
AD-A881 GAS GEORGIA INST OF TECH ATLANTA SCHOOL OF INFORMATION A--ETC F/G 17/2
INTERPROCESS COMMUNICATION IN HIGHLY DISTRIBUTED SYSTEMS - A WO--ETCIU)
DEC 79 P H ENSLOW. R L GORDON OAAG29-79-C-010

UNCLASSIFIED GIT-ICS-79/11 MLEhlllhllEEEEEE
IIEEIIEEEEEEI
muIIIIuuuIIIu
-IEIIIIEIIII
-EIIEEEEEEEEE

mhEEhEh

INTERPROCESS COMMUNICATION IN

HIGHLY DISTRIBUTED SYSTEMS

A Workshop Report--

20 - 22 November, 1978

FINAL TECHNICAL REPORT

GIT-ICS-79/11

PhiLip He Enstow Jr.
Robert 1. Gordon*

December, 1979

U.S. ARMY RESEARCH OFFICE
P.O. Box 12211

Rese-arch TriangLe Park, North Carotina 27709

ARO Grant Number DAAG29-79-C-0010
ARO Project Number P-16334-EL

GIT Project Number G36-632

SchooL of Information and Computer Science
Georgia Institute of Technotogy

AtLanta, Georgia 30332

*(PRiME Computer, Ince)

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

THE VIEWS, OPINIONS. AND/OR FINDINGS CONTAINED IN THIS REPORT
ARE THOSE OF THE AUTHORS AND SHOULD NOT BE CONSTRUED AS AN

OFFICIAL DEPARTMENT OF THE ARMY POSITION, POLICY, OR
DECISION. UNLESS SO DESIGNATED BY OTHER DOCUMENTATION.

Georgia Institute of TechnoLogy IPC WORKSHOP

I4lm

Unclassiftied Pageii
SECURITY CLASSIFICATION Of TwiS PAGE (When Date EntereW

REPORT DOCUMENTATION PAGEREDISUCON

I. NUFO MGERAIZTO NA. ANV ACCESSION NO . A PGRAM CALEME NT. MBOECTRTS

U. S. rmy esearmucato Ofince hyDsrbtdFia ~cnclA~

S.sAmy oro Researc 2fic to2,Nvme 3Nv17-2AeA9
P1 .Bo121 /QJj ncasfe
ReerhTingePrN72798.cDELSIIAIO ONRoN

10.DISIUT ON STATMEN (ofAN tNle Report

9I. SPEOMENG ANIZOT EADA6ES#.POGA LMN. RJC.TS

Tcho view In r ion and o mpuding contaie d inE thi re OR areT thoBSe o th
autors) nsou no becntrehann ficaieprmetofte ry

.KEY rmy RCntneo erh Ofie fceew Dec,8 idA079yblc ~mb,

14 MOIORN mechnism are E eve moe S cent ren f t l dein of , highl Y i Sbue .6.prssn

U .S . A r y R e s e a c h O f f c e U n c l s s i f i e
-a cee~P.O. Bo 12211r'yn ~ u~Pii ~. fe.P'.~at

Reeac TingePak N 279 5. EL SI ICAIOIO<5 ADN

Page iv

20. cont.
'and Security,(2) Interprocess Synchronization,(3) Interprocess Mechanisms,

and(4) Theory and Formalism, addressed the current state of the art in these
areas as well as problems and future research directions. This report
incorporates much of the material and working papers from those fields
as well as selected references useful in understanding the topic.

Page v

ABSTRACT

Interprocess Communication (IPC) has been recognized as
a criticaL issue in the design and impLementation of aLL
modern operating systems* IPC poLicies and mechanisms are
even more centraL in the design of highLy distributed
processing systems -- systems exhibiting short-term dynamic
changes in the avaiLabiLity of physicaL and LogicaL resour-
ces as weLL as interconnection topoLogy. A workshop on this
subject was heLd at the Georgia Institute of TechnoLogy in
November 1979. Four working groupst 1) Addressing, Naminq,
and Securityi 2) Interprocess Synchronization, 3)
Interprocess Mechanismst and 4) Theory and FormaLism, ad-
dressed the current state of the art in these areas as weLL
as probLems and future research directions. This report
incorporates much of the materiaL and working papers from
those fieLds as weLL as seLected references useful in under-
standing the topic.

r Access , For

t
eoiantiteoTehooA ,o Ijo

.Ut spe;cial

! jGeorgia Institute of TechnoLogy IPC WORKSHOP

Page vi

PREFACE

The workshop organizing committee had originaLLy intended to
utilize the material developed by the individual working
groups to prepare a summary report of the proceedings. This
concept was abandoned when it was recognized that a "summary
report" wouLd not adequately report on and document aLl of

the work and topics that were covered during the meeting.
It was obvious that documentation much more thorough than
merely a summary report was warrantedt so the members of the

*organizing committee decided to directLy utilize as much as
possible of the material and notes prepared by the working
groups and assemble and edit that material into an organized

V workshop report. It was'feLt that this approach would much
better capture the true flavor of the workshop and the
breadth of the material covered there.

Decembert 1979 PhiLip H. EnsLowt Jr.
Robert L. Gordon

ACKNOWLEDGEMENTS

CertainLy the most important acknowledgement for assistance
in the preparation of this report goes to the working group
Leaders who prepared the summary reports for their in-
dividual groups and to those individuaLs who acted as recor-
ders durinq the working groups sessions. To a great extent
the materiaL developed by those individuaLs has been

utiLized exactly as it was prepared with only minor editing.
We would also Like to acknowledge the invaLuabLe assistance
of two Georgia Tech students who were responsibLe for the
mechanicaL organization and preparation of the report
utilizing our text editing system - Timothy Saponas, who
also served as our resident translator for the hierogLyphic
notes prepared by session records, and SheLLy Smith.

We would also Like to acknowledge the support of the U.S.
Army Pesearch Office and the U.S. Air Force Office of

Scientific Research in funding the Workshop as weLL as the
Office of NavaL Research which also partiaLLy supported the
preparation of this report.

D Decembert 1979 PhiLip H. EnsLow, J .
Robert Lo Gordon

"' Georgia Institute of TechnoLogy IPC WORKSHOP

.. I I I I I II

Page vii

Section 1. INTRofluCTION.r..................................1

*I OBJECTIVES OF THE WORKSHOP............................1
92 WORKSHOP ORIGINS......................................1
.3 PURPOSE AND SCOPE OF THE WORKSHOP.....................2
e4 STRUCTURE OF THE WORKSHOP..................3

e6 ORGANIZATION OF THIS REPORTo..........................7

Section 2. 8ACKGROUND......................................S

.1 INTROOUCTION..8
e2 PROCESS MODEL OF COMPUTATION..........................9
e3 HIGHLY DISTRIBUTED SYSTEMS.... ~ o~oo~oo~
.4 IPC STRUCTURES.......................................1O
e5 INTERPROCESS CONTROL STRUCTURES.... o~l

Section 3. ADDRESSING, NAMING, and SECURITYo.* *ee...12

.1 WORKING GROUP SUMMARY RFPORT.........................12
e2 AMPLIFYING MATERIALo...........o.....................15

.1 Distributed Data Bases.............................18
e2 Mininet..18

.4 POSITION PAPERS...
.1 HamiLton...23
o2 Sunshine...24

Section 4. INTERPROCESS SYNCHRONIZATIONoo.................30

el WORKING GROUP SUMMARY REPORT.........................30
.1 Statement of the ProbLemooo.o.........o....o...o..o30
.2 SoLution Space..oeooo.oooooooo.oeo.eeeoeo.oe.o..o.o30
.3 Some Existing Sotutions............................32

e2 POSITION PAPERSo...........oo..o.oooo................34

al Lee..34

Section 5o MECHANISMS.....................................36

I. -- el WORKING GROUP SUMMARY REPORT.........................36
.2 AMPLIFYING MATERIALo..o..o.o.o.......................42

.1 Prepared by the Working Groupo.....................42

.2 Prepared by PeebLes................................44
- .1 Introduction and ExpLanatione...................44

.2 Desirabte Properties.............................44

.3 IPC Taxonomye.oo.*o..oo**oe** e9*.................46

Georgia Institute of TechnoLogy IPC Workshop

Page viii

*I1 Non-message-based IPC. ~ego... se...... Os.... 46
92 Message-based IPC. eses.... s........*4

.3 Hiqher-LeveL Mechanisms5.... oegoo ce s.o.e.47

e4 Referencesoe....e..se...sssse....ooooeoseoss.e
4 7

o3 POSITION PAPERSe.e.e..so~oe..ssssesesoosoeseeseso 4 9

.1 PeebLes.... .. eoeoe s. secs. eoc 0@osooo see...... s~o

.2 WaLLentines.ss...s..*eoes..eeosss....s..s..s...s.....

Sect ion 6. THEORETICAL WORK se..sse...5

*I WORKING GROUP STUDY REPORToo..... *ee.............s..55
* .2 AMPLIFYING MATERIAL..............................5... 57

.1 Specificatione.e.ss.ees....ooooooe~.esseseoossSo7

.1 AppLicative Proqrammingeoosesosesooeee@sesesso 5 7

* 2 TeLetype Paradiqm..e..e~essesesseeoes..oe..e...s57
.3 Behavior by InterLeaved TeLetype RoLLs.....s.....57
.4 State-based methodssseo*eoe....eesooeoseeosee...SB
.5 State Graphs sss*~~e.s e sse.*sS

9 .6 JeLLybean Exampte................................58
.7 How to Specify Complex Systems*s..s..eesee*9es..5 8

.2 Modelsoeosees..sosoe...eeeeo..ee.......ssossseoesesS
9

.1 The Test-and-Set Modlel of IPC.e**9**o.........59

.2 Bit Transmission ModeL ss..sess .. soeo*59

.3 SS Model.. seseesms ses...... se e .us*o . soee
5
9

.4 Other Modet.s.. soooo..e..ssesess..esos..s6O

e5 Relevance of ModeLso......e*ees..s....ese~ooooee 6
O

.6 Problem Areas...eoooess..soe....seoo ~eoes.s 6
l

.3 AnaLysisees. see sseeoeeso .. ssoooesee.. see*eos~ee o

.1 State Graph AnaLysissossasseoso.sesse..oeoeoeeos 6
l

.2 Critical Region Algorithm Proof.s... s..eeess 61

.3 Global Assertionsooe..esoeo~sses~osoossooeee.ee 6
l

.4 Fault ToLeranceoos~es....e..ssoeseooesss..e~sseso6
2

.5 Measurements.oeos........eos.~eeoee..ssoooesoos.62

.6 Space Complexity for IPC**.ee*.*..eq*eooeess..s6 3

.7 Time CompLexity Measures for IPC.9**e...5 5....... 63

.8 Data Transfer Performance....... eoe~essooe.se 6 4

.9 Performance ResuLtsesssooee...soese.essoes**
6 4

.3 POSITION PAPERS......................................65
al AbeLsonossssooe...eoeooe....os...ssess.ssssseso

6
5

e2 Fischeresioeoeesosss.ee...s..e~esoeoe.esoossos. 6 6

.3 Larportooes......~..e sss....s..so~ooooes.ee..s~o67

e4 Lynchssoo~eso...s....e........se..oeesoeeoee~e6
7

Section 7. CURRENT TECHNIQUES AND EXPERIENCE*9*e*&e.......71

el A PROCESS BASED COMPUTER SYSTEMe9....................71
.2 IPC IN HETEROGENEOUS DISTRIBUTED COMPUTER NETWORKSooe74

.1 Introduction..se.. .. ssse.sese..se?

.2 FundamentaL Quantities in a Computer Systemossee*9975

.3 Naming Conventionsooseooetees..sessse.e...sos?6

o4 Imptementation in a Distributed Environment........76e5 1r. xamples..e......s......s......sossesoess...e...s..ll

.3 PPOTECTED MAILBOXES AS AN IPC MECHANISMe.............79
.1 Introduction.soos.....so~seos~esess.e......sssss?.9
.2 Proposed IPC Primitives............................79

INGeorgia Institute of TechnoLogy IPC Workshop

Page ix

.5 Synchronization....................................81
*6 Fault Tolerant Aspects.............................81
.7 Summary... s ooooes... in.... sooes. so...

.4 SRIEF DESCRIPTION OF DSYS-PLITS.o.....................83

.5 MODELS OF CONCURRENT COMMUNICATION ACTIVITIESeeseeoeo87
96 PRlME IPC CONFERENCE REPORT..........................91t.1 Itouto .
.2 Synchronization/IPC Fad Lities....... oo~o9

.1 Process Communication in DEMOS.**.......... eo*&92

.2 UNIX Process Control/Communication.... 93
.3 Interprocess Communication in TANDEM-............94
.4 Process Communication in Vax.....................95
.5 The MuLtics IPC FaciLity.........................96
.6 Event Counting and Sequencing o.eessoooe....97
.7 Intertask Communication Primitives For PRIMOS 9A

*3 Conclusions and Future Dlrections................ooo1
.7 DATA COMMUNICATION SOFTWARE....14
o8 tCISTRIBUTED IPC AND SIGNALLING......................113
.1 The GeneraL Context...............................113
.2 The ProbLemso....................................115

.1 Multiple Sender/Sinqle Receiver Systemseeee.....115

.2 multipLe Sender/Multiple Receiver Systemsoooooo*115
.3 Looking for a Solution: Requirements..............116

.1 Parallelism and Response Time.o..................117

.2 ResiLiency 17

.4 Permanent Rejection......oss .ss in. sn ...17

.6 ExtensibiLity.ees...............................117

.1 A VirtuaL Ring~ Structure........................118
.1 Mutual Suspiciono.........c...................119
.2 ExpLicit Message Acknowledqement... o*11

.2 Rina Reconfiauration.19

.3 The Extensibi Lity Property......................120

.4 The Control Token Mechanism.....................121
.1 ResiLiency 2

n~fi stributed SiqnaLL irn,.......s. . .. ss 22
.1 Fortuitous SeriaLization.........oo.........123
.2 Enforced serialization......

.3 Performance Considerations.*124

Section 8. SUMMARY AND FUTURE DIETO~*9*o~****2

.1 GENERAL OBSERVATIONS AND CONCLUSIONS*9o.............129
o2 WORKSHOP SUMMARY....................................131I * .1 Addressing, Naming, and Securityo****&e***9&****o.131

.2 Interprocess Synchronization................13I

.3 Interprocess Mechanisms..... 132

.4 Theoretical Work..................................132
93 CONCLUSIONS AND RETROSPECT..... 33

Georgia Institute of TechnoLogy IPC Workshop

L -- - - - -

Page x

Section 9. SELECTED READINGS AND REFERENCES**e*&*********135

el SELECTED READINGS...................................135
.2 LIST OF REFERENCES..................................137

Georgia Institute of Technot~ogy IPC Workshop

Section 1 INTRODUCTION Page 1

SECTION 1

INTRODUCTION

1.1 QBJECIVE QE laWOKSO

The subject of the workshop was Interprocess Communication
Mechanisms with a oarticular focus on process-to-process
communications in highly distributed systems. Highly
distributed systems are characterized by very loose coupling
between physical resources as well as between logical
resources. Such systems also exhibit dynamic, short-term
changes in the topology and organization of the total
system. These characteristics place new requirements on the
design and performance of IPC mechanisms; these requirements
are assuming extreme importance in advancing the state-of-
the-art in all forms of distributed systems.

1 . 2 "_IM Q.iUI

The last meeting that focused on interprocess communication
was the "ACM SIGCOM/SIGOPS Interprocess Communications Work-
shop" held 24-25 March, 1975. [IPC 75]

One might conclude from the paucity of material published on
this topic since that workshop that the problem is totally
under control. (The 8BN "Network Operating Systems" study
[THOM 78) cites only one reference since 1974.) Such is
definitely not the case. Work on IPC's has been covered
within projects on operating systems; howevert many im-
plementation and performance problems are only partially
solved or solved only on an ad hoc basis, and it appeared
that the time was ripe to again focus a meeting of
specialists onto this topic, especially in view of its key
role in the operation and performance of distributed
systems.

Since 1975 advances in the field of computer communications
have provided mechanisms for connectina computers together
in a variety of configurations. For instanceg high speed
serial communication paths [METC 76, GORD 79) have permitted
effective local networks ECLAR 78], in which many computers
share specialized resources (storage, printing facilities,
etc.), while each node still retains some degree of
autonomy* In addition, many mini-computers support large
address spaces, and a corresponding high degree of muL-

Georaia Institute of Technology IPC Workshop

Section 1 INTRODUCTION Page 2

tiprogramming. One natural way to construct the software
for such systems is to base the software architecture on the
notion that most tasks will be performed by a collection of
communicating asynchronoun orocesses, running on the same or
different processors. Such systems are known as "highLy
distributed systems", and are characterized by a very Loose
coupLing between physical resources as well as between
Logical resources, and they allow dynamic, short-term
changes in the topoLoay and organization of the total
system.

The fact that these systems are very Loosely coupled, both
physicaLLy and LogicalLy, places quite different demands on
IPC from those applicable to more tightly coupled contem-
porary systems, even those incorporating a Local network as
the interconnection mechanism. Practical attempts to
construct such systems immediately direct ones attention to
available Interprocess Communication (IPC) mechanisms and
their shortcomings. Lack of well constructed and well un-
derstood mechanisms is the root of most of the difficulties

1. 3 U-P2 AUD AM 2E IU~ 1M=Q

The "Workshop on Interprocess Communications in Highly
Distributed Systems" was intended to bring together a selec-
ted group of workers in the subject area to address the five
general goals Listed below:

1) Assess the present state-of-the-art for IPC
mechanisms in distributed data processinq
systems

2) Identify the data available on the actual
performance of various IPC policies and
mechanisms.

3) Assess the potential value of various IPC
mechanisms satisfying the operational and
performance reouirements for highly
distributed systems.

4) Identify shortcomings in the present state-
of-the-art and identify promising areas for
future research and experiment on this sub-
ject .

5) Identify possible standardization Levels of
IPC.

Geornia Institute of Technoloqy IPC Workshop

4, !

Section 1 INTRODUCTION Page 3

The scope of the workshop will be Limited to IPC mechanisms
for use in distributed systems. (This acknowledges fairly
common agreement among the research community that the fol-
Lowing are not DDP's --- muLtiprocessors, computer networks
per set intelligent terminaL systems, and satellite proces-
sor systems.)

1*4 STUTUREf 2E IUL WORKSHOP

Workshop attendees were selected from individuals actively
working in the fieLd, and the size of the workshop was
purposely limited to approximateLy 40 attendees. Special
attention was given to obtain participants who met one or
more of the following criteria:

- Had had practical experience in the design and
implementation of IPC policies and mechanisms in
highLy distributeo systems.

- Had analyzed and/or measured the actual per-
formance of various IPC mechanisms.

- Would contribute a written submission to the
workshop.

The workshop was held from 12:00 noon, 20-November, thru
12:00 noon, 22-November, 1978, at the Atlanta Townehouse
Motor Hotel, immediately adjacent to the Georgia Tech cam-
pus.

Before the workshops invitees were requested to identify
their areas of interest. Based on that inputs the organiz-
ing committee established six working groups:

1) Addressing and Security
2) FauLt Tolerance
3) Synchronizations SignaLLing, and FLow Control
4) Theory and Formalism
5) Hardware and Primitives
6) Programming Issues

However, as often (usually?) happens in such situations,
when the groups met and discussed their areas of interests
reaLiqnments in the working group organization resulted in
four working groups rather than six.

1) Addressing, Namingg and Security
2) Interprocess Synchronization
3) Mechanisms

,~4) Theory and Formalism

Georgia Institute of Technology IPC Workshop

Section 1 INTRODUCTION Page 4

The output of these four groups is the basis for this
report.

105 ATTEDEES

LM~ 2E LUMtLLL
C. Members of the Organizing Committee)

Hal AbeLson
Laboratory for Computer Science
Massachusetts Institute of TechnoLogy

ALLen Akin
Georgia Institute of Technology
School of Information & Computer Science

Edwin Basart
Hewlett-Packard Co.
General Systems Division

Morton I. Berstein
System Development Corp.

Bill Buckles
General Research Corp.

James E. Burns
Georgia Institute of Technology
School of Information & Computer Science

Gregory Chesson *
Bell Laboratories

Wushow Chou

North Carolina State University
Computer Studies

Phillip Crews
Georgia Institute of Technology
School of Information & Computer Science

Richard A. DeMiLLo
Georgia Institute of Technology
School of Information & Computer Science

Georgia Institute of TechnoLogy IPC Workshop

L

V Section 1 INTRODUCTION Page 5

Phitip H. EnsLowq Jr.
Georgia Institute of TechnoLogy
School of Information & Computer Science

Michael Fischer
University of Washington
Department of Computer Science

Mark Gang
Ford Aerospace & Communications Corp.
Western DeveLopment Laboratories

Robert Le Gordon *
PR1ME Computers

Jim HamiLton
DigitaL Equipment Corp.

Mohommad Hassan
MODCOMP

Steven F. HoLmgren
DigitaL TechnoLoqyt Inc.

Doug Jensen *

HoneyweLL Research
(PresentLy Carnegie-MeLIon University)

Richard Kain
University of Minnesota
Department of ELectricaL Engineering

Steve KimbLeton
Institute for Computer Science & TechnoLogy
National eureau of Standards

Peter Koschewa
U.S. Army Institute for Research in Management

Information and Computer Sciences

LesLie Lamport
SRI InternationaL

David Lapin
Burrouahs Corporation
Computer Systems Group

Thomas Lawrence
Rome Air DeveLopment Center
U.S. Air Force

Richard LeRLancGeorgia Institute of TechnoLogy

School of Information & Computer Science

Georgia Institute of TechnoLogy IPC Workshop

Section 1 INTRODUCTION Page 6

Gerard Le Lann
SIRIUS
IRI (France)

Edward Y.S. Lee
TRW Defense & Space Systems Group

Jon Livesey
University of Waterloo
Computer Communications Network Group

James R. Low
University of Rochester
Department of Computer Science

Nancy A. Lynch
Georgia Institute of Technology
School of Information & Computer Science

Edith Martin
Georgia Institute of Technology
Engineerinq Experiment Station

, Wayne McCoy
Kennedy Space Flight Center
NASA

Nancy Meisner
University of Waterloo
Computer Communications Network Group

Ira Newman
Department of Defense

Richard Peebles
Digital Equipment Corp.

Steve Ratzel
U.S. Army Institute for Research in Management

Information and Computer Sciences

Donald Sharp
Georgia Institute of Technology
School of Information & Computer Science

David Sincoskie
University of Delaware
Department of Electrical Enqineering

Stephen W. Smoliar
General Research Corp.

John Staudhammer
U.S. Army Research Office

Georgia Institute of Technology IPC Workshop" _
L/

Section 1 INTRODUCTION Page 7

CarL Sunshine
Rand Corporation
(Present Location: ISI, University of Southern CaLifornia)

Joseph S. Sventek
Lawrence BerkeLey Laboratories
Computer Science & AppLied Mathematics

P. So Thiagarajan
Institut fuer Informations-systemforschung
GMD

VirgiL E. WaLLentine
Kansas State University
Department of Computer Science

Don Weir
TeLenet Communication Corp.

DougLas E. Wrege
Georgia Institute of TechnoLogy
Engineering Experiment Station

10 ORGIANIZATION fE I±1 REPORT

FoLLowing this introductory section, there is a short sec-
tion on the general background of interprocess communication
techniques* The main body of this report is Sections 3, 49
5, and 6 which cover the results of each of the Working
Groups. Within each sectiong the first materiaL presented
is a summary of the Working Group presentation made at the
end of the workshop. FoLLowing thatt there is, in some
instances, a coLLection of ampLifying materiaL and seLec-
tions from the position papers that were prepared prior to
the workshop and distributed to the attendees.

Section 7 contains severaL Longer papers that were either
prepared specificaLLy for distribution at the workshop or
were feLt by the authors to be appLicabLe to the workshop
and were distributed to the attendees there. Section 8 is a
very brief summary and discussion of future directions for
IPC and Section 9 contains the references utiLized in the

I. report.

Georgia Institute of Technology IPC Workshop

Section 2 BACKGROUND Page 8

SECTION 2

BACKGROUND

201 INTRDUCI

ProbabLy the singLe most important hindrance to the deveLop-
ment of interprocess communication has been the Lack of
generaL acceptance and agreement on the notion and abstrac-
tion of a "process." UntiL the "process modeL" of computa-
tion becomes generaLLy accepted and used as the basis of
software architecturest there wiLL be LittLe motivation for
interprocess communication mechanisms.

In most systems the abstraction of a "process" has not been
deveLoped weLL enough for it to be treated as an "object" in
its own right so that "processes" can be used convenientLy
by system architects and others as building blocks.
Primitives for the creation, synchronization, addressinq
and communication of processes have in the past onLy been
generaLly avaiLabLe to operating system developerst and
therefore not wideLy used by application programmers in ap-
plications software systems. UnfortunateLy operating system
developers tend. to Live with and use poorly documented ex-
perimentaL primitives and other j1g l mechanisms. The
notable exceptions to this ruLe form the core body of cLas-
sic Literature in this fieLd tBRIN 69, OIJK 68bt DIJK 71,
DALE 68). For the most part, application programmers in the
past have been restricted to conventionaL I/0 using shared
fiLes as a praqmatic method of interprocess communications
with only partiaL success.

When the notion of a "process" becomes recognized as a fun-
damental buiLding block for distributed appLications,
stronger support and decumentation wiLL have to be provided
by the system suppLiers and manufacturerst thus making
avaiLabLe to appLication coders a robust set of "process-

based" primitives. After such widespread support
materiaLizes, the design experience and performance
statistics wiLL provide the basis for a fuLler understanding
of aLL aspects of interprocess communication.

A comprehensive survey of the present state-of-the-art in
interprocess communication is presented in paragraph 7.6.

I.

"N

SGeorgia Institute of Technology IPC Workshop

/ I I. . . i l I l

Section 2 BACKGROUND Page 9

An excellent survey of the "process model of computation"
can be found in CHORN 73). Prior to this* articles on
operating systems developed the notion of a "process" or
"task," as an entity that could be scheduled and own other
resources in muLtiprogrammed systems* but they did not treat
a process as a structuring methodology in its own right.

* -Examples of these notions can be found in [SALT 66] and [IBM
71).

* . Access to resources in early operating systems presented the
very first examples of interprocess communication* but these
early IPC techniques varied widely from one implementation
to the next. For exampLet in most systems, the Line printer
daemon (or process) owned the Line printer, and access to
the printer was restricted to ordinary "write" statements at
the Language Level coupled with "Logical unit" assignment at
the job control of command Language Level. Other examples
may be found where the Login process "owns" the communica-
tion Linest or a file manager owns the file system as in the
!4ERT operating system ELYCK 78). An early message-based
operating system structured around processes is the RC4000
operating system EBRIN 69, BRIN 70).

Trends in software engineering, applications, and technology
certainly point to an increasing awareness of a process as a
fundamental method of structuring systems. The prolifera-
tion of inexpensive processors and Low cost bandwidth sug-
gest a process model of computation, even if there is only
one process per processing element, since control and shar-
ing of common resources must be by some form of interprocess
communication. New architectures are now being proposed
that exploit these trends, e.g. (NELS 783. The ENELS 783
proposal is based on a high-speed packet-oriented bus inter-
connecting a Large number of processor-memory pairs, termed
"ceLLs." Each cell includes a CPU* a primary memory system
(typically one or two megabytes), a packet bus node control-
lere and possibly some peripherals such as disks or com-
munications devices. The architecture supports applications
decomposed at the process Level; the entire system is viewed
as a set of cooperating processes, distributed among the
cells to improve performancet cost, or availability.

I.

Highly distributed systems are characterized by very Loose
coupling between physical as well as Logical resources. In
addition they exhibit dynamic, short-term changes in the

, Georgia Institute of Technology IPC Workshop

-I , ,,,. ,..S

r

Section 2 BACKGROUND Page 10

topology and organization of the totaL system* The fact
that these systems are very Loosely coupledt both physicaLLy
and LoqicaLLy9 places quite different demands on IPC from
those appLicabLe to more tightLy coupled contemporary
systemst even those incorporating a "network" as the inter-
connection mechanism*

Such systems should support muLtipLe name spaces, incLuding
the management and translation of fiLe and unit names in
these name spaces. In additiont such systems should handle
abstractions buiLt from coLLections of communicating proces-
ses and provide mechanisms for addressing and synchronizing
groups of processes. Hiqh bandwidth message transport
mechanisms wiLL potentiaLLy aLLow muLtipLe LoqicaL connec-
tions between processes to be constructed whenever con-
venient, but system support must be avaiLabLe for those con-
nections to be usefuL. To date, very LittLe experience is
avaiLabLe to assist a designer attempting to construct com-
pLex systems out of communicating processes.

2.4 Inc STRUC. .TURES

Most existing IPC primitives and structures are based on a
*two-party" communication modeL, in which there is a singLe
"sender" and a singLe "receiver" for each transaction or
message. (This is certainly the basis for IPC faciLities
built around the X.25 LeveL 3 protocol ECCIT 78].) Other
kinds of communication faciLities may better support ring,
tree and generaL graph models of process networks.
Protocols invoLving more than two processes are caLled "N-
orocess" protocols [PARD 79)1 they should find use in shared
data base and eLectronic mait systems.

The major functions supporting these protocols are storing,
forwarding and routing variabLe Length messages, These
functions can be difficuLt to impLement if communication
Links, processing nodes, or other resources are only
oartiaLLy avaiLabLe.

I.
2.T5 INTLERROC W hTRL STUCTURES

Communication Links between processes can be aLlocated
strictLy to controL functions. In fact, the degree of
separation of control and data is an important research is-

Georqia Institute of TechnoLogy IPC Workshop

4"

J7

f Section 2 BACKGROUND Paqe 11

sue. A path primarily used for the transport of data may
have no mechanism for control or "out of band" signaLLing,
which may make error detection and recovery difficultt if
not impossibLe. The system's control path structure is
primarily determined by the wcontrol modeL" used during
system deveLopment. The "cLassicaL" system organizations
are a) master/slave, b) hierarchicaL, c) democratic, or d)
autonomous. The first two are weLL understood and readiLy
impLemented, whiLe the latter control organizations are not
weLL understood (in an aLgorithmic sense) and are the sub-
Ject of much research tHOAR 783.

