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if
1.0.0. Introduction

The basic problem which is being addressed here is that of constructing

a smooth (at least continuous first partial derivatives) bivariate function,

F(x, y), which takes on certain prescribed values, F(xk,yk) fk k I , ... ,N.

The points (Nk, Ykare not assumed to satisfy any particular conditions as

14 to spacing or density, hence the term "scattered". It is usually convenient.

to think of the values fk as arising from some underlying (not necessarily

known) function f(x, y), so that fk = f(xkv Yk)' k l, ... , N.

The problem of interpolation of scattered data in two or more independent

K variables has been addressed by numerous authors, as can be seen by the

bibliography. Many of the basic ideas involved are discussed .in two survey,

papers (both over a wider class than we consider here) due to Schumaker [49)

and Barnhill [4]. Some of the ideas seem to be mainly that, ideas, with only

a few numerical examples given, often not well thought out or very definitive

"in terms of the actual capabilities of the method. In addition, most of the

methods involve one or more ad hoc assumptions requiring a user to specify

parameters (one or more). Generally only cursory attention has been paid to

appropriate choice of these parameters and their overall effect on the inter-

polant has usually not been determined.

Out of this situation arose a desire to attempt to answer a number of

questions, basically all related to the question: Which of these many

j2  methods deserve further study and development, and which should be discarded?

Included here is the determination of some default values for ad hoc parameters

in methods which require them. The default values should give reasonably good

results over a number of different sets of data, and preferably the interpolant

should be rather stable with respect to changes in the parameter. Additionally,
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7-7.

it is convenient for the user if the parameter is,related to something

about the data which can be easily estimated. In many cases (perhaps all),

subjective judgements must be made about these matters, although some hard

information can be obtained.

Some previous fairly estensive work had been done by McLain [39] which

inspired a somewhat similar study of another class of ideas by the current

investigator [16]. The initial thrust of the Investigation was, to compare a

i few "local" methods to determine which seem to work reasonably'well. As

the investigation proceeded, more ideas were supplied by colleagues and

others, so that in the end, more than a few methods are tested and compared

here, including "global" methods. The total number of programs involved

in this study is 29, some of which are fairly minor variations of others.

The concept of a "global" method is easily understood. The interpolant

is dependent on all data points, and addition or deletion of a data pnint,

or a change of one of the coordinates of a data point will propagate through-

out the domain of definition. The idea of a "local" method is not so clear.

Typically one thinks of it meaning that addition or deletion of a point, or

a change of one of the coordinates of a data point will affect the interpolant

only at nearby points, that is, the interpolant will be unchanged dt distances

greater than some given distance. There are some difficulties here. If the

data (the (xk, y points) are "random", one must inspect (in some way) all

the data to determine which are "nearby". Does this mean there is no such

thing as a "local" method? (Rosemary Chang first mentioned this idea). We

have taken a somewhat more liberal view of "local" and take it to mean that

the interpolant involves only "nearby" points and one or more parameters.

We allow the parameters to have been globally determined as a matter of user

-2-



convenience, even though a (successful) argument can be made that then the

method is not local. Thus, we classify methods as local or global without

regard to how parameters are chosen or computed.

The use of global methods is not feasible for very large N since they,

often involve the solution of a system of O(N) equations (often exactly N)

and in any case involve processing all points. When systems of equations

must be solved, the systems are often full and not well conditioned. While

our primary aim was to investigate local methods suitable for very large data

sets (several hundred points up to some millions, say), in many instances local

methods involve the use of global methods on smaller sets which are then

[. "blended" together to obtain a locally defined global interpolant. Thus it

makes sense to test global methods on moderately sized sets of data. By

the same token, it is not necessary to test local methods on sets of 10000

points (say) by virtue of the fact that they are local. If very large sets

of data were to be considered, it is clear that a different implementation

approach might be necessary, one which would involve a larger amount of pre-

processing and perhaps additional storage.

...
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1.1.0. Tested Characteristics of Methods
The characteristics on which various methods are to be compared, and

how they ave to be weighted in the final analysis, are somewhat subjective.

While no representation is made that the list Is exhaustive (or even close

tolIt), nor that everyone will be In .agreement on it, the following items

are the, ones considered here. We give them and discuss them in order of
4' decreasing importance.' In the presentation of information in the summary

(tables and perspective plots) each reader may weight various aspects to

suit his own needs.

.4-
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I.I.I. Accuracy

Accuracy in reproducing a known surface is certainly one important

aspect of comparison. In the usual application no representation of the

underlying surface z - f(x, y) is known, however, if the method approximates

a variety of surface behavior faithfully we can expect it to give reasonabIl

results In other instances. Quantitative numbers can be put on the perfor-

mance of a method tested In this fashion, and we have used this idea extensively.

4-



1.1.2. Visual Aspects

It has developed during the course of this project that the appearance

Visual ratings are often closely related to the accuracy with which an inter-

polant reproduces test surfaces. There seems to be a closer relationship

when accuracy is high since there is less chance for the interpolant to

mfstehive.- At moderate accuracies one interpolant may be visually pleasing

while another with similar accuracy is not.

The visual aspect is quite subjective and ratings by different persons

will give somewhat different results, although probably not contradictory

ones. While It is felt that the visual aspect is quite important, exactly

how this information is integrated into the overall assessment of a method

is also a subjective matter, however it is rare that a dilemma occurs in

this study.

-6-
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1.1.3. Sensitivity to Parameters

(2 •Many of the tested methods involve the choice of one or more parameters.

These choices have generally been converted to ones which are related to

mean distances to nearest neighbor, although precisely that idea is never

directly used. Here we are talking of nearest neighbor in the set of points

{(xk, yk)}. Sometimes the parameter takes the form of an anticipated number

of points in the region which defines a local interpolant.

Methods which involve parameters underwent informal testing for suitable

values of the parameters. Methods which survived this and other tests have

parameter variation tests tabulated in the results. Some methods were found

to be capable of generating creditable results for an appropriate value of

the parameter, but were sensitive to it, or gave poor results on similar data

when the same value was used. These results arementioned in Section 3. It Is

desirable to have a method which is stable with respect to changes in the

parameter, and such methods were found, as we note later.

jAA
L
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1.1.4. Timing

]he computational effort required is generally not of great interest,

unless it is very high. In these respects, only one method was tested which

was discounted for this reason. Some methods are quite efficient in terms

of time required for the calculations. These methods have generally been

found deficient in other categories, unfortunately. For methods which involve

a preprocessing phase, distinct from an evaluation (of the interpolant) phase,

the two times for standard problems are given separately. Execution times

were taken from the multiprogramming environment on the IBM 360/67 and as

such may vary considerably with exactly the same data. More is said of this

later.

• -8-
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1 .1.5. Storage Reguirements

As with computational effort, storage requirements are not crucial, unless

they are very high. For very large problems this may be altered, of course.

We count storage requirements only in terms of additiunal a needed to

store data beyond the (xk, Y f points. No account is taken of simple

variables or program length.

I
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1.1.6. Ease of Implementation

Ease of Implementation is of no great concern if one obtains a working

program. In other instances it may be of considerable importance. The

Judgement is again subjective. Further, it could be different depending on

the philosophy behind the implementation. The form of the implementation

could involve trade-offs between timing and storage and would doubtlessly

alter the ease of implementation.

Implementation of programs specifically for this project generally was

done with a lack of frills. Reasonable care was taken to assure that a

grossly inefficient algorithm was not coded, but no doubt it is possible to

improve on most of them. In particular, use of some preprocessing and

additional storage was not used to increase efficiency during the evaluation

phase, For a general purpose program this should probably be done, in many

instances. Some of the documented programs did use these devices. Ease of

implementation is generally meant to take into account the complexity of the

ideas involved in the method and the amount of code required.

-l0-'i £'
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1.2.0. The Testing Process

The Initial tests performed on a few methods eventually gave rise to a

standard set of test problems and a set of supporting subprograms to generate

statistics from the tests and. generate perspective plots of surfaces. Due to

the evolution of ideas as the study progressed, some aspects of the pro,.ess

are not as simple as they might have been. This is particularly true of some

of the test functions, but this has no bearing on the validity of the tests.

A

(i
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1.2.1. The Test Program

To enable testing many different methods in a consistent manner, and with

a minimum of effort, a set of standard subprograms was developed which

generate the test cases, compute deviation statistics for known test surfaces,

Sobtain timing statistics, and generate and label perspective plots of the

4 surfaces. With the current set of supporting subprograms it is generally

quite easy to test a new method which is typically supplied as a subprogram

(or several) which generates the values of the interpolant at a grid of x-y

points. Typically all that is required is to set certain parameters, reserve

any required workspace, and call the subroutine, all of which can be done with a

few statements added to the prototype driver program.

-12-
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""•2.2. The Test Problems

"~I2~ The basic set of test problems consisted of six different test functions

over three different x-y point sets, and two x-y-z point sets from the

literature, one of those used in a second version with one of the coordinates

scaled. Another interesting test was the computation of a "cardinal"

function obtained by setting all function values on a point set to zero, save

one.

The six test functions were all to be approximated on [0, ]. Four of

them were basically obtained from McLain's paper [39], but were translated

to [0, 1)2 from [1, 10]2 and some modified slightly to enhance the visual

aspects of the surface. The other two were generated by the author to provide I

a fundamentally different shape in one case (saddle), and to provide a surface

with a variety of behavior on one surface to serve as a principal test func-

tion.

The principal test function is given by

fl(x, y) .7 exp[ - +(g'2)24 xL3 .75 exp[- 249 - )
(! (x-7)z + (9y-3_)_2 22S+ .5 exp[ -..... . 2 exp[ - (9x-4) (y 7

This surface consists of two Gaussian peaks and a sharper Gaussian dip

superimposed on a surface sloping toward the first quadrant. The latter

was included mainly to enhance the visual aspects of the surface, which is

shown in Figure 4.0.1.0.

The second test function, essentially obtained from McLain Is

f 2 (x, y) = i-tanh(9y - 9x) + 1).

This surface consists of two nearly flat regions of height 0 and 2, joined

-13-

t . i, -A•



by a sharp rise, almost a cliff, running diagonally from (0, 0) to (1, 1).

The test surface is shown in Figure 4.0.2.0.

The third test function was generated by the investigator and is

) 1.25 + cos(5.4y)

3(x y) 6[ + (3x - 1) )

This surface is saddle shaped and is shown in Figure 4.0.3.0.

The fourth test function, essentially obtained from McLain, Is

This surface is a Gaussian hill which slopes off in rather gentle fashion in

c0, 1]2. It can be seen in Figure 4.0.4.0.

The fifth test function was also essentially obtained from McLain and is

fYx. y) lexp[ 11 ((x2 + (yi) t

This surface is a steep Gaussian hill which becomes almost zero at the bound-

aries of the unit square. It can be seen in Figure 4.0.5.0.

