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ABSTRACT

The purpose of this article is to create a general framework for the study of parallel
algorithms. A taxonomy of parallel algorithms, based on their relations to parallel computer
architectures, is introduced. Examples of parallel algorithms for many architectures are given;
they include algorithms for SIMD array processors, for MIMD multiprocessors, and for direct
chip implementations. By presenting these algorithms in a single place, issues and techniques

in designing algorithms for various types of parallel architectures are discussed and
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SECTION INTRODUCTION 1

l. Introduction

There is a larce body of lilerature on parailel aigorithms. Parallel algorithms have been
studied since the early sixties (see the survey [Miranker 71)), although at that time no
parallel computers had been constructed. It has always been the case that many researchers
find designing parallel algorithms fascinating and challenging, regardless of whether or not
their algorithms will be used in practice. Increasing interests in parallel algorithms are
created by the emergence of large scale parallel computers in the past decade. As a result, a
variety of algorithms have becn designed for various parallel computer architectures. For
surveys of paralle! architectures and parallel algorithms see [Anderson and Jensen 75, Stone
75, Kung 76, Enslow 77, Kuck 77, Ramamoorthy and Li 77, Sameh 77, Heller 78, Kuck 78). The
recent advent of large scale integration technoiogy has further stimulated interests in parallel
algorithms. Algorithms have been designed for direct chip implementation (see, e.g., [Kung
79]). Hence there is a vast amount of parallel algorithms known today, designed from many
different viewpoints.

This arlicle presents many examples of parallel algorithms and studies them under a
uniform framework. In Section 2 we identify three imporlant attributes of a parallel algorithm
and classify parallel algorithms in lerms of these attributes. OQOur classification of parallel
algorithms corresponds naturally to that of parallel architectures. Algorithms for synchronous
parallel computers are considered in Section 3, where examples of algorithms using various
communication geomelrics are presented. Seclion 4 considers algorithms for asynchronous
parallel computers. In that section, we discuss a number of techniques to deal with the
difficulties arising from the asynchronous behavior of computation, and our examples are
mainly drawn from results in concurrent database systems. Section 5 contains some
concluding remarks,

The author hopes that by presenting parallel algorithms of many different types in a single
place, this article can be useful to readers who wish to understand the basic issues and
techniques in designing parallel algorithms for various architectures. The article can be
useful as well to readers who wish t0 know what parallel algorithms are available, in order to
decide on the best way to design or choose a parallel architecture.
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2. The Space of Parallel Algorithms: Taxonomy and Relation to
Parallel Architectures

2.1 Introductlion

We vigw a parallel algorithm as a collection of independent task modules which can be
executed in parallel and which communicale with each other during the execution of the
algorithm, In Section 2.2, we identify thrce orthogonal dimensions of the space of parallel
algorithms: concurrency control, module granularily, and communication geomeliry. Along
each dimension, we illustrate some important positions that parallel algorithms can assume,
but no altempt will be made to list all possible positions. In Section 2.3, we characterize
parallel algorithms that correspond to three important parallel architectures along the
concurrency conlrol and module granularity dimensions. In Section 2.4, this characterization
together with the third dimension -- communicalion geometry -- forms a taxonomy for
parallel algorithms. Our taxonomy is crude and is by no means meant to be complete. The
main purpose of introducing it here is to provide a framework for later discussions in this
paper. We hope that future work on the taxonomy will make it possible to unambiguously
classify parallel algorithms at a conceptual level, and to relate each parallel algorithm to those

parallel architectures to which it naturally corresponds.

2.2 The Three Dimensions of the Space of Parallel Algorithms

Concurrency Control

In a parallel algorithm, because more than one task module can be executed at a time,
concurrency conirol is needed to ensure the correctness of the concurrent execution. The
concurrency control enforces desired interaclions among task modules so that the overall
execulion of the parallel algorithm will be correct. The leaves of the tree in Fig. 2-1
represent the space of concurrency controls which can be used in parallel algorithms. For
example, the left most leaf represents the concurrency control of an algorithm whose task
modules execule in lock-step the same code broadcast by the central control, while the
second left most leaf represents a synchronous distributed control achieved by simple local
control mechanisms.

Module Granularity

The module granularily of a paralle! algorithm refers to the maximal amount of computation
a typical task module can do before having to communicate with other modules. The module
granularity of a parallel aigorithm reflects whelher or not the algorithm tends to be
communicalion intensive. For example, a paraliel algorithm with a small module granularity
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Figure 2-1: A classification of concurrency controis of parallel algorithms - leaves of the
tree representing various types of concurrency controls.

will require frequent inlermodule communication. In this case, for efficiency reasons it may
be desirable o provide proper data paths in hardware to facilitale the communication. For
the purpose of this paper, we shall classify module granuiarities of parallel algorithms into
only three groups. Sce Fig. 2-2.

{MODULE GRANULARITY]
|

[ | |
[SMALL CONSTANTS) [SMALL] {LARGE)

- Figure 2-2: A classification of module granularities of paraliel algorithms.

Communication Geometry

S

Suppose that task modules of a parallel algorithm are connected to represent intermodule
communication. Then a geometric fayout of the resulting network is referred to as the
communication geometry of the algorithm. The leaves of the tree in Fig. 2-3 represent the
space of communicalion geometries. For example, leal HEXAGONAL represents communication
geometries that correspond to regular 2-dimensional hexagonal arrays (see Fig. 3-9 (b)).

2.3 Matching Parallel Algorithms with Parallel Architectures

It is straightforward for one to assess the matching between parallel algorithms and
parallel archilectures along the communication geometry dimension. Here we discuss the less
obvious matching along the other two dimensions: concurrency control and module
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Figure 2-3: A classification of communication geometry of parallel algorithms - leaves of the
tree representing various types of communication structures.

granularity, We consider three archilectures and their matching algorithms that are relevant
to our discussions in Sections 3 and 4.

SIMD and MIMD Machines and Aigorithms

The notion of single-instruction stream multiple-data stream (siMD) and multiple-instruction
stream multiple-data strcam (MIMD) parallel computers [Flynn 66] is often used in the
literature for classifying parallel computers. With a SIMD machine such as ILLIAC IV [Barnes
et al. 68], one ctream of instrucltions issued by the central control unit controls all the
processors, each operating upon its own memory synchronously. With a MIMD machine such
as C.mmp [Wulf and Bell 72), Cm* [Fuller, et al. 77), or Pluribus [Heart et al. 73], the
processors have indepcndent instruction counters, and operate asynchronously on shared
memories. SIMD machincs correspond to synchronous lock-step algorithms that require
central controls, whereas MIMD machines correspond to asynchronous algorithms with
relatively large granularities [Kung 76). Aigorithms thal match with SIMD and MIMD machines
are called SIMD and MIMD algorithms, respeclively. See Fig. 2-4.

Systolic Machines and Algorithms

Developments in microclecironics have revolutionized computer design. Large Scale
Integration (LSI) technology has increased the number and complexity of components that can
fit on a chip. In facl, component density has been doubling every one-to-two years for more
than a decade. Today a single chip can contain hundreds of thousands of devices. As a
resuit, machines-on-a-chip have emarged; these machines can be used as special purpose
devices attached to a conventional computer. "Systolic machines” represent one class of such
machines that have regular structures. Intuilively a systolic machine is a network of simple
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CONCURRENCY CONTROL MODULE GRANULARITY
SYSTOLIC DISTPIHUTED CONTROL ACHIEVED BY SIMPLE SMALL CONSTANTS

LOCAL CONTROL MECHANISMS,
LOCK STEP IN GENERAL

SIMOD CENTRALIZED, SMALL CONSTANTS,

LOCK STEP SMALL, OR LARGE
(SINGLE-INSTRUCTION MULTIPLE-DATA STREAM)

MIMD VIA SHARED DATA, LARGE
ASYNCHRONOUS
(MULTIPLE-INSTRUCTION MULTIPLE-DATA STREAM)

Figure 2-4: Characlerizations of parallel algorithms that match with systolic, SIMD, AND MIMD
machines, along the concurrency control and module granularity dimensions.

and primitive processars that circulate dala in a regular fashion [Kung and Leiserson 79]
The word "systole” was borrowed from physiologists who use it to refer to the rhythmically
recurrent contractions of the heart and arleries which pulse blood through the body. For a
systolic machine, the function of a processor is analogous to that of the heart. Each
processor regularly pumps dala in and oul, ®ach time performing some shoit computation, so
that a regular flow of data is kept up in the network. At every processor the control for

communication and computation is very simple, and the storage space is only a small constant,
independent of the size of the network. For a low cost and high performance chip
implementation, it is crucial that the geomelry of the communication paths in a systolic
machine be simple and regular. The geometric problem will be treated in detail in Section 3.
Systolic machines correspond (o synchronous algorithms that use distribuled control achieved
by simple local control mechanisms and that have {(small) constant module granularities.
Algorithms that malch wilh systolic machines are called systolic algorithms, See Fig. 2-4.
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2.4 A Taxonomy for Parallel Algorithms

Let {CONCURRLNCY CONTROLS}, {MODULE GRANULARITIES}, and {COMMUNICATION GEOMETRIES} be the
sets of leaves in Fig. 2-1, 2-2, and 2-3, respectively. Then the cross product {CONCURRENGY
CONTROLS jx {MODULE GRANULARITIES}x {COMMUNICATION GEOMETRIES} represents_the space of parallel
algorithms. One could give a taxonomy for parallel algorithms which classifies algorithms in
terms of their positions in this three-dimensional space, but the space is seen to be large and
contains quite a few uninteresling cases. We therefore restrict ourselves to a small subspace
which nevertheless containg, we believe, most of the interesting and significant parallel
algorithms, This subspace is the cross product {sysToLIC, SIMD,
MIMD }x {COMMUNICATION GEOMETRIES}, where SYSTOLIC, SIMD AND MIMD are three particular positions
in the space {CONCURRENCY CONTROLS}x{MODULE GRANULARITIES} that represent systolic, SIMD, AND
MIMD algorithms, respectively {(c.f. Fig. 2-4).