.

SGeorgia Institute of TechnoLogy IPC Workshop

- 1.I-

Section 3 ADDRESSING, NAMING, and SECURITY Page 12

SECTION 3

ADDRESSING, NAMING, and SECURITY

361 WORKING GRP R

What are objects

fiLes, processes, devices

Uniform mechanism?

FiLe metaphor -- UNIX

Process metaphor -- MININET, RC45O

Abstractions -- WEB

WorLdview: (a La DISY)

Universe >)> Systems >>> Objects

Distinguish between:

NAMES -- what

ADDRESSES -- where

ROUTES -- how to reach

Basic ProbLem: map

NAMES >>> ADDRESSES

DesirabLe features:

Generic naming

Context independence

Location independence

Broadcast (group name)

Un iouenes s
I.

Path addressing

Georgia Institute of TechnoLogy IPC Workshop

L Section 3 ADDRESSING9 NAMING, and SECURITY Page 13

Other concerns:

Flat vs. hierarthical

Centralized vs. distributed

Steps

Search rules

Connections

Transactions

Merging two systems:

1. one below other

2. both below new prefix

3. corresponding unused addresses

t Name >>> Address mapping may be sarae-z from IPC.

IPC between specific addresses

Directory object with well-known address

DISY -.. LMO

Generic naming

Location independent

Uniqueness

Object pointer

Resource limits

Access controls

Main attributes of subject:

Logical identity

i. Physical Location

, Georgia Institute of Technology IPC Workshop

Section 3 ADDRESSING, NAMING, and SECURITY Page 14

ProbLees:

1. authentication access
controL of Location

2. storing authorization on areas
outside security environment

3a moving objects 'f encryption
based on Location

I.

Georqia Institute of TechnoLogy IPC Workshop

f- - -r r i ,.. .

Section 3 ADDRESSING, NAMING, and SECURITY Page 15

3.2 AMLIFYNG IIATERIAL

What are objects? files, devices, processes

- What things should be in a list of primitive ob-
Jects?

- Should we choose one object type to represent
all objects?

Should there be a uniform mechanism for all objects?

- file "metaphor" - Unix [THOM 74)
- process "metaphor" - Mininet [PEEB 78], RC 4000

(performance?)
- abstractions

- WEB at DEC (performance?)
- Capability based systems

Uniform mechanism is a good thing. Being able to do this
requires picking one of the above. Not sure we can.

WorLdview: ANSI/SPARC/DISY [DESJ 78) or ISO SC 16 model

- Universe consists of multiple systems.
- Systems have many objects.

Distinguish Between aI (what), AAAr-rii (where), Rt
(how to reach). (see [SHOC 78])

Basic Problem: mapping NAMES to ADDRESSES.

Desirable features of this mapping:

1) generic naming - many potential servers

- within one system or across
systems

- selected by server or by
requestor ("request for service"
facility is just Latter [FARS
731)

2) Location independence - same name may be used
no matter where server is located

3) broadcast - (group name) - communication with
multiple servers

4) uniqueness - only one name for given object
or set of objects at some level

5) path addressing or source routing - source
specifies sequence of addresses to reach ob-

Georgia Institute of Technology IPC Workshop

Section 3 ADDRESSING, NAMING, and SECURITY Page 16

ject. UsefuL if "system" does not know
route, or if destination is outside normal
name space.

Additional mapping concepts:

1) FLat vs. hierarchical - Latter allows each
directory or switch to know only about
elements at its own level --> many smaller
directories vs. one large one.

2) Centralized vs. distributed - centralized
can be reliable, but requires roundtrip delay
to get information, high load at center.
Distributed may allow Local lookup, or may
require broadcast. Update more complex.

3) There may be many directories, and many
"steps" in the address lookup. Example: "my
name" to global name, global name to system
address/local name, (send to remote system),
local name to local address.

4) Search rules - each user may have rules for
tailoring lookup to his needs.

NAME --> ADDRESS mapping may be costly. Hence desire to do
it once for many successive messages to same destination.
Leads to rnQtn notion. May include route setup.

Cachein2 of recently used names/addresses also helpful.
Connection also needed when desired that successive messages
to a given name co to the s4 object, in order. If
transactions are independent, then a different instance of
the named object can serve each - no connection needed.
[IJSW 76]

Problem of merging two previously independent systems:

1) May add "prefix" to all addresses (a higher
level in hierarchy) to distinguish systems.

2) 'ake one system "below" other in hierarchy.
3) ,lake unused addresses in each system

correspond to addresses in other system.
Only good for small numbers.

NAME --> ADDRESS translation may be separate from basic IFC
which is between specific addr1jj1j 2aly. Then directory
object (process) with well-known address can be accessed to
prnvide translation, with result returned via basic IPC.
Then requestor does basic IPC with specific address of ser-
vice actually desired. Examples: ARPANET Initial Connec-
tion Protocol, Mininet [PEEB 78).

Important Example: Our view of Dj1. "mailbox" DESJ 78) has
properties or components:

IP W

Georgia Institute of Technology IPC Workshop

1b

Section 3 ADDRESSING, NAMING, and SECURITY Page 17

- qeneric name
- Location independent
- uniqueness
- pointer to object (process) mailbox stands for
- resource control (how many in use)
- access controls, owner

Security:

1) Does D2 include reliability, failure
recovery*

2) Does include authenticationt access controls,

encryption, correctness.
3) Basic goaL - aLLow objects to be accessed

onLy by specified subject.
4) Two main attributes of subject:

- Logical identity
- physical Location

5) Problems:r
a) Allow or'ject to be accessed

from one g but not anither
(e.g., not via diaL-in). Must
authenticate Location as weLL
as identity.

b) Removable media plus unsecured

sources: Can authorization
information be stored in areas
outside of physicaL control?

c) Encryption problem. If
authorizations are encrypted
based on location of object,
how can object move? (Two
constraints: need to qlve
authorizations to others, but
must not be forgeabLe (hence
encryption)).

I.

Georgia Institute of Technology IPC Workshop

b ..li' . . .

Section 3 ADDRESSING, NAMING, and SECURITY Page 18

by

Edward Lee
TRW

Most DD protocols seem to assume that Data Base Managers
can fiqure out how to communicate between themselves and
that naminq one another is not a problem. Is it reasonable
to assume that file system operations and process IPC are
basically the same mechanism? DISY has process as the basic
communicating object. You basically open a channel to a
Process and then communicate directly with it. It is the
Session Controller (DISY) which opens the channel for you.

3.3.2 lJJZJ

by

J. Livesey
University of WaterLoo

Mininet is a system in which addressing is basicalLy
separate from IPC. In many systems some form of addressing
method (name -- > address translation) is implicit in IPC.

In Mininet, IPC consists soLtl of the transmission of a
message from a Stftl IS1 to a R IA1JJ which has to

be identified by an integer Tal Identifier (an address
rather than a name). In the distributed case the host Id is
concatenated with the task identifier within the host.

The question then is how to get the task identifier for a
task to perform a particular function.

In fact, ALL system resources (tasks, files, devices, direc-
tories, *..) are formalized as tasks. A task has code and
data segments. A file, for instance, is a task whose code
segments are the Alt1i ret and whose data segments are
code segments. A file task gets messages of the form:

read (record #)

and reacts by returning a message to the user containing the
record data.

" Georgia Institute of Technology IPC Workshop

4

, S.* . -_.-

Section 3 ADDRESSING, NAMING, and SECURITY Page 19

There is only one weLl-kngwn task in each host, the
QLrC 1"r jk which has the responsibiLity to maintain a
List reLating jyrjj1on name (a character string) to tgjL

J-qj.ijj-ir£ for each task in this host. As the ultimate
parent of each task he can find out their task ids* (Task
identifier of a new task is returned to the creating task,
the parent.) Now* when user task At for instance wants to
perform

open (filename)

it does so by asking the directory task for the identifier
of the "file-open" task. Assuming this exists Locally, the
directory task returns its task id. The user now com-
municates directly with "file-open" (a La DISY session) and
sends it a message

"open (fiLename)"

The task "file-open" now crektj a file talk whose data seg-
ments are the data records of "filename" and returns the
"file" task identifer to the user task.

The user task now communicates with the "fil task (a
second host session a La DISY) with messages

"read (record #)"
"write (record #)"

"close C)"

The "file-open" task handles mutual exclusion on the file
(by refusing to create new file tasks for the same file as

Long as someone has it open to write). The "file" task han-
dLes record mutual exclusion.

In the case where no task exists in the local hosts to hand-
Le function "X" the local directory task talks to remote
directory tasks, who are responsible for knowing which tasks
exist in their hosts (and which can be created to do "X").
Directory tasks announce themselves to one another at boot
time.

EPEEB 78)

[LIVE 78a)

CLIVE 79b]

GuW

LJGeorgia Institute of Technology IPC Workshop

Section 3 ADDRESSING, NAMING, and SECURITY Page 20

3.3.3 iscss on

Meisner:
Is this more compLicated than a straight function
CALL/RETURN system?

Livesey:
Yes, but more fLexibLe since you can impose a function
CALL/RETURN system on top of the basic task/message-
passing system using Library routines if you want. It
is aLso assumed that we have a homogeneous system.

Sunshine:
ClearLy we can have server processes to guard and ad-
minister

directories
open function
fiLe tasks
etc.

Lapin:
We need hardware to support process invocation/context
switch better than at present.

Livesey:
Yest but future hardware shouLd not Lock us into func-
tion call/orocess inrocation capabilities, etc.

Sunshine:
Curiously, in Mininetq every resource (object) is a
task (process), but the creation of a process involves
reading a file (an object containing its code seg-
ments).

EnsLow:

Lee says that his distributed data base shouLd be
redundant. Does the system itself select the optimal
record!

Lapin:
Redundancy Increases the reLiabiLity of the system.

Livesey:
We hdve both homogeneous and heterogeneous redundancy
here.
Homogeneous

- identical copies of dataa. - increases reLiabiLity

Heteroqeneous

copies of non-identical objects to perform
similar functions, eg. FORTRAN compilers

1 ". Georqia Institute of Technology IPC Workshop

S-.

Section 3 ADDRESSING9 NAMING* and SECURITY Page 21

- increases system band width

McCoy:
Can we get a system to give us both!

Sunshine:

A To do it across several systems has a cost and we have

to ask if the utility of redundancy is worth the cost.
The ARPANET Resource Sharing Executive (RSEXEC) was a
stripped-down operatina system for remotely Logged-

inusers who actually executed on the first available
DEC 10 but never knew which one. This was also an at-
tempt to provide a network-wide file system. Multiple
server systems such as the Irvine Net recognize the
need to go accross the system to get resources. To use
this we may need utility programs to perform

Local COBOL --> ANSI COBOL

and maybe even

rANSI COBOL -- > Local COBOL

Livesey:
May also have a network JCL so that a user only uses
the JCL of his Local machinet and then we need to be
able to do the translation

Local JCL #1 -- > Network JCL --> Local JCL 92

Lapin:
There are two approaches to a multi UNIX system file"

system. We can have

/net

as a special file and address files on machines Aq 29
etc. as

/net/A/Dathname ...

/net/B/oathname ...

we can also localize host id in the pathname explicitly

partl/part2
|. partl: host Id part2: pathname

Sunshine:
There is a conflict between REAL and IDEAL worlds. In

the Real World, we tend to involve the user in specify-
ing the Location of a function (service). In the Ideal

.. WorLdt we would jjL to give the user Aj1i £rAL±.i2r

Georala Institute of Technology IPC Workshop
4b

Section 3 ADDRESSING, NAMING, and SECURITY Page 22

generic naming and Location independent naming.

Livesey:
Part of the problem is that the concept of the size of

the universe (of which the system forms a part) is Im-
plicit in the system at a fljg. cost. One is then for-
ced to choose between add-on features such as:

/net/A/resource

which are not Location independent on the one hand, and
a more or Less complete rewrite on the other hand.
UNIX is an example of such a system that makes assump-
tions about the size of the universe.

Melsner:
We now have choices between

I) Centralized Directories
which can now be made verz reliable

ii) Distributed Knowledge
iii) Tree Structures

Livesey:
(iii) is just a disguised directory method. There are
really two choices: centralized and distributed.

Hassan:
Efficiency may dictate tree structures rather than
directory tasks. This was a factor in the MULTICS
design.

II
SGeorqia Institute of Technology IPC Workshop|

Section 3 ADDRESSING* NAMING, and SECURITY Page 23

3*4 POSITfl PAPERS

3.4.1 H

Addressing and Security

by

S- Jim Hamilton

Digital Equipment Corporation

Because of ever increasing complexity of software develop-
ment and maintenanceg providing any programming environment

which complicates software development would be a mistake.
This argument Leads to a view of distributedness as a

property of the implementation of a system, and not of the
application development environment.

Addressing and protection are critically imoortant in ap-

plication development. The above view of distributedness
implies that addressing must be Location independent. That
is, Local and remote objects must be addressed identically.
Furthermore, I believe that addresses should also be in-
dependent of the context of reference (different processes
should address the same object in the same way), and uniform
across all object types (hardware defined objects, system
defined objects, and application defined objects should all

9be addressed similarly).

I also believe that the use of processes to abstract all
other objects is a mistakeg for several reasons: 1) it
restricts the flexibility of the environment for the execu-
tion of functions, 2) it often forces the invention of ad-
dlitional addressing mechanisms within the applicationt 3) it
is inadequate to address system and hardware defined objects

(e.gt devices)9 4) it inevitabLi colors the application
designer's conceptualization of the system, and finally, 5)
it does not appear to be necessary.

To achieve a distributed implementation, it will still be
necessary to solve the problems of physical communication
and its associated addressing problems at a lower level.
But the problems are considerably simplified since the
mechanisms can now be hiqhLy soecialized, because they are
not visible to the application designer.

I believe that the notion of capability based addressingt
when properly intercreted and implemented, provides all of
the properties mentioned above. Moreover, it can be
naturally extended to provide capability based protection,
which is further discussed below. The challenge is to
achieve an implementation which is cost-effective* and which
still has all of the necessary properties. A failure in

Georqia Institute of Technology IPC Workshop

-Li m, . . I i

Section 3 ADDRESSING* NAMING, and SECURITY Page 24

either domain will be fatal. An even greater challenge is
to convince the computer industry that the inevitably higher
cost of the oasic system will be more than offset by the
reduced cost of software.

I believe that the issue of sharing is partially separable
from that of addressing. Context independent addressino is
a prerequisite for sharinq, but its existence does not imply

concurrent access by separate processes. Concurrent access
to immutable objects should be possible, for performance
reasons, out concurrent access to mutable objects now ap-
pears to be a dangerous mistake. By precludinq this kind of
sharing, we also simplify the construction of distributed
implementations.

Given an addressing mechanism with the properties mentionee
above, a variety of protection mechanisms can be im-
plemented. Capability based protection still seems to be
the most promising of these, although it has been criticizeo
as inappropriate for distributed implementations. I tend to
reject this criticism, but the notion of self-authenticatina
capabilities has been developed at erkeLey to address this
prolem.

The notion of system security has many different aspects.

Included among these are physical security* correctness of
implementationg and the Logical access control model beino
implemented. In comparison with centralized im-

plementationst distributed ones seem notably weaker in
physical security, and possibly weaker in correctness
because of greater complexity. The access control model
should not, in principal, depend upon the implementation. I
believe that these are inherent problems with distributed
implementation, but that, with the suitable use of encryp-
tion, such systems can still be acceptably secure.

3.4.2 Jn"Jn1

Addressing

by

Carl Sunshine
RAND Corporation

Any discussion of addressing must start by making a clear
dis tinction between NAMES (who), ADDRESSES (where), and
ROUTES (how to qet there), on which John Shoch of Xerox PARC
has written an excellent note. [SHOC 78)

IeveraL key concepts or capabilities must be included in a
good distributed IDC system. These include generic naming

-Location independenceg request for service, source routinq,
and extensibility. Each will ne described separately in the

following paragraphs, althouah there are clearly some

GeorgQa Institute of Technology IPC Workshop

Section 3 ADDRESSING, NAMING, and SECURITY Page 25

relationships between them.

Generic naming is the ability to request communication from
a service without specifying the exact process that will
provide the service. This is normally useful when multiple
instances of a process providing the desired service are
available. A specific process is selected (or created) at
the time of the initial request, and bound to the source for
the duration of the interaction. This binding may require
transmitting the specific process ID to the sourcet or
merely keeping it at the destination. The classic example
of this facility is a timesharing Login service.

Location independence is the ability to request communica-
tion with a process by name without knowing its Location or
address. Since the source user does not supply the addresst
it must be found by the IPC system in some directory. Such
name-to-address directories may be maintained at sources, at
a central servert or at destinations (the names are normally
handled at the source, with the consequent need to change
all tables whenever a host address or name changes or is ad-
ded; IBM's SNA centralizes lookup in the SSCP; and the Ir-
vine DCS kept name tables in destination machines, renuiring
broadcast of requests to be recognized by the appropriate
destination. The ARPA Internet Name Server proposed by Jon
PosteL in a recent note is another centralized example. A
major feature of Location independence is the ability for a
named process to move to a different Location without its
users knowledge. (Of course the directories must be up-
dated.)

Reauest for service is the ability to broadcast a request
for service to an unknown (to the source) number of
potential providers of the service, who return bids to per-
form the requested service, thereby identifyina themselves.
This is similar to generic naming, but includes facilities
for the source to select among multiple bids. Such a
facility was implemented in the Irvine DCS.

Source routing is the ability for the source to identify the
destination hy specifying a route to it. This is necessary
in loosely concatenated systems where no qlobal address
space exists. The route is given in terms of a sequence of
addresses through successive switchinq points or systems
which each have independent address spaces. Hence this
concept is also called oath addressing. Disadvantages are
the need for the source to maintain connectivity in-
formationt and the variation of a given destination's "name"

I* (consisting of the route) depending on the Location of the
source.

Extensibility is the ability to add new users (addresses) to
the system. To add new users at an existinq Level of the

address space, sufficient room must be available in address
fields, or they must be extensible. Adding additional
Layers of addressing often proves a binger probLem, for

Georqia Institute of Technology IPC Workshop

-. .

Section 3 ADDRESSING, NAMING, and SECURITY Page 26

example repLacing a user by a network of many users* If the
hierarchy is fixed (eog., (net/LocaL>), then the bottom
"Leaves" of the addressing tree cannot be replaced by sub-
trees. In this cases addressing must be used to deal with
networks outside the fixed hierarchy. This is a serious
problem with attachment of private networks to public data
networks.

Interconnectino two previously independent systems is an im-
portant subcase of extensibility. ALL the users of one
system can be given new addresses in the other system if
such widespread changes are acceptable. Alternatively, some
unused local addresses in each of the systems may be mapped
into addresses in the other system if only a limited number
of users must be accessable. FinalLy, if the addressing
hierarchy is extensible, one system can be attached as a
subtree of the other, or both can be made subtrees of a
hiaher level.

3*4*3 Gordon

Addressing & Security

by

Robert L. Gordon

PRIME Computers

An extremely important aspect of interorocess communication
is the scheme used for addressing and namin, the processes
and communication paths used. The importance of this sub-
ject stems from the fact that in any addressing scheme
protection and control mechanisms are explicitly or im-
plicitly present and either aid or hinder the users ability
to share objects. Many current systems have inadecuate
facilities for identifying names and controlling access to
the processes within the same host, Let alone for processes
residinq on other hosts. Part of the problem stems from an
inconsistent view of the relationship between the names and
uses of files, devicest orocessest users, mailboxes, generic
and specific system services. The utility of abstractino
many of the above objects as processes has increased the im-
portance of "process naming" and "process addressing" in
overall system desion. Therefore until these basic issues
are settled the design of specific interprocess communica-
tion rimitives is difficult since they cannot focus on the
fundamental objects that they will be dealing with.

i.

',Georgia Institute of Technoloay IPC Workshop

Section 3 ADDRESSING, NAMING, and SECURITY Page 27

Fault Tolerance & Security

by

Robert L. Gordon

PRIME Computers

Any communication is inherently an error prone process due
to both the natural distortion of the medium and the contex-
tual requirements needed for interpreting the transmitted
message. In attempting to design robust interprocess com-
munication primitives one of the more difficult tasks is the
defining and handling of the many (natural) errors that can
occur. Control of communication mechanisms between proces-
ses fundamentally depends on how the designer envisions
process relationships. If process relationships are tree
structuredt then the status and control of a processes' com-
munication with other processes might be monitored and
controlled by the parent. On the other hand if each process
wants to maintain the concept of sovereignty then the basic
challenge is either how to provide the ability for cooperat-
ing processes to establish a monitor process that is capable
of controllinq the communication paths between the proces-
ses, or how to build into the communication primitives
mechanisms for the detection of and recovery from errors.

Since error recovery must make assumptions about lines of
authority and responsibility between system componentsq many
of the issues associated with system security are pertinent
to this discussion.

3..4 , e..an

IPC Opinions

by

G. L. Chesson
Bell Laboratories

Process names, file namesi and I/0 stream names should
reside in the same name space. This avoids the tyranny of
the "access method" and attendant tronlems of making a
program that can "talk" to anything in a system. One can
alLow process names to be Passed into processes in the same
way that file names and I/O streams are passed aroundo and
this in turn permits progress toward interactive command
processors that can set up Iraph-Like structures of proces-
sest file I/O and IPC streams.

Georgia Institute of Technoloqy IPC Workshop4

bq

Section 3 ADDRESSING, NAMING, and SECURITY Page 28

A philosophy that has been proven many times over in
language design may be stated as follows: it is "bad" to
provide more than one mechanism for a particular operation
or function. This is a roundabout way of saying that there
are benefits to be qained by providinq a single IPC
mechanism for use by "local" processes, i.e. on the same
machine, and "remote" processes on different machines.

Trans1Qrt "echapiim

It is fine to use shared objects (memory, files) for
interprocess communicationt but it is important to hide this
fact. The reason is that explicit sharing of objects is not
portable with respect to different machine and operating
system architectures and should be consioered a Local op-
timization. Thusq IPC primitives at the compiler or operat-
inj system level should appear as I/O-like interfaces that
imnly copying of data even if they do not actually copy data
on some systems.

IPC in Pr 2a mm r12 L22_Zga

Most IC proposals for inclusion in programming lancluages
amount to little more than interfaces to subroutine
lihrarles which a) cannot be inherited by processes across
process fork operationsi b) belong in the operatina system
anyway, ani c) were done better by "urrouohs Corp in DCALGOL
!C years ,10. The result of addini IPC to a laniudie is
anoloaou" -Ir;c about as useful as the notion of a file syste-
in Pascal. 2 representation of the fundamentals of 10, that
ieLonig more to the oroqrammina lanauage rei~ln than the
oper,!tlnn system r;I Lm has yet to be demonstrated, ind woulW
fill c ucn-neeoeo cap.

There are applications for which IPC bandwidths must ap-
proach or exceed disk speeds. It is clear that such per-
formance cannot be obtained with software (or even firmware)
alone. Although there may not be much interest in this sort
of thing at the IPC workshop, I have been working toward
hardware and firmware implementations of my software
mechanisms.

Ipc mecharism need flow control. It is better to have a
scheme where the sender selfblocks than schemes which depend
on "stoo" messiies from the receiver. For most applications
the scheme used in UNIX for pipes and other things would
seem to work well: the sender olocks (sleeps) on a queue

Georgia Institute of Technology IPC Workshop

4

Section 3 ADDRESSING, NAMING, and SECURITY Page 29

length upper limit and is awakened when the queue drains
below a Lower limit. There exists a timeout call which can
wake the writer if the queue drains too slowly or is other-
wise delayed. An additional non-blocking mechanism has been
built into the mpx software (see section 7.7) which is
useful in those few cases where blockinq cannot be tolerated
-- network servers and the like. This avoids the problems
that occur with varyinq process and communication delays or
Loss of control messages.

Cognoscienti agree that message-passing IPC schemes are
equivalent in "power" to schemes which employ shared objects
although the message schemes seem "harder". This has not
been proved or disproved mathematically, although there is
substantial empirical evidence that pairs of processes can
be synchronized by exchanging messages.

rFood for hokqht

I submit that it is seductively easy to synchronize process
pairs, but that strategies are needed for synchronizing
groups of processes in various ways. Is it reasonable to
set up "overseer" processes that arbitrate and synchronize
things, or are there better ways that can be proven correct?
For some things, like call-processing in my network I use
overseer processes because they reduce complexity and can be
made reasonabLy efficient. For other things, like synch-
ronizing a process group carrying out a parallel com-
putation, I would try to eliminate the Deus ex machina and
use direct process to process methods.

PortabiLity

It is important to demonstrate univeral IPC ideas and to
distinguish local optimizations and special cases within the
universal model. One would hope that a suitable IPC model
could be used with protable operating system ideas to bring
up compatible IPC mechanisms on dissimilar machines. Sec-
tion 7.7 on Data Communications Software outlines some ideas
that have been partially demonstrated to have portability
oroperties.

|.

* I

.Georniia Institute of TechnoLogy IPC Workshop

Section 4 INTERPROCESS SYNCHRONIZATION; Page 30

SECTION 4

INTERPROCESS SYNCHRONIZATION

401 1 .tM ff~. .R

1) Synchronization via explicit communication (messages).
2) NJo global memory.
3) System-wide control with only inaccurate/incomplete in-

o formation on the system state, without any centralized
orocedure, data or hardware.

4) Transit delays are: variable, unpredictable, unboun-
ded.

5) Loss, error, desequencing, duplicate.
6) Other failures (processors).

4.1.2 ~i12 2S

S> -- - -- - -- - -- - R

S I----------I ---------- I R

IS I----------I ----------- R

*er i In t t t ofIcn ~ a IC W r s o

lbI

O I
-.. I .m

Section 4 INTERPROCESS SYNCHRONIZATION Page 31

1) Distributed service.
2) Survive sender/receiver failures.
3) Non-technical reasons.
4) Modularity (qrowth, ...).
5) Oerformances.

a) "SingLe Sender / Single Receiver"
Single Path Signallinq
End-to-end Synchronization
(Used to achieve flow control for example)

b) Single Sender / Multiple Receivers
MultipLe Path SignaLLing

I.PROCESSING AT
RECEIVERS

IDEN. OIFF.

MESSAGE I IDEN. 1 2

CONTENT OIFF. 3 4

(1) Pure broadcasting in a fully replicated system.

(2) Pure broadcasting in a heterogeneous replicated
data base.

(3) Transaction processing in a homogenous
(replicated?) system.

(4) Transaction processing in a heterogeneous
replicated data base.

i. OBJECTIVE: To maintain a unique orderino of incoming
messaqes for all receivers (whether initially
fortuitous or enforced).

1t
SGeorgila Institute of Technology IPC Workshop

4

Section 4 INTERPROCESS SYNCHRONIZATION Paqe 32

) Multiple Senders / Single Receiver
Multiole Path Signalling

OPJECTIVE: ReveaL/Cause/Express relationships between
incoming messages belonging to different flows.

d) Multiple Senders / Multiple Receivers
'Aultiple Path Signalling

1) Fully reolicated systems
same objective as (b)

2) Partioned systems
same objective as (c)

3) Mixed systems

same objective as (b) for dynamically changing
subsets of receivers plus the same objective as
(c)

4-1-3 §lS f.11in2 Jg"js.i.&

a) Logical Clocks: L. Lamport
To imolement a sequential (T. Ord.) processing in a
distributed manner (each process has an image of "The

Waiting Queue") - may be used to achieve mutual ex-
c lus ion.

b) Physical Clocks: Le Lamport
How to implement logical clocks on a set of physical
clocks (unique physical time frame).

c) Logical Clocks plus Voting: R. Thomas
How to resolve conflicts between
simultaneous/concurrent processes competing for
identical resources (fully replicated systems).

d) Eventcounts, Sequencers: Reed/Kanodia
To observe (READ, AWAIT) or to express the occurence of
some event (ADVANCE) - to serialize events.

e) Circulating Token: G. Le Lann

- Without tickets
To achieve mutual exclusion.

- With tickets
To serialize, to express relationships

between events

f) Some "naive" or Less general solutions:

- Shared Variables: E. Dijkstra
- Monitors and Messages: P. Princh-Hansen

.

* ',Georgia Institute of Technology IPC Workshop

Section 4 INTERPROCESS SYNCHRONIZATION Page 33

t4.1.4 trbis

a) Response time*
b) Overheads (traffic, processing* storage).
c) ExtensibiLity (is fuLL connectivity required, qLobaL

knowLedge of the system statust go.).
d) Deterministic synchronization / probabiListic synch-

ronization / convergence.
e) FauLt tolerance.

- Detection.
- Recovery.

f) Simplicity (correctness proving, implementabiLity
headaches, ...).

4.1.5 gther IjhMU

a) Effects of orobabiListic synchronization.
b) System considerations:

- Hard/soft partitioning*

- AppLication processing / ;ystem processing
partloning.

c) EvaLuation of solutions with respect to
- Attribute space.
- ProbLem space.

d) PoLicies (fairness, enforced priorities).
e) Adequacy to resource management.
f) CLassification of soLutions.

.

* Georgia Institute of TechnoLogy IPC Workshop

--. -

Section 4 INTERPROCESS SYNCHRONIZATION Page 34

4 *2 POITO J Pjgft

4.2.1 tLUZ3 ~,

Interprocess Synchronization

by

Edward Ye So Lee
TRW Defense and Space System Group

My interest in IPC is mainly connected with update synch-
ronization in redundant distributed data bases (DDR). The
protocols developed for IPC must be viable and be able to
satisfy the following major requirements for DOB operations:

1) Performance (response time)
2) Efficiency
3) Peadlock prevention
4) Error recovery (surviving errors and faults

and continue operation)
5) Security

Recent state-of-the-art developments in this area can be
divided in two major categories:

1) Frotocols associated with a centralized
control approach EALSB 76, BADA 78, ELLI 77,
ESWA 76, ROTH 77)

2) Protocols relyirg on distributed control
EGRAP 76, JOHN 75, ROTH 77, STON 78, THOM 77)

However, most of the protocols do not include serious
considerations of interprocessor communicationg but rather
take the approach that some kind of messages can be passed
amonq the distributed processors for communication and let
someone else to worry about it.