The sixth test function is also essentially from McLain, and is

1 2 1 1
f(, = 64 - 8((x- ) + (y-

This surface represents the part of a sphere above the unit square. The

sphere is of radius (1with center at 1 1 . The surface is shown in

Figure 4.0.6.0.

There were three different sets of points over [0, 1)2 used in the tests.

The first set consisted of 100 points generated by a pseudorandom number

generator, one point in each square of side I centered at for
9 9'

I, j = 1, ... , 10. This yields a set of scattered points forced to have

-14-
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somewhat uniform density, although as can be seen in Figure 0.1.0.0. there

are locally large variations in density. The triangulated set of points is

also shown in Figure 0.1.0.0. Part of the unit square is outside of the

convex hull. The points are listed in Table 1.

The second set of data consists of 33 points and was generated by the

investigator to purposely have some areas sparsely populated by points

while other areas are not. This set of points is shown in Figure 0.2.0.0.

The points are listed in Table 2.

The third set of points was digitized by Gregory M. Nielson and is

similar in disposition to a set of points appearing in McLain [40j. This set

of points is shown in Figure 0.3.0.0, Part of the unit square is outside the

convex hull. The points are listed in Table 3.

Two sets of data were obtained from the literature, and one of these was

scaled in one variable to obtain another. A fourth set was used to generate

a "Cardinal Function". The data given in Table 3, and shown in Figure 0.3.0.0.

was given the following function values: fixk, y - 0 except

f(.1875, .2625) - .2. Here .2 was used for visual purposes rather than 1 as

would ordinarily be done for a true cardinal function. This gives some infor-

mation about the influence of one point on the surface for moderate sized

point sets. Of the two sets of points from the literature, one is from Akima

[1] and was obtained during a study of waveform distortion. It is repeated

here in Table 5, and shown in Figure 0.5.0.0. The second was obtained from

Ferguson [14] and is repeated here in Table 6, and shown in Figure 0.6.0.0.

The same set of data, but with the y coordinate multiplied by three was

also used to show effects of scaling only one variable, and is shown in

Figure 0.7.0.0. For visual purposes, the function values given in Table 2

are actually .5 more than given by Ferguson. As can be seen from Figure

-15-



0.6.0.0. the convex hull of the data is trapezoidal shaped. Since the

plotting routines expect function values on a rectangular grid it was

decided to evaluate the Interpolating surfaces on a rectangle which

contained most of the convex hull, but also included a mild amount of extrap-

olation. The rectangle was [2, 18) x [-3, 3.4] on the original data and

[2, 18] x [-9, 10.2) on the modified data. The convex hull of Akima's

data is rectangular and this rectangle was used for evaluating the surface

points.

The problem of extrapolation outside the convex hull has been addressed

by taking the attitude that while it is undesirable to have to do so, it is

likely possible to do it in a "reasonable" fashion. Certainly in many

instances (our cases mostly among them) one may have better information for

mild extrapolation than for some points within the convex hull. The final

result is that some programs were modified to extrapolate in a "reasonable"

manner, some were implemented that way to begin with, and with others the

problem does not arise. Basically only triangle based programs need to

address the problem, and among those, only Lawson's [33] program does no

A' extrapolation. Points outside the convex hull were omitted from the

deviation statistics in Lawson's method. For the 100 point data set, only

13 points of the 1089 evaluation points were outside the convex hull, and

for the 25 point data set 54 points of the 1089 evaluation points were outside

the convex hull.

-16-



r:. 1.3.0. Plot and Table Identification Scheme

The output of this study consists in part of a large number of per-

spective plots of surfaces and extensive tables. For ease in referencing

them they have been gathered at the end of the report, and the entire

report has been published in loose leaf form to facilitate reader compar-

isons of corresponding plots.

The plots have been arranged according to a scheme involving 4 numbers,

each of which identifies a particular aspect of the plot. The plot ident-

ification is of the form Figure N1 .N2 .N3 .N4 , where the Ni are used to
identify the characteristics listed below.

N1N, Type of plot

0 - plot of (x, y) point set

1 - indicates plot has four 3" plots as arranged in Figure 1

2 - indicates plot has four 3" plots as arranged in Figure 2

3 - indicates plot has four 3" plots as arranged in Figure 3
4 - one 6" plot per page

N2 - Indicates (x, y) or (x, y, z) point set used

0 - does not apply

1 - 100 points as described in Section 1.2.2

2 - 33 points as described in Section 1.2.2

3 - 25 points as described in Section 1.2.2

4 - all of 1, 2, 3 were used as indicated in Figure 1

Vý 5 - 50 points from Akima [1], given in Table 7

6 - 25 points from Ferguson [13], given in Table 5

7 - 25 points, obtained as Ferguson's points with y coordinate x 3.

-17-



N3 - Test surface

0 - does not apply

i - f1 as defined in Section 1.2.2., 1 g i g 6.

N4 - Program Number, as identified in Section 3, and given in Table S.

Test 100 point Cardinal Aklma
'Surface interpo- Function Surface

lant

c d d d
33 point 25 point Ferguson Modified

interpo- interpo- Surface Ferguson
lant lent Surface

Figure 1 Figure 2

b-

Test Parameter
Surface < Nominal

Value

C d

Parameter Parameter
• Nominal > Nominal

Value Value

Figure 3

The plots all involved evaluation of the interpolant on a 33 x 33 grid

of equally spaced points. Generally this grid is fine enough so that piece-

wise linear plotting of the cross sections, which is the process used by

the plot program, yields sufficiently smooth looking results. In some instances

this is not really fine enough to show the true character of the surface, but

in these e.ases the surface is not a good approximation to the test surface

-18-
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and the plot is considered sufficiently accurate to evaluate the visual

I aspect of the surface anyway.

Tables of comparative results are arranged I d labeled according to

information contained and test function and data set from which it arose,

if pertinent. There are several kinds of tables: (1) Deviation tables,

giving the maximum, mean, and root-mean-square deviations over the set of

evaluation points used for plotting. These are labeled Table D.M1.M2 ,

where D indicates "deviation table", M1 • I means (x, y) data set I, as

described for N2 • I, above; and M2 w i Indicates the test function ft

as described for N3 above. (2) Timing tables, giving the execution times in

seconds on the IBM 360/67. These times are divided into preprocessing (for

methods for which there is preprocessing), evaluation, and total. All pro-

grams were compiled using the Fortran H (optimizing) compiler. Since the

configuration of the machine Involves multiprogramming, these times are

dependent on external factors, and may vary 10% or more, in either direction,

on otherwise identical runs. Therefore, times are given to two digits, the

second probably not being significant. The tables are labeled Table T.M,

where T indicates "timing table" and M = I means for the (x, y) data set as

described for N2 = I, above. (3) Paramoter variation tables give the devi-

ations for the nominal value of the parameter (for methods involving a param-

eter), and for values larger and smaller than the nominal value. The tables

are labeled Table P.M, where P indicates "parameter variation" and M a I

means for the (x, y) data set as described for N2 - i, above. (4) Summary

table, Table S summarizes the pertinent information about all tested methods.

(5) Two tables compact the information in the deviations tables, indicating

only which method (by number) has the smallest deviations for each test

(
-19-
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surface and point set. The two tables are for local methods (Table E.l)

and all methods (Table E.2).

All tables listing results for various methods are grouped into two or

three separdte groups. The first group contains extensively tested local

methods, the second contains extensively tested global methods, and third

(when it appears ) contains all other methods."If

Certain information in the summary table, Table S needs additional ,

explanation, in particular those given letter grades. Sensitivity to

parameters is a purely subjective score, based on informal testing of the

scheme. Included were whether some value of the parameter worked well for

a variety of surfaces for a given set of (x, y) points, and whether the

interpolant was stable with respect to changes in the parameter from that

value. Complexity simply reflects the investigator's perception as to the

"complexity of ideas involved and the ease of implementation into a computer

program. Accuracy is again subjective and is based on the relative amount

of deviation one might expect from the true surface for a given method. Of

course, perusal of the deviations tables will reveal some methods do well

on some surfaces and not so well (relatively speaking) on others. Timing

is relatively well defined. The first letter represents the sum of the

evaluation times, given in Tables T.1, T.2, and T.3. Ranges for A, B, C,

D, and F, respectively, are (0, 7], (7, 21], (21, 30], (30, 50], and

(50, -). The second letter represents the total time for 100 data points

and 1089 evaluation points, the time given in Table T.I. Ranges are (0, 4),

(4, 12], (12, 20], (20, 30], and (30,-)

-20-



2.0.0. Descriptions of Tested Methods

For description purposes the methods are classed into six groups:

(1) Inverse distance weighted methods, (2) Franke's method, (3) Triangle

based blending methods, (4) Finite element based methods, (5) Foley's

methods and (6) Nodal basis function methods. While there is necessarily

a blurring of distinctions across these group lines, they constitute fairly
distinct ideas and it is convenient to group them this way. In the Section

headings, the number appearing is the number assigned to the program imple-

menting that scheme. This number has no significance except that it gives the

approximate order in which the programs were implemented or obtained, Not

all numbers appear because certain ideas were discarded as not within the

context of the study Otn one case), or as extremely deficient (one case).

The programs included in the test and a few words describing it (also used

in Section headings in this chapter) are given in Table S to have them

K available for easy reference.

I r i

to

-
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2.1.0. Inverse Distance Weighted Methods

The original inverse distance weighted interpolation method is due to

Shepard [50). All methods of this type which we consider may be viewed as

generalizations of Shepard's method, or variationis of such generalizations.

The basic Shepard's method is

N N
(1) F(x, y) = Wk(X' y)fk I wk(x, y),

k~l kal

where V'k(X, y) = dk'. and typically p - 2, although other values may be

used. u may be replaced by Pk and could possibly be different for each k.

Several authors have considered various aspects of Shepard's method [4), [5),

[20], [49].

Shepard's method is a global method, and the original paper suggested

a scheme foe localizing it by piecing together a parabolic segment with

dk in such a way as to obtain a wk which is zero outside some disk, say of

given radius R, centered at (xk, yk), and which is still C1. A simpler and

more natural scheme suggested by Franke and Little [4, p. 112] is used in

much of this work, that is,

[(R -dk)+ 2
(2) wk(x, Y) L Rdk

Shepard's method has an undesirable property for general use in that a

flat spot occurs at each data point. Use of information about derivatives,

I~i either given or generated from the data was suggested by Shepard, and resulted

in an approximation of the form
N N

(3) F(x, y) = l wk(x' Y)[fk + (f) (x Y Xk) + (O)y

k=l -k (Y Yk)]/W wk(xl y)'

More generally, one may consider approximations of the form

-22-
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N ,
(4) F(X, y) k Wk(x' Y)Lkf(x' Y)/k~ Wk(xs y)'

k=1 k~l

where Lkf is an approximation to f such that Lkf(xk. y fk" This is the

basis for several of our methods. In this context we refer to the Lkf as

nodal functions.

