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‘ FOREWORD

A library of subroutines was prepared in machine language for the Naval Ordnance
Research Calculator. Many of the subroutines have been rewritten in FORTRAN. Those
subroutines in the library which perform operations on polynomials and on matrices
have been documented in previous reports. Those subroutines which compute special
functions are documented herewith. The manuscript for this report was completed by
7 November 1978.

ased by:

Ralph A. Niemann : |
Head, Strategic Systems Department
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ABSTRACT

Documentation is given for some subroutines which compute potentials and other
functions. A set of subroutines uses rational approximations to compute Bessel functions
of integral order. One subroutine uses the Debye approximation for the efficient
computation of Bessel functions of complex argument and complex order. Empirical
formulae have been developed to express the limiting boundaries of the modes of
computation.
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INTRODUCTION

On the Naval Ordnance Research Calculator, programs were coded directly in machine
language. It was necessary to provide subroutines for such elementary functions as
square root, sine, cosine, exponential, logarithm, and arctangent. With the advent of
the FORTRAN compiler, versions of such functions were available from the compiler,
and it was no longer considered necessary to provide function routines with each
program.

The function name SQRT has been preempted in FORTRAN for the square root. The
function name CBRT is used on the Univac 1108 computer for the cube root. A new
function routine for the cube root has been prepared for the CDC 6600 computer. It
obviates the inefficiency of exponentiation.

Too many problems have arisen with the four-quadrant arctangent function routines
of the Control Data Corporation. Among the versions and revisions of the
double—precision DATAN2 function routines on Scope 3.3, some have returned nonzero
when they should have returned zero, and some have returned zero when they should
have returned +m. Even the single—precision ATAN2 function routine on Scope 3.4
returns completely erroneous values for angles outside of that quadrant which straddles
zero. The double—precision DATAN2 function routine on Scope 3.4 returns zero when
it should return +m.

Patches in FORTRAN have been designed by A. H. Morris, Jr. to cure the arctangent
function routines in Scope 3.4. These patches convert arguments into absolute values
before series expansion and restore signs to the function after series expansion. The
patches do not stand alone, because they depend upon the system function routines
ABS and ATAN.

New FORTRAN function routines have been prepared for both ATAN2 and DATANZ.
When they are included with a program deck, they override the function routines with
the same names aiready in the system. The new FORTRAN function routines use the
signs of arguments directly to determine the sign of the function. They stand alone
because they make no reference to systems function routines.

The arctangent is a multiple-valued function. If only the projections z,y of a line
on the coordinate axes are given, then the angle which the line makes with the z—axis
is indeterminate modulo 2n. The accepted convention is to assume that the arctangent
satisfies the inequality

~n<tan“(%>§+n (1)

Any arctangent function routine must give +7 when z is negative and y is zero.
Otherwise incorrect results will be obtained when real numbers are included in a set
of complex numbers, as often happens in mathematical exercises.

In arctangent function routines the addition theorem is used for various centers
of expansion and the Maclaurin expansion is used at each center of expansion. An
increase in the number of centers permits a decrease in the number of terms. In the
CDC version the range of tangents from 0 to 1 is divided into sixteen sectors. A
five-term expansion is used from one center to the next higher center. In the new
version the range of angle from —im to +in is divided into sectors at seven angles
for which the tangents are known to especially many digits of accuracy. The series
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expansion runs through eight terms or less from the midpoint between one pair of
centers to the midpoint between the next higher pair of centers.

Bessel functions are given analytically by absolutely convergent series everywhere
in the complex plane, but evaluation of the convergent series by computer is feasible
only in a limited range of order and argument. There are asymptotic series which are
valid for large argument, but evaluation of the asymptotic series also is feasible only
in a limited range of order and argument. The Debye asymptotic approximation can
be used to reduce the gap in the range of order and argument to a narrow zone which
straddles the line of equal order and argument. The zone which still is not covered
by the series can be crossed with the aid of recurrence equations. Evaluation of the
Debye series requires a double summation, but the time for evaluation is less than
the time which would be required for recurrence from the classical series. Formulae
for the Debye approximation have been given by Watson'? and by Abramowitz and
Stegun®, while explicit recurrence equations for the terms of the series have been
given by Amos® !0,

CUBE ROOT
Analysis

One third of the exponent of z is biased and is attached to ! to form an initial
approximation which is larger than the cube root of x. The initial approximation is
diminished by Newton—Raphson iteration until the increment in root is zero or positive
from rounding error.

Programmang
FUNCTION CBRT (X)

HE KK KA KR E TR R K E KRR R R KK RN AR R R KR AR R KRR AR RN R KRR KRR R R KRR R R KRRk AR RN k&

FORTRAN FUNCTION ROUTINE FOR CUBE ROOT

AN KRR E R H KT E TR ERE TN ER RN RN KRR RN KRR RN R E RN KRR KRR R R R RN E KR KRR N X

The cube root of xr with sign is computed by Newton—Raphson iteration and is stored
in address CBRT.

FOUR-QUADRANT ARCTANGENT
Analysis

Let z,y be the arguments of the arctangent function. The given arguments z, y can
be replaced by new arguments u, v through the application of symmetry relations. Let
¢ be a constant which is added to the arctangent of w,v and let h be the center of
expansion of the arctangent of u,v.

If z,y satisfy the inequalities

lyl s |zl O<xz (2)
then u, v, ¢ are given by the substitutions

u-+z voty
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If z,y satisfy the inequality
|zl < |yl (4)
then u, v, ¢ are given by the substitutions
u-+y v -z c-tim (5)
where the sign of ¢ is the same as the sign of y. If z,y satisfy the inequality
iyl s |z z<0 (6)
then w, v, c are given by the substitutions
u-z vy co T (7)

where the sign of ¢ is the same as the sign of y.
The parameters ¢ and h are adjusted in accordance with the substitutions

c-oc+86 h - tan@ (8)
where 8 is that angle among the angles
0 £ +gm +in (9)

which is nearest to tan™!(v/u), and tan 8 is the corresponding tangent among the
tangents

1
0 + (2 - V3) £ = 1 (10)

Then the Maclaurin expansion is given by the equation

L (_l)mq2m+1

-1 =

tan~lg= ) Emi ) (11)

m=0
for which the parameter g is given by the equation

_v—hu (12)
7= u+ hv
and the arctangent function is given by the equation
tan"(%) =c +tan"lg (13)

Multiple—precision values for the constants ¢ and h are to be found in the following
table, which is derived from references 17 and 18.

2 - /3 = 0.26794 91924 31122 70647 25536 58493 87236
-\}—5 = 0.57735 02691 89625 76450 91487 80502 04254

157 = 0.26179 93877 99149 43653 85536 15273 29191

4m = 0.52359 87755 98298 87307 71072 30546 58382
4m=0.78539 81633 97448 30961 56608 45819 87572

37 =1.57079 83267 94896 81923 13216 91639 75144
m=3.14159 26535 89793 23846 26433 83279 50288
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Multiplication or division of the numbers by small integers can be verified by hand
computation.

Programming
FUNCTION ATAN2 (Y, X)

AEEREE R AR B REREER RkRRRRKRRRRR Rk R KRR R ARk N E R R KRR K R IR KRRk R KRR R TR N R R KRR KRR KRR RNk RN

FORTRAN FUNCTION ROUTINE FOR SINGLE PRECISION ARCTANGENT

REBE AR KRR R KRR R KRR R Rk kK KRR KR KRk kR Rk Kk kR R R kKRR R Rk R KRR KRR RNk Rk Rk kR kR Rk KRR Rk KRk K kKKK

The variables r,y are given in the arguments X,Y. The four—quadrant arctangent
of y/z is returned as the function ATAN2.

DOUBLE FUNCTION DATAN2 (Y, X)
I L I I O T
FORTRAN FUNCTION ROUTINE FOR DOUBLE PRECISION ARCTANGENT

AEE R AR TR AR R AR R R AR R R R R R KRR KRR R R KRk Rk ok ok ok kR KRk kR kR kR Rk Rk R XK KRR KRk Rk Rk Kk Rk KRR R A Rk ko Rk kX

The variables z,y are given in the arguments X, Y. The four—quadrant arctangent
of y/x is returned as the function DATAN2.

POTENTIAL OF PLATE

Let a plate have unit mass per unit area. Let z,y, z be Cartesian coordinates with
origin at the center of the plate, and with 2z in the direction perpendicular to the
plate. Let r» be the distance to a point in the field from an element of surface ds on
the plate. The potential ¢ at the field point is given by the equation

|ds
¢= f - (14)
The gradient of the potential is given by the equation
Vr|ds|
- Vg = f - (15)

where Vr is a unit vector in the direction toward the field point. The derivative of ¢
with respect to 2z is given by the equation

d¢ Vr-ds
- e _kVp= =
32 k-Vy f 2 w (16)

where k is a unit vector in the direction of increasing z, and w is the solid angle of
the plate. The derivative of ¢ with respect to z also is the potential of a uniformly
polarized plate. Since the derivative of a solution of Laplace’s equation with respect
to a Cartesian coordinate is itself a solution of Laplace's equation, both the potential
and the solid angle are solutions of Laplace’s equation.

In the definition of a function at a point in the field it is convenient to regard r
as the distance from a point on the plate to a point in the field, while in the
transformation of integrals it is convenient to regard r as the distance from the point
in the field to a point on the plate. in either case the gradients of = differ only in
sign.
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The field of a unit current along the perimeter of the plate is defined by the equation

drxVr
- V¢ = § Tz (17)

while for transformation the field is expressed by the equation

—qu=§)‘drxv<é) (18)

Application of the scalar—vector triple product theorem gives the equation

furs)- faro(2 )= fars )

where | is the identity tensor. Application of the Stokes theorem gives the equation

fersE- onefl2 )

Application of the vector—vector triple product theorem gives the equation

Jarss(2}- ()

Since the gradient of the gradient of a scalar function is symmetric, the field is given

by the equation
1
-V = fVV(;)-ds (22)

Thus the potential of a circuit of unit current is just the solid angle of the circuit.
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CIRCULAR DISK 1
Analysis

Let a be the radius of a disk of unit mass per unit area. Let z. y, z be Cartesian
coordinates with z in the direction of the axis of the disk.

The potential and the solid angle of the disk may be expanded in a series of spherical
harmonics. Symmetry about the axis of the disk requires that only symmetric harmonics
may appear in the series e¢xpansion. The coefficients of the spherical harmonics may
be derived by reference to special series expansions on the axis of the disk.

Let u be the radial distance from the center of the disk. Then the potential along
the axis is given by the equation

* udu
S v (z2)

and the solid angle along the axis is given by the equation

") z }
= - — =27l - —=—= 24

“ 8z "{ Va? + 2? (24)
Let r be the distance from the axis of the disk to the point in the field. Expansion in
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series of ascending powers of z and identification of the powers of z with spherical
harmonics lead to the equations

- N O e O AT . N
¢ = - 2miz| - 2ma 2 (2n - 1)22'1.(,”!)2( a > Pe"(ﬁ:?) (VrE + 2% < a) (25)
( ) P2n+l( >

n=0
w=z2n~2m ) ()2

n=0

N
Expansion in series of descending powers of 2z and identification of the powers of z
with spherical harmonics lead to the equations

oo (_1)11(2,”)' ( a )2n+l < 2 ) —— =
—4+ma ¥ ] - /P84 22, 27
e D e DV ) e\ e BT

(\/;'E;-.{2 < a) (26)
a

ot (*1)"(2n+1)!< a )2"*2 < 2 ) 5
= —— T+ zC
w=tm L 2%ni(n + 1IN \Vr2 + 22 Penry T2 & 22 (v a) (28)

The convergence of the series deteriorates as the point in the field approaches a
sphere of radius a.

Let a line be corstructed through the field point and perpendicular to the plane
of the disk. Let the intersection between the perpendicular line and the plane of the
disk be the center of a circular arc. Let the reference line for azimuth angle be the
extension of the line from the center of the arc to the center of the disk. The circular
arc intersects the edge of the disk at a point whose radius from the center of the
disk makes an angle ¢ with the reference line. Then the radius of the circular arc is
given by the expression

n=0

Va?® + 2arcos ¢ + r? (29)

The derivative of the radius with respect to ¢ is given by the expression

B ar sin ¢ (30)
Va? + 2arcos ¢ + 72
The distance of the circular arc from the field point is given by the expression
Va?+ 2arcos ¢ + 12 + 2° (31)
The potential of the disk is given therefore by the equation
”
@ = 2arf tan"‘( (32)
0

The arctangent can be removed from the integrand through an integration by paris.
The interpretation of the arctangent at the limits of integration depends upon whether
the center of the arc is inside the perimeter of the disk or outside the perimeter of
the disk.

If the center of the arc is inside the perimeter of the disk, then the potential is
given by the equation

‘ "/ a+rcosg o R T Sl )
¢ =~ 2mjzi + ZaJ; (aa  2urcos ¢ :—1-_*5>\' a®+Rarcos¢ +r:+22d¢p (r-a) (33)




and the solid angle is given by the equation

—:—:-=12n_2azf’< a+rcos¢ ) d¢ (r < a) (34)

z
o \a@®+2arcos¢ +72/\/a%+ 2ar cos ¢ + 7% + 22

If the center of the arc is outside the perimeter of the disk, then the potential is
given by the equation

" +
o=+ 2af (a.a +a2a:::::+ Tz)\/;?' +R2arcos¢p+7r3+2%dgp (a<r) (35)
0

and the solid angle is given by the equation

-g—‘:=—2azf"( a+rcos¢ > d¢ (a<r) (36)

z
o \a®+2arcos¢ +7%/\/a® + 2arcos ¢ + 2 + 22

A rearrangement of terms leads to the equation

2 f" d¢
) 4
o Va? +2arcos ¢ + 72 + 22 ’

¢p=(a®-r

”
+j Va? + 2arcos ¢ + 7% + 2% d¢
0

” '
+ (a® - rz)zzf d¢ (a<7r) (37)
o (a®+2arcos¢ +r)Va? + 2arcos ¢ + 72 + 2°
and to the equation
%, f " dé
8z o Va?+2arcos¢ +r? + 22
r d
~ (a® - %)z f ¢ (a<r) (38)
o (a%+2arcos¢ +r?)Va? + 2arcos ¢ + 12 + 22
The substitution
cos¢p =1 - 2sin’i¢ (39) :ﬁ

and replacement of §¢ by 0 leads to the expression of the integrals in terms of
Legendre elliptic integrals. The first and second kinds of elliptic integral are defined
by the equations

# do ¢
Flo k)= ]| ~—————— E(¢. k) = /1 - k®sin%6 d6 40
0= [ e 8.0= [ VTS 40

and the third kind of elliptic integral is defined by the equation
¢ de

(¢, a, k) = f —

(¢ o (1 - «®sin?6)V1 - k%sin®0

If the modulus a is defined by the equation

ol = 4ar
T (a+7)?




and the modulus k is defined by the equation

4ar
z_ __*94r
k (a+7)2+2° (43)

then the potential is given by the equation

(aa_,’.Z) " / T2 ym
¢=- 21'r|z| + ZWF(E. k) +2 (a, + ,’.)2 + ZaE(—-. k)

(a—71) z®
(@+7)V(a+7)2+2?

Mz, a. k) (r<a) (44)

and the solid angle is given by the equation

L o %2 pr_g@?) 2 p
o 2B arrrr et GO R T et e a k) (r<a) (45)

when the field point is inside the perimeter, while the potential is given by the equation

_ (az_,,.) .4 2
¢—+2——_—WF( 3 k) +2V(a+7)%+ 2*E(}. k)

(a-71) z?

(%, a, k) (a<r) (46)
(0-+T)\/(a+r)2+z 2
and the solid angle is given by the equation
_a_‘P:___E___F(w’k) 2(0'_7‘) z

az Ha+7)q 2t 22rI(%. a, k) (a<7r) (47)

when the field point is outside the perimeter.

The complete elliptic integral of the third kind is expressed in terms of the incomplete
integrals of the first two kinds by formulae on page 228 of Handbook of Elliptic
Integrals by Byrd and Friedman*. If the angle # is defined by the equation

(@+7)V(a+r)t+

0 =sin! a:—kiz (48)
and the parameter A(f, k) is defined by the equation
AB. k) = %[E(%. k)F(6, k') + F(3. k)E(8, k') — F(Z, k)F(8, k')] (49)
where the comodulus &' is defined by the equation
k?=1-k? (50)

then the complete elliptic integral of the third kind is given by the equation
m ai(e,lc)
2 V(a® - k*)(1 - af)

When the moduli are expressed in terms of the coordinates, then 6 is given by the

(g, a, k) =

(51)

8
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equation

o,z
8 =tan™! a = (52)

and the moduli can be combined as expressed by the equation

a _(a,+1-)\/(—¢;T)2+_z-2
V(a? - k?)(1 - a?) T la-7 z

Thus the potential and the solid angle are reduced to simple expressions in terms of
A(B. k).