We name algorithms in {5YSTOLIC, SIMD, MIMD}x {COMMUNICATION GEOMETRIES} in a natural way.
For example, an algorithm is called a systolic algorithm using a hexagonal array, if it is
systolic and its communication gcometry is a hexagonal array.

Generally speaking, among {he three types of algorithms (SYSTOLIC, 5IMD and MIMD), systolic
algorithms are most structured and MIMD algorithms are least structured. For a systolic
. algorithm, task modules are simple and interactions among them are frequent. The situation is
reversed for MIMD algorithms.  Systolic algorithms are designed for direct hardware
implementations, while MIMD algorithms are ddésigned for executions on general purpose
multiprocessors. SIMD algorithms may be seen as lying between the other two types of
algorithms. Using the central control, SIMD algorithms can broadcast paramelers and handle
exceptions rather easily. These reasons make SIMD algorithms atiractive in some cases.

In summation, along the concurrency control and module granularity dimensions we have
classified parallel algorithms into three classes: SYSTOLIC, SIMD, and MIMD. Each class of
algorithms can further adopt various communication gcometries. Figure 2-5 presents
examples in the space {SYSTOLIC, SIMD, MiMD}x{COMMUNICATION GEOMETRIES}. Most of these
parailel algorithms will be discussed in the rest of the paper. Systolic and SIMD algorithms
will be treaded in Section 3, whereas MIMDB algorithms will be studied in Section 4.
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ALGORITIIM TYPES
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EXAMPLES

SYSTOLIC ALGORITHMS USING:

1-DIM LINEAR ARRAYS

2-DIM SQUARE ARRAYS

2-DIM HEXAGONAL ARRAYS

TREES

SHUFFLE-EXCHANGE

REAL-TIME FIR-FILTERING, DISCRETE FOURIER TRANSFORM (DFT),
CONVOLUTION, MATRIX-VECTOR MULTIPLICATION, RECURRENCE EVALUATION,
SOLUTION OF TRIANGULAR LINEAR SYSTEMS, CARRY PIPELINING,
SORTING, PRIORITY QUEUE, CARTESIAN PRODOUCT, PIPELINE ARITHMETIC UNITS

PATTERN MATCHING, GRAPH ALGORITHMS INVOLVING ADJACENCY MATRICES,
DYNAMIC PROGRAMMING FOR OPTIMAL PARENTHESIZATION

MATRIX PROBLEMS (MATRIX MULTIPLICATION, LU-DECOMPOSITION BY
GAUSSIAN ELIMINATION WITHOUT PIVOTING, QR-FACTORIZATION),
TRANSITIVE CLOSURE, DFT, RELATIONAL DATABASE OPERATIONS

SEARCHING ALGORITHMS (QUERIES ON NEAREST NEIGHBOR, RANK, ETC,
SYSTOLIC SEARCH TREE), PARALLEL FUNCTION EVALUATION,

RECURRENCE ‘EVALUATION

FAST FOURIER TRANSFORM, BITONIC SORT

SIMD ALGORITHMS

NUMERICAL RELAXATION FOR PARTIAL DIFFERENTIAL EQUATIONS OR

IMAGE PROCESSING, GAUSSIAN ELIMINATION WITH PIVOTING, MERGE SORT.

(IN GENERAL, CORRESPONDING TO EACH SYSTOLIC ALGORITHM THERE IS A SIMD
ALGORITHM CONSISTING OF TASK MODULES WITH LARGER GRANULARITIES.)

MIMD ALGORITHMS

CONCURRENT DATABASE ALGORITHMS (CONCURRENT ACCESSES TO
B-TRCES OR BINARY SEARCH TREES, CONCURRENT
DATABASE REORGANIZATION - GARBAGE COLLECTION), CHAOTIC

RELAXATION, DYNAMIC SCHEDULING ALGORITHMS, ALGORITHMS WITH
LARGE MOOULE GRANULARITIES

Figure 2-5: Examples in the parailel algorithm space.

R
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3. Algorithms for Synchronous Parallel Computers

3.1 Introduction

We consider in this section parallel algorithms for synchronous parailei computers, which
include systolic and SIMD machines de«cribed in Section 2. These algorithms will be classified,
fo first order at least, according to their communication geometries. Results in this section
should provide uscful insights info the problem of selecting interconnection networks for
systolic or SIMD machines.

As mentioned in Section 2.3, the exislence of a cost effective chip implementation of a
systolic algorithm in LSl technology depends crucially on the communication geometry of the
algorithm. It is highly desirable that communication geometries be simple and regular. Such
structures lead to cheap implementations and high densities. In turn, high density implies
both high performance and low overhead for support components. For more discussions on
this matter, sce [Sutherland and Mecad 77, Fosler and Kung 79]. In this section, special
attention will be paid to those struclures which are simple and regular.

One of the main concerns in the desigh and verification of synchronous algorithms defined
on networks is to ensure that required data items will reach the right places at the right
times to intcract with each other. For this reason, we shall often illustrate aigorithms by
their data flow diagrams. For syslolic machines, further atlention is needed to ensure that
the execution of a task module requires only a small constant amount of time and space. We
assume throughout the section that it takes a unit of time to send a unit of data from a
processor to any of its lopological neighbors. (See discussions in Section 3.4 for the
rationale of this assumption for a case involving wires of different lengths.) Under this
assumption, we shall show that many problems which require nonlinear (e.g., O(n log n), O(nz),
or O(na)) times on uniprocessors can be solved in linear times on systolic machines with
enough processors. Algorithms for systolic machines can run on corresponding SIMD machines
with similar underlying intercannection structures without losing efficiency, but not vice
versa. The unique capabilities of SIMD machines for broadcasting data and instruction codes,
and for storing a relatively large amoun! of data local to each processor can be crucial to the
efficicncy of some algorilthms. Algorithms presented in this section are in general suitable for
systolic machines, unless staled otherwise.
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3.2 Algorithms Using One-dimensional Linear Arrays

One-dimensional lincar arrays (Fig. 3-1) represent the simplest and also the most

fundamental geormetry for connecting processors. Shift-resisters can implement linear arrays
direclly.  Surprisingly cnough, for a large number of important algorithms this simple

structure is all that is neceded for communication.

o] 1 2 3

Figure 3-1: A one-dimensional linear array.

In the following, we give four algorithms using linear arrays. The first algorithm
concerning odd-even lransposition sort is perhaps the most well-known algorithm using a
linear processor array (see, for example, [Knuth 73} and [Mukhopadhyay and Ichikawa 72]).
The latter three algorithms demonstrate an important way of using linear arrays. That is, a
linear array can be viewed as a pipe and thus is natural for pipeline computations.
Depending on the algorithm, dala may flow in only one direction or in both directions
simultaneously. We show that two-way pipelining is a simple and powertul construct for
realizing complex computations. Following the discussions of the four algorithms, we mention
the use of linear pipelines in the implementation of arithmetic operations.

For ease in describing these algorithms, we shall number the processors from left to right
by integers 0, 1,..., as in Fig. 3-1.

Odd-Evan Transposition Sort

Given n keys stored in a lincar array of praocessors, one key in each processor, the
problem is to sort them in ascending order. The problem can be solved in n steps by using
the odd-even transposition sort. Odd and even numbered processors are activated
alternately. Assume that the even numbered processors are activaled first. In each cycle,
the following comparison-exchange operations lake place: the key in every activated
processor is first compared with the key in its right hand neighboring processor, and then

the smaller one is stored in the activated processor. Within n cycles, the keys will be sorted
in the array (see Fig. 3-2).

The idea generalizes directly io the case where each processor holds a sorted

P S et _—r_-..-ﬁ-ﬁ-.;.?-?.
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Figure 3-2: The odd-even transposition sort on a one-dimensional linear array.

subsequence of keys rather than a single key [Baudet and Stevenson 78]} For this case, the
comparison-exchange operation becomes the merge-splitling operation. Using this
generalization, one can sort n keys on k linearly connected processors in
O((n/k)iog (n/k)) + Ok {n/k)) time, provide that each processor can hold n/k keys (this is
possible for SIMD machines). In the above expression, the first term is to the time to sort an
{n/k)-subsequence at each processor, and the second term is o the time to perform the
odd-even transposition sort on k sorted (n/k)-subsequences. It is readily seer that when n is
large relative to k, a speed-up ratio near k is oblained. This near optimal speed-up (with
respect to the number of processors used) is due to the fact that when n is large relative to
k, the computation done within each processor is large, as compared to interprocessor
communication. Thus, the overheads arising from interprocessor communication become

relatively insignificant.
Real-Time Finite Impulse Response (FIR) Fillering

One of the most frequently performed computations in signal processing is that of a FIR
filer. The computation of a p-tap FIR filler can be viewed as a matrix-vector muitiplication
where the matrix is a band upper triangular Toeplitz matrix with band width p. Figure 3-3
represents the computalion of a 4-tap filter.
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0 . : . :

Figure 3-3: The compulation of a 4-tap FIR filter with coefficients a}, ay, ag, and ay.

