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and Security,(é) Interprocess Synehronization,(3) Interprocess Mechanisms,
and(4) Theory and Formalism, addressed the current state of the art in these
areas as well as problems and future research directions. This report

incorporates much of the material and working papers from those fields
as well as selected references useful in understanding the topic.
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ABSTRACT

Interprocess Communication (IPC) has been recognized as
a critical 4ssue 4n the design and implementation of all
modern operating systemse IPC policies and mechanisms are
even more central in the design of highly distributed
processirig systems -~ systems exhibiting short-term dynamic
changes 1n the availability of physical and Logical resour-~
ces as well as interconnection topologye A workshop on this
subject was held at the Georgia Institute of Technology 4n
November 1979 Four working groupse 1) Addressinge Naminag,
and Securitys 2) Interprocess Synchronization. 3)
Interprocess Mechanismse and 4) Theory and Formalisme ad-
dressed the current state of the art in these areas as well
as problems and future research directions. This report
incorporates much of the material and working papers from
those fields as well as selected references useful in under-
standing the topic.
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PREFACE . 3

The workshop organizing committee had originally intended to
‘1 utilize the material developed by the individual working
groups to prepare a summary report of the proceedingses This
v toncept was abandoned when 1t was recognized that a2 “"summary
¥ report” would not adequately report on and document all of
the work and topics that were covered during the meetinge.
1t was obvious that documentation much more thorough than
merely & summary report was warranteds so the members of the
. organizing committee decided to directly utilize as much as
- possible of the material and notes prepared by the working
groups and assemble and edit that material into an organized
A workshop reporte It was'felt that this approach would much
better capture the true flavor of the workshop and the
breadth of the material covered there.
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Section 1 INTRODUCTION

SECTION 1

INTRODUCTION

1.1 QBJECTIVES OF IHE WORKSHQP

The subject of the workshop was Interprocess Communication
Mechanisms with 2 particular focus on process-to-process
communications in highly distributed systemse. Highly
distributed systems are characterized by very loose coupling
between physfcal resources as well as between Logicat
resourcess Sucth systems also exhibit dynamice short-term
changes in the topology and organizaetion of the total
systems These characteristics place new reaquirements on the
design and performance of IPC mechanisms} these requirements
are assuming extreme {importance in advancing the state-of-
the-art in all forms of distributed systemse.

1.2 WORKSHOP QRIGINS

The last meeting that focused on interprocess communication
was the "ACM SIGCOM/SIGOPS Interprocess Communications Work-
shop"™ held 24-25 Marchy 1975, (CIPC 751

One might conclude from the paucity of material published on
this topic since that workshop that the problem {is totally
under controle. (The BBN "Network Operating Systems" study
CLTHOM 78] <cites only one reference since 19744) Such is
definitely not the case. wWork on IPC's has been covered
within projects on operating systems3 howevers many im-
plementation and performance problems are only partially
solved or solved only on an ad hoc basise and it appeared
that the time was ripe to again focus a meeting of
specfalists onto this topice especially in view of its key
role 1in the operation and performance of distributed
systemse.

Sitnce 197% advances in the field of computer communications
have provided mechanisms for connectina computers together
in a variety of configurationse. For instances high speed
serfal communication paths [METC 76¢ GORD 791 have permitted
effective local networks [CLAR 781le in which many computers
share specialized vresources (storages printing facilitiess
etce)e while each node still retains some degree of
autonomye. In additionsy many mini-computers support lLarge
address spacesy and a corresponding high deaoree of mul-

Georaia Institute of Technoloagy IPC Workshop




Section 1 INTRODUCTION Page 2

tiprogramminge. One natural way to construct the software .
for such systems is to base the software architecture on the
notion that most tasks will be performed by a collection of
communicating asynchronous orocessess running on the same or
different processorse Such systems are known as "highly
distributed systems"y and are characterized by a very L(oose
coupling between physical resources as well as between

Logical resourcesy and they allow dynamice short-term
changes in the topoloay &and oraanization of the total
system,

The fact that these systems are very loosely couplede both
physicaltly and logicallys places quite different demands on
IPC from those applicable to more tightly coupled contem-
porary systemsy even those incorporating a local network as
the dnterconnection mechanisme. Practical attempts to
construct such systems immediately direct ones attention to
available Interprocess Communication (IPC) mechanisms and
their shortcomingse Lack of well constructed and well un-
derstood mechanisms is the root of most of the difficulties

in bujtdipg distributed systems.

1.3 PURPQSE AND SCOPE QF IHE WORKSHOP

The "Workshop on Interprocess Communications in Highly
Distributed Systems" was intended to bring together a selec-
ted group of workers in the subject area to address the five
general qgoals listed below:?

0 Assess the present state-of-the-art for 1IPC
mechanisms 1in distributed data processing
systems

2) Identify the data available on the actual
performance of wvarious IPC policies and
mechanismse

3 Assess the potential value of various 1IPC
mechanisms satisfying the operational and
cerformance reauirements for highly
distributed systemse.

4) Identify shortcomings in the present state-

of=-the-art and identify promising areas for
future research and experiment on this sub-

jecto
5) Identify possible standardization Llevels of
IPCe .
Georajia Institute of Technoloagy I1PC wWorkshop
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Section 1 INTRODUCTION Page 3

The scope of the workshop will be Limited to IPC mechanisms
for use i1n cdistributed systems. (This acknowledges fatrly
common agreement among the research community that the fol-
lowing are not DDP*s === multiprocessorss computer networks
per sey intelligent terminal systemss and satellite proces-
sor systemse)

1.4 SIRUCTURE OF IHE WQRKSHOP

Workshop attendees were setected from individuals actively
working 1in the fields and the size of the workshop was
purposely Limited to approximately 40 attendeess. Special
attention was given to obtain participants who met one or
more of the following criteria:

- Had had practical experience in the design and
implLementation of IPC policies and mechanfifsms in
highly distributed systems.

- Had analyzed and/or measured the actual per-
formance of various IPC mechanismse

- Would contribute a written submission to the
workshope

The workshop was held from 12:00 noons 20-Novembers thru
12:00 noone 22-Novembersy 1978y at the Atlanta Townehouse
Motor Hotelesy 1immediately adjacent to the Georgia Tech cam-
pUSe

Before the workshops invitees were requested to {identify
their areas of interest. Based on that inputs the organiz-
ing committee established six working groups:

1) Addressing and Security

2) Fault Tolerance

3) Synchronizations Signallinge and Flow Control
4) Theory and Formalism

5) Hardware and Primitives

6) Programming Issues

Howevery as often (usually?) happens 1in such situationse
when the groups met and discussed their areas of interesty
realignments in the working group organization resulted 1n
four working groups rather than sixe

1) Addressinqge Naminge and Security
2) Interprocess Synchronization

3 Mechanisms

4) Theory and Formalism

Georgia Institute of Technology IPC Workshop
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Section 1 INTRODUCTION

The output of these four groups fs the basis for this
reporte.
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1.6 QRGANJIZATION QF IHIS REPQRI
; Following this introductory sectione there 4s a short sec-
p tion on the general background of interprocess communication
4 techniquesa The main body of this report is Sections 3¢ 4,
: Se and 6 which cover the results of each of the Working
} Groupse Within each sectiony the first material presented
" is a summary of the Working Group presentatfon made at the
. end of the workshope Following thate there sy in some
l 3 instancess a collection of amplifying material and selec-
F ¥ tions from the position papers that were prepared prior to
} i the workshop and distributed to the attendees.
3 4
§
E . Section 7 contains several Longer papers that were either
t ¢ prepared specifically for dfistribution at the workshop or
! ? were felt by the authors to be applicable to the workshop
. and were distributed to the attendees there. Section 8 is a
|
EE ! very brief summary and discussion of future directions for
' s IPC and Section 9 contains the references utilized 1in the
: i, reporte
‘- '
.
n .
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SECTION 2
BACKGROUND

2¢1 INIRODUCTION

Probably the single most important hindrance to the develop-
ment of interprocess communication has been the lLack of
general acceptance and agreement on the notion and abstrac-
tion of a "processs"” Until the "process modet" of computa~
tion becomes generally accepted and used as the basis of
software architecturess there will be Little motivation for
interprocess communication mechanismse

In most systems the abstraction of a "process" has not been
developed well enough for it to be treated as an “object" in
tts own right so that "processes®™ can be used conveniently
by system architects and others as building blockss
Primitives for the <creations synchronizations addressinagys
and communication of processes have in the past only been
generally available to operating system developerse and
therefore not widely used by application programmers in ap-
plications software systems. Unfortunately operating system
developers tend. to Live with and use poorly documented ex~
perimental primitives and other gagd ho¢ mechanismse The
notable exceptions to this rule form the core body of clas=~
sic Literature in this field [BRIN €69y OIJK 68be DIUK 7l
DALE 68]e For the most parte application programmers in the
past have been restricted to conventional 1/0 using shared
files as a pragmatic method of finterprocess communication,
with only partial successe
\

When the notion of a "process®™ becomes recognized as a fun-
damenrtal building block for distributed applications,
stronger support and dccumentation will have to be provided
by the system suppliers and manufacturersy thus making
available to application coders a robust set of "process-
based" primitivese. After such widespread support
materfalizesy the design experience and performance
statistics will provide the basis for a fuller understanding
of all aspects of dnterprocess communicatione.

A comprehensive survey of the present state-of-the-art in
interprocess communication is presented in paragraph Te6e

Georgia Institute of Technology IPC Workshop
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2.2 PROCESS MODEL QF COMPUIATION

An excellent survey of the "process model of computation®
can be found in [HORN 73] Prior to thise articles on
operating systems developed the notion of a "process"™ or
"taske™ as an entity that could be scheduled and own other
resources in multiprogrammed systemses but they did not treat
a process as a structuring methodology in its own right.
Examples of these notions can be found §n [SALT 661 and [IBM
711,

Access to resources in early operating systems presented the
very first examples of interprocess communications but these
early IPC techniques varied widely from one 1{implementation
to the nexts. For examplesy in most systemss the Line printer
daemon (or process) owned the Line printery and access to
the printer was restricted to ordinary "write” statements at
the Language level coupled with "logfical unit” assignment at
the job control of command language levels Other examples
may be found where the Login process "owns" the communfica-
tion Liness or a file manager owns the file system as in the
MERT operating system [LYCK 781, An early message~based
operating system structured around processes is the RC4000
operating system [BRIN 699 RRIN 701

Trends in software engineeringes applicationsy and technology
certainly point to an increasing awareness of a process as a
fundamental method of structuring systems. The prolifera-
tion of 1inexpensive processors and low cost bandwidth sug-
gest a process model of computations even 1f there 1{is only
one process per processing elemente since control and shar-
fng of common resources must be by some form of interprocess
communication. New architectures are now being proposed
that exploit these trendss eege U[NELS 78Je The CNELS 78]
proposal s based on a high~-speed packet=-oriented bus inter-
connecting a Large number of processor-memory pairse termed
"ecells." Each cell includes a CPUy 2 primary memory system
(typically one or two megabytes)y a packet bus node control-
Lery and posstbly some peripherals such as disks or com=-
municatfons devicese The architecture supports applications
decomposed at the process levels the entire system is viewed
as a set of cooperating processess distributed among the
cells to improve performances coste or availabilitye.

2.3 HIGHLY RISIRIBUIED SYSIENS

Highly distributed systems are characterized by very Lloose
coupling between physical as well as logical resources, In
addition they exhibit dynamice short-term changes 4n the

Georgia Institute of Technology IPC Workshop
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topology and organization of the total systems The fact
that these systems are very loosely coupleds both physically
and Llogicallys places quite different demands on IPC from
those applicable to more tightly coupled contemporary
systemsy even those incorporating a "network" as the 1inter-
connection mechanisme

Such systems should support multiple name spacese including
the management and translation of file and unit names in
these name spacese In additione such systems should handle
abstractions built from collections of communicating proces-
ses and provide mechanisms for addressing and synchronizing
aroups of processese High bandwidth message transport
mechanisms will potentially allow multiple Logical connec-
tions between processes to be constructed whenever con-
venienty but system support must be available for those con-
nections to be useful. To datey very Little experience fis
available ¢to assist a designer attempting to construct com-
plex systems out of communicating processese.

2.4 IPC SIRUCTURES

Most existing IPC primitives and structures are based on a
“two-party"™ communication models in which there 4s a single
“gsender® and 2 s$ngle "receiver® for each ¢transaction or
messagee. {This 1s certainly the basis for IPC facilities
built around the X.25 Level 3 protocol ([CCIT 781].) Other
kinds of communication facilities may better support rings
tree and general graph models of process networkse
Protocols 1nvolving more than two processes are called "N-
process® protocols [PARD 7913 they should find use in shared
data base and electronic mail systems.

The major functions supporting these protocols are storings
forwarding and routing variable Length messageses These
functions can be difficult to 4dmplement {1f communication
Linkse processing nodesy or other resources are only
partially availablee.