Accuracy and efficiency were determined by comparisons between computations by
two formulations on a common boundary between their zones of application.
Optimization of accuracy and efficiency limits the use of the elliptic integrals to an
annular zone between a sphere of radius ia and a sphere of radius 2a.

(53)

Programming
SUBROUTINE CDSKP (AA, AR, AZ, FP)

B I L L T L L T T T L LT L T .
FORTRAN SUBROUTINE FOR POTENTIAL OF CIRCULAR DISK

KRR KN KRR R R RN AR R R R R E R RN AR kKRR R R Rk AR KRR AR R ANk E

The radius a of the disk is given in argument AA, the distance r from the axis of
the disk is given in argument AR, and the distance z from the plane of the disk is
given in argument AZ. The potential of the disk is stored in function FP.

SUBROUTINE CDSKO (AA, AR, AZ, FO)
AL 2 22 2 22 2 2 2 2 2R R e e s e R RS RS 2T
FORTRAN SUBROUTINE FOR SOLID ANGLE OF CIRCULAR DISK

AR KRR R KRR R AR R KR RN R R R R R ARk kKRR R R R R kR kR R KRR TR AR KRR KRR R R R AR AR R KK E

The radius a of the disk is given in argument AA, the distance r from the axis of
the disk is given in argument AR, and the distance 2z from the plane of the disk is
given in argument AZ. The solid angle of the disk is stored in function FO.

RECTANGULAR PLATE
Analysis

Let 2a be the length of a plate and let 25 be the breadth of the plate. Let r,y, 2
be Cartesian coordinates with z in the direction of the length of the plate, with y in
the direction of the breadth of the plate, and with z in the direction perpendicular
to the plate. Let a line be constructed through the field point and perpendicular to
the plane of the plate. The perpendicular line intersects the plane of the plate at a
point with coordinates z, y with respect to the center of the plate. Let u,v be the
coordinates of a point on the plate with respect to the point of intersection. Then the
potential at the field point is given by the equation

+b-y +a-x dudv

o(z,y,2) = —
y coey Joa-e VU + %4 22

Initial integration leads to an inverse hyperbolic function, then final integration is

(54)

9
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completed with an integration by parts. Introduction of limits of integration leads to
the equation

(b-v) (b+y)

¢=(a- 2)sinh“7;m~ﬁ—7 +(a- z)sinh“m
+(a+ z)sinh“—(T(%\/_:rz_'%;; +(a+ x)sinh“%
+(b - y)sinh“—(z\/—(f——j——%——z—z +(b- y)sinh"——(g(%——\/__i%—z;
+(b+ y)sinh“(b(c:#;{w2 +(b+ y)sinh“—\/(_b(_j'_%
et e Eaz;::(:o_fgﬁ T zﬁ“z}?(fbi?)z e
et e s

Partial differentiation and cancellation of terms gives the components of the gradient

of the potential.
Differentiation with respect to z leads to the equation

_ggz i -1 (b_y) : -1 (b+y)
z sinh ,___—.(a _—~———I)2 - + sinh ———m
ORI Clut) BRI SO (Lt ) (56)

- sinh ™t ——————t— h
Ve + )% + 22 Via + )% + 22

differentiation with respect to y leads to the equation

O C k) PGS C k) B
oy V(b - y)* + 2° V(b-y)2+ 2*
2~ +
_ smh—l__(_.._‘tl_, - inh"*__(f'_._z_).__ (57)
V(b +y)?+ 22 V(b +y)?+ 28
and differentiation with respect to z leads to the equation
% _ tan-! (a -z)(b-y) +tan-! (@ -z)(b+ y)_~~”
0z zV(a-z)¥+ (b-y)%+ 22 zV(a-z)%2+ (b +y)?%+ 22
s tan-t__. @t BN ) -1 (@a+2)bry) (5
2V{a + )%+ (b~ y)® + 2° 2V (@ + 2)% + (b + y)? + 2®

10
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Programming

SUBROUTINE RPLTP (AA, AB, AX, AY, AZ, FP)
LR EE R 2 R 2 R R e s e R e R N A S R R R R R R S R

FORTRAN SUBROUTINE FOR POTENTIAL OF RECTANGULAR PLATE

FEEFARE R RSN AR TR E TR R R R R KA G B AR SRR LS R E R SRR T B SRR S H SRR R AR N F A AN N AR A BB IR F R RN AN EE R E RN F RSO K

The half-length a of the plate is given in argument A, the half-breadth b of the
plate is given in argument AB, and the Cartesian coordinates z,y, z of the field point
are given in the arguments AX, AY, AZ. The potential of the plate is stored in function *°.

SUBROUTINE RPLTO (AA, AB, AX, AY, AZ, FO)
AEERERR RN A AR E R TR IR R AR RN R KK AT AT AR AR AR R R AR AR R R R AN AR AT I RN RO XA RN

FORTRAN SUBROUTINE FOR SOLID ANGLE OF RECTANGULAR PLATE

BERE KRR R AR RN E R KRR R AR AR R AR RN RN E R KRR AN RN R R AR R E RN R KR AR R KRR S E XA R A R E R AR E R AKX

The half-length a of the plate is given in argument 44, the half-breadth b of the
plate is given in argument AB, and the Cartesian coordinates r,y, z of the field point
are given in the arguments AX, Ay, AZ. The solid angle of the plate is stored in function 0.

NONUNIFORM PLATE
Analysis

The potential of the uniform rectangular plate is given by the equation

__dud
f f kg (59)
by J-a-z VU? Ut %+ 22 .
and the derivatives of the potential are given by the equations
a L dud
e[ e oo
e cams fy? 4 2 4 ,2;2
L3} _ vdudv
A e
Yy -b-y Y-a-z {u + 2 +22;2
6¢ zdudv
-+ e — 62
2 N ; (62)

oz {12 41)2422;2
If the surface density of the rectangular plate can be expressed as a polynomial in

the powers of z+u and ¥y + v, then the potential of the nonuniform plate and its
derivatives are expressible in terms of members of a family of integrals of which the

integral
b-y +a-z m n
f f @)™y O gy (63)
“boy Vosme R 4 % 4 232

is the m, nth member.
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Integrations of lowest degree with respect to u are given by the equations

du u
= (64)
f (u? +v% + zz}% (2% + v¥)VuR + 12 + 2?2
(z + u)du U 1
872, .2 2, .2, .2 S22, .2 (65)
fu? + v? + 232 (22 +v)Vue + v+ 2 Vut+vi+z
+u)id 2 2z +
f (r + u)*du 5= Tu - r Y isinh' e (66)
(u? + v + 23)2 (z2+ v)Vui + 02 + 22 Vul+ 02+ 2? 2% + 0?

Integrations of higher degree are given by the recurrence equation
J‘ (z +u)™du (z +w)™!

(U +v2 + zz;g N Em— 2)Vu? + 0% + 22

(2m - 3) (r + u)™ 'du
(m-2) *

3
{u? + 1%+ 2%)2

= (67)

Inasmuch as the square of v satisfies the identity
22+ v+ 2% 2t YR+ 2% - 2y(y s v) 4+ (y + v)F (68)

it follows that the recurrence equation replaces the integrals of lowest degree by the
products of power polynomials in ¥ + v and the three basic functions

u 1 u

: et Vae sinh ™!
(2% + V)Vul + v2 + 228 Vud s vtz \

4v2

R

Thus integration with respect to v is completed with the aid of three sets of integrals.

The integrations of lowest degree with respect to v for the first set are given by
the equations

dv 1 uv
uf = - tan ' ————— (70)
(z2+v¥)Vul + 0%+ 2%2 2 2Vu? + v? + 22
R
J‘ (y + v)dv Y an-! uv Pl vui+viez? oy (71)
== tan  —jpm—————— + jlog e -
(22 +v3)Vui+vi+ 22 2 2Vul + v+ 22 vut+vtez? ey

while the integrals of higher degree are generated by the recurrence equation
uj‘ (y + v)™dv i (y +v)"2dv.
(22 + v¥)- /u? + v + 228 VUl + v2 + 22

+2 uf (y+v)"'dy
Y (2% + v¥)Vu? + 12 + 27

o (y + v)™ v
(" = | (2% + )Vl 5 o7 58 (72)
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This recurrence is cycled in the direction of ascending degree if the arguments satisfy
the stability criterion

(y?+ 28 s 3(y +v)? (73)
Otherwise the recurrence is cycled in the direction of descending degree as expressed

by the equation

(y+v)"dv __u J‘ (y+v)"dv
(z r¥)Vul vt 22 YRzt ) Vet 2?

2yu J‘__ (y + v)™tdv

2 4 2
Yy +z (22 + v¥)VuZ + v? + 22

u (y + v)™2dv
T U+ 2 2, ,2\2 ., 42, L2 (74)
y"+z (z2+1v3)Vui+1v2+ 2

The integrations of lowest degree with respect to v for the second set are given by
the equations

dv v
———————— =sinh ! ———e 75
fVu2+vz+zz Vu? + z* (75)
(y + v)dv v ]
—— = ysinh™! =— + Vu? +v?+ 2?2 (76)
u® +v?+ 2% ~v Vu? + 2%
while the integrals of higher degree are generated by the recurrence equation
+v)"dv )V e
@rvrd @)™
Vu? +v?+ 2% n
. (2n -~ 1) (y+v)""dv
n Vuf +vf 4 28
4 n- Zd
_(_)(u+ zuz)f(y V)™ %y -
Vut 4 vt + 2?

This recurrence is cycled in the direction of ascending degree if the arguments satisfy
the stability criterion

(u? + y2 + 2%) s 3(y + v)? (78)
Otherwise the recurrence is cycled in the direction of descending degree as expressed
by the equation

_(y +v)hdv N (y + v)nﬂ e NUR Y vR 4 22
Vui+ i+ 22 (n+ D)(u? +y? + 2%)
(n+3)y [ (y fi).:",il

(n+ 1 u?+ 42 2

(n+1)(uz+yz+22) Vut+vis oz

(n+2) oy
(e vy 2H ) Varly (79)
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The integration of lowest degree with respect to v for the third set is given by the
equation

L e L SUREF

d d’
sinh™'——— dv = v sinh ™' ——_ + uf———L— - zzuf i (80)
Vzi+? VzR4? VulR+vi+z? (22+v®)Vul+uP+2®

while the integrals of higher degree are generated by the recurrence equation

u (2% +v¥)(y +v)™! u
+ v)"sinh™! dv = sinh ' ———~
f(y ) Vz? + y? (n+1) Vz? +2?
P (y + v)™dv
(m+1)J Vui+v2+ 22
_yu (y +v)" dv
(n+1)J) Vu?+o?+22
2ny ' _
(n+ l) f(’y +’U)" sinh™! m dv
_n-1) )

D 1) z)f(y+v)"‘ sinh - ‘m dv (B1)

This recurrence is cycled in the direction of ascending degree if the arguments satisfy
the stability criterion

(y2+23) s 3(y +v)? (82)
Otherwise the recurrence is cycled in the direction of descending degree as expressed
by the equation ﬁ
u (22 + v3)(y + v)™*! u
+v)"sinh ™! dv = sinh ' ———
[weo i T e D ) N/
B yu (y +v)™*'dv :
(n+ D% +2% ) Vur+02+ 22
u (y +v)™2dv
(n+1)(ya*22) VuE + %+ 22
2(n + )y
. + n+t 1 - d
e e | WO
(n+3)

?) f(y +v)™*?*sinh ! ’\7——~j——— dv (83)

T (nt Dyt 2D v

The cycling of each recurrence equation in the direction of descending degree is
started at the 64th integral in order to achieve full accuracy at the lowest degree.
Validity of all formulae for indefinite integrals may be verified directly by differentiation.

Definite integrais are evaluated by an external subroutine which refers to an internal
subroutine for the evaluation of indefinite integrals. References are made to the
internal subroutine with arguments set equal to the limits of integration. The definite
integrals are stored in a matrix. Accuracy of computation can be verified by comparisons
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between evaluations by subroutine and high—order numerical integrations, if the value
of z is not too small.
If the arguments satisfy the inequality

T2+ y?+ 222 2(a® + b?) (84)

then the integrals are evaluated with 16-point Gaussian integration. The m, nth member
of the family of integrals,

f " f o _uTwidudy (85)
-b -

¢ fu-2)F+(v-y)t+ za}g

is derived through change of variable from z + u to u and from y +v to v.

Programming
SUBROUTINE RPLTM (AA, AB, NA, NB, AX, AY, A7, FM)
AR R R R R KRR R R KRR R R R RN KRR R KRR kR kR kKRR kR Rk Rk ek kb kA kK kk ke kb kk kX%

FORTRAN SUBROUTINE FOR POWER INTEGRATION OVER RECTANGULAR PLATE

EE R KRR R R AR R R AR RN KRR AR Rk RN kR kR kR Rk kR KRRk kR ko Rk kR kR ko kk ke F Rk kX ke k kK k¥

The half-length a of the plate is given in argument AA, and the half-breadth b of
the plate is given in argument AB. The number of powers m of x + u is given in the
argument NA, and the number of powers n of ¥ + v is given in the argument NB. The
Cartesian coordinates z,y, z of the field point are given in the arguments AX, AY, AT,
The subroutine constructs three arrays of integrals with respect to v, then synthesizes
polynomials to complete integration with respect to u. The definite integrals are stored
in the m x n matrix fM. The maximum order of matrix is limited to 32 < 32.

SPHERICAL POLAR COORDINATES

Analysis

Let z,y,z be the Cartesian coordinates of a point in space and let i.j. k be unit
vectors in the directions of increasing z,y, z. Let r, 8, ¢ be spherical polar coordinates
and let €,, €,, €; be unit vectors in the directions of increasing 7, 8, ¢. The Cartesian
coordinates are expressed in terms of the spherical polar coordinates by the equations

z=-rsinfcos¢ (86)
y = rsin @ sin ¢ (87)
z=rcosé (88)

The spherical polar coordinates are expressed in terms of the Carlesian coordinates
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& by the equations
.';
» r=Vaf+y®+2? (89)
e Ve + 1,2
k- 6 =ta VYT Y (90)
A z
) y
P — i 5 g
% : ¢ =tan :r (91)
?’ The position vector r is given by the equation
L
f r=rsinfcos¢i+rsinfsingj+rcosfk (92)
3
% and the differential element of volume is given by the equation
4
jdri = r?sin 6 dr df d¢ (93)

The unit vectors €,,€;, €, are expressed in terms of the unit vectors i, j, k by the
‘& equations

1 €, =sinfcos¢i+ sinBsing j+ cosfk (94)
g €;=cosfcos¢i+cosfsngj- sinfk (95)
!‘ €;=-sindi+cosd]j (96)

The unit vectors 1, j,k are expressed in terms of the unit vectors €,,€;, €; by the

L equations
.
A:-t ! .
b i=sinfcos¢ge, + cosBcospe, —sing e, (97)
Foo j=sinfsin¢ €, + cosfsin¢g €, + cos P €, (98) ]
k=cosfe€ --sinfe; (99)

The unit vectors are right-handed and orthogonal. Any vector or tensor invariant can

be referred interchangeably to either set of unit vectors. The components of the

invariant are derived from the scalar products of the invariant with the unit vectors
Let ¥ be a function of 7,8, ¢ as expressed by the equation

L Y =f(r.0,¢) (100

The gradient V¢ is expressed by the equation

—61 €2_ Q‘f + __.ei’.__. a¢ (10”

V¥ = + = —
V= ar r 08 rsing 0¢
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The gradient of the gradient VV¥ has the matrix

e (7 ) o 5in7 26)
art ar\r 86 ar\rsin @ 8¢
a1y 1oy 1 % a( 1 a1p>
vy = i d 4 LR A 4 Sl (R 4 4 102
v 6r<r 66) r dr r? 862 80\ r3%sin 0 a¢ (102)
g( 1 91) _a_( 1 a¢> 10y, cose dy 1 0%
dr\rsin 8 3¢ 90\ r%*sin @ 3¢ r 8r r%sin@ 88 r%sin®0 9¢?

The trace of the matrix is the Laplacian,

1 8/ ,8y 1 a/. 61&) 1 %y
VP = — —(r? 20 ) + = Py — = 3
v r? 6r<r 61') r?sin 0 69<Sm8 06 rsin?g a¢? (103)
Laplace’s equation is
vy =0 (104)

It may be solved by the method of separation of variables.

Let ¥ be represented by R®¢® where R is a function of r alone, ® is a function of 8
alone, and & is a function of ¢ alone. Substitution in Laplace’s equation shows that
the factors are solutions of ordinary differential equations which are linked together
through arbitrary constants n, m. The constants n, m must be integers in order that
the functions shall be cyclical with respect to 6, ¢.