Another way in which Shepard's method can be generalized is to view the

method as an inverse distance weighted least squares approximation to f(x, y)

by a constant. One can then generalize to an approximation taking the form

S(5) Fix, y) * aO , ... , an; x, y),

where a a are parameters chosen by taking them to minimize (for a

~ I given Nx, y)) the expression

N
fk " - F(a°, ' 1... an; xk Yk Wk(XS Y),

k* 1

This approach was taken by McLain [39] in evaluating a number of methods where

was taken as a linear combination of low order monomials and wk(X, y) asklx

'• dk2 -d 2 d " .
ýdk or exp(-mdk )d,( 2 . McLain also considered some approximations where f

entered nonlinearly. We have considered one of McLain's methods and a

variation of another. All of the methods of this class may be derived as

variations of the above formula for r[18].

(-
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2.1,1. Shepard's Method (18)

We consider Shepard's method mainly to show how the original method

performs in comparison with variations. The formula is described by Equation

(1), but was achieved computationally as a special case of the Modified

Shepard's Method by taking R very large.

-24
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2.1.2. Modified Shepard's Method (7)
This variation is obtained by using the weight-function

F(R-d~yw (x -Y) L RkJ

in place of d2 In general R can be different for each k, but we have not
done this. In order to simplify the choice of R and to remove effects of

scaling from the procedure, R is actually computed from the expression

(6) R _I D,

where D is the diameter of the point set ((xkV Y) and Nw isa new parameter

to be specified. Geometrically Nw represents the anticipated number of points

which will be in a disk of radius R. Computational experiments have led to

a nominal (or default) value of Nw * 12. For point sets of widely varying

density this is probably not an appropriate value, since the use of constant

R for all k assumes a somewhat uniform distribution.

Jrf

1 ;ii' -
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II
2.1.3. Modified Linear Shepard's Method (3)

This variation is obtained by taking Lkf in Eq. (4) to be the inverse

distance weighted least squares approximation to the (xj9 yjt fj) by a plane

. with weight given by Rd J, and the weight function is that given by

(2). The comments regarding the choice of R in the previous method apply

here as well, including the nominal (or default) value of N, - 12. The

coefficients of the plane are obtained in a preprocessing phase.

'-I .I, -.&
, ,,. 4

AI
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2.1.4. Modified Shepard's Method Boolean Sum Plane (2)

Barnhill,,and Gregory [6] have shown that the operator P 0 Q = P + Q - PQ

has the Interpolotlon properties of the operator P and the precision of

operator Q.... A suggested scheme for obtaining polynomial precision for

Shepard's method is to use an operator with linear precision for Q, while P

is taken as Shepard's Method. We have used the following scheme. Let

L(x, y) - a(x, y)x + b(x, y)y + c(x, y) represent the approximation to f(x, y)

obtained by a least squares approximation with weight (R - dk)2 for the kth

point, and let Sf represent the Modified Shepard's Method operator of Section

2.1.2. where R above is the same as in Section 2.1.2. Then the approximation

0 is F(x, y) S 0 Lf(x, y). Computationally this is achieved by S 0 Lf a

S(I - L)f + Lf, or

N N
(7) F(x, y) k 1 Wk(x1 Y)(fk L(xk Yk))/ y Wk(x-Y) + L(xy).

Thus the values L(xk, yk) are computed as a preprocessing step, and the two

terms in Eq. (7) are computed for the given (x, y).

3-27-



2.1.5. Modified McLain Method M8(8)

McLain's method-M. (38] is of the form given in Eq, (5) with

F(a . a,, a2;9 X, Y) - 80(x. y) + al(x.,y)x + a2(x, y)y and inverse distance

Iweighting d~2  We have modified this by taking weighting given by

k) , where R is again computed from expression (6)with a nominal

value of Nw 12.

-28-
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2.1.6. Quadratic Shepard's Method (17)

This method is of the form. given by equation (4) where wk(x,,y) *dk 2

and Lkx, y) is the inverse distance weighted least square quadratic at, the.

Point (xk' Yk with weight dk2  The coefficients of the quadratics are

obtained in a preprocessing phase. This method is actually treated as a

special case of the next method with R and Rq taken very large.

q¼

I-29-



2.1.7. Modified quadratic Shepard's Method (14)

In this method the weights for obtaining the nodal functi[.ns (quadratics)

are taken as 2

where Rq bears the same relationship to Nq as R to Nw in Eq. (6), i.e.,

,'Rq & ; D. The nominal value for Nq was determined by computational

experiments and is Nq- 18. If fewer than 6points lie in a disk of radius

.Rq at some (xk Y , the approximation Is taken to be linear. In any case

nonuniqueness of the nodal functions is avoided by using the pseudo-inverse,

obtaining the least squares approximation which has minimum z2 norm of the

coefficients. The weight function is given by equation (2), and R obtained

from Nw with the nominal value of Nw . 9. Complete details are given in

[18].
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¶. .8 Mc_ in'_ Me hod F1_ -_

McLainls.Method M10 [39] is of the form given by Eq. (5) where

k Pa09  .. , a~ xy) 0 +a~x+ ay +a 2 + aYy + a~y ,and the weight
function for the approximation i ae ob exp(-c~did ) erIk k

"Ilk ~ order -,o remove-the effects of scaling we have taken
*1.62N

where D is the diameter of the point set {((xk This choice yields

a*1in McLain's original numerical experiments. where McLain suggested

ashould be something like the usual distance to the nearest neighbour.

Experiments have confirmed that the above ctis a reasonable choice in a

variety of instances. This is a, global method.

I -31-



71

2.2.0. Franke's Method

The class of methods [16] was inspired by a short paper by Maude [37J

which generalized the idea of deficient quintic splines to several variables.

Unfortunately the original interpolation function exhibits rather poor

behavior and has not even been included in our tests. The original idea was

to represent the interpolation function as

N N
(8) F(x, y) W , y)Qk(x, y)/k~iWk(X, y),

klO"Ykx Y/kul k*1 lY)

where Q,(x, y) is the quadratic polynomial interpolating f(x, y) at (Xk yk)

and the five nearest neighbors to (xkN y from the set {(xj, yj)}, and

] . k (3 -k2 d, R,

0 dk > Rk

where Rk is the distance between (xk, yk' anu its 5th closest neighbor. This

idea was generalized to include ariy Wk(x, y) which have finite support (to
+ make the method local) so long as the Qk(x, y) interpolate f(x, y) at all

(xji Yj) where Wk(xj, Yj) % 0. Use of approximations Qk(x. y) in Hilbert

spaces, particularly in Sard spaces, was suggested and implemented [17]. One

of the chief advantages of this approach is that instead of taking Wk with

disks centered at the (xk, yk) as support regions, it is easy to use a smaller

number of overlapping rectangles in sucha fashion that at most four terms in

the sum are nonzero, and I Wk(x, Y) I. lse of rectangles also simplifies

j the problem of determining which terms are nonzero and thus results in a

faster algorithm. In general, schemes of this sort are given by

F(x, y) * • W (x, y)QY(x, y), with W, 1 and certain interpolation conditions

imposed on the Q•.

-32-
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The details of the rectangle selection process follow. As. an option

(..i. the user may specify rectangle boundaries, however an automatic selection

process is available and is assumed to be the usual option. A parameter

NPPR (for number of points per rectangle) is specified, the suggested value

being NPPR a 6. In the automatic case we take nx lny a [2 v17/NPRl- ½] and

then grid lines in the x direction at xt I ''" . n0+1 are chosen so that
x

each strip (xi. 1 , xi)x(--, -) contains approximately N/(nx + 1) points. A

similar partition , Y' ..' " Yn +1 is found in the y direction. Now,
y

weight functions W j(x, y) with support [xi1-, i+l]x[-Il YJ+I] , Rij

are used together with Q yj(x, ) which satisfy Qij(xk, yk) fkwhenever

(xk yk) ij to form the interpolation function

S(9) Fix, y) •!Wij(x, y)Qii(x, Y).

Here w9 choose the Wij so that 1. I .

Recently, some work due to Junkins, Jancaitus, and coworkers [311, [33]
has come to the investigator's attention. This work involves the idea of

weighted local approximations in a similar fashion, and was applied to the

problem of terrain modeling. In their case the local interpolation functions

were replaced by least squares approximations by polynomials and thus inter-

i*,• ~polation was not achieved.
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2.2.1. Franke's Method (Mode One) (6)

In this method the Qjof Equation (9) are taken as the optimal inter-

polation function in the Sard corner space B- 21i . These functions are

:Ij bicubic splilne functions and have continuous second derivatives except along

two lines x *a and y b. By taking (a, b) outside of the rectangleR

the function Qjis then C on R1j. To preserve the approximation under

~ scaling (not necessarily the s'ame in each variable) the optimal approximation

is computed after Rj is transformed to j0 ).At least three interpolation

points are used, nearest points (in the z. norm) being added if necessary.

To preserve the contiuuity of the second derivative it is necessary to take

W with continuous second derivatives. Thus the choice of

W1 (x, y) V1(x)U W,) where

V, () S1 ,x Ix <
x-x X22

1-1

15( - *), 5x1  x< x1~

Vi~xi

for =2,..., nX -1, and

x j x

-34-
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Is made, where H5(s) S 1-s(6s2  15s +10.) is the Hermite quintic

Satisfying H5(0) 1, Hg(O) Hg(Q) H501 ~) HIM) o
6 H"(1

P *5

~4, 5-

Win



2.2.2,. Franke's Method (Mode Three) (1) (
Because the optimal approximations in Br2,21 have no polynomial

precision, another choice for local approximating functions QiJ is available.

In this case the Qij are taken to be the optimal approximation in 8 •,.
boolean sum the least squares (unweighted) plane fit to all data points in

Rij. Since the latter process has linear precision, so does the overall

approximation. The process is implemented as

BILf = B(I - L)f + Lf, where

B is the optimal approximation and L is the least squares plane fit. 1

The choice of rectangles and weight functions is identical to that of

the previous section.
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2.2.3. Franke's Method (Thin Plate Local Funct;ons) (24)

The elegant theory and excellent fitting characteristics of the thin

plate approximations given by Duchon [l], (see Schumaker [47] and Section

2.5.4.) lead to their consideration as local approximations in the basic

method ,given by Equation (9). Several other modifications were incorporated

as well.

The suggested number of subrectangles remains the same. However the

selection of grid lines xi and yj is done in a way which preserves symmetry

under reflections and also will result in a symmetric interpolant if the

data itself is symmetric.

In selecting points to be interpolated by the Qtj a slightly larger

rectangle than Rij Is considered by including all points in the rectangle

[-.1125, 1.1125]2 after Ru has been transformed to [0, 1]2. This

rectangle has area approximately 50% larger than unity and interpolation on

the larger set of points tends to make the transition between regions somewhat

smoother. This choice was made on the basis of computational experience. Again,

at least three points must be interpolated and the nearest points (in the

I', Z., norm) are added if necessary.