There are considerable difficulties in taking this kind of
approach in a loosely coupled distributed system. Because
IPC is the life line of the system, it is needed for the
distributed control (operating system)t distributed data
base operation, recovery of the system as well as the DDB
under fail-soft and fail-safe conditiong and reconfiguration
of the network when one or more processors are disabled.
All these essential functions of a distributed system demand
efficient and fail-safe IPC mechanisms.

Georgia Institute of Technology IPC Workshop
4

Section 4 INTERPROCESS SYNCHRONIZATION Page 35

The second obstacLe is the Lack of evaLuation criteria and

methodoLogies to test and measure:

1) Performance
2) Efficiency
3) VaLidity
4) VerfiabiLity

of any protocoL that is being proposed as the best protocoL
for ODB. There are some efforts present in this area IGARC

78, SUNS 763, but a Lot more work will be required.

In a practicaL systemo it is very LikeLy that a mix of

severaL protocoLs wilL be used for updating redundant

distributed data bases depending on the specific situation
and requirement. However, it shouLd be possibLe to have a

unified approach to IPC for aLL protocoLs. AdditionaL
research in this area is needed.

G I

I.

1.

Georqia Institute of TechnoLogy IPC Workshop4

Section 5 MECHANISMS Page 36

SECTION 5

MECHANISMS --- IMPLEMENTATION, UTILIZATION, and PERFORMANCE

501 WORKING GROU SUMMARY REORT

* Data Interface to proqram not resoLved
Control interface to program

*To poll or not to poll"
Eventsq interrupts, on-conditions

Mechanismsn

Signals
Events
Semaphores
Shared Memory
Monitors

A Messaqe Queues
Pipes
Ports
Full Duplex Streams
Virtual Procedure Calls-

Georgia Institute of Technology IPC Workshop

Ob

Section 5 MECHANISMS Page 37

Characteristics gt I"z Mechanisms

SHARED OBJECTS

I EXPLICIT DATA MOVEMENT

I I EVENT OPERATING BY

I I I PROCESS CREATION
I I I l SIDE EFFECTS

* I I I EASE OF DISTRIBUTED
I I I I IMPLEMENTATION

SignaLs U IN Ina N I I

Events IU IN Ina N I I

Semaphores IS N Inal NI

Shared Memory S IN IS/RI N - I

Monitors IS IY IR IN 0

Message Queues IS/U I Y IS/R/TI Y I I

Pipes IU IY I na N I I

Ports IS/UI Y I nal N I I

FuLL DupLex Streams IU Y I R IN I I

VirtuaL Procedure CaLLs IU IY I T Y

S5 Shared S =Sender
U = Unshared R = Receiver

T =Transport
Mechanisam

no :not appLicabLe

Georgia Institute of TechnoLogy IPC Workshop

*1

Section 5 MECHANISMS Page 38

Performance
Bandwidth
DeLay

ProvabiLIty
Correctness of use
Correctness of impLementation

Security
Transparency

Naming
Location (PhysicaL)
Environment (LogicaL)

Separation of control from data
CompLete and smaLL set of primitives
FauLt tolerance

EncapsuLation
Detection
Recovery
Size of fauLt set covered

NOTES: The priorities used to weight these desirabLe
quaLities

depend on:
- AppLication
- Level
- Environment

I.

Georgia Institute of TechnoLogy IPC Workshop
n t

Section 5 MECHANISMS Page 39

DesirLe QuMit±i± 2± Mechanisms

CapabiLities--i
FauLt Set Covered--I

Error Recovery--I I I
Error Detection--I I I I

EncapsuLation--I I I I I
Primitive CompLeteness/Size--I I I I I I
ControL/Data Separation--I I I I I I I

Transparency (Environment)--I I I I I I I I
Transparency (Location)--I I I I I I I I I

Transparency (Naming)--I I I I I I I I I I
Security--I I I I I I I I I I I

ProvabiLity--I I I I I I I I I I I I
Performance--I I I I I I I I I I I I I

* I I I I I I I I I I I II

I I I I III I I I I I I
SignaLs I -I-"ADIAOI II -I-I I C I

I _ I._ I I _ I_ _ I__ II I__ I_ _ I I__ I._ I
r vns IIII OA IIII I I I IC

Events - I +I - I I I C

I I I I I II I II
Semaphores -I IAD ADI+ C + JCI - _I-_I_ - -I - I 1I.. I .I -__ I__-_I_-_I___ I

I I I I I I I III I II
Shared -I-IAD AD -.. I . 1D1
Memory I._ _ _ _ . . _ 1. . .. _ _ _ _ _ _ _

I I I I I I III I I II
monitors III IADIA DIIII I I C/D

I I I I I I I I I I I I II
Message I I I I I * ClD
Queues _ _ _ _ _ _ 1 _ _ _ _ _ _ _ _ ..

I I II I I I I I I I II
Pipes IDIIII I*I*I - 0

_ -I I - I I_.II. I I.. . . . I I. .. I

Ports 0I IIII I I *I- 0

FuLL DupLex I I I I I I
Streams C/o I II*I*I 11"I ICD

VirtuaL I I I I I I I I
Procedure I I*I IADIADI.I.I.I I-I I C/D
CaLLsI.

AD Addressing C ControL only C = ControL
Mechanism D = Data
Dependent

Georqia Institute of TechnoLogy IPC Workshop
l

Section 5 MECHANISMS Page 40

1) A functionalLy complete IPC
mechanism requires both data and
control capabilities

2) ALL were considered to be "basic"
mechanisms -> No embelLishments to
improve desirable programs

3) Thus ability to recover from faults
depends on implementation

4) Another trade - Bandwidth vs.
status consistency

5) Perceived hierarchy (in mechanism
list)

6) Omissions
- Broadcasts
- Addressina
- IPC mechanisms ??

7) A desiqn exercise to try to over-
come "-es" in table would be
interestinq --- Also table comple-
tion

1) Migration of applications from

centralized to distributed en-
vironment

2) Not enough known about these

mechanisms:
- Complexity of IMPL
- Size of IMPL
- Efficiency of IMPL
- Useful hardware assists

3) Common understanding of all
mechanisms
- Dictionary

4) Lack of a number of implementations
5) Cost / time / complexity
6) Premature standardization
7) Difficulty of modifying / ex-

perimenting with hardware support
devices

8) Premature vendor mechanism selec-
tion

9) Compatibility
I. - Obstacle

- Objective
10) Evaluation criteria
11) Papers don't tell reasons for

designs (some designs based on few
examples)

12) Definitions of universes

Geornla Institute of Technology IPC Workshop

L 4_

Section 5 MECHANISMS Page 41

1) Identify colLections of primitives
for

- Easy programmer understandina
- Efficiency
- Match to application
(Answer probably depends on en-
vironment)

2) FauLt Tolerance of IOC mechanisms
not well understood

3) Trade -- User or IPC mechanism?
4) How much must user be aware of

process creation/existence?
5) How should responsibility be

distributed? Visibility of fault
responsibility.

6) How to decouple bindings:

- Modules to qraph
- Process to nodes
- Resourcea to processes

7) What set of IPC mechanisms is
- E3sy to use
- Complete
- Efficient

8) Refine virtual procedure call
mechanism.

q) Tools for top-down design
10) How to select architectures from

option criteria
11) How to decompose applications

I

* Georoia Institute of Technoloqy IPC Workshop

Section 5 MECHANISMS Page 42

5.2 AMIjFY MATERL

5.2.1 P a JX J

An attempt was made to define "a set of primitives that al-
Lows an application software engineer to design the bestsolution for his problem." It was quickly reaLized that
this is not an easy task. Some of the issues involved are:

1) Some applications require highly reliable
IPC, while in others, communicated informa-
tion becomes useless after a certain period
of time. A single set of primitives to im-
plement IPC may not solve both types of
problems.

2) Should IPC primitives be operating system
services or should IPC constructs be parts of
various programming lanquages? A relevant
reference to this latter proposal may be
found in [HOAR 78].

At this pointg it was felt that it was necessary to outline
the hierarchy of levels at which IPC mechanisms can be in-
voked. For each Level, we attemoted to describe those ob-
jects which may be manipulated and those IPC operations
which may be performed on each objecto if any.

Hierarchy gf Ly Ls

Command Level
High Level Languages
operating System
Tnstruction Level
microcode Level
Hardware Level

The description of objects and IPC operations can be

enumerated for three different situations:

1) Accepted practice - those commercially
available

2) state of the art - current practices of
researchers in the field

3) W ish list

Georoia Institute of Technology IPC Workshop

b - '

Section 5 MECHANISMS Page 43

objects - process, file, links device, program*
task grapho directory

IPC operations -

files: file Locks (control function)
pipes

Processes: create
delete
Link via a pipe
suspend
resume
status

links: creation
temporary files
Link management in DEMOS

Reference: [BASK 77).

Note: Though not all types of objects are availa' .e on many
systemst some of them can be used to emulate those
capabilities which are unavailable. For example, tem-
porary files are used in UNIX to emulate pipes.

tHi~h klltLauae

objects - typed objects (integerst reals, characters, etc.)
semaphore
monitors
events
ports
shared common (typed objects)

Except for the use of shag d typed objects (via global com-
mon areas), current languages commonly available do not use
the other objects for IPC (e.g., PL/I). Almost invariably,
one must drop into a runtime library routine or to the
operatinq system to perform IPC functions.
PL/I is most progressive
Alqol 68 provides some capabilities
APL supports shared variables

There was some discussion concerning the two types of com-
monly used IPC mechanisms: messaqe-oriented vs. procedure-
oriented (monitor). A good reference to this area is [LAUE
793.

Georgia Institute of Technology IPC Workshop

b

Section 5 MECHANISMS Page 44

5.292 PrMUd± kX Peeukle

5.2.2.1 Introduction and ExpLanation

The IPC mechanisms described here are known as "priiitive"

for several reasons; they are primitive in the sense that
they are low-level building blocks from which more

sophisticated forms of IPC can be built, they are mostly
oriented towards two-party communication, the simplest case,
and they are mostly derived from existing uniprocessor
sistems.

5.2.2.2 Desirable Properties

It is fairly easy to list some desirable properties that any

interprocess communication mechnisms should have:

Performance -- In terms of bandwidth and also

delay. We would like mechanisms with a

minimum of overhead, in order to maximize

performance. THis should not, of course,

reduce functionality.

Pr£va t -- A desirable property for any IPC

mechanism should be that it Lend itself to

the verification of systems which are built

up using processes.

,aj.EMi.i -- By this we mean protection of two com-
municating parties from one anotherg and also
with respect to third parties, in terms of

leakage and interference.

£ altS -- This refers back to the issues of
naming and Location. The users of an
interprocess communication mechanism sdhould

not have to deal with that mechnism at other
than the advertised level, nor should they
have to be aware of the details of its im-

plementation.

2j & Ao o I 2 gZ ItE21 -- It may or may
not be a good property of an IPC mechanism to
contain elements of both data and control.

In some implementations, data and control

(signal) transfer from sender to receiver are

h. carried out in the same operation. Separate
data and controL transfer operations cant of

course, be combined in higher-level non-
primitive interprocess communication

operations.

Pjal 2 sillmi - Interorocess com-

II

Section 5 MECHANISMS Page 45

munication primitives should certainly be
complete, in the sense that one should be
able to do any operation which is valid in
the given system without introducing new
primitive operations. It is not so clear
that they should be smalL, consistent, of
course* with performance.

FaUj -- This Leads to the concepts of
encapsulation and recovery. In order to
achieve fault tolerance, an operation should
fulfill the following conditions:

- faults should be detected.
- faults should be handled at the

appropriate level, and not simply
passed back upwards towards the
user.

- faults generated at a lower Level
should not terminate a user ses-
sion. Instead, they should be
recovered at a Level close to
that at which they occurred.

t" - in interprocess communication, if
data or control transfer fails,
it may be sufficient to inform
the sender, or, in some critical
applications, it may be necessary
to inform both the sender and the
receiver that some message or
control signal did not get
throuqh.

The concept of enca21s2.111n suggestes the

enforced localization of errors, so that an
error in the communication between two proc-
cessors can have no effect on any others.
The concept of recovery suggests that
whatever errors do not occur are cleaned up
in such a way that a consistent system state

is restored, and that unresolved error states
are not simply passed up the line. Error
messages of the form:

SURNETWORK ERROR - PLEASE LOG IN AGAIN
should never occur.

-- The concept of cost is very difficult to
define exhaustivelyt but one can suggest some
kinds of cost which can be incurred:

I. - implementation
- performance
- application flexibility

Note that in the evaluation of primitive mechanisms given in
section 5.1 we assume a fairly standard implementation. The
properties above clearly depend in part on implementation

Georgia Institute of Technology TPC Workshop

Section 5 MECHANISMS Page 46

and we cannot give any hard and fast rules.

5.2.2.3 IPC Taxonomy

One of the most obvious dimensions along which to
differentiate IPC mechanism is whether they are message-
based or not. Mechanisms can, of course, be data-transfer
based, without being message-based.

ExampLes: Pipes, ports, full-duplex streams.

5.2.2.3.1 i!A1L i
These are clearly the IPC mechnisms favored in those
distributed systems which are themselves not message-based.
Instead of messages, these depend on a variety of communica-
tion mechanisms:

1) Signals

S.nals are process interrupts, which can
arrive with or without accompanying type in-
formation, and perhaps the identifier of the
originator. A signal may cause a transfer of
control inside the receiver process, and
there may be enable/disable mechanisms,
analogous to those for hardware interrupts.

2) Events
An e£yg is a state variable. One should be
able to test it and lej it. It should be
possible to implement a X on the event by
means of a test in a loop.

3) Semaphores
A 1£m fl.C is a storage cell with an as-
sociated queue of processes, and with two
operations, wjjt and siqlk (no relation to
signals in section 3.2.1.1) which have side
effects.

4) Shared Memory
frin m{ir consists of data cells which
are accessible to sending and to recevinq
processes, perhaps with an associated access
discipline which is designed to avoid
critical section problems in accessing the
shared resource.

5) Ports
2.qtj are input/output channels belonging to
processes. Ports in corresponding processes
can be connected together by Lj£k to form
communiccation channels.

6) Full Duplex Streams
A full qpt.E s.re r. is effectively a bi-
directional pipe. In place of a sender and

receiverg the processes at either end of the
full-duplex stream can both send and rtTA ..
Naturallyo in order to achieve some measure
of synchronization, a reed should suspend

Georqia Institute of Technology IPC Workshop
0

Section 5 MECHANISMS Page 47

until a corresponding writ is executed at
the other end of the full duplex streams and
vice versa*

5.2.2.3.2 M.lsa2P1ed IPC
These are the IPC mechanisms which depend on messages
between processes. They can be further subdivided aLong the
foLLowinq Lines:

1) Single send p1 -- > p2
2) Single receive P1 <-- p2
3) muLtipLe send p1 --> subset of P
4) MuLtiple receive pl <-- subset of P

A further way of subdividing interorocess communication
primitives is on the tasis of whether they are blocking or
non-blocking in nature. A Dj12jjlq primitive is one which
causes its invokinq orocess to be suspended until the
primitive operation is completed. Thus, after invoking a

f, blocking receive, a process will suspend (sleep) until some
message does arrive.

A Distributed systems have been implemented with blocking

send/receive, with blocking send and non-bLocking receive,
and with non-bLocking send/receive.

Virtual procedure calls ccan be viewd as a highly stylized
form of message passing but entail a qreat deal more
semantics. They are used in support of an object model -

processes access objects and objects are controlled by other
processes. IPC consists of one process invoking a function
on an object and another process executing that function.

5.2.2.3.3 Hiii2 r.Ltie.L !Lh12.nii1
There are also higher-Level mechanisms which can be produced
using the primitive operations as building blocks. For
instances one frequently encounters virtual circuits built
on message passing combined with signalling.

5.2.2.4 References

The folLowing references may be helpful in explaining the

a. specific IPC concepts identified:

1) Semaphores, Siqgnals Events, Monitorst Pipes:
[HOLT 78b3

2) Virtual Procedure CalLs:
(HAMI nd]

3) Messaqe Passing Operating Systems:
[MANN 77)

Georgia Institute of Technology IPC Workshop
4

Section 5 MECHANISMS Page 48

4) Message Passing versus Procedure CaLts:
(LAUE 793

Georgia Institute of TechnoLogy IPC Workshop

Section 5 MECHANISMS Page 49

5.3 POIINt Ef

5.3.1 eebles

PROGRAMMING ISSUES

by

Richard PeebLes
Digital Equipment Corporation

A Programmer's environment (language, operating system ser-
vices and model of process structure) tends to be a
religious issue. My religion calls for the simplest pos-

sible environment by providing a set of "orthogonal basis
vectors" for programming. The result is a set of primitives
that allows an application software engineer to design the
best solution for his problem. Orthogonality of software
tools means that one piece, or primitivet does not preempt
design choices for the others. This is to be contrasted

with another approach to simplicity which preempts almost
all choices.

In additiont my religion calls for the removal of
representational irrelevancies to the highest degree pos-
sible. As a consequence, the underlying process structure
is not visible at all to most programmers, nor is the
distributed nature of the machine that implements his ap-

pLication.

PracticaL Issues

The difficult part of religion is applying it to our daily
lives. Just what ar. these primitives; what makes an

i orthogonal set; can we find a set of "basis vectors"?
* Furthermore, can we reasonably expect to hide the process

and machine structure from programmers? In my view, most
research in distributed systems is (should be) aimed at ans-
wering these questions.

The above goals for the programming environment impose
several constraints on the IPC mechanism. First it should
be location independent. The same mechanism should be used
for both inter-host and intra-host communication. This
means that a programming decision does not preempt a
process-Locktion decision and vice-versa. A more difficult
question is whether the IPC mechanism should be visible as
such to the programmer. It is possible to provide him with
an extended machine in which IPC appears as the application

Georgia Institute of Technology IPC Workshop

4-

Section 5 MECHANISMS Page 50

of an operator to an operand; this is the approach taken in
our experimental WEB system. It is a simple matter to
construct both datagram and virtual circuit abstractions
with this mechanism if "communicating processes" is a
relevant abstraction. It is considerably more difficult to
provide the operator/operand abstraction mechanism than a
simple send/receive mechanism; particularly if abstractions
are to be enforc.

s.tait 21 Itt Arl

In vendor-implemented products neither Location transparency
nor process structure transparency is usually provided*
Research systems haves for the most part, made IPC an ex-
plicitly separate concept among other abstract extensions of
the operating system. The WEB operator-invocation architec-
ture is seeking to provide a single mechanism that wilL ser-
ve as a general basis for "operating system" and user func-
tions - they are not distinguishable. It isq however, only
in the final stages of design - about to be implemented.

tThe most significant obstacle to providing an IPC mechanism

that Least perturbs the programming interface is historical
artifact. Finding a design that is ideal and that allows
reasonably simple migration of customer applications is a
hard problem. We may be forced to throw up our hands and
call on users to swallow yet another conversion effort.
Will we do it again in 19P8 when distributed systems go out
of vogue? Hence my strong belief in the need for process
and machine structure independence of IPC. Early standards
will be a hindrance to this but may be inevitable given the
state of the art and user impatience to build. If that is
accepted, the next biggest obstacles are thin wires and
different architectures. Hiding the network structure is
hard when physical links are under lOOK bps. Then too there
is the problem of the complexity of the WEP abstraction ap-
proach -itts hard to understand.

G •

!Georgia Institute of Technology IPC Workshop

4

Section 5 MECHANISMS Page 51

5.3.2 WaLLn ne-i

PROGRAMMING ISSUES IN DISTRIBUTED SYSTEMS

by

Virg WaLtentine
Kansas State University

The programmer in a distributed processing environment must
be provided with a set of facilities which permit easy
specification of the distributive properties of his/her
program. The word program here is used to refer to either
the output of a single compilation or the output of indepen-
dent compilations of proqram modules which are to be com-
municating via an IPC. These distributive properties
include the specification of the concurrency, data flow,
resource requirements (memory, devices, etc.)t and
intraprogram (intermodule) protocol properties inherent in
the execution of a confiquration (system) of cooperating
software modules. Given a description of these properties,
an operatinn system must be able to distribute the user's
program across multiple machines in a manner which is
transparent to the programmer. Traditional approaches to
providing these facilities include the concurrency support
in high-leveL Languages and the resource allocation and
concurrency support in conventional operatinq systems.

Several high-level languages such as Concurrent Pascal EARIN
773 and SP/K [HOLT 78] have incorporated the monitor [BRIN
73] [HOAR 74) conceot to provide structured concurrency.
This concept is excellent in a centralized system but relies
on shared data (and therefore shared memory), and is
therefore not an appropriate concept on which to base a
distributed system. However, an effort Is underway at the
National Physical Laboratory E[OWS 78) to distribute a
Concurrent Pascal proqram across loosely coupled
microprocessors. The distribution of passive system com-
ponents (such as monitors) on disjoint machines implies many
copy operations for parameters and also additional active
system components (processes) which do not appear in the
proqram text.

A much more appropriate high-level lanauage concept for
distributed proqrams is proposed by CA.R. Hoare in
reference [HOAR 78]. Each function is a sequential process
which is connected to other communicatina sequential proces-
ses via input/output. This concurrency support is based on
data flow and not shared data; therefore, it is not depen-
dent on shared memory. As a result, each function is
distributable. However, it seems that buffering of data
between processes is necessary to improve performance in

Georgia Institute of Technology IPC workshop

4 Il lim

Section 5 MECHANISMS Page 52

distributed systems with slow speed connections. Since the
compiler for such a language presumably can generate the
resource requirements for the program, since processes are
identified by name, and since the protocol between processes
is fixed, enough knowledge is available to distribute a set
of processes which are compiled together.

A second area of programmer concern for distribution occurs
because concurrent program functions (modules) may be
separately generated (compiLed). These may well be existing
programs or just separate functions based on programming
style. The interconnection of these modules into a program
is dynamic and therefore requires operating system support.
In early conventional operating systems, the support for
combining these functions into a configuration of com-
municating concurrent software functions is specified at

three Levels. First, overlap of CPU and T/O are made
available for standard I/O file functions. Second, added
concurrency is achieved only with unstructured (low-level)
facilities for process creation, naming, and communication.
Third, complex job control languages are provided to achieve
allocation of resources to run these functions. In a
distributed system, these JCL steps must be synchronized
across machines. Complex resource control in a distributed
system should certainly not be the programmer's
responsibility. This is alleviated by viewing distributed
operating systems and their executable programs as cooperat-
ini, processes. A highly successful system is the
Distributed Computing System of Farber (FARB 73). In this
systemi the structure and distribution of the set of proces-
ses is transparent to the user; and a hiah level of
concurrency is achieved without use of low-level process
control primitives.

Process naming of cooperating processes is still burdensome
to the proorammer. The same problem also occurs in current
"mailoox" schemes as epitomized by the VAX 11/780 system
[DEC 77). The naminq or numberinq of mailboxes must be
known to the programmer or a creating process. This is com-
monly referred to as the IPC-setup problem, coined by Elliot
Orranick in reference [ORGA 72). The designers of UNIX
[THOM 741 [RITC 78) sought to alleviate this problem. They
invented the "pipe." In UNIX a user program, running in its
own process, may take the place of a file in a manner which
is transparent to the original program. Each program may
have its standard input and output files replaced by
programs, thus building via the UNIX shell arbitrarily Long
linear chains (a pipeline) of programs. UNIX automatically
transfers the data between processes and synchronizes the
process as it intercepts the standard input and output file
operations.

Georgia Institute of TechnoLoqy IPC Workshop

4

M 1

Section 5 MECHANISMS Page 53

UNIX "pipes" eliminate the need for process naming and treat
concurrency, resource allocation, and inter-process protocol
as a data flow problem. Interprocess protocols are treated
simply as simplex data streams. The Job control Language
provided by the UNIX shell becomes a pseudo data flow
Language and resource allocation is transparent to the
programmer. However, there are a considerable number of
programmer protocols which are not served by "pipes." As
acknowledged in reference [RITC 78), "pipes" cannot be used
to construct multi-server subsystems.

UNIX will support general interprocess communication
protocols but these are not generated by the shell. These
can be programmed as a set of child processes whose "pipes"
have been setup by a parent process.

A Research Direction

If we are to be successful in distributing programs across
highly distributed systems, we must provide the programmer
of dynamically interconnected cooperating processes a job
control Language (software configuration control) as easy to
use as Hoare's communicating sequential processes. It seems
that the most promising direction is to extend the concept
of the UNIX shell to automatically generate the more complex
protocols available to the parent processes previously
described. It must then also be extended to generate
(representations of) distributable configurations of com-
municating processes.

Work in this area is underway at Kansas State University.
The project* involves development of a Network Adaptable
Executive (NADEX)[YOUN 79). The attempt is to permit the
user to specify data flow at the command level and have the
command interpreter generate a distributable software con-
figuration of nodes connected by full duplex data transfer
stream connections (DTS connections) to form an undirected
graph. In general, a node may be thought of as a process.

Each of the connections consists of two independent bi-
directional data transfer streams. One of these streams
uses small parameters while the other uses a standard-sized
data buffer. The data buffers carry along with them size
and status indicators whereas the parameter buffers contain
only a small amount of user-supplied data.

A user program running in a node performs serial buffered
READ and WRITE operations in its various connections. The
connections are numbered, and the program attaches
particular meanings and implements particular protocols tor

each of its connections. A connection can connect a node
either to a user program or to a system process used to ac-
cess a file or an I/O device. The Program cannot tell the
difference between these modes of operation. This clearly
provides all of the power of the UNIX pipelines while remov-
inj the linearity constraint on the structure of the connec-

Georqia Institute of Technology IPC Workshop

b

Section 5 MECHANISMS Paqe 54

tion graph. Also, the connections are bi-directional so
that, for example, a write-request/read-response protocol to
access a random file can be implemented.

For these serial buffered READ and WRITE operations, a
orior protocol knowledge can be specified to the underlying
data flow implementation (buffer control) to enable it to
maintain a check for validity of user protocol (in terms of
data flow) during execution. This protocol checking is
critical in "un-debugged" (user-written) nodes. Examples of
such protocol violations occur many times in the facilities
of SOLO [BRIN 76]. feadlock detection is also performed
based on data flow in a configuration which is distributed
across machines connected by a network IPC. Multiserver
subsystems, such as a data base management system, are im-
plementable as a configuration with multi-connection READ
(multiple condition WAITs) and conditional WRITE operations
provided on data transfer streams. Interconfiguration con-
nections are also provided. Finally, the command
interpreter and the node interface (PREFIX) provide all the
maopina of Logical data streams (ports) onto implementation
data streams.

* Supported in part by the Army Research Office under Grant
Number P-16160-A-EL.

I.

Georgia Institute of Technology IPC Workshop

h

Section 6 THEORETICAL WORK Page 55

SECTION 6

THEORETICAL WORK

6.1 WORKING GRUP JIM REP.OR

STRUCTURE of Discussion:
Distributed system without central (or any) control
Free ranning, undirected (no standards)
Principles, not mechanisms
Theory, not formalism
Independent of Technology
Outline: Target drawn around arrows

WHAT IS A DISTRIBUTED SYSTEM?
A djtj g jd is one in which the communication
of data between processes takes a significant amount of
time compared to the time needed to execute one step of
a process.

L&122L: PDP-10

SPECIFICATION

(Note: Numbers in parentheses are "pointers" to am-
plifyina material in paragraph 6.2.)

Definition: A specification is that which lets one
decide if a running system is behaving correctly.

State-free Methods
Applicative programmlnq (6.2.1.1)
Teletype paradigm (6.2.1.2)
Observable I/O behavior (6.2.1.3)

State-based Methods (6.2.1.4)
,tate graphs (6.2.1.5)
Critical sections (6.2.1.3)

Problems
4void explicit state description (6.2.1.6)
How to specify complex systems (6.2.1.7)

gjiflj jQQ: A model exhibits the properties of an im-
I. plementation

MODELS CONSIDERED (Procedures and Files)
General test and set model (6.2.2.1)
3it transmission model (6.2.2.2)
Interpretive model (6.2.2.3)

OTHER MODELS (6.2.2.4)
Actor- induction

Georgia Institute of Technology IPC Workshop

Section 6 TH-EORETICAL WORK Page 56

LISP
e tc .

RELEVANCE OF MODELS (6.2.2.5)
PROBLEM AREAS (6.2.2.6)

Existence of singLe basic model

ANALYSI

Inferrinq a system's behavioral properties
Formal proofs of correctness (6.2.3.1, 6e2.3o2,

6.2.3.3)
Fault tolerance (6.2.3.4)
Performance

measurements (6.2.3.5)
Complexity

Space (6.2.3.6)
Time (6.2.3.7)

* Data transfer (6.2.3.8)
Simulation/emuLation (6.2.3.9)

ProbLems (6.2.3.5)
Trade-off techniques
ReLevance of models

Geor'q1a Institute of TechnoLoqy IPC Workshop

Section 6 THEORETICAL WORK Page 57

6.2 AM f I.NG.I SMQLPJJL

6*2*1 SiDecticaton

6.2.1.1 Applicative Programming

Want to represent a system as composition of side-effect-

free functions.

Can extend a "pure" applicative programming language with
constructs for muLtiprocessing:

- Suspended evaluation of subexpressions.
- multisets - unordered collection of expressions

which becomes ordered as evaluations terminate.

Encapsulation of expression evaluations gives alternatives
of distribution of compution: factor problem into assigning
"capsules" to processing nodes.

Potential disadvantage: in any "real" situation, there is a
need for some global reference; such a reference cannot be

handled if side-effects are forbidden.