The equation for R is

— — 0 105
2R dr dr r2 ( )

1 d(r2ﬂ>ﬁn(n+l):

The function R is any linear combination of the functions

1

" e (108)
The first derivatives of the functions are given by the equations
d
— (™) =nr! (107)
dr
d/ 1 (n+1)
$<rn+1) T T T nee (108)
and the second derivatives of the functions are given by the equations
dZ
F(T") =n(n- 1)r"? (109)
d®/ 1 (n+ ){n+2)
a—,’—}(.’.nH) =+ ,rvna_'—*—‘ (110)
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The equation for @ is

1 d e m?
2 (sine ). - o 1
sing e d@(sm dB) Faln 1) - e (111)

The function © is any linear combination of the functions
P™(cos 8) Q™ (cos ) (112)
where P™(cos 8) is an associated Legendre function of the first kind and @T(cos 8) is

an associated Legendre function of the second kind. The associated functions are
defined in terms of the regular functions by the equations

d™Pp(cos 8)

P:‘(COS 6) = sin™@ **id(cgé Gl)'; - (113)
. ) d™Q,(cos 8)
m 8 - m — —
QM (cos ) = sin™g Ti(cos e (114)

An analysis of Legendre functions is given in Appendix A.
The function P,(cos 8) is expressed by the Rodrigues formula

(-1)™ d"sin®g
P g) = - T2 7 15
n{cos 6) 2™"n! d(cos )" (115)

The function P,(cos 8) is a power polynomial of the nth degree in cos§. The function
Q.(cos @) is given by the equation

1+ 8
Qn(cos @) = {P,(cos 9)log<~— _gogs_»__) ~ W,_,(cos @) (1186)
1 -cos8

where W,_,(cos8) is a polynomial of degree n-- 1 in cos 8. The functions of the first
kind are finite everywhere whereas the functions of the second kind have logarithmic
singularities at the poles. When sin 8 approaches zero the associated functions of the
first kind approach zero like sin™8 whereas the associated functions of the second
kind approach infinity like csc™8. When sin 6 is not zero both functions with increasing
n approach asymptotic values where the ratio between the amplitude of the second
kind and the amplitude of the first kind is §m.

The functions of lowest order are relatively simple and the functions of progressively
higher order may be generated from them with the aid of three-term recurrence
equations. When an error has been introduced into the recurrence at the kth cycle,
it may be represented by a linear combination of P and Q7' such that the error is
equal to zero for the (k - 1)th cycle but is equal to ¢ for the kth cycle. Application
of the recurrence equations to the linear combination of Py and Q7' changes
progressively the order of each term. If the recurrence is used to generate P, then
the recurrence must be cycled in that direction in which the ratio @T/PT decreases,
or if the recurrence is used to generate @, then the recurrence must be cycled in
that direction in which the ratio PJ'/Q: decreases. Otherwise the relative rounding
error will not remain bounded.
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The functions of lowest order are given by the equations

1 cosb
. cos ) (117)

E Po=1 = Po@o = 41 <
[ Qo oo = zlog cos 8

P, =cosb Q@ =PQy -1 4 (118)

The functions for m = 0 then satisfy the recurrence equations

i - nP,_, ~ (2n + 1)cos 8P, + (n + 1)Py,y - 0 (119)
_ NQn.y ~(2n+1)cos8Q, + (n « 1)@,., - O (120)
"’ Except for the logarithmic singularity in @, the regular functions do not differ greatly
3 in magnitude and both recurrences may be cycled in the direction of increasing n.
£ The associated functions satisfy the recurrence equations

: (n+m)P™, - (n+ VcosPP - (n -m - )P, O (121)

(m+m)@r, - (2n+ l)cos @@y +(n-m - 1), 0 (122)

The recurrence becomes more sensitive to direction with increase in m and must be
E - cycled toward increasing n for PJ but toward decreasing n for @7 In the case of P}
n the recurrence is started with the equations

PR (cos8) =0 (123)
(2m)

Pr(cos 8) = —— sin™@ (12.1)
2™m!

and then the functions are generated at constant m for progressively increasing n
If sin @ is very small, and m is very large the value of P} can be below the index

range of the computer. Such a situation is avoided when the recurrence is applied to

the derivatives of P, prior to multiplication by the powers of sin@.

The functions with common n satisfy the recurrence equations

W vt N
) ey

cos 8

eP,':‘»P,':‘" 0 {125
n

(n+m)(n-m+ 1)PT '~ 2m

)
(n+m)(n-m+1)QMt~2m %?j—o Qr . Q@m0 (126)

m

which must be cycled toward decreasing m for PJ* but toward increasing m for
] In the case of Q@ initial values are derived from &g. €,. through the usc of the
3 recurrence equations

nQn.1 — (n+ ljcos 6@y + (n ¢ 1)@,y O (127)
Q. +(@n+1)sinfQ, QL. O (128)

and then the functions are generated at constant n for progressively increasing m
The associated function of the first kind is defined by the equation

d™P,(cos 8)
9 = i 9 o n . - 13?’
P*(cos ) = sin (cos B)™ (12M
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first derivative of the associated function is given by the equation

%Peg‘ =msin™ ' cos @ ?d(—::s%‘r"“
~ sin™*!g d(—(ci:s;;% (130)
and the second derivative of the associated function is given by the equation
i;gg =m{m - 1)sin™ 24 —————ﬂd(::spg)m
+{m -n(n + 1)}sin™g d(:;Pg)m
+sin"‘90059d(—z;—nslg)i% (131)

Other derivatives which are important for the computation of space invariants are
given by the equation

mdgé (Sl}:l::;) =m(m - 1)sin™ %6 cos 8 ﬁd:s%;
- msin™g Jg—;:;l))ﬁ (132)
and by the equation
s e e = i s T
- msin™g d(—j;fg)—"‘
- sin™@ cos 8 a—g%:%; (133)

Wherever negative powers of sin 8 appear in the formulae they are multiplied by zero.
The equation for ¢ is

é3;2+mzfo (134)
The function ¢ is any linear combination of the functions
cos mg sin m¢ {135)
The first derivatives of the functions are given by the equations

dcosme

Tag T ™ sin m¢ (136)
Esglameﬁ = + mcos m¢ (137)
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and the second derivatives of the functions are given by the equations

da
AA—C(;;———T@ = - m%cos m¢ (138)
d?si
—S:;:“p = - m3in me (139)
Let ¥ be expressed by the equation
y= ;%% P™(cos §) e™? (140)

All m derivatives of P,(cos8) are computed and are stored in an array. Initial
summations with respect to n establish five arrays with the elements

» cp d™Pp(cos )
™t d(cosg)™

neqt d™P,(cos 0) i

ot mnint et et ¢ e L

(141)

71 i
Lo d(cos 6)™ (142) |
n?c d™P, (cos 6)
e 143 ]
z r**1 d(cos )™ (143) .
e d™*P, (cos ) 3
i SRR L kbt 144
Z ,rn+] d(COS 8)m+l ( )
m dm+lP 8
y K n{cos ) (145)

1 d(cos §)™*! ’

Final summations with respect to m consist of complex polynomial evaluations in
powers of the argument sin 8 e*®.

Programming
SUBROUTINE SPHPDV (MO, AR, AQ, AF, NC, SC, CC, RP, PF, DF, DD)

AR RN TR KRR KRR RN R KRR R AR N R K R AR R Rk kR Ak Rk kR RNk kb kAR kX F kR AR RN AR R A KRk

FORTRAN SUBROUTINE FOR SPHERICAL POTENTIAL AND ANGULAR DERIVATIVES

HRERA KKK AR KRR KR KRR KRR AR AR AR R A KA A AR R KR KRR R AR AR R R IR E ARG I N IR I IR RN AR R AR IR KRR AP kR R R AR Rk

The mode of operation is given by MO. The radius r is given in the argument AR, the
polar angle 6 is given in the argument AQ, and the azimuth angle ¢ is given in the
argument AF. The order of the matrices of coefficients is given in argument “C, the
matrix of coefficients for sin m¢ is given in the array SC, and the matrix of coefficients
for cosm¢ is given in the array CC. The matrix of Legendre functions is stored in the
array RP. In each matrix the rows are numbered in the direction of increasing n and
the columns are numbered in the direction of increasing m. The upper right-hand
half of each matrix is padded out with zeros. The potential ¢ is stored in the function
PF if the mode of operation MO is 0. The potential and the first derivatives dp 88,
d¢ /8¢ are stored in the function ©F and in the 2-array D* when the mode of operation
MO is 1. The potential, the first derivatives, and the second derivatives 8% . 862, 8%p 803¢.
9%¢ /8¢% are stored in the function PF, in the 2-array Of. and in the 3 -array 00 when
the mode of operation MO is 2.
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SUBROUTINE SPHPGD (MO, AR, AQ, AF, NC, SC, CC, RP, PF, GF, DF)
AR AR AR KKK A KKK KA KK KK KKK KK KKK R AR R R KKK KRR KKK KKK K KRR AR SRR AR KRRk ns

FORTRAN SUBROUTINE FOR SPHERICAL POTENTIAL AND SPACE GRADIENTS

AR KRE KRR R KR KRR R AR R KRR R KRR AR R R KR KR KRR R R KRR KRR Rk KRR KRRk kKRR R KRR K KR AR R KRR R KKK AR KX KRk

The mode of operation is given by MO. The radius r is given in the argument AR, the
polar angle 8 is given in the argument AQ, and the azimuth angle ¢ is given in the
argument AF. The order of the matrices of coefficients is given in the argument C,
the matrix of coefficients for sinm¢ is given in the array SC, and the matrix of
coefficients for cos m¢ is given in the array CC. The matrix of Legendre functions is
stored in the array RP. In each matrix the rows are numbered in the direction of
increasing n and the columns are numbered in the direction of increasing m. The
upper right—hand half of each matrix is padded out with zeros. The potential ¢ is
stored in the function PF if the mode of operation MO is 0. The potential and the
gradient V¢ are stored in the function PF, and in the 3-array GF when the mode of
operation MO is 1. The potential, the gradient, and the gradient of the gradient VV¥yp
are stored in the function PF, in the 3-array GF, and in the 9-array DF when the
mode of operation MO is 2.

ERROR FUNCTION
Analysis
The error function erf 2z is defined by the equation
2 Z
erfz=— f e du (146)
\/TT 0
The Dawson integral H(z) is defined by the equation
H(z) --f e du (147)
0

and is expressed in terms of the error function by the equation
v
H(z) = - 1'—2— erf(+iz) (148)

The conventional Fresnel integrals C(v) and S(v) are defined by the equation

v 1ru?
C(v)+iS('u)=f eT™ gu (149)
(1]

and are expressed in terms of the error function by the equation
1+ 1-1
C(v) +1S(v) = — erf (—ZA\/T;'U> (150)
Expansion of the exponential function in series and term by term integration leads
to the equation
(_1)mzamu

2 o0
fz=—= ¥ ol
erfz == L Gm 1jm

(151)
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which expresses the error function as an absolutely convergent ascending series. The
complex Fresnel integral is defined by the equation

1 * et
E(z)= = J -y (152)
e g2

where the path of integration lies within that part of the complex plane from which
the positive real axis is excluded. The phase of z is limited to the range 0 to 2n, and
the phase of 2'/2 is half the phase of z. There are convergenit series, rational
approximations, and asymptotic series for the complex Fresnel integral. The convergent
series is given by the equation '

1 2z : » z™
E(z) = - N (7) ,:"‘:o (@m + 1)m! (153)

The substitution z » ~2? converts the series for Fresnel integral into the series for
error function as expressed by the equation

erfz=1-1V2E(-2%) (154)
If the argument x + iy satisfies the inequality
r?+y?si (155)
or both of the inequalities
1<z?+y?<38 7% - y*+0.256 2%y* =0 (156)

then the error function is computed with the ascending series.
If the argument z + iy satisfies both of the inequalities

1<z%+y?<38 22~ y%+ 0256 r%y% >0 (157)

then the error function is computed with the rational approximation of the Fresnel
integral. The error function is expressed by the equation
2
Ze—z 18
erfz=1- - ¥ -5t (158)

N -,;‘:1 22 + 61‘
where the phase of z is limited to the range -}m to +}m, and the positions 4, and the
residues ¢; are for the approximation of the Fresnel integral by sets of poles.
If the argument = + iy satisfies the inequality

r?+y%238 (159)

then the error function is computed from the asymptotic series. Repeated integration
by parts leads to the equation

_22 N
e N ( D™ERm)
erfz=1- —z 2, SEmo L Emel
N omep & 'mlz

(160)

for which the phase of z is limited to the range -im to +im, and N s 38.

Extension of the range of phase beyond these limits is accomplished with the aid
of the equation

erf( z) = erf(z) (16~1)
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which expresses the symmetry of the error function.

Programming
SUBROUTINE CERF (MO, AZ, EF)

AR RN AR R R R R AR R AR R R R KRR R AR AR R AR KRR KRR R R R KRR E R kR kR KRR R KK AR A AR R AR AR kRS kR R XK

FORTRAN SUBROUTINE FOR COMPLEX ERROR FUNCTION

KRR KRR R RN R R R R R R R R KRR R R R AR AR R R R R R KRR R R AR KRN R R R Rk

The mode of operation is given in MO. The real and imaginary parts of argument 2
are given in array AZ. The complex error function is computed by series expansions
and rational approximations. If MO = 0, the real and imaginary parts of the function
erf z are stored in array EF. If MO = 1, and the phase of z is in the range —3m to +3m,
the real and imaginary parts of the function 1 - erf z are stored in array EF.

COMPLEX GAMMA FUNCTION
Analysis

The gamma function I'(z) is defined by the equation

z
- n
e Yz e
I'(z) = . [T (162)
n=14 1+_z_

where 7 is Euler's constant. The gammma function has poles at the negative integers
such that the residue of the nth pole is (—1)*/n!.

For a small argument the reciprocal of the gamma function is given by the Bourguet
convergent series and for a large argument the logarithm of the gamma function is
given by the Stirling asymptotic series. Intermediate regions can be spanned by
recurrence relations. A rational approximation is not necessary.

The gamma function of an argument with a negative real part is expressed in terms
of the gamma function of an argument with a positive real part by the reciprocal
equation

1\'

Mz)M(1 — 2) = — (163)
sin 1z
It is necessary to evaluate series expansions only for arguments with positive real
parts.
If the argument z + iy satisfies the inequality

2+y?si1 (164)

then the gamma function is derived from an ascending power series. The reciprocal
of the gamma function is given by the equation

1 hat -
a2 (e

for which the coefficients c,, are derived in Appendix B.
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If the argument z + iy satisfies the inequality
2 +y?232 (166)

then the gamma function is computed from a descending power series. From the

equations on page 252 of reference 1, the logarithm of the gamma function is given

by the equation

1 N B,

- 1 . ™m
logl'(z) = (z - z)logz — z + 3log (2m) + ,,':VZ“ @ - )28

for which the Bernoulli numbers B,, are derived in Appendix B. Summation of the

series is continued until there is no change in sum or until m = 18.

If the argument r + iy satisfies the inequality

(167)

1<z?+y?<32 (1868)
then the gamma function is computed with the aid of the difference equation
(1 + 2z) = 2I(2) (169)
If n is the integer which is nearest in value to z and if n satisfies the inequality
lz - nl*g1 (170)

then the gamma function is given by the equation
MNz)=(z-1)(z-n+ DI(z- n+1) (171)

for which I'(z -~ n+ 1) is evaluated from the convergent series. If n is the smallest
integer which satisfies the inequality

'z + n!® 232 (172)
then the gamma function is given by the equation

AL (173)

for which I'(z + n) is evaluated from the asymptotic series.

Programming
SUBROUTINE CGAMMA (0, AT, £G)

MER MR R kR EEah RF Rk A kAR R R AR R kN R R KX F AR R AT R IR E AR F AR TR KRN AUk F AV k&

FORTRAN SUBROUTINE FOR COMPLEX GAMMA FUNCTION

L2222 I Ry e R g e e e e e e AT T 2 Y

The mode of operation is given in M0O. The real and imaginary parts of the complex
argument z are given in array A”. The complex gamma function is computed by series
expansions and recurrence relations. If MO - 0, the real and imaginary parts of the
complex function I'(z) are stored in array “G. If VO = 1, the real and imaginary parts
of the complex function logI'(z) are stored in array G.

SUBROUTINE DGAMMA (MO, AL, £C)

IR AR R R R A L R R R S A A R A e e s A R R e A R R s A R A e AR A S R A A R A Al AR S R RN

FORTRAN SUBROUTINE FOR DOUBLE- PRECISION GAMMA FUNCTION

AR R N N N AN R R R Ak kR KA I AP T AR RN T T IR R R RN F AR AR T AR R TR KA AT R R T RN SIS I I E SIS R

The mode of operation is given in %O. The real and imaginary parts of the
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double~precision argument z are given in array AZ. The complex gamma function is
computed by series expansions and recurrence relations. If MO =0, the real and
imaginary parts of the double—-precision function I'(2) are stored in array FG. If MO = 1,
the real and imaginary parts of the double—precision function log ['(z) are stored in
array FG.

COMPLEX DIGAMMA FUNCTION

Analysis

?_" The digamma function ¥(z) is defirned in terms of the gamma function I'(z) and the

§» derivative of the gamma function I'"(z) by the equation

& ;
2 I'(z) i
£ ¥ = 174 {
r}a (2) Mz) (174) 5

For a small argument the reciprocal of the gamma function is given by the Bourguet
convergent series and for a large argument the logarithm of the gamma function is
given by the Stirling asymptotic series. The derivative of the gamma function is derived
by differentiation of the series.