In the figure, the sequence x|, x5, x3 . .. corresponds to a real-time data stream obtained
by sampling the signal at times t,t + 8 ,t + 28,..., and constants aj, ap, ag, and a, are the
taps of the filter. A p-tap filter can be implemented efficiently by a linear array consisting of
p inner product step processors, each capable of performing one multiplication and one add
in a unit of time. We illustrate the operalion of the linear array by considering the filtering
problem in Fig. 3-3. The taps a; are slored in the array at the beginning of the computation,

e
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one in each processor, and they o not move during the computation (ct. Fig. 3-4). The Yis
which are initially zero, marches to the left, while the x; are marching 1o the right. All the
moves are synchronized, and the x;’s and y;’s are scparaled by two time units. It is readily
seen that each y; is able to accumulate all its terms, namely, apXj 3%j4]s 33X and ag%i+3
before it leaves the array at the left end processor. Therefore the y;’s are computed in
real-time in the sense that they are output in the same rate as the x;'s are input.

(o] 1 2 3
Xy —y | N X2 « . Xy
7 7 F—>—
< < < < Y ——— —~— Y2
Qq 03 . Qz . 01

Figure 3-4: The one-dimensional linear array for the computation of the 4-tap
. fitlering in Fig. 3-3.

We now specify the operalion of the linear array more precisely. Each processor has

three registers, R,, R, and R, which hold a, x, and y values, respectively. Initially, all R, and

y.
Ry registers contain zeros, and the Ra register al processor i coniains the value of ag.i
Each step of the array consists of the following operations, but for odd numbered steps only .
even numbered processors are activaled and for even numbered steps only odd numbered

processors are activated.
1. Shift.

- R, gels the contents of register R, from the left neighboring précessor.
(The Rx in processor O gets a new component of x.)

- R, gets the contents of register R,, from the right neighboring processor.
(alrocessor 0 outputs its Ry contents and the F?y in processor 3 gets zero.)

2. Multiply and Add.
Rye-Ry + R, x R,.
After p units of time final results of the y;'s are pumped outl from the left end processor at

the rate of one output every two units of time. Fig. 3-5 iliustrates four steps of the linear
array. Observe that when y; is ready to get out from the left end processor at the end of

the seventh step, Y] ™ apxjtagxo+ agugeagxy, and yp = ajxp+aoxsg.
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{ Figure 3-5: Four sleps of the linear array in Fig. 3-4.

The FIR result mentioned here is a special case of a result in [Kung and Leiserson 79]
concerning linear processor arrays for general matrix-vector muitiplications. Similar results
hold for the computalian of convolutions or discrete Fourier transforms. In general, if A is an
nxn matrix of band width w, then a linear array of w processors can multiply A with any
n-vector in O(n) time, as compared to O(wn) time needed for a sequential algorithm on a

uniprocessor computer,

Priority Queue

A data structure thal can process INSERT, DELETE, and EXTRACT MIN operations is called a
priorily queue. Priorily queues are basic structures used in many programming tasks. If a ,
priority queue is implemented by some balanced tree, for example 2-3 tree, then an ‘
} operation of the queue will typically take O(log n) time when there are n elements stored in :
the tree [Aho et al. 7S] This O(iog n) delay can be replaced with a constant delay if a linear i
array of processors is used to implement the priority queue. Here we shall only sketch the
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basic idea behind the lincar array implementation. A complete description will be reported

elsewhere.

To visualize the algorithm, we assume that the lincar array in Fig. 3-1 has been physically
rotated 90 degrees and that processors are capable of performing comparison-exchange
operations on clemenls in neighboring processors. We try to maintain elements in the array
in the sorled order according to their weights. After an element is inserted into the array
from the top, it will "sink down" {o the proper place by trading positions with elements
having smaller weights (so lighter elements will "bubble up”™). For deleting an element, we
insert an "anti-clement™ which first sinks down from the top to find the element, and then
annihilates it. Elements below can then bubble up into the empty processor. Hence the
element wilh the smallest weight will always appear at the lop of the processor array, and is
ready to be exiracted in constant time. An important observation is that "sinking down" or
"bubbling up” operations can be carried out concurrently at various processors throughout
the- array. For example, the second insertion can start right after the first inserlion has
passed the top processor. In lhis way, any sequence of n INSERT, DELETE, or EXTRACT MIN
operations can be done in O(n) time on a linear array of n processors, rather than O(n log n)
time as required by a uniprocessor. In particular, by performing n INSERT operations followed
by n EXTRACT_MIN operations the array can sort n elements in O(n) time, where the sorting
time is completely overlapped with input and output. A similar result on sorting was recently
proposed by [Chen et al. 78} They do not, however, consider the deletion operation.

Recurrence Evaluation (Recursive Filtering)

Many computational tasks such as recursive digit fillering are concerned with evaluations
of recurrences. A k-th order recurrence problem is defined as foilows: Given
X0 Xo]s veor Xoja ] compute X1 X2y oo defined by

X, = Rilx;_|) x;_,) for i>0,
where the R’s are given "recurrence functions”™. For a large class of recurrence functions, a
k-th order recurrence problem can be solved in real-time on k linearly connected processors
[Kung 79). That i, a new x; is output at regular lime intervals, al a frequency independent of
k. To illustrate the idea, we consider the following linear recurrence:
X, = axi_l + b)(i_z + Cxi_a + d.

where the a, b, ¢ and d are constants. Clearly feedback links are needed for evaluating such
a recurrence on a linear array, since every newly computed term has {0 be used later for
computing other terms. The classical network with feedback loops is depicted in Fig. 3-6.

Each processor (except the righi-most one, which has more than one output port) is the
inner product step processor similar {o the one used before for FIR filtering. The Xis
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i+l g X

Figure 3-6: A linear array with {eedback loops

initialized as d, gels cx;_3, bx;_5, and ax;_; at time 1, 2 and 3, respectively. At 'time 4, the
final value of x; is output from the right-most processor, and is also fed back to all the
processors for use in compuling X, Xj,2 and x;,3. The feedback loops in Fig. 3-6 are
undesirable, since they make the nelwork irregular and non-modular. Fortunately, these
irregular fecdback. loops ran be replaced with a regular, two-way data flow scheme. Assume
that each proces«or is capable of performing the inner product step and aiso passes data as
depicted in Fig. 3-7 (b). A two-way pipeline algorithm, without irregular {eedback loops, for
evaluating the linear recurrence is schematized in Fig. 3-7 (a). The additional processor,
drawn in dotted lines, passes data only and is'essentially a delay. Eacir x; enters the right
most processor with value zero, accumulates its terms as marching to the left, and feeds back
its final value to the array through the left-most processor for use in computing Xielr Xi42
and x;,3. The final values of the x;’s are output from the right-most processor at the rate of
one oufput every {wo units of time.

This example shows that two-way pipelining is a powerful construct in the sense that it
can eliminate undesirable fecdback loops as those encountered in Fig.-3-6. Extensions of the
two-way pipelining approach 10 more general recurrence problems are considered in [Kung
79]. Basically the two-way pipelining idea is as follows: By having {wo data streams travel
in opposite directions, a data item in one stream can meet all dala items in the other stream
and thus their Cartesian product can be formed in parailel in all stages of the pipe. Since
Cartesian product-like computations are common in many applications, we expect to find more
use of two-way pipclining in the future.

Pipeline Processing of Arithmetic Operations

One of the most successful applications of pipeline processing has been in the execution of
arithmetic operations. Pipeline algorithms for fioating-point addition, multiplication, division,
and square root have been discussed and reviewed in [Chen 75, Ramamoorthy and Li 77])
For these algorithms, the connection among various stages of the "pipe” is by and large
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Figure 3-7: (a) A two-way pipeline algo:ithm without irregular feedback loops, and
(b) the inner product step processor.

linear, although additional fecdback links may sometimes be present. For example, the Cray
Research CRAY-1 uses 6-slage floating-point adders and 7-stage floating-point multipliers,
and the COC STAR-100 uses A-stage fioating-point adders. For a pipeline floating-point
adder, the pipe typically ccnsists of stages for performing exponent alignment, fraction shift,
fraction addition, and normalization. A pipeline arithmetic unit can be viewed as a systolic
machine composed of lincarly connected processors that sre capable of performing a set of
{difterent) operations.

The pipeline approach is ideal for situations where the same sequence of operations will
be invoked very frequently, so that the start-up time to initialize and fill the pipe becomes
relatively insignificant. This is the case when the machine is processing long vectors. One of
the main concerns in using pipeline machines such as the CRAY-1 and the STAR-100 is the
average length of the veclors to be processed (see, for example, [Voigt 77]).

For integer arilhmelic, bits in the input operands and carries generated by additions are
often pipelined (see, eg. [Hallin and Flynn 72)). The following pipeline digit-adder using a
linear array is described in [Chen 75). Suppose that we want to add two integer vectors (U,
Up, .. .) and Vi, Vo, . - ), and that U; = ujju, .. .Uy and Vi = Vi1Vi2- - Vjk In their binary
reprezentations. We illustrate how the adder works for k = 3 in Fig. 3-8. The Yjj and vii
march toward the processors synchronously as shown,

At each cycle, each processor sums the three numbers arriving from the three input lines
and then outpuls the sum and the carry at the output lines. It is easy to check that with the
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Figure 3-8: A pipéline integer adder

configuration shown, when the pair (”nj' Vij) reaches a processor, the carry needed to
produce the correct j-th digit in the resull of U;+V;, will aiso reach the same processor. As a
result, the pipelined adder can compute a sum U; + V; every cycle in the steady state.

3.3 Algorithms Using Two-Dimensional Arrays

We restrict ourselves {o two-dimensional communication geometries which are simple and
regular. Consider the following problem: how can processors be distributed in a
two-dimensional area so that they can be mesh-connected in a simple and regular way, in the
sense that the connections are all symmetric and of the same length? It turns out that there
are only three solutions to the problem. This problem is related to that of finding regular
figures which can close pack to compielely cover a two-dimensional area. The only three t
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regular f.;ures which pocsess this property are the square, the hevagun and the equilateral
triangle (zce Fig. 3-9). In the following, we consider algorithms using hexagonal and square

arrays. Interesting algorithms using equilateral triangular arrays are yet to be diccovered.