2.5 INIERPROCLSS CONIROL SIRUCIVAES

Communication Links between procesgses can be allocated
strictly to control functionse. In facte the degree of
separation of control and data is an important research {s-

Geor3fa Institute of Technology IPC Workshop
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sue. A path primarily used for the transport of data may
have no mechanism for control or ®out of band” signalling,
which may make error detection and recovery difficulte if
not impossible. The system®s control path structure is
primarily determined by the "control model"™ used during
system developments The "classical"™ system organizations
are 23a) master/slavey b) hierarchicale c) democratice or ¢
autonomouse The first two are well understood and readily
implementeds while the latter control organizations are not
well understood (4in an algorithmic sense) and are the sub-
ject of much research [HOAR 7813,

Georgia Institute of Technology IPC Workshop
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SECTION 3

ADDRESSINGe NAMINGe and SECURITY

3¢1 HORKING GROUP SUMMARY REPOQRI

What are objects

filesy processesy devices

Uniform mechanism?
File metaphor == UNIX
Process metaphor =- MININETs RC4500
Abstractions =-- WEB
Worldview: (a La DISY)
S Universe >>> Systems >>> Objects
Distinguish between:
? NAMES == what
‘ ADDRESSES ~= where
| ROUTES =~ how to reach
Basic Problem: map
NAMES >>> ADDRESSES
L Desirable features:
1 Generic naming
Context independence
Location independence
Broadcast (group name)
Unicueness

Path addressing

Georgia Institute of Technoloagy IPC Workshop
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Other concerns:

Flat vse hierarthical

Centralized vse distributed :
Steps
Search rules
Connections
* Transactions
Merging two systems:
* l. one below other
2+ both below new prefix
3. corresponding unused addresses
8 . Name >>> Address mapping may be separate from IPCe
} ' IPC between specific addresses
Directory object with well-known address
DISY "MAILBOX"

Generic naming

Location independent
| Unigueness
Object pointer
Resource Limits
Access controls
Segyrity
| ' Madn attributes of subject:

Logical ddentity

; '0 Physical location
: :
|
“ -
P Georgia Institute of Technology IPC Workshop
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¥
| Problems: %
i
£
t
l. authentication * access |
b control of location
2. storing authorization on areas
outside security environment :
1 3. moving objects if encryption L
based on location
j 7
; |
4 - t-
L]
(I
»
i
) ! 1
E
[
:
1]
l.
. »
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3e2 AMPLIEYING MATERIAL

What are objects? filessys devicess processes
- What things should be in a List of primitive ob~-
jects?
- Should we <choose one object type to represent
all objects?
Should there be a uniform mechanism for all objects?
- file "metaphor™ - Unix [THOM 741
- process "metaphor®™ - Mininet [(PEEB 78]y RC 4000
(performance?)

- abstractions

- WEB at DEC (performance?)
- Capability based systenms

Uniform mechanism 1is a good thinge Being able to do this
requires picking one of the aboves NoOt sure we cane

Worldview: ANSI/SPARC/DISY [DESJ 78] or IS0 SC 16 modetl

- Universe consists of multiple systems.

- Systems have many objectse
Distinauish Between Names (whatle Addresses (where)s Rgutes
(how to reach)s (see [SHOC 781)

Basic Problem: mapping NAMES to ADDRESSES.

Desirable features of this mapping:

1) generic naming - many potential servers
- within one system or across
systems
- selected by server or by

requestor ("request for service"
facility s Just Latter [FARS

73

2) Location independence - same name may be used
no matter where server is located

L3 broadcast - (group name) - communication with
multiple servers

4) uniqueness = only one name for given object
or set of objects at some level

%) path addressing or source routina =~ source

specifies sequence of addresses to reach ob-

Georgia Institute of Technology IPC Workshop
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jecte. Useful 3Jif "system"®™ does not know
routey or {f destination {is outside normal
name spaces

Additional mapping concepts:

n Flat vse hierarchical - latter allows each
directory or switch to know only about
elements at its own Level ==> many smaller
directories vse one large onee.

2) Centralized vse distributed = centralized
can be reliabley but requires roundtrip delay
to get informationes high Lload at centere
Distributed may allow Llocal Lookupse or may
require broadcaste Update more complexe.

3) There may be many directoriess and many
"steps" in the address lookupe Example: "my
name"® to gqalobal names global name to systen
address/localt namee (send to remote system)dy
Local name to Local addresse.

4) Search rules <~ each user may have rules for
tailoring lookup to his needs.

NAME -=> ADDRESS mapping may be costlys. Hence desire to do
it once for many successive messages to same destinatione.
Leads to g¢onnection notion. May dnclude route setupe
Cacheing of recertly used names/addresses also helpfule
Connection also needed when desired that successive messages
to a given name co to the same objectse dn order. If
transactions are independentsy then a different instance of
the named cbject can serve each =~ no connection neededs
INSW 761

Problem of merging two previously independent systems:

1) Yay add "prefix" to all addresses (a higher

level 4n hierarchy) to distinguish systemse.

Make one system "below" other in hierarchye.

k) Make unused addresses in each system
correspond to addresses 1{in other system.
Inly good for small numbers,

"

NAME -=> ADDRESS translation may be separate from basic IFC
which is between specific addresses only. Then directory
object (process) with well-known address can be accessed to
provide translations with vresult returned via basic IPC.
Ihen requestor does basic IPC with specific address of ser-
vice actually desirede Examples: ARPANET Initial Connec-~
tion Protocolsy Mintnet [PEER 781,

Important “xamplte: Our view of DISY "mailbox"™ C[DESJ 78] has
properties or components:

Georgia Institute of Technology IPC Workshop
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ADDRES

- generic name
- lLocation independent
- unfiqueness
- pointer to object

SINGe NAMINGs and SECURITY

- resource control (how many in use)
- access controlse oOwner

i Security:

1)
2)
3)
4)
5)
'
.

Georgia Institute of Technology

Poes not
recoverye

Coes include authentications access controlsy

encryption
Basic goa
only by sp
Two main a

- Llog
- phy

Probtems:

a)

b)

c)

include reliabilitys failure

s correctnesse.

L - allow objects to be accessed

ecified subject.
ttributes of subject:

fcal identity
sfcal location

AlLow object to be accessed
from one place but not ansther
(eegee not via dial=-in)e. Must
authenticate Location as well
as fdentity.

Removable media plus unsecured
sources: Can authorization
information be stored in arecas
outside of physical control?
Encryption problem, 1f
authorizations are encryrted
based on Location of objecty
how ¢an object move? (Two
constraints: need to aqgive
authorizations to otherss but
must not be forgeable (hence
encryption)).

(process) mailbox stands for

IPC Workshop
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3¢3 CASE SIVDIES .

3¢3.1 Distributed Data Bases
by

Edward Lee
TRW

Most DDB protocols seem to assume that Data Base Managers
can fiaqure out how to communicate between themselves and
that naming one another is not a problem. Is ¥t reasonable
to assume that file system operations and process IPC are
basically the same mechanism? DISY has process as the basic
communicating objects You basically open a channel to a
process and then communicate cdirectly with ite It is the
Sessfon Controller (DISY) which opens the channel for youe.

3.302 Mininet
by

Je Livesey
University of Waterloo

Mininet 1s a system 1{in which addressing 1s bastfcally
separate from IPC. In many systems some form of addressing
method (name -=-> address translation) is implicit in IPC.

In Mininetsy IPC consists solely of the transmission of a
message from a Sender Task to a Regeiver Task which has to
be identified by an idnteger JTask Identifier (an address
rather than a name)e In the distributed case the host id is
concatenated with the task fdentifier within the hoste.

The question then 1is how to get the task identifier for a
task to perform a particular functione.

In facts all system resources (tasksy filese devicess direc-
tortess osee) are formalized as taskse A task has code and
data segmentse. A files for instances is a task whose code
segments are the Access Method and whose data segments are
code segmentse A file task gets messages of the form:

read (record #)

and reacts by returning a message to the user containing the
record data.

Georgia Institute of Technology IPC Workshop
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There 1is only one well-known task {fn each hosty the

rectory lask which has the responsibitity to maintain a
List relating function name (a character string) to task
identifier for each task tn this  host. As the ultimate
parent of each task he can find out their task idse (Task
identifier of a new task 1s returned to the <creating tasks
the parent.) Nowe when user task Ay for instance wants to

perform
open (filename)

it does so by asking the directory task for the 1identifier
of the "file-open" taske Assuming this exists Locallys the
directory task returns its task {d. The wuser now com-
municates dfirectly with “"file-open” (a La DISY session) and
sends 1t a message

vopen (filename)"

The task "file-open" now creates a file task whose data seg-
ments are the data records of "filename" and returns the
"file” task identifer to the user taske.

The wuser task now communicates with the "file" task (a
second host session a La DISY) with messages

"read (record #)*"
“write (record #)"
"close ()"

The "file-open" task handles mutual exclusion on the file
(by refusing to create new file tasks for the same file as
long as someone has it open to write)e The "file" task han-
dles record mutual exclusione.

In the case where no task exists in the local hosts to hand-
Le function "X" the local directory task talks to remote
directory taskse who are responsible for knowing which tasks
exist fn their hosts (and which can be created to do "X"),

Directory tasks announce themselves to one another at boot
time.

References:

CPEEB 781
CLIVE 78al

CLIVE 78b1]
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3¢3+3 Diacussion

Medisner:
Is this more complicated than a strafght function
CALL/RETURN system?

Livesey:
Yese but more flexible since you can impose a function
CALL/RETURN system on top of the basic task/message-
passing system using library routines if you wante. It
is also assumed that we have a homogeneous system.

Sunshine:
Clearly we can have server processes to guard and ad-

minister
directories
open function
file tasks
etce
Lapin:

We need hardware to support process 4{nvocation/context
switch better than at presente.

Livesey:
Yesy but future hardware should not lock us into func~-
tion call/process invocation capabilitiess etce

Sunshine:
Curiouslys in Mininetese every resource (object) 1{1s a
task (process)y but the creation of a process {involves
reading a file (an object containing 1{ts code seg-
ments)e.

Enslow:
Lee says ¢that his distributed data base should be
redundant. Does the system itself select the optimal
record!

Lapin:
Redundancy 1increases the reliability of the systems

Livesey: :
We have both homogeneous and heterogeneous redundancy :
heree }
. Homogeneous !
i - j§dentical copies of data i
3 - - increases reliability !
]
! Heteroaeneous
Sl - copies of non-identical objects to operform %
similar functionsy ege FORTRAN compilers
1iu . Georala Institute of Technoloay IPC Workshop
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increases system band width

McCoy:
Can we get a system to give us both!

Sunshine:

To do 1t across several systems has a2 cost and we have
to ask §f the utiltity of redundancy 1s worth the <coste
The ARPANET Resource Sharing Executive (RSEXEC) was a
stripped-down operatina system for remotely Llogged-
{nusers who actually executed on the first avatlable
DEC 10 but never knew which ones This was also an at-
tempt to provide a network-wide file systeme Multiple
server systems such as the Irvine Net recognize the
need to go accross the system to get resourcess To use
this we may need utility programs to perform

Local COBOL =-=> ANSI COBOL
and maybe even

P ANSI CO080L =-=> Local COBOL

. .

] Livesey:

. May also have a network JCL so that a user only uses
the JCL of his Local machines and then we need to be
able to do the translation

Local JCL #1 ==> Network JCL ==> Local JCL #2
Lapin:
There are two approaches to a multi UNTX system file "
systeme We can have
/net
as a special file and address files on machines Ay Py
‘ etce as
? /net/A/pathname <o
’ /net/B/pathname <o
H
We can also localtize host id in the pathname explicitly

) ‘ cartl/part2

l, partl: host id part2: pathname ]

[

Sunshine:?

- There 4s a conflict between REAL and IDEAL worldse In
the Real Worlde we tend to involve the user in specify-
ing the location of a function (service)e In the ldeal

. Worlds we would Like to oive the wuser gagpstractions
‘I' .
’ Georata Institute of Technology IPC Workshop
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generic naming and location independent naming.

Livesey?
Part of the problem is that the concept of the stze of
the universe (of which the system forms a part) {is 1im-
plicit 4n the system at a high cost. One i1s then for-
ced to choose between add-on features such as?

/net/A/resource

which are not location independent on the one hand,s and
a more or Less complete rewrite on the other hande.
UNIX d1s an example of such a system that makes assump-
tions about the size of the universes

Meisner:
We now have chofces between

i) Centralized Directories

which can now be made very reliable
11) Distributed Knowledoge
if1) Tree Structures

Livesey:
(i34) 3s Just a disguised directory methode There are
really two choicest centralized and distributede.

Hassan:
Efficlency may dictate tree structures rather than
directory taskse This was a factor 1in the MULTICS
designe

Georaia Institute of Technoloay IPC Workshop
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3.4 BQSIIION BAPERS

3.4.1 Hanilton
Addressing and Security

by

Jim Hamilton
Digital Equipment Corporation

Because of ever increasing complexity of software develop-
ment and maintenancees providing any programming environment
which complicates software development would be a mistake.
This argument Leads to a view of distributedness as a
property of the {implementation of a systems and not of the
application development environment.