Experienre has shown that many C surfaces appear to be smoother than C

in that second derivAtive jumps are apparently small. While the thin plate

approximations have discontinuous second derivatives at the data points, the

former reason is the primary one for using H3 (s) =l- s 2 (3 - 2s) in place of

H5 (s) in the definition of the W Fj Ior this method.

The local approximations have the form

Qij(x, y) = d 2 lokklOg dk + a x + b1 y Cyk E J Il il~ kck i

(I J

-37-



Iwhere r is the set of indices k for which (xks YkI fk is a point to 2
'Ij

be interpolated by Qij. See Section 2.5.4. for a further discussion of
thin plate splines.

A411
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2.3.0. Triangle Based Blending Methods
' These methods are conceptually the same as given by :Equation (4),

but a significant difference is that the weight functions arebased on a

trtangulatiorq of tho convex hull of the pQint set `{(xk. Yk))O% Several such 1 31

schemes have been proposed, e.g. [9], [18]. [19), and [40). One of those

considered here Is the one described In [18)..,,

Assume a triangulation of the convex hull, and suppose (x, y) ClJk where

TiJk is the triangle with vertices (xt, yi), (xJ. Yj), and (xk, y We then

take

(10) F(m, y) W1(x, y)Q1 (x, y) + W (x, y)Qj(x, y) + Wk(x, y)Qk{x, y)

where the weight functions are finite element "shape" functions satisfying

Wm(X•w Y•) amP end Q•(x•, y( ) f for m, z - i, j, k. In all previously

referenced methods the weight functions may be viewed as nine parameter cubic

shape functions with a rational correction to obtain normal derivatives equal,

to zero, and hence a C1 approximation overall. There are many ways to obtain

such correction terms, all of which appear to lead to the possibitty of negative

values being taken on by one of the weight functions if the triangle is very

obtuse. This is probably not serious, although one has no control over the

shape of the triangles in the sense that very obtuse angles cannot be avoided

in some instances. The weight functions used here are obtained from a minimum

norm problem [43]. Let b1, bj, bk be the barycentric coordinates of (x, y)

in Tijk, and let gI, zj, and xk be the lengths of the sides opposite vertices
t, J, and k, respectively. Then the weight function is given by

Wk(X, y) * bk( 3 - 2bk) + 6bibjbk[3kj + 3kt]

with

"2 2
O'kj (I -b ) 1 -b ) 2

-39-
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and the others being obtained by a cyclic permutation of the Indices.

While the basic method itS defined only on the convex hull of the point

set, it is easily extendod to be a globally defined function by the following

\'i' tidea. The exterior "of the convex hull is dlvided into semrinfinite rectangles,

shown in Figure4, by donstructing perpendiculars to the exterior edges of

the convex hull at each exterior vertex.

Figure 4

To extend the definition of Equation (10) outside the convex hull we

proceed as follows. For a point in an exterior triangle, such as (x, Y).

we take F(, ). For a point in an exterior rectangle, such as

(x, y), let p be the projection of 6x, y) onto side iJ, and let (b1 , bj. 0)

be the barycentric coordinates of p in Tijk. Then we take

F(x, y)- hI(bi)Q(x, y) + h (b AQ(x, y,

where h3 (s) s2(3 . 2s). These extensions yield a globally defined approx-

imation which is C

-40-
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2.3.1. Nielson-Franke Linear Triangle Method (12)

This method uses the inverse distance weighted least squares plane

Qk(x,,y) which is also used in the Modified Linear Shepard's Method. See

Section 2.1.3. for details.
Another idea was investigated for determining the slopes to be used in

the planar fit, but was abandoned as being a poor idea. Since the idea has

been mentioned by a number of persons, it is discussed here. At a vertex k,

determine the slopes atj and bij of the plane a x + bt~y + ctj through the

points (x1 , Yi, f1)s (xis Yji fi), and (xka Yk' fk)' where Tiik is a triangle

in the triangulation. The nodal function is taken as Qk(x, y) - Ak(x - Xk)

+ + Bk(y " Yk) + f k where Ak and Bk are the average values of ajj and bij,

respectively. We can think of this as taking the nodal function at each vertex

as the average plane from the piecewise linear approximation on the triangulation.

This fails because of the possible existence of long thin triangles. This is

especially crucial when the triangle is very obtuse, and the plane through the

three points may have very large gradients because the three vertices lie

nearly on a straight line while the three points on the surface do not.

-1
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2.3.2. Nielson-Franke Quadratic Triangle Method (13)

This method uses the' inverse distance weighted quadratic Qk(x. y) which

is also used in the Modified Quadratic Shepard's Method. See Section 2.1.7.

for details. A complete description is given in [18].

r~.i

I:

t I,

t:
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2.4.0. Finite Element Based Methods

These methods arebased on the concept of using C finite element

functions on a triangulation of the convex hull of the point set. 'This

requires a scheme for estimating some derivatives (which ones depend on,

the element used by the method) at the data Doints. Our test results indicate'

that accurate estimates of the derivatives area very important and have a

pronounced effect on the visual aspects of the surface, particularly, but

also the accuracy.

,i-43
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2.4.1. Akima's Method (6)

+ 'Aklma's method (1] uses the 18 parameter quintic element and thus

requires both first and-'second partial derivatives at each data point.

The scheme used is as follows. The user specifies a parameter, nd. Let
-d.

Si'rk (Xk.' yIZk) and form the'sum V-u ± ';rt x P'.J where (1, J), 1 0 J

ranges over the nd closest points (x1 , yi) and (xj, yj) to (xk, yk), and

,' where the. sign is chosen so that the z component of each cross product is

positive. The first partial derivatives are taken to be those of the plane

• normal to V. The second derivatives are obtained by applying the same I
process to the derived data. The cross partial is taken as the average of

the two so obtained. Akima suggests nd 3 or 4 as appropriate, but we have

found nd •6 generally works better.

Extrapolation outside the convex hull is achieved by construction of an

appropriate polynomial in the exterior rectangle or triangular regions given

in Figure 4, and C continuity is maintained. In a triangular region, the

conditions at the vertex determine a unique bivariate quadratic. For the

rectangular region the cctiditions at the two vertices determine a unique

polynomial of degree two in the direction normal to the boundary segment,

matching the quadratic in the adjacent triangular region, and of degree 5

in the tangential direction, matching the value and first two derivatives

across the boundary from rectangular to triangular region.

.44-
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2.4.3. AiasMethod -Modification Two (1l)

It was-fel~t tha~t perhaps an inverse distance weighting of the cross

prodv-ts might be desirable, so this scheme formed the vector sum

All other'aspocts of the program were maintained.

.46



2.4.2. Akima's Method - Modification One (10)

It is easily observed that while Akima's scheme for estimating dev iv-

atives puts l.ess wetght on nearly collinear points, which seems desirable,

J it also puts more weight on distant points, which does not seem to be

desirable. To renrovE the distance weighting, the scheme was modified to

form cross products of unit vectors in the same directions as before,, te.,.

the sum
V ± .[ ± -;iITb=!

was formed. All other aspects of the program were maintained.

II

i
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2.4.3. Aktma's Method - Modification Two (11)

I was felt that perhaps an inverse distance weighting of the cross

products might be desirable, so this scheme formed the vector sum

ip "P " 
, p

k •i1141kMj"'

All other aspects of the program were maintained.

Ito
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4 A 2.4.4. Aklma's Method- Modification Three (16)

This modification incorporated use of the inverse distance weighted I
quadratic least squeres polynomial fit used in the modified Quadratic Shepard

method described in Section 2.1.7. The required derivatives wure then taken 1
from the quadratic nodal function computed in this manner. All other aspectss-iijof the program were maintained.

j.•

.Ii
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2.4.5. Nielson's Minimum Norm Network (19)

This scheme [43] uses a cubic element with a rational correction term

to obtain C continuity. One of the basis functions is that described in

IMP Section 2.3.0. Only first derivatives are required. These are obtained by

minimizing the value of f[d- F(x(s), y(s))] 2 ds, where the integral is over
ds

the entire network of edges in the triangulation. We note that the inter-

polation function is a univariate Hermite cubic polynomial along each edge.

• ~ ~This is a global method,.i•:

The original scheme is not able to extrapolate outside the convex hull,

but the following idea was incorporated to achieve extrapolation. In a

triangular exterior region as in Figure 4, the function is taken to be the

linear function determined by 6he value and slopes at the vertex. In the

rectangular region the function is extended by extrapolating from the pro-

Jection point, p, with the given slope and value along a straight line. The

re'sulting surface is only C0 across exterior rectangular to triangular bound-

aries, but for mild extrapolation this will likely not be noticeable. An

appropriate rational correction could probably be made in the triangular area
I'I

to achieve C1 continuity.

-48-
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2.4.6. Lawson's Method (28)

This method is somewhat similar to Akima's in philosophy except for the

particular finite element used and the manner of estimating derivatives [343.
A

The Clough-Tocher cubic element, which requires first derivatives at the

vertices, is used. The derivatives are estimated by fitting an inver-e dis-

"tance weighted quadratic at each vertex. The program is presently not Set up

to exteapolate outside the convex hull of the point set, although a scheme

Sfor extrapolation similar to that used In Nielson's program could be incor-

porated. Time did not permit this, however.

i..

j( .
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2.5.0. Fol'S Methods

Foley's methods [153 Involve several ideas. The use of a generalized

Newton type interpolant is involved in them prominently and this Idea is

dlscussed in Sectoil, 2.5.1.

Another idea which is exploited successfully is that of using one

interpolant to generate a grid of points on which product type approximations

can be constructed. The product approximation will net, in general, inter-

polate the given data. Hence a correction based on the original approximation

is made to the error. This process is termed a "delta sum" by Foley, written

PAQ, defined by P•Q = PIQV, and implemented as (PAQ)f a ,(I - QP)f + QPf.

The idea has greater generality than considered by Foley, but the appli-

cation of it seems to be the appropriate one. He considers cases where the

product type approximation (takJng the part of Q) is either the bivariate

product Bernstein •polynomial or the bivariate product natural bicubic spline.

The first interpolant (taking the part of P) is taken as either the generalized

Newton interpolant, or a form of Shepard's method. The delta sum idea is

applied in iterated form for two methods.