The digamma function of an argument with a negative real part is expressed in
terms of the digamma function of an argument with a positive real part by the
reciprocal equation

ey,

Y ¥(z)=¥(1 - z) —meotnz (175) ]
?
“ It is necessary to evaluate series expansions only for arguments with positive real
parts.
If the argument z + iy satisfies the inequality

¥+ y®s1 (176)

e

then the digamma function is given by the equation

Y(1+2)=-T(1+2) Y mec,z™! (177)

m=1

for which the coefficients c,, are derived in Appendix B.
If the argument r + iy satisfies the inequality

2+ y*232 (178)
then the digamma function is given by the equation
R
¥(z)=logz~ 2 - Y —=2- 179
(z)=logz~ % - ¥ -ong (179)
for which the Bernoulli numbers B,, are derived in Appendix B. Summation of the ﬁ
series is continued until there is no change in sum or until m = 18. §
If the argument z + iy satisfies the inequality X
1<x®+y?<d2 {180)

then the digamma function is computed with the aid of a diflerence equation. If n is
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the integer which is nearest in value to r and if n satisfies the inequality
z-mi?s1 (181)
then the digamma function is given by the equation

! +~~+~——1~u—+\ll(z—n+1) (182)

¥(z) =
(2) z-1 z-n +1

for which ¥(z —n + 1) is evaluated from the convergent series. If n is the smallest
integer which satisfies the inequality

lz+nj®232 (183)
then the digamma function is given by the equation

‘p(z)=-§—-.-——z—:—11l—:—1+\ll(z +mn) (184)

for which ¥(z + n) is evaluated from the asymptotic series.

Programming
SUBROUTINE CPSI (MO, AZ, PS)

LA RS2 L RS R S Rt R R A e s s e e R R e R SR R RS R A R s

FORTRAN SUBROUTINE FOR COMPLEX DIGAMMA FUNCTION

AR RN KRR RN A AR R R KRR KRR AR KRR R AR R AR R A KRR R AR KRR R LR R RN AR R R A KRR R KRR kA AR KRk kK

The mode of operation is given in MO. The real and imaginary parts of the argument
z are given in array AZ. The complex digammma function is computed by series expansions
and recurrence relations. Calls are made when necessary to Subroutine CGAMMA. If
MO = 0, the real and imaginary parts of the function I'{z) are stored in array PS. If
MO = 1, the real and imaginary parts of the function ¥(z) are stored in array PS.

FIRST ORDINARY BESSEL FUNCTION
Analysis

The ordinary Bessel function of the first kind J,(z) is given by the absolutely
convergent series in the equation
B G V) it
In(z) = T mi(n + m)!

m=0

(185)

The convergent series is used if the order and the argument satisfy the criterion
Inl 2 {l2i? (186)

A descending recurrence is used to extend the range of orders to lower orders.
The Bessel function is given by the equation

p (4 '
Jn(2) = % %ez""‘x,,(iz) _ 2""‘!(,,(—1'7.)% (187)
in which the modified Bessel functions of the second kind can be expressed by rational
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approximations. Thus the Bessel function is given by the equation

1 14
Jo(2) = 1 {1 + Y, —i:"_—dgﬁcos(z - gnm - im) +isin(z - jnm - %-n)}
(2nz2)? k=1~ k

1 14
+ @ )% {1 + kzl T;"_—%%{cos(z - gnm—-im) — isin(z - jnm - %n)g (188)
™z =

where the phase of z is limited to the range —im to +im, and the positions &, and the
residues ¢, are for the approximation of the modified Bessel function by tets of poles.
The rational approximation is used if the argument r + iy satisfies the inequalities
1
(x?+y®)2s 175 - |yl +0.096 2% >0 (189)

The rational approximation is available for orders 0 and 1.
The Bessel function is given by the equation

Jo(2) = (—%)%513 (2)cos(z — inm — Lm) - Q,.(2)sin(z — inm - im) (190)
n 2 n 2 4 n 2 4

where P,(z) is the sum of the even—ordered terms and Q,(z) is the sum of the
odd-ordered terms in the asymptotic series in the equation

P(2) +iQ.(2) = Nf {l‘ifflzzzj_Jni;(Ln__% (191)

meo m!(-2iz)™

with N £ 36. The asymptotic series is used if the order and the argument satisfy the
criterion

iz| 217.5 + in? (192)

An ascending recurrence is used to extend the range of order to larger orders if the
order satisfies the criteria

2] 2175 (193)
and
V2(lz] - 17.5) s |n| S Lz| - Ym 2! « Aiiz] - 9m 2l (194)

Otherwise the ascending series is used with a descending recurrence.

Use of the series expansions is limited to positive orders and to arguments with
phase in the range —%ﬂ’ to +3m. Extension of ranges of order and phase is accomplished
with the aid of the equations

Jon(2) = (- 1)a(2) = Jo(-2) (195)
which express the symmetry of the Bessel function.
Programmsing
SUBROUTINE BSSLJ (AZ, IN, FJ)

AR RR R AR E R AR R R R R R R KRR R AR AR R KRR AR AR R AR R AR R RS KRR R R AR AR AN R R R RN XA N R AR kRS Nk}

FORTRAN SUBROUTINE FOR ORDINARY BESSEL FUNCTION OF INTEGRAL ORDER

AR R R AR R KRR AR R TR R KRR KRR R R AR AR R RN N KA KRR R AR R R AR E IR S RS AT R AR ek RS R

The real and imaginary parts of the argument z are given in array A., and the
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integer order n is given in IN. The ordinary Bessel function of the first kind is computed
by series expansions and recurrence relations. The real and imaginary parts of the
function J,(z) are stored in array fJ.

SECOND ORDINARY BESSEL FUNCTION
Analysis

The ordinary Bessel function of the second kind Y,(z) is given by the absolutely
convergent series in the equation

N -1 % s (o Dl g neem
%,};, [roosen -3 £ T LT oo
The convergent series is used if the argument z + iy satisfies the inequality
t+yfs (197)
or both of the inequalities
%+ y® <289 -yl +0.096 2% =0 (198)

The evaluation of the convergent series for Y,(z) is continued to convergence of the
associated series for J,(z).
The Bessel functions are given by the equations

Jalz) = + % { ""K (iz) — e 2""‘Kn(~1’z)% (199)

Yo(z) = - 111' % ﬂ"‘K (iz) + e 3"“]& n(— 1z); (200)

in which the modified Bessel functions of the second kind can be expressed by rational
approximations. Thus the Bessel functions are given by the equations

1 14
Jo(2) =+ - — %1 + Y L %%cos(z ~inn —in) +isin(z - jnn - 2
(2nz)? k=t ~ 12— 6 )
1 14
¥ - 3 %1 + ¥ ——,—e"_§%cos(z —inn - in) - isin(z - jnn - Tf)} (201)
(2nz)2 k1t 12 =0
i > €k 1 1 C 1 1)
Ya(z) = - — g 91+ 3 - — cos(z -- gnm — ;m) + isin(z - znm - ;n);
(2nz)? k=t 127 0
i ks €
+ — %1 + 3 2k %%:os(z - tnn - im) - isin(z - jnm - %n)% (202)
(2m2)? k=1 * 126,

where the phase of 2 is limited to the range -im to +§n. and the positions §, and the
residues ¢, are for the approximation of the modified Bessel function by sets of poles.
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The rational approximation is used if the argument z + iy satisfies the inequalities
x? +y? <289 - |yl +0.096 2% > 0 (203)
The rational approximation is available for orders 0 and 1.

The Bessel function is given by the equation
1

2 z . 1 1 1 1
Ya(z) = (;r_z> {P,,(z)sm(z — inm - 3m) + Q.(2)cos(z - gnm — 3m) (204)

where P,(z) is the sum of the even-—ordered terms and Q,(z) is the sum of the
odd-ordered terms in the asymptotic series in the equation

N-1 {71.2 _ (1)2}~--{n2 — (‘m — 1)2}
P, +1 = 2 2
w(2) +1Qa(2) = T T

m=0

(R05)

with N = 36. The asymptotic series is used if the argument zr + iy satisfies the criterion
% + y? =289 (208)

The rational approximation and the asymptotic approximation are used only for
arguments with phase in the range —im to +im. Extension of phase to other ranges
is accomplished with the aid of the equations

Yo(z) =e ™Y, (ze"™) + 2icosnn J, (ze ™) (207)

Yoa(2) =e*™™ Y, (2ze*™) - 2icosnm J,(ze*™) (208)

where the first equation is used if z is in the second quadrant and the second equation
is used if z is in the third quadrant.

The series evaluations are used only for orders zero and one, and an ascending
recurrence is used if the order is greater than one. The extension of order to negative
orders is achieved with the aid of the equation

Y_n(2) = (-1)"Va(2) (209)
which expresses the symmetry of the Bessel function.
Programming

SUBROUTINE BSSLY (AZ, IN, FY)

AR R R AR R KRR R KRR KR KT R AR R AR R AR KRR AN N AR KRR R TR R R R R A KR AR R F R AR AR R R RN X%

FORTRAN SUBROUTINE FOR ORDINARY BESSEL FUNCTION OF INTEGRAL ORDER

AR R RN KRR R R R R KRN KRR A KRR AR AR R AR R AR KRR R KRR R AR RS AR R A R R I EH A RN A RN R A RS A b ke k&

The real and imaginary parts of the argument z are given in array A, and the
integer order m is given in . The ordinary Bessel function of the second kind is
computed by series expansions, rational approximations, and recurrence relations.
The real and imaginary parts of the function Y,(z) are stored in array .

FIRST MODIFIED BESSEL FUNCTION
Analysis

The modified Bessel function of the first kind /,(z) is given by the absolutely

30




,. convergent series in the equation
* o (éz)nh?m

I = —_——— 210
s n(2) mz’:o m!(n + m)! (210)
?T- The convergent series is used if the order and the argument satisfy the criterion
v
X in| 2 {j212 (211)
’ A descending recurrence is used to extend the range of order to lower orders.
_é' The Bessel function is given by the equations
r i
¢ Inle) =+ % (o) - ek ()] (212)
£ i . 4
I (2) = - - %Kn(ze"") - e"“K,,(z)} (213)
{
i

where the first equation is used if z is in the fourth quadrant and the second equation
is used if 2z is in the first quadrant. The modified Bessel functions of the second kind
can be expressed by rational approximations. Thus the Bessel function is given by the

. equation
i emmis Lo
e? 14 e* nmwitzmi 14
]ﬂ(z): 7%1‘*‘2* Ek'('s' +~*’*4'1"£1‘E‘364 (214)
(272)2 k=1~ 27 O (2m2)2 ( k=1 27 Ok
i where the + sign is the same as the sign of y. and the positions §, and the residues
R €, are for the approximation of the modified Bessel function by sets of poles. The
rational approximation is used if the argument x + iy satisfies the inequalities
: 1
o (z?+y®%s175 —ix + 0.096y% >0 (215)
; . The rational approximation is available for orders 0 and 1.
. The Bessel function is given by the asymptotic series in the equation
e* N~1 {na _ (%)zlinz _ (m _ %)2}
In(z) = oy T SenE E
(Rmz)2 m=0 ’

czenmislmi v
: E,Z_T:r_ NZI Mjﬁii(f'};%fi (216)
ml(2z)™ =
for which V £ 36. The asymptotic series is used if the order and the argument satisfy
the criterion
22 17.5 + §n? (217)

An ascending recurrence is used to extend the range of order to larger orders if the
, order satisfies the criteria
iRe zl 2 17.5 (218)

and

(219)

V2(lzl 17.5) = ini s Lzl - LiRe zf + Lkl - IRe 2!
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Otherwise the ascending series is used with a descending recurrence.

Use of the series expansions is limited to positive orders and to arguments with
phase in the range —im to +in. Extension of ranges of order and phase is accomplished
with the aid of the equations

1_"(2) = (—'l)njn(_z) = I"(Z) (220)
which express the syinmetry of the Bessel function.

Programming
SUBROUTINE BSSLI (MO, AZ, IN, FI)

kR R ok o oK K K R R o R KR Kk KRR kR R R R K KRR R KRR KKK KRR R KK KRR R AR AR R KRR KRR KRR KRR K%

FORTRAN SUBROUTINE FOR MODIFIED BESSEL FUNCTION OF INTEGRAL ORDER

o ok e 0K 3K 3k 3K K K ko K K K e 3k ok ok ok o koK ok o Rl ok kR Rk ok ok ok o skl ko s ko Kk ko i K R ok ok R ko ok Kk K R kR AR kK K Kk kR Xk

The mode of operation is given in MO. The real and imaginary parts of argument 2z
are given in array AZ, and the integer order » is given in IN. The modified Bessel
function of the first kind is computed by series expansions and recurrence relations.
If MO =0, the real and imaginary parts of the function I, (z) are stored in array Fi. If
MO = 1, and the phase of z is in the range —im to +im, the real and imaginary parts
of the function e *,(2) are stored in array FL

SECOND MODIFIED BESSEL FUNCTION

Analysis
The modified Bessel function of the second kind K,(z) is given by the absolutely
convergent series in the equation

Kofe) = 5 @ SHmmo )
m=0 N

! (%Z)—n+2m

e [reropa - £ - 4Y 1] T (221)
—mo g Ry k2.2 k]lmi{n+m)
The convergent series is used if the argument z + iy satisfies the inequality
2 +y?st (222)
or both of the inequalities
z% +y* < 289 +2+0.096y2s0 (223)

The evaluation of the convergent series for K,(z) is continued to convergence of the

associated series for /,(z).
The Bessel function is given by the rational approximation

1
m\2 4 ¢
Kn(z)={=-) e 31+ ¥ £ 224
@Yo fi £ 8 -
for which the positions 6, and the residues ¢, are for the approximation of the modified
Bessel function by sets of poles. The rational approximation is used if the argument
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x + iy satisfies the inequalities

x?+y®< 289 +z+0.096y%.0 (225)

The rational approximation is available for orders 0 and 1.
The Bessel function is given by the asymptotic series in the equation

'

2z

(n? - ()30 - (m - )3

mi(22)™ (226)

3

K@) = (L) e ¥

m=0

for which N £ 37. The asymptotic series is used when the argument z + iy satisfies the
inequality

r® + y% 2289 (227)

The series evaluations are used only for orders zero and one, and an ascending
recurrence is used if the order is greater than one. The extension of order to negative
orders is achieved with the aid of the equation

K_ (2} = K,(2) (228)
which is an identity for all orders integer or complex.
Programmaing
SUBROUTINE BSSLK (MO, AZ, IN, FK)

2k k3K k0K ok ok ok ok ok ok ok ok ok o kK ok 3k K Ok ok ok kK 3K sk ok 30k ok ok sk ke ok ok ke oK ok 2 sk sk ok o KOk ok Kk K e ok K 3 ok ok I K ok Kk ok K R o ok ok ik ok ok ok ok ok R Kk kX
FORTRAN SUBROUTINE FOR MODIFIED BESSEL FUNCTION OF INTEGRAL ORDER

AR R A KK K AR RO KK ok ok ok Kk ok K K K Kok o R K K ok o ok ok 0k ok ok ok oK K 3k ok 3k ok e K ok 3k ok ok sk K ok ok ok Kk K Kok ok Kk Rk ok ok ok kR ok R ok Kk K

The mode of operation is given in MO. The real and imaginary parts of the argument
z are given in array AZ, and the integer order n is given in IN. The modified Bessel
function of the second kind is computed by series expansion, rational approximation,
and recurrence relations. If MO = 0, the real and imaginary parts of the function K,(z)
are stored in array “K. If MO = 1, the real and imaginary parts of the function e*K, (z)
are stored in array Fk.

COMPLEX BESSEL FUNCTION
Analysis

Bessel functions of complex order v and complex argument z are expressed by
absolutely convergent series. The Bessel function J,(z) is given by the equation

G D)) M
J, (=)= — s 229
v(2) ijom!F(u+m+l) (229)
and the Weber function Y,(2) is given by the equation
-J_
v (z) = D) oosvm = /o (2) (230)

sin vm

If v is a negative integer - n then all terms with m < n are zero in the series for J_,(2)
because the gamma function of a negative integer is infinite. Thus the Bessel functions
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satisfy the equation

Jon(z) = (-1)"a(2) (231)
and the Weber function is given by the equation
Y (z) =lim Y,(2) (232)

The Weber function Y,{(z) must be expressed by a special series.

If z is replaced by e*™z in the convergent series then J, (z) is replaced by e*V™J (z).
The phase of z is limited to the range from —m to +m in the evaluation of J,(2), but
the factors e*™ may be applied to J,(z) in order to extend the range of the phase
of z outside the range from —-m to +w. If v is real the absolute magnitude of e*™™ js
unity, but if v has any imaginary part, then the magnitudc of e¢*'™ may be small or
large according to the sign of the imaginary part of v.

The ratio between the absolute value of the mth term and the absolute value of
the (m — 1)th term is given by the expression

A (233)

The ratio is unity wherever the terms in the series have a minimum or a maximum.

