order n 1.

A comparison of coefficients of the powers of t in the identity
*e(i2z)i -- -____

t 1- te-- 1 (25)

shows that the Bernoulli polynomials satisfy the equation

B, (l -z) (1)nB,(z) (26)

Thus the even-ordered polynomials are symmetric and the odd-ordered polynomials
are antisymmetric with respect to the midpoint of the range 0 _. z n 1.

A comparison of coefficients of the powers of t in the identity

e t t
t- --- (27)

shows that special values for z are given by the equation

BnG) (21 n 1)Bn (28)

Thus the Bernoulli polynomials have opposite signs at the midpoint and at the ends
of the range 0 i z g 1.

Differentiation of the Bernoulli polynomials is expressed by the equation

B (z) - n B, -,(z) (29)

Integration of the Bernoulli polynomials is expressed by the equation

Bn(Z) dz - jBni(l) -1 B,.(o) (30)

Thus the integral of a Bernoulli polynomial is zero in the range 0 -z - I if the order
n ; ,0.

Further differentiation of the Bernoulli polynomials is expressed by the equation

B (z) = n(n - 1)B. 2 (z) (31)

The polynomial B,(z) of first order is monotonic with a uniform sign throughout each
side of the midpoint of the range 0 _ z - 1. The second derivative of the next higher
odd- ordered polynomial has a uniform sign throughout either half of the range
0 _ z 1, and the polynomial has roots only at 0, 1, 1. By induction it may be inferred
that all higher odd--ordered polynomials have the same property The first derivative
of each even-ordered polynomial has a uniform sign throughout each side of the
midpoint of the range 0 ' z 1. Each even -ordered polynomial has only two roots in
the range 0 _ z s 1. The absolute value of every even - ordered polynomial is a maximum
at the ends of the range.

Euler-Maclaurin Expansion

An elegant derivation of the Euler- Maclaurin formula has been given by Whittaker
and Watson'. However, their unconventional definition of the Bernoulli polynomials
warrants a review of their derivation. They started with a formula which they attributed
to Darboux.

Let f(z) be analytic at all points on a straight line which joins a to z. and let p(t)
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be any polynomial of degree n in t. Then if 0 :_ t _ 1, differentiation is expressed by
the equation

dt
- 1 ()- I)'(z - a)mp (nh-)(t)f(")(a + (z - a)t)F t ,, I

': (- 1) z -a " < - t(~ ¢ + (z - a)t)

tn

+ Y (- 1)m(z - a)'+ 1p(-"-)(t)f(+)(a + (z - a)t) (32)

In the first summation on the right side of the equation the substitution of m + 1 for
m leads to the cancellation of all terms of the summations except the first term of
the first summation and the last term of the second summation. Thus the equation
can be reduced to

E-- (- 1)'(z - a)'m(ft-m)(t)f(m)(a + (z - a)t)
dtmi

- (z -- a)p(")(t)f'(a + (z - a)t) + (- l)n(z - a)n+(cL(t)f
€
n, 1)(L + (z - a)t) (33)

Inasmuch as ;(t) is a polynomial of nth degree, the nth derivative ( is constant
and equal to €o(n(0) or V€n)(1). Integration with respect to t from 0 to I gives the
equation

U nr
* (.fl m  - a)mIV (n--)(l)f(m)(Z)_,n -(fn)a

mr=OL

(--1)"(z - a)n.1 V(t)f(n')(a + (z - a)t) dt (34)

Let the polynomial V(t) be identified with the polynomial Bf,(t).
Substitution of the special values for the two Bernoulli numbers of lowest order in

the Darboux identity, and substitutions of 2k for m and 2n for n lead to the
Euler-Maclaurin expansion- 3 t

f(z) -f(a) '(z - a) f(z) + f(a)I

n (z - a ) kB 2 a f(2k)(Z)

k= E f( f('(a)

(z -a)
2 ' B2n"(t)f(2n"'(a + (z - a)t) dt (35)

Integration by parts in this equation continues the summation through additional
terms.

Addition of the nth term of the summation to the integral in the equation is
equivalent to the replacement of Bz,(t) in the integrand by Ba,,(t) - B2f,. Let the
difference Baf(t) - Bz, be replaced by its average value -B,. Then the expansion is

5



expressed by the equation

f(z) -f(a) = t(z - a) lf'(z) +f(a)I

n-' (z - )2(%k f(2k)(z) f
,k=i

(z- a) zn z,+ )(
1z- f(Z + )(a + (z - a)B) (36)

(2n)!

where 0 is some number in the range 0 _= 0 _ 1. The first term on the right side of
this equation expresses the trapezoidal rule for f f(t) dt, the summation provides a
correction for the trapezoidal rule, and the lastaterm provides an estimate of the
error in the correction.