14'
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2.5.1. Generalized Newton Interpolant (25)

(.I The generalized Newton Interpolant as considered by Foley takes the

form F(x, y) - TN(X y.), where T1(x, y) 1` f1  Tk(xO y) ".Tk-l(xi y) +
f- -T. k-Lk, " Tk- k k-kWk( 2, N. where Wk(X, y) (d with
Xkk- ) 2 1(0)Y)i

dl -_'x- Xk)2 + (y-yk) and L a(0) a 0, L (t) *0 If t 0O. Foley takes
• t 2  ,

L (t) " 2 where the value of rj was obtained in an ad hoc fashion as

ur [ [25dj + J3dj2 + 7dJ 3 + 3dJ 4 ]. Here dji represents the distance to

the I.h nearest neighbor to (xj, yj) in the set of points {(xk, yk)}.
Unfortunately, unlike the univariate Newton polynomial, this function

depends on the ordering of the aata points. A number of experIments lead Foley

to two ordering schemes. Let (7, 7) be the centroid of the set (ixk, yk)), i.e.,
I N 2 )2 2

( 1 (X-, yk) L ak Wx- Xk)2+ - yk) , and arrange the points
kil

in increasing order of ak. This is called "Injide out" ordering, and the

opposite order Is called "outside in". The two interpolants based on these

orderings are called TIO(f) and TOI(f), respectively, by Foley. Since each

appears to work better in the region from which the final points come, i.e.,

TIO is better in the outer regions, while TOI is better In the central regions,

a blending of the two is taken as the final interpolant. The weighting function

is given by
I3.(x - ) + (y - 2")

L(x, Y) - (x-x) + (y y)+ D

where D max [x- 2 + 2 The final iriterpolant, TF, is then
k E~k + (ykk

given by

F(x, y) A BL(x, y)TIO(f) + (1 - BL(x, y))TOI(f),

i-51
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2.5.2. TF Delta Sum Bernstein. Polynomial (26)

The only addititnal Information in the; implementation of this scheme is

the region on which the data for the Bernstein polynomial is to come (a

square In the bivariate case) and the degree of the polynomial.: Foley takes

the square to be the smallest square containing the set ((x yk)}, although

""otes it might be better to do. otherwise in some circumstances. The degree

Is taken to be 10, although this means a grid of 11 x 11 points is used for

"the Bernstein approximation. We have followed Foley, but it might be more

reasopable to use an m xam lrid where m2 o N, as is-done in the next section.

Let the Bernstein polynomial for g(x, y) on (a, b) x (c, d) be denoted by

BRN(g). Then the TF delta sum Bernstein polynomial approximation is given by

TFABRN(f) • TF(f - BRN(TF(f))) + BRN(TF(f)).
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2.5.3. Iterated Delta Sums: TF Delta Sum Bcubic Spline'(30).

The TF interpolant is also applied in conjuoction with the natural

bicubic spline. We again need to give a grid of points on which to compute

the, bicubic spline. The selection routine supplied by Foley (but nol used

for the examples in his thesis) is as follows. Let m • [A] (here E'J denotes

the integer part),, and k +N j]. Sort the x-coordinates so that

X.7 x2 s x3 & . . . • xN. Then the x-grid lines are given by

x(jl)k+l for J 1, m - I,

1 N

The y-grid lines are formed in dual fashion.

, We now consider applying the delta sum in iterated fashion to obtain a

sequence of operators G, G .... Let B represent the natural bicubic spline

operator on the above grid. Then let GO • TF, and successively form operators

Gn+i m TFGBGn, nO, 1,.

The calculation can then be organized as follows: Compute the current

approximation at the grid points; construct the natural bicubic spline inter-

polant for the grid; correct the spline interpolant for the grid to obtain

interpolation at the scattered points by adding in the TF interpolant for the

'error. Computationally this all amounts to writing G0 if as BGnf + TF(I - BG )f.

Under certain conditions the iteration may converge, and can converge to a

bicubic spline function which interpolates the original data. In other instances

the iteration appears to diverge, unfortunately. We have taken 3 as the nominal

number of iterations to be used.
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2.5.4. rIterated Delta Sums: 'A Shepard's Method Delta Sum Dicubic Spline (31)

The basic i~ea of the previous section was also appl-ied usi~ng a modified

Shepard's-me~thod-ipn pl~ace of the TF interpolant. The stable, if somewhat

undesirablep, beh,4vi~or of Shep~ard's method would appear to be well. suitid for

this use.

ki i ~ The bas~cicmodification to Shepard'Is method was onel to force a: di'minished

region of influence on the points, taking the weights to be rwhere3
2 2

r Z!fl1 ,
2 umax -2k -) + and (* Y)i ~k rN~an (7, yx) iYsY the centroid of the

set {((x Y)1, as in Section 2.5.1, The modified Shepard's method used here

Is of the form
K ~N fi N 1 whr

F(x. y) k hr

kP (dk A

The iterated delta sum interpalant Is then formed in exactly the same

,*1~~manner as in the previous section, with the modified Shepard operator, SM,

replaci~ng TF. Thus we have G0 w SM, Gn~ ~B~ .l . ehv

again-taken 3 Iterations as the nominal value, and comments regarding conver-

gence/nonconvergence of the iteration of the previous section apply here,
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2.6.0. Global Basis Function Type Methods

These methods can be characterized by the following idea. For each
(x' Y simply choose some function Gk(x, y), and then determine coefficients

Ak so that ,F(x, y) w AkGk(x, y) interpolates the data. Schemes which work

are not so simple in that appropriate choices of function Gk are not partic-'

ularly easy to make. Even if the functions Gk have only local support the

methods are global and further they require solution of a system of N linear

equations. In all instances we consider, the systems have a symmetric coefficient

matrix (Gxj , yj)), but this need not be the case. Usually the Gk are really

functions of one variable, dk * /(x - Xk) + (y - yk)2. While it seems that

functions Gk which diminish as one moves away from the point (xk, yk) would be

best, this has not been borne out computationally. Numerous colleagues have

suggested (among others) B splines, Gaussian distributions, and other basis

functions which seem to have an at best shaky mathematical justification. We

investigated several methods of this type and have found them to work better

than expected. They are, as mentioned, global methods.
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2.6.1. Rotated Gaussian (20)

This scheme is mentioned by Bolandi, etal. [7], Arthur [3], and more

recently was rejscovered with a slight variation [48]. It consists'of using

G exp (-dk2/RF)i where R is taken to be a constant for all k. The method

is qui.te, sensitive to. the choice of R and yields poor results wi'th ease, but

will yield qui.te good results for an appropriate value of R. We: ued a

nominal value, of R - 2.1D , where D is the diameter of the point set'. The

'factor ½ represents (approximately) the radius of a disk in which one

could anticipate finding one point of the set and in some sense is proportional

to the mean distance to the nearest neighbor.

-56-



2.6.2. Hardy's Multinuadric (21)

This method has been used extensively by Hardy and his coworkers [22-28],

in geographic and related applications. The basis function used is the upper

hyperboloid Gk , ((x - Xk)2 + (y - y + r 2 ) 112, where r is a parameter which

determines the semi-axis of the hyperbcla. Hardy [26] indicates that the bebt

value for r is approximately .815d, where d is approximately the mean distance

to the nearest neighbor. We have not verified this, and have used a nominal

value of r * 2.5R, where R is the radius of the disk which could be anticipated

to contain one point. The actual parameter used by the program is NPPR and

the value of r is computed from r a NPPR R, R a I D/'¶ where D is the diameter

of the point set ((xk, yk)}, and a nominal value of 25 is assumed for NPPR.

We observe better results are generally obtained with larger r, but this also

leads to poorer conditioning of the coefficient matrix (G1(xJ, Yj)), and we

have compromised on the above value which corresponds to approximately 1.6d.

Because of the scattered nature of the data this may vary.

I-7
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2.6.3. Hardys ReciprocaL Multi~quadric (27)2
Fo hi eto tereciprocal hyperboloid Gkx y)2(x k +

- ~ 2 + r2 )-1/2 is used. The value of r used is the same as that for

th previous method.
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2.6.4. Duchun's Radial Cubic Method (22L

Duchon [12] has derived this method as the optimal solution in a certain

Hilbert space via construction of the reproducing kernel (see-[49) fot some

details). For practical purposes the user must solve a system of the form
n

iA j(xjYj) + axI + byi + c - f1, I 1, ,1, n

isi jul jl
where 3k/2, y) * (Cx - Xki + (y- yk)) Gk is seen to be of the form

d k where dk is distunce from (xk, yk), hence my name for it.
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. ~ 2.6.5. Dugthon's Thin Plate Fun~ction (,23) :•

SThis method is similar to the previous one in that it Is the optimal

solution in some Ht1l:bert space. This one Is particularly interesting sitnce i

overal i n~terpolating functions in the Hilbert space it minim'izes the thin r:
"a 1 2F2 •a 2F 2 B2F 2 :

.1 lt uetoa R2• +_•• + ! ). The form of the solution ]•:

" ' ~~had been previously given by Harder and Desmarais [21). The method is also ",

discussed by Meinguet [41) and its fittting properties in connection with

• ~smoothing has been investigated boy Wahba [52). ,

The system of equations is identical in structure to that of the previous
method except" that Gk(X, y) - dk2 log dk,, where again dk is the distance from

(xk, yk'.

i!A,
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2.6.6. Rotated B-Splines (L9)

This idea has'been suggested by various persons. We took the B-spline

based on equally spaced points, with knots at ±R, ±R/2, and 0, where R was

chaleh'i'n a manner similar to other schemes previously described. The

nominal value of R was taken as where D Is the diameter of the

pon st,.n aan ~efactor rersnsthe radius of~ a d~isklin WhIch

one could anticipate finding one point in the set. The basis function was

G k(d k) 2(1 (I +..R) - 1 d
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3.0.0. Results

The results of the study are discussed in this section in the same

sequence as the methods are discussed in Section 2, with corresponding

subsection numbers relating to classes of methods. We confine our comments

Shere to absolute merits of each method, insofar as possible, although it. is

almost certain we are "grading on the curve". Merits of some methods (the

better ones or more available ones, in our opinion) versus other methods are

discussed in Section 4.

It is hardly possible to discuss the performance of each method on each

surface In the detail which would be desirable from a completeness point of

view, if not the writer's (and perhaps not the reader's either). In order to

"* point out pertinent behavior which one can look for in variowis methods, it

was decided to discuss in some detail all plots of surfaces for one method.

In addition, there are a number of comments about the test surfaces relative

to the data sets which apply to all methods. The method dicussed is neither

the best, nor the poorest, but simply a method which Illustrates some of the

behavior one can watch for. The method chosen for discussion Is program #30,

Foley's iterated generalized Newton delta sum bicubic spline. We discuss

each figure separately.

Figure 1.4.1.30. Part a is the test surface. Part b is the interpolant
W bae 22based on 100 points. The peak of the test surface occurs near ( V, ) and

inspection of the set of points in Figure 0.1.0.0. reveals a relatively large

gap in that vicinity. Thus the peak value of the surface is not well defined.

Part b shows the left rear of the peak to be the poorest portion of the peak

definition. At the left front ofthe surface an undesirable flattening of the

surface occurs. Cross sections throughout the interior appear to be quite
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smooth. At the rear of the dip there is an extended depressed region.[~'; (~ Reference to Figure 0.1.0.0. again reveals that there is a relatively large

gop in the points which causes the extent of the dip to be poorly defined.