If v is negative and real, the terms of the convergent series may increase, decrease,
increase, and decrease with increasing order 7.i. The value of m for a unit ratio between
terms is estimated by the equation

me — (m - v ){234)
and by the equation
(m - v)(2353)

The requirement that m be real and positive limits the number of minima to one and
the number of maxima to two unless iz > |V,

If v is positive and real, the terms of the convergent series may increase before
they finally decrease with increasing order m. The value of m for a unit ratio between
terms is established by the equation

m = oD X T T (236)

The requirement that m be positive limits the number of maxima to one. When v is
complex the values of m become the roots of a quartic equation.

The absolute rounding error in the convergent series is determined by the relative
rounding error in the largest term of the series. In order to control the relative
rounding error in the series itself it is necessary to limit the evaluation of the series
to conditions where the terms diminish after the first term. The full accuracy of the
computer is guaranteed only if the order and the argument satisfy the criterion

1,2

122 yees
1271 (237)
v

A practical accuracy of computation still may be achieved if this criterion is relaxed.
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especially when the order is negative or the argument is imaginary.
The Bessel function is given by the equation

J(z) = <ﬂ—22-)§{P,(z)cos(z - Yvun - im) - @ (2)sin(z - fvm - im) (238)

where the function P,(2) is the sum of the even—ordered terms and the function @,(z)
is the sum of the odd-ordered terms in the asymptotic series

Y1 Py em+d)

P +1 =5 - {239
W) 4102 = L o Tt (2™ (238)
The ratio of gamma functions is computed from the product
rv+m+3 m .
PUrme2) ] e - 12 (210)

(v - m+-§>) k=1

If v is half an odd integer the series terminates after a finite number of terms.

If z is replaced by e**™z in the asymptotic series, then the terms of the series are
reversed in sign, whereas the actual value of J,(z) may be smaller or larger according
to the sign of the imaginary part of v. This failure of the asymptotic series is related
to the Stokes phenomenon. Its effect is diminished if use of the asymptotic series is
limited to arguments with phase in the range —im to +im whence the asymptotic
series is corrected by the factor e*"™ when the actual phase is outside the range
from —3m to +3m.

If v is real the terms of the asymptotic series may increase, decrease, and increase
with increasing order m. The ratio between the absolute value of the mth term and

the absolute value of the {m - 1)th term is given by the expression

[ _ 1h2
v tm=a)? (241)
m|2z:

The ratio is unity wherever the terms in the series have a minimum or a maximum.
When v is real, the value of m for a unit ratio between terms is estimated by the
equation

- Zpd N zjz - ;7; /;3 (m— ; s U) (212)

i
Nl

and by the equation

m-b=szie 2%z VR

(m -}z .v) (243)

The requirement that m be real and positive limits the number of minima to one and
the numbecr of maxima to one unless v =} and 'z] satisfies the inequality

R I PN e v
T R (244)

When v is complex the values of m become the roots of a quartic equation.

The absolute rounding error of the asymptotic series is determined by the relative
rounding error in the largest term of the series, while the absolute truncation error
of the series is determined by the magnitude of the smallest term of the series. In
order to control the relative rounding error in the series it is necessary to limit the
evaluation of the series to conditions where the terms diminish after the first term
The full accuracy of the computer is guaranteed only if the order and the argument
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satisfy the criterion

32

<1 (245)
2]
In order to control the truncation error in the series it is necessary to limit the
evaluation of the series to conditions where the smallest term is on the order of
rounding error. For the CDC 6600 computer the argument must satisfy the criterion
z. 2 17.5.
The criteria for full accuracy severely restrict the range of order and argument in
which the classical series may be applied.
Required for the Debye approximation are polynomials u,,(¢) which are expressed
by the equation
m

Un(t) = ¥

-

k=0

Coe £ (246)

for which the coefficients are given by the Amos® !° recurrence equations. The evaluation

of the coefficients is started with the equation

Cgp = 1 (247)
and is continued with the equation
[ m+ 2k — 1 : m =2k -3
e o e R LR B L RV B

A parameter 7 is defined by the equations

e
P4

tanhy = i1 - -3 249
Y \ V2 ( )
and
v -
Y= - 1og cete —gemre (200)
1 :] 2
PR R
AN
Let functions s, and s, be defined by the equations
e»u((nnh'y—-y) :i u th
. A AA,’!*_(?‘?VMX) (251)
\Vi2nvtanh ¥ m-o (+v)
-v(tanhy -y} v th '
- ¢ ’ « Um(cothy) (252)

\fvém; tanh:y m_fo ()™
Thus s, is obtained from s, by a reversal of the sign of r. Both functions are the
product of a factor and a series. The factor contains two radicals and a logarithm.
while the series is asymptotic. Let s, be the Debye approximalion with a positive sign
assigned t» the radical

&
(5]

(253)

S

VP

and let s, be the Debye approximation with a negative sign assigned to this radical.

~
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Reversal of the sign of the radical replaces the argument of the logarithm by its
reciprocal and reverses the sign of the logarithm. Reversal of the sign of the radical
replaces the exponential function by its reciprocal. Thus where s, is large, s, is small,
and vice versa.

The radical is zero at branch points in the complex v—plane where v = 1z. In the
vicinity of each branch point the logarithm may be expanded in powers of the binomials

1- = or 1+ z (254)
v v

Cancellation of the lowest order terms and omission of the highest order terms lead
to the approximation

: 3
-7 og — oz (255)
N T T 08 T2 3 V2

L1 -2
\ Ve
Three nodal lines emanate from each branch point. On each nodal line,
1811 = Isp| or igtfmitg | = ig, (256)

For the exponential functions in the approximations to have the same absolute values

it is necessary for their arguments to be pure imaginary. For the approximation of

the argument to be pure imaginary the order must be given by one of the equations
1t

5

vooz=Auield (v~ -2) (257)

11
vez=qu3edm (v~--2z) (258)

where A is a real parameter. Thus the nodal lines emanate from the branch points in
the directions of the three roots of | with respect to a line which makes an angle
with the real axis equal to one third of the angle which z makes with the real axis.
As z rotates the nodal lines rotate at one third the rate of rotation of z.

On the positive side of the imaginary axis computation shows th.t the Bessel function
is given by s, alone along the nodal lines which emanate to the right of z, but the
Bessel function is given by s, + s, along the nodal line which emanates to the left.
The boundary between the regions where s, alone is used and where s, + s, must be
used presumably is intermediate between nodal lines, where s, is so much smaller
than s, that the difference in formulation is immaterial.

On the negative side of the imaginary axis computation shows that the Bessel
function is given by the sum

© s b s, + etEVig (259)

on the left of an hyperbola and is given by the sum
+ 5y b sy Vs, (260)

on the right of the hyperbola. In these formulae the t sign is - in a region
counterclockwise from an outward extension of -2 and is + in a region clockwise from
the extension of =z The boundary of the region where e**™'s, must be included
presumably is on a line midway between nodal lines, where e*®*™'s, is so much smaller
than s, * s, that the difference in formulation is immaterial.
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For a large value of v on the positive side of the imaginary axis the signs of radicals
are positive and the logarithm requires no correction, but in other regions corrections
are required because the radicals and logarithm are evaluated on the assumption that
their arguments range from a value just more than —-mn through the value +mn. The
conditions for correction are determined from Argand diagrams in the complex v-plane.

Let z and v be expressed in terms of their components by the equations

z=zx+1y v=A4+ipn (261)

Let A diminish from +« with the other components constant. Then the trace of v is
a straight line parallel to the real axis and the trace of 1,v is a circle of radius 1.2u
which starts at the origin and has a center offset along the imaginary axis to a distance
~1/2u. Multiplication by z amplifies and rotates the circle. The ratio z v is a circle
which intersects the origin and is rotated through an angle equal to the phase of z.
The trace of the square z%/v? is a cardicid which is rotated through an angle equal
to twice the phase of z.

The sign of the radical

e
N1 5 (262)

is positive for large |v| but must be reversed whenever its argument crosses the
negative real axis. Let the argument be expressed by the equation

1- 5= 12 (263)

a1 72 (264)

For the ratio z v to be real it is necessary for the components to be rclated in
accordance with the equation

y M
gk 265
27 (265)
Then the ratio z,’v is given by the equation
N (266)
v “

The argument crosses the negative real axis therefore on the line where v is congruent

to z and ' y.
The argument of the logarithm is

oY (267)
1+ z
\ v?

Even when iv. is large, the argument crosses the negative real axis when u and i are
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opposite in sign. Let the argument be expressed by the equation

z
v 1
== (268)
-5 T
1+ - —
2
where r is a positive real value. Solution gives the equation
z 2r
Z-_ 269
v 1472 (269)

This function of r ranges from zero through a minimum and back to zero as r ranges
from O to «. The minimum is located where the derivative with respect to r is zero.
The minimum value is — 1. For the ratio z/v to be real it is necessary for the components
to be related in accordance with the equation

y M
4 _~ 27
xr A (270)

Then the ratio z/v is given by the equation

o4 T S 271
v m 1+7r2 (271)
The argument crosses the negative real axis therefore on the line where v is congruent
to z and w. y have opposite signs with |u| > |y|. At the crossing the logarithm is corrected
by ¥2mi.
The sign of the radical

oy o1 (272)

2 2 _ z%
\/,, /1*'53 (V® ~ 2?)

is positive for large v/ but must be reversed whenever its argument crosses the
negative real axis. Let the argument Lz expressed by the equation

v 2% = —rt (273)

where 7 is a real variable. For the argument to be real it is necessary for the components
to be related in accordance with the equation

Au = Ty (274)
Then the argument v? 2% is given by the equation
P

ve - z%= ‘LT VA AR T (275)

The argument is positive only if |u| < |y| whence its square root can be real The trace
of the condition for correction is an hyperbola with the equation

r= Y (276)




Whether a correction is necessary depends upon the sign of the radical

F
1-Z (277)
v
The correction is necessary only if the radical has a direction opposite to the complex
conjugate of v. The condition for the correction is not met when the sign of the radical
has been reversed.

The Debye approximation is not useful inside a boundary where the smallest term
of the series would be greater than rounding error. Exploratory computations have
shown that the limiting boundary for large argument and order is a cubic parabola.
An empirical criterion which defines the limiting boundary for accurate evaluation is
given by the equation

1-—-0 {1+ et
2 4
4z TR T z1 (278)
1~=] + i1+~
R

where the constant 4 ~0.004. This criterion matches the true boundary for extreme
arguments and does not deviate significantly from the true boundary at intermediate
arguments. If the criterion is not met for a given value of v, then unit increments
are added to v until the criterion is met.

Inasmuch as each term of the Debye series is itself a polynomial it has a number
of roots equal to its degree. In order to avoid a premature termination of the series,
the polynomials are evaluated both with the complex arguments and with their absolute
values until the summation of the absolute values of the terms remains stationary.

Values of the order and the argument which are outside the range of the classical
series still can be reached by an application of recurrence equations which are started
within the range of the classical series. The Bessel functions and the Weber functions
satisfy the recurrence equations

Joaa() () = 20 (2) (279)
V() + Yon(2) = 22 v(2) (280)

and the recurrence relation
Iy (2) = Jy ()Y (2) = - — (281)

mz

Let €, be the rounding error which has been introduced in the uth cycle of iteration.
The persisting error in the vth cycle is given by the expression

™ .
- e @2) - G ) (262)
for a descending recurrence, and by the expression
T
+ 52 %Y“_l(z).l.,(z) - J“,,(z)}’v(z)g € (283)
40
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for an ascending recurrence. In the computation of J,(z) the recurrence must be
cycled in whichever direction i}, (z)| diminishes relative to \/,(2)!.

The recurrence is applied actually to I'(v + 1){(32)~"/,(z) when the convergent series
is the origin of J,(z) in order to keep the recurrence within the index range of the
computer. The recurrence is applied actually to (mz/2)!'%J,(z) when the asymptotic
series is the origin of J,(z) in order to improve the efficiency of computation.

The convergent approximation is used when ;2| <175 There are two modes of
computation with the convergent approximation. In the first mode the convergent
series is used for orders with large positive real parts, and descending recurrence is
used to bring the order down to orders with less positive real parts. In the second
mode the convergent secries is used for orders with large negative real parts, and
ascending recurrence is used to bring the order up to orders with less negative real
parts. The relative error in either recurrence increases until the order crosses a nodal
line, then the error remains constant thereafter.

Boundaries between modes are located where the errors are the same for both
modes. The ideal boundaries between modes are represented by complicated surfaces
in the four-—-dimensional space of order and argument. Information about the location
of boundaries is derived from comparisons between single-precision and
double--precision computations. The boundaries can be perceived only dimly in the
computations because of random fluctuations in rounding error. Within the random
fluctuations the boundaries can be simulated by surfaces with polygonal sections.

In the first mode of computation, recurrence is started with that order with a
positive real part which satisfies the criterion

] 2 i3zi? (284)

In the second mode of computation, recurrence is started with that order with a
negative real part which satisfies the criterion

Revs Iz -¥mv) (285)

The first mode is used in preference to the second mode when the order and argument
satisfy both of the criteria

Rev : 3z -YImv Imz - tImv) (2886)
and
Rev =32 58z Imuv-Imz 8z -%my-Imz (287)

The two criteria combine to give polygonal scctions on planes of constant z in
accordance with the computations.

The Debye approximation is used when z - 17.5. A zone in the v-plane from which
the Debye approximation is excluded can be traversed by descending recurrence when
the zone is on the positive side of the imaginary axis. Only part of the zone can be
traversed by descending recurrence when the zone is on the negative side of the
imaginary axis An ascending recurrence with the Debye approximation gives too much
error. Within the zone of exclusion it is possible to use the convergent approximation.
Insofar as the descending recurrence starts with equally accurate initial values for
either the Debye approximation or the convergent approximation, the error during
descending recurrence is the same for both approximations. The same boundaries
apply between descending recurrence from the Debye approximation and ascending
recurrence from the convergent approximation. The Besse! function is computed with
a combination of Debye approximation with descending recurrence and convergent
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approximation with ascending recurrence.

The relative error is not uniform over the complex v-plane. Wherever the Bessel
function approaches zero the relative error approaches infinity. The relative error is
large over a nodal line where the Bessel function is small. When z is real, the Bessel
function can be computed with full machine accuracy. When 2z is rotated out of the
real axis a zone of rounding error appears and grows. The zone of rounding error
straddles the negative real axis. Eventually the zone of exclusion cuts off the zone of

rounding error.

Programming

SUBROUTINE CBSSLJ (AZ, CN, FU)
AAERRERRERES R X R AR R KA R RN ERRER R AR A EREKER R R R K E AR AR R AR KX KA F AR R KA A KK AR R KX AR E X R X KA R KA N RN R AR N S L4 X R AN B 8
FORTRAN SUBROUTINE FOR COMPLEX BESSEL FUNCTION OF FIRST KIND

AKEEKKRERAREE R KRR E KRR R E R R AR KRR K KX E AR R AR K AR R A KA AR A AR AR F R AR KA R R KRR AR AR XX AR AN R E FEF P S g R r R BB S

The real and imaginary parts of the complex argument z are given in array ~7,
and the real and imaginary parts of the complex order v are given in array C'.. The
complex Bessel function is computed with series expansions and recurrence relations.
Calls are made to Subroutine CCAM!MA. The real and imaginary parts of the complex
function J,(z) are stored in array FJ.

SUBROUTINE DBSSLJ (AZ, CH, FJ)
RAEREKEXRREEEERE AR KRR KRN AR KRR KRR A KR AR R AN AR R R T S R AR AR M A S A A F A KA A SR I B S SRR E S AR KK S AR S R E R B S F K22 4 8
FORTRAN SUBROUTINE FOR DOUBLE - PRECISION BESSEL FUNCTION OF FIRST KIND

AREEERERKEER A AR R R KR E ALK T AR R KRR R AR A R AR KRR A KK G AN A AR A RS A R AR KRN F KRR KRN R R AR R AR R S A S XD S R a W

The real and imaginary parts of the double precision argument z are given in array
AZ, and the real and imaginary parts of the double- precision order v are given in
array C'i. The double-precision Bessel function is computed with series expansions
and recurrence relations. Calls are made to Subroutine DG4 The real and imaginary
parts of the doubic precision function J,(z) are stored in array * ..