L1

— M —

(@) (b) ()

Figure 3-9: The three types of regular arrays:
(a) square array, (b) hexagonal array, (c) triangular array.

3.3.1 Algorithms Using Two-Dimansional Hexagonal Arrays

We demonsirate that two matrix algorithms, matrix mulliplication and LU-decompositica, can
be done naturally on hexagonal arrays. The basic processor used by these fwo algorithms is
the inner product step processor (Fig. 3-10), which is similar to the ones used in Section 3.2
for FIR filtering and recurrence evaluations. The processor has lhree registers Ras I?iB, and
Rcs and has six external connections, three for input and three for output. In each unit time
interval, the processor shifts the data on its input lines denoted by A, B and C into Ry, RB
and Rg, respectively, computes Rg & Rp + Rp x Rg, and makes the input values for Ry and
Rg together with the new value of R available as outpuls on the output lines denoted by A,

B and C, respectively. All oulpuls are latched and the logic is clocked so that when one
processor is connected to another, the changing output of one during a unit time interval will
not interfere with the input to another during this time interval. This is not the only
processing element we shall make use of, but it will be the work horse. A special processor
for computing reciprocals wiil be specified later when it is used. For details about these two
algorithms and other related resulls, see [Kung and Leiserson 78, Kung and Leiserson 79]
The hexagonal array connection is also natural for computing the transitive closure of a
Boolean matrix. In this case, the inner product step processor computes Rc ¢« Rgc V Ry ARG

Other examples of computations using hexagonal arrays include QR-factorization [Brent and
Kung 79a}, relational database operations [Kung and Lehman 79a), and the tally circuit [Mead
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Figure 3-10: The inner product step processor.
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Matrix Mulliplication
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Figure 3-11: Band matrix mulliplication.

It is easy to see that the matrix product C = (Cij) of A= (aij) and B = (bij) can be computed
by the following recurrences.
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Lt A and 13 be nxn band matrices of band width w and W2, respectively. We show how
the rocurrences above can be evaluated by pipelining the ajjs bij and Gij through an array of
WiW2 hex-connccled inner product step processors.  We illustrate the algorithm by
considering the band malrix multiplication problem in Fig. 3-11. The diamond shaped

hexagonal array for this case is shown in Fig. 3-12, where arrows indicate the directions of

data flow. .

The clements in the bands of A, B and C march through the network in three dircections
synchronously. Each <ij is initialized to zero as it enters the network through the bottom
boundaries. (For the general problem of computing C = AB + D where D = (dij) is any given
matrix, Cij should be initialized as dij') One can easily see that with the inner product step
processors depicted in Fig. 3-10, each <j is able to accumulate all its terms before it leaves
the network through the upper boundaries. If A and B are nxn band matrices of band w'idth
w) and wp, respeclively, then an array of W wo hex-connected processors can pipeline the
matrix multiplication AxB in 3n+min{w, wp) units of time. If A and B are nxn dense matrices
then 3n2-3n+1 hex-connected processors can compute AxB in 5(n-1) units of time. We
mention an important. application of this result. It is well-known that an nz-poin( discrete
Fourier transform (DFT) can be computed by first performing n independent n-point DFT's
and then using the resulls to perform another set of n independent n-point DFTs. The
computation of any of thrse two sots of n independent n-noint DFT’s is simply a matrix
multiplication AxB, where the (i j) entry of matrix A is W(i=1Xi-1) ang @ is a primi.ti\;e nth réot

2

of unity. Hence, using O(nz) hex-connected processors, an n“-point DFT can be computed in

O(n) time.
The LU-roomposilion of a Matrix

The problem of factoring a matrix A into lower and upper triangular matrices L and U is
called LU-decomposition. Figure 3-13 iliusirales the LU-decomposition of a band matrix with
p =4 and q = 4. Once the L and U factors are known, it is relatively easy to invert A or to

solve the linear system Ax = b.

We assume lhat matrix A has the property that its LU-decomposition can be done by
Gaussian elimination without pivoting. (This is true, for example, when A is a symmetric
positive-definite, or an irreducible, diagonally dominant matrix.) The triangular matrices
L= ('ij) and U = (”ij) are cvaluated according to the following recurrences.
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It turns out that the evalualion of these recurrences can be pipelined on a hexagonal array.
A global view of this pipclined computation is shown in Fig. 3-14 for the LU-decomposition
problem in Fig. 3-13. The array in Fig. 3-14 is constructed as follows. The processors below
4 the upper boundaries are lhe standard inner product step processors and are hex-connected
exactly the same as the matrix multipiication network presented above. The processor at the
top, denoled by a circle, 1= a special processor. It computes the reciprocai of its input and
pumps the resulf o sthwenl, and aleo pumps the same input northward unchanged. The other
processors on the upper boundarics are again inner product step processors, but their
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orientation is changed: the ones on {he upper lefl boundary are rotated 120 degreces
clockwise; the ones on the upper right boundary are rotated 120 degrees counterclockwise.
The flow of data in the array is indicated by arrows in the figure.

If A is an nxn band malrix with band width w = p+q-1, an array having no more than Pq
hex-connected processors can compute the LU-decomposition of A in 3n+min(p,q) units of
time. If A is an nxn dense matrix, then an nxn hexagonal array can compute the L and U
matrices in 4n-2 units of time which includes /O time. The remarkable fact that the matrix
multiplication network forms a major part of the LU-decomposition network is due to the
similarity of the decfining recurrences.

Transitive Closure

Given a Boolcan matrix A=(a“-). the transitive closure of A can be computed from the
recurrence:

afl) = &y,

aé}k‘f’l) = asjk) v (ag;"\) N aLV;))'

(see, e.g., [Aho et al. 75)). We observe that this recurrence is analogous to the recurrence
for matrix multiplication or LU-decomposition, as far as structures for subscripts and
superscripts are concerned. This suggests that we use hexagonal arrays to solve the
transitive closure problem, too. Indced, an efficient transitive closure algorithm using the
hexagonal array has recenlly been discovered. The algorithm differs from the matrix
muitiplicalion and LU-decomposition algorithm in that it computes the solution in two passes
rather than one pass. A full description of the algorithm will appear in the revised version of
[Guibas et al. 79].

3.3.2 Algorithms Using Two-dimensional Square Arrays

The square array is perhaps one of the first communication geometries studied by
researchers who were interested in parallel processing. Work in cellular automata, which is
concerned with computations distributed in a two-dimensional orthogonally connected array,
was initiated by von Neumann in the early fifties [Von Neumann 66] Theorists in celiular
automata have been traditionally interested in the "power” of a cellular automaton system
using, say, a particular number of staltes at each cell. More recently, because of the advent
of LSI technology, there has been an increasing inlerest in designing algorithms for cellular
arrays. Cellular algorilhms for paltern recognition have been proposed in [Smith
71, Kosaraju 75, Foster and Kung 79], for graph problems in {Levitt and Kautz 72], for
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swilching in [Kautz et al. 62}, for sorting in [Thompson and Kung 77}, and for dynamic
programming in [Guibas et al. 79].  The algorithms for dynariic programming in [Guibas et al.
79] are quite special in that they involve data being transmitted at two different speceds,
which give the effect of “time reverse® for the order of certain results, The pattern matching
chip described in [Foster and Kung 79] has recently been designed and fabricated.

In parallel to the developments of cellular aigorithms for solving combinatorial problems,
there have been major activities in using the array slructure for solving large numerical
problems. Many of these activilies are motivated or influenced by the ILLIAC IV computer,
which has an 8x8 processor array (see [Kuck 68]). Relaxation methods for solving partial
differential ejuations malch the square array structure naturally. Typically, the variable Uij
representing the solution at mesh point (i, j) is updated by a difference equation of the form:

ujj = Fluiyg, j Yi-1, Y, je1 Y5, j-l)-
Hence, if Ujj is stored at processor (i, j) of the processor array, then each update (or
iteration) involves communications only among neighboring processors. The central control
' provided by SIMD machines such as the JLLIAC 1V is useful for broadcasting relaxation and
k! termination parameters, which are often needed in these relaxation methods. Relaxation
algorithms on {wo-dimensional grids are also used in image processing, for which mesh points
correspond to pixels [Peleg and Rosenfeld 78],

1 3.4 Algorithms Using Tree Struclures

N The tree structure, shown in Fig. 3-15 (a), has the nice property that it supports
logarithmic-time broadcast, search, and fan-in. Fig. 3-15 (b) shows an interesting "H" shaped
layout of a binary tree, which is convenient for placeme}\t on a chip.

Unlike the array struclures considered earlier, the connections in the tree structure are
not uniform. The distance between two connecling processors increases as they move up to
the root. For chip implementation, the time that it takes a signal to propagale along a wire
can nevertheless be made independent of the length of the wire, by fitting larger drivers to
longer wires. Thus, by using appropriate drivers the logarithmic property of the tree

" structure can still be maintained. It is demonstrated in [Mead and Rem 79] that in spite of the
fact that large drivers take large areas, with the layout in Fig. 3-15 (b) it is possible to
implement a free using a total chip area essentially proportional to the number of processors
in the tree. Moreover, in this implementation drive currents ramp up from the leaves to the
root, and consequently, off-chip communication can be conducted at the root without serious
delay. In the following, we shall assume that the time to send a data item across any link in
the tree is constani, and that the root of the tree is the 1/0 node for outside world
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(a) (5

Figure 3-15: (a) A binary tree structure, and (b) embedding a binary tree
in a two-dimensional grid.

communication.

The logarithmic-time property for broadcasting, searching, and fan-in.is the main advantage
provided by the tree structure that is not shared by any array structure. The tree structure,
however, has the following possible drawback. Processors at high levels of the tree may
become boltienecks if the majority of communications are not confined to pro;:essors at low
levels. We are inlerested in algorithms that can take advantage of the power provided by
the tree structure while avoiding its drawback.