Reference: C[UCK I

6.2.1.2 TeLetype Paradigm

All that the user knows about a system is what goes in ano
what comes out. What happens behind the panels is of no
concern to him. This view is captured by the following
paradigm. There are N usersq each sitting at a teletype.
The system oehavior consists of the N rolls of paper. The
correctness of this behavior must be decidable just from
Looking at those teletype rolls.

6.2.1.3 Behavior by InterLeaved Teletype RoLls

If I/O behavior is to be described in a wiy suitable for
reasoning about composition of systemst it is not sufficient
to consider only the separate "teletype rolls." It is pos-
sible for two systems with the same individual port behavior
to be incorporated as modules in a larqer system, causing

different external behavior for the larger system. A
sufficiently inclusive behavior description to avoid this
problem can be qiven by describing the i teletype
rolls. Thus far, such descriptions have been used for sim-

ple synchronization and data base behaviorg and appear to be

r Georgia Institute of Technology IPC Workshop

Section 6 THEORETICAL WORK Page 58

quite natural and usable.

6.2.1.4 State-based methods

A state-based specification method was used for the al-
gorithms in [BURN 78. There the appropriate mutual ex-
clusion behavior was expressed by qrouping process states

into "regions" comprising critical states, other program

states, and protocol states. Desired exclusion, deadlock-
free and fairness behavior was then described in terms of

the proqress of processes through their regions. Such

description Led to clean formal reasoning about the proces-

ses. The description, however, does not appear to be very

easily suited for reasoning about the system as a building

block for larger systems.

6.2.1.5 State Graphs

Thiagarajan has used the global state model to give a simple

definition of Shapiro's algorithm for the maintenance of
redundant data bases in a distributed environment. This
permits an elegant and simple proof of correctness.

6.2.1.6 delLybean Example

There are examples of simple systems in which one cannot

talk about the state of the system at any particular point
in time. The example involves two processes modifying the
number of jellybeans in a factory, and one process counting

the total number of Jellybeans. The behavior of these three

operations cannot oe explained by any sequential ordering of
their executions. How can we specify correctness of this

system in a sufficiently general way to allow this type of

implementation?

Reference: [LAMP 763.

6.2.1.7 How to Specify CompLex Systems

We are faced with a dilemma. We do not want to have to men-

tion states in our specification. Put it is very difficult

to write any non-trivial specification without talkinq about
states. For example, try specifying a memory cell without
talking about states.

Gporola Institute of Technoloay IPC Workshop
,

Section 6 THEORETICAL WORK Page 59

6.2.2 jjjjka

6.2.2.1 The Test-and-Set ModeL of IPC

The Test-and-Set primitive is a powerful indivisible opera-
tion for accessing a shared variable for communication among
asynchronous processes. The model treats asynchronous
operation by considering timing sequences. Correct al-
gorithms must work for all timing sequences. Fairness
properties may require that the timing sequences be restric-

ted to those satisfying "finite delay." A sequence satis-
fies finite delay if no process has to wait forever for a
timing message.

The Test-and-Set primitive is in one sense the most powerful
primitive possible. Hence, the Lower bounds results for

this model apply directly to all weaker primitives.

To model general distributed systems, it is necessary to
model processes and sionificant-distance communication. To
model a message channel in the simplest and most natural
way, we think of it as a special type of process with access
to two variables, one at each of its ends. The process sim-
ply reads the contents of one of the variables and writes
the result in the other variable, ad infinitum. We imagine
this process to be asynchronous with respect to the other
processes in the system. Thus communication delays are as-
sumed to be arbitrary. This model seems simple and general
enough to provide a basis for simulating and comparing
distributed systems of practically any type.

6.2.2.2 Bit Transmission ModeL

Lamoort favors a more low-level IPC model: transmission of
1 bit of information from one process to another. Requires
a I bit storage device which can be written by process A and
concurrently read by process R. Non-trivial to implement on
atomic register which acts as if reads and writes are total-
ly ordered. Some results are in [LAMP 773, others are un-
published.

6.2.2.3 SS Model

The applicative technique uses an interpretive Language to
describe a distributed system. An interpreter for ap-

i. plicative language may then serve to model system behavior.
The unordered evaluation of expressions in a multiset
becomes implemented as a scheduler. Communication may be
modeled in terms of the elapsed simulated time associated
with each parameter passing operation.

Geornia Institute of Technology IPC Workshop

Section 6 THEORETICAL WORK Page 60

6.2.2.4 Other ModeLs

Certain models, although siqnificant, failed to receive at-
tention due to the lack of advocates in the group. Most
notable were the Actor-Induction Model of Carl Hewitt and
Petri Nets.

6.2.2.5 ReLevance of Models

Models of distributed systems are abstractions of real or
hypothetical systems. The relevance of any abstraction
depends stronqly on its intended application -- the abstrac-
tion should preserve the important features of the situation
heina modelled and discard the unimportant. Models reflect-
inq details of current technoloqy are appropriate for under-
standina oresent-day distributed systems but they become
quickly obsulete as the technology shifts. llodels attempt-
]nq to cipture the universal constraints on any system im-
posed by basic laws of physics are more fundamental, but
evaluatinq their relevance to dliqital systems requires a
considerable understaning of electronics and physicst and
they will likely be too primitive and detailed to shed much
Licht on hiqher-Level issues such as those discussed eL-
sewhere in this report.

For example, most models of parallel systems include some
snrt of synchronization primitive whether it be P and V,
monitors, message-passina, or whatever, and Tost practical
systems have hardware which implements these primitives
satisfactorially. However, the glitch problem aparently
prevents the construction of a perfect arbiter (as oppsed to
ono which is satisfactory because its probability of failure
is infinitesimally smalL), so any physical realization of an
arbiter has a possibility of failure throuoh infinite delay.
The test-and-set model and the 1-bit transmission model can
both describe perfect arbiters and so both must be
considered only approximations to reality. While test-and-
sets seem at first siqht to be far from primitive, they
encompass operations such as read, write, increment memory,
etc. which might or might not be atomic in a given system,
so lower bounds on complexity apply to all such weaker
modlels. The fact that a fair arbiter is needed for a hard-
ware realization of the model does not detract from its
usefulness in describing solutions to the critical section
problem, for building critical section solutions with strong
fairness properties (bounded-waitinqt FIFO) from arbiters
only known to be free from lockout is a non-trivial task.

I.

C " pornia Irstitute of Technoloa, IPC Workshop

Section 6 THEORETICAL WORK Paoe 61

6.2.2.6 ProbLem Areas

ALthough ai number of models were proposed for interprocess

communication, we observed that there was no "basic unit" by

means of which all of them could be implemented. Identify-

ing such a basic unit would give a uniform scale for compar-
ing different communication mechanisms.

6.2.3 An&kxai s

6.2.3.1 State Graph AnaLysis

See 6.2.1.5

6.2.3.2 Critical Region ALgorithm Proof

A formal proof has been developed for one of the mutual ex-

clusion alqorithms given in [BURN 78]. Although the proof

follows the general format of Invariant-assertion proofs,
the major ideas in the parts of the proof that deal with

fairness are contained in precisely-stated Lemmas which

mirror natural intuitive understandinq of the alqorithms.
The parts of the proof that deal with reachability of states

have a less intuitive and more case-analytic flavor. A

current effort is to decompose the invariants in a way that

will allow reachability properties also to be verifieo in a

way that accords intuition.

6.2.3.3 GLobal Assertions

There are well-developed techniques for provinq correctness

properties of non-distributed multiprocess proorams, Lam-

port used to feel that they were not aood for distributed

systems because (1) they used global assertions which imply

a global system state, which is undesirable (see 6.2.1.6),

and (2) they require that communication arcs be represented
by processes, which means lots of processes. However, he

has recently discovered that these techniques do work well,

since (1) there seem to be a class of "good" global as-
sertionsg ind (2) you have to specify the communication arcs
very carefully anyway.

I

L1

Georglia Institute of Technoloqy IPC Workshop

4b

Section 6 THEORETICAL WORK Page 62

6.2.3.4 FauLt ToLerance

We consider two types of failure: unannounced halting
(sleeping) and announced shutdown (dying). Peterson and
Fischer [PETE 77) and Rivest and Pratt [RIVE 76] give
critical section alqorithms in a shared-variable read/write
model that are immune to process dying, i.e., the remaining
processes continue correct operation.

Performance and tolerance to failure by sleeping are closely
related. If one process can be hung up forever because it
is waitinq for a failed process, then its performance will
be degraded by a non-failed process that is simply running
very slowly.

We have aloorithms for the test-and-set model solving the
k-critical section problem which in a sense have k indepen-
dent Paths to the critical section. That is, even if k - 1
processes fail, the other processes will not be waiting on
them and will continue operating and gaining access to the
remaining resources.

6.2.3.5 Measurements

The traditional measures of "time" and "space" do not form
an adequate framework for assessing the complexity of
distributed computations. In order to understand the "cost"
of a distributed computationt we need to enlarae and refine
our collection of cost measures. For example, "time" may
refer to total time or time measured at an individual site.
Similarly "spice" could refer to either the size of the
total system, or the size of individual sites. In addition
to the "time" and "space" required to perform a computation,
we should also consider the "amount of interprocess com-
municationi" both the total traffic flow over the whole
system, and the bandwidth requirements of individual chan-
ne Ls.

In analyzing sequential processes, we are used to thinking
in terms of time-space tradeoffs. Are there analogous
tradeoffs for distributed systems? For examplet one can
usually get by with smaller individual processors if one is
willinn to have more processors, and consequentlyt more
interprocessor communication. Can this tradeoff of
interprocess communication vs. complexity of individual
process be made precise? Again* one usually has the choice
of either implementing shared qlobal resources or duplicat-
in, these. resources at different sites. Are there
quidelines for decidinq which of these strategies to pursue?

I. In general, we need to deal with the following sorts of
questions: (M) What are the characteristics of those
problems which allow one to make effective use of
distributed computation? Cii) Conversely, can we learn to
recognize problems whose solution would require such large
amounts of internrocessor communication as to render these

Georgia Institute of Technology IPC Workshop

I

Section 6 THEORETICAL WORK Page 63

problems inherently unsuited for solution in a distributed
manner? (iii) Can we identify techniques for tailoring
distributed architectures to the solution of particular com-
putationaL problems? (iv) Can we formulate a theory which
combines concerns for time-space complexity with concerns
for minimizing interprocess communicationo thus providing an
adequate framework for assessing the complexity of
distributed computations.

6.2.3.6 Space Complexity for IPC

In measuring space complexity for IPC, the shared variable
models provide a natural measure - simply the number of
states necessary in the shared variables. Tight upper and
Lower bounds on the communication space required have been
demonstrated for certain synchronization problems using the
Test-and-Set model. Additional bounds are anticipated for
other problems and primitives.

Reference: [BURN 7A3

6.2.3.7 Time Complexity Measures for IPCf

A great deal of work has been done in the time complexity of
sequential alqorithms. Synchronous parallel computations
commonly use a "tree depth" measuere for the time com-
plexity. These techniques do not extend easily to asynch-
ronous parallel processing because there is no direct
measure of qlobal time directly derivable from the steps of
the individual processes. For example. if any process
reaches a state where it must wait for communication from
another orocess, it may take an unbounded number of steps
before the remairder of the system changes state. Since a
simple sum of all processor steps would often give unbounded
lower bounds for many problems, (and hence are
uninteresting), new measures are needed. Current work is
proceedinq examining time bounds of test-and-set algorithms
using the followinq types of bounds.

1) Count the total number of "transitions"
between two events of interest.

2) Count the number of transitions of a
oarticular process between two events.

3) Count the total number of transitions between
two events divided by the number of processes
involved.

(A "transition" is a step of a process which causes a channe
in the shared variabLe) Fach of these bounds appears to be

of interest.

Georqia Institute of Technology IPC Workshop

4

b

Section 6 THEORETICAL WORK Page 64

6.2.3.8 Data Transfer Performance

AbeLson EABEL 78] has recently developed techniques for
provinq inherent Lower bounds on the amount of interprocess
communication required for performing computations in a
distributed system. Using these techniquest he has analyzed
distributed systems which perform matrix operations and
solve systems of linear equations. His work shows that,
from the point of view of minimizing communicationt the ob-
vious techniques are optimal.

6.2.3.9 Performance Results

An alternative (perhaps a copout) to formal analysis is to
use a simulation or emulation. This, however, is not an
entirely straightforward proposition. First, a suitably ac-
curate description of the distributed system must be derived
and second, the artificialities of the simulation/emulation
must be factored out.

I.

Georqia Institute of Technoloay IPC Workshop

lb

Section 6 THEORETICAL WORK Page 65

603 POITIOQN PAPERS

6.3.1 & zE Jgn

Theoretical Issues in Distributed Computation

by

Harold Abelson

MIT

Current research in the area of distributed computation
focuses almost exclusively on algorithms and systems, while
the problem of determining the inherent complexity of
distributed computations remains virtually unexplored.
Moreover, most theoretical work in the area of parallel
processino relies on a model of computation in which all
processors have ready access to all memory registers --- an
assumption which is unrealistic when dealing with
distributed computations. For example, although the solu-
tion of n linear equations in n unknowns can be accomplished
in order (Log n)**2 steps if one ignores information trans-
fer, it can be shown that, for typical interconnection con-
figurations among n processors the interprocessor data
transfers alone require on the order of n steps.

We need to address directly the problem of interprocessor
data transfer and to establish bounds on the amount of com-
munication required for a wide variety of problems in a wide
variety of distributed architectures. In general, we need
to deal with the following sorts of questions: (M) What are
the characteristics of those problems which allow one to
make effective use of distributed computation? (ii) Conver-
sely, can we Learn to recognize problems whose solution
would require such large amounts of interprocessor com-
munication as to render these problems inherently unsuited
for solution in a distributed manner? (iii) Can we identify
techniques for tailoring distributed architectures to the
solution of particular computational problems? (iv) Can we
formulate a theory which combines concerns for time-space
complexity with concerns for minimizing interprocess com-
munication, thus providing an adequate framework for asses-
sing the complexity of distributed computations.

.

! eorgia Institute of Technology IPC Workshop

4bi

Section 6 THEORETICAL WORK Page 66

6.3.2 U uflu

Time Complexity of Distributed Computations

by

Michael J. Fischer

University of Washington

A fundamental question in the theory of distributed comput-
inq is how well a particular system does its job. To
determine this, one needs a specification of the job and a
means of comparina the efficiency of the qiven system with
other candidate systems.

Three aspects of distributed systems complicate considerably
the specification of the desired behavior. First of all,
non-terminating computations tend to be the rule rather than
the exception, so infinite execution sequences must be
described. Secondly, because of variablity in the relative
speeds of the different processes, the system is inherently
non-deterministic. While determinate behavior is
nonetheless possible, it may not be required, so the
specification must allow for variablity in the observed
behavior. Finally, the inputs and outputs of a distributed
system may be dispersed over a number of sites, and the com-
munication aspects of the problem need to be captured in a
natural way.

Findinq a satisfactory time measure for distributed systems
is much more difficult than for sequential programs. In the
latter case, elapsed time is just the sum of the times of
the basic instructions. With parallel computationst certain
steps may execute concurrently, so the simple linear depen-
dence of elapsed time on the instruction speed is lost. For
this reason, it becomes attractive to look instead at the
dependencies between steps of various processes rather than
at elapsed time. When these dependencies are represented as
a partial order, the longest path through the order gives a
natural measure that reflects the time necessary, assuming
maximum concurrency.

Once we have a satisfactory notion of the execution time for
a particular interleaved sequence of steps, it is still not
clear how to base a comparative analysis of systems on this
information, for different systems solving the same problem
will not necessarily exhibit the same interLeavings. What
is needed is a set of parameters common to all solution
systems in terms of which the time can be expressed.

I. Finally, the relative efficiency of a system may depend
stronoly on whether one is interested in some notion of
total systpm throunhput or in response time at a aiven site
(or in some other auantity).

Georoia Institute of Technology IPC Workshop

Section 6 THEORETICAL WORK Page 67

6.3.3 LJUL±

Theory and FormaLism

by

Le Lamport
SRI International

Formal methods are needed to specify and prove the correct-
ness of distributed systems. The primary requirement -or a
specification is that it be understandable by humanst since
only a human can determine the correctness of a
specification. Moreover* a specification involving program
variables does not meet this criterion, since proaram
variables are part of the solution, and are of no concern to
the user. There has been very Little progress in this area.
It is rare to find even a precise informal statement of what
a simpLe distributed algorithm is supposed to do -- let
alone a specification of an entire system.

A formal specification is useful only if there is some
formal method for deciding if a system meets its
specification. Currently, there exist formal methods for
provino properties of non-distributed multiprocess systems.
We need to discover how these methods can be extended to
distributed systems, or else develop new methods. There has
been some progress in this area, but we are very far from
beinq able to handle real, complex systems.

I feel that in order to make progress in these areas, it is
necessary to be able to deal formally with non-atomic
operations -- to describe the system as a collection of
operations which do not act as If they were executed in any
sequential order. I have some vaque, preliminary ideas on
how this can be done.

6.3.4 Lx Sl&

Complexity Theory of Distributed Systems

by

Nancy Lynch

Georgia Institute of Technology

Most of the current work in theory of distributed systems
seems to me to focus on a rather high level of programming.
Virtual machines and networks, Hoare-style communication
mechanisms which combine powerful synchronization and value-
passing behaviort related mechanisms which assume preserva-
tion of unbounded numbers of messages, serializers, abstract
data types with "nonatomic" elements, etc. are all user-
oriented abstractions which allow logical organization of

complex alqorithmic behavior without concern for troublesome

1*
Georgia Institute of Technology IPC Workshop

-
b

.air. .c

Section 6 THEORETICAL WORK Page 68

implementation detail. Unfortunately, there are good
reasons why such detail cannot entirely be suppressed.
Efficiency of operation of a distributed system is of
paramount concern to the user. There are so many more pos-
sible variations in implementation in a distributed en-
vironment than in more traditional computing environments
thdt knowledge of the imolementation method cannot help but
influence the user's program design; indeed, some such
knowledoe is probably necessary for even acceptably
efficient use of the system.

It is important to complement high-level theoretical and
language-design work with a firmly-based theory of lower-
level distributed proqramming, geared particularly to
measurement of the efficiency of performance. Very simple
and general primitives such as shared variables and one-way
arbitrary-delay communication channels should be used as a
general basis for such a theory. Various appropriate
measures of resource use and performance (e.g., communica-
tion "bandwidth", total number of changes to variables that
occur, total "depth" of the computation) can then be defined
precisely. Then the costs of implementing the various high-
level mechanisms mentioned above can be assessed objectively
and compared. While the user miaht not need to know precise
implementation details, he would at least benefit from
knowledqe of these costs in resource use, for the various

available mechanismns.

As for sequential computing, the theory of distributed
systems will not ultimately be concerned with implementation
of different system primitives, but with efficient fulfill-
ment of application requirements. Thus, the theory can be
expected to focus on design and analysis of systems exhibit-
ing certain desired behavior, in application areas suitable
for distributed computing (e.g., load-sharing, multiple use
of databases, mail communicationg synchronization). A low-
level model and elementary complexity measures such as those
described will form a useful basis for such analysis, with
higher-level constructs used along the wayo Also important
for such a theory will be the development of reasonably
consistent means of specifying desirable behaviors for
systems. Such behaviors miqht involve the input-output
interface of a system or the internal state behavior of
processes.

A prototypical development has been carried out (Jointly
with Michael J. Fischer and graduate students J. Burns, P.
Jackson, and Go Peterson) for simple mutual exclusion
behavior. Further work is currently in progress.

Geornia In~titut! of Technolooy IPC Workshop

Section 6 THEORETICAL WORK Page 69

6.3.5 S.iar

Theory and Formatism

by

Stephen We Smolear

Conventional modes of programmina and alaorithmic specifica-
tion have many potential shortcominos in the design and im-
plementation of distributed systems. In his 1977 ACM TurinQ
Award Lecture, John Backus cited seven "inherent defects at
the most basic level" in traditional programming languages:
"their primitive word-at-a-time style of proqramminq in-
herited from their common ancestor--the von Neumann com-
putert their close coupling of semantics to state
transitionsv their division of proqramming into a world of
expressions and a world of statements, their inabiLity to
effectively use powerful combining forms for buildina new
programs from existing ones, and their lack of useful
mathematical properties for reasoning about proarams." Un-
fortunately, a good deal of thinking about distributed
systems has become bogged down precisely because of a
preconceived commitment to these same inherent defects.

A fruitful alternative is the functional style of ap-
plicative programming. The central idea is that all
programs are expressed as functions. The coupling of a
function with its arguments constitutes an eA2jjijqn, and a
process is tha t c0mputatonal activZ vitX nvolye in the
t U 2 of an expression. The most important aspect of
this aprroach is that it has eliminated the need for the as-
signment statement, since the only allowable assignments are
parameter bindings. Recursive composition of functions
eliminates the need for loops (and with it many of the
concerns of structured proqramming). Finally, input/output
functions may he transcended by a view of files as arguments
and values of expressions.

Multiproqrammino concepts may be best expressed in ap-
plicative terms by introducing a data structure known as a
Mtjij.CAt_ A multiset may be viewed as an unordered collec-
tion of expressions whose evaluations may proceed in paral-
lel. Retrieval of data from a multiset is contingent upon
termination (also known is iOnr-s n c) of at least one
evaluation process; and retrieval effectively transforms a
multiset from an unordered collection of expressions into an
ordered seouence of values. Furthermore, multisets may be
constructed through multiple applications of the same func-
tion to each of the elements of an already-constructed mul-
tiset. Finally, the conventional conditional expression may
be extended to control whether or not an evaluation process
ever converges: if the predicate of a _q conditional
is not true, then the evaluation process automatically
diverges.

Georaia Institute of Technology IPC Workshop

Section 6 THEORETICAL WORK Page 70

It is thus possible to formulate algorithms for distributed
systems in terms of a rather simple applicative lanquage.
In fact, the applicative language provides a very powerful
toot for the study of distributed systems; this tool is the
Lanquaqe's inj.CerQjL. Such an interpreter must know how
to implement the evaluation of expressions; but, more im-

portantLy, its definition must include a protocol for how
muLtisets are constructed and how their elements are
evaluated. This protocol may be instrumented to reflect the
behavior of a real-time environment. The interpreter thus
provided a basis for simulation experiments within which one
may investigate how multipLe processors may be profitably
applied to multiset interpretation.

IoI
,Geornia Institute of Technoloay IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 71

SECTION 7

CURRENT TECHNIQUES AND EXPERIENCE

701 A Eft2CiiS §A COPU 111M~

An Informal Paper

by

Ed Basart
HewLett-Packard Company

Processes are the basic entity in our computer system. When

a program runs, it exists as a process, and gives a ?Program

the illusion that it has its own private processor. The

system is then constructed to support processes effectively

by making process communication and switching efficient and
inexoensive. As a consequence, multiple processors can be
used to increase the parallelism of the processes running in
the system.

The advantages of such a computer system are program
modularity, increased performance through parallelism,
growth by adding processors, and physical dlstributability
of functions. Processes are used as the sinqle "object"
that unifies operatina system services and resources. The
operating system exists as a collection of processes, and

process primitives are used as the kernel of the operatinQ
system.

Processes communicate usini queues and the send and receive
primitives. Multiple queue writers are permitted, white
only a single queue reader is allowed. Send and receive
hanale the details of the path between processes for any ar-
bitrary hardware configuration of processors. This includes
providing mutual exclusion for processors sharing memory and
invoking dita communication drivers in systems not sharing
memory. The data communications processes resolve the con-
nection between processors, whether the connection is a high
speed bus, through telephone lines, or an indirect path
through more than one processor.

In order to send a message to another process, the sendino
Process must first establish a Link to a recelvino process
queue. Links are made by the file system. Opening a link
is very much like opening a disc file. Capabilities and ac-
cess riahts to queues are checked at open time by the file
system, which eliminates message verification for the send
and receive primitives, and also for the communicating
processes.

Georgia Institute of TechnoLogy IPC Workshop

I ,

Section 7 CURRENT TECHNIQUES AND FYPrn:LiCE Page 72

After a litik is open, the sending process sends a message to

a receiving process by specifying a link numbert alona with

the data. The receiving process reads its oueue by specify-
ina its queue number and issuing a receive. The receiving

process creates a queue initially by asking the file system

to allocate space for the queue and grant the receiver

"oueue" access. Linking a sending and a receiving process

establishes half duplex communication. Full duplex com-

munication may be established by creating another queue and

opening another link in the opposite direction between the
two processes.

As the file system opens a link, it determines whether the

two processes are residing on different computers. If so,

the address placed in the link is that of a surrogate

process9 a data communications driver that handles the

details of the communication line. At the other end of the
line is another surrogate data communications process. This

process has a link pointing to the receiving process queue.

This mechanism allows uniform process communication for both

local and remote processes.

V Creating a single queue for multiple writers seems to be a

mixed blessing. One advantage is that the system makes a
single space allocation for the queuet and no new al-

locations need to be made for each writer. Another ad-

vantage is that the reader noes to only one location to read

messdges. This is particularly important when the writers
and reader exists on different computers.

The disadvantage of a single queue is that a "mad" writer

can clog the queue. There are two solutions tc this

problem. The system can be made cognizant of a writer's

"message rate," and a process can be given Lower execution

Priority if its rate becomes too high. The other solution

is to maintain a message count for each writer. The reader

then decrements the count as the queue is read.

Neither of these solutions Is very attractive. They both

sunqest high cost to p-otect against the mad writer. For

the present the aporoach is to make queues large enough to
absorb an initial outburst from the writer. The reader is

given a "break link" function that disallows any further
messaaes from a particular writer. This forces detection of

the problem on the communicating nrocesses while relieving

th- send and receive Primitives of an added complication.

Throe similar computer systems have been influential in the

design of our system. They are: 1) the Tandem 16 computer

system manufactured in Cupertinog California, 2) the Pemos

oorratinq system for the Cray-1 computer at Los Alamos, New
"Pxicog and 1) the Thoth operating system developed at the

;niversity of Waterloo, Ontario.

-rii Institute of Technology IDC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 73

Our system has two primary differences from the mentioned
ones. The first is in handling all types of physical
processor interconnections at the primitive levett rather
than doing it in the operating system. The second is in
making much greater use of processes and messages. AlL of
the above systems break away from their message systems for
certain types of functions that are considered to be too ex-
pensive to be done in a message system.

I

Georqia Institute of Technology IPC Workshop

b

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 74

702 "E If HETLL."Q W 2IJ1U" CMPUTJE R ITORK

HETEROGENEOUS DISTRIBUTED COMPUTER NETWORKS
AND INTERPROCESS COMMUNICATION THEREIN

by

Js S. Sventek
Lawrence BerkeLey Laboratory

7.2. jnj"UfLUtn

The primary focus of the Advanced Systems roup in CSAM is
the question of distributed processing in a network consist-
ini of hosts with vastly differing architectures. Our main
qol, at this point in time, is to provide a distributed en-
vironment which is easily used by people with very diverse
needs; for example:

1) a research group developing a distributed
relational database system

2) ,dmlnistrative personnel maintaininq current
),ccountino databases

7) oraphics researchers exploring new and novel
reoresentations

4) high energy phyricists designini systems to
collect and sample on-line vast quantities of
experimental data

In order to achieve the aoal of easy use, we are somewhat
less concerned with "efficiency" issues than with merely
makinq the system functional. From empirical studies of a
workino system, we hope to discern the "inefficient" aspects
of the system, and may devise alqorithms to alleviate the
problems. Ffficiencyq in this context, is only concerned
with throughput.

Two entities must exist before an easily used distributed
system can be realized:

1) 3 common shell (command Line interpreter).
It is of somewhat limited utility to provide
virtual terminal capabilities on the hosts in
the network if the user must learn a

different language to communicate with each
o one. Much of our recent research has been in

the development of just such a portable
shell. A prototype of this shell is current-
Ly runnino on the followin) systems: FDP-
11/780 (VMS), POIP-11/70 (IAS), CDC 6600
(homegrown operating system).

2) 1 common file naming convention. Current
reseirch (based on a pathname structure) is

Georqia Institute of Technoloqy IPC Workshop
4

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 75

progressing in this area, and a prototypical

system is operational on the PDP-11/70 (IAS)

system.

The rest of the discussion wilL asume that these two

entities exist on all hosts in the network.

7.2.2 EgndamentaL aUljnjiu in I Cmu itd Ilty.

There are three basic quantities in a civilized computer en-

vironment which a programmer must be able to manipulate.
They are:

i file - this category includes non-file struc-

tured devices (eeg., ttO mtO, etc.), data
files, and executable image files.

2. process - this entity describes an image file

plus its context (standard input, output, and
error files, default directoryq priveleges,

etc.) which is currently in a schedulable
state or waitinq upon some resource in order

to become schedulable in a particular host.

3. vertex - this "virtual" entity allows two
processes to extablish an interprocess com-

munication link.

Several operating system primitives are necessary to allow a

programmer to manioulate these quantities.

open open a file

close close a file
create if file exists, open it; else create it
delete delete file

rename rename file
'jetc get a character from a file
outc out a character into a file
mark note current position in a file

seek position a file
prompt output string with no terminating carriage

control

spawn spawn process, sendinq specified arquments
to it

pstat query status of a process

kill terminate process

suspnd suspend process

resume resume suspended process

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 76

pipe create a vertex and open a link to it

A few more words concerninq vertices are in order. A vertex
is a valid input parameter to the open and close primitives.
In this way, subprocesses may be linked together by redirec-
tin, the respective standard outputs and standard inputs to
a vertex. The subprocess itself is oblivious to the source
or destination of its information. A vertex is also a
trinsitory auantity, in the sense that when all links to it
have been terminated (via a close operation), it vanishes.
All I/O through a vertex should be synchronous to avoid all
of the problems inherent in bufferina asynchronous I/O in
dynamic system memory.

7 02 -3 hUilna .aSAnSiija

Files are known globally by their pathnames:

/hostname/default directory/filename

Once a process has established a link to a file (via an open
or create), the file is then known internally to the process* .Oy the id returned as the value of the primitive function

invoked.