The dip is near 6T. ;).ý Figure 4.1.1.30 is a larer plot of the surface
In Figure 1.4.1.30b. Part c shows several ill defined portions of the surface

corresponding to regions with gaps in the data set, showntin Figure 0.2.0.0.

In particular, near the rear eege of the surface behind the peak, and to the

right. The dip is completely missed bAcause of a lack of data to define it.
The surface ba~tica!ly appears r~easonable, except possibly for the behavior
at the rear edge near the right. A larger plot of the data Is shown in Figure

4.2.1.30. The surface in part d shows basically appropriate behavior. The

peak is reasonably well defined, although slightly low. Again, no point Is

on the trp of the peak. The dip is somewhat defined, but spread out because

of a lack of nearby points to pull the surface back up.. The near corner is

somewhat low, however this corresponds to an area of extrapolation. Figure

4.3.(.30 shows a larger plot of the surface.

Figure 1.4.4.30. The test surface is shown in part a, and part b appears

almost indistinguishable from it. There is a very slight flattening at the

right edge near the center. Part c is also a good approximation, with a somewhat

flattened area at the right, in front of the center. While there are many

points r jrby, there is a relatively large gap along the edge which accounts

for poor definition of the surface there. Less noticeable is a slightly

raised area to the rear of the center, along the right edge. The most notice-

able defect in part d is the poor behavior at the front edge, the surface

beirg slightly high toward the right of the center, and low at the right front

corner.
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Figure 1.4.5.30. This surface is difficult to fit closely because of

its sharply peaked behavior, shown in part a. While the peak in part b is

well defined, to the right one observes small "kinks", and generally wavy

behavior around the edges, more noticeable at the front and right because of

the viewing point. The peak (at (1, is poorly defined by the set of

points in part c and thus is considerably low. The wavy behavior around the

edges is again observed, but somewhat amplified. In part d the peak is higher,

but the wavy behavior away from the peak is very pronounced, although the
surface bs smooth in the sense there are no apparent "kinks" in the surface.

Figure 1.4.6.30.. This surface, a part of a sphere, is shown in part a.

The surfaces shown in parts b. c, and d show varying amounts of imperfect

behavior, mostly appearing as flattened spots on the surface.

Figure 2.0.0.30. Part a ::hows the cardinal function. The waviness that

extends throughout the square is not desirable and is probably an artifact

of the underlying polynomial - like interpolant. Part b shows the surface for

jAkima's data and basically appears reasonable. There is some wavy behavior

in the cross section lines near the base of the sharp rise toward the rear.

Part c shows a portion of the surface for Ferguson's data. Extrapolation is in-

valved at the front corners and the surface dips a lot toward the right front.

The same data scaled by a factor of 3 in the y-direction is shown in part d.

Here the surface dips at the left front corner as well and rises at the left j
rear corner where mild extrapolation occurs. Parts c and d exhibit some of

the effects of scaling differently in the two variables.

/ , Figure 3.1.1.30. This figure shows the effects of varying the parameter

from its nominal value, For this method the parameter is the number of delta

iterates performed. The test surface is shown in part a. Part b is the surface
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obtained with the 100 point data set after one Iteration. Part , shows the

C. surface after the nominal number of iterations, which is three. Part d shows

the surface after five iterations. The surface shows ,definite improvement

with additional iterations, particularly when comparing b and c. Some
i mprovement is seen in d compared to co particularl~y In that,the peak is
filled out, although the flattened portion near the left front persists.

The deviation statistics table P.1 shows improvement in that aspect also.

Figure 3.3.1.30. This f igure is the analogue of the previous, but with

the 25 point data set rather than the 100 point data set. In this case it

is not readily apparent that the surface improves with more iterates, although

part c is in some respects more pleasing than part b, since the slight rise

toward the rear edge near' the right corner has been lessened. However the

surface has been depressed at the front edge near the right corner, which

continues with more iterations, as seen In part d. The deviation statistics,

Table P.3 show improvement in the maximt!m deviation, but increases in the mean

deviation and root mean square deviation after 3 iterations.

Figures 4.n.l.30. These figures are larger copies of the figures given

in Figure 1.4.1.30 , and were previously discussed.

Figure 4.1.2.30. This function is probably the most difficult to fit

well. There is some irregularity along the sharp rise about three-fourths of

the way back along the diagonal. The most obvious defects are near the front

corner, on the right, and a waviness along the front edge.

Figure 4.2.2.30. The appearance of large gaps between data points (see

Figure 0.2.0.0) leads to a quite wavy surface. With the exception of a few

cross sections at about of the way back along the diagonal, the surface is

-• 4quite smooth, however, with the greatest overshoot occuring near the left
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rear and right front corners, as might be expected.

Fiture 4.3.2.30. The regularity of the set of data points (see 04J

Figure 0.3.00.): used' he'e leads to a more regular appearing, if somewhat

wavy, surface. The surfacedappears to be'very smooth with no apparent "kinks"

observablaý alohngthe cross-sections. As usual, edge behavior seems to account

for thelargest deviationsi.

-r" !Figure' 4.l 3 .30..-This Surface is almost indistinguishable from the

original'. Thei'only-apparent defect is a slight flattening of the surface at

the ,right edge near the center.

•Figure 4.2.13.30. The large gaps in the data show on this surface, but

less'• conspicuously than on some others. The right end of the surface appears

depressed, ,with the front edge also appearing to be lower than the test surface.

The surface Is quite smooth, however.

Figure 4.3.3.30. This surface is quite smooth and pleasing, but the left

rear corner is considerably higher than that of the test surface. The slope of

the surface toward ttie right center seems to be more gentle than that of the

test surface

3.1.0. Inverse Distance Weighted Methods

The performance of schemes within the general class of methods varies a

great deal. The basic Shepard's method (program 018) with exponent 2 is

unacceptable for a variety of reasons for all but some very special applications

(perhaps). For more than a few points the method does not perform as one would

be led to believe when observing the method for 5 or 10 points. These are

mainly the size examples given in previous literature. As can be seen from the

plots, Figures 1.4.1.18 and 2.0.0.18, the surfaces often tend to have sharp

peaks and dips at the data points. In fact, the resolution of' the plots is not

- 6II\
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fine enough to show the exact nature of thesurface.

Considerable improvement accrues from localizing the method (program #7),

This could likely be accomplished in a variety of ways other than the approach

we have taken, for example by using an appropriate (larger) exponent. No

experimentation was done in this direction. The plots for this program,

Figures 1.4.1.7 and 2.0.0.7 show clearly the increased Influence of:a data

point on the surface nearby. This is especially evident In the cardinal

function plot where the influence of a single point is seen. Basically,

localizing the scheme causes the well advertised flat spots to become more

prominent and the surfaces to become more pleasing. However, for general

purpose interpolation the scheme is still basically unacceptable.
YJ Forming boolean sums with other approximations does not seem to work well

in this case. It appears that for the idea of boolean sum approximations to work

the second approximation in the boolean sum must be a good approximation Itself.

The least squares plane used in our program (#2) is not suitable since it will

consistently allow undershoot near peaks and hence appears to have flat spots

(not necessarily with zero slopes) at points where this occurs. This is partic-

ularly noticeable in Figure 1.4.1.2, less so in Figure 2.0.0.2. The alternative
to the least squares plane, a higher degree approximation such as a quadratic

would likely work very well, but is quite expensive as we will note later.

Another way to generalize Shepard's method is through the use of more

information about the surface near the data points. Use of the least squares

plane passing through each data point in conjunction with a local weighting

function (program #3) 'leads to an improved surface, however the surfaces often

E tend to look somewhat lumpy, as can be seen from the plots, Figures 1.4.1.3 and

2.0.0.3. It is particularly bad in Figure 1.4.1.3c, probably because of the
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(Intended) varying sparseness of the data points. The use of planar fits

does'n~t eem adequate.

The use of a quadratic function passing through each data point (program

#17) leads ti'Vtirtually no improvement over the basic Shepard's method due

to the iiflluence of "far away" points. The plots are shown in Figures 1.4.1.17

and 2.0.0.170 and are similar to these for program #18, although these are

generally somewhat nicer in that-the number of sharp peaks is reduced.

The use of a quadratic least squares fit at each data point in conjunction

with localization of the weights (program #14) leads to a significant improve-

ment over other methods of this type in most (not all) instances, especially for

larger numbers of data points. For small numbers of data points the surfaces

seem to'be advirsely affected by what might be termed "edge effects". This is

not unique to this scheme but occurs with other methods, particularly local

methods. More will be said of this in Section 4. The plots shown in Figures (
1.4.n.14, 2.0.0.14, 4.1.n.14, 4.2.n.14, and 4.3.n.14., show some of this, and

a particularly good illustration is given by the cardinal function plot,

2.0.0.14a, which can be seen to behave in unseemly fashion near the left rear

corner. Within this class of tested methods, the modified quadratic Shepard

method is undoubtedly the best performer overall. The effect of changing the

parameters in the method are shown in Figures 3.1.1.14 and 3.3.1.14. A greater

tolerance to changes in the parameter is seen for thp larger data set, while

edge effects are more prominent as the radius of influence is decreased,

particularly for the smaller data set.

The other approach to modifying Shepard's method is that taken by McLain

[ 39 ], and implemented here in program #5 for the quadratic approximation. From

the point of view of fitting, the method works quite well, although it may be
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more prone to "edge effects" aS can be seen from the plots, Figures 1.4.1.5

and 2.0.0,5, especially 2.0.0.5 a and c. The main reason for discounting

the method Is the rather high computational burden. The modified quadratic

Shepard's method yields results as good or better, but at much less cost.

The second McLain type of interpolant was the fit with a linear function,

but with modified weights (program #8). Because of the necessary undershoot

near peaks one can not expect the method to perform in a satisfactory fashion.

As we see from the plots, Figures 1.4.1.8 and 2.0.0.8, we are not disappointed

in that respect. Overall the surfaces appear to be quite lumpy and generally

unacceptable. The cardinal function plot shows a somewhat more peaked function

than might be expected, almost like Shepard's method.

3.2.0. Franke's Method

The performance of this class of methods is somewhat uneven, giving quite

reasonable results in some cases and not in others. Edge effects seem to come

into the method prominently giving poor results for data sets with small

numbers of points. When the local approximations are optimal approximations

in B (program #6) the plots are shown in Figures 1.4.1.6 and 2.0.0.6.

Typical edge effects are seen in Figure 2.0.0.6s, the cardinal function.

When the optimal approximations are taken boolean sum with a least

squares plane (program #1), the resulting surfaces are virtually unchanged,

as can be seen in Figures 1.4.1.1 and 2.0.0.1. Thus it appears that the use

of the boolean sum with the plane is mainly to incorporate polynomial pre-

cision, and its use with a reasonably good approximation will not improve it

very much. This observation was also made by Foley in his thesis (15].