Riemann Zeta Function

The Riemann zeta function C(s) is defined in terms of its argument s by the equations

* 1 1 -* x "- 1

C(s) = i - = e dx (37)
A ks F(s) f - 1

Direct evaluation of the series to an acceptable level of accuracy is not feasible for
a small value of s. In the special case where s is an even integer 2n, the Riemann
zeta function is given by the equation

-(2n) - )'(27T)"B 2  (38)

Otherwise application of the Euler-Maclaurin expansion gives the equation
K-i 1  1 1

k( = k' 2K' (s -1)K'-'
m-1 Bem f(s) 1

n=I (2m)! r(s + 2m - 2) K "' 2 ' -

B' r(s) I_ __(2M)! r(s + 2M - 1) , (k + 0) " '(3

Consideration of the magnitude of the remainder by Morris has indicated that if K 41
and s 7 2, then M S 39 for an error of less than 4x10 - 74 . High-precision values of the
Riemann zeta function for integer values of the argument are listed in Table II The
most accurate values which previously have been computed only had fifty digits2 '

Gamma Function

The logarithm of the gamma function is defined by the equation

logf(l ) - + - + log n - log(n + z) (.10)

The first derivative is given by the equation

logr(I + z)--± +z (41)dz n-n n

6
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The higher derivatives are given by the equation
dm *
dzm log F(1 + z) =(1)m(m

- 1)! . 1 (42)
dz' n-1 (n + z)"'

Thus the Taylor series expansion of the logarithm of the gamma function is given by
the equation

logFI(1 +z) = - z (-)e )z (43)

Addition of the Taylor series expansion for log(1 + z) gives the equation

log r(2 + z) = (1 -y)z + - (m) - (44)rn=2 M

Let log r(2 + z) be expressed by a series in accordance with the equation

log 1(2 + z)=- az (45)
k=I

and let 1/FP(2 + z) be expressed by a series in accordance with the equation

1 S b~zm  (46)

r(2 +z) n=,

Differentiation and substitution gives the equation

S(n 4- I)b.,,z' bnzm  (k + 1)a,*Izk (47)
n=O m=0 k=O

Comparison of coefficients gives the equation
n

(n+ 1)bn+1 = (k + 1)aCk+lbnk (48)
k=O

from which the coefficients can be computed by recurrence. Let 1/17(1 + z) be expressed
by a series in accordance with the equation

= c mz'  (49)

P(1+z) m=o

The coefficients are related by the equation

cm = bm-- + bm (50)

The first two coefficients are given by the equations

C - I c, = Y (51)

A high-precision value of y was obtained from the published literature19
'.

High- precision values of the coefficients in the convergent series are given for the
gamma function in Table IIl, and are given for the digamma function in Table V.

The logarithm of the gamma function is expressed by the equation
N B2,

log ['(z) (z ')log z -z t log (27T) E - (52)
2 - 2m(2m - 1 )zCm 1 52

High-precision values of the coefficients in the asymptotic series are given for the

7



gamma function in Table IV, and are given for the digamma function in Table VI.

Multiple-Precision Package

MP, or Multiple-Precision Package is a collection of subroutines which have been
developed by Brent 2 4 . A multiple--precision number is represented by an array of
floating-point numbers. The first number in the array defines the sign of the number.
The next number in the array gives the exponent of the number. The remaining
numbers in the array express the fraction of the number. Each successive number in
the fraction is the coefficient of a progressively more negative power of the base The
number of coefficients in the composition of the fraction is unlimited. The number of
bits in the base may have any value not exceeding half the number of bits in the
fraction of a floating point number. Otherwise multiple--precision multiplication would
be unduly cumbersome. Included in the package are routines for arithmetic and special
functions.

k.
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TABLE I

Bernoulli Numbers

n Bf

0 1.0000000000000000000000000000000000000000000000000000000000000000 E 000
1 -5.0000000000000000000000000000000000000000000000000000000000000000 E-01
2 1.6666666666666666666666666666666666666666666666666666666666666666 E-01
3 0.0000000000000000000000000000000000000000000000000000000000000000 E 000
4 -33333333333333333333333333333333333333333333333333333333333333333E-02
5 0.0000000000000000000000000000000000000000000000000000000000000000 E 000

6 2.3809523809523809523809523809523809523809523809523809523809523809 E-02
7 0.0000000000000000000000000000000000000000000000000000000000000000 E 000
8 --3.3333333333333333333333333333333333333333333333333333333333333333 E02
9 0.0000000000000000000000000000000000000000000000000000000000000000 E 000

10 7.5757575757575757575757575757575757575757575757575757575757575757E-02
11 0.0000000000000000000000000000000000000000000000000000000000000000 E 000
12 -2.5311755311553147117 133113553 35511731135613 114711355311 E-01
13 0.0000000000000000000000000000000000000000000000000000000000000000 E 000
14 1.1666666666666666666666666666666666666666666666666666666666666666 E 000
15 0.00000000000000000000000000000000000000000000000000000000000000 E000
16 -7.00395684509802156862745098039215686274509803921568627450980E000
17 0.0000000000000000000000000000000000000000000000000000000000000000 E 000
18 5.4971177944862155388471177944862155388471177944862155388471177944 E+O0

19 0.0000000000000000000000000000000000000000000000000000000000000000 E 000
20 -5.2912424242424242424242424242424242424242424242424242424242424242 E+02

21 0.0000000000000000000000000000000000000000000000000000000000000000 E000
22 6.1921231884057971014492753623188405797101449275362318840579710144 E+03

23 0.0000000000000000000000000000000000000000000000000000000000000000 E 000
24 8.6580253113553113553113553113553113553113553113553113553113553113 E+04