Search Algorithms

The tree structure is ideal for searching. Assume, for example, that information stored at
the leaves of a lree forms the data base. Then we can answer questions of the following
kinds rapidly: "What is the nearest neighbor of a given element?”, "What is the rank of a
given element?”, "Does a given element belong to a certain subset of the data base?” The
paradigm to process these queries consists of three phases: (i) the given element is
broadcast from the root to leaves, (ii) the element is compared to some relevant data at
every leaf simultaneously, and (iii) the comparison resulls from all the leaves are combined
into a single answer at the root, through some fan-in process. It should be ciear that using
the paradigm and assuming appropriate capabilities of the processors, queries like the ones
above can all be answered in logarithmic time. Furthermore, we note that when there are
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rrany queries, it is poscible to pipcline them on the tree. See [Bentley and Kung 79] for

diccussions of using the tree-structured machine for many searching problems,

A similar idea has been pointed out in [Browning 79].  Algorithms which first generate a
large number of solution candidales and then select from among them the true solutions can
be supported by the tree structure. NP-complete problems [Karp 72] such as the clique
problem and the color cost problem are solvable by such algo.;ithms. One notes immediately
that with this approach an exponential number of processors will be necded to solve an
NP -compicte problem in polynomial lime. However, with the emergence of very large scale
integration (VLSI) technology this brule force approach may gain importance. Here we
merely wish to point out that the tree structure matches the structure of some algorithms
that solve NP-complete problems.

Systolic Search Tree

As one is thinking about applications using trees, dala structures such as search trees (see,
e.g., [Aho et al. 75, Knuth 73)) will certainly come 1o mind. The problem is how to embed a
balanced search trce in a network of processors connected by a tree so that the O(log n)
performance for the INSERT, DELETE, and FIND operations can be maintained. The problem is
nontrivial because most balancing schemes require moving pointers, but the movement of
pointers is impossible in a physical tree where pointers are fixed wires. To gel the effect of
balancing in the physical tree, data rather than pointers must be moved. Common balanced
tree schemes such as AVL trees and 2-3 trees do not map well onto the tree network
tecause data movements involved in bal.ancing are highly non-local. A new organization of a
hardware search tree, called a systolic search tree, was recently proposed by [Leiserson 79),
on which the data movements for balancing are always local so that the desired O(log n)
performance can be achieved. In Leiserson’s paper an application of using the systolic
search tree as a common storage for a collection of disjoint priority queues is discussed.

Evaluation of Arithmetic Expressions and Recurrences

Another application of the tree siructure is its use for evaluating arithmetic expressions.
Any expression o1 n variables can be evaiuvaled by a tree of at most erogzn] levels [Brent
74], but the time to input the n variables to the tree from the root is still O(n). This input
time can often be overiapped with the computation time ir. the case of recurrences evaluation
(see [Kung 79).
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3.5 Algorithms Using Shuffle-Exchange Metvrorks

Consider a network having n=2" nodes, where m is an infeger. Assume that nodes are
named as 0, I,.. ., 2™M-1. Let iim=1 * -+ ‘1 denote the binary representation of any integer i,
0 <i < 2M 1.1, The shuffle function is defined by

S(imim-l “ e '1) = im_lim_z “ee ilim'
and the exchange function is defined by

Elimmimg=1 - - - 11) = imim-1 - - - i20]-
The network is called a shuffle~exchange network if node i is ccnnected to node S(i) for all i,
and to node E(i) for all even i. It is often convenient to view each pair of nodes connected
by the exchange funclion as a 2x2 processor which has two input ports and two output
ports. Fig. 3-16 illustrates the shuffle function for the case when n=2M=8,

2 .
3 1
- Shuttle
4 =2 1 —_—
| : I ;
N N {
S —+—= —_J
6 —==3— =3
! L
7 L
L.Jd LI |

Figure 3-16: The shuffle function and 2x2 processors for the case when n=8,

Observe thal for i=], .., m, by executing the shuffle function i times, data originally at two
nodes whose names differ by 2™ can be brought to the same 2x2 processor. This type of
communication happens to be natural to a number of algorithms. It was shown by [Batcher
68] that the bilonic sort of n elements can be carried out in 0(|ng n) steps on the
shuffle-exchange network when the 2x2 processors are capable of performing
comparison-exchange operations. It was shown by [Pease 68] that the n-point fast Fourier
transform (FFT) can be done in O(log n) steps on the network when the 2x2 processors are
capable of doing addition and multiplication operations. Other applications including matrix
transposition and linear recurrence evaiuation are given in [Stone 71, Stone 751 The two
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articles by Stone give clear expositions for all these algorithms and have pood diccussions on
the basic idea beiund them, Here we illustrate the use of the network for performing the
S-point FFT. The computation has tiwree stages. Stage i, i=l, 2, 3 involve combining data
from two nodes whose nares differ by 237, This is indicated by the graph in Fig. 3-17 (a).
A topologically cquivalent graph is shown in Fig. 3-17 (b). The latler graph demonstrates the
fact that the computation at each stage can be done enlirely inside the 2x2 processors,
provided that resuils from the previous stage have been "shuffled®. Note that the same
shuffle network can be used for shuffling inputs for all the stages if so desired.

STAGE 1 STAGI2 STAGE3 STAGE 1 STAGE 2 STAZC 3

it Yautn W

(a) (b

Figure 3-17: (a) The communication structure of the 8-point FFT, and
(b) ils realization by the shuifie-exchange network.

Many powerful rearrangeable perrmutation networks, such as those in [Benes 65] which are
capabie of performing all possible permutations in O(log n) delays, can be viewed as
multi-stage shuffle-exchange networks (see, e.g., [Kuck 78)). The shuffle-exchange network,
perhaps due to its great power in permutation, suffers from the drawback that it has a very
low degree of regularity and modularity. Indeed, it was recently shown by [Thompson 79a]
that the network is not planar and cannot be embedded in silicon using area linearly
proportional to the number of nodes in the network,
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3.6 Remarks for Scclion 3

For a fixed problem, it is olten possible to design algorithms using different communication
topologies. A good example of this is the sorting problem. A performance hierarchy for
sorting n elements on n processors connected by various networks is given in Fig. 3-18
[Knuth 73, Thompson and Kung 77, Batcher 68].

NETWORK SORTING TIME
1-dim array 8(n)
2-dim array 8(ni/2)
k-dim array 1A
Shuffle-Exchange O(logzn)

Figure 3-18: Sorling times on various networks

Each of these algorithms can be useful under appropriate circumstances. For a discussion
on the related probiem of mapping a given algorithm (rather than a given problem) on
different networks, sce [Kung and Stevenson 77].

Sorting can also be done on the tree structure in O(n) lime in a straightforward way. But

the same performance is achievable by the simpler one-dimensional linear array using the

~ priority queue approach (cf. Section 3.1.). For this reason, we did not include tree sort as

one of the algorithms for the tree network in Section 3.4. The general guideline we have

been using in this seclion for choosing algorithms under a given communication structure is as

follows: An algorithm is inciuded only if it uses the structure effectively, in the sense that

the same performance does nol seem {0 be possible on a simpler structure. One should note,

however, that sometimes it may be worthwhile to consider solving a probiem on some

network which is not inherently best suited for the problem. For instance, at an installation a
fixed network may have to be used for solving a set of rather incompatible problems.

Up to this point, we have been considering almost exclusively the case when there are
enough processors for the problem one wants {o solve. The only exception is that for the
odd-transposition sort we discussed how to sort n elements by k processors where k<n, and
conciuded that a near-optimal speed up ratio can be achieved if k<<n. In general, there are
three approaches one can take for solving a large problem on a small network,

i. Use algorithms with large module granularity. Each processor handles a large
group of elements rather than a few elements. For the odd-even transposition
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sort mentioned above, subsequence consisting of n/k elements ic «fored in
each proceswsor. [or matrix problews, a row, a ¢olumn, or a submatrix may be
stored in a procescor.  This approach is suitable for SIMD machines where
processors can have relatively large local memories. In this case, one must
carefully design the global data structure, which is now distributed over the local
memories, s0 as 10 ensure that needed memory accesses can be performed in
parallel without conflicts [Lawrie 75, Kuck 78] '

ii. Docompore the problem. The idea is that after decomposition each subproblem

will be small enough so that it can be solved on the given small network of
processors. A maltrix mulliplication involving large matrices, for example, can be
done on a small network by performing a sequence of malrix muliplicalions
involving submalrices.

Docompose an alporithm that originally requires a large network. Simultaneous
operations invoked in one step of the original algorithm are now carried out in a
number of steps by the small network. With this approach, the LU-decomposition
algorithm for an nxn matrix in section 3.3.1 can be performed on a kxk hexagonal
array in O(nalkz) time, when n is large and Kk is fixed.

one of the three approaches, one should be able, in principle, to design algorithms for
small networks to solve large problems.
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4. Algorithms for Asynchronous Multiprocessors

4.1 Introduction

In th;; section we consider parallel algorithms for an asynchronous MIMD multiprocessor
like C.mmp or Cm?*, which is composed of a number of independent processors sharing the
primary memory by mcans of a swilch or connecting network. Such an algorithm will be
viewed as a colleclion of cooperaling processes that may execule simultaneously in solving a
given problem. It is important to distinguish between the notion of process, which
corresponds to the execution of a program, and the notion of processor, which is a functional
unit by which a process can be carried out. At the decision of the operating system, the
same process may be execuled by any processor at a given time.