Processes are known globally by the Id returned as a
parameter of the spawn primitive:

/hostname/processid

Vertices are known olobally by the followina pathname:

/hostname/processid/vertexname

On- sees that as long as the first field of a file pathname
can never assume the value of a process Id field, this naw-
ing convention uniquely identifies all quantities.

7. 2 4 ilgJ&I jfl ig Jn JI i±trjLkMW jnjJX.gnmnit
A skeleton of a typical primitive would look as follows

if (local (AHGUMENTS) == YES)
{

perform function

else
L

reformulate request (if necessary)
forward request to KERNEL
wait for result

Georqla Institute of Technology IPC Workshop
4

b

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Paqe 77

The purpose of the local function is to determine if the
request can be performed within the requestinq process.
(File and process oriented primitives can usually be per-
formed Locally if they involve local files and processes.)
If it cannot be performed internallyt the request may have
to be reformulated to include process context information*
and is then forwarded to the KERNEL, which is an extension
of the native operating system. Due to differences in the
services provided by most native operating systems, one sees
that the Local function will be system dependent. The KER-
NEL is a separate process, one per host, which has access to
the physical Links of all hosts in the network which are
directly connected to the current host. The KERNEL fields
three types of requests:

1. local requests for Local services not
provided by the native operatinq system

2. local requests for services on remote hosts

in the network
3. remote requests for local services on behalf

of a requestor on a remote host

For the first type of request, the KERNEL will perform the
service, and return status and any other information to the
requestor. The Last two types of requests are linked in
their function. For type 2, the KERNEL forwards the request
to its counterpart, which receives a request of type 3.
This request is performedt and return information is forwar-
ded to the original requestor through the network.

All types of distributea activity are then supportea in such
a network environment. The following examples will serve to
emphasize this point.

7.2.5 Lmku

User is currently interacting with the shell on host A with
standard input, output, and error files being ttn, and
default directory DEFAULT. User wishes to establish virtual
terminal connection with host B. To do so, he/she issues
the following command at his/her terminal

B/shell

A/shell detects that this is a request to spawn a process at
another host, so it reformulates the command as

9/shell (A/ttn >A/ttn)*A/ttn (DEFAULT)

Georaia Institute of Technoloqy IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 78

and forwards request to A/KERNEL, whichs in turn, forwards
the request to B/KERNEL9 which performs the service and
returns status to the requesting process via A/KERNEL. The
next prompt that the user sees will be that of the shell
operatinq on host 9, with the shell on A being suspended
until B/shell has received an end of file on the standard
input.

User on host A wishes to copy a file from host A to host B;

he issues the following command:

% copy file B/path/file

The shell will spawn copy, copy will open file, and attempt
to open B/path/file. The open request will be forwarded to
A/KERNEL9 which in turn forwards request to B/KERNEL.
B/path/file will be openedt and all writes to it will be
directed through the KERNELs and the network Link.

LflrrQ=2 i .omm u I S2M aj.!ion t111=1n 2Loceje tl1 9f2lglt

User on host A wishes to analyze a data file with a utility
available on host B, directing the output of that utility to
a graphic display program on host A which displays the
results on the user's graphics terminal.

% B/analyze <mydata I A/graphit

A/shell will issue a spawn request to A/KERNEL with the fol-
lowing command line

l/analyze <A/DEFAULT/mydata >A/shelLid/pipel &

where A/shellid/pipel is a vertex created by A/shell. The
ampersand (&) indicates that A/shell does not wish to wait
for the completion of the spawned process. A/shell will
also spawn A/graphit, redirecting its input to
A/shellid/nipel. A/shell can then sit back and monitor the
proqress of the two cooperating processes, regaining control
when they complete or terminating them if errors occur dur-
ino their execution.

II

SGeorgia Institute of TechnoLogy IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 79

7 *3 PE2I EIL MA ILE AN h iei fLQ&liNhU

by

R.L. Gordon
PRIME Computer, Inc*

Keywords: maiLbox, IPC primitivest switch-board tasks,

access Lists

703.1 jflrouclIS

It is the thesis of this short note that IPC facilities
built arsuna the notion of a protected mailbox could provide
the bash tor a eobust set of primitives. Robustness, in
this case, implies their utility in conventional muL-
tiprogrammed uniprocessor systems as well as shared memory
multiprocessorst Loosely coupled multiprocessors and local
and Long haul networks. The proposed mechanism can support

*different communication forms (N-process protocols), addres-
ses security issues, and assists users in the synchroniza-
tion of what is basically an asynchronous phenomenon
(process communication).

7.3.2 rosdU liiye

Mailboxes are created by a process "P" executing a primitive

of the form:

u = create(Access List, T)

which is sufficient to bind the process name "P" to the
unique descriptor "u" of the created mailbox, and associate
the List of processes appearing in the "AccessList" with
the mailbox "u". In addition the create primitive specifies
a maximum time "T" between mailbox use (I assume mailboxes

that are not used are not useful). Thereaftert if the
identifier "u" is valid, (e.g. not equal to ERROR) then any
process "Pt" appearing on the "AccessList" and wishing to
send mail to the process "P" would use a system call of the
form:

send message(buf, u)

h. and continue execution. This primitive would have the

effect of eventually pLacinq the contents of "buf" in the
mailbox "u" of process "P" alonq with the name of the sender
NpO"o Process "P"t wishing to receive messages in mailbox

"u"9 would make a system call of the form:

Georgia Institute of Technoloqy IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 80

receive message(buf, u)

which would prohibit any further progress of "P" until
either a message is received from a process on the
"Access-List" or no message has been received during the
time interval "T", specified in the "Create" primitive.
Notification of this fact would would appear as a message in
"buf" if the user had included a system process responsible
for communication monitoring in his "Access-List". [See
Section 7.3.6 on Fault Tolerant Aspects.] To complete the
set of orimitives a system call of the form:

delete(u)

would cause the mailbox "u" to be retired forever.

7. 3.3 IniaLiZAZIqn

Initial dialogues are established by "receiving" an
identifier "s" of the current system mailbox in a mailbox
"r" that was originally created with only the name of a well

t, known system process on the access list. The system mailbox
identifier "s9" would then be used to send messages to the
system kernel, with replies being received in mailbox "r".

One of the more difficult issues is with the design of the
mechanism needed to establish communication with generic
processes, (e.g. processes that represent a single service
but may have multiple instantiations) and with discovery of
newly created processes. The trouble stems from the fact
users are incapable of establishing a dialogue with any
process not known to them, and therefore cannot include them
on the access list. For these reasons, it seems desirable
to provide a "switch-board process" whose sole function is
to provide a generic to specific name mapping. For example,
such a service would be used to return the specific process
name (or names) of the Latest version of a fancy text

formattero when supplied with the generic name "format".

7.3.4 §uja$_Ur

A unique descriptor represents a sort of capability (at

Least for communication purposes) since possession of a
mailbox identifier provides the possesser with the potential

for sendinq messages and requests to the process bound to
the identifier. Howeverg if the target mailbox does not
have the sender on the access List the message may be
discarded by the system, thus essentially controlling com-
munication through the maintainence and enforcement of the
"Access List." It is clear, therefore that security issues
revolve around the ability to control changes to the
"AccessList," an issue already explored by file system
designers.

Georgia Institute of Technoloqy IPC WorkshopWP

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 81

If one takes the view that a message is an attempt to access
an object by a principal [GRAH 72), then this faciLity
contains all the elements of the access matrix model CLAMP

71) of protection. Ry having different processes act as
monitors of objects one has a formalization of the access
model since the identification of the accessor ana the ob-
Ject being sought are both available to the monitor process.

7.3*5 SYnchrnJizAt~ql

The availability of the senders identification coupled with

the access control List provides the means to achieve

solutions to synchronization of processes and to detection
of boolean combinations of events. Creation of mailboxes
with only one process name on the "Access List" provide the

facilities for a simple "pipe" (one way communication chan-
nel) that can be used to construct a self clocking
"pipeline" with the "send" and "receive" primitives.

Logical "or"-ing of the input from two processes, say A and
R, can be accomplished by simply including A and R on the
"Access List." More complicated forms of synchronizatin
can be accomplished by creation of an intermediate process

that performs the appropriate Level of demultiplexina.
Broadcast transmissions are simply achieved by iteration
over a set of available mailbox identifiers.

7 .3 .6 F a u l.lT±L&anl AIR..i

There appear to be many forms of communication errors that

are recoverable by the technology underlying the IPC Level.
Failure of underlying mechanisms can easily be reported to a

process if it opens a channel for that purpose by including

the name of a system process on the "Access-List" on an al-
ready opened mailbox, or opening one for just that purpose.

It seems to me that users who do not want to be concerned
with error handling, should not be forced to carry along a

lot of extra apparatus for those who do. One nagging
concern of mine is whether the system should force error
messages (especially for timeouts) into mailboxes that have
not included the communication monitor on the "Access List."

Positive acknowLedqement is purposefully not included in
this scheme, but is left to the user to construct his own t,y

setting up a duplex path between processes. As an aid, the
design of the "create" primitive must have a value "T" for

the maximum time between messages. Since the primitives are
designed to be used over a wide range of situations most ap-

plications will have some knowledqe of how long it is
reasonable to wait for a reply or input from a cooperating
process.

1G
SGeorgia Institute of Technology lot Workshop

q

.. .-b a

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 82

7.3*7 Summary

A set of primitives for interprocess communication have been
proposed that seem suitable for impLementation in a wide
variety of circumstances. Only briefly mentioned however,
is the issue of process addressabiLity when communication is
desired between several Processes. The solution of this
problem requires the development of a name space architec-
ture that tackles the relationship between files, devices,
processes, users and many other system objectso certainly
beyond the scope of this short note.

0 neoraia Institute of Technoloqy IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 83

by

James Ro Low
University of Rochester

The model of interprocess communication that we use in DSYS-

PLITS has evolved from that used in the PIG (Rochester
Intelligent Gateway) Operating System. Basically, we think
of a program being composed of several independent processes
(we call them "modules") communicating with each other only
through messages. There is no directly shared memory.
Processes are relatively stable and to "fork" a process
means to create a totally new environment independent from
that of the creator. Our basic model does not force any
hierarchy on the processes though it is relatively easy for

a programmer to think in terms of hierarchies if he wishes.

OSYS is basically a set of facilities added to existing
programmino l~nguages and operating systems to support

inter-process communication across a network of heteroqenous
machines (DEC PDP-I runnino DECSYSTEM-10 Data General
ECLIPSEs running RIG, and XEROX ALTOs running the ALTO
operating system). DSYS consists of operating system inter-
faces and user interface procedures.

Processes communicate via messaaes. The SEND primitive sup-
ported by DSYS takes three parameters: the message to be
sent; the process identifier of the destination (originally
obtained through interactions with a name service process,
or provided in a messaqe from some other process); and a
transaction key (analogous to a "port"). ALL connections
between processes are implicit. If a process has obtained
another processts name it can send that process a message
without any explicit "open" command. Of course, the proces-
ses themselves may ignore messages which do not conform to
higher level (user-specified)) protocols. Transaction keys
are used to separate various conversation streams. OSYS
will guarantee that all messajes with a specific transaction
key sent from one particular process to another will arrive
in the proper order. No guarantee is made about messages
with different transaction keys. Details of the reliable
transmission and flow-control mechanisms in the DYS subnet
may cause messaaes from one process to another with
different keys to arrive in a dlff ent order than they were
SENT.

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 84

Selective reception of messages is provided. A process may
state that it wishes to receive onLy messages from a
specific set of other processes or about specific transac-
tion keys. Thus the general form of RECEIVE is

RECEIVE msg FROM (sndrlo sndr2o.. sndr3)
ABOUT (trnilt trns2...)

If there is more than one message that has suitable SENDER
and TRANSACTION, an arbitrary one is selected (subject to
the constraint of ordering within a SENDER-TRANSACTION pair
mentioned above). If the user wishes to enforce more
general priority mechanisms he may use the PENDING construct
to see if there are suitable high priority messages before
he receives lower priority ones. PENDING takes the same ar-
guments as RECEIVE and returns TRUE if there are suitable
messages and FALSE otherwise. It does not actually perform
the RECEIVE so the message queues are left intact. If all

f. else fails and the user wants more qeneral reception
criteria then he can ask to receive all messages and then do
his own local aueing. We believe this to be very rare ard
have not seen this done in the programs coded so far.

OSYS performs all queue mananement, reliaole transmission,
and flow control. Application programs are notified of ex-
ceptional conditions (communication lines ooing down, other
nrocesses in the "distributed Job" breaking) via emergency
messages.

OSYS itself considered messages as just strings of bits. We
have found it desirable to provide higher level message sup-
port to .apolications proaramso This higher level message
support is called PLITS.

Traditionally, fixed message formats have been used for ap-
plication programs. To design a new message type, a
proar3mmer would lay out an explicit template for his data.
He would have to state the number of pieces of data, their
data-types; the exter-ail representation of the data type;
and the translation routines to use to translate between the
external (used in messages) representation and the internal
(used in his proqram variables) representation of the data.

In PLITS, we try to remove the burden of message template
desiin. 'y automating the process we also remove one class
of possible errors. In PLITS, the applications programmer
sees a messaqe as a set of keyword value pairs. We call
these pairsq "slots". To construct a message he specifies
the particular set of slots he desires. The receiver can
determine (for individual messages) which slots are present

Georgia Institute of Technoloqy IPC Workshop

4 ''' . .

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 85

and their values. Thus, a message to a file server might
Look like:

SEND (action -openfilei mode -update, name "-MYFILEM

directory "-(mydir)*, initlaLpositlon -0, bytesize -8)

TO FileServer ABOUT OPNTransaction;

"action", "mode", "name" and so forth are the keywords (or
slotnames). The message would be identical as far as the
receiver were concerned if the sender had specified a
different order of the slots. je do not require that every
message contain a specific set of slotst but of course it is
an error if a process attempts to fetch the value on a non-
existent slot. Defaults may be easily implemented using the
PRESENT IN primitive. For example, the file server above
might wish to assume that the directory is "<SYSTEM>" if
none is specified.

RECEIVE msg FROM ANYSENDER ABOUT ANYTRANSACTION;

IF NOT (directory PRESENT IN msg) THEN
PUT (directory-w<SYSTEM>O) IN msg;

thedirect := msg.directory;

When a user wants to use a slot in his program he must

declare the keyword and the type of its value both in the
sen(ing and receiving process.

STRING SLOT filename;

MODULE SLOT continuation;

In the existing implementation of PLITS (see below) the
data-type of each slot is sent in the message dnd
consistency is checked durinq the translation from the ex-
ternal format of messages to the internal format of messages
during reception of the message. Implementation is underway
to have a "loading" time (when a process joins a
"distributed job") when the consistency of slot definitions
would be checked. Small identifiers for each slot would
also be given at this time. This would decrease the over-
head of the slot mechanism (currently in addition to the
data, a type code and a character string are sent for each
slot).

Georgia Institute of Technology IPC Workshop

AD-AGGl 685 GEORGIA INST OF TECH ATLANTA SCHOOL OF INFORMATION A--ETC F/G 17/2
INTERPROCESS COMMUNICATION IN HIGHLY DISTRIBUTED SYSTEMS - A WO -ETC(U)

DEC 79 P H ENSLOW. R L GORDON 0AA629-79-C-001
UNCLASSIFIED G1T'ICS-79/I1 NL

2m2EEEEEEEEE
MEI//I//I/u
InIIIIIIIIIIIumIIIIIIII

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 86

In the current impLementation the "data-type" of a sLot tm-
plties the external representation of the vaLue of the slot
within messages. Thus we have severaL INTEGER types.

INTEGER16 SLOT sm.LL;

INTEGER32 SLOT Larget

with impLtied external representations of sixteen and thirty-
two bits. Note: this does not ImpLy that the internaL
represrntation for the value of the two sLots above must
necessarily be different. For example, in the PDP-10, both
values would be represented using 36-bit integers. When a

* message is sent, however, a check is made during the encod-
ing into the external format that the values are in the ap-
propriate ranges. Future impLementations may have a
"negotiation" phase during "Loading" in which the various
processes "agree" on the external precision necessary for
each data value (one "negotiation" strategy would be to use

renough bits for the maximaL declared range).

CMrt~n tall 21 1l eMenta

The DSYS has been running since Last Spring on the POP-I
and ECLIPSE computers, A distributed vision appLication was
encoded this past Summer. RecentLy an ALTO DSYS support
package has been used to Link ALTOes to the ECLIPSE. The
PLITS message format has been running on the PDP-10 for over
a year (using a preLiminary version of OSYS that ran onLy on
the POP-10). A design for the support faciLities necessary
for PLTS on the ECLIPSEs and ALTOs has been completed.

Almost aLL the support software has been written either in
SAIL (on the PDP-ID) or BCPL (on the ECLIPSEs or ALTOs).

.
Georgia Institute of TechnoLogy IPC Workshop

• 4 I . . .

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 87

K ~~ e 5 AMLA 9EUU

PARAMETRIC MODELS OF CONCURRENT COMMUNICATION ACTIVITY

by

BILL SuckLes
GeneraL Research Corporation

INTODUCTION

Using a distributed system to feign, simulate, or emulate a second
* distributed system is of interest primarily to those engaged in design. The

principal problem in this approach is the inherent timing discrepancies between
the existing and target systems. Lamport [1] has made invaluable contributions

* applicable to this area and this study is directed at specializing his results
to emulation.

MODELS AND STATES

The goals are to determine (1) what aspects of communication behavior
can be observed from an emulation? (2) what ancillary relationships must be
embedded in an emulation to assure that the primary behavioral attributes can
be extracted? and (3) if the ancillary relationships are not exact, how much
confidence may we place in the extracted primary behavioral attributes? In
order to achieve this, a definition of process state has been derived that
deals only with aspects of inter-process communication. The target process
state is distinct from the emulation process state, but the former is embedded
within the latter. Additionally a progression of six communication models have
been defined, each an elaboration of the previous one.

Model 1 is a single process emulacing itself. It may be schematically
represented as

At0 /m At2/m1 At4, m2 at6/M3 /m4

AtI At3 at 5 At7

* Work sponsored by the Ballistic Missile Defense Advanced Technology Center,

P. 0. Box 1500, Huntsville, Alabama 35807 under contract number DASG6O-78-C-0058.

Georgia Institute of TechnoLogy IPC Workshop

4. . ..

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 88

where Ati denotes a time interval, m. a message, and the even intervals denote
active communication periods. Model 2 is a single process emulating a second
process with uniform time distortion (either rate increase or decrease). Model 3
is a single process emulating a second process with both uniform time distortion
and non-uniform perturbations (strictly slow-down). In this model, the emulation
process may contain more periods than the target process. However, there must
exist an order-preserving mapping from the target process periods to the emulation
process periods. Model 4 advances to multiple processes with equal time distortions
and perturbations. Model 5 relaxes the equality constraints on distortions and
perturbations, but requires the two be balanced. That is, inequality among the
time distortions of various processes must be offset by perturbation. Model 6
is completely unconstrained with respect to both distortion and perturbation.

The state of a single target process, i, at time period j is denoted by
the pair sij - [At, nj where At is the duration of the most recently completed

period and n is the information sent or received. The state of the target
system is denoted S =- 14. s29 s]. The state of a single emulation

process i after time period k is denoted by the 5-tuple aik = [sij, At' ,r,(k)]

where sij is the state of the target process, At' is the duration of the most

recently completed period, piis the information sent or received during the last
period, r, a constant, is the uniform time distortion, and p(k) is the
instantaneous perturbation at the beginning of the current period. A system
state is denoted by Z - Ealk , a 2k2]. A system state change occurs

1 2 n
when exactly one a assumes a new value.

ii

PRELIMINARY RESULTS

Time models are inherently continuous while the state model described
above is discrete. Lower and upper bounds on the time relationships are
desirable to fix the amount of error between state changes. Because r (the
distortion) is constant, only p (the perturbation) may introduce error:

n
glb(p) - o(n) El - (At At!)]

n-1

lub(O) - O(n) + [At /+l rF Ati]i-l

* Unfortunately, lub(p) required the prediction of the period duration, At ,
of a current target process. An assumed order-preserving mapping illustrating
the lower and upper bound errors follow.

s.t
Geoaoia Institute of Technotoav !PC Workohon

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 89

EMULATn
PROCES" gib Example

EMULATION V1
PROCESS DIVERGENCE-

II

PROCESS lub Example/ /

WT, IION
PROCESS

Model 6, being the most general, is of interest. For example, determining
what measures must be taken to preserve the state transition ordering in the
emulation to reflect accurately the state transition ordering in the target
process is necessary. If S a < Sb in time and the transition to Sa is embedded

in Ex and the transition to Sb is embedded in Z then we would desire thatx y
Z< . Let a be the specific substate that changes value at E and a?x y xiJ x ykm

be the specific substate that changes value at E y Both Sa < S and Z if

y-l x-l

yij " w > [y'ij - xokm "E Tww-x w-0
where p *qv p a qv(p(v)) pa qv(r) and Tw is the normalized elapsed emulation

time in period w-l. In symbols:

I. = " r , aij(P(w) • aij(s(t)).

T Georgia Institute of TechnoLogy IPC Workshop

IE

, - III II- , ,'. .

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 90

CONCLUSIONS

These and other relationships dealing with the communication behavior
of emulation processes have been formally proved. Some knowledge on the problem
of what information to collect and how to analyze it has been gained. It is
believed that future investigation will further strengthen the utility of the
models.

REFERENCES

1. Leslie Lamport, "Time, Clocks, and the Ordering of Events in a Distributed
System," CACM 21,.7 (July 1978), 558-565.

G

TN . Georqla Institute of Technotooy XPC Workshoo

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 91

7.6E AI AS flMELZ= L I

by

Robert L. Gordon
and

Jack A. Test

*The enclosed Prime research note is partly based upon a
couple of early 1978 internaL Prime R&D meetings concerned
with "Task Control and Communication for MuLtipLe Processor
Systems'. It discusses the synchronization and interprocess
communication mechanisms used in a number of important
operating systems and expLortes the importance of these
mechanisms for the development of future computer systems*
and is offered as additionaL materiaL for the current tech-

niques and experience section of the conference reports
since it summarizes a review of mechanisms used in several
weLL known systems.

Two in-house meetings concerned with "Task Control and Com-

munication for MuLtipLe Processor Systems* were held on
January 11, 1978, and March 22, 1978. The purpose of the
meetings was to provide a forum for the discussion of exist-
ing operating system mechanisms for process management and
interprocess communication as related to Prime's efforts in
process-based computer network architectures.

$ The two meetings consisted of a series of informat
a presentations by members of Primes R&D staff on other

systems 'and discussions on related PRIMENET communication
meetings. The particular topics were: .(l) *Process Com-
munication In DEMOS"t (2) "Process Control And Communication
In UNIX" (3) "TANDEM And VAX Process Structure', (4) "The
MuLtics IPC FaciLity", (5) "Event Counting And Sequencing In
Distributed Systems', and (6) "Communication Primitives For
PRIMOS'.

The purpose of this note is to discuss the synchronization

and interprocess communication mechanisms developed for the
systems mentioned above and to explore future directions in

9 the development of process-based computer networks. Obser-
vations concerning the IPC faciLities of the operating

a systems discussed are based upon the authors' knowledge of
the systems, avaiLabLe Literature, and the Prime Conference
talks. AccordingLy, Section I of this note presents brief
summaries of the IPC factiLities, and Section III states some
concLusions and future directions. The References 9 SeLec-
ted Readingsq at the end of this note, Lists several
articLes pertinent to the study of Interprocess Com-
munications.

f.
Georgia Institute of Technology IPC Workshop/

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 92

7.6.2 S/nahronuzation/. Z e±L

Inctuded in this section are discussions of the
synchronization/ipc mechanisms deveLoped for the systems
mentioned in the Introduction* For additionaL information
regarding each system, refer to any of the pertinent
references.

7.6.2.1 Process Communication In DEMOS

DEMOS is an operating system under deveLopment at the Los
ALamos Scientific Laboratory for the CRAY-1 computer [BASK
77). A tJLg or process in DEMOS consists of a program and

its associated state information which incLudes a jjL~
±~in.o The primary mechanism for communicating between user
and operating system tasks is by passing messages over
Linkr. Links are associated with, but maintained outside
the address space of sender tasks and are essentiaLLy one-
way (simpLex) communication paths. ALL operations on Links
are performed by the kernaL of the operatinq system which
insures their integrity.

Appropriate j arj4 LJj are provided by the system for
user tasks requesting operating system services. These are
provided in an automatic and transparent ways one such stan-
dard Link being to a &JLU kOaaL 11"o Switchboard tasks
can arrange to get two or more mutuaLLy cooperating proces-
ses togetherv and since tasks may under certain conditions
pass Link identification information as a messages dynamic
process networks may be easiLy constructed.

Links resembLe capabiLitiest so their management must take
into account many of the weLL known difficuLties of managing
capabiLities. Some of theses such as Lack of controL over
Link passing and Link dupLication have been partiaLLy aL-
Leviated by cLassifying Links into specific types and
restricting specific operations to these types. Other
faciLities incLude Mj , n jajLJ and ;jjLlJ Je. that are
associated with Links in order to provide faciLities for
muLtipLe event handLing and windows into task address
spaces.

The communication mechanism of DEMOS is not pure in severaL
ways. First, data segments are an escape from communication
onLy by messages; and second, conditionaL receives and chan-
neL interrrupts provide an escape from the sychronization
provided onLy by message primitives. Howevert with proper
hardware support these escapes might not be necessary.

Georgia Institute of TechnoLogy IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 93

7.6.2.2 UNIX Process ControL/Comunication

The UNIX system was developed at BeLL TeLephone Laboratories
for the DEC 11/409 45, and 70 minicomputers. The basic
Literature reference to the system CRITC 743 provides a good
explanation of the principLe ideas incorporated in the UNIX
design.

In UNIX9 a process" is defined to be the execution of an
"image" where an image is a computer execution environment,
namely: aLLocated core, register vaLues, open fitles, etc.
Images are smaLL in UJIX9 roughly 32K words + status in-
formation, and the system is oriented around their execution
manipuLation.

Processes are organized in a parent-chiLd tree-structureK within the UNIX system environment. Parent processes can
spawn (create) chiLd processes dynamicaLLy through a jgk
system caLL. InitiaLLy, the chiLd process is a copy of the
parent process but with a different return value from the
fork caLL. The chiLd inherits the parent's environment
(i.e. open files, register vaLues, etc.) but does possess
its own memory image. TypicaLLy9 a chiLd process wiLL
initiate an jlf system caLl which wiLL overlay the chiLd
image with the startup image of a program named in the
caLl. In this manner, a parent process can create any chiLd
process it desires.

The main form of communication between parent and chiLd

processes is accomplished through 9.1211 created by the
parent process. Since the parent's environment is Lost when
a chiLd process overlays itseLft the pipe descriptor must be

passed as an argument to the overLaying "exec" system caLL.
Pipes serve as seript data paths with one "write end" and
one "read end". MuLtipLe processes can write or read a
singLe pipe but data can be intermixed if the pipe is not
Locked on writes. In addition to the pipe mechanism in the
originaL release of UNIX9 new versions of the operating
system aLLow processes to communicate through m.s.aqS4 that
are routed and queued for unique process identifications.
Messages in UNIX serve as a more general form of
interprocess communication than pipes since "unreLated"
processes can communicate using them. For mutual exclusion
and synchronization purposes, the UNIX system provides both

MAul/lianal and "gjMnjjaLq semaphores for use by user proces-
ses.

There are a number of Limitations to the current IPC
mechanisms avaiLabLe in UNIX. SpecificalLyt pipes, because
of their seriaL naturet must be used carefuLLy in order to
avoid mixed streams on the write end or Lost streams on the
read end. In addition, the message mechanism in UNIX
requires the process-id of sending and receiving Drocesses.

A UnfortunateLyt this information is not avaiLabLe through any
system administered switchboard and must be handled b) the
processes themselves in some arbitrary manner. The naming

Georgia Institute of TechnoLogy IPC Workshop

L
------- -.. .

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 94

of processest therefore, is not adequately addressed in
UNIX*

In summaryt the UNIX timesharing system provides a dynamic
and fLexibLe process environment with a high degree of
modularity. Some notabLe shortcomings in the UNIX IPC
facility (in addition tc the problems discussed above) are:
(1) the inabiLity of a process to wait for muLtipLe piped or
message Inputs, (2) the smaLl address space avaiLabLe per
process* admittedLy a PDP-11 imposed Limitation, and (3) the
Lack of any network process management capabiLity.

7.6.2.3 Interprocess Communication In TANDEM

The Guardian Operating System EBART 77) for the Tandim Com-
puters model 16 computer has as its foremost goaL the
maintainance of a faiLure-tolerant computing environment.
Even though the underLying Tandem hardware consists of muL-
tiple computers and multipLe duaL-ported I/O devices, the
operating system is designed to give the appearance to the
user of a unified system through the novel appLication of
several software abstractions.

The first abstraction provided is that of a 2g j.r.2J, Each
processor module may have one or more processes residing on
it, however a process may not execute on any other processor
than the one it was initiaLLy created on. Each process in
the system has a unique identifier or process-id of the
form: (cpu #, process #>, which aLLows it to be referenced
on a system wide basis.

Process synchronization primitives incLude co .in.
ti2hrjj and process Local j.t oLA21. Semaphores may be
only used for synchronization between processes within the
same processor and are typicaLLy used to control access to
resources such as resident memory buffers and message
controL blocks. Event flags are predefined for up to eight
different events and are signaLLed within a processor by
either hardware events, such as device interruptst or by the
function A o ALL event signals are queued so that they
are not Lost if the event is signaled when a process is not
waiting on it, and a process may wait for the first of one
or more events via the function iAI.I. Processes may' also
soecify a maximum time to block which* if exceededi results
in the return of an error condition to the process that
requested it*

The message system used for communication between processes
residinq on different processors uses five primitive
operations: -N I t ISTE U A PL.il 9 L j N and

' AI to implement what can be best thought of as
diaLogues between requestor/server pairs. Messages are
queued for processes and result in the setting of an event

flag for processes wanting to "LISTEN".