25 0.0000000000000000000000000000000000000000000000000000000000000000 E 000
26 1.4255171666666666666666666666666666666666666666666666666666666666- 06

27 0.0000000000000000000000000000000000000000000000000000000000000000 E 000
28 2.7298231067816091954022988505747126436781609195402298850574712643E+ 07

29 0.0000000000000000000000000000000000000000000000000000000000000000 E 000
30 6.0158087390064236838430386817483591677140064236838430386817483591 E-18
31 0.0000000000000000000000000000000000000000000000000000000000000000 E 000
32 1.5116315767092156862745098039215686274509803921568627450980392156E+ 10

33 0.0000000000000000000000000000000000000000000000000000000000000000 E 000
34 4.29614643061166666666666666666666666666666 6666 66666E+ 1
35 0.0000000000000000000000000000000000000000000000000000000000000000 E 000
36 13711655205088332772159087948561632772159087948561632772159087948E 13
37 0.0000000000000000000000000000000000000000000000000000000000000000 E000
3 4.8833231897359316666666666666666666666666666666666666666666666666£ E14
39 0.0000000000000000000000000000000000000000000000000000000000000000 E O000
40 -1.9296579341940068148632668144863266814486326681448632666144863266E+ 16
41 0,0000000000000000000000000000000000000000000000000000000000000000 EO00
42 8,4169304757368261500055370985603543743078626799557032115171650055 E417

43 0.0000000000000000000000000000000000000000000000000000000000000000 E O000
44 -4,03'380718540594554130768115942102898550724637681159420289855072463 E- 19



TABLE I
(Continued)

nB

45 0.0000000000000000000000000000000000000000000000000000000000oo00O )F.uoO
46 2.1150748638081991605601453900709219858156028368794326241 13475 V7 (if-.
47 0.000000000000000000000000000000000000000000000000000000000000C(00 0 .000
48 -1.20866265222965259346027311937082525317819435466494290023701788-1o F.- 23'
49 0.0000000000000000000000000000000000000000000000000000000000000000 1- 000
50 7.5008667460769643668557200757575757575757575757575757575755757j7 F.--
51 0.0000000000000000000000000000000000000000000000000000000000000u0o 000
52 -5.0387781014810689141378930305220125786163522012578616352201257)-861 F: Th
53 0.000000000000000000000000000000000000000000000000000000000000000o 1. 000
54 3.6528776484818123335110430842971177944862155388471 177944862 15538H V - 26
55 0.000000000000000000000000000000000000000000000000000000000000000o F 000
56 -2.849876930245088222626914643291067816091954022988505747l2641367816 F. 30
57 0.00000000000000000000000000000000000000000000000000000000000000u0~ F. 0O0
58 2.38654274996836276446459819192192149717514124293785310734.63276'1 F1 3:

59 0.000000000000000000000000000000000000000000000000000000000000000o r000
60 -2.1399949257225333665810744765191097392674151 1617238745742183076920--1.
61 0.000000000000000000000000000000000000000000000000000000000000000o F 0
62 2.050097572347809756992173309567231025166666666666666666666666666 F.-
63 0.00000000000000000000000000000000000000000000000000000000000000o0 F Ooo

64 -2.093800591 13463784090951852900279701847092156862745098039215)686:71- 3h
65 0.0000000000000000000000000000000000000000000000000000000000000000 F 000
66 2.2752696488463515559649260352769264581469965405889056302339235 13 - W

67 0.00000000000000000000000000000000000000000000000000000000000000 0 F 000
-68 -2.625771028623957,6047303049736 15820208 1449000333333333333,3333i330 :, I.- 4:

69 0.000000000000000000O00000000000000000000000000000000000000000000u) 0m)u
70 3.2125082102718032518204792304264985243521941 11061673068715:3222-"-:ithn- L- -4-4
71 0.00000000000000000000000000000000000000000000000000000000000O0000 0 O(t
72 -4.159827816679471091391707449526235893668960301 134647078922493148631 --40
73 0.00000000000000000000000000000000000000000000000000000000000000()( 1" 000
74 5.692069548203528002368345621912105864448051297181 16666666666666E F-48
75 0.0000000000000000000000000000000000000000000000000000000000000000o Fo 00
76 -8.21836294197845756922906534686173330 1455089276288600 3333333 i3 0333 E>-50
77 0.00000000000000000000000000000000000000000000000000000000000000()o F 000
78 1.25029043271669930167323398297028955241771963644484775011 15,129596 F> 53-,)
79 0.0000000000000000000000000000000000000000000000000000000(00000000 F dud
80 -2.001558323324837027492532919881329876872422013282591591520.I:h1,4~ F? - 5

61 0.000000000000000000000000000000000000000000000000000000000000000 F 0) 0
82 3.36749829153643742333966769033387530162195989471938413672321 546 1 H I10.57?''
83 0 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO)too F ou
84 -5.94709705031354477186604968440515408405790715651069049904704:3 1085i F 5
85 0. 0000000000000000000000000000000000000000000000000000000000000000 F 000
86 1.101191032362797755956413079043769160463051 144422:31488626999419210 F> 62:
87 0o~ooooooooooooodoooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO00ooOOOO0o F' 000
68 -2 135525954525350118865838501904 10656789732987391634692121804590 301 F -64
89 0 0000000000000000000000000000000000000000000000000000000000000000 F: dud()(
90 4,332889698664 11924 1961661305937920621845136851 1809109144986 557-8800-66