Addressing and protection are criticatly 1imoortant 1in ap-
plication development. The above view of distributedness
implies that addressing must be Location independente. That
ise Llocal and remote objects must be addressed {identically.
Furthermorey I believe that addresses should also be in-
dependent of the context of reference (different processes
should address the same object in the same way)e and uniform
across all object types (hardware defined objectss system
defined objectsye and application defined objects should all
be addressed similarlyl.

1 also believe that the use of processes to abstract all
other objects 14s a mistakey for cseveral reasons: 1) it
restricts the flexibility of the environment for the execu-
tion of functtonse 2) it often forces the invention of ad-
ditional addressing mechanisms within the applicatione 3) it
is inadequate to address system and hardware defined objects
(eegey devices)sy 4) 1t 1dnevitably colors the application
designer?s conceptualization of the systemy and finallys 5)
it does not appear to be recessarye

To achieve a distributed implementations 1t will stitl be
necessary to solve the problems of physical communication
and its associated addressing problems at a Llower Llevele
But the problems are considerably simplified since the
mechanisms can now be highty specializeds because they are
not visible to the application desianers

1 believe that the notion of capability based acdressinae
when properly fintercreted and implementedsy provides all of

the properties mentioned above. Moreovere It can be
naturally extended to provide capability based protection,
which 1s further discussed belowe The <c¢hallenge 1s to

achieve an implementation which is cost~effectivey and which
still has all of the necessary propertiese A failure in

Georagia Institute of Technology IPC Workshop
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efther domain wWwill be fatale An even greater challenge 1s
to convince tne computer industry that the inevitably higher
cost of the pasic system will be more than offset by the
redquced cost of softwarees

I believe that the issue of sharing is partially separable
from that of addressings Context independent addressino 1s
a prerequisite for sharinges but 1ts existence does not imply
concurrent access by separate processese (oncurrent access
to immutable objects should be possinles for performance
reasonss 0put concurrent access to mutable ohjects now ap-
pears to be a dangerous mistakee By precluding this kind of
sharinge we also simplify the construction of distributed
implementationse.

Given an addressing mechanism with the properties mentionec
abovey a variety of protection mechanisms can be d{im-
plementede. Capability based protection still seems to be
the most promising of theses although it has been criticized
as inappropriate for distributed implementationse. I tend to
reject this criticisme but the notion of self-authenticatina
capabilities has been developed at “erkeley to address this
pronlema

The notion of system security has many different aspectse
Included among these are physical securityes correctness of
implementations and the logical access control model being
implemented. In comparison with centraltized im-
plementationsey distributed ones seem notably weaker 1{n
physical securitys and possibly weaker in correctness
because of greater complexitye. The access control mooel
shoutd note in principaly depencd upon the implementation. 1
believe that these are inherent problems with distributed
implementations but thate with the suitable use of encryp-
tione such systems can still be acceptably secure.

3.4+2 Synshine
Addressing

by

Carl Sunshine
RAND Corporation

Any discussion of addressing must start by making a clear
distinction between NAMES (whod)e ADDRESSES (whered)s and
ROUTES (how to get there)s on which John Shoch of Xerox PARC
has written an excellent notees [SHOC 78]

Several key concepts or capabilities must be d4ncluded 1in 4
gocd distributed IPC systeme These include generic naminay
Llocation independences request for servicees source rcutinags
ancd extensibilitys Each will pe described separately in the
followina paragraphse althouah there are clearly some

Georcta Institute of Technology IPC Workshop
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relationships between theme

. Generic naming 1s the ability to request communication from

- a service without specifying the exact process that will
provide the services This is normally useful when multiple
instances of a process providing the desired service sare
availables A specific process is selected (or created) at
the time of the inftial requesty and bound to the source for
the duration of the interactione This binding may reauire
transmitting the specific process ID to the sources or
merely keeping 1t at the destination. The classic example
of this facility s a timesharing Login service.

Location independence is the ability to request communica-
tton with a process by name without knowing 1ts Location or
addresse Since the source user does not supply the addressy
. it must be found by the IPC system in some directorye. Such
name-to-address directories may be maintained at sourcesy at
a central servers or at destinations (the names are normally
1 handled at the sources with the consequent need to change
p all tables whenever a host address or name changes or 4s ad-
i ded; I8BM%g SNA centralizes Lookup in the SSCPS and the Ir-
4 ’ vine DCS kept name tables in destination machiness reauiring
broadcast of requests to be reccanized by the appropriate
‘ . ' destination. The ARPA Internet Name Server proposed by Jon
| ' Postel 4n a recent note is another centralized example. A
major feature of Location independence is the ability for a
? named process to move to a different location without f{ts

users knowledge. (0f course the directories must be up~-
dated,)

Request for service 1s the ability to broadcast a request

for service to an unknown (to the source) number of
L potential providers of the services who return bids to per-
: form the requested servicey thereby identifyino themselvese.
This s similar to generic naminge but includes facilities
for the source to select among multiple bidgse Such a
facility was implemented in the Irvine DCSe.

Source routing s the abf{ity for the source to fdentify the
destination by specifying a route to ite This 1s necessary
in Loosely concatenated systems where no global address
: space existse The route is given in terms of a sequence of
‘ addresses through successive switching points or systems
[ which each have {ndependent address spaceses Hence this
]

l

fieldse or they must be extensible. Adding additional
1‘ Layers of addressing often proves a biager problems for

concept 1s also called rath addressinge. Oisadvantages are

* ' the need for the source to maintain connectivity in-

’ formatione and the variation of a given destination®s "name"

I |. (consisting of the route) depending on the Location of the
[ source.

Extensibility s the ability to add new users (addresses) to

.- : the system. To add new users at an existinag Level of the

address spaces sufficient room must be availabte in address
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example replacing a user by a network of many userse If the
hierarchy 1s fixed (eesQes <net/locald)y then the bottom
"leaves" of the addressing tree cannot be replaced by sub-
trcess In this cases addressing must be used to deal with
networks outside the fixed hierarchys This {s a serious
problem with attachment of private networks to public data
networkse

Interconnectina two previously independent systems is an im-
portant subcase of extensibility. ALL the users of one
system can be given new addresses in the other system §f
such widespread changes are acceptable. Alternativelys some
unused local addresses in each of the systems may be mapped
into addresses in the other system if only a Limited number
of users must be accessable. Finallysy 1f the addressing
hierarchy 1{is extensiblesy one system can be attached as a
subtree of the othery or both can be made subtrees of a
hiaoher levele

Se4.3 Gordon
Addressing & Security

by

Robert L. Gordon
PR1IME Computers

An extremely important aspect of interprocess communication
ifs the scheme used for addressing and namina the processes
and communication paths usede The importance of this sub-
ject stems from the fact that in any addressing scheme
protection and control mechanisms are explicitly or 4dm-
plicitly present and either aid or hinder the users ability
to share objectse Many current systems have inadecuate
facilities for fdentifyina names and controlling access to
the processes within the same hoste let alone for processes
residing on other hostse Part of the problem stems from an
inconsistent view of the relationship between the names and
uses of filess devicess processesy usersy mailboxesy generic
and specific system serviceses The uttlity of abstractino
many of the above objects as processes has increased the im-
portance of "process naming" and "orocess addressing®™ in
overall system desiane Therefore until these basic dssues
are settled the destign of specific interprocess communica-
tion primftives is difficult since they cannot focus on the
fundamental objects that they will be dealing with,
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Fault Tolerance & Security
by

Robert L. Gordon
PR1ME Computers

Any communication {s inherently an error pronec process due
to both the natural distortion of the medium and the contex-
tual requirements needed for 1{interpreting the transmitted
messagee In attempting to design robust interprocess com-
munication primitives one of the more difficult tasks is the
defining and handling of the many (natural) errors that can

occure Control of communication mechanisms between proces-
ses fundamentally depends on how the designer envisions
process relationships. If process relationships are tree

structureds then the status and control of a processes® com~-
munication with other processes might be monitored ang
controlled by the parente 0On the other hand 1f each process
wants to maintain the concept of soverefgnty then the basic
challenge is either how to provide the ability for cooperat-
ing processes to establish a monitor process that is capatle
of controlling the communication paths between the proces-
sese or how to build 1into the communication primitives
mechanisms for the detection of and recovery from errorse
Since error recovery must make assumptions about Lines of
authority and responsibility between system componentss many
of the issues associated with system security are pertinent
to this discussione.

Se.4.4 Chesson
IPC Opinions

by

Ge Le Chesson
Bell Laboratories

Process Naming

Process namesy file namesy and I/0 strear names should
resicde Iin the same name spacees This avoids the tyranny of
the "access method®™ and attendant ®8ronlems of making a
program that can "talk" to anything in a system. One can
allow process names to be passed into processes in the same
way that file names and I/0 streams are passed arounde and
this n turn permits progress toward interactive command
processors that can set up araph-{ike structures of proces-
sesy file 1/09¢ and IPC streamse

Non=Quplication of Mechanisnm
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A philosophy that has been proven many times over in
tanguage design may be stated as follows: it {s "bad" to
provide more than one mechanism for a particular operation
or functions This {1s a roundabout way of saying that there
are benefits to be gained by providina a single IPC
mechanism for use by "local" processess 1ece on the sare
machiney and "remote"™ processes on different machinese.

Transport Mechanism

It is fine to wuse shared objects (memorysy files) for
interprocess communications but 1t is important to hide this
facte The reason is that explicit sharing of objects 1is not
portable with respect to different machine and operating
system architectures and should be consicered a Locel op-
timization. Thusse IPC primitives at the compiler or operat-
iny system lLevel should appear as 1/0-Like idnterfaces that
imoly copying of data even if they do not actually copy data
on some systems.

IPC in Programming Languages

Most IPC proposals for inclusion in programming lanauages
amount to Little more than dnterfaces to subroutine
Librarics which a) cannot be inherfited by processes across
process fork operationss b) belong in the orerating system
anywayes and c) were done better by “urrounhs Corp in DCALGOL

10 years &0 The result of addginy IPC to o lanauage i¢
analoaous anc about as useful as the notion of a file systenm
in Pascale. 45 representation of the funcdamentals of IPC that

helonais more to the orogrammina language realin thanm the
operatina system realm has yet to be demonstrateds and woul?3
Fill & much=neecea aape

Hardwarg

There are applications for which IPC bandwidths must ap-
proach or exceed disk speedse It 4s clear that such per-
formance cannot be obtained with software (or even firmware)
alones Although there may not be much interest in this sort
of thing at the IPC workshope I have been working toward
hardware and firmware implementations of my software
mechanisms,

Elow Control

Ipc mecharism need flow controle. 1t ¥s better to have a
scheme where the sender selfblocks than schemes which depend
on "stoop" messiaes from the recejvere For most oapplications
the sctheme used in UNIX for pipes and other things would
serm to work well: the sender blocks (sleeps) on a queue
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length upper Limit and s awakened when the oqueue drains
below a Lower Limite There exists a timeout call which can
wake the writer if the queue drains too slowly or is other-
wise delayede An additional non-blocking mechanism has been
built 1into the mpx software (see section 7.7) which is
useful 1n those few cases where blocking cannot be tolerated
-- network servers and the like. This avoids the problems
that occur with varying process and communication delays or
Loss of control messagess

Synchronization

Cognoscienti agree that message=-passing IPC schemes are
equivaient 4n "power" to schemes which employ shared objects
although the message schemes seem "harder". This has not
been proved or disproved mathematicallys although there s
substanttial empirical evidence that pairs of processes can
be synchronized by exchanging messagese.

Food for Thought

I submit that it is seductively easy to synchronize process
pairse but that strategies are needed for synchronizing
groups of process2s in various wayse. Is {t reasonable to
set wup "overseer" processes that arbitrate and synchronize
thingse or are there better ways that can be proven correct?
For some thinagss Like call-processing in my network I use
overseer proctesses because they reduce complexity and can be
made reasonably efficient. For other thingss Like synch-
ronizing a process group carrying out a3 paraltlet com-
putationsy 1 would try to eliminate the Deus ex machina and
use direct process to process methodse.