Georqia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 95

With the implementation of processes and messages, processor
boundaries effectively disappear* System wide access to I/0
devices is provided by the mechanism of p2jtU "Ir.&l An
I/0 process-pair consists of two cooperating processes
Located in two different processors that control a
particular I/O device. One of the processes is considered
the Oprimary" one and the other the "backup" process. The
primary process handles requests sent to it but sends in-
formation to the backup process via the message system in

' forder to assure that the backup process will have all the
information needed to take over control of the device in the
event of an I/O channel or device error. Because of the
distributed nature of the system, it is not possible to
provide a "block" Gf driver code that could be called direc-
tLy to access the device. While potentially more efficient,
such an approach would preclude access to every device in
the system by every process in the system.

Processes are not grouped in classical ancestry trees. No
process is considered subservient to any other process on
the basis of parentage, and two processest one created by
the other will be treated as equals by the system. When a
process "A" creates another process "B", via a call to the
procedure NEWPROCESS, no record of B is attached to A. The
only record kept is in process B where the creation "id" of
A is saved and is known as B's "mom". When process B stops,
a STOP message is sent to process A. If B wants to know
whether A has stopped it must "adopt" its mom.

The innovative aspects of the Guardian Operating System Lie
not in any new concepts, but in the synthesis of pre-
existing ideas. Of particular note are the low Level
process and message abstractions, By using these, all
processor boundries can be hidden from both the application
programs and most of the operating system. These initial
abstractions are the key to the system's ability to tolerate
failures and provide the configuration independence neces-
sary to run over a wide range of system sizes.

7o6.2o4 Process Communication in Vax

The VMS operating system architecture EDEC 77) supported by
the VAX hardware is a process structured system. Because of
this, the designers of VMS were motivated to look for and
evaluate the utilization of alternate process communication
schemes in order to ease the design and implementation of
VMS. It is significant that this study resulted in three
different mechanisms for process comunication in order not
to force-fit applications into using any one particular
type.

Georgia Institute of Technology IPC Workshop
E,

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 96

The three interprocess communication facilities provided by
VMS are all software implemented. The first facility is ap-
parently used for trusted processes (eog. Kernal processes)
and consists of the notion of e£.ln .Lja.M9 £Myni± lia
g.L.aa1tra and Mi.j that allow boolean combinations of event
flags. Since it is well known that this form of (semaphore)
type communication can be easily abused by naive users it
apparently is restricted only to trusted processes.

The second type of interprocess communication used in VMS

(internal communication) consists of j£fl g regeill gI&uel
that have implicitly associated event flags. This mechanism
serves as a way of passing variable quantities of data
between trusted processes with a fairly high degree of
efficiency. Each user process builds its own buffer (data
packet) and sends it to a "receive" queue, which then sets
the associated event flag for the receiving process.

The third type of interprocess communication mechanism
(generalized communication) consists of primitives for hand-
ling mi2.{1. Mailboxes can also be thought of and im-
plemented as queue or FIFO files, thus they can use the same

rprotection mechanisms as files. Of course mailboxes, like
fiLes, can be classed as both temporary and permanent so
that interprocess communication can take place while proces-
ses are "absent" or dormant, a useful feature for writing to

logged out terminals. In addition, processes communicate
with mailboxes in a fashion similar to record-oriented I/O
thus providing a framework for advanced concepts such as I/O
redirection.

VAX/VMS supports not only processes, but also jobs that
constitute a collection of subprocesses and q=921 that are
sets of processes that share resources. Subprocesses can be
spawned and can have the rights of the creator as well as
the rights of the spawned image thus allowing a form of en-
hanced rights.

It seems that the VMS operating system provides a rich set
of interprocess communication primitives; whether it is a
consistent set and can be managed over the life of the
system remains to be seen.

7.6.2.5 The MuLtics IPC FaciLity

The interprocess communication facility supported by the
Multics system is based upon the concept of tyfrni ifLparnn
The primary purpose of an event channel is to provide synch-
ronization between processes.

Georgia Institute of Technology IPC Workshop

I!
Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 97

Event channels (which can be thought of as a numbered slots
in the ipc-faciLity tables) are either erllnl or

_SILL channels. The event-wait channel receives events that
have occured and awakens the process that established the
channel if it is blocked waiting for an event on that chan-
nel. The event-call channel responds to the occurence of an
event by calling a specified procedure if the process which
established the channel is blocked waiting for any event.

For events to be noticed by explicitly cooperating proces-
ses, event channel identifier values are typically placed in
known Locations of a shared segment. Processes can block

waiting for an event to occur or can explicitly check to see
if the event has occured. If an event occurs before the
target process bLockst the process is immediately awakened
when it does block.

In summary, the event-channel facility in MuLtics provides a
flexible synchronization mechanism. TypicalLyt processes
establish channels and wait for events on one o more of the
channels they have created. The utility of this approach is
clearly demonstrated by the use of the ipc-faciLity
throughout MuLtics for all user process coordination and
terminal I/O handling.

7.6.2.6 Event Counting and Sequencing

Synchronization of concurrent processes is usuaLLy required
for the relative ordering of events internal to each
process. Most currently favored synchronization techniques
such as monitors [HOAR 74) and semaphores involve mutual ex-
clusion, a technique that only indirectly notes the oc-
currence of an event. A alternate set of synchronization
primitives have been proposed by Reed and Kanodia CREED 77)
where a process controls its synchrony with respect to other
processes by observing and signalling the occurrence of

events through operations on objects called £MkL.s.jsnh° An
eventcount is an abstraction representing the number of
events in some class of interest that have occurred.
Operations on eventcounts are: ADVANCE(E) - Signal one
eventl READ(E) - Return the number of previous ADVANCES on
E; and AWAIT(EqV) - Suspend a process until READ(E) >= V.
ADVANCE purely transmits informationg READ and AWAIT purely
observe. In contrast the P operation on a semaphore is not
a pure observation primitive since it can modify the

* semaphore. Pure observation or signaLLing primitives are
* more attractive for use in secure systems [LAMP 73). If

only one process executes ADVANCE operations on an
eventcoynt, ADVANCE and READ can be concurrent. If nore
than one process does ADVANCES, a different eventcount can
be given to each process, and the sum of those eventcounts

gives the total number of events in the class.

Georgia Institute of TechnoLogy IPC Workshop

4

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 98

When mutual exclusion is needed (when events must be ordered
dynamicaLLyt such that the ordering is not known in ad-
vance), a sequencer can be used. A sequencer operates Like
the ticket machine in a bakery, and has one operation called
TICKET, that returns the number of previous ticket
operations on that sequencer. An eventcount and a sequencer
can be used to implement a semaphore. Several eventounts
and sequencers can be used to implement semaphores that al-
Low a process to wait for several different events.

There seem to be at Least two attractive advantages over
other alternate synchronization schemes that eventcounts
have for distributed systems. The first advantage is that
the ADVANCE operation affords a natural broadcast mechanism
to alL processes that might be waiting on an event, because
unlike simple semaphores the signaller need not know the
names of the intended observers. The second advantage is
the avoidance of mutual exclusion where only the relative
ordering of events is required* thus tending to Limit the
amount of serialized code in systems, code that often
results in performance bottlenecks. Eventcounts and
sequencers could be used by an operating system* instead of
user-visibLe semaphores, for implementing more general
interprocess communication mechanisms with shared files and
this mechanism could be made available to the user to coor-
dinate the use of shared resources.

7.6.2.7 Intertask Communication Primitives For PRIMOS

Several intertask communication capabilities currently exist
within the Prime operating system (PRIMOS), Both
j-0/nLjQfk, and £2MntiJ11n semaphores, are implemented at the
microcode level, and are available for system and user
tasks. In addition to these basic synchronization
primitives for communication between processes on the same
processor PRIMOS supports a set of PRIMENET inter-process
communication capabilities based on x.25 flavored "virtual
circuits". These capabilities allow a user process to
establish a full-duplex virtual connection to another user
process whether local or remote.

Virtual circuits can be managed at the user program level by
the proper use of a collection of subroutine calls to PRIMOS
and provide a "Level 3", X.25 Interprocess Communication
Facility (IPCF),

The major services provided are for forming a connectiont
breaking a connection and transmitting or receiving data.
GeneratLy, two different forms of a service are provided.
The first form is an abbreviated calling sequence, with only
a minimum amount of information needed to be supplied by a
user in order to establish and use a virtual circuit. The
second form is a more detailed one that allows a user full
access to all fields of the X.25 "Level 3" defined packet

Georgia Institute of Technology IPC Workshop

- - I I.

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 99

formats. The Latter form is Intended primarily for users
wishing to form X*25 connections to non-Prime hosts on
PubLic Data packet networks.

ELeven network primitives currently compose PRIMENET and
provide capabilities to: estabLish status as a network user
(XSASGN), estabLish a network connection (XSCONN), get Local
connect information (X$GCON), accept a connection (XSACPT),
clear a connection (X$CLR), hand off a connection (XSGVVC),
receive via a connection (X$RCV), transmit via a connection
(XSTRAN), wait on transmit or receive (XSWAIT), get network
status (X$STAT), and terminate network user status (XSUASN).
This set of PRIMENET primitives is based upon the X.25
protocol and is due for release under REV 17 of PRIMOS. The
chief shortcoming to the current PRIMENET set of primitives
is the inability to support muLtipLe readers and/or multiple
writers per connection.

The addressabiLity defined in the basic X.25 specifications

refers only to a single 14-digit address per host, although
it is not uncommon for a host (Like PRIMOS) to handle mul-
tiple processes and users. Therefore, in order to decide
which user or operating system service should control a con-
nection, each incoming "call request packet" in PRIMENET
must specify a network "port." This port, coupled with the
14-digit address of the target system, designates a target
process.

Each host in Ringnet has a pool of 255 available ports that
may be assigned to any process on a first comet first served
basis by a call on the operating system. However, only
ports 1 through 99 are availabLe for users; the rest are

reserved for system use. Permanent port assignments to a
process are possibLe by controLLinq the order in which
processes are initiated just after system startup; other-
wiset there is no absolute guarantee that a particular
process is associated with a given port number.

The short form of the initiaL connection protocol uses an
ASCII host name (e.g. "ENG.150) instead of the Long 14-
diqit address and a port number previously acquired by the

target process. The "connect" function is typicaL of the
IPCF primitives and the request for it is shown as a partiaL
example of how a circuit is formed at the program Level.

CALL XSCONN CVC10, PORT, ADR9 ADRL, VCSTAT)

The variable ADR points to a string containing the name of
I. the intended host (i.e ENG.15), ADRL contains the Length of

the name (6), and VC STAT represents the status of the
requested service. Upon completion of a successfuL connec-

tion, a "virtuaL circuit identifier" (VCID) is returned that
-can be used for the subsequent transmission of data. Incom-

ing calls for a particular port in a host are queued on a
first come first served basis. Information concerning a
call request at the head of a port queue can be obtained via

Georgia Institute of Technology IPC Workshop4

1- ------ -
Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 100

a system caLL, so that connections can be accepted, refused,
cleared, etc. Calls are kept pending for 90 seconds, during
which the requestors' status is that of "connection in
progress." Other X.25 services are provided to users that

,aLLow for waiting on the compLetion of a network event* ac-
cepting or cLearing a caLL, passing off a virtuaL circuit to
another process in the same hosto and obtaining status in-
formation about a particular circuit.

At a Level above the PRIMENET primitivesi PRIMOS supports a
remote-Login capability (RLOGIN) and a network file-access-
method (FAM). The FiLe Access Manager (FAM) is a PRIMOS
subsystem that extends the functions of the PRIMOS file
system to a network of hosts. VirtuaLization of the file
system is accomplished by permanently assigning a port (255)
to the Local FAM process of each hostt over which virtual
circuits to neighboring FAMS are used to accomplish remote
fiLe operations on behalf of a user.

A FAM process in a host fields requests from Local users for
fiLe operations on remote hosts, handles incoming file
requests from remote hosts, and maintains status and update
information concerning the current state of network connec-
tions and file system devices. When the PRIMOS supervisor

* decides that a particular user request is destined for a
remote deviceg it queues the request for the Local FAM
process and suspends the user. FAM packages this request in
a message and passes it off to the appropriate remote FAM9
which performs the requested fitle operations on behalf of
the user. The remote FAM process sends the originaL request
and the requested data back to the Local FAM, which copies
the returned values into the user's address space and causes
the user to be rescheduLed. Because certain file primitives
are guaranteed to be "atomic" operationso all fiLe functions
are performed to completion just as if they occurred Local-
Ly9 even if they require multiple messages or updating of
Local supervisor tables.

Since both Local and remote operations on a particular file
are handled through the file system of the host that owns
the particular fiLe, all of the normal fiLe protection and
other mechanisms, such as Locking a particular record while
writing, are automaticaLLy accomplished. AppLications using
remote data as weLL as Local data run without any change.

In a simiLar fashion, the abiLity of a user to "remoteLy
Log-in," as if their terminaL were physicaLLy attached to
the host of their choice, is achieved by the operating
system multiplexing all remote terminaL traffic through port
"0." When a user "Logs in," they may designate a system to

S - be attached to as:

LOGIN SMITH -ON ENG.15

At this point the Local Login server establishes a virtuaL

circuit to the target host and requests the initiation of,

Georgia Institute of Technology IPC Workshop

LL

i - -- _j _ *, , -...

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 101

and connection to* a process in the remote host. From then
on the Local terminal buffers are effectively diverted to
the input and output buffers of the remote process running
on the selected node.

A proposal for an implementation of 2jjal& CSCHE 783 was
discussed as an alternative to virtual circuits. The pipe
mechanism does aLlow multiple readers and multiple writers
and thus, together with the X.25 PRIMENET, would facilitate
most applications that demand IPC facilities incorporating
muLtiple readers and writers.

In summaryt the current PRIMOS interprocess communication
capabilities allow Local and remote process cooperation
through X.25 flavored "virtual circuits", in addition to the
semaphore primitives for Local communication. These "point-
to-point" mechanisms may not suffice for distributed process
applications demanding N-process protocols; however the set
of applications demanding such protocols at this time seem
small.

7.6*3 Cojusaj A" Futu Di±LLtiolfl

As this report has iLLustrated, the process concept has
become increasingly centraLt in recent years, to the design
of computer systems both at the hardware and software
Levels. There are many reasons for this deveLopment, two
important ones being: (1) the continuing decomposition of
systems and applications problems into sets of cooperating
parallel programs for greater modutarity, functionaLity,
fLexibiLitys and maintainability; and (2) the increasing
cheapness of processors and memory allowing the assignment
of processeseto processors in an economical way. As proces-
ses have become "cheaper" to create, maintaint and destroyt

the fLexibiLity, scope, power, and economy of interprocess
communication mechanisms has become increasingly central to
the effectiveness of muLti-process systems.

A wide variety of mechanisms for interprocess communication

have been surveyed in this report. Perhaps the major reason
for such a variety comes from a desire to provide in one set
of primitives: (1) flexible process synchronizdtion tooLs,
(2) data transfer mechanisms, and (3) communication control
and error recovery. Some of the major issues involved in
the design of interprocess communication mechanisms are
briefly discussed below.

I.
1. r2sklh hj in. Many systems have inadequate

facilities for identifying names of processes
within the same host, Let alone for processes
residing on different hosts. Part of the
problem stems from an inconsistent view of
the relationship between the set of allowable

names for fiLes, devicesq processes, users,

Georgia Institute of Technology IPC Workshop

.. | 1 I I II9

. .~.-- --d.

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 102

maiLboxes, generic system services* and
specific system services. UntiL this probLem
is settled the design of specific
interprocess communication primitives cannot
focus on the set of fundamental objects that
they wiLL be dealting with* This is a
difficuLt issue* since it is here that many
of the system security issues are also ad-
aressed.

2. C2DtC2 U Linki§ Ilt.ML PreL.se: ControL
of communication paths between processes fun-
damentaLLy depends upon the nature of process
relationships. If process reLationships are
tree structuredo then the status of a chiLd's
communication with other processes might be
monitored and controLLed by the parent. On
the other hand, if each process wants to
maintain the concept of sovereignty then the
basic chaLLenge is how to provide the abitity
for cooperating processes to estabLish a
monitor process that is capable of controL-
Ling the communication paths between them.

3e f2DL.L Qt 2QA fM "jtlJX ES..Jj1i: The

need for a fLexibLe set of operations to
control data-fLow between processes is of
major importance in the desiqn of IPC
mechanisms. This issue invoLves providing
processes with the abiLity to: control muL-
tiple Links, respond to out-of-band signaLs,
receive/transmit/fLush stream and message
data types, and receive/transmit Link
capabiLities. A number of ag.ditionaL
capabiLities might also be considered, such
as aLLowing processes to define data-type-
Links that facilitate the passing and
manipulation of complex data structures.

4e syntiraniLzilian 21 ftrmaai: Clearly, a
major function of interprocess communication
is to provide either expLicit or impLicit
synchronization between processes* EarLy
forms of interprocess communication depended
only on the correct use of expLicit synch-
ronization primitives for sharing sections of
main memory. In some systems* temporary
fiLes serve as synchronizing points between
job steps (impLicit), whiLe in other systems
processes synchronize and exchange data by
signaLLing (expLicit). Whether expLicit or
impLicit synchronization primitives should be
provided is sti.LL very much an open Question.

- . Georgia Institute of TechnoLogy IPC Workshop

N -- , -'!- - . .

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 103

With the advent of cheap communications and distributed
systems these issues are becoming more important each day to
both the manufacturers and users of computer systems. A
workshop addressing IPC design is, therefore, scheduled to
be held in AtLanta, Georgia* on the 20-22 of November, that
will bring together a seLected group of researchers in this
subject area to address the five general topics Listed
below:

(1) Assess the present state-of-the-art for IPC
mechanisms in distributed data processing
systems.

(2) Identify the data avaiLabLe on the actual
performance of various IPC poLicies and
mechanisms.

(3) Assess the potentiaL value of various IPC
mechanisms satisfying the operational and
performance requirements for highly
distributed systems.

(4) Identify shortcomings in the present state-
of-the-art and identify promising areas for
future research and experiments on this sub-
Ject.

(5) Identify possible standardization LeveLs in
IPC design.

Some of the issues the workshop is intending to examine in
detailt are: addressinc issuest hardware supports transport
mechanismst fLow tontroLt out-of-band signaLling, fault

tolerance, security, synchronization, and performance and
application programming impact. Prime Research is actively
participating in this workshop which also has the support of
both IEEE Computer Society and the three ACM Special
Interest Groups, SIGOPS, SIGARCH and SIGCOMM.

In conclusion, there are far reaching ramifications to the
demand for, and the development of, interprocess communica-
tion facilities and cheap processes. At the user LeveL, a

* greatly enhanced system functionality and fLexibiLity can be
achieved, and at the operating system and hardware LeveLs,
the need to efficiently support this functionality is Lead-
ing to new architectures and OS designs. As the section on
PRIMOS in this report suggests, Prime is developing new IPC
mechanisms for the enhancement of current systems and is at-

tempting to incorporate some of the ideas developed in other
systems. In addition, as new computer architectures are ex-
plored at Primes the need to include hardware support for
critical IPC functions is an area that requires study and
understanding.

Georgia Institute of Technotogy IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 104

7o7 DLT COMUNCATION IIML

DATA COMMUNICATION SOFTWARE

by

Go Lo Chesson
BeLL Laboratories

I n±.! Lt oMU_

Distributed computing environments are based upon* and whoL-
Ly depend upon, data communications. ALthough there exists
a sizable and growing hardware technoLogy for data com-
municationg software has not generaLLy kept apace in recent
years. Better software tools and techniques are needed in
order to experiment with the new hardware devices that are
avaiLabLe in the Laboratory as weLL as to improve the
capabiLities for cooperation between our normaLLy monoLithic
operating systems. These notes outline the direction and
status of communication-oriented software research with the
context of the 7th edition of the UNIX operating system.

SeveraL software components are being experimented with in

computer systems at Murray HILL, including a PDP-11/459
11/709s, an Interdata 8/329 and LSI-119s. Some of the
software is part of the UNIX kerneLt or resident operating
systemt and the remainder consists of programs that utilize
the new kernel facilities. The software components in the
kernel include:

1) primitives for managing intermediate-sized
contiguous areas of kerneL data space,

2) a "packet driver" which can be used to impose
framing, sequencinqg checksumming, and
retransmission procedures on a character
device,

3) muLtipLexed and non-multipLexed interprocess
communication channels.

The salient characteristics of these components are
described in the next three sections. The organization of
the higher-LeveL codes which use these components wiLL not
be discussed here.

I. The previously existing space-management procedures in the
UNIX kernel were used to implement the terminal character
Lists and the disk buffer cache. Since the size of an at-
Location permitted by these routines is either one byte or
512 bytes, it is not surprising that an additional mechanism
was needed for data communications. There are but two

TN * Georgia Institute of TechnoLogy IPC Workshopf
I,

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 105

primitives needed: one to aLLocate and one to release. The
new primitives manage contiguous memory segments that are
some multtipte of 32 bytes in size up to a maximum of 512
bytes.

It was intended that the buffer management primitives be
fast enough to be invoked from within interrupt routines.
This means that recombination or garbage coLLection must
aLso be capable of being done at interrupt time. These
considerations Lead to a strategy which employs a few

* judiciousLy chosen bit-map tricks In conjunction with the
constant aLLocation sizes mentioned above.

The aLLocator may be caLled with a flag which directs
whether it should sleep when space is not avaiLabLe or
whether it should return a faiLure indication. This was
buiLt in because the aLLocator must not be aLLowed to sleep
when caLLed from an interrupt routine. However, it may be
equaLLy distressing to have it faiL. Current practice in-
volves buiLding strict space bounds into interrupt processes
that cannot Live with aLLocation faiLures. This way space
requirements are known in advance* and the aLLocator is used
to dedicate a private buffer pooL where it is needeo.

ALthough the new space management primitives are usefuL for
aLlocating "ordinary" I/O buffers, their reaL usefulness is
in supporting the fifo queues needed for data rate baLancing
between readers and writers. Because of the address-space
Limitations of the PDP-11, memory is a criticaL resource,
and it is not possibLe to devote as much space to data
queues as many high-bandwidth appLications require. As the
software described below matures, it wiLl become necessary
to extend fifo mechansims to secondary storage or to non-
kernel memory space. The .methods used in the current
primitives can, and probabLy wiLl, be applied in these other
circumstances.

The packet driver consists of a group of routines simiLar in
name and function to the parts that make up the typewriter
control software; nameLy, there are open, close, read,
write, ioctL, read interrupt, and write interrupt entries.
A software switch, caLLed the Line-discipline switch, placed

at the proper Locations in a character device driver selects
whether a caLL should be made to the standard system control

routines, or to the corresponding entries in the packet
driver or other Line-discipLine. This switch mechanism may
be thought of as a bidirectionaL filtering process which may
be seLectiveLy inserted between a device driver and a user
program.

Georgia Institute of Technology IPC Workshop
4.

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 106

The packet driver is designed to operate character devices
in a packet mode with the error checking and flow controls
that are necessary for reliable data communication. The im-
pLementation is organized so that flow control functions are
at a high Level and are independent of framing and other
details of Link control. This means that device charac-
teristics are transparent at the flow control LeveL, aLLow-
inq the code to be used in different contexts - e.g. with
both bit-oriented and byte-oriented Lines, or DMA and non-
DMA devices. ALsot implementations exist for the UNIX ker-
neL, as a user-Level subroutine package, and currently for
one non-UNIX system. Emphasis has been placed on Learning
how to produce communication software that is operating
system-independent as weLl as machine-independent. In prac-
tice this means that the packet driver implementations
Listed above consist of protocol routines which are common
in all cases pLus io and clock routines which are system
dependent. Since protocol changes invariabLy affect only
the common code, the Logistics of making network-wide im-
provements or repairs simplify to updating a common file and
reloading the appropriate system programs.

There exist numerous Link control and flow control
*procedures, however they were judged not suitable for our

uses for a variety of reasons. Some typical complaints are
that flow control procedures are not really end-to-end, pac-
ket formats are complicated and verbose requiring a fair
amount of reaL-time scanning, multiplexing is usuaLly
defined in immutabLe ways, and error controL, framing, muL-
tipLexing, and flow control are usually mixed together
instead of being separated where possible. These
considerations Led to the following:

1) fLow control is based on a sliding "window"
of sequence-numbered packets. The numbers
are moduLo-89 the maximum window size is 7,
and the window sizes are controlled by the
receivers. The retransmission strategy uses
either "go-back-N* or selective single packet
retransmission at the receiverts discretion%

2) packet sizes and window sizes are negotiated
oetween two communicating packet drivers.
The packet and window sizes in each direction
need not be the same.

1) packets may range in size from 32 bytes to a
maximum of 4096 as determined by the formula
32 * (2 ** k) where k is an integert 0 < k <
7.

4) aLL message headers are the same sizet unlike
X.25 and other similar protocols.

5) it is possible to multiplex the Link at the
packet Levelt or within packets, or both.

" Georgia Institute of Technology IPC Workshop

4,

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 107

The software overhead of running the packet driver on 9600
baud Lines is quite low. The implementation is efficient
enough that data rates exceeding 50K baud have been
demonstrated with this software using a a POP-11/45 and non-
DMA devices. As one would expect the overhead at higher
data rates consumes the available cpu resources. For this
reason the packet driver is Looked upon as an algorithmic
testbed and intermediate step toward improved computer
peripheral hardware for communications.

?_____ I

Multiple independent asynchronous data streams and events
comprise the greater part of the environment for data com-
munication software. It has been observed many times that
"blocking" I/O as implemented in the UNIX timesharing system
does not provide direct methods for dealing with these
entitiess and there are sound architectural reasons why it
does not. Nevertheless, a process that must read from more
than one source souLd not have to wait on idle data sources
since input data will be missed or delayedd on Lines that

V .are actively producing data while the process is blocked.
(It is assumed that polling techniques are unacceptable.)
Alsot the flow-control scheme used throughout the system
causes writer to block if the total amount of written data
exceeds a threshold. Such processes sleep until the
corresponding reader (process or device) consumes some or
all of the waiting data. A communications process typically
must write to several processes and/or lines at once. It is

somewhat inefficient to force such a process to block on a
"slow" device or process when there are other readers that
can be written to. Thus it would apppear that an operating
system must provide techniques for dealing with asynchronism
and blocking or flow-control problems as well as supply a
useful means for establishing data bpaths between the
various data sources and sinks. The mechanism outline below
accomplishes these immediate goals in a simple and direct
manner.

Two entities are defined: channels and multiplexed chan-
nelst also called channel groups or groups due to the
similarity with existing notions in telephony. A channel
consists of a pair of full-duplex communication paths. One
pair is designated as the "data" path and the other as the
"control" or "signaling" path. This architecture explicitly
recognizes the need for what is usually called "out-of-band"
signalling by dedicating a communication path for the

I. purpose. In the implementations each path has some amount
of fifo or data queuing built into the transport mechanism.
However, the actual data transport is dealt with indirectly:
in order to avoid unnecessary copying of data from place to
place within the system, the data is placed somewhere using
a buffering mechanism, tokens indicating where the data can
be found are passed from place to place. This decoupling of

Georgia Institute of Technology IPC Workshop

4

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 108

the fifo and buffering functions from the data transport
mechanism increases the efficiency of data movement and
permits insertion of or tuning of buffering mechanisms in a
transparent manner.

A channeL can be thought of as a software null-modem: a
null-modem consists of two pLugs connected by some wires
(fifo/buffering) so that data and signals transmitted at one
plug are received at the other and vice versa. In the hard-
ware world one may connect computers, computer terminals,
and various other digital devices to one another via null-
modems. In the software world one may attach processes,
devicesv other channels, and groups (see below) to the ends,
or plugs, or a channel.

The multiplexed channel construct is a bundling mechanism
("Bundling" is a convenient term to describe a construct
which fans-in, fans-out, or otherwise merges data. Examples
include the PORT mechanism developed at RAND and elsewhere,
certain aspects of the C.mmp system, and the UNIX timeshar-
ing system tee command.) which supplies both a multiplexing
discipline for merging data from many channels and the in-
verse mechanism for sending data to the individual channels
in a bundle, or group. A process can arrange to have
various devices and processes "plugged-in" to the ends of
channels and bundle all the opposite endings together in a
multiplexed channel, or group. In this way a read command
issued on the multiplexed channel will return any and all
data (up to the requested limit) available from all the at-
tached channels. This eliminates the blocking reader
problem mentioned above.

It is possible to bundle the multiplexed stream associated
with a group into another bundles or super-bundle. This al-
lows tree-structured data path networks to be built up. The
maximum tree height and fan-in at each group is fixed at 4
and 16 respectively. By numbering the channels bundled into
a groupt a unique name for every possible tree node is
defined as the pathname, or sequence of channel numbers
encountered along a path from the "top," or rootq of the
tree to any particular node. The pathname or sequence num-
bering of a particular node is referred to as an index. (An
index is represented as a 16-bit quantity interpreted as a
sequence of 4-bit numbers.) ALL exchanges between the
operating system and a process owning channels and groups
are carried out using indices.

Multiplexed channels are created using the following C code:

fd = mpx ("name",mode);I.
which has the same effect as crest ("name",mode) in that
"name" is placed in the file system. In addition reads and

writes on "fd" are translated by the operating system into
I/0 operations on channels attached to the group.