TABLE 11

Riemnann Zeta Function

n <(n)

2 1.6449340668482264364724151666460251892189499012067984377355582293E000
3 1 20205690315959428539973816151 14499907649862923404988817922715553F000C
4 1. 082323233711138191516003696541 1679027747509519187269076829762154 EO000
5 1.03692775514336992633136548645703416805708091950191281 19741926779E 000

6 1.0173430619844491397145179297909205279018174900328535618424086640E 000
7 1.0083492773819228268397975498497967595998635605652387064172831 365 F 000

8 1.0040773561979443393786852385086524652589607906498500203291 102026E 000
9 1.0020083928260822144178527692324120604856058513948887565485966159 E000
10 1.0009945751278180853371459589003190170060195315644775172577889946 E000
11 1.0004941886041194645587022825264699364686064357582086171191414361 E000

12 1.0002460865533080482986379980477396709604160884580034045330409521E 000
13 1.0001227133475784891467518365263573957142751058955098451367026716E 000

14 1.0000612481350587048292585451051353337474816961691545494827552022E 000
15 1.00003058823630702(, t935517285106450625876279487068581775065699328 E000
16 1.000015282259408651871732571487636722023237388990471531 1531052035E 000
17 1.0000076371976378997622736002935630292130882490902626790953798439E 000

18 1.000003817293264999839856461644621939730454697218953331 1431744299 EO000
19 1.00000 19082127165539389256569577951013532585711448386302359330467 E000
20 1.0000009539620338727961131520386834493459437941874 105957500564898 E000
21 1.0000004769329867878064631 167196043730459664466947849376002074873 EC000
22 1.00000023845050272773299000364818675299493504 18217796582698496031 FOOD
23 1.0000001192199259653110730677887188823263872549977845198586032257E 000
24 1.0000000596081890512594796124402079358012275039188373027958642469E 000
25 1.00000002980350351465228018606370506936601 18447309195433123986813E 000

26 1.0000000149015548283650412346585066306986288647881678859105474359F 000

27 1.0000000074507117898354294919810041706041 194547190318825658299932 E 000
28 1.00000000372533402478845705481920401840242323289305929581 15197693 FOOO0

29 1.0000000018626597235130490064039099454169480616653304692006657748E 000
30 1.0000000009313274324196681828717647350212198135679551368161850086 E000
31 10000000004656629065033784072989233251220071062691853369473073729E 000
32 1.00000000023283118336765054920014559759404950248298228453031 10776 EF000
33 1.0000000001 164155017270051977592973835456309516522471727635932565E 000
34 1.0000000000582077208790270088924368598910630541731226046172159550FE000
35 1.000000000029103850444970996869294252278840464106981 9874330322562 F 000

36 1.0000000000 14551921891041984235929632245318420983808894 1240380691 E 000
37 1.0000000000072759598350574810145208690123380592648509255554661077E 000

38 1.000000000003637979547378651 1902372363558732735126460283848974699E 000

39 1.00000000000 18189896503070659475848321007300850305893096186640705 E000
40 1.00000000000090949478402638892825331 18386949087538600009908788285, E 000
41 1.00000000000045474737830421540267991120294885703390452991 14386280 F0O

42 1.00000000000022737368458246525152268215779786912 13829821989158725E 000
43 1.0000000000001 136868407680227849349104838025906437435902842517998E 000

44 1.0000000000000568434198762758560927718296752406855305715889938835E 000
45 1.00000000000002842170976889301 8554550737049426620743688265:3098338 F 000



TABLE 11
(Continued)

n (n).146 1.000000O000000142108548280316067698343071417395376786986056p3i9-i -I. Ooj(

47 1.0000000000000071054273952108527128773544799568000227420435936876 ~()O
48 1.0000000000000035527136913371136732984695340593429921456555o3O62;F:Ooi
49 1.0000000000000017763568435791203274733490144002795701555085753i2t;9F i,
50 1.00000000000000088817842109308159030960913863913863256OBa71464h4,; F'CB0"

51 1 .000000000000000444089210314381336419777094026812133645960307c):-4 1- O(

52 1.00000000000000022204460507980419839993200942046539642366543294,38 LOOC)

16.l0000000000000000 1387778780972523276283909490650022190771862416861 F 000
57 1.000000000000000006938893904544153697446085326249809274835-87(41793 F 000
58 1.000000000000000003469446952165922624744271496109334621950470620Fo CCCO
59 1.0000000000000000017347234760475765720489729699375959074780--4.1780 F 000

60 1.0000000000000000008673617380119933728342055067342951487907141457 F 'ld.(
61 1.0000000000000000004336808690020650487497023565906241361254701 16 iC(