Additional plots are given in Figures 1.4.n.1, 4.1.n.1, 4.2.n.1, and 4.3.n.1,

and basically show that the method performs competently for larger data sets

(: and not so well on smaller ones. The variation of the parameter in the metnod,
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Figures 3.1.1.1 and 3.3.1.1 show the effects of localizing too much are

r I drastic (plot b), whereas the reverse has les,'er overall impact.

The use of-thin plate local functions (program #24) generally results

In much more pleasant appearing approximations. This Is particularly true

for smaller numbers of data points as canbe observed In the plots, in Figures

1.4.1.24 and 2.0.0.24. While error statistics indicate some improvement
over programs #1 and #6, the plots generally appear to be considerably more

pleasant. Additional surfaces are shown in Figures 1,4.n.24, 4.1.n.24,

4.2.n.24, and 4.3.n.24. The variation of the parameter shown in Figures

3.1.1.24 and 3.3.1,24 show basically the same trend as before: localizing

too much tends to degrade the approximation, while the reverse has less

Impact. Overall, the use of thin plate functions in the method Is a nice

improvement.

3.3.0. Triangle Based Blending Methods

The performance of this class of methods is dependent on the type of nodal

function used. If they are good local approximations to the surface, the

overall approximation will be good. In line with this, the linear nodal

function method (program #12) does not perform adequately. The plots, shown

in Figures 1.4.1.12 and 2.0.0.12 show the transition between local approx-

imations resulting In apparent creases in some instances. This is due partly

to the resolution of the plots. Another defect, but one which is an artifact

of the triangulation is the apparent edge especially noticeable in Figure

2.0.0.12c and d. This is due to the occurence of a very long thin triangle

along the edge of the convex hull. The result is that the blend of approximations

near the middle part of the triangle does not reflect the actual behavior at

nearby points (not in the triangle). This is not a defect unique to this
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method, but occurs to some extent in all triangle based methods.

The use of quadratic nodal functions (program #13) results in a very

reasonable approximation, as can be seen In the plots given in Figures

1.4.1.13 and 2.0.0.13. The apparent discontinuity in Figure 2,0.0.'13d near

the back is due to the previously mentioned problem of long thin triangles

which can occur. The other edge at the left front is not nearly so apparent

here. Additional plots are given in Figures 1.4.n.13, 4.1.n.13, 4.2.n.13,

and 4.3.n.13. The parameter variation plots 3.1.1.13 and 3.3.1.13 basically

show that too much localization degrades the surface. This method generally

performs in quite an acceptable manner provided the disadvantages of triangles

are acceptable and are outweighed by the advantages of triangles and the

overall method.

3. 4 . 0 . Finite Element Based Methods

The performance of a method in this class is greatly dependent on the

quality of the estimated partial derivatives. This is the major problem with

Aktma's method (program #4) and causes the surfaces to have a somewhat lumpy

and uneven appearance. The plots for Akima's method are given in Figures

1.4.n.4, 2.0.0.4, 4.1.n.4, 4.2.n.4, and 4.3.n.4, The poor derivative estimates

i are especially noticeable in Figure 1.4.6.4 where the surface has a somewhat

crumpled look. The variation of parameters plots, Figures 3.1.1.4 and 3.3.1.4

indicates that the nominal value we have chosen is probably about th~e right

one to use. Figure 3.3.1.4 seems to show less sensitivity to the parameter

than 3.1.1.4. Figures 2.0.0.4c and d show the characteristic defect of triangle
based methods. Akima's method is very fast, usually faster than other methods

by a factor of 4 or 5 or more.

Akima's method, modification one (program #10) performs somewhat better
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than the original, but,.still does not achieve the good fits which the tinder-

lying approximations should be capable of making. All plots, Figures 1.4.n.10,

2.0.0.10, 4.1.n.10, 4.2.n,10. and 4.3.n.10 are basically similar to those of

the original method, although the statistics on deviations generally show it

to be slightly better.

Akima's method, modification two (program #11) would seem to promise to

be better than Lither of the previous,. However, the results basically show

little or no improvement over either one. The plots, given in Figures 1.4.1.11

and 2.0.0.11 are basically similar to those for programs #4 and #10.

Akma 's. method, modification three (program #16) Is undoubtedly the best

performer of the four. The uneveness of the surface is gone from nearly all

of the plots, shown in Figures 1.4.n.16, 2.0.0.16, 4.1.n.16, 4.2.n.16, and

4.3.n.16. Even the artifact of an apparent edge due to the triangulation,

usually prominent in the analogues to Figure 2.0.0.16c and d, have been reduced

a great deal. However, the cardinal function now shows some unbecoming behavior

along the left edge near the rear corner. This seems to be caused by the

quadratic approximation as it also occurs in programs #13 and #14, where the

Identical quadratic approximation is used. The method seems to he fairly

insensitive to the parameter value, as is shown in Figures 3.1.1.16 and 3.3.1.16,

although the larger value in Figure 3.1.1.16d shows some more noticeable

defects along the front slope. Incorporation of the quadratic to estimate

derivatives results in considerably larger preprocessing time.

Nielson's minimum norm network (program #19) shows the capability of

triangle based approximation, given the appropriate values of the derivatives.

As can be seen in the plots for the method, Figures 1.4.n.19, 2.0.0.19, 4.1.n.19,

4.2.n.19, and 4.3.n.19, the surface almost always appears quite smooth and
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visually pleasing. Thn one displeasing behavior is seen in Figure 2.O..l09c

YI and d (arnd to some extent in b) where the occurence of long slim triangles

gives rise to apparent discontinuities across the triangle. Again, this

simply reflects the fact that'in the middle of such a. triangle the function

may not~be appropriately represented since it is far from the vertices of

the triangle, and generally closer to other data points which have minimal

influence. The method is reasonably fast and is undoubtedly the best per-

former in this class of methods.

Lawson's method (program #28) is similar in spirit to Akima's, but

basically performs in much better fashion than all but modification three

of Akima's method (program #16). The plots, chown in Figures 1.4.n.28,

2.0.0.28, 4.l.n.28, 4.2.n.28, and 4.3.n.16. One caution regarding the plots

for this method: The program does not extrapolate outside the convex hull

of the set {(xk, y and the function values at such points have been set

to zero in the plots. Care should be taken when viewing the plots based on

the 100 point and 25 point data sets, as well as the Ferguson data set to not

let these points Influence one's perception of the surface. Such points are

omitted from the deviation statistics for this method. The usual artifact of

triangulation methods is not seen in Figure 2.0.0.28c and d because no grid

points fall in the appropriate place. It was extrapolation in the other

methods which made it more visible. It is noticeable in Figure P.0.0.28b

along the left edge and the back, Just as it is in the other triangulation

based methods. Lawson's method Is quite efficient in terms of timing, being

only slightly slower than Akima's method (04).

3.5.0. Foley's Methods

Foley's generalized Newton interpolant (program #25) performs in a somewhat

-73-.



expected manner in that polynomials of high degree generally do not work very well.

"rhis is particularly evidont when any extrapolation is involved, or in regions

where no points are nearby. The plots given in Figures 1.4.1.25 and 2.0.0.25

show this, especially in the latter, Figures 2.0.0.25c and d, where more extrap-

olation is required than In the other examples. The cardinal function, 2.0.0.25a

Shas some polynomial type (mis)behavior near the front corner, also.

The Newton delta sum Bernstein Interpolant (programs #26) is something of

an improvement in most instances, although the overall set of surface plots,

shown in Figures 1.4.1.26 and 2.0.0.26 show basically the same kind of behavior.

The additional program complexity and time required are probably not worth the

result obtained here.

The use of bicubit splines and iterption in connection with the generalized

Nswton polynomial (program #30) often results in vastly improved surfaces as

can be seen from the plots in Figures 1.4.n.30, .2.0.U.30, 4.1^.n30, 4.2.n.30,

and 4.3.n,30. However, this is not universally true, and in particular the

cardinal function shown in Figure 2.0.0.2a is less desirable. Other surfaces

based on the 25 point set are also adversely affected. This is shown in Figure

3.3.1.30 as more Iterations of the delta sum produce poorer aurfaces. On the

other hand Figure 3.1.1.30 shows definite improvement as the number of iterations

Increases. All things said, however, this method seems to be the best of Foley's

methods. Computation time is not excessive, although it is slower than most

methods for the problems in our tests.

The use of a modified Shepard's method in place of the generalized Newton

interpolant in the iterated delta sum with bicubic splines (program #31) generally

gave poorer results than program #30. The plots are shown in Figures 1.4.1.31

and 2.0.0.31. As can be seen in 2.0.0.31a, the cardinal function is improved
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over that in Figure 2.0.0.30a, as are the surfaces in 2.0.0.31c and d. That

the latter are better is no doubt due to the stable extrapolation of Shepard's

method., __

3.6.0. Global Basis Function Type Mothods

The performance of this class of methods varies widely. Most (Duchon's

methods are the exception) are dependent on scaling or a parameter specified

by the user. We have attempted to reduce these to an automatic Value based on -

some estimate of mean distance between points.

The rotated Gaussian (program #20) did not perform well. The plots,

shown in Figures 1.4.1.20 and 2.0.0.20 are quite smooth and give reasonable

appearing approximations In the former. The cardinal function in Figure

2.0.0.20a appears to have some undue influence near the front corner. The

other plots in Figure 2.0.0.20, especially b, show a tendency of the surface

to exhibit local Guasstan "bumps". The surface tends to zero far away from

the data. Experimentation with the parameter (related to the variance) showed

the method to be sensitive to its value, and to depend on the function values

rather than only the (xk, yk) points. For example, a nicer cardinal function

could be obtained by varying the parameter, but this degraded the performance

on the surface shown in Figure 1.4.1.20d, which is based on the same (xk, y

sets. For these reasons we don't think this is a suitable idea.

The multiquadric method proposed by Hardy (program #21) performs very well.