Georqia Institute of Technology IPC Workshop

6

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 109

I/0 operations on a group are carried out via the standard

UNIX timesharing system calls:

cc = read (fdobuftcount);

cc =write (fdtbuftcount);

The contents of "buf" are a concatenation of some number of
variable-Length structures each having the form of an index
followed by a byte count followed by the indicated number of
data bytes. (Control channel data is distinguished from
data channel data by an escape convention based on the mes-
sage byte count. If the count indicates a zero-Length mes-
sage, then the actual byte count follows the zero and is in
turn followed by control channel data.) The "buf" formats
for reading and writing are identicaL, and in both cases
"cc" indicates the number of bytes actually transferred out
of a total request of "count" bytes. (Another form of write
is provided in which "buf" consists of indiceso byte countst
and pointers to the actual data. This format reduces the
buffer filling overhead on output and improves the per-
formance of certain programs.) On write operations if "cc"
< "count" and the contents of "buf" were destined for more
than one channeL, then it is known that at least one channel
fifo threshold was exceeded or some error condition was
encountered. Precise information can be obtained by reading
the group because the system mmediately passes back status
information. The index numbers of blocked channels and the
number of data, one ,essage for each blocked data channel.
When the previously written data is finally consumed,
another control message is sent to the group owner indicat-
ing the readiness of a channel to accept data. These "bloc-
king" and "unblocking" messages allow a process to continue
to serve channels even though it temporarily cannot transmit
to all Its channels. A complementary function is provided
whereby a process can enable or disable incoming data trans-
fers on selected channels.

If "d" is a character device file descriptor obtained via a

call resembling

d = open ("/dev/name"92);

then a channel can be created and the character device at-
tached to the channel by executinq

ch = join (dgxfd)*I.
where "xfd" is the file descriptor for the multiplexed chan-
nel and "ch" is the new channel number.

Georgia Institute of Technology IPC Workshop

L

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Paae 110

Multiplexed channels may be joined or Obundled" to other
channels by using the join primitive as outlined above and
letting "d" be the file descriptor of a multiplexed channel.
There are additional primitives for "unbundling" and
manufacturing file descriptors that map into channels.
Moreover the non-multiplexed file descriptors for channels
may be used as the standard input or output for any UNIX
program. (The multiplexed file dexcriptors provide direct
access to the control paths of channelst but this not
meaningful for the non-multiplexed case. Currently, ioctl
commands on the non-multiplexed end of a channel are treated
as messages on the control path of the channel.) The
preceding discussion indicates how channels and devices can
be attached to groups. It remains to indicate how channels
are attached to processes. There are two techniques. One
involves using the extract primitivet which is a converse of
the join operationg to manufacture a file descriptor from a
channel. Using standard techniques found, for example, in
the UNIX shell one arranges fro an extracted file descriptor
to be the standard input and output for a new process by
executing UNIX close and dup calls usually followed by
fork/exec. The second method has more interesting
properties - if "name" is the name of a groupq then

fd = open ("name"92);

triggers the following sequence of events:

1) the kernel notices that an open is being done
on a group rather than an ordinary file.

2) if a new channel cannot be joined to the
qroup or if the process which created the
croup is no longerrunningg the open fails im-
mediately.

3) otherwiseq a message is sent on the control
channel of the group to the owner process
stating that an open was requested. The
effective UID of the opening process as well
as the index, xv of a new channel are
included in the message.

4) the owner process may respond with either at-
tach(x) or detach(x) which respectively com-
plete the job of hooking channel x between
the group and returning file descriptor fd,
or cause the open to fail.

An open sequence as described above results in the creation
of a channel. The file descriptor returned to thr process
executin ght open will be "plugged-in" to one end of the
channel, and the other end of the channel will be attached
to the group. A read on the file descriptor will be satis-
fied by writing on the channel through the group, and con-
versely for writing on the file descriptor and reading the
group. An immediate application of this facility is in im-

1'" Georgia Institute of Technology IPC Workshop

4

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 111

ptementing vlrtvaL terminalst or a "telnet server" as it is
called by the Arpanet community. A process first
establishes a group and arranges for one channel to be a
data path to a similar process runing on another computer.
If the remote process sends a message asking that an
interactive environment be estabLishedt then the Local
process forks, opens its own groups and starts up the shell
with the file descriptor returned from the open as the stan-
dard input and output. Meanwhile the original Local process
arranges to copy data from the newly created channel to the
remote computer and vice versa. Of course there are certain
niceties involving access permissiong process qroups, and
other details which are not explained here, but they can all
be handled neatly within the channel/group organization.

The method outlined above provides a form of "port"
facility. Its main disadvantage is that one must know a
port name. System or network-wide services would presumably
have well-known names, but it is important to have a class
of unbound names that the system can recognize. Interpreta-
tion of such names might require searching for a remote
machine having a certain service facility or might require a

simple translation of some sort. In order to accomplish
fthis a mechanism has been established whereby a multiplexed

channel may be designated as the unique interpreter for all
such unbound port names. In the operatinq system any open
requests on names containing "!" are treated as open
requests on the special channel. One use of this mechanism
is to treat "namel!name2" as a request for a file with name
name2 on a machine designated by namel. Since strinqs of
this form may be passed in to any program on the system, one
may write

diff machinel!filel machine2!fiLe2

and exoect the UNIX diff command to be run with input from
machinel and machine2.

For some applications the bandwidth that can be achieved by
implementing data stream switching between channels in a
user process, implying a copy operation from the kernel to
the switch process and back to the kernel and then a final
copy to the destination process or device* may be quite
adequate. The primary example is the virtual terminal
scheme outlined above. However this is not true for many
other applications especially those involving file transfer
or file access. For these cases a connect primitive is sup-
Plied which establishes a "short-circuit" connection in the
kernel between a channel and file descriptor. That is, at
the place in the operating system where data buffered in a
channel would be copied to a user process as part of a read
operation, the data is handled as thouqh a write on the file
descriptor had been done. The connect primitive specifies
whether the symmetric short-circuit path is also meant to be
established - that is, whether writes on the file descriptor

should induce a direct copy to the agent reading the "other"

Georgia Institute of Technology IPC Workshop

b

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 112

end of a channel. A disconnect operation is also provided
to break open short circuits.

The semantics of carrying out a normal open call on a mul-
tiplexed channel name provide a useful range of interprocess
communication capabilities. This is what one expects from a
process communication system. However, by making sLight ad-
justments to the name recognition algorithms in the system a
wider class of file names can be "trapped" by the open
routines in the kernel and passed as messages to a program
for further interpretation. This comprises a very powerful
mechanism for distributing system functions in interesting
and useful ways: once a channel has been established via
this name translation procedure, subsequent I/O on the chan-
nel by the process can be redirected to other computers or
other process at will and without modification to the
initiating proqram.

GuW

!9

I.

iGeorgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 113

7 *8 DISTIBUTELD S N lIGNALLIli

DISTRIBUTED INTERPROCESS COMMUNICATION AND SIGNALLING

by

Go Le Lann
IRIA/SIRIUS

7.8.1Ju lb eea otx

Let us consider a system including several processors being
Linked together through an interconnection structure. We
wiLL distinguish between processors being accessed by exter-
nal users who wish to initiate activities and processors
which run these activities and may return results to some
external users. Initiation of activites, execution control

Vand transmission of data are accomplished through transmis-
sion of messages. In the foLLowing, we wiLL refer to these
processors respectively as senders and receivers of messages
(see figure 1). We wiLL not make any assumption regarding
the size of these messages.

Ie

I.

GOeorqia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND,EXPERIENCE Page 114

Figure : A S atic Rearementation gf th haSyst

I_ I-----------------)

I i -------- I --------- I

S---------------

I lI II R I
I _ 1I -I >1. _1

>I
IR

>11 I

IS,---------- -----
senel Ine reevr

-I- - - - >

I ----- II------------I

-I sendes aI I-------- -I I I I I
SI I I I I-

II---------- >"-
I l I InlIII_.._ _I_ _I I_ _

senders interconnecton receivers
structure

-- -- -- -- -- FLow of messages

Our assumptions wiLL be:

- senders and receivers may be micros mini or
maxi rocessorss

- these processors may fail,
- the interconnection structure is any resilient
hardware structure (using alternate routes in

telecommunication networks, mutiple
busses/cables in multiprocessors/multi computers,

radio frequencies, etc.,
- errors, dupLicates and losses are possible dur-

ing the transmission of messages,
- message transit delays are variables
- there is no privileged processor in charge of

handling either communication or interprocessor
cooperation.

We would Like first to describe some of the probLems we see
to exist in such systems and, second, to present a solution.

1- Georgia Institute of TechnoLogy IPC Workshop
4nttueO

97

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 115

7.8.2 1h Proahemk

7.8.2.1 RuLtipLe Sender/SingLe Receiver Systems

Let us consider a system as depicted in figure 1 but incLud-
ing only one receiver. We can identify two different
probLems:

i) for any sender, it may be necessary to
maintain a strict sequencing of messages be-
ing sent to the receiver

ii) the various message flows converging at the
receiver may have to be serviced by the
receiver according to a particuLar
discipline, which may be dynamicaLLy changed
and not be known staticaLLy or guessed by the
receiver.

ProbLem (i) is a problem of end-to-end signaLLing or singLe-

path signaLLing (sps). SoLutions to the sps problem are
weLL known. The "window" technique is an example of such a
soLution.

ProbLem (ii) raises the issue of muLtipLe-path signaLLing
(mps) that is the problem of seriaLizing incoming messages
issued in paraLLeL by different asynchronous sources. A
mechanism is needed whereby senders may enforce distantLy a
particular serialization of messages at any time. For exam-
pLe, this is needed when two senders A and B wish to
establish a particuLar ordering for initiating activities

(e.g., A before B).

7.8.2.2 MuLtiple Sender/MulttipLe Receiver Systems

Let us now consider a system incLuding several receivers.

We wiLL distinguish between two cases:

i .)iiz F g1DgJ.1 gzjIki

Major motivations for running several
identicaL receivers are to make the system
abLe to survive receiver faiLurest to provide
for a geographicaLLy dispersed but unique ac-
tivity visible from various Locations

|- (receiver areas), or to relax constraints
regarding system maintenance.

The serialization of incoming messages
(either fortuitous or enforced) must be
unique for aLL receivers. This is an mps
problem.

Georgia Institute of TechnoLogy IPC Workshop

. . .II

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 116

ii) ELAL y CnIAnn us±s±ez 2IgX11tign

These systems incLude severaL receivers run-
ing activities which may be strictLy
identical for some of the receiverst as weLL
as activities which are different for aLL
receivers.

In addition to the motivations already mentioned, other
reasons for considering such systems are to provide for
various activities being run in paraLLeL and to aLLow for a
modular and dynamic growth of the system. In these systems,
an activity being initiated by a sender may span severaL
receivers. This raises the need for coordinating the
various individuaL seriaLization processes over these
receivers* FinaLLy, according to user requestso the mapping
between senders and receiversq ioe. the need to set and
reset cooperation paths between senders and receivers witLL
be constantLy changing with time.

To summarize, we want to maintain a unique serialization of
incoming messages for those receivers which act as *twins.*
In addition to thist we want to be able to achieve:

- For every receiver, a specific and Local
seriaLization of messages in step with the
dynamicaLLy changing subset of senders it is
cooperating with

- decentralized coordination between those
receivers which have to seriaLize messages
related to muLti-receiver activities in order to
avoid conflicts between such activities.

This is again an mps propLem.

7 *68*3 Looking frL & Sj~ujjfl: Beiuremuats

PotentiaL advantages of distributed computing systems are
numerous. Howevert it is not so simpLe to find a soLution
to a particuLar design problem which does not annihiLate
some of these advantages. A number of requirements which
are considered to be of primary importance for a
"distributed soLution" to the mps problem are Listed below.

I.

Georgia Institute of TechnoLogy IPC Uorkshop

p "]

BZ

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 117

7.8.3.1 ParaLLeLism and Response Time

A solution shouLd take fuLL advantage of the paraLLeL nature
of the system; paraLLeLism in processing as weLL as in com-
munication may resuLt in a good resource utiLization ration.
This has a non-negLigible impact on system costs and
response time.

7.8.3.2 Resitiency

A soLution should survive failures. ActuaLLy, we need a
more precise measurement of such a property which wouLd ex-
press the number of simultaneous faitlures a soLution may
survive. This is the notion of resiLiency.

7.8.3.3 Overhead

Costs of a soLution may be Lowt monstroust or acceptable.
It is necessary to evaluate overheads as regards traffic
(number and size of additionaL messages), processinq (handL-
ing of additional messages) and storage (for "controL" in-

r - formation).

7.8.3.4 Permanent Rejection

When confLicts occur (between "simuLtaneous" activitiest for
exampLe), how does a soLution Lend itseLf naturaLLy to avoid
infinite waiting, without resorting to any exotic or ad-hoc
mechanism?

7.8.3.5 Fairness

Again, when conflicts occur, a soLution shouLd not favor
systematicaLly the same processor(s).

7.8.3.6 ExtensibiLity

If a soLution may keep on working under dynamic system
reduction (faiLures)t then it is necessary to show how this
soLution matches the requirement of dynamic system ex-
tension. What this means is that it shouLd be possible to
reinsert or to add processors to the system without disrupt-
inq the functioning of the system.Io.

Georala Institute of TechnoLogy IPC Workshop

- I I I

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 118

7.8.3.7 Siopticity

When time has come to implement a system, probLems of under-
standingo specifyingo debugging and maintaining the software
corresponding to a particular solution become preponderant.
This Last requirement may well be one to Look at very
carefully when considering to build a real system.

7.8.4 A Sokulion

We have seen that an mps mechanism is needed if one wishes
communications between several senders and receivers to ex-
hibit some specific properties* Obviouslyt signalling in a
distributed system will be accomplished through the exchange
of messages, i.e. signalling will rely on communication.

This apparentLy recursive problem requires some structuring.
we will then assume that any convenient technique is used in
the system for solving the sps problem.

On top of this "Layer," we wiLL build our mps mechanism.

I7.8.4.1 A Virtual Ring Structure

Sending processors are given permanent identities. If n is
the predicted maximum number of these processors, identities
will be integers belonging to the interval [0, n - I]* As a
result, it is possible to view these processors as being
sequenciaLly located along a virtual ring. Each processor i
has a well known predecessor and a well known successor, i -
1 and i + 1 in the absence of failure (the marks - and +
stand for operations modulo n). There is no assumption made
regarding the mapping of processor identities on physical
addresses. In other words a virtual ring strructure does
not assume any particular physical topology.

As processors are Located on a virtual rinq, it is only
needed for each of them to know the identity of their
respective predecessor (pred) and successor (suc).

A permanent and virtual communication path is established
between adjacent processors. A message sent on such a path
may travel over different physical Links as provided by the
interconnection structure. Specific techniques may keep the
failure of a particular link transparent to processors.
Howevert occurrence of one or several failtures may preclude

communication between adjacent processors. Cetection of a
* - communication path breakdown as well as detection of a

processor failure can be achieved by usinq one of the fol-
Lowing techniques.

Georgia Institute of Technology IPC Workshop

6

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 119

7.8.4.1.1 Mutual jksjjion
Every processor sends reguLarLy "Life messages" to its suc-
cessor on the ring. These messages should be acknowledged.
If the successor fails to return acknowledgements for a
given period of time, it is declared dead and its predeces-
sor undertakes a ring reconfiguration. ActuaLLy, there is
no difference between an abnormal behaviour of a successor
and a breakdown of a communication path. In both cases* the
successor shouLd not be maintained on the ring.

Acknowledgement of Life messages is bound to some internal
checking procedure which, if successfuLt indicates that the
processor is safe. In order to achieve correctness checking
transitivity along the ring, it is necessary to bind the
transmission of Life messages to this checking procedure as
weLl.

ConsequentLy, a processor cannot be returning ack-
nowLedgements to its predecessor and fail in checking its
successor.

7.8.4.1.2 Ei j.jS t!!Ile&__ Ajkn ge!ent
It may be required for messages sent over a communication
path to be acknowledged. A number of retransmissions are

* allowed before deciding that the communication path is
broken. Numerous examples of protocols aimed at monitoring
transmission on various transmission media can be found in
the literature. They will not be detailed here. ALso, it
may happen that messages are not acknowledged because the
successor has failed. As explained before, whatever the
case, that successor should not be kept on the ring any
Longer.

Thus, every processor on the ring must be provided with a
reconfiguration protocol to be used every time a faiLure

Leads to a ring breakdown. A simple example of such a

protocol is given below.

7.8.4.2 Ring Reconfiguration

Let us consider a situation where processor I and processor
1+2 are respectively predecessor and successor of processor
i.1 when this processor fails or when the communication path

V between I and 1 is broken. It is only necessary for
processor I to send to 1.2 a specific message, to be
referred to as a reconfiguration message, meaning that from
now on predecessor or processor 1.2 is processor i. This
message must be acknowledged by 1.2. If an acknowledgement
is not received by I after several attempts, I will send a
reconfiguration message to 1+39 thus excLuding 1+2 from the
ring* The extreme situation is that of a ring including
only one processor.

Georgia Institute of Technology IPC Workshop

L - -........ rill

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 120

The decision of initiating a reconfiguration beinq taken ex-
cLusiveLy by one processor for any particuLar faiLure, it is
easy to infer that no incoherence can arise because of the
exclusion of a processor from the ring. Because it is
required for a reconfiguration message to be acknowledged,
it is possible to devise some more elaborate scheme (for
instances utilizing passwords) to avoid the possibility of
having a singLe faulty processor excluding aLL the others
from the ring. An example of a protocol using passwords is
given below.

7.8.4,3 The ExtensibiLity Property

If processors are allowed either to faiL or to Leave, it
should be possible to reinsert on the ring a processor which
has been repaired or which decides that it is "on" again.
Alsot we want it possible to expand the system while the
system is running. To this end, a three-party protocoL is
needed such that the ring is always correctly configurated.
This protocol must survive failures itself and should entail
as smaLL a disturbance as possible. Let us assume that
orocessor I has to be inserted on the ring.

To this ends J must send a specific messages called an
"insert" message, containing its identity j to its potential
successor (19, J*29 .. ,)e Let us assume that k is on the
rinq. Processor k knows the identity of its current
predecessor. Let us assume that pred [k] is processor i.

Upon receiving such a message, k checks that the foLLowing
condition holds:

pred Ek) < identity within insert message < k

(< is modulo n).

If it is so, k checks for an exchange of m Life messages
with j and then sends to i a message meaning that i should
accept I as its new successor. This message contains a pas-
sword X. Upon reception of this requests i checks for an
exchange of m Life messages with je When this is completed,
i sends to k a "switch" message containing the password X.
This message is intended to avoid processors i and k being
fooled by a malicious processor j and it is also used as a
means to perform safely message transmission switching on
the new path (it j, k) as explained below.

I. Upon receiving the "switch* messages k acknowLedges it and
Listens to j to detect the reception of a message containing
code X.

Georgia Institute of Technology IPC Workshop

L

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 121

Upon receiving this acknowledgements i performs the update
suc (1) := J1 the first message to be sent to j is a message
including code X. This message and other subsequent mes-
sages are passed on to k by i.

When receiving a message with code X9 k updates pred [k)
with value j and then stops Listening to i.

There is no interruption of message transmission on the

ring. If something goes wrong with j no disturbance is

introduced on the existing ring. The message containing
code X is a good vehicle to maintain a FIFO message trans-
mission on the ring should this be required. There is no
special provision made to guarantee that Loss of messages
does not occur between i and k just before or after recon-
figuration of the ring performed by k. Loss of control mes-
sages is accepted on the ring and is harmless as wiLl be
shown Later.

If transmission between.i and j or between j and k turns out
to be impossibLet then a normal ring reconfiguration is un-
dertaken.

7.8.4.4 The Control Token Mechanism

Cooperation between processors Located on a virtual ring can
be achieved by providing them with some control privilege.
The solution suggested here is to have a particular messages
caLLed the control token, circulating on the ring. OnLy
when holding the token should a processor be aLLowed to
initiate some specific activity. Upon compLetion, the token
is sent to the successor. ObviousLy, in the case the toker,
is Lost, it should be possible to regenerate it.

We begin by describing how the control token mechanism is
made resilient. Then, we show how this mechanism can be
used to solve the mps problem.

7.*8.o4.e4.*1 _R~e.i.jtn.EX
We assume that every processor owns a timer and that timer
values being used by the various processors on the rina are
not necessarily identical. Processors are aLLowed to read
headers of messages circulating on the ring.

Transmission of a token between adjacent processors is
monitored through a positive acknowtedaement + retransmis-
sion protocoL. The token carries with it an integer value,

I. caLLed the cycle number, which is incremented for every com-
plete revolution on the ring. This incrementation is per-
formed by processor x such that x) suc (x). At any time,
this processor is unique. Alsot the numbering cycle to be
used should be chosen so that duplicate detection can be

S-performed safely. This is possible if maximum "hardware"
transit delays are known.

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 122

Timer vaLues beinq used by processors correspond to the ex-
pected round-trip time with the successor on the ring. A
timer is reset when the token has been acknowLedged by the
successor*

Each processor keeps a recording of the value (N) carried
within the token during its Last visit. Next reaL token to
be received (not dupLicates) must carry value N + 1. When
the senderts timer awakes, transmission is tried again* up
to a maximum number of attempts. ShouLd this Limit be
reached, a ring reconfiguration is undertaken. The token is
not Lost.

If failure of a processor is noticed through the mutual
suspicion protocol, then it may be the case that the token
was heLd by this processor which faiLed. Detection of such
a situation and regeneration of the token can be performed
as follows.

Let h be the identity of the predecessor of that processor
which has faiLed and i the identity of the successor.
Processor h undertakes a ring reconfiguration. The recon-
figuration message carries with it value N(h), Last token
value known in h. Upon reception of this message, processor
i runs the following aLgorithm:

ji (i > h and N(h) t N(M)) or
(i < h and N(h) N(M)) thel

create token N(O) := N(M) + 1;

With such an aLgorithm, it is possible to assert that a
token is never Lost and that, at any timeg there is onLy one
such token circulating on the ring (or zero for a finite and
hopefully short period of time).

7.8-4.4.2 DilrstlL ttg a.li.La
A simpLe way to achieve a specific signalling sequence in a
distributed system is to have the processors serializing
themseLves so that at any timet onLy one processor is "ac-
ting." This can be done very simply by using the controL
token as a vehicle to achieve mutual exclusion between these
processors. However, the speed of this signalLing technique
is very much deoendant on the time spent within the critical
section. The problem is that very often, both the number
and the nature of mutually exclusive actions are aiven
beforehand and it may be very difficult to adjust the size
of the criticaL section so that response time requirements
are matched. Such a technioue could sLow down a system
artifically.

Instead of this, it is suggested to uncouple completely the
signalLing mechanism and the execution of the criticaL sec-
tion. As a resuLt, mutualLy exclusive actions will be
initiated in parallel. A proper sequencing can be built by
assigning identifiers to them. The control token will be

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 123

used for the purpose of distributing sequenciat identifiers
within the system. These sequential identifiers will be
referred to as tickets. Every message issued by a sender
must be ticketed.

If we want receivers to service incoming messages according
to a purely sequential ordering, then we need one ticket
space per receiver category. In a fully redundant system,
we have only one category of identical receivers. One tic-
ket space is needed. In a partitioned or partially redun-
dant system, we need one ticket space for each partition.
Then, according to the system under consideration, the token
will carry either a ticket value or an array of ticket

* values.

It has been shown how the birtual ring + token structure can
survive failures. But tic0 t allocation must also he
resilient. To this end, one m , require that a processor
should be either selecting tickets or usinq them but not
both. What this means is that those tickets which are
selected by a processor should not be used until the token
has been acknowledged by the successor. As a consequence,
should a failure occur in the midst of ticket selections the
correct ticket value or array of ticket values can be
regenerated with the token exactly Like this is done for the
cycle number (see 7.8.4.4.1). Another issue is that of
failures interrupting processing at random. In particular,
what should be done with those messages which have been is-
sued by a processor which failed Later on? Another problem
is what to do with tickets not being used because they were
held by a processor which died.

Actually, the whole issue would require a complete discus-

sion which is out of the scope of this paper.

7.8.4.4.2.1 Fortuitous Serialization

I) s jjnfll2 td-th. 2 liallx ugun"PA uut±ni

The oroadcasting of a ticketed message to all receivers may
be done by the sender (parallel broadcastino). The usual

problem with this technique is that the sender may fail
while issuing messages. However, because tickets must be
sequential, it is simple for a receiver to detect such an
unsafe situation. A copy of the missing message may be ob-
tained from another receiver.

Another approach to broadcasting consists in organizing
receivers along a virtual ring. This ring is intended to be
a resilient vehicle for message broadcastinQ. Only one copy

I. of a message must be created by the sender which hands it
over to one of the receivers. This receiver is then in
charge of initiating the revolution of the message on the
ring.

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 124

ii) a.2alina kiin 2Iij~ng gL pl~tia.Lki 1r11nant

The transmission of ticketed messages is done by the sender
which selects tickets from the ticket spaces correspodninq
to the relevant partitions.

7.8.4.4.2.2 Enforced Serialization
Let us assume that two senders A and 8 want the receivers to
process messages issued by A first and then messages issued
by R. This is done very simply by having A sending to B a
"go-ahead" message after A has ticketed its Last message.
There is no need for serializing the related activities
outside the system (for example, A waits until its activity
is over and then sends a message to B).

Senders A and B may also wish to initiate co-related ac-
tivities which* in a partitioned systems share at least one
partition. These activities are such that the message from
A should be serviced before the message from B and also the
message from 5 should not be processed if the activity
initiated by A could not be completed.

The following protocol may be suggested. In the "go-ahead"
message, A stores the value of the ticket used for its mes-
sage. It is then only needed to provide for a flag and a
field in message headers to be used as follows. When a mes-
sage M is received with the flag set, the receiver should
read the ticket value stored in the field. If the
correspondinq activity could not be completed, message M is
discarded and the sender is told that its activity was not
initiated.

7.8.4.4.2.3 Performance Considerations
We want the signalling mechanism not to put any artificial
limitation upon the system performances. Consequently, this
mechanism should not be dependent upon the rotating time
period of the token on the virtual ring. Senders should be
able to ticket and to issue messages at any time. This
means that senders should be allowed to select tickets not
only for pending messages but also for "future" messages,
i.e. messages to be created and issued between two succes-
sive visits of the token.

Let p be a sender. At token visit #it let C~i(p) be the
exact number of messages which are pending when the control
token is received, f.i(p) be the predicted number of future
messages, T.i(p) be the current value of the relevant ticket
soace upon reception of the token and Tli(p) be the new tic-

ket value when the token is sent on the ring.

Sender p is allowed to acquire Cei(p) * f.i(p) consecutive
tickets, startinq from Ti(p). Ideally, during token
revolution ffi+1, P needs exactly f.i(p) tickets. Clearly,
predictions are only predictions. Furthermore, the token
circulatina speed is variable. Hence, it is necessary to

Georgia Institute of Technology IPC Workshop

1b

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 125

)consider two possible situations:

- p £i~n afQ£ j jj. {j: it has to wait for

reception of the token.
- some tickts V e q whe t j

balk: Let u.i(p) be the number of unused tic-
kets. Because of the mutual independence
principle, these tickets should be used up im-
mediately. For that purposes we provide for the
utilization of a no-operation code. Exactly
u.i(p) "fake" messages carrying a NOP code will
be isued by p.

When needed, and as long as tickets are available, new mes-
sages are issued.

Probably, this will achieve a good parallelism between sen-
ders but it is not clear whether or not this will result in
a good average response time. Response time for a given

sender is dependent on how fast predecessors use up their
tickets.

Should such an interference be Judged unacceptable, another

solution is needed.

What we would like to build ia a mechanism whereby current
pending messages and future messages are distinguishable, so
that current pending messages for any sender receive tickets
"smaller" than those given to future messages.

Let us make it clear that we do not attempt to ouild a per-
fect chronological ordering of messages. We only try to
achieve some system-wide statistical FIFO service so that
the average response time for every sender can be kept below
a reasonable value.

The way this can be done is rather simple. It is only
needed to maintain two ticket values T and go in the token
instead of one (or two arrays instead of one). T as above*
is to be used for ticketing current pending messages and a

for ticketing future messages. By the time the token is
back in p, only one of the three following conditions can
hold:

- u.i(p) = C.i(p) = 0 (ideal case)
- C.i(p) messages are waiting because p is Lacking

tickets, u.i(p) 0, C.i(p) > 0 (under-
estimation)

- u.i(p) tickets are still available, u.i(p) > 0,
C.i(p) = 0 (over-estimation).

I

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 126

A requirement regarding the ticketing function is that the
two sets of numbers being used to assign a value to T and 0
should not be overlapping.

Two numbering cycles N(T) and N(9) should be chosen so that
tickets Lifetime is conveniend (see computations below).

As T-ticketed messages and @-ticketed messages will be
received interleaved by receivers# it is necessary to
provide for some means whereby receivers are able to decide
when to stop processing T-ticketed messages and start
processing e-ticketed messages as well as the reverse.

Such a "switching" should correspond to a complete revoLu-
tion of the token on the virtual ring. We need a sender to
fLag the corresponding T and e ticket values.

That sender could be x such that successor (x) < x. Due to
the properties of the virtual ring, this processor is unique
and always exists.

The algorithm tc be followed by sender p upon reception of

the token is described below (and - operations are moduLo
N(T) or N(8)).

j suc (p) < p and C.i(p) = 0 THEN

C.H(p) := 1;
creat Fake message

if C.i(p) > 0 Tlf T'.i(p) := T.i(p) + C.i(p)
(acquisition of tickets #Toi(p), .e #T.i(p) + C.i(p) -1)

ELL IE u.i(on) > 0 IHL!
send u.i(p) Fake messages (ticketed with the u.i(p)

highest e-tickets obtained during the Last
token visit);

assiqn a value to f.i(p);
If suc (p) < p AND f.i(p) = 0 THQ1

BEGIN
f.i(p) := 1;
create Fake message

9'i(p) := 8.i(p) + f.i(p)
(acquisition of tickets #9.i(p), ... 9 #.1(p) + f.i(p) - 1);

IF suc (p) < p THEN FLag messages carrying tickets
#T.i(p) + C.i(p) - 1 and #R.i(p) + f.i(p) - 1;

I.

Georgia Institute of Technoloqy IPC Workshop

ib

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 127

The algorithm to be followed by a receiver is given below.

Notations:

X stands for either state T ("current") or
state 8 ("future");

X- =T if (X=e)g
= if (X=T);

t(X) is a local variable containing the ticket value of the
Last processed messages i.e. t(T) or t(e).