*62 1.00000000000000000021684043449972197850139101683209845761574010401- 000
63 1.0000000000000000001084202172494241406301271116546138258936.1'437o C (oCC
64 1.00000000000000000005421010862456645410918700404388633715063i422'01 oC(.)
65 1.00000000000000000002710505431223468831954621311949776431887oi(o1*euo
66 1.00000000000000000001355252715610116458148523399682692832898182-," , (OW,
67 1.0000000000000000000067762635780451890979952987415566862059812s0VF ()00
68 1.0000000000000000000033881317890207968180857031004508368314031 15,-85 (.(0
69 1.00000000000000000000169406589450979916540649274712486194031036iC4 7 F CC -

70 1.00000000000000000000084703294725469983482469926091821675222C)8~1 (BO
71 1.00000000000000000000042351647362728333478622704833579344088 1097,1 F1)
72 1.000000000000000000000211758236813619473154420943981800258694 1761 F(O(l
73 1.0000000000000000000001058791 1840680233852265001539238398470699% FOCI()(
74 1.0000000000000000000000529395592033987032381391230291 8505586637"0 F i Oov;
75 1.00000000000000000000002646977960169852961134116684203871559255---61 F i;(
76 1.000000000000000000000013234889800848990603094510250944989684:i'i -(20 (1

77 1.00000000000000000000000661744490042440406735524533230822001 17117 iC ! )1

78 1.0000000000000000000000033087224502121715889469563843114410,809)2701tit

79 1.00000000000000000000000l165436 1225106075646229923677181 O-I821)77:-: 'Ft 1
80 1.0000000000000000000000008271806125530344403671 1056167440724010o)I 1 0.,t
81 1.000000000000000000000000413590306276516092600938245550814 120 C ')
82 1.00000000000000000000000020679515313825767043959679193468%o iCI~l ~i
83 1.0000000000000000000000001033975765691287099328409559174 58609 1 0,'!

84 1.000000000000000000000000051698788284564313204101332166:355 .o!-'i 0 ,
85 1.000000000000000000000000025849394142282142681277617708.I501' -o; F,
86 1.00000000000000000000000001292469707114106670038112611 S:lI8tS.)t)4) (*( B

87 1.000000000000000000000000006462348535570531803438002161 12211( -O0,) "
88 1.000000000000000000000000003231 17426778526538613481411180(200.' 1
89 1.00000000000000000000000000161558713389263252120601 1405705-)'.'-'I
90 1.00000000000000000000000000080779356694631620331587?381 86:14009i)i,, ..



TABLE III

Convergent Series for Gamnma Function

tn c,

0 1 .0000000000000000000000000000000000000000000000000000000000000000 E 000
1 0.5772156649015328606065120900824024310421593359399235988057672348 F£000
2 -0.6558780715202538810770 195151453904812797663804785843472923624456 E 000
3 -0.04200263503409523552900393487542981871 13945004011060935220656129 EO000
4 0. 1665386113822914895017007951021052357177815022471743405704689031 EO000
5 -0.0421977345555443367482083012891873913016526841898224863769188732 EO000
6 - 0.0096219715278769735621149216723481989753629422521 130021051388626 E£000
7 0.0072189432466630995423950103404465727099048008802383 180010947811 £000
8 -0.00 11651675918590651 121139710840183886668093337953840574434075052 £ 000

*9 -0.0002152416741149509728157299630536478064782419233783387503502674 E000
10 0.000 1280502823881 161861531986263281643233948920996936772149005458 E 000
11 -0.0000201348547807882386556893914210218183822948332979791152611626 E000
12 -0.00000 12504934821426706573453594738330922423226556211539598153499 E000
13 0.00000 11330272319816958823741296203307449433240048386210756542955 E000
14 -0.00000020563384169776071034501 54130020572836512579026293379453468 E000
15 0.0000000061160951044814158178624986828553428672758657197123208673 E000
16 0.00000000500200764446922293005566504805999130304461274249448 17189 E£000
17 -0.00000000 1181274570487020 1445881265654365055777387595049325875909 EO000
18 0.0000000001043426711691100510491540332312250191400709823125812121 £000
19 0.00000000000778226343990507125404993731 13607772260680861813929388 EO000
20 -0.0000000000036968056186422057081878158780857662365709634513609951 £000
21 0.0000000000005100370287454475979015481322863231802726886069707632 £ 000

- .22 -0.000000000000020583260535665067832224295448552374 1974609108081014 £ 000
23 -0.0000000000000053481225394230179823700173187279399489897154781206 E000
24 0.0000000000000012267786282382607901588938466224224281654557504563 £000
25 -0.0000000000000001 181259301697458769513764586842297831211557291804 £000
26 0.000000000000000001 1866922547516003325797772429286740710884940796 £ 000
27 0.00000000000000000 14 123806553180317815558039475667090370863507503 E£000
28 -0.0000000000000000002298745684435370206592478580633699260284505931 £000
29 0.00000000000000000002 71440632192733743338396337026725706681265606' 000

30 0.000000000000000000000 1337351730493693 114864 781395122268022875059 E. 000
31 -0.00000000000000000000020542335517666727893250253513557337966820371. 000