In the design and analysis of parallel algorithms for asynchronous multiprocessors, one
should assume that the time required to execute the steps of a process is unpredictabie
[Kung 76]) Ba<ed on measurements obtained from C.mmp, six major sources for causing
fluctuations in execution limes have been identified [Oleinick 78] The six sources include
variations in computation time due lo different instances of inputs, memory contention,
operating system’s scheduling policies, variations in the individual processor speeds, etc. This
asynchronous beiavior leads to serious issues regarding the correctness and efficiency of an

algorithm. The correciness issue arises because during the execution of an algorithm
operations from different processes may inlerleave in an unpredictable manner. The
efficiency issue arises because any synchronization introduced for correctness reasons takes
extra time and also reduces concurrency. In the following, we shall examine various
techniques for dealing with the correctness and efficiency issues that are encountered in the

use of asynchronous mulliprocessors,

Asynchronous multiprocessors can support truly concurrent database systems, where
simultancous access {0 a database by more than one process is possible. Recent research
results concerning the integrity of mulli-user database systems are directly applicable to
concurrent database systems. Some of lhese results will be examined in Section 4.2. A
concurrent database sysiem can be viewed as an asynchronous algorithm consisting of
processes that execute so-called transactions. In designing a general database system, one
usually has liltle controi over the set of transactions that will be allowed to run in the
system. However, in designing an algorithm to solve a fixed problem, one does have control
over the tasks {o be included in the algorithm. As a result, it is often possible to design
parallel algorithms without costly synchronizations for solving specific problems. We shall
consider several of these highly efficient algorithms in Section 4.3. Finally, in Section 4.4, we
shall discuss some of the guidelines for designing efficient algorithms for asynchronous
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nultiprocescors.

4.2 Concurrent Database Systems

In a concurrent database sysiem, a number of on-ine transactions are allowed {0 run
concurrently on a shared database. One of the imporiant issues arising from the concurrent
execulion of trancactions is the consistency problem. A database is said to be consistent if
all integrity constraints defined for the data are met. A transaction is said to be correct if
starting from a consistent state the execulion of the transaclion will terminate and preserve
consistency. A concurrent execution of several correct transactions may, however, transform
a consistent database into an inconsistent one! We illustrate this fact with a simple example.
Suppose that the infegrity constraint is x > 0. Then the transaction, if z > | then z 2z - 1,
is correct, but the concurrent execution of two such transactions may transform a consistent
state, x = 2, into an inconsistent state, x = 0. The mechanism in a concurrent database
system that safeguards datahase consistency is usually called a "concurrency control®. (In

Section 2, we have used the same term with a more general meaning.)

There have been two major approaches in contending with the consistency problem. The
first approach, discussed in Seclion 4.2.1 below, is the “serialization approach”, which
requires no knowledge of the integrity constraints, but does require syntactic information
about the transactions. The second approach, considered in Section 4.2.2, will use specific
knowledge of the integrity constraints to consiruct correct and hopefully more efficient
concurrent database systems. In [Kung and Papadimitriou 79] maximum degrees of
concurrency are proved to depend upon the types of knowledge that are available.

Besides the consistency issue, there are a number of other important issues concerning
concurrent database systems. Among them is the recovery problem. Solution of the
recovery prablem often closely related to solutions to the consistency problem. The
recovery problem will not be explicitly treated in this paper. The reader is referred to [Gray
78] for a good discussion of recovery.

4.2.1 The Serialization Approach

Throughout our discussion, transactions are assumed to be correct in the sense that they
preserve database consistency when executed alone.  Serial execution of a set of
transactions is one-trantaction-at-a-time execufion. It preserves consistency, since the
execution of each transaction does so (see Fig. 4-1).

The serialization approach makes sure that a concurrent execution has the same overall

effect as some serial exccution and therefore preserves consistency. This approach is very
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CONSISTENT T CONSISTENT Tj . Tw CONSISTENT
—> _— —_—
STATE STATE STATE
Figure 4-1: A scrial execution of correct transactions, T1v T2 ... which

prescrves consistency,

general in.'the sense that it applies to any concurrent database system and requires no
information on the semanlics of the transactions and integrity constraints. In fact, it has been
shown in [Kung and Papadimitriou 79] that scrialization is the weakest criterion for

prescrving consislency if only synlactic informalion can be used.

4.2.1.1 The Two-Phase Transaction Method

In [Eswaran et al. 76] a serialization method is proposed in which each transaction employs
a locking protocol 1o insure that it "sees” only a consislent stale of the database. Here we
briefly describe their scheme. It is assumed that a transaction must have a share lock or
exclusive ltock on any entity it is reading, and an exclusive lock on any entity it is writing.
Fig. 4-2 shows the compatibility among the lock modes.

l SHARE EXCLUSIVE
SHARE YES NO
EXCLUSIVE NO NO

Figure 4-2: Compatibilities among lock modes.

A transaction is a two-phase transaction if it does not request new locks after releasing a
lock. Hence a fwo-phase transaction consists of a growing phase during which it requests
locks, and a shrinking phase during which it releases locks. A schedule of a set of concurrent
transactions is a history of the order in which statements in the transactions are executed. A
schedule can be totally ordered or partially ordered. The latter case corresponds to the
multiprocessor cnvironment where a set of stalemenis from different transactions can be
executed simullancously by a number of processors. A serial schedule is a schedule
corresponding to a serial execution of the transactions. A schedule is legal if it does not
schedule a lock aclion on an entity for one transaction when that entity is already locked by
some other lransaction in a conflicting mode. In Fig. 4-3 we illustrate a possible legal
schedule of two-phase transactions T; and Tp.

The numbering in the left hand side specifies the execution order of the schedule (so the
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s T2
1. exclusive fock x
2. exclusive lock y
3. read x
4, read y -
5. write x
6. unlock x
7. \ exclusive lock x
8. '{write x
9. write y
10. A) {unlock y
11. share lock y
12. unlock x
13. read y
14. unlock y

Figure 4-3: A legal schedule of two-phase transactions T; and To.

schedule is totally ordered). Note that actions in (A) are independent from actions ia (B) in
the sense that (A) and (B) involve disjoint variables. Thus, the input and output of any action
in (A) or (B) is unchanged if aclions in (A) precede actions in (B) instead. This implies that the
effect of the schedule is the same as that of the serial schedule that executes T, first and
then To. Theorem 4-1 below asserts that the same phenomenon holds for any legal schedule
of two-phase transactions. To understand the thcorem, we need {0 introduce some additional
terminology. The dependency graph of a schedule is a directed graph whose nodes are

transaction names and whose arcs, which are labeled, indicate how iransactions depend on
each other. More precisely, an arc from T, to Tj exists if and only if during the execution Tj
reads an enlity T, has writlen or Tj wriles an entity T; has read or written, and the label of
the arc in this case is the name of the enlily. The dependency graph of a schedule

completely determines the stale of the database each transaction "sees” when transactions

are execuled according to the schedule. We say two schedules are equivalent if they have
the same dependency graph. We state the main theorem regarding the iwo-phase transaction

method:

Theorem 4-1: Any lcgal schedule of two-phase transaclions is equivalent to a
serial schedule,

The theorem implies that at the termination of any concurrent execution of two-phase




ah s e 3,

S¢C Cv 4 ABORITHMS FOR ASYRCHEONOUS YULTIFROCESSORS 36

trancactions the consistency of the database is rmaintained. A concurrent execulion of
two-phase trancaction. may fead lo a deadlock however. In this case, after the deadlock is
detected, any transaction on the deadlock cycle can be backed up. Because all the
transactions are two-phase locked, it is guaranteed (why?) that backing up a trancaction for
breaking a deadlock will neither cause other transactions to lose updates, nor require backing
up other transactions.

Much insight into locking can be gained by a simple geometric method [Kung and
Papadimitriou 79) Consider the concurrent execution of two transactions Ty and Ty, Any
state of progress towards the completion of T; and T, can be viewed as a point in the

two-dimensional "progress space”, as shown in Fig. 4-4,

T, e
— — tm = e o = e — — 2
A e
pPro3ress curve —s_— :
P < |
o u !
unioctK ¥yl — — — —/— :
s /
unlock Xj— — - ¥ /’ L |
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exclusive lock - —_ = f5 |
exclusive 10eK Xi— — /- T - - _.l - |
: o |t ]
{ : I |
! N I X
0 j T g F Lf_‘T'
Share \«k vy J - unlock ¥ .
exclusive lock x

~ unlock Y

Figure 4-4: The "progress space” for fransactions T| and To.

A schedule of T; and T, corresponds to a nondecreasing curve, called a progress curve,
from the origin to point F. The progress curves lying on the two boundaries, OT,F and OT,F,
represent the two serial schedules. Locking has the effect of imposing restrictions in the
form of forbidden rectangular regions (see the two blocks in Fig. 4-4). It is easy to see that
a schedule is legal if and only if ils progress curve avoids all biocks. Region D in the figure is
a deadlock region, in the sense that any progress curve trapped in the region will not be able
to reach F. The important observation is that two schedules are equivalent if and only if

their progress curves are not separated by any block. Conseguently, if all the blocks are
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connected as in Fig. 4-4, then any legal schedule (winch avoid blocks) must be equivalent to
soroe serial schedule. The idea of two-phase transactions is now extremely easy 1o explain,
It simply kecps all blocks connected by letting fhem have a point v in common.  The
coordinales uj, up of u are the phase-shifl points, at which all locks have been granted, and

none have been released.

4.2.1.2 Validation Mothods = An Optimistic Approach

Validation methods represent another general approach for achieving serialization [Kung
and Robinson 79} The methods rely on transaction backup rather than locking as a control
mechanism. The mecthods are "optimistic” in the sense that they "hope” that conflicts between
transactions will nol occur and thus transaction backup will not be necessary. The idea

behind this optlimistic approach is quite simple, and may be summarized as fellows:

- Since reading a value or a poinler from a node can never cause a loss of
integrity, reads are complelely unrestricted (however, returning a result from a
query is considered to be equivalent lo a write, and so is subject to validation as
discussed below).