—— — — o - s

It is important to demonstrate univeral IPC {ddeas and to
distinaguish Local optimizations and special cases within the
universal modela. One would hope that a suitable IPC model
could be used with protable operating system icdeas to bring
up compatible IPC mechanisms on dissimilar machines. Sec-
tion 7.7 on Data Communications Software outlines some {fdeas
that have heen partially demonstrated to have portability
oropertiess
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INTERPROCESS SYNCHRONIZATION

SECTION 4

INTERPROCESS SYNCHRONIZATION

4.1 YORKING GROUP SUMMARY REPQRT

4.1.1 Statement of Lhe Problem

1) Synchronization vie explicit communication (messages).
2) No global memorys
3) System-wide control with only dinaccurate/incomplete in-

formation
procedures

on the system states
data or hardwaree.

without any centralized

4) Transit delays are: variables wunprecdictables unboun-
dede
5) Losse errory desequencings duplicatee.
6) Other fadilures (processors)e.
4.1.2 Solutien Space
SOLUTION SPACE
=-=>1 | | | | |==>
| S |====m=een- [ |=m==eeeea- IR |
==>|___I | | | L
| |
— | ! —_—
-=>| i | | | |==>
| S |=====em=-- | |===o======| R |
el P | | | |l ==
| |
[ ' l L ]
o | W | - .
. | ) |
| |
— { | —
==>| | i | | |==>
| S |=====me=- all |====e=====| R |
== | | i o ==>

GENERAL CONFIGURATION (LOGICAL?
FOR A SINGLE SET OF MESSAGES
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MOTIYATIONS:
1) Distributed servicee
2) Survive sender/receiver failurese
3) Non=-technical reasonse
4) Modularity (growthe see)de
¢ 5) Performancese.
'
. . CONFIGURATIQNS:
a) *"Single Sender / Single Receiver"
. Single Path Signalling
I End-to-end Synchronization
(Used to achieve flow control for example)
)
& b) Single Sender / Multiple Recelivers

Multiple Path Signalling

PROCESSING AT

| |

| RECEIVERS |

I |

| | |

| IDENe | DIFF. |

| | |

| { | |

MESSAGE | IDENe | 1 | 2 |
| | | ]

| | { {

CONTENT | DIFFe | 3 | 4 |
| | | |

(1) Pure broadcasting in a fully replicated system.

(2) Pure broadcasting in a heterogeneous replicated
data basee.

(3) Transaction processing 4in a homogenous
(replicated?) system.

(4) Transaction processing in a heterogeneous
replicated data base.

OBJECTIVE:? To maintain a unique orderinc of {ncoming
messages for all receivers (whether initially
fortuitous or enforced)e.
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Multiple Senders 7/ Single Receiver

Multiole Path Signalling

0ORJECTIVE:? Reveal/Cause/Express relationships between
incoming messages belonging to different flowse

Multiple Senders /7 Multiple Recelivers
#ultiple Path Signalling

1) Fully reolicated systems
same obJjective as (b)

2) Partioned systems
same objective as (c)
3) Mixed systems

same objective as (b) for dynamically changing
subsets of receivers plus the same objective as
(c)

4.1.3 Some Existing Solutions

a) Logical Clocks: L. Lamport
To implement a sequential (T. Ordes) processing 1in a
) distributed manner (each process has an image of "The
Lf ) Waiting Queue™) - may be used to achieve mutual ex-~
clusione
! b) Physical Clocks: Le. Lamport
How to implement Llooical clocks on a set of physical
clocks (unique physical time framede.
c) Logical Clocks plus Voting: Re Thomas
How to resolve conflicts hetween
simultaneous/concurrent processes competing for
identical resources (fully replicated systems).
d) Eventcountsy Sequencers: Reed/Kanod{ia
To observe (READy AWAIT) or to express the occurence of
some event (ADVANCE) - to serdalize eventse.
e) Circulating Token: Ge. Le Lann
- Without tickets
To achieve mutual exclusion.
- With tickets
To serifalizesy to express relationships
between events
f) Some "naive"™ or Less general solutions:
- Shared variables: Eo Dijkstra
. - Monftors and Messages: Ps PBrinch=Hansen
¥
l.
. -
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4.1.4 Attributes

a) Response time.
b) Overheads (traffics processinges storage)de.

Page 33

c) Extensibility (is full connectivity requireds global

knowledge of the system statuse ocesde

d) Deterministic synchronization / probabitlistic synch=~

ronization / convergence.
e) Fault tolerancee.

- Detection,

- Recoverye.

) Simplicity (correctness proving, implementabit ity

headachesy ooede

4.1.5 Qther lssues

a) Effects of probabilistic synchronization.
b) System considerations:
- Hard/soft partitioninge.
- Application processing / system
partioninge.
c) Evaluation of solutions with respect to
- Attribute spacee.
- Problem spacee
d) Policies (fairnessy enforced priorfties).
e) Adequacy to resource management,
f) Classification of solutionse

Georgia Institute of Technology
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4.2 POSITION BAPERS

4201 Lee

Interprocess Synchronization
by

Edward Y. Se Lee
TRW Defense and Space System Group

My dnterest 1in IPC 4s mainly connected with update synch~
ronization in redundant distributed data bases (DDR). The
protocols developed for IPC must be viable and be able to
satisfy the following major requirements for DDB operations:

1) Performance (response time)

2) Efficiency

3) Peadlock prevention

4) Error recovery (surviving errors and faults
and continue operation)

5) Security

Recent state-of-the-art developments {n this area can be
divided in two major categories:

1) Frotocols assocfated with a centralized
control approach CALSB 76¢ BADA 784 ELLI 77,
ESWA 769 ROTH 771

2) Protocols relyirg on distributed control
CGRAP 769 JOHN 759 ROTH TT7e STON 78y THOM 7712

Howevery most of the oprotocols do not 4nclude secrious
considerations of interprocessor communications but rather
take the approach that some kind of messages can be passed
amona the distributed processors for communication and Llet
someone else to worry about {t.

There are considerable difficulties in taking this kind of
approach in a Loosely coupled distributed system. Because
IPC {1s the Life Line of the systemy it is needed for the
distributed control (operating system)ey distributed data
base operationes recovery of the system as well as the DDB
under fail-soft and fail=-safe conditions and reconfiquration
of the network when one or more processors are digabled.
ALL these essential functions of a distributed system demand
effictent and fail-safe IPC mechanisms.
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The second obstacle is the Lack of evaluation criteria and

methodologties to test and measure?

1)
2)
3)
4)

[Ty
”

Performance
Efficiency
validity
Verfiability

of any protocol that is being proposed as the best protocol

for 0DB.

There are some efforts present in this area [GARC

78¢ SUNS 763y but a Lot more work will be requirede.

In a practical systemo it 1s very Likely that a mix of

several

protocols will be wused for updating redundant

distributed data bases depending on the specific situation
and requirement. Howevery it should be possible to have a
unified approach to IPC for all protocolse. Additional
research in this area is needed.
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Section §

SECTION 5

MECHANISMS === JMPLEMENTATIONs UTILIZATIONs and PERFORMANCE

Se1 WORKING GROUP SUMMARY REPORI

Interesting lssues Not Discussed

Data Interface to program not resolved
Control interface to program

*To poll or not to poll"®

Eventss interruptse on-conditions

Mechanisms

Signals

Events

Semaphores

Shared Memory
Monitors

Message Queues
Pipes

Ports

Full Duplex Streams
Virtual Procedure Calls -

IPC Workshop
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Sharacteristics of the Hechanisas b

. SHARED OBJECTS
I EXPLICIT DATA MOVEMENT
|
h } | EVENT OPERATING BY
| |
. X | | | PROCESS CREATION
K ' { | } | SIDE EFFECTS
| | |
. | | | (| EASE OF DISTRIBUTED
{ | { 1 | IMPLEMENTATION
| | | | |
=Y Y Y Y | .
. | | | | | |
Signals i U | N | naj N | + |
| | | | | |
| | | | | |
Events | U | N | na | N | + |
| | | | | |
4 | | | | | |
* Semaphores ! S t N | nsa | N | = |
’ | | | | | |
| { | i | {
1 . Shared Memory { S | N |} S/R| N | - |
f | | l | | I
' | | | | | |
Monitors I s | Y | R | N | 0 |
] [ [ [ | I
| | | | | |
Message Queues ] S/ZU | Y IS/R/T) Y | + |
| | | | | |
| | | ] ) J
Pipes i U | Y | na| N | =+ |
| | | | | |
| | | | | |
Ports | SZU ] Y | na | N | + |
| | | | | |
i ( | { | |
Full Duplex Streanms | v I Y | R | N | + |
I | | | { |
1 | | | l | |
Virtual Precedure Calls | U | Y | T | Y | <+ |
i | | [ [ | [
) S = Shared S = Sender
|. U = Unshared R = Receiver
T = Transport
i . Mechanism
na = not applicable
. B Y ~
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Qesirable Qualities of Mechanisms

Performance

Randwidth

Delay
Provabtility

Correctness of use

Correctness of implementation
Security
Transparency

Naming

Location (Physical)

Environment (Logical)
Separation of control from data
Complete and small set of primitives
Fault tolerance

Encapsulation

Detection

Recovery

Size of fault set covered

NOTES: The priorities used to weight these desirable
qualities
depend on:
- Application
- Level
- Environment

Georgia Institute of Technology I1PC Workshop
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Section 5 MECHANISMS

comments on Mechanism Qualities

1) A functionally complete 1PC

. mechanism requires both data and
control capabilities

2) ALl were considered to be “"basic"

mechanisms => No embellishments to
improve desirable programs
3) Thus ability to recover from faults
depends on implementation i
4) Another trade - Bandwidth VSe
status consistency

5) Perceived hierarchy (in mechanism ,
. List) :
6) Omissions |

- Broadcasts
- Addressina
-« IPC mechanisms 2?7

m A desian exercise to try to over-
come Hatgh in table would be
fnteresting === Also table comple-
tion
L
’ PROZLENS
1) Migration of applications from
centralized to distributed en~-
vironment
2) Not enough known about these
mechanisms:
- Complexity of IMPL
- Size of IMPL
- Efficiency of IMPL
- Useful hardware assists
3 Common understanding of all
mechanisms
- NDictionary
4) Lack of a number of implementations
5) Cost /7 time / complexity
6) Premature standardization
IR) Difficulty of modifying / ex~-
perimenting with hardware support
devices
8) Premature vendor mechanism selec~- y
. tion
N 9) Compatibility ;
l. - Obstacle
- Objective l
) 19) Evaluation criteria )
11) Papers don®*t tell reasons for
- designs (some designs based on few
examples) :
12) Definiftions of universes
‘1 b Georanla Institute of Technology I1PC Workshop 't
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Section 5

Research Questions:

1)

2)

3)
4)

5)

£)

IR

g)

9)
10)

Georgla Institute of Technology
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Identify collections of primitives
for

- Easy programmer understandinag

- Efficiency

- Mateh to application

(Answer probably depends on en-
vironment)

Fault Tolerance of 1IPC mechanisms
not well understood

Trade =-- User or IPC mechanism?

How much must wuser be aware of
process creation/existence?

How should responsibility be
distributed? Visibility of fault
responsibility.

How to decouple bindings:

- Modules to qraph

- Process to nodes

- Resources to processes

What set of IPC mechanisms is

- £3asy to use

- Complete

- Efficient

Refine virtual procedure catdl
mechanisme

Tools for top=-down design

How to select architectures from
option criteria

How to decompose applications

IPC Workshop
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Se2 AMPLIFYING MATERIAL

Se2.1 Prepared Ry the ¥orking Sroup

An attempt was made to define "a set of primitives that alL-
lows an application software engineer to design the best
solution for his probleme" It was quickly realized that
this is not an easy task. Some of the issues {involved are:

1) Some applications require highly reliable
IPCy while in othersy communicated dinforma-
tion becomes useless after a certain pertod
of times A single set of primitives to {im-
plement IPC may not solve both types of
problems,

2) Should IPC primitives be operating systenm
services or shoulc IPC constructs be parts ot
various programming Llangquages? A relevant
reference to this Latter oproposal may be
found in [HOAR 781,

At this pointy 1t was felt that it was necessary to outtline
the hierarchy of tevels at which IPC mechanisms can be 4n-
vokedes For each levels we attempted to describe those ob-
jects which may be manipulated and those 1IPC operations
which may be performed on each objecty 1f any,.

Hierarchy of Levels

Command Level

High Level Languages
Operating System
Instruction Level
Microcode Level
Hardware Level

The description of objects and IPC operations can be
enumerated for three different situations:

1) Accepted practice - those commercially
avaflable
2) State of the art - current practices of

researchers in the field
3] Wish List

Enumeration of Quantities for Accepted Practice

Compang Level:

Georgia Institute of Technology IPC Workshop
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objects - processey filey Links devices programe
task graphs directory

IPC operations =

files: file Locks (control functtion)
pipes

processes: create
delete
link via a pipe
suspend
resume
status

Links: <creation
temporary files
Link management in DEMOS

Reference: [BASK 772.

Note: Though not all types of objects are availa -e on many
systemss some of them can be wused to emulate those
capabilities which are unavailable. For examples tem-
porary files are used in UNIX to emulate pipese.

High Leyel Languages:

objects -~ typed objects (integersy realsy charactersy etce)

semaphore

monitors

events

ports

shared common (typed objects)

Except for the use of shar < typed objects (via global com-~
mon areas)s current languagyes commonly available do not use
the other objects for IPC (eeges PL/I)e Almost dnvartiablys
onc must drop into a runtime (ibrary routine or to the
operatina system to perform IPC functionse.