DISCUSSION
The incomplete beta function B(p, g.z) is defined by the equation
x
B(p.q. 1) - f tP Y1 - )9t dt (288)
0

and the incomplete gamma function I'(p, ) is defined by the equation

x
I'p, z} - f thle fdt (289)
0

A new subroutine BL'AX computes directly the incomplete beta function and a new
subroutine GAMMAX computes directly the incomplete gamma function for arbitrary
real order and real argumcnt. More efficient subroutines for the incomplete beta ratio
of half integer order and the incomplete gamma ratio of arbitrary order have been
prepared by A. R. DiDonato?%6,

The potential of a rectangular plate is useful for the computation of flow around

struts? and hulis?®.
The single precision Bessel functions were checked by comparnison with
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. double -precision computations. The single precision J,,(z) was compared directly with

NG the double -precision J,(z). The single-precision Y,(z) was compared with
double--precision values from the equation
. 1[aJ,(2) aJ_,(z)

: Yo(z) = =] == - (- 1)n- 222 290
5 a(z) = 2| P2 (a0 (290)
,E where the partial derivatives with respect to v were estimated by finite differences
i between values with v=n:c. The single  precision [,(z) was compared with
i ! double- precision values from the equation
f In(2) = ()"n(iz) (291)
e when y was negative and from the equation
i Ia(2) = %, (- 12) (292)
; when y was positive. The single precision A,(z) was compared with double precision
¢ values from the equation

ol (2) al(z)

- 293
av v ( )

Ka(z) = (. x)"[

vr=n

where the partial derivatives with respect to v were estimated by finite differences
between values with v == n : €. The values of the functions /,(z) were derived from the

Y

equation
. 1.(z) - e "2 (iz) (294)
!‘ when y was negative, and from the ecquation
. T
: I(z) "2V, ( iz) (293)
“ .' when y was positive. The first order difference across a point is in error only in the
't : third order, and the accuracy of the difference is onc and a half precision when the

difference in argument is at the half precision level.

On page 265 of Theory of Bessel Functions by Watson? there is a figure which gives
the boundaries for various combinations of s, and s, in the v z-plane. This figure
agrees with the analysis herewith for real z but does not show the 1 ~tation of boundaries
at one third the angle of rotation of z which is characteristic of the nodal lines
‘ Subroutines for J,(z) and /,(z) have been programmed by Amos, Daniel, and Weston !,
1 Their subroutines are valid for positive real argument and positive real order. They
supplement the classical series with the Debye approximation, and they use the Olver
approximation where the Debyec approximation is ineffective. A subroutine for Y}, (z)
has been programmed by Cody, Motley, and Fullerton!'. Their subroutine is valid for
positive real argument and positive real order. It uses a sequence of Taylor series
expansions for lowest orders, and it uses ascending recurrence to reach higher orders.
The names of the subroutines for all four Bessel functions are

BESS 3ESy BES EHY

The first three subroutines have becn checked against double precision computations.

Four subroutines in the present project are vahd for complex argument but for
A integer order. They supplement the classical series with rational approximations at
small orders and use recurrence to extend the range of orders The names of these
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subroutines are
BSSLJ BSSLY BSSLI BSSLK

The new subroutines are more compact than the other subroutines. They are more
efficient where they use rational approximations. Otherwise the new subroutines are
as efficient at low orders as the other subroutines would be if they were converted
to complex arithmetic. Conversion of arithmetic from real to complex may increase
the time of computation by 1% on the CDC 6600 where there can be parallel processing.
The accuracies of the new subroutines for low orders are within one digit of the
accuracies of the other subroutines. The efficiencies and the accuracies of the new
subroutines deteriorate with increase of order into the range of order where the Debye

approximation is used.

CONCLUSION

The Debye approximation can be used for the computation of Bessel functions of
complex order and complex argument everywhere except in a zone of rounding error
where the value of the Bessel function is relatively small. In the zone of rounding
error the convergent series with ascending recurrence gives better accuracy than the
Debye approximation with descending recurrence.
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LEGENDRE FUNCTIONS

An analysis of Legendre functions of integral order is to be found in Modern Analysis
by Whittaker and Watson'. The differential equation for the Legendre functions is

d?w dw

(1722)»(1—?*22—(;2 +n(n+ lJw=0 (1)
The Legendre function of the first kincd is given by the Schlafli integral,
1 (- nr
2)= oo P —— = dt
Pa(2) 2n+1ni§}9(t_ i (2)

where the contour of integration encircles z once counterclockwise. That this integral

satisfies the differential equation is easily verified since substitution in the differential

equation leads to the circuit integral,
dtP, dP,

(1-2%)- 2z =%+ n(n - 1)P, =

n -1 d ((t2- 1)1
dz? dz 2""‘ni§ g dt 3)

— e e 5
dt ( (t--=z)""%)
That the integral coincides with the Legendre polynomial is verified when the integral

is evaluated for z = + 1.
The Schlafli integral may be derived by n- fold differentiation of the Cauchy integral

1 (2 nn
R D — = dt B
(z5-1) Zm‘f}g t z) J
Thus the Legendre polynomials are given by the Rodrigues formula,
r dam .,
2) = e z n" 5
Pn(z) oy d,z"( ) ()

Expansion of the identity

1 d 5“2" ™y
- S ~dt 0 6)
2™ 2y Eﬁ dt ( (¢ )™ ) (
leads to the cquation
tooeEonn
Poo{z) zP.(z : di (71
w2 2P b
Fxpansion of the identity
boofd o (2 D)
T it vdt 0 #)
2nimy } at (' (¢ 2m) (

leads to the equation

nzPa(z) npP, ((2) dt (9N

2n iy
Elimination leads to the recurrence equation

nk, (z) 2n: DzP{z) - (n: NP, ,(z) O trm
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and differentiation leads to the recurrence equation
(Rn + 1)Pp(2) = Pp.y(2) - Py y(2) (11)
Thus all of the Legendre functions and their derivatives may be synthesized from the
two functions of lowest order.
Differentiation of the recurrence equations leaves one term of lower order in each.

Repeated differentiation with elimination of the term of lower order leads to the
recurrence equation

ampe, . amp, d™P,.
(n+m)- &:;;——l - {(2n+ 1)z d~mﬁ +{n--m+ 1)-&-2%-‘» =0 (12)

which connects the derivatives of functions of progressively increasing order. Repeated
differentiation ol the differential equation leads to the recurrence equation
d™ P, d™P am™rp,

(n-m)n--m-+ UvJ:}’"“ - 2mz —d;"T" +(1-28)——""=0 (13)

which connects the progressively higher derivatives of functions of common order.
The Legendre function of the second kind is given by the integral,
1 (1 -3
2) = A 14
Qn( ) 2n+l 1 (Z — t)n*l ( )
Substitution of the integral in the differential equation and in the recurrence equations
shows that @,(z) satisfies the same equations as P,(z) provided that Re(n -+ 1) - 0.
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MULTIPLE-PRECISION COMPUTATIONS

Formula Algebraic Processor

FLAP, or Formula Algebraic Processor, is a computational system which has been
developed by Morris'® for the manipulation of mathematical expressions. The FLAP
system refers to LISP, or List Processor, which manipulates lists of numbers or symbols.
As a checkout of the numerical feature of FLAP, high-precision values of Bernoulli
numbers and Riemann zeta functions have been computed. Values were computed to
80 digits with an accuracy of 75 digits, and then the values have been truncated back
to 64 digits. The values have been punched on cards and are printed in Appendix C.

Bernoulli Numbers

There are two principal versions of the Bernoulli numbers. The older version is
derived from the definition

zZn.

(an)i (1)

gzcotiz=1- L By,
n=1
where B, is the nth Bernoulli number in the older definition. The newer version is
derived from the definition

-~Tt
<

= Z Bn . (2)

n!

where B, is the nth Bernoulli number in the newer definition. The Bernoulli number
B, in the older definition is equivalent to (-1)""'B,, in the newer definition. The
change of definition adds one number to the set and makes some formulae more
compact.

Values of A, in the newer definition can be obtained by the division of z by the
series expansion for e®* — 1. The first few values are given by the equations

By = 1, sz‘%v Bz‘%' 33’7'0.34:*3—‘0'. By - 0, Bg - 412 (3)

If 2z is replaced by -z in the definition equation to give terms which are subtracted
from the terms of the definition equation. then cancellation of terms leads to the
equation

o 22,“1
2= -2 Y Bony o - {4)
o M @ne )

Comparison of coefficients of powers of z shows that the Bernoulli numbers of odd
order satisfy the equation

By, =0 (n - 0) (5)

If z is replaced by -z in the definition equation to give terms which are added to the
terms of the definition equation, then cancellation of terms leads to the equation

jzcothjz= Y By, o - (6)
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Substitution of 2iz for z leads to the equation

3

cotz = nz=:0 @

which gives the Maclaurin expansion for the cotangent. From the identity

(~1)"2% By, Z2n-1 (7)

2cot2z=cotz-tanz (8)

may be derived the equation

o (=1)mREM23 - 1)B,,
tanz=- ) —————— =0zl (9)
et (2n)
which gives the Maclaurin expansion for the tangent.
If z is real, then integration around a contour which is bounded by the real axis,
a line at 1 parallel to the real axis, and the imaginary axis, but does not contain the
points 0,1, leads to the equation

sin z¢ 1
fu eT‘_—ldt:%COth %Z*— Ey (< real) (10)

Substitution for cothjz its series expansion in terms of Bernoulli numbers, substitution
for sinzt its series expansion in powers of z{, and comparison of coefficients shows
that the even—ordered Bernoulli numbers are given by the equation

o t2n~1
BZnI—("l)"‘l-nf Tdt (11)
g €7~ 1
A change of variable in the integrand expresses the Bernoulli numbers in terms of
Riemann zeta functions of even order.

Values of Bernouili numbers have been obtained from Tables of the Higher
Mathematical Functions by Davis®®. They are listed in Table I at the same level of
accuracy as the other numbers which have been obtained through FLAP. Values of
Bernoulli numbers for use in the computer were computed by the method of Knuth
and Buckholtz?®®. The derivative of the nth power of the tangent is given by the equation

d

e tan™z = ntan™"!'z(1 + tan2z) (12)
Thus the derivative of a polynomial in powers of tan 2z remains a polynomial in powers
of tan z. The derivative of the power polynomial

N
Y a,tan™z (13)

n=0

is obtained by the transformation
a"*(n—l)a,‘,, +(n* l)a‘ﬂ‘l (14)

If a; is unity and all other coefficients a, are zero initially. then iteration of the
transformation gives all of the derivatives of tan z, from which numerical values for
the coefficients of the Maclaurin series can be computed. From the coefficients of the
Maclaurin series are computed the Bernoulli numbers.
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Bernoulli Polynomials

Bernoulli polynomials were derived from an unconventional generating function by
Whittaker and Watson!. Their polynomials were terminated with terms in z or z%
whereas the conventional polynomials are terminated with terms in 1 or z. The
conventional definition is to be preferred because then the polynomials are terminated
automatically when factorials of negative integers appear in the denominators of their
terms.

Bernoulli polynomials are defined by the equation

zt L tn
t = X Bala) - (15)
et-1 = n!

where B, (z) is the nth Bernoulli polynomial. Term by term multiplication of the scries
expansion for t/(e®—- 1) by the scries expansion for e*, and comparison of cocflicients
leads to the equation

n n!

Bn(2) = 2:‘0 e

B,z (16)

Thus the nth polynomial B,(z) is of the nth degree. Differentiation of the terms of
this polynomial n - m times is expressed by the equation

B,(t" M)(Z) B kgc (-m—z%)ﬁ B amt o
Special values for z = 0 are given by the equations
Bn(0) = Bn (m  n) (18)
and
B{m™(0) T%" B, (m ) (19)

Thus the Bernoulli numbers are the constants in the Bernoulli polynomiais
Subtraction of the terms in the generating equation from the same terms with ¢
replaced by z + 1 leads to the equation
4 t“
te*= 3 3B (z+1) - Bn(z)z - (201
no0 ) n!
Series expansion of e® and comparison of coefficients lead to the equation
B,(z + 1)-- Bp(z) - nz™! (21)

Differentiation of the terms of this equation n - m times is expressed by the cquation

B ™(z + 1) - B ™ (z) - m{” A ' (22)
Special values for z = 0 are given by the equations
B U (1) BN (0)  n (m - 1) (23)
and
B ™(1)  B{ ™(0) -0 (m 1) (21)
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Thus the Bernoulli polynomials are the same at both ends of the range 0> 2 < 1 if the
order n # 1.

A comparison of coefficients of the powers of ¢ in the identity
e(1~z)l e %t

-t
et -1 e t-1

(25)

shows that the Bernoulli polynomials satisfy the equation
Ba(1-2z) = (-1)"B,(2) (26)

Thus the even-ordered polynomials are symmetric and the odd-ordered polynomials
are antisymmetric with respect to the midpoint of the range 0 sz <1,
A comparison of coefficients of the powers of ¢ in the identity

—_— - (27)

shows that special values for z = 1 are given by the equation

B.(3) = (2" ™ - 1)B, (28)
Thus the Bernoulli polynomials have opposite signs at the midpoint and at the ends

of the range 0=2< 1.
Differentiation of the Bernoulli polynomials is expressed by the equation

Bn(z) = nB,.(z) (29)

Integration of the Bernoulli polynomials is expressed by the equation

1
1
f Bn(z) dz = -—— anl(l) o Brul(o)g (30)
o n+1

Thus the integral of a Bernoulli polynormial is zero in the range 0: 2z <1 if the order
n # 0.

Further differentiation of the Bernoulli polynomials is expressed by the cquation
Bi(z) =n(n - 1)B, »(2) (31)

The polynomial B (2z) of first order is monotonic with a uniform sign throughout each
side of the midpoint of the range 0= 2 < 1. The second decrivative of the next higher
odd--ordered polynomial has a uniform sign throughout either half of the range
0251, and the polynomial has roots only at 0, ; 1. By induction it may be inferred
that all higher odd--ordered polynomials have the same property The first derivative
of each even-ordered polynomial has a uniform sign throughout each side of the
midpoint of the range 0 <2z~ 1 Fach even-ordered polynomial has only two roots 1n
the range 0 = z = 1. The absolute value of every even - ordered polynomial is a maximum
at the ends of the range.

Euler—Maclaurin Expansion

An elegant derivation of the Euler—-Maclaurin formula has been given by Whittaker
and Watson' However, their unconventional definition of the Bernoulli polynomials
warrants a review of their derivation. They started with a formula which they attributed
to Darboux.

Let f(z) be analytic at all points on a straight line which joins a to z. and let p(t)

4
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be any polynomial of degree n in t. Then if 0=t <1, differentiation is expressed by
the equation

LT () ame e a s (2 - a))

m=|

= L (-0)™z - a)me™ ()™ a + (2 - a)t)
1

(- D™z - @)™ () (e + (2 - a)t) (32)

1
In the first summation on the right side of the equation the substitution of m + 1 for
m leads to the cancellation of all terms of the summations except the first term of

the first summation and the last term of the second summation. Thus the equation
can be reduced to

5} (=1)™(z - Q)™ ™)™ (a + (2 - a)t)

- (z - a)e™(t)f(a+ (z - a)t) + (-1)™(z — )™ ()™ V(a + (z - a)t) (33)

Inasmuch as ¢(t) is a polvnomial of nth degree, the nth derivative ¢™(t) is constant

and equal to ¢™(0) or ¢'™(1). Integration with respect to t from 0 to 1 gives the
equation

n
Ay
)

m

(-1)7(z = A" 6" PS) - 60 ™(a) |

o

=(-1)"z - a)™*! fl ()" (a + (z - a)t) dt (34)

0

Let the polynomial ¢(t) be identified with the polynomial B, (t).
Substitution of the special values for the two Bernoulli numbers of lowest order in

the Darboux identity, and substitutions of 2k for m and 2n for n lead to the
Euler—Maclaurin expansion'?!?

f(z) - fla) = 3(z ~ A){f(2) + f(a))
(z-a)*By

E, (k)

(z _ a)2n+l

+ = (zn—)' J" Bon (1)@ N a + (2 - a)t) dt (35)

0

re0(2) - 1(a)

Integration by parts in this equation continues the summation through additional
terms.

Addition of the nth term of the summation to the integral in the equation is
equivalent to the replacement of B,,(t) in the integrand by B,.(t) — Bz.. Let the
diflerence B,,(t) - B,, be replaced by its average value -B,,. Then the expansion is

5
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expressed by the equation

f(2) - f(a) = 3(z — a){f(z) + f(a)}

nt (z - Q)“sz

- T BT e s) - fe(a)]

2 (=)
B E:_(G'é%mif(znu)(a +(z - @)8) (36)

where 8 is some number in the range 056 < 1. The first term on the right side of
this equation expresses the trapezoidal rule for [ f'(t) dt, the summation provides a
correction for the trapezoidal rule, and the last’term provides an estimate of the
error in the correction.

Riemann Zeta Function
The Riemann zeta function ¢(s) is defined in terms of its argument s by the equations
> 1 1 ® gt
5) = — = ——dzx 37
()= L s F(S)Le’—l (37)

Direct evaluation of the series to an acceptable level of accuracy is not feasible for
a small value of s. In the special case where s is an even integer 2n, the Riemann
zeta function is given by the equation

_(C)™(@m)*" By,

2n) = 38
¢(2n) S(on) (38)
Otherwise application of the Euler—Maclaurin expansion gives the equation
*rg ! 1
(@=L G5t 5 R
Mil BZm F(S) 1 _
may (Bm)! T(s + 2m - 2) K°*3m-!