- Wriles are severely restricted. 1t is required that any transaction consist of two
or three phases: a read phase, a validation phase, and a possible write phase
{sce Fig. 4-5). During the read phase, ail writes take place on local copies of the
nodes to be modified. Then, if it can be established during the validation phase
thal the changes the transaction made will not cause a loss of integrity, the local
copies are made global in the write phase. In the case of a query, it must be
determined that the result the query would return is actually correct. The step
in which it is determined that the transaction will not cause a loss of integrily (or
that it will return the correct result) is called validation.

read validation write
\ N -
N \ /
\ \ !
\ \ !
vy
T B//——---3
> tlime

Figure 4-5: The three phases of a transaction T.

We use Fig. 4-6 to illustrate how validation works. Suppose that transaction T2 completes
its write phase by time ty. At time tg transaction Tl finishes its read phase and starts its

validation. If as far as the writes of Tl are concerned, Tl can be thought of as if it started

|
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after TZ had been validafed, then Tl will be validaled in our scheme, This is the case when
the write set of Ty (the set of variables Ty wriles) and the read set of T (the set of
variables T} reads) are disjoint. Assume that T is successfully validated at time tg, and T3
finishes its read phase at time ty. For validaling T3, the set of variables T3 reads and the
set of variables T and T, wrile have to be compared. If the two sets are disjoint then Tq
can be validated. Suppose that Tg is validated at lime tg. Then we see that the schedule
corresponding to the concurrent exccution of Ty, T5 and T in Fig. 4-6 is equivalent to the
serial schedule which executes Ty first and then T and then T5. This illustrates how the

validation method enforces serialization.

- T3E ———(—= ~ = =]
f N . — N
M o - o Uil

to T, tz t3 t, t5 te t7 tB t% time

Figure 4-6: Three concurrent transactions

j A straightforward implementation of the validation method is as follows. A set W is kept,
“ i which contains the write sets along with the validation completion times of all validated
transactions. For validating.a transaction T that just compieted its read phase, the following
¥ steps are involved:

1. Compare the read set of T with the write sets of those transactions which are

successfully validated belween the start time and finish lime of T.

2. If the read set is disjoint from any of those write sets examined in step (1)
above, then do the following; otherwise restart T,

i. Lock W in exclusive mode.

ii. Compare the read set of T with the wrile sels of those transactions which
have been successfully validated since the time T completed its read

i phase.

iii. If the read set is disjoint from any of those write sels examined in step (ii)
above, then validate T by performing the following operations; otherwise
unlock W and restart T,

a. lnsert the write set of T along with the current time as the
validation completion time of T into set W.
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b. Make the jocal rapics of T, wr.ch contain ail the writes of T, global.

¢. Unlock W.

The set W can be pruned down by deleting information concerning validated transactions
whose validation completion times are smaller than the slart time of any currently active
transaction. When several iransactions are ready to be validated, the main comparison step
(step (1)), for one transaction can be carried out in parallel with the main comparison steps
for other transaclions on a mulliprocessor. It is possible to optimize the implementation
outlined above in a number of ways. We will not elaborate them here,

Validation methads are superior to locking methods for systems where transaction conflict
is unlikely. Examples include gquery dominant systems and very large tree structured indexes.
For these cases, a validation method will avoid locking overhead, and may take full advantage
of a multiprocessor environment in the validation phase using the paralle! validation technique
presented. Some techniques are needed for determining all instances where an optimistic
approach is betler than a locking approach. See [Kung and Robinson 79] tor more
discussions on this serialization method which is not based on locking.

4.2.1.3 Remarks

Serialization methods somewhat similar to validalion methods are considered in [Stearns et
al. 76] for both centralized and distributed database systems. It is pointed out there that if
the ordering of the equivalent serial schedule is determined on-the-fly as requests are
processed, then a siluation similar to deadlock may occur. The situation is called “cyclic
restart”, in which a finite set of transactions are caught in a loop of continually aborting and
restarting each other. They solve the problem by us;ing a preassigned ordering of
transactions. The method outlined in Section 4.2.1.2, on the other hand, uses validation
completion times to determinc the ordering of transactions. Though the ordering is dynamic,
the method is not subject to cyclic restart because in this method only validated transactions
can restart other transactions. C. Papadimitriou considers the general problem of determining
whether a given sequence of read and write operations corresponding to requests from
several transactions is serializable [Papadimitriou 78], He proves that the problem is
NP-complete. Thus it is unlikely that there exist efficient schedulers which will recognize all
serializable sequences of requests by the transactions. For discussions of serialization

methods for distribuled database systems, see, for example, [Bernstein et al. 78, Rosenkrantz
et al. 78, Stonebraker 78]
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4.2.2 The Approach Using Semantic Information -- A Non=-Serializalion Approach

As mentioned carlier, the cerialization approach requires no <emantic information about
transactions and inlcirily consiraints, and if such cemantic information is not used,
serialization is actually the only approach one can take for solving the consistency problem in
a concurrent system. However, if the meanings of the transactions and integrity constraints
are known a priori, then, as one would expect, it is often poscible to design concurrent

systems or algorithms enjoying high dearees of concurrency.,

We assume as before that each transaction under consideration is correct if executed
alone. Here we further assume thal some correctness proof for each transaction is available.
Such a proof must rely on and also mus! reflect the meanings of the transactions and the
integrity constraints imposed on the database. Therefore a nalural way to capture semantic

information is to examine correctness proofs of the transactions.

We consider proofs using assertions {Floyd 67} A lransaction is represented as a
flowchart of operations which manipulate a set of variables. Executing the transaction is
viewed as moving a token on the flowchart from the input arc to an oulput arc. An assertion,
defined in terms of the variables, is attached to each arc of the flowchart; in particutar, the
assertions on the input and any output arcs are the inlegrily constraints. A correct proof of
a serial transaclion amounits to demonsirating that throughout the execution of the
transaction the token will always be on an arc whose assertion is true at that time, add will
eventually reach an oulput arc. The consisiency of a database under the concurrent
execution of several correct serial transactions can be insured by the following séheduling
policy [Lamport 76]:

The request to execule one step in a transaclion is granted only if the execution
will not invalidate any of the assertions attached to those arcs where the tokens
of other transactions reside at that time.

It is possible that at some lime none of the transactions can be granted to execute their next
steps. This “deadlock™ situation can be resolved, for example, by backing up some
transactions. The above scheduling policy demonstrates that at least in principle the
consistency of a concurrent system can be preserved by using correctness proofs of serial
transactions. In [Lampori 76}, efficient schedules are derived from this scheduling policy for
some concurrent systems. The schedules have the property that they preserve consistency

but are not equivalent 1o serial schedules.

The similar idea of establishing the correctness of a concurrent system by showing that the

proof of any of its sequential programs cannot be invalidated by the execution of any other
program has been studied by several people, including [Ashcroft 75, Keller 76, Lamport
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77, Owicki 75).

The approach of solving the consisiency problem of a concurrent system by utilizing the
correctness proofs of the serial transactions seems to be quile general and powerful. In this
framework, with enough human ingenuity,. difficult consistency problems (or their solutions)
can often be solved efficiently (or cxplaincd elegantly). Some of the results in Section 4.3
below can in fact be cast in this framework, Much work remains to be done in developing

mechanical ways of using this approach in designing concurrent database systems.

4.3 Algorithms for Specific Problems

When designing an asynchronous algorithm for solving a specific problem, we have control
over the tasks that will be included in the algorithm. Therefore, it is possible to keep the
required synchronization among the processes of an algorithm as weak as possible, by a
careful design of these processes. This would not be possible for general database systems
where a transaction has no idea aboul other transactions it might have to interact with. As a
result, algorithms in this section enjoy much higher dugrees of concurrency than those
algorithms which are derived from the general techniques in Seclion 4.2,

4.3.1 Concurrent Accesses 1o Search Trees

We discuss how a file organized as a B-trce or a binary search tree can be accessed
simultaneocusly by a number of processes. The goal is lo insure integrity for each access
while at the same time providing a high degree of concurrency and also avoiding deadlock.

Concurrant Accoss lo B-troes

The organization of B-trees was introduced by [Bayer and McCreight 72] and some
variants of it appear in [Knuth 73] We assume that the reader is familiar with the definition
of B-trees. Here we mention only that for a B-tree the leaves are all on the same level and
the number of keys contained at cach node except the root is between k and 2k for some
positive integer k. The problem concerning multiple access to B-trees has been addressed in
a number of papers. It appears that [Samadi 76] gave the first published solution. In his
solution, exclusive locks are used by all the processes. As a search proceeds down the tree,
it locks son and uniocks father unlil it terminates. On the other hand, an updater (insertion or
deletion) locks successive nodes as it proceeds down the iree, but when a "safe™ node is
encountered, all the anceslors of that node are unlocked. For the insertion (or deletion) case
a node is considered to be "safe” when a key can be inserted into (or removed from) that
node without causing an overflow (or underflow). it is relatively easy to see that the solution

preserves integrily for cach access and is deadlock free.
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[Bayer and Schkolnick 77] observe thal when k is large the chance that an updater wiil
cause splits or merges on nodes, especially at top levels of the tree, is small. Therefore, they
propose that an updater should place weak locks such as share locks on nodes at a top
section of the trce, and only later (in the second pass) convert some of these weak locks into
strong locks such as exclusive locks if necessary. They present and prove the correctness of
a general schema, which involves certain parameters that can be tuned to optimize the
performance of the schema. Bayer and Schkolnick's solution is expected to have good
average performance, especially when k is large. In the worse case however, an updater can
still lock out the entire tree.