PL/1 is most progressive

Alaol 68 provides some capabilities

APL supports shared varfables

Miscellaneous notes:

There was some discussion concerning the two types of com=
monly used IPC mechantsms: message-oriented vse procedure-
oriented (monitor)s A good reference to this area is [LAUE
7913
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Se2.2 Prepared by Peebles

S5e2¢2¢1 Introduction and Explanation

The IPC mechanisms described here are known as ‘“primitive"
for several reasonss they are primitive in the sense that
they are Llow-lLevel ©builaing blocks from which more
sophisticated forms of IPC <can be buflts they are mostly
ortented towards two-party communications the simplest cases
and they are mostly derived from existing uniprocessor
s,;stemse .

5¢2e2+.2 Desirable Properties

It is fairly easy to List some desirable properties that any
fnterprocess communication mechnisms should have?

Performance =-- In terms of bandwidth and also
delays We would Like mechanisms with a
minimum of overheady 1in order to maximize
performances THis should note of <courses

reduce functionality.

Provabilijty =-- A desirable property for any IPC
mechanism should be that it (end dtself to
the wverification of systems which are built
up using processess

Secyrity =-- By this we mean protection of two com-
municating parties from one anothery and also
with respect to third partiess 1in terms of
leakage and interferencee.

Transparency == This refers back to the issues of
naming and Llocation. The users of an
interprocess communication mechanism sdhould
not have to deal with that mechnism at other
than the advertised Levelsy nor should they
have to be aware of the details of its 4im-
plementatione.

Separation of Data and Conirol -- It may or may
not be a good property of an IPC mechanism to
contain elements of both data and control.
In some 4implementationss data and control
(signal) transfer from sender to receiver are
carried out 4n the same operation. Separate
data and control transfer operations cans of
coursey be combined in higher-tevel non-
primitive interprocess communication
operationse.

completeness and Smallpess =- Interprocess com-
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municetion primitives should certainly be
completey 1n the sense that one should be
able to do any operation which is valid in
the given system without d{ntroducing new
primitive operationse. It 4is not so clear
that they shoutd be smally consistentsy of
courses with performance.

Fault JTolerance <--This Lleads to the concepts of
encapsulation and recoverye In order to
achifeve fault tolerancey an operation should ]
fulfitl the following conditions:

faults should be detected.
faults should be handled at the
appropriate Llevely and not simply
passed back wupwards towards the
users
faults generated at a lower Level
should not terminate a user ses-
sione. Insteady they should be
recovered at a Llevel <close to
that at which they occurrede.
in interprocess communications {f
data or control transfer failsy
4t may be sufficient to 4nform
the senders ory in some critical 1
applicationse it may be necessary
to inform both the sender and the
recefver that some message or
control signal did not get
throughe

s

The concept of encapsulation suaggestes the
enforced localization of errorse so that an
error in the communication between two proc-
cessors can have no effect on any otherse.
The concept of recovery suggests that
whatever errors do not occur are cleaned up
in such a8 way that a consistent system state
is restoredy and that unresolved error states
are not simply passed wup the lines Error
messages of the form:
SURNETWORK ERROR - PLEASE LOG IN AGAIN

should never occure.

Cost -- The concept of cost ¥s very difficult to
define exhaustivelyy but one can sugnest some 1
kinds of cost which can be {ncurred:

- implementation
- performance
- appltication flexibility

Note that 4n the evaltuation of primitive mechanisms given in
sectfion 5.1 we assume a fafirly standard implementation. The
properties above <c¢learly depend in part on implementation
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and we cannot give any hard and fast rulese

562e2¢3 IPC Taxonomy

One of the most obvious dimensions along which to
differentiate IPC mechanism 1{is whether they are message-
based or note Mechanisms canes of coursey be data-transfer
baseds without being message-based.

Examples: Pipessy portsy full-duplex streamse.

S5e2e2e341 Non=mgssagez=based IPC
These are clearly the IPC mechnisms favored 1in those

distributed systems which are themselves not message-based.
Instead of messagesy these depend on a variety of communica-
tion mechanisms?

1) Signals
Signals are process finterruptss which can
arrive with or without accompanying type 4n-
formatione and perhaps the identifier of the
originatore # signal may cause a transfer of
control 1inside the receiver oprocesssy and
there may be enable/disable mechanismsy
analogous to those for hardware interruptse.

2) Events
An gvent 1s a state variables One should be
able to test 1t and set 1t. It should be
possible to implement a wait on the event by
means of a test in a loop.

3) Semaphores
A semaphore 1is a storage cell with an as-
sociated queue of processesy and with two
operationss wailt and signal (no relation to
signals in section 3+2¢1.1) which have side
effectse

4) Shared Memory
Shared memory consists of data cells which
are accessible to sending and to receving
processess perhaps with an associated access
discipline which 1is designed to avoid
crittical section problems 1{in accessing the
shared resource,

%) Ports
Ports are input/output channels belonging to
processess Ports 4n corresponding processes

can be connected together by Links to form
communiccation channels.
6) Full Duplex Streanms

A full duplex stream is effectively a bi-
directional pipes In place of 2 sender and
receivers the processes at either end of the
full-duplex stream can both send and receivee.
Naturallye 4in order to achieve some measure
of synchronizations a read should suspend
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until a corresponding write 1s executed at
the other end of the full duplex streams and i
. vice versa.

5e2e2¢3.2 Message-based 1PC

These are the IPC mechanisms which depend on messages }
between processess They can be further subdivided along the
following Lines:

. e Single send pl ==> p2

) 2) Single receive pl <== p2

3) Multiple send pl =-=> subset of P

4) Multiple receive pl <~- subset of P

Blocking and Non=blocking Primitives

A further way of subdividing 1{interprocess communication
primitives is on the tasis of whether they are blocking or
non-blocking 1in naturee. A Dlockipng primitive 1s one which
causes its 1invoking process to be suspended wuntil the
primitive operation {s completede Thuse after invoking a
blocking recefves a process will suspend (sleep) until some

S . . message does arrive.
f ' Distributed systems have been implemented with blockinag
send/recetves with blocking send and non-blocking receivey
3 ) and with non-blocking send/receive.
Yirtual Procedure Calls
Virtual procedure calls ccan be viewd as a highly stylized
form of message passing but entail a aqreat deal more
semanticse They are used in support of an object model -~
s processes access objects and objects are controlled by other
‘ processese IPC consists of one process invoking a function
' on an object and another process executing that function.
S5e26243¢3 Higher=level Meghanisms
There are also higher-Level mechanisms which can be produced
using the primitive operations as building blockse For
i instancey one frequently encounters virtual circuits built
on message passing combined with signalling.
S5e2e2¢4 References
, The following references may be helpful in explaining the
| specific IPC concepts identified: 1
. il
{
. 1) Semaphoress Sianalssy Eventse Monitorse Pipes: ,
[HOLT 78b1) :
. ) 2) Virtual Procedure Calls:
' o {HAMI nd]
- 3) Message Passing Operating Systems:
» [MANN 77)
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5.3 POSITION PAPERS

5.3.1 Peebles
PROGRAMMING ISSUES

by

Richard Peebles
Digital Equipment Corporation

Relialous Issues

A Programmer®s environment (languagey operating system ser-
vices and model of process structure) tends to be a
religfous issuee. My religion calls for the simplest pos-
sible environment by providing a set of "orthogonal basis
vectors®" for programminge The result is a set of primitives
that allows an application software engineer to design the
best solution for his probleme Orthogonality of software
tools means that one pteces or primitives does not preempt
design choices for ¢the otherse This is to be contrasted
with another approach to simplicity which preempts almost
all choicese.

In additions my religion calls for the removal of
representational irrelevancies to the highest degree pos-
siblee. As a consequences the underlying process structure

is not visible at all to most programmerse nor {is the
distributed nature of the machine that implements his ap~-
plicatione.

The difficult part of religion 1s applying 4t to our daily
Lives. Just what are these primitives; what makes an
orthogonal set3 can we find & set of "basis vectors"?
Furthermores can we reasonably expect to hide the process
and machine structure from programmers? In my views most
research in distributed systems {is (should be) aimed at ans-
wering these questions.

Consiraints on IPC Mechoanism

The above goals for the programming environment impose
several constraints on the IPC mechanisme First 4§t should
be Location independente The same mechanism should be used
for both 4dinter-host and 4ntra-host communicatione. This
means ¢that a programming decision does not preempt a
process-loc.tion decision and vice-versas A more difficult
question 4s whether the IPC mechanism should be visible as
such to the proarammer. It is possible to provide him with
an extended machine in which IPC appears as the application
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of an operator to an operand; this is the approach taken in
our experimental WEB system. It 1s a simple matter to
construct both datagram and virtual circuft abstractions
with this mechanism 41f “"communicating processes™ 1is a
relevant abstractions It 1s considerably more difficult to
provide the operator/operand abstraction mechanism than a
simple send/receive mechanism$ particularty i1f abstractions

State of the Art

In vendor-implemented products neither location transparency
nor process structure transparency 1s wusually providedes
Research systems haves for the most parte made IPC an ex~
plicitly separate concept among other abstract extensions of
the operating systemes The WEB operator-invocation architec~
ture 1s seeking to provide a single mechanism that will ser-
ve as a general basis for "operating system" and user func-
tions - they are not distinguishable. It ise howevery only
in the final stages of design - about to be implemented.

Obstacles

The most siognificant obstacle to providing an IPC mechanism
that least perturbs the programming interface is historical
artifacte. Finding a design that is fdeal and that allows
reasonably simple migration of customer applications 1s a
hard problem, Wwe may be forced to throw up our hands and
call on users to swallow yet another conversion effort.
Will we do 1t again in 1988 when distributed systems go out
of vogque? Hence my strong belief in the need for process
and machine structure independence of IPC. Early standards
will be a hindrance to this but may be inevitable given the
state of the art and user impatience to builde If that s
acceptedy the next biggest obstacles are thin wires and
different architecturese Hiding the network structure is
hard when physical Links are under 100K bpse Then too there
is the problem of the complexity of the WER abstraction ap-
proach =~ 1t¥s hard to understand.
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5.3.2 Yallentine
PROGRAMMING ISSUES IN DISTRIBUTED SYSTEMS

by

Virg Hallentine
Kansas State University

Problem

The programmer in a distributed processing environment must
be provided with a set of facilities which permit easy
specification of the distributive properties of his/her
programe. The word program here is used to refer to edither
the output of a single compilation or the output of indepen-
dent compilations of proqgram modules which are to be com-
municating via an IPC. These distributive properties
include the specification of the concurrencys data flows
resource requirements {memorys devicesy etcedo andg
intraprogram (intermodule) protocol properties inherent in
the execution of a confiauration (system) of <cooperatina
software modules. Given a description of these propertiess
an operatinag system must he able to distribute the wuser®s
proaram across multiple machines 4n a manner which is
transparent to the programmere. Traditional approaches to
providing these facilities include the concurrency support
in high-level languages and the resource allocation anga
concurrency support in conventional operating systems,

Cyrrent Approaches

Several hfgh-level languages such as Concurrent Pascal [BRIN
771 and SP/K [HOLT 7831 have {incorporated the monitor [RRIN
73] (HOAR 741 concept to provide structured concurrencye.
This concept 1s excellent in a centralized system but relies
on shared data (and therefore shared memory)s and f{s
therefore not an appropriate concept on which to base a

distributed systems Howevere an effort is uncerway at the
National Physical Laboratory [DOWS 78] to distribute a
Concurrent Fascal program across Loosely coupled

microprocessorse The distribution of passive system com=
ponents (such as monitors) on disjoint machines implies many
cooy operations for parameters and also additional active
system components (processes) which do not appear {n the
program texte

A much more appropriate high=level Lanauage concept for
distributed programs 1{s nproposed by CeheRe Hoare in
reference [(HOAR 78]s Each function is a sequential process
which 1s connected to other communicating sequential proces~
ses via input/outpute This concurrency support is based on
data flow and not shared datas therefores it is not cepen=-
dent on shared memorye. As a resulte each function 1is
distributable. Howevery 1t seems that buffering of data
between processes is necessary to {improve operformance in
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distributed systems with slow speed connectionse Since the .
compiler for such a language opresumably can generate the
resource requirements for the programe since processes are
. fdentified by namey and since the protocol between processes
is fixeds enough knowledge is available to distribute a set
of processes which are compiled togethere.