32 0.0000000000000000000000273603004860799984483150990433098201486531 E£000I
33 - 0.00000000000000000000000 173235644591051 66390574284515647797990697 £ 000
34 - 0.0000000000000000000000000236061902449928728734345073542753100792 £ 000
35 0.0000000000000000000000000186498294171729443071841316187866689894 £000
36 - 0.00000000000000000000000000221809562420719720439971 69136268603797 £ 000
37 0.000000000000000000000000000 12977819749479936688244 14486330594165£E000
38 0.0000000000000000000000000000011806974749665284062227454 155099715 £000
39 -0.00000000000000000000000000000 1 124584349277088090293654674261 4395E 000

40 0.000000000000000000000000000000 1277085175140866203990206677751 124 £ 000
41 -0.00000000000000000000000000000000739145116961514082346 12893301085 £ 000
42 0.0000000000000000000000000000000000113475025755421 576095416525946 £000

43 0.000000000000000000000000000000000046391 346410,5872202994480490795£E 000
44 -0.0000000000000000000000000000000000053473368184391988750774 181967 £ 000



TABLE III

(Continued)

n c,

45 0.0000000000000000000000000000000000003207995923613352622861237279 £ 000
46 -0.0000000000000000000000000000000000000044458297365507568821015903 £000
47 -0 .00000000000000000000000000000000000000 1311I1745188819887121,010584 E£000
48 0.000000000000000000000000000000000000000 1647033352543813886818259 E£000
49 -0.0000000000000000000000000000000000000000 105623317850358121860056 EO000
50 0.0000000000000000000000000000000000000000002678442982643049478354 £ 000
51 0.0000000000000000000000000000000000000000000242471549485178268967 £ 000
52 -0.0000000000000000000000000000000000000000000037365878345356 125540 £ 000
53 0.0000000000000000000000000000000000000000000002628332980940 195449 E£000
54 -0.000000000000000000000000000000000000000000000009298 1759953768562 £ 000
55 -0-00000000000000000000000000000000000000000000000023279424 18699470 £ 000
56 0.00000000000000000000000000000000000000000000000006 16962083524438 £ 000
57 -- 00000000000000000000000000000000000000000000000000049282955867709 £ 000
58 0.0000000000000000000000000000000000000000000000000002183513183414 £ 000
59 -0.0000000000000000000000000000000000000000000000000000012187221891 £000
60 -O.00000000000000000000000000000000000000000000000000000071 17108841 EOOO
61 0.0000000000000000000000000000000000000000000000000000000692050405 £ 000
62 -0.0000000000000000000000000000000000000000000000000000000036764384 £ 000
63 O.0000000000000000000000000000000000000000000000000000000000858309 £ 000
64 0.0000000000000000000000000000000000000000000000000000000000049630 £ 000
65 - 0.0000000000000000000000000000000000000000000000000000000000007 154 £ 000
66 0.0000000000000000000000000000000000000000000000000000000000000455 E 000
67 -0.00000000000000000000000000000000000000000000000000000000000000 16 £ 000



TABLE IV

Asymptotic Series for Gamma Function
B2m

2m(2m - 1
1 8.3333333333333333333333333333333333333333333333333333333333333333 E-02
2 2.7777777777777777777777777777777777777777777777777777777777777777 E-03
3 7.9365079365079365079365079365079365079365079365079365079365079365 E-04
4 5.95238095238095238095238095238095238095238095238095Z3809523809523 E-04
5 8.4175084175084175084175084175084175084175084175084175084175084175 E-04
6 1.9175269175269175269175269175269175269175269175269175269175269175E-03
7 6.4102564102564102564102564102564102564102564102564102564102564102 E-03
8 2.9550653594771241830065359477124183006535947712418300653594771241 E-02
9 1.7964437236883057316493849001588939669435025472177174963552672531 E-01

10 1.3924322169059011164274322169059011164274322169059011164274322169 E000
11 1.3402864044168391994478951000690131 124913733609385783298826777087 E+01
12 1.5684828462600201730636513245208897382810426288687158252375643679 E+02
13 2. 1931033333333333333333333333333333333333333333333333333333333333 E±03
14 3.6108771253724989357173265219242230736483610046828437633035334184 E+04
15 6.9147226885131306710839525077567346755333407168779805042318946657 E±05
16 1.5238221539407416192283364958886780518659076533839342188488298545 E+07
17 3.8290075139141414141414141414141414141414141414141414141414141414 E+08
18 1 .0882266035784391089015149165525105374729434879810819660443720594 E+ 10
19 3.4732028376500225225225225225225225225225225225225225225225225225E+ 11
20 1.2369602142269274454251710349271324881080978641954251710349271324E± 13
21 4.8878806479307933507581516251802290210847053890567382180703629532 E+ 14
22 2. 132033396D919373896975058982136838557465453319851702055948769801 E+ 16i.23 1.0172627075586855550 410209443O~ 5E+ 18