Concurrent Accaess to Binary Search Traes

In [Kung and Lehman 79L] algoritims for a binary search tree which can support
concurrent searching, insertion, deletion and reorganization (especially, rebalancing) on the
tree are proposed. In these aigorithms, only writer-exclusion locks are used, simply to
prevent the obvious problems created by simultaneous updates of a node by more than one
process. Moreover, in these algorithms, any process locks only a small constant number of
nodes at a given time, and a searcher is not blocked at all until possibly at the very end of
the search when it is ready to return its answer. We discuss some general techniques that
were used for achieving this high degree of concurrency.

Unlike the concurrent solutions for B-trees described above, updaters are no ionger
responsible for rebalancing. An update just does whatever insertion or deletion it has to do,
and postpones the work of rebalancing the (possibly) unbalanced structure caused by the
updating. Other processes can perform the postponed work on separate processors.
Through this idea of postponement, the multiprocessing capability of a multiprocessor
environment can be utilized. The same idea is used in garbage collection. Rather than
performing the garbage collection itself, the deleter simply appends deleted nodes to a list of
nodes to be garbage collected later. In this way, the deleter need not wait until it is safe to
do the garbage coliection (i.e. the time when no one else will access the deleted node), and
garbage collection can be done by separate processors.

Another idea used by the algorithms is that a process makes updates only on a local copy
of the relevant portion of the tree and later introduces its copy into the giobal tree in one
step. With this technique one can get the effact of making many changes to the database in
one indivisible step without having to lock a large portion of the data. However, one faces
the probiem of backing up processes which have read data from old copies. It turns out that
because of the particular property of the tree structure, the backup problem can be handled
efficiently. The copy idea is ciosely related to the validation method discussed in Section
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4.2.1.2.

4.3.2 Asynchronous lterative Algorithms for Solving Numerical Problems

Many numecrical problems in practice are solved by iterative algorithms. For example,
zeros of a funclion f can be approximated by the Newton iteration,
X, =% - f’(z:i)’1 f(z;),
and solutions of linear syslems by ilerations of the form,
Xie1 = AX; + b,
where the X, b, are n-vectors and A is an nxn matrix. In general, an iterative algorithm is

defined as:

Xie1 = X Xicga oo Xigayh ,
where ¢ is some “iteratlion function”. Here we are interested in parallel aigorithms through
which an asynchronous mulliprocessor can be used efficiently to speed up the iterative

process. We shall follow terminologies introduced in [Kung 76] for various classes of parallel
iterative algorithms.

Iteration function ¢ can typically be evaluated concurrently by a number of independent
processes. For example, for the Newton iteration f and * can be evaluated concurrently, and
for the matrix ieralion all the components of the wvector Xi+1 can be computed
simultaneously. In a straightforward synchronized (parallel) ilerative algorithm, the

concurrent processes that evaluate the iteration function are synchronized at each iteration
step, i.e,, a process is not aliowed to start computing a new iterate until all the processes
have finished their work for the current iterate. Thus, processes in a synchronized paraliel
algorithm may have to wait for each other. It has been observed that by and large iterative
processes are insensilive lo the ordering of evaluation as far as convergence is concerned.
This observation leads to the notion of an asynchronous (parallel} iterative algorithm, in which

processes are not synchronized at all. In particular, by removing the synchronization
imposed on a synchronized iterative algorithm an asynchronous iterative aigorithm will be
obtained. In a lruly asynchronous iterative algorithm, a process keeps computing new
iterates by using whalcver information is currently available and releases immediately its
computed resuits to other processes. Thus, the actual iterates generated by the method
depend on the relative speeds of the processes. A slightly restricted form of asynchronous
iterative algorithms for solving linear systems is known as chaotic relaxation [Chazan and
Miranker 69] in the literature. G. Baudet, in [Baudet 78a, Baudet 78b], reports the
experimental results from the implementation of various parallel iterative algorithms on C.mmp

to solve the Dirichlet problem for Laplace’s equation on a rectangular two-dimensional region.
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His rcnults indicate clearly that on C.mmp asynchronous iterative methods are superior to the
synchronized counterparts with respect to overall computation times. For a concise survey

of parallel methods for solving cquations the reader is referred lo [Miranker 77].

4.3.3 Concurrent Database Rcorganization ,

In many database organizalions, the performance for accesses will gradually deteriorate

due to structural changes cauced by inscriions and deletions. By reorganizing the database,

the access costs can be reduced. The garbage collection in classical Lisp fnplementations can
aiso be viewed as a dalabase rcorganization. In such an implementation when the free list is
exhausted, the list processor is suspended and the garbage collector is invoked to find nodes
which are no longer in use {garbage nodes) and append them to the free list. Database
reorganizations are ltypically very lime-consuming. Thus, it is desirable 1o reorganize a
database concurrently without having to biock the usual accesses to the database,

Recently there has been quile core inlerest in concurrent garbage collection. The goal is
to collect garbage concurrently with the operations of the list processor. The first published
solution is due to [Steele 75), which uses semaphore-type synchronization mechanism.
[Dijkstra et al. 78] gave a solulion whose synchronization is kept as weak as possible, but
made no claim on the efficiency of the solution, [Kung and Song 77] gave an efficient solution
by using very weak synchronizalion. These solutions are extremely subtle. We refer the
reader to the original papers for descriptions of these solutions. Here we just discuss some
experience we gained from the concurrent garbage collection problem. Contrary to what one
might expect, it is nol automatically true that because of the concurrent garbage coilection
the list processor will not be suspended too often and thus on the average be able to do
more compulations in a fixed time period. For correctness reasons, it is necessary that some
synchronization overheads be introduced to the list processor, and consequently the list
processor is slowed down. Aiso, it is inevitable that the garbage collector will sometimes
perform useless work. For example, the garbage collector can be inarking a set of nodes
without knowing that their ancestors have just been made inlo garbage by the list processor.
All of this affects the elfectiveness of the parallel garbage collection. Similar types of
performance degradalion are expected in other instanls of concurrent database
reorganization. The central question is how to make the reorganization process effective
without committing excessive synchronization costs. The problem can be extremely
challenging as we have expecricnced in the concurrent garbage coilection case. This may
explain the scarcity of results available on concurrent database reorganizations today.

Memory reorganization is just one of the many “housekeeping activities” performed
regularly in any large-scale computer syslem, Ideally, these system activities should all be

-_—
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carried out by additional procecsors operating concurrently with the proceccors directly
devoted to the wusers' computalhiens.  The syslem should constantly reorganize itself to
improve its service to the user. The user at lus end simply sees a more efficient sysiem
providing rapid responses. A feature of this approach, which is highly desirable for practical
reasons, is that the speed-up can be achicved without requiring the users to rewrite their

codes. It seems thal concurrent reorganizalion (or housekeeping) represents one of the most

attractive applications that asynchronous rulliprocessors are capable of supporting. We

W A}

expect that significant progress along this line will be made in the near future, as

multiprocessors become prevalent,

" AN AR

4.8 Remarks for Scclion 4

All the cfficient algorithms mentioned in Section 4.3 share a common property, namely, a
process in an algorithm is never made to wait for other processes 10 complete their tasks.
The same philosophy is used in validation methods in Section 4.2.1.2, in task scheduling
[Baudet et al. 77], and in several ofher examples [Kung 76, Robinson 79). This suggests that
this "never-wait” principle is a useful criterion to follow in designing efficient algorithms for

asynchronous mulliprocessors. A typical way lo achieve this goal is to use copies. After a

process completes its current fask, it immediately starts working on a copy of the most
i recent global data. Of course, validation is needed later on to determine whether or not the
updated copy can be made giobal. Validation is not necessarily costly when it can be carried
out in parallel on separate processors. Another technique fo achieve the "never-wait" goal is
H | the postponement idea as used in the concurrent binary search algorithm: a process simply
ignores for the time being any work it is not allowed to perform immediately, but comes back

to pertorm the work at a later time.
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5. Concluding Remarks

One can sce from the preceding sections that issues concerning algorithms for synchronous
parallel computers are guite different from those for asynchronous parallel computers,

.

For synchronous parallel compulers, one is concerned with algorithms defined on networks.
Task modules of an algorithm are simply compulations associated with nodes of the
underlying nclwork., Communicalion geometry and data movement are a major part of an
algorithm, For chip implementalion it is essenlial that the communication geometry be simple
and rcgular, and that silicon areca rather than the number of gales alone be taken into
consideration. One of the important research lopics in this area is the development of a new
theory of algorithms thal addresses issues regarding communication geometry and data.
movement. In particular, it would be extremely useful to have a good notation for expressing
and verifying algorithms defined on networks, and to have a good complexity model for
computations on silicon chips. Some initial steps along these directions have been taken by
(Cohen 78, Brent and Kung 73b, Thoimpson 79a, Thompson 79b])

For asynchronous parallel computers, one is concerned with parallel algoritkms whose task
modules are executed by asynchronous processes. The major issues are the correctness and
efficiency of an algorithm in the presence of the asynchronous behavior of its processes. ‘For
the general database environment where only syntactic information can be used, the
serialization approach is the method for ensuring correctness. Serialization can be achieved
by eilher locking or iransaction backup. If semantic information about integrity constraints
and transaclions is available as in many special problem instances, then more etficient
algorithms that support higher degrees of concurrency may be designed. Efficiency analysis
of algorithms for asynchronous computers is usually difficult, since execution times are
random variables rather than constants. Typically, techniques in order statistics and queueing
models have to be employed (see, e.g., [Robinson 79]). Generally speaking, algorithms with
large module granularity are well suiled to asynchronous multiprocessors. 1In this case, a
process can procecd for a long period of time before it has lo wait for input from other
processes. Many database applications fall into this category. Further and more detailed
discussions on the programming issues raised by asynchromous muitiprocessors can be found
in [Newell and Robertson 75, Jones et al. 78, Jones and Schwarz 78]
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