A second area of programmer concern for distribution occurs

because concurrent program functions (modules) may be

separately generated (compiled)e These may well be existing

programs or just separate functions based on programming
¢ stylee The interconnection of these modules into a program
is dynamic and therefore requires operating system supporte.
In early conventional operating systemsy the support for
combining these functions 1into a configuration of com-
municating concurrent software functions {s specified at
three Levelse Firste overlap of CPU and 1I/0 are made
avallable for standard I/0 file functions. Secondy added
concurrency 1s achieved only with unstructured (low=Level)
facilities for process creationy namings and communicatione.
Thirds complex job control Languages are provided to achieve
allocation of resources to9 run these functionse In a
distributed systeme these JCL steps must be synchronized
across machinese Complex resource control in a distributed .
. ’ system should certainly not be the programmer?®s
responsibility. This 1s alleviated by viewing distributed
operating systems and their executable programs as cooperat-
{na processeses A hightly successful system is the N
Distributed Computing System of Farber [FARB 73]s In this
systemsy the structure and distribution of the set of proces~-
ses Is transparent to the wuser; and a high Llevel of
concurrency 1{s achieved without use of Llow-level process
control primitives,

Process naming of cooperating processes is still burdensome
to the proarammer. The same problem also occurs in current
"“mailoox" schemes as epitomized by the VAX 11/780 system
{DEC 7713 The namina or numbering of mailboxes must be
known to the programmer or a creating processe. This 1s com=
monly referred to as the IPC-setup problems coined by tlliot
Oraanick in reference [ORGA 721]. The designers of UNIX
CTHOM 741 [RITC 781 sought to alleviate this problems They
tnvented the "pipes"™ In UNIX a user programe running in its
own processs may take the plLtace of a file in a manner which
is transparent to the original programe Each program may
have 1its standard 1{input and output files replaced by
programse thus building via the UNIX shell arbitrarily long

v Linear chains (a pipeline) of programses UNIX automatically

, transfers the data between processes and synchronizes the

\ process as 1t 1ntercepts the standard input and output file
L ]

operationse
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UNIX "pipes™ eliminate the need for process naming and treat
concurrencyes resource allocationy and inter-process protocol
as a data flow probleme Interprocess protocols are treated
simply as simplex data streamse The Job control Llanguage
provided by the UNIX shell becomes a pseudo data flow
Language and resource allocation 1is transparent to the
programmere. Howevery there are a considerable number of
programmer protocols which are not served by "pipeso" As
acknowledged 4n reference [RITC 781y "pipes" cannot be used
to construct multi-server subsystems,

UNIX will support generat interprocess communication
protocols but these are not generated by the shells These
can be programmed as a set of child processes whose "pipes"®
have been setup by a parent processe.

A Research Direction

If we are to be successful in distributing programs across
highly distributed systemss we must provide the oprogrammer
of dynamically dnterconnected <cooperating nrocesses a Jjob
controtl lanouage (software configuratton control) as easy to
use as Hoare®s communicating sequential processess It seems
that the most promising direction is to extend the <concept
of the UNIX shell to automatically generate the more complex
protocols available to the parent processes previously
describeds It must then also be extended to generate
(representations of) distributable configurations of com-
municating processese

Wwork in this area is underway at Kansas State University.
The project* fnvolves development of a Network Adaptable
Executive (NADEX)LYQUN 79]e The attempt is to permit the
user to specify data flow at the command lLevel and have the
command interpreter generate a distributable software con-
figuration of nodes connected by full duplex data transfer
stream connections (DTS connections) to form an wundirected
graphe In generals a node may be thought of as a processe
Fach of the connections consists of two d{ndependent bi-
directional data transfer streams. Onec of these streams
uses small parameters whilLe the other uses a standard-sized
data buffer, The data buffers carry along with them size
and status indicators whereas the parameter buffers contain
only a small amount of user-supplied data.

A wuser program running in a node performs serial buffered
READ and WRITE operations in 4ts various <connectionse. The
connections are numberedy and the proaram attaches
particular meanings and implements particular protocols tor
each of 1{1ts connectionse A connection can connect a nodge
efither to a user program or to o system process used to ac-
cess a file or an I/0 devices The program cannot tell the
difference between these modes of operation. This <clearly
provides all of the power of the UNIX pipelines while remov-
{na the linearity constraint on the structure of the connec-
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tion graph. Alsos the connections are bi-directional so
thate for exampley 2 write-request/read-response protocol to
access a random file can be implementede.

For these sertal buffered READ and WRITE operationsy a
oriory protocol knowledge can be specified to the underlying
data flow 1implementation (buffer control) to enable it to
maintatn a check for validity of user protocol (in terms of
data flow) during execution. This protocol checking 1is
critical in "un-debugged®™ (user-written) nodes. Examples of
such protocol violations occur many times in the facitities
of SOLO (BRIN 761, Deadlock detection is also performed
based on data flow in a configuration which is distributed
across machines connected by a network IPCe Multiserver
subsystemsy such as a8 data base management systemy are 1im-
plementable as a configuration with multi-connection READ
(multiple condition WAITs) and conditional WRITE operations
provided on data transfer streamse. Interconfiguration con-
nections are also provided. Finallyo the command
interpreter and the node interface (PREFIX) provide all the
mappinc of Logical data streams (ports) onto implementation
data streamse

* Supported in part by the Army Research O0ffice under Grant
Number P=16160-A=-ElL.
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SECTION 6

THEORETICAL WORK

6.1 MORKING GROUP SIYDY REPORY

STRUCTURE of Discussion:
Distributed system without central (or any) control
Free ranaings undirected (no standards)
Principlesy not mechanisms
Theorys not formalism
Independent of Technology
Nutline: Target drawn arocund arrows

WHAT IS A DISTRIBUTED SYSTEM?
A distributed system is one in which the <communication
of data between processes takes a significant amount of
time compared to the time needed to execute one step of
a processe

Exagmplel PDP.10

SPECIFICATION

(Note: Numbers 4{n parentheses are "pointers™ to am-
plifytng material in paragraph 6e2.)

t A specification is that which Lets one
e if a running system s behaving correctlye.

State-free Methods
Applicative programming (6e2e1el)
Teletype paradigm (6.2e1.2)
Observable I/0 behavior (6¢2¢143)
State~based Methods (6e2ele4)
State graphs (6e201e9)
Critical sections (6e¢2¢143)
Problems
Avoid explicit state description (6e2el1le6)
How to specify complex systems (6¢2e1e7)

MOQELS

Retinition: A model exhibits the properties of an im-
plementation

MODELS CONSIDERED (Procedures and Files)
General test and set model (6e2¢241)
31t transmission model (6e2e242)
Interpretive model (6¢2¢243)

OTHER MODELS (6e2e2¢4)

Actor- induction
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LISP .
etce i

RELEVANCE OF MODELS (6e2e2¢5)

* PROBLEM AREAS (662e2e6) .
Exfstence of sitngle basic model
ANALYSIS

Inferring a system®s behavioral properties

Formal proofs of correctness (6e2e3ely Gelelels
6e2e¢343)

Fault tolerance (6e2e3e¢4)
Performance
. MYeasurements (6e203+5)
Complexity
Space (6e2e366)
Time (60203.7)
* Data transfer (6e2¢3¢8)
Simutation/emulation (6e2e¢349)
Problems (6¢2e345)
Trade-off techniques
2elevance of models
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6.2 AMPLIEYING MATERIAL
-

6.2.1 Specification

6e2e1s1 Applicative Programming

Wwant to represent a system as composition of side-effect-
free functionse.

Can extend a "pure" applicative programming Llanguage with
constructs for multiprocessing:

- Suspended evaluation of subexpressions.
- Multisets =~ unordered collection of expressions
which becomes ordered as evaluations terminate.

Encapsulation of expression evaluations gives alternatives
of distribution of compution: factor problem into assigning
"capsules" to processing nodess

Potential disadvantage: in any "real" situations there 4s a
need for some global reference; such a reference cannot be
handled if side-effects are forbiddens

Reference: ([3UCK 1

6e2ele2 Teletype Paradignm

ALL that the user knows about a system is what goes 1{in anc
what comes oute What happens behind the panels is of no
concern to hime This view 1is captured by the following
paradigme There are N userss each sitting st a teletypes
The system pehavior tonsists of the N rolls of papere. The
correctness of this behavior must be decidable just from
looking at those teletype rolls.

6e2e1+3 Behavior by Interleaved Teletype Rolls

It 1/0 behavior is to be described in a way suitable for
reasoning about composition of systemsey it is not sufficient
to consider only the separate "teletype rollse™ It %s pos-
sible for two systems with the same individual port behavior
to be incorporated as modules In a Llarger systems causing
different external behavior for the larger systeme. A
sufficiently dnclusive behavior description to avoid this
protlem «can be given by describing the interleaved teletype
rollse Thus fare such descriptions have been used for sim-
ple synchronization and data base behaviors and appear to be
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guite natural and usablee

6£e2ele4 State-based methods

A state-based specification method was used for the al-
gorithms §n [RBURN 783e There the appropriate mutual ex-
clusion behavior was expressed by groupina process states
into "regions" comprising critical statesy other program
statess and protocol statess Desired exclusions deadlock=-
free and fairness behavior was then described 1in terms of
the progress of processes through their regionse Such
description Led to clean formal reasoning about the proces-
SeSe The descriptiones howevers does not appear to be very
easily suited for reasoning about the system as a building
block for Larger systemse

6e2¢le5 State Graphs

Thiagarajan has used the global state model to give a simple
definition of Shapiro's algorithm for the maintenance of
redundant data bases in a distributed environment. This
permits an elegant and simple proof of correctnesse

6e2eleb Jellybean Example

There are examples of simple systems in which one cannot
talk about the state of the system at any particular point
in time. The example involves two processes modifying the
number of jellybeans in a factorys and one proctess counting
the total nrumber of jellybeanss The behavior of these three
operations cannot oe explained by any sequential ordering of
their executionse How ¢an we specify correctness of this
system in a sufficiently general way to allow this type of
implementation?

Reference: [LAMP 763

6elele? How to Specify Complex Systems

We are faced with a dilemmaes We do not want to have to men-
tion states in our specifications PBut it is very difficult
to write any non-trivial specification without talking about
statess For exampley try specifying a memory cell without
talking about statesa
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6+2.2 Models

6¢2¢2¢1 The Test-and=Set Model of IPC

The Test-and-Set primitive is a powerful indivisible opera-
tion for accessing a shared varfable for communication among

asynchronous processese. The model treats asynchronous
operation by <considering ¢timing sequences., Correct al-
gorithms must work for all timing sequenceses Fairness

properties may require that the timing sequences be restric-
ted to those satisfying "finfte delaye" A sequence satis-
fies finite delay if no process has to wait forever for a
timing messagee.

The Yest~and=-Set primitive is in one sense the most powerful
primitive possible. Hencey the Lower bounds results for
this model apply directly to all weaker primitivese.

To model general distributed systemsy it 1{s necessary to
model processes and sianificant-distance communication. To
model a message channel in the simplest and most natural
ways we think of it as a special type of process with access
to two variabless one at each of 1ts ends. The process sim-
ply reads the contents of one of the variables and writes
the result in the other vartabley ad infinitume We 1imagine
this process to be asynchronous with respect to the other
processes in the system. Thus communication delays are as-
sumed to be arbitraryes This model seems simple and general
enough to provide a basis for simulating and comparing
distributed systems of practically any type.

6e2¢242 Bit Transmission Model

Lamoort favors a more Low-level IPC model:! transmission of
1 bit of information from one process to another. Requires
a 1 bit storage device which can be written by process A and
concurrently read by process Re Mon=-trivial to implement on
atomic register which acts as 1f reads and writes are total-
Ly ordered. Some results are in [LAMP 771y others are un-
publishedes

6e202¢3 SS Model

The applicative technique uses an interpretive Llanguage to
describe a distributed system. An interpreter for ap-
plicative Llanguaqge may then serve to model system behavior.
The wunordered evaluation of expressions 1in a multiset
becomes implemented as a scheduler. Communication may be
modeled 1in terms of the elapsed simulated time associated
with each parameter passing operatione
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62244 Other Models

Certain modelss although significante Yailed to receive at-
tention due to the LlLack of advocates in the groupe Most
notable were the Actor-Induction Model of Carl Hewitt and
Petri Nets.

6e2e2¢5 Relevance of Models

Models of distributed systems are abstractions of real or
hypothetical systemse. The relevance of any abstraction
depends stronaly on {ts intended application =-- the abstrac-
tion should preserve the important features of the sftuation
beina modelled and discard the unimportante “odels reflect-
ing details of current technoloqgy are appropriate for under-
standina opresent-day distributed systems but they become
quickly obsulete as the technology shiftse Models attempt-
int to <capture the universal constraints on any system im-
posed by basic laws of physics are more fundamentale but
evaluating thedfr relevance to digital systems requires a
considerable understaning of electronics and physicse and
they will Likely be too primitive and detailed to shed much
Licht on hioher~Level issues such as those discussed el-
sewhere in this reporte.