26 1.8999917426399204050293714293069429029473424589961770871870760882 E+23
27 1.2763374033828834149234951377697825976541633608829901448239746816 E±25
28 9.2528471761204163072302423483476227795193312434691745036572622779 E-+26
29 7.2188225951856102978360501873016379224898404202596887699474675389 E28
30 6.0451834059958569677431482387545472860661443959671962074063016080 E+30
31 5.4206704715700945451934778148261000136612021857923497267759562841 E+i32
32 5.19295751531408 19467001947643918576846997062713974478680361033302 E+34
33 5.303658a551197005966548392430697586436992926354055490979566255361 E+36
34 5.7633253481649640138944358507809925551907375621890547263681592039 E+38
35 6.651 1557148484539375165201458105559510397393594549289589093630734 E+40
36 8. 1373783581366805387161726320935756918406891649738792623679450044 E+442
37 1.0536966953357141803754804927641810189648373375011415525114155251 E+45
38 1.441818059996220626180537780151181280957033206366421111111111I111E+47
39 2.081735652208956546242480824 1263562311317343264149979189335880113 E+49
40 3. 1670226634886661827413495567742561342918069830420753030391544616 E+51
41 5.0700064612111373431792648153174876567629628044555621307319401061 E+53
42 8.5299728203005518816208400522162278887807044700382824 140089545446 E+55
43 1.50641728093405985766951 17360379879076101930840250545639808412745 E+58
44 2.7893494703831636871288381686312781712347568886054688103193038537 E+60
45 5.40935043528604150057635618718841 52582336290276915242378260371885 E+62



TABLE V

Convergent Series for Digamma Function

a n nCr.

0 0.0000000000000000000000000000000000000000000000000000000000000000 £ 000
1 0.5772156649015328606065120900824024310421593359399235988057672348 E£000
2 - 1.31 17561430405077621540390302907809625595327609571686945847248913 E 000
3 -0. 12600790510228570658701 18046262894561341835012033182805661 974389 £ 000
4 0.666154445529165958006803180408420942871 1260089886973622818756127 E£000
5 -0.2109886727777216837410415064459369565082634209491 124318845943663 £ 000
6 -0.0577318291672618413726895300340891938521776535126780126308331757 E000
7 0.05053260272664169679676507238312600896933360616 16682260076634682 E£000
8 -0.00932134073487252089691 17686721471093344746703630724595472600422 E 000
9 -0.00 19371750670345587553415696674828302583041773104050487531524074 EO000

10 0.0012805028238811618615319862632816432339489209969367721490054583 E000
1 1 -0.0002214834025886706252125833056312400022052431662777702678727893 E000
12 -0.00001500592178571204788814431368599710690787186745384751778411990 E000
13 0.0000 1472935401576204647086368506429968426321206290207398350584 15£E 000
14 -0.0000028788737837686499448302157820288019711 176106368107312348556 £ 000
15 0.0000000917414265672212372679374802428301430091379857956848130098 £000
16 0.00000008003212231 15075668808906407689598608487138038799117075032£E 000
17 -0.0000000200816676982793424579981516124205948215589115838539890463 E000
18 0.00000000 18781680810439809188847725981620503445212776816264618179 E000
19 0.000000000 1478630053581963538269488089158547672952936374464658375 £ 000
20 -0.0000000000739361123728441141637563175617153247314192690272199027 E000
21 0.0000000000107107776036543995559325107780127867857264607463860271 £000
22 -0.000000000000452831731784631492308934499868152232344 14003777823223 £000
23 -0.000000000000 1230068184067294135945103983307426188267634559967756 £ 000
24 0.0000000000000294426870777182589638 134523189381382759709380109517£E000
25 -0.00000000000000295314825424364692378441 14671057445780288932295121 £000
26 0.00000000000000003085399862354160864707420831614552584830084607 1 £ 000
27 0.000000000000000038134277693586858102006706584301 1440013314702590£ 000)
28 -0.0000000000000000064364879164 19036576458940025774357928796616607(9 F 00)
29 0.000000000000000000497177833358927855681349377377504 5493756702581 £000
30 0.000000000000000000004012055191481079344594344 1853668040686251781 £ 000
31 -0.0000000000000000000063681240104766856469075785892027747697143175 E000
32 0.0000000000000000000008755296155545599503460831693859142447568997 £ 000
33 -0.00000000000000000000005716776271504704908889513890163773336)93017 E000
34 -0.0000000000000000000000008026 104683297576776967732500453605126949 £ 000
35 0.00000000000000000000000065274402960105305075 14446066575334 1463 10 1: 000
36 -0.00000000000000000000000007985144247145909935838980889056697367(03 £ 000
37 0.000000000000000000000000004801793307307576574650333599423 1981 127 £ 000
38 0.0000000000000000000000000000448665040487280794364643257893789 177 £ 000
39 -0.00000000000000000000000000004385878962180643552 14525322961961409 £ 000
40 0.00000000000000000000000000000510834070056346481596082671 10044985 £ 000
41 -0.0000000000000000000000000000003030494979542207737619128625344506 £1000
42 0.00000000000000000000000000000000047659510817277061 96007494089771 £000
43 0.000000000000000000000000000000001994827895655250472876266 1104194 £ 000
44 -0.00000000000000000000000000000000023528282001 13247505034064006552 E 000
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TABLE V
(Continued)

45 0.00000000000000000000000000000000001443598 16562600868028755677558 EO000
V 46 -0.0000000000000000000000000000000000002045081678813348165766731561 EOOO