(2M)! T(s + 2M ~ 1) Ty (k + g)**2¥
Consideration of the magnitude of the remainder by Morris has indicated that if A~ 41
and sz 2, then M s 39 for an error of less than 4x107"% High-precision values of the
Riemann zeta function for integer values of the argument are listed in Table II. The
most accurate values which previously have been computed only had fifty digits?'
Gamma Function

The logarithm of the gamma function is defined by the equation

logl(1 +2)=~-yz+ L %i+logn—log(n+z)§ (40)
n=|

The first derivative is given by the equation

o

n n+=z

d - o
“logM(l +2)=—-y+ )
dz

n=i
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The higher derivatives are given by the equation

g m ARSI S
d—z"‘ logl"(1+z)=(‘1) (m—1)~“}=:‘ (n+z)m (42)

Thus the Taylor series expansion of the logarithm of the gamma function is given by
the equation

logl(l +2)=-vyz + ‘E: (—:I—)T—’:Li(l)z'" (43)

m=2

Addition of the Taylor series expansion for log(l + z) gives the equation

logl(R+2)=(1-y)z+ i (~1)m—g—("n—721:——1—} am (44)

m=2

Let logI'(2 + z) be expressed by a series in accordance with the equation

a,z2* (45)

™8

log(2 + z) = —

k

1
and let 1/T(2 + z) be expressed by a series in accordance with the equation

1 o0
_—= bpp2z™ 48
M2+2) 20 (46)
Differentiation and substitution gives the equation
(n+ Dbpa2™= T bpz™ T (k + 1)y, 2" (47)
0 m=0 k=0

™Ms

n

Comparison of coefficients gives the equation

n

(n+ )bpey = 1 (k+ 1)ags bay (48)
k=0

from which the coefficients can be computed by recurrence. Let 1/T(1 + 2) be expressed
by a series in accordance with the equation

f“(l_lw:?) = mz=° Cmz™ (49)
The coefficients are related by the equation
Cm = by + by (50)
The first two coefficients are given by the equations

Co =1 cy =7 (51

A high-precision value of 7 was obtained from the published literature!®?°

High - precision values of the coefficients in the convergent series are given for the
gamma function in Table llI, and are given for the digamma function in Table V.
The logarithm of the gamma function is expressed by the equation

N
. B,
logT(z) (2 Hlogz- 2+ log(2m) + m{:l Smiem Ll)zvz,,ﬁ (52)

High—precision values of the coefficients in the asymptotic series are given for the

7




- gamma function in Table IV, and are given for the digamma function in Table VI.

i Multiple~Precision Package

. MP, or Multiple—Precision Package is a col!lection of subroutines which have been
Ei developed by Brent?. A multiple--precision number is represented by an array of
4 floating—point numbers. The first number in the array defines the sign of the number.
N The next number in the array gives the exponent of the number. The remaining
i numbers in the array express the fraction of the number. Each successive number in
o the fraction is the coefficient of a progressively more negative power of the base. The
?'- number of coefficients in the composition of the fraction is unlimited. The number of
s bits in the base may have any value not exceeding half the number of bits in the

fraction of a floating--point number. Otherwise multiple -precision multiplication would
be unduly cumbersome. Included in the package are routines for arithmetic and special
functions.
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

TABLE 1
Bernoulli Numbers
B,

1.0000000000000000000000000000000000000000000000000000000000000000 £ 000
-5.0000000000000000000000000000000000000000000000000000000000000000 E-01
1.6666666666666666666666666666666666666666666666666666666666666666 E-01
0.0000000000000000000000000000000000000000000000000000000000000000 E 000
—3.3333333333333333333333333333333333333333333333333333333333333333 E-02
0.0000000000000000000000000000000000000000000000000000000000000000 E 000
2.3809523809523809523809523809523809523809523809523809523809523809 E-02
0.0000000000000000000000000000000000000000000000000000000000000000 E 000
--3.3333333333333333333333333333333333333333333333333333333333333333E-02
0.0000000000000000000000000000000000000000000000000000000000000000 E000
7.5757575757575757575757575757575757575757575757575757575757575757E-02
0.00000000000000000000000600000000000000000000000000000000000000000 E 000
-2.5311355311355311355311355311355311355311355311355311355311355311E-01
0.0000000000000000000000000000000000000000000000300000000000000000 E 000
1.1666666666666666666666666666666666666666666666666666666666666666 E 000
0.000000000000000000000000000000000000000000000C000000000000000000 E 000
-7.0921568627450980392156862745098039215686274509803921568627450980 E 000
0.0000000000000000000000000000000000000000000000000000000000000000 E 000
5.4971177944862155388471177944862155388471177944862155388471177944 E+01
0.0000000000000000000000000000000000000000000000000000000000000000 E 000
—5.2912424242424242424242424242424242424242424242424242424242424242E+02
0.0000000000000000000000000000000000000000000000000000000000000000 E000
6.1921231884057971014492753623188405797101449275362318840579710144 E+03
0.0000000000000000000000000000000000000000000000000000000000000000 E 000
-8.6580253113553113553113553113553113553113553113553113553113553113E+04
0.0000000000000000000000000000000000000000000000000000000000000000 E 000
1.4255171666666666666666666666666666666666666666666666666666666666 E+06
0.0000000000000000000000000000000000000000000000000000000000000000 E 000
—-2.7298231067816091954022988505747126436781609195402298850574712643 E+07
0.0000000000000000000000000000000000000000000000000000000000000000 E 000
6.0158087390064236838430386817483591677140064236838430386817483591 E~08
0.0000000000000000000000000000000000000000000000000000000000000000 E 000
-1.5116315767092156862745098039215686274509803921568627450980392156 E+ 10
0.0000000000000000000000000000000000000000000000000000000000000000 E000
4.2961464306116666666666666666666666666666666666666666666666666666 E+ 11
0.0000000000000000000000000000000000000000000000000000000000000000 E 000
-1.3711655205088332772159087948561632772159087948561632772159087948E+ 13
0.0000000000000000000000000000000000000000000000000000000000000000 E 000
4.8833231897359316666666666666666666666666666666666666666666666666 E+14
0.0000000000000000000000000000000000000000000000000000000000000000 E 000
-1.9296579341940068148632668144863266814486326681448632668144863266E+ 16
0.00000000000000000000006000000000000000000000000000000000000000000 E 000
8.4169304757368261500055370985603543743078626799557032115171650055E+ 17
0.0000000000000000000000000000000000000000000000000000000000000000 E 000
-4.0338071854059455413076811594202898550724637681159420289855072463 E+ 19
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45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

TABLE 1|
(Continued)

By

0.000000000000000000000000000000000000000000000000000000000GLVOLOU £ DVO
2.1150748638081991605601453900709219858156028368794326241134751773}F - 21
0.000000000000000000000000000000000000000000000000000000000000COCL k. QGL
—1.2086626522296525934602731193708252531781943546649429002370178840 - 23
0.00000000000000000000000000000000000000000000000000000000000000N0 F 0OO
7.50086674607696436685572007575757575757575757575757575757575757H7 b~ 24
0.00000000000000000000000000000000600000000000000000000000000000000 ¥ OO0
-5.0387781014810689141378930305220125786163522012578616352201257861 F - 26
0.0000000000000000000000000000000000000000000000000000000000000000 t GO0
3.65287764848181233351104308429711779448621553884711779448621553881 - 28
0.0000000000000000000000000000000000000000000000000000000000000000 E 00O
—2.8498769302450882226269146432910678160919540229885057471264367816 k- 30
0.0000000000000000000000000000000000000000000000000000000000000GNH0 E VOV
2.386542749968362764464598191921921497175141242937853107344632768 5 k- 32
0.00000000000000000000000000000000000000000000000000C000C000000Q00 ¥ OO0
—2.1399949257225333665810744765191097392674151161723874574218307692 . - 134
0.0000000000000000000000000000000000000000000000000000000000000000 F VO
2.0500975723478097569921733095672310251666666666666666666666666666 .- 1n
0.00000000000000000060060060000600000000000000000000000000000000000000 F OVO
—2.09380059113463784090951852900279701847092156862745098039215686::7 1 - 348
0.00000000000000000000000000060000000000000000000000000000000000000 + 0G0
2.27526964884635155596492603527692645814699654058898056302339:23549 F - 40
0.0000000000000000000000000000000000000000000000000000000000000000 F OV
—~2.62577102862395760473030497361582020814490003333333333333333334 313 k- 422
0.00000000000000000000000000000000000000000000000000000000000000VO ¥ OOV
3.2125082102718032518204792304264985243521941106167306871532223614 £ - 44
0.0000000000000000000000000000000000000000000000000000000000000000 £ 000
—4.1598278166794710913917074495262358936689603011346470789224934863 1 - 46
0.0000000000000000000000000000000000000000000000000000000000000000 £ 0OG
5.6920695482035280023883456219121058644480512971811666666666666666 F 48
0.0000000000000000000000000000000000000000000000000000000000000000 £ 000
—-8.2183629419784575692290653468617333014550892762886003333333:313333:3E~50
0.00000000000000000000000000000000000000000000000000000C000000CNGO F 000
1.2502904327166993016732339829702895524177196364448477501115129596 k- B
0.00000000000000000000000000000000000000000000000001000000000GOVLO0O F OLG
~2.0015583233248370274925329198813298768724220132825915915207486 147 F - H5
0.0000000000000000000000000000000000000000000000000000000000000000 F LA
3.367498291536437423339667690333875301621959894719384367232154618:4 11+ 57
0.0000000000000000000000000000000000000000000000000000000000000000 E VG
-5.94709705031354477186604968440515408405790715651069049304704 31085+ H4
0.000000000006000000000000000000000000000LV000000000000000000000000 F 00O
1.1011910323627977559564130790437691604630511444223148862699949716 - 62
0.000000000000000000000000000000000000000000000000000000000000000 F 0D
-2.135525954525350118865838501904 10656789732987391634692118045930304 F - 64
0.000000000000000000000000000000000000000600000000000000000000VOV00 E OGY
4.3328896986641192419616613059379206218451368511809109144986557880 .- 66
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TABLE Il
-~
K- Riemann Zeta Funclion
. n ¢(n)
e 1
; 2 .6419340668482264364724151666460251892189499012067984377355582293 E000
- 3 2020569031595942853997381615114499807649862923404988817922715553 E 00C
H 4 08232323371113819151600369654116790277475098519187269076829762154 E 000
N 5 .03692775514336992633136548645703416805708091985019128119741926773 E 000
f‘ 6 0173430619844491397145179297909205279018174900328535618424086640 E 000
i 7 .0083492773819228268397975498497967595998635605652387064 172831365 FE 000
. 8 .0040773561979443393786852385086524652589607906498500203291102026 E 000
K 9 .0020083928260822144178527692324120604856058513948887565485966159 E000
e 10 .0009945751278180853371459589003190170060195315644775172577889946 E 000
i 11 .0004941886041194645587022825264699364686064357582086171191414361 EO0QO
' 12 .0002460865533080482986379980477396709604160884580034045330499521 E000
3 13 .0001227133475784891467518365263573957142751058955098451367026716 E 000
3 14 .0000612481350587048292585451051353337474816961691545494827552022 E 000
{ 15 .000030588236307020 1935517285106450625876273487068581775065699328 E 000
. 16 .0000152822594086518717325714876367220232373889904715311531052035 E 000
' 17 .0000076371976378997622736002935630292130882490902626730953798439 E 000
18 .0000038172932649998398564616446219397304546972189533311431744299 E 000
19 .0000019082127165539389256569577951013532585711448386302359330467 E 000
20 .0000009539620338727961131520386834493459437941874105957500564898 E 000
;; 21 .0000004769329867878064631167196043730459664466947849376002074873 E 000
7 22 .0000002384505027277329900036481867529949350418217796582698496031 E 000
L 23 .0000001192199259653110730677887188823263872549977845198586032257 £ 000
24 .0000000596081890512594796124402079358012275039188373027958642469 E 000

X
0N
oy

.00000002988035035146522801860637050693660118447309195433123986813 E000

o 26 .0000000149015548283650412346585066306986288647881678859105474359 E000
t 27 .0000000074507117898354294919810041706041194547190318825658299932 £ 000
28 .0000000037253340247884570548192040184024232328930592958115197693 £ 000
29 .0000000018626597235130490064039099454169480616653304692006657748 E000
30 .0000000009313274324196681828717647350212198135679551368161850086 E000
31 .0000000004656629065033784072989233251220071062691853369473073729 E000
32 .0000000002328311833676505492001455975940495024829822845303110776 E000
33 .0000000001164155017270051977592973B8354563098516522471727635932565 E 000
34 .0000000000582077208790270088924368598910630541731226046172158550 E 000
35 .0000000000291038504449709968692942522788404641069819874330322562 E 000
36 .0000000000145519218910419842359296322453184209838088941240380691 E 000
37 .0000000000072759598350574810145208690123380592648509255554661077 F. 000
38 .0000000000036379795473786511902372363558732735126460283848974699 E 000
39 .00000000000181898965030706594758483210073006850305833096186640705 E000Q
40 .0000000000009094947840263889282533118386949087538600009908788285 E 000
41 .0000000000004547473783042154026799112029488570339045299114386:280 £ 000
42 .0000000000002273736845824652515226821577978691213829821989158725 E 000
43 .00000000000011366868407680227849349104838025906437435902842517998 E 000
44 .0000000000000568434198762758560927718296752406855305715889938835 E 000

45

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

.0000000000000284217097688930185545507370494266207436882653098338 £ 000




TABLE 11
(Continued)

n ¢(n)

46 1.0000000000000142108548280316067698343071417395376786986056335519 1 LLU
47 1.0000000000000071054273952108527128773544799568000227420435936876 + D00
48 1.0000000000000035527136913371136732984695340593429921456555030626 F 01
49 1.000000000000001776356843579120327473349014400279570155508575326:9 £ (i1
50 1.0000000000000008881784210930815903096091386391386325608871464644 F (00
51 1.0000000000000004440892103143813364197770940268121336459603070244 000
52 1.0000000000000002220446050798041983999320094204653964236654 3294138 £ 000
53 1.0000000000000001110223025141066133720544569921382702483222900442 £ 000
P 54 1.0000000000000000555111512484548124372373659050943028167235506165 K000
T 55 1.00000000000000002775557562136124172581632453854069768984890374136 1 G0H0
P 56 1.0000000000000000138777878097252327628390949065002219077186216861 £ 000
S 37 1.00000000000000000693889390454415369744608532624980927483587417483 + 000
58 1.0000000000000000034694469521659226247442714961093346219504706270 1 0G0
59 1.0000000000000000017347234760475765720489729699375953074780541784Y F 00w
60 1.0000000000000000008673617380119933728342055067342951487907141457 £ (06U
61 1.0000000000000000004336808690020650487497023565906241361254780116 1 400
62 1.0000000000000000002168404344997219785013910168320984576157401040 1 000
63 1.00000000000000000010842021724942414063012711165461382589361474378 £ GO0
64 1.0000000000000000000542101086245664541091870040438863371506342238+ 000
65 1.000000000000000000027105054312234688319546213119497764318887:816 1 000
y 66 1.000000000000000000013552527156101164581485233996826928328981877% 2+ 001
§s 67 1.000000000000000000006776263578045189097995298741556686205981278% + 000
68 1.00000000000000000000338813178902079681808570310045083683403115851. (N0
69 1.00000000000000000000169406589450979916540649274712486194030364 17 F 00
70 1.00000000000000000000084703294725469983482469926091B21675222813861 1. G
71 1.000000000000000000000423516473627283334786227048335793440881097 1 F 0
72 1.0000000000000000000002117582368136194731844209439818002586941761 F.000
73 1.0000000000000000000001058791184068023385226500153923B398470699930 F, 000
74 1.00000000000000000000005293955920333887032381391230291850558663756 F 00
75 1.0000000000000000000000264697796016985296113411668420387155925061 F Nl
76 1.00000000000000000000001323488980084899080309451025094498966432.36 1. U
77 1.0000000000000000000000066174449004244040673552453323082200147137% F ¢
78 1.0000000000000000000000033087224502121715889469563843144048092764 G000
79 1.0000000000000000000000018543612251060756462299236771810488297721 F 000
80 1.0000000000000000000000008271806125530344403671105616744072404004 000
81 1.00000000000000000000000041359030627651609260093824555081412872.,7 F o
82 1.000000000000000000000000206795153138257670439596791934689501 11340+ it
83 1.00000000000000000000000010339757656912870993284095591745B6091 107 1 i
84 1.000000000000000000000000051698788284564313204101332166:35551 24436 F o
85 1.0000000000000000000000000258493941422821426812776 1770845022226 F i
86 1.0000000000000000000000000129246970711410667003811261 1833186530421 1l
87 1.000000000000000000000000006462348535570531803438002161 1221670661 F
88 1.0000000000000000000000000032311742677852653861348141 1802667717 1«
89 1.00000000000000000000000000161558713389263252120601 1405705827270 b
90 1.0000G00000000000000000000008077935669463162033158738186:3408947 <+ ..
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TABLE III