For exampley most models of parallel systems include some
snrt of synchronization primitive whether it be P and V,
monitorse message-passinae or whatevers and most practical
systems have hardware which d{mplements these primitives
satisfactorially. Howevery the glitch problem aparently
prevents the construction of a perfect arbiter (as oppsed to
one which is satisfactory becausc its probability of failure
is tnfinftesimally small)e so any physical realization of an
arbiter has a possibility of fatlure throuoh infinite delaye.
The test-and-set model and the 1-bit transmission model can
both describe perfect arbiters and so both must be
considered only approximations to reality. While test-and-
sets seem at first siaht to be far from primitives they
encompass operations such as reads writes increment memorys

etce which might or might not be atomic iIn a given systems
so lower bounds on complexity apply ¢to all such weaker
mocdelse The fact that a fair arbiter is needed for a hard-

ware realization of the model does not detract from {ts
usefulness {in describing solutions to the critical section
probleme for building critical section solutions with strong
fairness properties (bounded-waitinges FIFQ) from arbiters
only known to be free from lockout 4s a non~-trivial taske.
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6e2e2¢6 Problem Areas

Although o number of models were proposed for interprocess
communicationy we observed that there was no "basic unit" by
means of which all of them could be implemented. ldentify~-
ing such a basic unit would give a uniform scale for compar-
ing different communication mechanisms,

6243 Apalysis

6¢2e3s1 State Graph Analysis

See 6el2eled

6e2e¢3e2 Critical Region Algorithm Proof

A formal proof has been developed for one of the mutual ex-
clusion alaorithms given in [BURN 78Je Although the proof
follows the general format of invariant-assertion proofsy
the major {ideas in the parts of the proof that deal with
fairness are contained 4in precisely-stated Lemmas which
mirror natural intuttive understanding of the alqorithms.
The parts of the proof that deal with reachability of states
have a Lless intuitive and more case=-analytic flavor. A
current effort is to decompose the invartants in a way that
will allow reachability properties also to be verifiec in a
way that accords intuition.

6e2¢343 GLobal Assertions

There are well-developed techniques for provina <correctness
properties of non=-distributed multiprocess proaramse. Lam=-
port used to feel that they were not «aood tor distributed
systems because (1) they used gqlobal assertions which imply
a global system statey which is undesirable (see 6e¢261e6)y
and (2) they require that communication arcs be represented
by processess which means Lots of processese Howevers he
has recently discovered that these techniques do work welly
since (1) there seem to be a <c¢lass of "good"™ global as-
sertionsy and (2) you have to specify the communfcatfon arcs
very carefully anywaye.
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6e2e3¢4 Fault Tolerance

Wwe consider two types of faflure: unannounced halting
(steeping) and announced shutdown (dying)e. Peterson and
Fischer [PETE 77] and Rivest and Pratt L[RIVE 7631 give
critical section alqorithms in a shared-variable read/write
model that are immune to process dyings feees the remaining
processes continue correct operatione.

Performance and tolerance to failure by sleeping are closely
relatede If one process can be hung up forever because {t
. is waiting for a fadled processe then 1ts performance will
; be degraded by a non=-failed process that ¥s simply running
very slowlys

We have alaorithms for the test-and-set model solving the
k-critical section problem which 41n a sense have k {ndepen-
f dent paths to the critical sections That 1ise even 1f k -1

* processes failey the other processes will not be waiting on
them and will continue operating and gaining access to the
remaining resourcess

6e2e3e5 Measurements

The traditional measures of "time" and "space"™ do not form
’ an adequate framework for assessing the complextty of
distributed computationse. In order to understand the "cost"
of a distributed computationy we need to enlarae and refine
our collection of <cost measurese. For examples "time" may
refer to total time or time measured at an individual sitee.
Similarly "space" could refer to cither the size of the
total systemy or the size of individual sitese In addition
to the "time" and "space" required to perform a computationy
we should also consider the "amount of interprocess com-
municationy" both the total traffic flow over the whole
systeme and the bandwidth requirements of individual chan-
nelse

In analyzing sequential processeses we are used to thinking
in terms of time-space tradeoffse Are there analogous
tradeoffs for distributed systems? For examples one can
usually get by with smaller individual processors {i1f one is
willina to have more oprocessorse and consequentlys more
interprocessor communicatione. Can this tradeoff of
interprocess communication wvse complexity of dindividual
process be made precise? Againe one usually has the choice
of efther implementing shared global resources or duplicat~-
{na these, resources at different sites. Are there
auidelines for deciding which of these strategies to pursue?
In generals we need to deal with the following sorts of

cuestions: (1) What are the <characteristics of those
problems which allow one to make effective use of
distribputed computation? (i1) Converselyes can we learn to

recognize problems whose solution would require such Llarage -
amounts of interorocessor communication as to render these
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problems 4inherently unsuited for solution in a distributed
manner? (141) Can we identify techniques for tailoring
distributed architectures to the solution of particular com-
putational problems? (iv) Can we formulate a theory which
combines concerns for time-space complexity with concerns
for minimizing interprocess communicatione thus providing an
adequate framework for assessing the complexity of
distributed computationse

6620346 Space Complexity for IPC

In measuring space complexity for IPCy the shared variable
models provide a natural measure = simply the number of
states necessary 1in the shared varfablesos Tight upper and
Lower bounds on the communication space required have been
demonstrated for certain synchronization problems using the
Test-and-Set model, Additional bounds are anticipated for
other problems and primitivese.

Reference: [BURN 78]

6e2¢347 Time Complexity Measures for IPC

A qgreat deal of work has been done in the time complexity of
sequential alqgorithmse. Synchronous parallel computations
commonly use a "tree depth" measuere for the time <comr-
plexitye These technigques do not extend easily to asynch-
ronous parallel processing because there {s no direct
measure of global time directly derivable from the steps of
the individual processes, For examplee if any process
reaches a state where it must wadt for communication from
another processy it may take an unbounded number of steps

before the remair.der of the system changes state. Since a
simple sum of all processor steps would often give unbounded
Lower bounds for many problemsy (and hence are

uninterestingd, new measures are needede. Current work is
proceeding examining time bounds of test-and=-set algorithms
using the foltlowing types of boundse.

1) Count the total number of *"transitions”
between two events of intereste.

2) Count the number of transitions of a
particular process between two eventse.

1) Count the total number of transitions between

two events divided by the number of processes
tnvolved.

(A "transition" 4s a step of a process which causes a chanae
in the shared variable) Fach of these bounds appears to be
of intereste.
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6e2¢3+8 Data Transfer Performance

Abelson [ABEL 78] has recently developed techriques for
proving 1{inherent lLower bounds on the amount of interprocess
communication required for performing computations 14n a
distributed systemes Using these techniquess he has analyzed
distributed systems which perform matrix operations and
solve systems of Linear equationse His work shows thats
from the point of view of minimizing communications the ob-
vious techniques are optimale

6e2e3¢% Performance Results

An alternative (perhaps a copout) to formal analysis 1is to
use a simulation or emulatione Thisse howeveres 1s not an
entirely straightforward proposftion. Firste a suitably ac-
curate description of the distributed system must be derived
and secondsy the artificialities of the simulation/emulation
must be factored oute
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6+3 EOSITJON PAPERS

6.3.1 Abelson

Theoretical Issues in Distributed Computation
by

Harold Abelson
MIT

Current research 1in the area of distributed computation
focuses almost exclusively on algorithms and systemse while
the problem of determining the 1{inherent complexity of
distributed computations remains virtually unexplorede.
Moreovery most theoretical work in the area of parallel
processina relies on a model of computation 1in which ail
processors have ready access to all memory registers =-=-- an
assumption which is unrealistic when dealing with
distributed computationss For exampley although the solu-
tion of n Linear egquations in n unknowns can be accomplished
in order (log n)+**2 steps if one {ignores information trans-
fere 1§t can be shown thate for typical interconnection con-
figurations among n processors the Jnterprocessor data
transfers alone require on the order of n stepse.

We need to address directly the problem of interprocessor
data transfer and to establish bounds on the amount of com-
munication required for a wide variety of problems in a wide
varfety of distributed architecturess In generaly we need
to deal with the following sorts of questions: (1) What are
the characteristics of those problems which allow one to
make effective use of distributed computation? (44) Conver-
selys can we Learn to vrecognize problems whose solution
would require such Large amounts of 1{interprocessor com-
munication as to render these problems inherently unsuited
for solution 4n a distributed manner? (141) Can we identify
techniques for tailoring distributed architectures to the
solution of particular computational problems? (iv) Can we
formulate a theory which combines concerns for time-space
complexity with concerns for minimizing interprocess com=-
munications thus providing an adequate framework for asses-
sing the complexity of distributed computations.
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6.3.2 Fischer
Time Complexity of Distributed Computations

by

Michael Jeo Fischer
University of Washington

A fundamental question in the theory of distributed comput~-
iny is how well a particular system does 1{its Job. To
determine thise one needs a spectfication of the job and a
means of comparina the efficiency of the given system with
other candidate systemse.

Three aspects of distributed systems complicate considerably
the specification of the desired behavior. First of ally
non-terminating computations tend to be the rule rather than
the exceptions so 1{infinfte execution sequences must be

describede Secondlys because of vartablity in the relative
spreds of the different processesy the system is dinherently
non-deterministice. while determinate behavior is

nonetheless possiblesy 1t may not be requireds so the
specification must allow for wvartablity 1in the observed
behavior. Finallye the 4dnputs and outputs of a distributed
system may be dispersed over a number of sitess and the com-
munication aspects of the problem need to be captured in a
natural waye

Finding a satisfactory time measure for distributed systems
s much more difficult than for sequential programse 1In the
Latter casey elapsed time is Just the sum of the times of
the basic instructionss With parallel computationse certain
steps may execute concurrentlys so the simple Linear depen-
dence of elapsed time on the instruction speed is lost. For
this reasoney it becomes attractive to Look instead at the
dependencies between steps of various processes rather than
at elapsed time. When these dependencies are represented as
a partial ordery the longest path through the order gives a
natural measure that reflects the time necessarys assuming
maximum concurrencyes

Once we have a satisfactory notion of the execution time for
a particular interleaved sequence of stepsy it is still not
clear how to base a comparative analysis of systems on this
information, for different systems solving the same problem
will not necessarily exhibit the same {nterleavingse What
is needed 1is a set of parameters common to all solution
systems in terms of which the time can be exoressede

Finallye the relative efficiency of a system may depend
stronaly on whether one 1{1s interested in some notion of
total system throuahput or in response time at a atven site
tor in some other aguantity).
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6.3.3 Lampori

Theory and Formalism
by

Le Lamport
SRI International

Formal methods are needed to specify and prove the correct-
ness of distributed systemses The primary requirement for a
specification 1is that it be understandable by humanse since
onlty a human can determine the correctness of a
specification. Moreoverey a specification involving program
variables does not meet this criteriony since proaram
variables are part of the solutiony and are of no concern to
the users There has been very Little progress in this arece.
It is rare to find even a precise informal statement of what
a simple distributed algorithm 1s supposed to do =-- Llet
alone a specification of an entire system.

A formal specification is wuseful only {f there s some
formal method for deciding if a system meets its
specifications Currentlys there exist formal methods for
provina properties of non~distributed multiprocess systems.,
We need to discover how these methods can be extended to
distributed systemssy or else develop new methodse There hes
been some oprogress 3In this areas but we are very far from
being able to handle reals complex systemse.

1 feel that in order to make progress in these areasy it s
necessary to be able to deal formally with non-atomic
operations ~=- to describe the system as a collection of
operations which do not act as i1f they were executed in any
sequential order. I have some vaquey preliminary ddeas on
how this can be donee

6«3.4 Lynch
Complexity Theory of Distributed Systems

by

Nancy Lynch
Georgla Institute of Technology

Most of the current work in theory of distributed systems
seems to me to focus on a rather high level of oprogrammina.
Virtual machines and networkse Hoare=-style communication
mechanisms which combine powerful synchronization and value-
passing behaviory relaoted mechanisms which assume preserva-
tion of unbounded numbers of messagessy serializersy abstract
data types with “"™nonatomic" elementsy etce are all user-
oriented abstractions which allow togical organization of
complex algorithmic behavior without concern for troublesome
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implementation detail. Unfortunatelyes there are good
reasons why such detail cannot entirely be suppressede
Efficiency of operation of a distributed system 1is of
paramount concern to the user. There are so many more pos-
sible wvariations in implementation in a distributed en-
vironment than in more traditional computing environments
that knowledge of the implementation method cannot help but
influence the wuser®s program design? indeed, some such
knowledae s probably necessary for even acceptably
efficient use of the systeme

It is important to complement high-Level theoretical and
lanauage~-design work with a firmly-based theory of lower-
level distributed programmings geared particularly to
measurement of the efficiency of performance. Very simple
and general primitives such as shared variables and one-way
arbitrary-delay communication <channels should be used as a
general basis for such a theorye. Various appropriate
measures o0f vresource use and performance (ee.gee communica-
tion "bandwidth"e total number of changes to variables that
occury total "depth" of the computation) can then be defined
preciselys Then the costs of implementing the various high-
level mechanisms mentioned above can be assessed objectively
and comparede While the user might not need to know precise
implementation detailse he would at Least benefit from
knowledge of these costs in resource usey for the various
available mechanismse

As for sequential computings the theory of distributed
systems will not ultimately be concerned with implementation
of different system primitivess but with efficient fulfill-
ment of application requirementsa. Thuse the theory can be
expected to focus on design and analysis of systems exhibit-
ing certain desired behaviorey in application areas suitable
for distributed computing (eegees Load=-sharings multiple use
of databasess mail communications synchronization)e A Llow-
level model and elementary complexity measures such as those
described will form a useful basis for such analysise with
higher~-Level constructs used alona the waye Also 1important
for such a theory will be the development of reasonably
consistent means of specifying desirable btehaviors for
systemse Such behaviors might idinvolve the input-output
interface of a system or the d{internal state behavior of
processeses

A prototypical development has been carried out (Jointly
with Michael Js Fischer and graduate students Je Burnse Ps
Jacksone and G Peterson) for simple mutual exclusion
behaviore Further work {1s currently in proagresss
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6.3.5 3Speliar

Theory and Formalism
by
Stephen W. Smoliar

Conventional modes of programming and alaorithmic specifica-
tion have many potential snortcominas in the design and im-
plementation of distributed systemse. In his 1977 ACHM Turina
Award Lecturesy .lohn Backus cited seven "inherent defects at
the most bastc ievel®™ in traditional programming lLanguages:
"their primitive word-at-a~time style of programming in-
herited from their common ancestor--the von Neumann com-
puters their <close <coupling of semantics to state
transitionss thedir division of programming into a world of
expressions anag a world of statementse their 4{nability to
effectively wuse powerful combining forms for butlding new
programs from existina onesy and their Llack of wuseful
mathematical properties for reasoning about proaruamse.”" Un=
fortunatelyy a good deal of thinking about distributed
systems has become bogged down precisely because of a
preconceived commitment to these same fnherent defectse

A fruttful alternative {s the functional style of ap-
plicative programming. The central idea 1{1s that all
programs are expressed as functions., The coupling of a
function with its arguments constitutes an gxpressions and a
process 1s that computational activity involved in the
eyaluation of an expression. The most important aspect of
this aprroach is that it has eliminated the need for the as-
signment statements since the only allowable assignments are
parameter bindingse Recursive composition of functions
eliminates the need for loops (and with it many of the
concerns of structured programming)s Finallys input/output
functions may be transcended by a view of files as arquments
and values of expressionse.