WHEN IN STATE X DO
IP: Scan for, or wait for reception of message

X-ticketed t(X)41Z

CASE1 (X-ticket t9 > t(x)+l is received):
mod

Record request;

CASE2 (X-ticket is received):
Record request;

CASE3 (X-ticket t(x) l is present or received):
BEGIN initiate processing;

jf message t(X) l is flagged

switch to state X-

t(X) t l

CASE (timeout):
Marks itself out of synchronization and initiate a

recovery procedure.

A simple way to provide for two separate numbering schemes

of equal length is to use one bit to distinguish between
T-tickets and 6tickets. However, one should mention that,

if predictions are not too inaccurate, 9-tickets are to be

used up more rapidly than T-tlckets. Then an equal share of
the ticket number space may not be the best solution.

We will discuss only briefly the issue of fairness in
estimating f.(p). We consider two cases:

- senders are processors (maxis, minis, micros)

cooperatinq within a distributed computing
system to be viewed as a unique system by users.

Algorithms to be followed by senders are
designed by system builders who are responsible
for choosing convenient values for f.i(p).

• -senders are computers connected on a computer
network. Over-estimation is costly to senders
because (M) processing wasted in handling NOP

Georgia Institute of TechnoLogy IPC Workshop

4.

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 128

messages cannot be used to process usefuL mes-
sages (throughput is Lower), Cii) a sender is
bilLed for messages carrying NOP code and for
the corresponding Processing in the distant com-
puter.

Because of the "pipe-Line" nature of this mechanism, there
will be no interruption of message transmission. What this
means is that receivers may be kept as busy as desired. If
used cLeverLy, the signaLLing mechanism using anticipation
can achieve any desired throughput.

TicSkj Lifetil.1

For 16 bit tickets, vaLues are re-used after 65 seconds if
ticketed messages are issued every miLlisecond for the whoLe
system, after 18 hours and 12 minutes if ticketed messages
are issued ever second.

For 32 bit tickets9 Lifetime is much Longer. VaLues are re-
used respectively after 1 hour and 12 minutes, 119 hours or
136 years when ticketed messages are issued every

rmicrosecond* 100 microseconds or second in the whole system.

7.8.8 .Jnn I 5n

In this paper, a solution to the probLem of muLtipLe-path
signaLlina in distributed computing systems has been
described. This soLution is based on the utilization of a
particular control structure which can achieve a distributed
and resiLient generation of sequentiaL identifiers. In ad-
dition to solving the mps probLem, this soLution can be used
in distributed systems which should be resitLient and where
unique names need to be generated dynamically. Also, a
side-effect of this solution is to allow for a safe detec-
tion of duolicate messages at a high Level in the system.

I.

1.Georgia Institute of TechnoLogy IPC Workshop

4

I4

Section 8 SUMMARY AND FUTURE DIRECTIONS Page 129

SECTION 8

SUMMARY AND FUTURE DIRECTIONS

8*1 GEER LU kEVTION A ONCL.USIONS

The idea of a process has not been fully absorbed by
programming Languages or by modern hardware. ConsequentLy,
the concept of an abstraction of a process and its support
is Left to the realm of operating systems (which sit between
the Lanquaqe and the hardware), resulting in Little or no
standardiztion of a "process" (especially when compared to
the Level of standardization enjoyed by other features or
aspects of higher Level Languages and hardware).
NevertheLess, as this report has ilLustrated, the process
concept is becoming central to the design of computer
systems both at the hardware and software levels. There are
many reasons for this development, probably the two most im-
portant ones being: (1) the decomposition of systems and
applications problems into sets of cooperating parallel
processes for greater modularity, functionality,
fLexibilityt and maintainability; and (2) the increasing
cheapness of processors and memory allowing the assignment
of processes to processors in an economical way.

As processes have become "cheaper" to create, maintaing and
destroy, the flexibility, scope, power, and economy of
interprocess communication (IPC) mechanisms has become an
important key to the effectiveness of muLti-process systems
in general, and highly distributed systems in particular.
However, there currently exists a wide variety of mechanisms
for interprocess communicationt resulting in what one
researcher [SALT 793 has termed the "IPC Jungle". Perhaps
the major reason for such a variety comes from a desire to
provide in one set of primitives all of the followinq
capabilities:

1) FLexible process and/or data synchronization
tools,

2) Lata transfer mechanisms, and
3) Communication control and error recovery

mechanisms.

Surprising to some researchers at the workshop was the Lack
of attention paid to security, fault tolerance, and error
recovery; however, this may be taken as an indication of the
general state of affairs of a young technology. In such
cases, attention is usually first focused on achieving a
certain level of functionality before much effort is devoted
to engineerinq those features that make the technology
robust enough to be put into wide-spread use.

Georgia Institute of TechnoLogy IPC Workshop

b

Section 8 SUMMARY AND FUTURE DIRECTIONS Page 130

FinaLty, dissemination of information about IPC techniques
and options with respect to both impLementation and per-
formance has been extremely poor in the past, and there do
not appear to be any immediate advances beinq made on this
aspect of the probtem.

Georgia Institute of TechnoLogy IPC Workshop

S

-m- -.. -

Section 8 SUMMARY AND FUTURE DIRECTIONS Page 131

8.2 WORKSHOP aWSA&
-u

BeLow is a summary of the major focus areas of the workshop
and their conclusions.

8020l AgdresLinge ,aamina anA Seurity

Many systems have inadequate facilities for identifying
names of processes within the same hosts Let alone for
processes residing on different hosts. Many existing
systems aLmost totally sidestep the naming issue. Part of
the problem stems from an inconsistent view of the
relationship between the set of allowable names for fiLesi
devicest processest users, mailboxes, generic system ser-
vicest and specific system services. As Livesy pointed out
during the workshop, the concept of the size of the namina
universe (of which the system forms a part) is implicit in
the system at a very d!e.e Level. One is forced to choose
between madd-on'naming techniques such as:

/net/A/resource

which are not %ocation independent on the one hand, and a
more or Less complete redesign of the naming architecture on
the other hand. UNIX is an example of a system that makes
assumptions about the size of the universe. Untitl this
problem is settled, the design of specific interprocess com-
munication primitives cannot focus on the set of fundamental
objects that must be dealt with. This is a difficult issue,
since it is here that many of the system security issues
must also be addressed.

80202 IntergL.UAI Synchronizato.n

CLearLy, a major function of interDrocess communication is
to provide either explicit or impLicit synchronization
between processes and/or access to shared data. Early forms
of interprocess communication depended only on the correct
use of explicit synchronization primitives for sharing ob-
jects (usually sections of main memory). In some systemst
temporary files served as synchronizing pointes between job
steps (impLicit), whiLe in other systems* processes ex-
pLicitLy exchange data by signaling. Whether synchroniza-
tion primitives should be explicit or implicit is still very
much an open question.

It is also becoming clear to some of the researchers in the

field that error recovery may be integral to the Question of
synchronization. Visibility of the state of a computational
process is at the heart of the synchronization and error
recovery issues. Concerr over the "atomicity" of an opera-
tion is becoming more of a focal point for distributed
systems as the dimensions of time and space for com-

Georgia Institute of Technology IPC Workshop

Section 8 SUMMARY AND FUTURE DIRECTIONS Page 132

putationaL operations begin to change by orders of
magnitude. This concern is reflected in the recent
Literature concerning synchronization in distributed systems
(see the 1978-79 references), and in some of the recent
theoretical work. However, their effectiveness using
current technology is Largely unknown until prototype im-
plementations appear.

80263 Ine=L ejjajj

* At Least ten currently used IPC mechanisms were identified
aLonq with some estimate of their support of certain
quaLities deemed desirable by the workshop attendees. There
was more agreement on the set of desirable qualities than
there was on which mechanisms fuLfiLLed those qualities. It
was also obvious that none of the present mechanisms did
everything that everybody hoped fort which shouLd teLL us
that we have yet to obtain maturity of abstraction (in the
sense that the abstraction of a subroutine is well under-
stood) for a general IPC mechanism. For these reasonst it
seems reasonable to keep exoLoring new mechanisms while we
aLso continue to buiLd reaL-worLd systems with the best
techniques we have heard about.

In addition it appears important to devote some additionaL
work to seLecting the factors to be utilized in assessing
trade-offs between provability versus convenience of im-
pLementation and use. Many of the mechanisms discussed at
the workshop present enormous obstacles to rigorous proof.

86204 T heore±sai k9Xk

Distributed systems present new theoretical chaLLenges to
researchers, LargeLy because the specification of a
distributed computation involves time and space boundaries
that are difficult to define, and may be constantly
changinq. VariabiLity in speeds and state definition may
even make a "system" inherently non-deterministic. Such
difficulties throw much of the previous work in proogram
specification and correctness into disarray when applied to
distributed systems. There is LittLe agreement whether to

approach the probLem using "state-free" or "state-based"
descriptionsv or whether to grapple with atomic or non-
atomic actionsg or even what are relevant measures of "time"
and "space". Once againt this seems to reflect the im-
maturity of the whole fieLd of distributed systems.

I.

.Georgia Institute of Technology IPC Workshop

N" =

Section 8 SUMMARY AND FUTURE DIRECTIONS Page 133

803 CONCSLUSIONS M2 ALIRflSPLET

- *4 E LastLy, we should be honest as to how weLL we achieved our
original goals. Each goal is repeated here with a short
comment as to our view of the Level of success we enjoyed
and the reasons for it.

1) Assess the present state-of-the-art for IPC
mechanisms in distributed data processing

systems

, SuccessfuL, A readinq of many of the

enclosed working papers and the references
shouLd adequately refLect the present state-
of-the-art.

2) Identify the data avaiLabLe on the actual
performance of various IPC policies and
mechanisms.

* UnsuccessfuL. An attempt was made, however
Lack of agreement on approoriate measures

*(see mechanisms) has probably prevented any
great data base being built up.

I

3) Assess the potential value of various IPC
mechanisms in satisfying the operational and
performance requirements for highly
distributed systems.

** Moderately successfuL. Many of the ad-
vantages and disadvantages of the functional
aspects of current mechanisms in use were
examined, although, obviously, more thorough
operational and performance assessments must
await more "distributed" impLementations.

4) Identify shortcomings in the present state-
of-the-art and identify promising areas for
further research and experiments on this sub-
ject.

a SuccessfuL. A reading of the report
reflects many of the shortcomings of current
techniques. Promising areas for further
research were not specificaLLy addressed in
aLL eas; however, they are indirectly
identtfied by many of the authors.

5) Identify possibLe standardization LeveLs in
IPC design.

Il " * UnsuccessfuL. The plethora of avaiLabLe
abstractions and the notable Lack of any
single outstanding set useful for distributed

Georoia Institute of TechnoLogy IPC Workshop

Section 8 SUMMARY AND FUTURE DIRECTIONS Page 134

appLications refLect the immaturity of the
- fieLd and possibLe premature standardization.

*Georgia Institute of Technotogy IPC Workshop

Section 9 SELECTED READINGS AND REFERENCES Page 135

SECTION 9

SELECTED READINGS AND REFERENCES

9.1 SELE U.&U

2n fluirmi 1129ila AmA L~1L

[HORN 73)
[DIJK 68a3
[HOAR 78)

Qn Addreuaina ins! _a aana
[SALT 78)

[SHOC 78)

On j!therLejjj~niea

*" - [MILN 773
EZAV 76)

Qn E._o.Sjjj synSmj.L t_!ojqn

[DIJK 68b]
[HOAR 74)
[HABE 72)

On Mesage Baseld Opr__atan Systems

[BRIN 69)
(BRIN 70)
[BALL 76)
(LYCK 78)
(NELS 783
[FARS 731

on I2! _.iE 2rI

(CLAR 78)
[METC 76)

[GORD 79)

2n Ports, 1al anan Ydr-lusai r.lruit
[WALD 72)
[THOM 743
ECCIT 783

Georgia Institute of TechnoLogy IPC Workshop
4

.....,,ff i h.ar

Section 9 SELECTED READINGS AND REFERENCES Paqe 136

Q Ii~ Lari ILr-cauni 21 Euk~u aa Af IU. in 22uain.2
sY_1121

[DALE 68]
[SALT 66)
(DIJK 71)
[IBM 713

EPARD 79)
•DESJ 78)

.

'"Georqia Institute of TechnoLogy IPC Workshop

!'

Section 9 SELECTED READINGS AND REFERENCES Page 137

9.2 Lii M fREEENE

CABEL 78) Harold Abelson, "Lower Bounds on Information
Transfer in Distributed Computations," 2rq~e~~

gl g2M.jj.L jjncjq October 16-18, 1978, pp 151-
158.

EALSB 763 P. A. ALsberg, G. C. Belford, and S. Re Brunch,
"Synchronization and Deadlock," Center for Ad-

* vanced Computations Doc. No. 185, University of
Illinois, March 1976.

[BACH 78) Charles We Bachman, "Provisional ModeL of Open
System Architecture," 21c~j2 of lte Third

and _1i h~k r-i August 29-31, 1978.

[BADA 78) D. Z. Badal and G. J. Popek, "A Proposal for
Distributed Concurrency Control for Partially

rRedundant Cistributed Data Base Systems*"

August 29-31, 1978.

[BALL 76) Jo E. Ball, J. Feldman, J. Re Low, R. Rashid, and
P. Rovner, "RIG, Rochester's Intelligent Gateway:
System Overview," jfE~j Ijj.tgl§ 2nl .2.fty

_112.cqqha vol. SE-2, no. 4, December 1976, pp.
321-328.

CBART 77) J. F. BartLett, "A 'NonStop' Operatinq System,"
2r2.quA~qi~ af the Hawaii. International Conferenc
21 .2jt. llt~s January 1978.

tBASK 77) F. Baskett, J1. H. Howard, and J. T. Montague,
"Task Communication in DEMOS," Pgej~ I L
Sixthj~ ay!!p u nO~a n2~i.222
6-18 Nov 1977. Reprinted in Q2.C±j.q a .tii~r
!j.wtt vol. 11, no. 5, November 1977.I (OOBR 72) 0. G. Bobrow, Js 0. EBurchfieL, 0. L. Murphy, and
a, S. TomLinson, "TENEX - A Paged Time Sharing
System for the PDP-lO," Co2lanilllipa1 .t. A.9
VoLume 15, Number 39 March 1972.

EBRIN 69) Per Brinch Hansen, "RC 40U0 Software: MuL-
tiproaramming System," Regnecentralen, Copenhagen,
Denmark, April 1969.

EBRIN 70) Per Brinch Hansen, "The Nucleus of a Multiprogram-
ming S y st e m,"gMjnp.t2n 2_ tp. &t A v oL.% 13,
no. 49 April 1970, pp. 238-50.

Georgia Institute of Technology IPC Workshop

Section 9 SELECTED READINGS AND REFERENCES Page 138

18RIN 73) Per Brinch Hansen, gU.rA1n lxilrtas Eriali~lti
Prentice-Hall, 1973.

E3RIN 76) Per Brinch Hansen, "The SOLO Operating System,"
I.iir ftr1r 112 111lai vol. 6, no. 29
April-June 1976, pp. 141-206.

EBRIN 77] Per Brinch Hansen, fT Ar2it~ur f Co2ncurrent
EPro.qr[j,9 Prentice-HalL, 1977.

[9uRN 78) J. E. Burns, Mo J. Fischer, P. Jackson, N. A.
Lynch, and G9 L9 Peterson, "Shared Data
Pequirements for Implementation of Mutual Ex-
clusion Using a Test-and-Set Primitive,"
Proceeinq2i of t 1978 InternationaL. Conference

;111. araj~ ---~n~, A:uust 22-25, 1978,-3 op 79
87.

o (~~~~CCdT 78) CCITT, rvsoa eomnatosX3 .2,X2

Services, Geneva, 1978.

ECLAR 78] D. C. Clark, K. T. Pogran, and D. P. Reedq "An
Introduction to Local Area Networks", Pro~edin~j~q
.Lt.~ L *FF. vol. 66, no. 11, November 197, pp.

1497-1517o

[DALE 68) R. C. DaLey and J.B. Dennis., "Virtual Memory,
Processes, and Shaping in MuLtics".,

Cornn~ncaion~of h~ vol. 11, no* 59 pp.
306-129 May 1968.

[DEC 77) VAX11 ;~jqj~jj tH~pnk2qj9 Digital Equipment
Corporation 1977.

EDESJ 73) Richard desJardins and George White, "ANSI
Reference Model for Distributed Systemst"
ELr.Seedin~qj of 978, h!12~ Washinqton, D.C.,
September 1978, pp. 144-149.

(DIJ(68a3 E. W. Dijkstras "The Structure of the 'THE' -
muLtiproqrammina System," .2nr1ic~in th
A09~ vol. 11, no. 59 May 1968, pp. 341-346.

1DIJK 68b] E. W. Oilkstrat "Cooperating Sequential Proces-
ses,"l in Ptograrnrnin2 Lajgq11 (Ed it or: F.
Genuys)o Academic Press, New York, 1968.

EDIJK 71) E. W. Dijkstra, "Hierarchal Orderinq of Sequential
Processes," Ac 1~r~ vol. 1, no. 2, 1971,

I. pp. 115-38.

(DOWS 781 1'* Dowson, "The DEMOS Multiple Processor Technical
Summary," National Physical Laboratory Technical
Report, NPL Report 101, April, 1978, Teddingtons
'iddLesex TWII OLW, UK.

1'.Georgia Institute of Technology IPC Workshop

Section 9 SELECTED READINGS AND REFERENCES Page 139

CELLI 773 CLarence A. Ellis, "A Robust Algorithm for Updat-
ing Duplicate Databases," ProcjEedrjq of the

21.22s fllri..LC Y2Lkt2 2a Qitd.Piju.cA Qigi
!naement and Q2.Uj.C Ujiwktj May 25-279 1977.

(ESWA 76) K. P. Eswaran, J. N. Gray, R. A. Lonie, and 1. L.
Trainer, "The Notions of Consistency and Predicate
Locks in a Database System," Connjncain It
A09, vol. 19, no.11, November 1976, pp. 624-633.

[FARE 73) 0. J. Farber, J. Feldman, F. R. Heinrich, M. 0.
Hcjpwood, C. Larson, C. Loomis, and L. A. Powet
"The Distributed Computing System," Qiqest of

E&2.tL§. r ~MPQ 1. San Francisco, California,
27 February - 1 March 1973, pp. 31-34o

[GARC 78) Hector Garcia-MoLina, "Performance Comoarison of
Two Update Alqorithms for Distributed Databases,"
P£2..jf.iq 2±. tll Thirdg LQ.L j.2LIL2 2r!
Distributed Data Manjqmtatj andg Co2uter ?etworksg
August 29-31, 1978.

I63RCD 79) Re L. Gordon, "Rinqnet: A Packet Switched Local
Network with fDecentralized Control," 4th

neapoLis, Minn.9 October 1979, pp. 13-19.

(GRAN 723 Go S. Graham and P. J. Denninq, "Orotection -

Principles a.1a Practice," AUU Ql..LP.
Proceedinjs,1 1972 SJCC, pp. 17-429.

CGRAP 76) Enrique Grapa, an's Geneva G. Relford, "Techniques

for Update Synchronization in Cistributed Data
Bases,"l unpublished papert 1976.

CHABE 72] A. N. Habermann, "Synchronization) of Communicating
Processes," L221nA112~ . 21 -~vl '
no. 39 Mlarch 1972, pp. 171-76o

(HAMI ndl J. Hamilton, "The Functional Specification of the
WEB Kernel,"1 Digital Eqtipment Corporation,
Coproate Research Group, ML3-2/E41, no date.

[HOAR 74) C. A. Re Hoare, "fMonitors: An Opt-ratinq System
Structuring Concept," 22Aj tn 1. Ail 9
vol. 179 no. 59 October 19749 pp. '149-557o

[HOAR 7F] C. A. R. Moare, "Communicatino SeauentiaL Proces-
qes," ~ f~ijjj2:L jt A.M, vol. 21, no. 4,
Auqust 1978, pp. 666-677.

(HOLT 79) R. C. HoLt, Go S. Graham, Co 0. Lazowshka, and M.

A. Scott, "Announcing Concurrent SP/K," _QrnlUP_2
aXiiti , vol. 12, no. 2, April 1978.

(HOLT 78b3 Re C. o o Lt, et al t ~ r~~Q~C~~

Georqia Institute of TechnoLoqy IPC Workshop

Section 9 SELECTED READINGS AND REFERENCES Page 140

Addison-Wesley Series in Computer Science, 1978.

[HORN 73) J. J. Horning, and B. Randall., "Process Struc-
turinq," A 212I±in2 "LYtMl, vol. 5s no. 1, May
1973, pp. 5-30.

[1PM 711 IBM System/360 Operating System Supervisor Ser-
vices, I9M Systems Reference Library, Order Number
GC28-6646-49 1971.

[IPC 75) ACM SIGCOMM/SIGOPS WORKSHOP, ACM SIGOPS Review,
MARCH 1975.

[JOHN 75) P. R. Johnson and Ro H. Thomas, "The Maintenance
of Duplicate Databases," RFC No. 677, NIC No.
31507, January 1975, ARPA Network Information
Center, SRI-Augmentation Research Center, Menlo
Park, CA 94025.

[JONE 77) A. K. Jones, R. J. Chansler, I. Durham, P. FelLer,
and K. Schwans, "Software Management of Cm* - A
nistributed Multiprocessor," A 2n± rz-t
'roceedi nas Volume 46, 1977 NCC.

[LAMP 76) L. Lamport, "Towards a Theory of Correctness for
Multi-user Data Bases," Mass. Computer Associates,

Inc., CA-7610-07119 October 7, 1976.

[LAMP 77) L. Lamport, "On Concurrent Reading and Writing,"

C2MMlU..ti20A 21 121 A.09 vol. 20, no. 11, Novem-
.er 1977, pp. 806-811.

[LAMP 71) !. W. Lampson, "Protection," ftPurzlng 2 f.

lnq ayllaM5j, Department of Electrical Engineering,
Princeton University, March 1971 p. 437-443.

[LAMP 73) 3. W. LamDsonq "A Note on the Confinement
Problem," rrnii2I ftkA. !, Vol. 16, no.
5, October 1973, pp. 613-615.

[LAUE 79) H. C. Lauer and R. M. Needham, "On the Duality of
Operating System Structures," QPtctaql AZy.kIIri
14tlew, vol. 13, no. 2, April 1979.

[LIVE 78a] N. J. Livesey and E. G. Mannina, "Protection in a
Transaction Processinc System," ft Qtli gj t

S7th Tex~s Conferenc on Co u I .. October

.
19 7 8 .

[LIVE 78b] N, J. Livesey and E. G. Manning, "What Mininet
Taught Us About Proarammina Style," P 2&i djinqi 21

0! j, Chicago, Illinois, Novemper 1978, pp.
692-697.

Georgia Institute of Technology IPC Workshop

,, !'4A: ' i T. i , , - . .j - .I i

Section 9 SELECTED READINGS AND REFERENCES Page 141

(LYCK 78) H. Lycktama and Do Lo Bayer, "The MERT Operating
System," 1h a"]. jtS~ q~.~i 2jjf.jk v oL.
579 no. 69 Part 29 July-August 1978, pp. 2049-86.

[MANN 77) [o G. Manning and R. We Peebles, "A Homoaienous
Network for Data Sharing: Communications,"
C222ularc Nil1jmdus Vol. 1, No. 4, 1977, pp 211-
2124.

EMETC 76) R. Me MetcaLfe and 0. Re Boqqsq "Ethernet:
D)istributed Packet Switching for Local Computer
Networks," 1,aa aij9.ni 9.. ih Ao, vol. 1, no.
7, July 1976, pp. 395-404e

EMILN 77) Go MiLne and R. MiLner, "Concurrent Processes and
their Syntax," University of Edinburgh, Department
of Computer Science Report CSR-2-779 May 1977.

(NELS 7P] Do. L. Nelson and R. L. Gordlon, "Computer Cells - A
Network Architecture for Data Flow Computing,"
rPj, 4 ~j. V j _q II Washington, D.C., Sep-
tember 1978, pp. 296-301.

ENSW 76) NSW Protocol Committee, "MSG: The Interprocess
Communication Facility for the Nationat Software
Works,"l BBN Report No. 3483, Massachusetts Com~-
puter Associates Document No. CADD-7612-24119
December 1976.

IORGA 72) E. I. Orqanick, IJt !.QLU1,. lyI~ A.01 tmni2.n
of Tj Sr~tr~,MIT Press, 1972.

EPARD 79) R. Pardo and me T. Liu, "Multi-Destination
Protocols for Distributed Systems,"l PL.ceedinj2.j 21
ibhr 1212 LQM2Ltr Jiri.k~~ a~yi i2.ijuLM Gaithersburo,
Md., December 1979.

EPEER~ 78) Richard PeebLes and Eric Manning, "System Ar-
chitecture for Distributed Data Management,"'
£ '!jyEE vol. 11, no. 1, January 1978, pp. 40-47.

[PETE 77) Gary L. Peterson and "ihe J. Fischer,
"Economical Solutions to the Critical Section
ProbLem in a Distributed System," Prq.jg.2na1 21

22Mlin2t May 2-4, 1977, pp 91-97.

[POWE 77) 1-1 L. Powell, "The Demos File Systemo," "Task Comn-

munication in DEMOS," PL.C2jejqin2. Lf the AI

Nov 1977. Reprinted in QnerApna jp
vol. 11, no. 5, Nov. 1977o

[REED 77) 0. P. Reed and Re K. Kanodlia, "Synchronization
with Eventcounts and Sequencers," Qjt~~j!~
.1yIlIL RfjjMjt vol. 11, no. 5, pp. 91-92.

Georqia Invstitute oi Tethnokogy IPC Workshop

lb

Section 9 SELECTED READINGS AND REFERENCES Page 142

CREED 783 D. P. Reed, "Naming and Synchronization in a
Decentralized Computer System," MIT LCS Report
MIT/LCS/TR-205, September 1978.

[RITC 74) D. M. Ritchie and K. L. Thompson* "The UNIX
Timesharing System," Communications of the ACM,
July 1974.

[RITC 783 D. M. Ritchie,"A Retrospective on the UNIX Time-
sharing System," lhl Pii lxitcm I 1hiru
Journat, vol. 57, no. 6, part 2, July-Auqust 1978.

ERIVF 76] R. L. Rivest and V. R. Pratt, "The Mutual Ex-
clusion Problem for UnreliabLe Processes:
Preliminary Report," Proceedias of Vu

atiallial Angs §.Xrni1iM a L29n9AliflI 21
j222al£t ScLien, 1976, pp 1-8.

[ROTH 77) J. B. Pothnie and N. Goodman, "A Survey of
Research and Development in Distributed Database
Management," Proceedinls of 3rd Interaltignk

12nl~l~r~ 2aj JIILUl211211 Tokyo, Japan,
October 1977.

[SALT 66) J. H. SaLtzer, "Traffic Control in a Multiplexed
Computer System," Project MAC Technical Report
MAC-TR-30 (Thesis), Massachusetts Institute of
Technology, July 1966.

[SALT 78) J. H. SaLtzer, "Naming and Rinding of Objects," in

2p.Cl.E2 a.1t~l=An Aqat C2VCl, R. Bayer,
R. M. Graham, and G. SeegmuLLer (eds.), Berlin,
Springer-Verlag, 1978, pp. 99-2 0 8.

[SALT 79) J. H. SaLtzer, Comments at the "7th Symposium on
Operating Systems PrincipLes," November, 1979,
concerning distributed systems.

(SCHE 78) L. ScheffLer, "Pipes - Interprocess Communication
for PRIMOS and PRIMENET," (PE-T in final
preparation).

rSHOC 78) John F. Shoch, "Inter-Network Namingi Addressinqq
and Routing," E..&ings 2. fQ1PQQh Z, Washing-
ton, D.C.9 September 1978, pp. 72-79.

(STON 78) Michael Stonebraker, "Concurrency Control and
'onsistency of Multiple Copies of Data in
Distributed INGRES," Eraan£ ±nai 1 l. 1Url

2E! .212i9£ N i£t August 2Q-3 1, 1978.

[SUNS 76) CarL A. Sunshine, "Survey of Communication
lrotocol Verification Techniques," P£ £ n a!

-Lus r liqa, Gaithersburq, MD, November 17, 1976.

Georgia Institute of Technology IPC Workshop

r4

Section 9 SELECTED READINGS AND REFERENCES Page 143

CTHOM 77] Robert H. Thomas, "A Majority Consensus Approach
to Concurrency Control for MultipLe Copy Data
Bases*" BoLt Beranek and Newman, Inc., BBN Report
No. 3733, December 1977.

[THOM 783 Robert H. Thomas, Richard E. Schantz, and Harry C.
Forsdick, "Network Operating Systems," Polt
Peranek and Newman, Inc., BBN Report No. 3796,
March 1978.

[THOM 74) K. T. Thompson and D. M. Ritchie, "The UNIX Time-
sharing System," LRgM MI£jt j 2. J A vol.

* 17, no. 7, July 1974, pp. 365-375.

[WALD 72) D.C. Walden, "A System for Interprocess Communica-
tion in a Resource Sharing Computer Network,"

£nI24iiJni 21 112 A0 vol. 15, no. 4, April
1972.

[WILK 79) Maurice V. Wilkes and 0. J. Wheeler, "The Car-
bridge Diqital Communication Rino," ELr2rjinla 21

S. Mitre Corporation and National Bureau of Stan-

dards, Boston, May 1979.

[WULF 743 W. Wulf, F. Cohen, W. Corwin, A. Jones, R. Levin,
C. Pierson, and Fe Pollack, "HYDRA: The Kernal of
a Multiprocessor Operating System," ff1
21 jhe AjC, Volume 17, Number 6, June 1974.

EYOUN 79) R. Young and V. Wallentinc, "The NADEX Core
fperatino System Services," Kansas State Univer-
sity Department of Computer Science Technical
Report, no. CS 79-11, November, 1979.

[ZAVE 76) P. Zave, "On the Formal Definition of Processes,"

Pr2 essina, Wayne State University, IEEE Computer

Societyt 1976.

I.

iGeorgia Institute of Technology IPC Workshop