Convergent Series for Gamma Function

3

Cn

1.00000000000000000000000000000600000000000000000000000000000000000 E 000

0.5772156649015328606065120900824024310421593359399235988057672348 £ 000
—-0.6558780715202538810770195151453304812797663804785843472923624456 E 000
—-0.0420026350340952355290039348754298187113945004011060935220658128 E 000

0.1665386113822914895017007951021052357177815022471743405704689031 E000
-0.04219773455554433674820830128918739130165268418968224863769188732 E 000
—-0.0096219715278769735621149216723481989753629422521130021051388626 E 000

0.0072189432466630995423950103404465727099048008802383180010947811 E 000
-0.0011651675918590651121139710840183886668093337953840574434075052 E000
~0.0002152418741149509728157299630536478064782419233783387503502674 E 000
10 0.0001280502823881161861531986263281643233948920996936772149005458 E000
11 -0.0000201348547807882386556893914210218183822948332979791152611626 E000
12 -0.0000012504934821426706573453594738330922423226556211539598153499 E0GO
13 0.0000011330272319816958823741296203307449433240048386210756542955 E 000
14 -0.000000205633841697760710345015413002057283651579026293379453468 E 000
15  0.0000000061160951044814158178624886828553428672758657197123208673 E 000
16  0.0000000050020076444692229300556650480599913030446127424944817189E000
17 -0.0000000011812745704870201445881265654365055777387595049325875909 E 000
18  0.0000000001043426711691100510491540332312250191400709823125812121 E000
19  0.0000000000077822634399050712540499373113607772260680861813928388 E 000
20 -0.0000000000036968056186422057081878158780857662365709634513609951 E000
21 0.0000000000005100370287454475979015481322863231802726886069707632 E000
22 -0.0000000000000205832605356650678322242954485523741974609108081014 E 000
23 -0.0000000000000053481225384230179823700173187279399489897154781206 E000
24  0.0000000000000012267786282382607901588938466224224281654557504563 E 000
25 -0.0000000000000001181259301697458769513764586842297831211557291804 E 000
26  0.0000000000000000011866922547516003325737772429286740710884940736 E 000
27  0.0000000000000000014123806553180317815558039475667090370863507503 £000
28 -0.0000000000000000002298745684435370206592478580633699260284505931 £ 000
29  0.0000000000000000000171440632192733743338396337026725706681265606 £ 000
30 0.0000000000000000000001337351730493693114864781395122268022875059 £.000
31 -0.0000000000000000000002054233551766672789325025351355733796682037 1000
32  0.0000000000000000000000273603004860799984483150990433098201486531 E 000
33 -0.0000000000000000000000017323564459105166390574284515647797990697 E 000
34 -0.0000000000000000000000000236061902449928728734345073542753100792 E 000
35  0.0000000000000000000000000186498294171729443071841316187866689894 E 000
36 --0.0000000000000000000000000022180956242071972043997169136268603797 E GO0
37  0.0000000000000000000000000001297781974947993668824414486330594165E 000
38  0.0000000000000000000000000000011806974749665284062227454155099715 E 000
39 -0.0000000000000000000000000000011245843492770880902936546742614395E 000
40  0.0000000000000000000000000000001277085175140866203990206677751124 E000
* 41 -0.0000000000000000000000000000000073914511696151408234612893301085 E 000
t 42  0.00000000600000000000000000000000000113475025755421576095416525946 E000
E_ 43  0.0000000000000000000000000000000000463913464105872202994480490795 E 000
|
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44 -0.0000000000000000000000000000000000053473368184391988750774181967 E 000
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TABLE III
(Continued)

Cn

0.0000000000000000000000000000000000003207995923613352622861237273 E 000
-0.0000000000000000000000000000000000000044458297365507568821015903 E 000
~0.0000000000000000000000000000000000000013111745188819887123010584 E 000

0.0000000000000000000000000000000000000001647033352543813886818259 E 000
-0.0000000000000000000000000000000000000000105623317850358121860056 E 000

0.0000000000000000000000000000000000000000002678442982643049478354 E 000

0.0000000000000000000000000000000000000000000242471549485178268967 E 000
-0.00000000000000000000000000600000000000000000037365878345356125540 E 000

0.0000000000000000000000000000000000000000000002628332980940195449 E 000
—-0.0000000000000000000000000000000000000000000000092981759953768862 E 000
-0.0000000000000000000000000000000000000000000000002327942418699470 E 000

0.0000000000000000000000000000000000000000000000000616962083524438 E 000
-0.0000000000000000000000000000000000000000000000000049282955867709 E 000

0.00000000000000000000000000060000000000000000000000002183513183414 E 000
~0.0000000000000000000000000000000000000000000000000000012187221891 E000
~0.0000000000000000000000000000000000000000000000000000007117108841 E000

0.0000000000000000000000000000000000000000000000000000000692050405 E 000
~-0.0000000000000000000000000000000000000000000000000000000036764384 E 000

0.00000000000060000000000000000000000000000000000000000000000856309 E 000

0.00000000000000000000600000000000000000000000000000000000000049630 E 000
-0.0000000000000000000000000000000000000000000000000000000000007154 E 000

0.0000000000000000000000000000000000000000000000000000000000000455 E Q00
-0.0000000000000000000000000000000000000000000000000000000000000016 E 000
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TABLE IV

Asymptotic Series for Gamma Function
__Bem
2m(2m - 1)
8.3333333333333333333333333333333333333333333333333333333333333333E-02
- rardrdrdeardririrardededrdedrdedrdrdrdrardedrardrdrirdrdrdraraedrardedrirdededrdede drardrdrardrde e drardrardrdedrdrde drardedr i W 1 X
7.9365079365079365079365079365079365079365079365079365079365079365 E-04
5.9523809523809523809523809523809523809523809523809523809523809523 E—04
8.4175084175084175084175084175084175084175084175084175084175084175E-04
1.9175269175269175269175269175269175269175269175269175269175269175E-03
6.4102564102564102564102564102564102564102564102564102564102564102E-03
2.9550653594771241830065359477124183006535947712418300653594771241 E-02
1.7964437236883057316493649001588939669435025472177174963552672531 E-01
1.3924322169059011164274322169059011164274322169059011164274322169E 000
1.3402864044168391994478951000690131124913733609385783298826777087E+01
1.5684828462600201730636513245208897382810426288687158252375643679 E+02
2.1931033333333333333333333333333333333333333333333333333333333333E+03
3.6108771253724989357173265219242230736483610046828437633035334184 E+04
6.9147226885131306710839525077567346755333407168779805042318946657E+05
1.5238221539407416192283364958886780518659076533839342188488298545E+07
3.8290075139141414141414141414141414141414141414141414141414141414E+08
1.0882266035784391089015149165525105374729434879810819660443720594E+10
3.4732028376500225225225225225225225225225225225225225225225225225E+11
1.2369602142269274454251710349271324881080978641954251710349271324E+13
4.8878806479307933507581516251802290210847053890567382180703629532E+14
2.1320333960919373896975058982136838557465453319851702055948769801 E+ 16
1.0217752965257000775652876280535855003940110323089046493301812450E+ 18
5.3575472173300203610827709191969204484849040543658816499867814010E+19
3.0615782637048834150431510513296227581941867656153370439084724799E+21
1.8999917426399204050293714293069429029473424589961770871870760882E+23
1.2763374033828834149234951377697825976541633608829901448239746816 E+25
9.2528471761204163072302423483476227795193312434691745036572622779 E+26
7.2188225951856102978360501873016379224898404202596887699474675389E+28
6.0451834059958569677431482387545472860661443959671962074063016080E+30
5.4206704715700945451934778148261000136612021857923497267759562841 E+32
5.1929578153140819467001947643918576846997062713974478680361033302E+34
5.3036588551197005966548392430697586436992926354055490979566255361 E+36
5.7633253481649640138944358507809925551907375621890547263681592039 E+ 38
6.6511557148484539375165201458105559510397393594549289589093630734 E+40
8.1373783581366805387161726320935756918406891649738792623679450044 E+42
1.0536966953357141803754804927641810189648373375011415525114155251 E+45
1.4418180599962206261805377801511812809570332063664211111111111111E+47
2.0817356522089565462424808241263562311317343264149979189335880113 E+49
3.1670226634886661827413495567742561342918069830420753030391544616 E+51
5.0700064612111373431792648153174876567629628044555621307319401061 E+53
8.5299728203005518816208400522162278887807044700382824140089545446 E+55
1.5064172809340598576695117360379879076101930840250545639808412745E+58
2.7893494703831636871288381686312781712347568886054688103193038537E+60
5.4093504352860415005763561871884152582336290276915242378260371885E+62
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TABLE V
Convergent Series for Digamma Function
ney,

0.0000000000000000000000000000000000600000000000G6000000000000000000 E 000
0.5772156649015328606065120900824024310421593359399235988057672348 E 000
-1.3117561430405077621540390302907809625595327609571686945847248913 E000
—-0.1260079051022857065870118046262894561341835012033182805661974389 E000
0.6661544455291659580068031804084209428711260089886973622818756127 E 000
-0.2109886727777216837410415064459369565082634209491124318845943663 E 000
—-0.0577318291672618413726895300340891938521776535126780126308331757 E 000
0.0505326027266416967967650723831260089693336061616682260076634682 E 000
—0.0093213407348725208969117686721471093344746703630724595472600422 E 000
—-0.0019371750670345587553415696674828302583041773104050487531524074 E000
0.0012805028238811618615319862632816432339489209969367721490054583 E000
—-0.0002214834025886706252125833056312400022052431662777702678727893 E 000
—-0.0000150059217857120478881443136859971069078718674538475177841990 E 000
0.0000147293540157620464708636850642996842632120629020739835058415E000
—-0.0000028788737837686499448302157820288019711176106368107312348556 L 000
0.0000000917414265672212372679374802428301430091379857956848130098 12000
0.0000000800321223115075668808906407689598608487138038799117075032 EQQ0
—-0.0000000200816676982793424579981516124205948215589115838539890463 E 000
0.000000001878168081043980918884772598162050344521277681€264618179 E000
0.00000000014786300535819635382694880891585476729529363744614658375 E 000
—0.0000000000739361123728441141637563175617153247314192690272199027 E 000
0.000000000010710777603654399555932510778012786785726460746386027-1 £ 000
—0.0000000000004528317317846314923089344998681522323441400377782323 £ 000
—0.0000000000001230068184067294135945103983307426188267634559967756 £ 000
0.0000000000000294426870777182589638134523189381382759709380109517 E000
—0.0000000000000029531482542436469237844114671057445780288932295121 E 000
0.0000000000000000308539986235416086470742083161455258483008460712 E 000
0.0000000000000000381342776935868581020067065843011440013314702590 E000
—0.0000000000000000064364879164190365784589400257743579287966166079F 000
0.0000000000000000004971778333589278556813493773775045493756702581 E 000
0.0000000000000000000040120551914810793445943441853668040686251781 E.000
—-0.0000000000000000000063681240104766856469075785892027747697143175E 000
0.0000000000000000000008755296155545599503460831693859142447568997 FE 000
—0.0000000000000000000000571677627150470490888951389016377333693017 E000
—-0.0000000000000000000000008026104683297576776967732500453605426949 000
0.0000000000000000000000006527440296010530507514446066575334146310F 000
~0.0000000000000000000000000798514424714590993583898088905669736703 E 000
0.000000000000000000000000004801793307307576574650333599423198-1127 E 000
0.0000000000000000000000000000448665040487280794364643257893789177 E 000
~0.0000000000000000000000000000438587896218064355214525322961961409 £ 000
0.0000000000000000000000000000051083407005634648159608267110044985 E 000
-0.0000000000000000000000000000003030494979542207737619128625344506 000
0.0000000000000000000000000000000004765951081727706196007494089771 E 000
0.0000000000000000000000000000000019948278956552504728762661104 194 E 000
—-0.0000000000000000000000000000000002352828200113247505034064006552 F. 000
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N TABLE V
’ ! (Continued)

:‘ ! n ne,

f‘ 45  0.0000000000000000000000000000000000144359816562600868028755677558 E 000
i 46 -0.0000000000000000000000000000000000002045081678813348165766731561 E000 i
P . 47 -0.0000000000000000000000000000000000000616252023874534695063497492 E 000 )

- 48  0.0000000000000000000000000000000000000079057600922103066567276447 E 000 !
S 49 -0.0000000000000000000000000000000000000005175542574667547971142749 EQ00
+4 50 0.0000000000000000000000000000000000000000133922149132152473917748 E0QQ
% 51  0.000000000000000000000060000600000000000000012366049023744091717332E000

52 -0.0000000000000000000000000000000000000000001943025673958518528097 E 000
53  0.0000000000000000000000000000000000000000000139301647989830358801 E 000
54 -0.0000000000000000000000000000000000000000000005021015037503518601 E0QO
55 -0.0000000000000000000000000000000000000000000000128036833028470882 E 000 1
56  0.0000000000000000000000000000000000000000000000034549876677368569 E 000
57 -0.0000000000000000000000000000000000000000000000002809128484459464 E 000
58  0.0000000000000000000000000000000000000000000000000126643764638041 E 000 }
i 59 -0.0200000000000000000000000000000000000000000000000000719046091597 E 000 ]

: 60 -0.0000000000000000000000000060000000000000000000000000427026530499 E 000
61 0.0000000000000000000000000000000000000000000000000000042215074731 E000
62 -0.0000000000000000000000000000000000000000000000000000002279391850 E 000
63  0.0000000000000000000000000000000000000000000000000000000053847517 E 000
64  0.00000000000006000000000000000000000000000000000060000600003176349 E 000
65 -0.0000000000000000000000000000000000000000000000000000000000465029 E 000
66  0.0000000000000000000000000000000000000000000000000000000000030041 E 000
67 -0.0000000000000000000000000000000000000000000000000000000000001084 E 000
68 -0.0000000000000000000000000000000000000000000000000000000000000002 E 000
69  0.00000000000000000000000000G0000000000000000000000000000000000003 E 000
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TABLE VI

Asymptotic Series for Digamma Function
Bzm
2m
8.3333333333333333333333333333333333333333333333333333333333333333E-02
8.3333333333333333333333333333333333333333333333333333333333333333E-03
3.9682539682539682539682539682539682539682539682539682539682539682 E-03
4.1666666666666666666666666666666666666666666666666666666666666666 E—03
7.5757575757575757575757575757575757575757575757575757575757575757 E-03
2.1092796092796092796092796092796092796092796092796092796092796092 E-02
8.3333333333333333333333333333333333333333333333333333333333333333E-02
4.4325980392156862745098039215686274509803921568627450980392156862 E-01
3.0539543302701197438039543302701197438039543302701197438039543302 E 000
2.6456212121212121212121212121212121212121212121212121212121212121 E+01
2.8146014492753623188405797101449275362318840579710144927536231884 E+02
3.6075105463980463980463980463980463980463980463980463980463980463 E+03
5.4827583333333333333333333333333333333333333333333333333333333333E+04
9.7493682385057471264367816091954022988505747126436781609195402298 E+05
2.0052695796688078946143462272494530559046688078946143462272494530E+07
4.7238486772162990196078431372549019607843137254901960784313725490E+08
1.2635724795916666666666666666666666666666666666666666666666666666 E+10
3.80879311252453668811553022079337868811553022079337868811553022079E+11
1.2850850499305083333333333333333333333333333333333333333333333333E+13
4.8241448354850170371581670362158167036215816703621581670362158167E+14
2.0040310656516252738108421663238938986447292095132626694088488108E+16
9.1677436031953307756992753623188405797101449275362318840579710144E+18
4.5979888343656503490437943262411347517730496453900709219858156028E+19
2.5180471921451095697089023320225526107879049055519643754937672584 E+21
1.5001733492153928733711440151515151515151515151515151515151515151 E+23
9.6899578874635940656497942894654088050314465408805031446540880503 E+24
6.7645882379292820990945242301798477675670658126798477675670658126 E+26
5.0890659468662289689766332915911925287356321839080459770114942528E+28
4.1147288792557978697665486067619336158192090395480225988700564971 E+30
3.5666582095375556109684574608651828987790251936206457623697179487E+32
3.3066089876577576725680214670439210083333333333333333333333333333E+34
3.2715634236478716264211227015668703413608149509803921568627450980 E+ 36
3.4473782558278053878256455079953431184045402130136069136718065984 E+ 38
3.8614279832705258893092720200232650119777941666666666666666666666 E+ 40
4.5892974432454332168863989006092836062174201580239009816474605206 E+42
5.7775386342770431824884825687864387412068893071314542762812409531 E+44
7.6919858759507135167410075971785214384433125637583333333333333333E+46
1.0813635449971654696354033351133859607177749047748158333333333333E+49
1.602936452200896540606710234577294297971435431339548397578862768B7E+51
2.5019479041560462843656661498516623460905275166032394894009320246 E+53
4.1067052335810212479752045004071650019779998716090053258928714859E+55
7.0798774408494580617452972433394691476879847101317744036274322720E+57
1.2804546887939508790190849756322897214686641214212963793837150833 E+60
2.4267340392333524078020892067092120089742384930867578649777943527E+62
4.8143218874045769355129570065976895798279298346454565716651730978 E+64
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