47 - 0.00000000000000000000000000000000000006 16252023874534695063497492 £ 000
48 0.0000000000000000000000000000000000000079057600922103066567276447 E£000
49 -0.0000000000000000000000000000000000000005 175542574667547971142749 £000
50 0.0000000000000000000000000000000000000000133922149132152473917748 £000
51 0.0000000000000000000000000000000000000000012366049023744091717332 E 000
52 -0.0000000000000000000000000000000000000000001943025673958518528097E 000
53 0.0000000000000000000000000000000000000000000 139301647989830358801 £ 000
54 -0.0000000000000000000000000000000000000000000005021015037503518601 EO000
55 -0.0000000000000000000000000000000000000000000000 128036833028470882 £000
56 0.0000000000000000000000000000000000000000000000034549876677368569 £ 000
57 -0.0000000000000000000000000000000000000000000000002809 128484459464 £ 000
58 0.0000000000000000000000000000000000000000000000000 126643764638041 £ 000

59 -0.000000000000000000000000000000000000000000000000000071904609 1597 £ 000
60 - 0.0000000000000000000000000000000000000000000000000000427026530499 £ 000
61 0.00000000000000000000000000000000000000000000000000000422 15074731 £000
62 - 0.000000000000000000000000000000000000000000000000000000227939 1850 E£000
63 0.0000000000000000000000000000000000000000000000000000000053947517 £000
64 0.0000000000000000000000000000000000000000000000000000000003 176349£E 000
65 -0.0000000000000000000000000000000000000000000000000000000000465029 £ 000
66 0. 000000000000000000000000000000000000000000000000000000000003004 1 £ 000
67 -0.000000000000000000000000000000000000000000000000000000000000 1084 £ 000
68 -0.0000000000000000000000000000000000000000000000000000000000000002 £ 000
69 0.0000000000000000000000000000000000000000000000000000000000000003 £ 000
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%PW TABLE VI

Asymptotic Series for Digarnma Function

m2

I 8.3333333333333333333333333333333333333333333333333333333333333333 E-02
2 8.3333333333333333333333333333333333333333333333333333333333333333 E-03
3 3. 9682539682539682539682539682539682539682539682539682539682539682 E-03
4 4. 1666666666666666666666666666666666666666666666666666666666666666 E-03

r 5 7.5757575757575757575757575757575757575757575757575757575757575757 E-03
6 2. 1092796092796092796092796092796092796092796092796092796092796092 E-02
7 8.3333333333333333333333333333333333333333333333333333333333333333 E-02
8 4.4325980392156862745098039215686274509803921568627450980392156862E-01
9 3.0539543302701197438039543302701197438039543302701 19743B039543302 E000
10 2.6456212121212121212121212121212121212121212121212121212121212121 E±01
11 2.8146014492753623188405797101449275362318840579710144927536231884 E+02
12 3.6075 105463980463980463980463980463980463980463980463980463980463 E+03
13 5.4827583333333333333333333333333333333333333333333333333333333333 E+04
14 9.7493682385057471264367816091954022988505747126436761609195402298 E+05

* 15 2.0052695796688078946 143462272494530559046688078946143462272494530 E+07
16 4.7238486772162990196078431372549019607843137254901960784313725490 E+08
17 1.263572479591 6666666666666666666666666666666666666666666666666666 E± 10
18 3.808793112524536851155302207933786881 1553022079337a6881 1553022079 E± 11
19 1 .2850850499305083333333333333333333333333333333333333333333333333 E+ 13
20 4.8241448354850170371581670362158167036215816703621581670362158167 E± 14

21 2.0040310656516252738108421663238938986447292095132626694088488108 E+ 16

t 25 1.500 17334921539287337114401515151515151515151515151515151515 15 151 E+23
26 9.6899578874635940656497942894654088050314465408805031446540880503 E±24
27 6.7645882379292820990945242301798477675670658126798477675670658126 E+26
28 5.089065946866228968976633291591 1925287356321839080459770114942528 E+28
29 4.1 147288792557978697665466067619336158192090395480225988700564971 E+30
30 3.5666582095375556109684574608651828987790251936206457623697179487 E+32
31 3.3066089876577576725680214670439210083333333333333333333333333333 E+ 34
32 3.271563423647871626421 1227015668703413608149509803921566627450980 E+ 36
33 3.4473782558278053878256455079953431 184045402130136069136718065984E Ei38
34 3.86142798327052588930927202002326501 19777941666666666666666666666 E+ 40
35 4.5892974432454332168863989006092836062174201580239009816474605206 E±42
36 5.7775386342770431824884825687864387412068893071314542762812409531 E+44
37 7 6919858759507135167410075971785214384433125637583333333333333333 E+ 46
38 1.0813635449971654696354033351 133859607177749047748158333333333333 E+49
39 1 .6029364522008965406067102345772942979714354313395483975788627687 E±51
40 2.5019479041560462843656661498516623460905275i66032394894009320246 E±53
41 4. 1067052335810212479752045004071650019779998716090053258928714859 E+55
42 7,0798774408494580617452972433394691476879847101317744036274322720 E+57
43 1 .2804546887939508790190849756322897214686641214212963793837150833 E+60
44 2 4267340392333524078020892067092120089742384930867578649777943527 E+62
45 4,8143218874045769355129570065976895798279298346454565716651730978 E+64
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