Multiprogrammina concepts may be best expressed in ap-
plicative terms by introducing a data structure known as a
myltisete & multiset may be viewed as an unordered collec-
tion of expressions whose evaluations may proceed in paral-
lels Retrieval of data from a multiset is continaent wupon
termination (also known as copnvergepge) of at least one
evaluation process; and retrieval effectively transforms a
multiset from an unordercd collection of expressions into an
ordered sequence of valueso. Furthermores multisets may be
constructed through multiple applications of the same func-
tion to each of the rlements of an already=-constructed mul-
tisets Finallys the conventional conditional expression may
be extended to control whether or not an evaluation oprocess
ever converges: 1f the predicate of a guardeg conditional
is not truee then the evaluation process automatically
divergese

Georaja Institute of Technology IPC workshop




Section 6 THEORETICAL WORK Page 70

It 4s thus possible to formulate algorithms for distributed
systems in terms of a rather simple applicative Lanqguage.
In facte the applicative lLlanguage provides a very powerful
tool for the study of distributed systemss this toot is the
language's dinterpretere. Such an interpreter must know how
to implement the evaluation of expressionss bute more fim-
portantlys 1its definition must include a protocol for how
multisets are constructed and how their elements are
evaluatedes This protocol may be {instrumented to reflect the
behavior of a real-time environment. The interpreter thus
provided a basis for simulation experiments within which one
may investiqate how multiple processors may be profitably
applied to multiset interpretation.
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SECTION 7

CURRENT TECHNIQUES AND EXPERIENCE

7.1 A PRQCESS BASED COMPUIER SYSIEM

An Informal Paper
by

Ed Basart
Hewlett-Packard Company

Processes are the basic entity in our computer systems When
a program runse 1t exists as a processe and gives a Program
the flLlusion that 1t has its own private processore. The
system is then constructed to support processes effectively
by making process communication and switching efficient and
fnexpensives As a consequencey multiple processors can be
used to increase the parallelism of the processes running in
the system.

The advantaqes of such a computer system are program
modularfitys increased performance through parallelismy
arowth by adding processorss and physical distributability
of functionse Processes are wused as the single "object"
that unifies operating system services and resourcess The
operating system exists as a collection of processess and
process primitives are used a3s the kernel of the operatinag
system.

Processes communicate usina queues and the send and receive
primitivese Multiple queue writers are permitteds while
onty & single gueue reader is allowed. Send and receive
handale the details of the path vetween processes for any ar-
bitrary hardware configuration of processorse This includes
providing mutual exclusion for processors sharing memory and
invoking data communicatdion drivers in systems not sharing
memorye. The data communications processes resolve the con-
nection between processorss whether the connection is a high
speed buse through telephone Liness or an indirect path
through more than one processora.

In order to send & message to another processy the sendina
process must first establish a Link to a receivina process
queue. Links are made by the file systemes OUpening a Link
is very much Like opening a disc file. Capabilities and ac-
cess riahts to queues are checked at open time by the file
systemy which eliminates message verification for the send
and receive primitivesy and also for the communicating
pProcessese
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After a Link 1s openy the sending process sends a message to
a receiving process by specifying a Link numbery along with
the data. The receiving process reads 1its cueue by specify-
ine {ts queue number and issuing a recefves. The receiving
process creates a queue inftially by asking the file system
to allocate space fer the queue and grant the receiver
"aueue® accesss Linking a sending and a receiving process
establishes half duplex communicatione. Fullt duplex com-
munication may be established by creating another queue and
opening another Link 4n the opposfte direction between the
two processess

As the file system opens a Linksy it determines whether the
two processes are residing on different computerse. If soe
the address placed din the Link 1is that of a surrogate
processy a data communications driver that handles the
details of the communication Lline. At the other end of the
Line is another surrogate data communications processs Thisg
process has a Link pointing to the receiving prccess gueue.
This mechanism allows uniform process communication for both
local and remote processese.

Creating a single queue for multiple writers seems to be a
mixed blessinge One advantage is that the system makes a
single space allocaticn for the «queues and no new al-

locations need to be made for each writere. Another ad-
vantage is that the reader aces to only one Location to read
messagesSa This is particularly important when the writers

and reader exists on different computers,.

The disadvantage of a single queue is that a "mad" writer
can <c¢loag the aqueuee. There are two solutions tc this
prohlems The system can bSe made cognizant of a writer®s
"message rates" and a proctess can be given lower execution
priority 1f its rate becomes too highe The other solution
is to maintain a message count for each writere The reader
then decrements the count as the queue is reade

Neither of these solutions i1s very attractivee They both
suagest high cost to protect against the mad writer. For
the present the arproach is to make gueues Large enough to
absorb an dnitial outburst from the writer. The reader is
given a "break Link®" function that disallows any further
messaaes from a particular writere This forces detection of
the problem on the communicating nrocesses while relieving
the send and receive primitives of an added complication.

Three similar computer systems have been influential in the
design of our systeme They are: 1) the Tandem 16 computer
system manufactured in Cupertinos California, 2) the Demos
oprrating system for the Cray~-1 computer at Los Alamose New
¥exicoe and %) the Thoth operating system developed at the
iniversity of waterloos Ontario.
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Qur system has two primary differences from the mentioned
onese The first 1s 1n handling all types of physical
processor 1interconnections at the primitive Levely rather
than doing 4t in the operating system. The second 1s 1in
making much greater use of processes and messagese ALl of
the above systems break away from their message systems for
certain types of functions that are considered to be too ex-
pensive to be done in a message systeme
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Te2 1PC IN HETEROGENEQUS DISIRIRUIELDR COMPUILR NEINORKS

HETEROGENEOUS DISTRIBUTED COMPUTER NETWORKS

AND INTERPROCESS COMMUNICATION THEREIN
by

Je S. Sventek
Lawrence Berkeley Laboratory

T.2.1 Intreoductien

The primary focus of the Advanced Systems Group in CSAM is
the question of distributed processing in a network consist-

ina of hosts with vastly differing architecturese Our

qoale at this point in time,

vironment

needss for example:

1)

2)

3)

4)

In order to achieve the goal of easy uses we are somewhat
less concerned with "efficiency" 1{1ssues than with merely

a research group developing a distributed
relational database system

rdministrative personnel maintaining current
accounting databases

araphics researchers exploring new and novel
reoresentations

hiah energy physicists destfunina systems to
cotlect and sample on-lLine vast quantities of
experimental data

making the system tunctionale. From empirical studies

working systems we hope to discern the "inefficient™ aspects
systems and may devise algorithms to alleviate the
Ffficiencys in this contexty {s only concernecd

of the
nrotvlems,

with throuahpute

Two entities must exist before an easily used distributed

system can be realized:

1)

2)

Georaqia Institute of Technology

a3 common shell (command Line 1interpreter).
It 1is of somewhat Limited utility to provide
virtual terminal capabilities on the hosts in
the network if the wuser must Learn a
d4fferent Llanguage to communicate with each
onee Much of our recent research has been in
the development of Just such a portable
shells A prototype of this shell ¥s current-
Lty running on the followina systems: FDF-
117780 (VMS ), POP=-11/70 (TAS) coc 6600
(homearown operating system),

2 common file namina convention. Current
rescarch (based on a pathname structure) is

is to provide a distributed en-
which 1s easily used by people with very diverse
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progressing 1in this areas and a prototypical
system is operational on the PDP=-11/70 (IAS)
systeme

The rest of the discussion will asume that these two
entities exist on all hosts in the networke.

7.2.2 Fyndapental Quantities in a Compuler Sysienm

There are three basic quantities in a civilized computer en-
vironment which a programmer must be able to manipulatee.
They are:

l. file - this categqory includes non-file struc-
. tured devices (eeges tt0y mtOy etcede data

‘ filess and executable image files.
2e process - this entity describes an image file

nlus its context (standard inputes outputese and
error filess default directorys privelegess

etce) which s currently in a schedulable

'] state or wattina upon some resource in order
. to become schedulable 4n a particular hoste

, ) 3e vertex - this “"virtuat"” entity allows two

processes to extabldish an 4nterprocess com-
munication Linke.

Several operatina system primitives are necessary to allow a
programmer to manipulate these aquantitiese.

File oriented

open open a file
i . close close a file
3 i create if file exfistse open 1t3 else create it
delete delete file
rename rename file
getc get a character from a file
putc put A character into a file
mark note current position in a file
seek position o file
prompt output string with no terminating carrtage
controt
: frocess oriented
]
! |. spawn spawn processsy sending specified araquments
to it
pstat query status of a process W
kiltl terminate process
- suspnd suspend process
,? resume resume suspended process
1 Vertex griented
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pipe create a vertex and open a Link to 1t

A few more words concerning vertices are in order. A vertex
is a valid input parameter to the open and close primitives.
In this ways subprocesses may be linked together by redirec-
tina the respective standard outputs and standard finputs to
a vertexs The subprocess itself {is oblivious to the source
or destination of 4ts idinformatione A vertex is also a
transitory aquantitys 4n the sense that when all Links to 1t
have been terminated (via a close operation)y it vanishes.
ALL 1/0 through a vertex shoutd be synchronous to avoid all
of the problems 1dinherent in bufferinag asynchronous 1/0 in
dynamic system memory.

T«2.3 Naming Conyentiiops

Files are known gtobally by their pathnames:
/hostname/default directory/filename

Once a process has established a Link to a file (via an open
or create)y the file is then known internally to the process
oy the 1d returned as the value of the primitive function
invokeds

Processes are known globally by the 1d returned as a
parameter of the spawn primitive:

/hostname/processid

Vertices are known alobally by the followina pathname:

/hostname/processid/vertexname

One sees that as Long as the first field of a file pathname
can never assume the value of a process id fields this nam-
ing convention unfquely identifies all quantities.

7T.2.4 Implementation in a DRistributed Environment

A skeleton of a typical primitive would look as follows

if (Local (AKGUMENTS) == YES)
{
perform function
}
else
{
reformulate request (if necessary)
forward request to KERNEL
wait for result
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The purpose of the local functfon 4is to determine {f the
request can be performed within the requesting processe
(File and process oriented primitives can wusually be per-
formed Llocally 4{f they 4nvolve Llocal files and processess)
If it cannot be performed internallys the request may have
to be reformulated to include process context information,
and is then forwarded to the KERNELy which is an extension
of the native operating systeme DNDue to differences in the
services provided by most natfve operating systemse oOne sees
that the local function will be system dependents The KFER-
NEL s a separate processs one per hoste which has access to
the physfcal Links of all hosts in the network which are
directly connected to the current hoste The KERNEL fields
three types of requests:

l. Llocal requests for local services not
provided by the native operating system

e Local requests for services on remote hosts
in the network

Je remote requests for Local services on behalf

of a requestor on a remote host

For the first type of requesty the KERNEL will perform the
services and return status and any other information to the
requestor. The last two types of requests are Llinked in
thetr functione For type 2y the XELRNEL forwards the request
to 1{ts counterparte which receives a request of type 3.
This request is performedy and return information is forwar-
ded to the original requestor through the networke.

ALL types of distributed activity are then supported in such

a network environmente The following examples will serve to
emphasize this pointe

Te2.5 Examples

Virtyal terminal

User is currently interacting with the shell on host A with
standard 1inputsy outputs and error files being ttns and
default directory DEFAULT, User wishes to establish virtual
terminat connection 