The plots, shown in Figures 1.4.n.21, 2.0.0.21, 4.1.n.21, 4.2.n.21, and 4.3.n.21

show that the method produces very smooth and pleasing surfaces. The deviations

tables, 0. and the related tables E show that the method is consistently among

the most accurate, as well. The value of the parameter was computed from a

formula and is related to the mean distance to nearest neighbor in the set
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[(xkyk). The surface is quite stable with respect to changes in the value

of the parameter, as can be seen in Figures 3.1.1.21 and 3.3.1.21. The "best"

value is probably dependent on the function values as well, but we obtained

excellent results without considering that. Larger values of the parameter,

r, seemed to give better results, but the system of equations became too I
ill-conditioned to solve in single precision. Thus a somewhat smaller nomlinal

value was chosen than might have been otherwise. Larger values did degrade

the performance on smaller sets of data while they improved it on larger sets

of data. The method has also performed well on recent tests with ocean bottom
topography [47]. I

The use of "reciprocal multiquadrics" for the basis functions (program #27)

also worked quite well. The plots are shown in Figures 1.4.n.27, 2.0.0.27,

4.1.n.27, 4.2.n.27, and 4.3.n.27. The suirfacos are again seen to be very

smooth. The basis functions resemble the rotated Guassian (#20) but generally (
perform much more reliably than it. In particular, the method is much less

sensitive to variations in the parameter, although very small values of the

parameter will lead to a surface consisting of sharp peaks at each data point

(or holes, if the function value is negative). For a range of values near the

nominal value chosen for the parameter the method is quite stable. Overall

its peformance is nearly as good as the multiquadric method.
The method of Duchon which involves the use of basis functions dk3 (pro-

gram #22) works quite well. The plots, shown in Figures 1.4.1.22 and 2.0.0.22,

show very smooth surfaces with a pleasing appearance. The cardinal function,

Figure 2.0.0.22a is very nicely shaped. This method was among the better

performers overall, however solution of the system of equations often required

the use of double precision. For this reason the "thin plate splines"
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(program C.3) were considered more desirable even though the method was not

superior in many cases. The plots for the thin plate splines are shown in

Figures 1.4.n.23, 2.0.0.23, 4.1.n.23, 4.n.2.23, and 4.n.3.23. The surfaces

are quite smooth, Figures 1.4.1.22 and 1.4.1.23 being very similar. The

cardinal function, Figure 2.0.0.23a, is very similar to that of the previous,

although it seems to be slightly more peaked with less undershoot at the

front. With the exception of Akima's surface, Figure 2.0.0.23b, all calcu-

lations v 're performed in single precision on the IBM 350/67.

rhe use of rotated B-splines as a basis fiintion for each data point

(program #29) yields variable results. The method is very sensitive to the

choice of radius at which the function goes to zero. The nominal value

used was chosen on the basis of good performance for the surface shown in

Figure 1.4.1.29. This resulted in unacceptable behavior in the cardiril

function, Figure 2.0.0.29a. In this respect the method seems to be similar

to program #20, the rotated Gaussians. The use of a radius which resultedI

in an acceptable cardinal function seriously degraded Its performance on the

surface ii. Figure 1.4.1.29d, which is based on the same (xk, yk)points. Fork Yk

that reason the method is judged unacceptable.

4.0. Summary

This summary generally deals only with the extensively tested methods,

in the first two groups of Table S. These two groups were selected on the

j basis of meetingone or both of two criteria, (1) availability (are documented

programs readily available'k , and (2) performance in these tests. The following

local methods were selected (given by number; refer to Table S for a pointer

to the description): 1, 4, 10, 13, 14, 16, 24, 28. The global methods selected

were: 19, 21, 23, 27, 30.
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The discussion of overall performance is made in separate sections for

local and global methods. As we have noted previously, global nmethods are

not feasible for very large sets of data. If a data set consists of some

100 - 200 points, it is feasible and practical to use a global method. We

have demonstrated here that for 100 points or less, some real advantages

accrue for global methods. In particular, global methods perform better In

terms of their deviatinns from test surfaces. This is seen in Table E.2,

where local methods are "best" in only 4 of 18 cases. Global methods seem

to be less likely to exhibit edge effects than local methods. It is possible

that this is partially responsible for the results in Table E.2, although the

surfaces for global methods are generally much smoother and more pleasant

appearing than those for local methods. For very large sets of data the

regions where edge effects occur should be a smaller part of the overall 1•
region of interest.

The processing time for local methods is generally less than that for

global methods, although some global methods are faster than some local

methods. The trend of local methods is generally to increase at least linearly

with the number of points when total time is considered. Global methods gener-

ally increase at least linearly also since all points must be inspected The

potentiO' savings for local methods comes from not having to solve a linear

system of N equations in the preprocessing phase and use of only nearby points

in the evaluation phase. Specific comments are made in the next two sections.

4.1. Local Methods

) The best performing local methods are probably the Modified Quadratic

Shepard Method and a similar program based on a triangulation of the convex

hull, the Nielson-Franke Quadratic Triangle method. Both methods perform
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consistently well, with the method based on triangles generally being slightly

more accurate and faster. It -is, however somewhat prone to mrisbehave when

long slim triangles occur, and the triangulation requires a great deal of,

auxiliary ttorage. For general purpose use the Modified Quadratic Shepard's,

Method Is favored for several reasons. It is easy to implement and gene'ralize''

in rather easy fashion to higher dimensional spaces. The 'apparent timeI penalty In the evaluation phase could be reduced by some additional preprocessing

and auxiliary storage to allow quicker determination of points which (potentially)

-affect the interpolant. This sort of scheme should be incorporated when dealing

with very large sets of data to avoid excessive'evaluationtimes. Triangle

based methods (whether local or global) have this kind of scheme built in and

partly accounts for their efficiency during the evaluation phase.

"V Akima's method suffers from poor estimates of the derivative values. .7

SModification one results in modest improvement, generally, but still does not

perform as well as is possible for the underlying approximation. Both versions

are subject to the appearance of extraneous bumps, as seen in Figures 4.1.6.4

and 4.1.6.10, as well as overshoot as seen in Figures 1.4.1.4b and 1.4.1.1Ob.

Lawson's method, based on a similar idea, but with a different element and

Letter estimates of the derivatives, generally performs better than Akima's

method. The use of inverse distance weighted least squares quadratics to

estimate the derivatives in Akima's method generally (but not always) results

in improved accuracy, and even more often gives a much more pleasing surface,

as can be seen by comparing the corresponding plots for the three different

schemes for estimating derivatives. This latter version of Akima's program

performs about on a par with Lawson's method. It requires considerably more

preprocessing ttme, however. It is subject to edge effects in some cases.
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Lawson's method generally, gives smooth appearing surfaces, although

the occuran;e of long slimtriangles can cause problems. Some of these

effects are not.apparent because no evaluation points fall within the long

slim triang-les that occur ,along, edges, as in Ferguson's data, for example.

While It Is not alocal method, it should be mentioned that Nielson,'s

Minimum Norm Network, method generally performs better than any of the, local

methods. based on triangles. It avoids the usual storage problem involved in

solving a large system of equations by solving iteratively, and rapid conver-

gence is obtained. The overall storage requirements are similar to Akima's

method (and its variants) but more than for Lawson's method. Timing ts some-

what slower than all but mnodification three to Akima's method in the preprocessing

phase. It is also slower in the evaluation phase, but a different implementation

of this could result in it being about as fast as Lawson's method. The under-

lying approximation is somewhat more complicated than Akfm's, but use of an

evaluation phase following a strategy similar to Akima's should not be slower

by a factor of more than about two. So far this modification has not been made.

The remaining two local methods are due to the investigator. The under-

lying idea of partitioning the plane into rectangles seems to be sound, result-

Ing in reasonable (not fast, but nearly independent of N) evaluation times.

The use of thin plate splines as the local approximations is a definite improve-

mont in both the appearance and accuracy of the method. Overall, however,

performance of the method is somewhat disappointing. It seems there Is no

inherent reason why its performance should not be nearly as good as the local

approximations, which are very good, according to our results on global methods.

It seems that the amount of overlap in the local interpolating functions Is not

sufficient to prevent transition from one rectangle to another resulting in
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transition to a fundamentally different surface, as can be seen, for

example, in Figure l.4.5.24c. Use of much larger values of NPPR could

Aresult in better approximations, although our tests (in Tables P.1 and P.3,)

show conflicti~ng evidence. No further experimentation has been performed.'

The amount of auxiliary storage required is mild, compared to the methods-based

on triangles, particularly. Evaluation times.-are nearly Independent of the

number of data points, which could be useful for very large N. Triangle

based methods also possess this property and are faster than rectanglie based

methods because faster evaluation of the local interpolants is possible.

KAll things considered, the method of choice here seems to be the

Modified Quadratic Shepard's Method. Its advantages of simplicity and mild

auxiliary storage requirements overcome its relatively expensive evaluation

phase., A preprocessing phase to determine (potential) points which affect

the interpolant in various regions could be implemented at a modest cost in

K time (probably less than one second) and storage (about 5/3 N locations),

which for large data sets would probably result in evaluation times of 10
seconds or less (independent of N), but this has not been implemented as yet.

4.2. Global Methods

The most impressive method in these tests is the multiquadric method of

Hardy. It is consistently best o'r near best iij terms of accuracy, and always

results in visually pleasant surfaces. Nonetheless, a certain skepticism

persists because the method has no apparent mathematical basis to explain its

efficacy. In some respects the basis functions are somewhat similar to the

thin plate splines of Duchon In that they take on large values at points far

away from the data point. Further, they appear (for r *0) to fit the class

of approximations discussed by Meinguet (41], but the proofs do not hold.



In the degenerate case (r - 0), initially investigated by Hardy, the multi-

quadrics are cones with zero value at the data point (just as d2 log d is zero

at the data point). Given only the basis functions d2 log d one might also be

perpltexed at how well they work. Perhaps there is an equally elegant (but

unknown) theory to explain the abilities of the multiquadric method. On the

basis of ourtasts:we can recommend the use of either the multiquadric method

or the thin plane splines as the best of the global basis function methods,

and perhaps the best of all global methods considered. The reciprocal multi-

quadric has some potential bad effects and for too small a value of r will

give poor results, as noted in Section 3.6.0. There seems to be no reason to

use it rather than the multiquadric method.

Nielson's minimum norm network has been discussed a bit in connection

with local methods in the previous section. Computationally it is a viable

method for larger sets of data than the methods requiring solution of a full

system of N or more equations since it uses iteration on a sparse system of

equations. It does use considerable-storage which will probably limit the

method before excessive computation time. The use of the method must be done

with the knowledge that poor behavior can occur in long slim triangles, a

caution that applies to all methods based on triangles. Nielson's method is

reportedly soon to be available in a version which does not require a convex

region, and this could easily be used to eliminate undesirable triangles

along the edges. Extrapolation will not be so easily implemented in this

version, however, so if that is important, it is a consideration.

Folsj's TF delta sum bicubic spline is a relatively poor performer here.

Results using the method have been discussed in great detail as an example in

Section 3.0.0. While the method yields some very nice interpolants, it is
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rather inconsistent and often has undesirable ripples.

Awl 5.0. Epilog

This investigation has consumed a great deal of time and effort.

Thanks are due to numerous colleagues, among them Greg Nielson, Bob Barnhl,11

Frank Little, Tom Foley, Rosemary Chang, and others with whom I discussed

many ideas and who made valuable (sometimes followedl) suggestions. Thanks

are also due to those who supplied working programs, among them Greg Nielson,

Hiroshi Akima, Charles Lawson, and Tom Foley. Last, but hardly least, thanks

go to Linda Dent for her patience and good humor during the period when the

manuscript was being typed and revised, and (especially) during the process of

pasting up plots.

Despite the number of Ideas explored and programs written and tested,

there are a number of ideas which were riot investigated. Among them are

several from the CAGD group at the University of Utah. Many of these are
S(

based on the use of triangulations, which the investigator feels are much

more suitable for the design problem (where long slim triangles can be

avoided) than for the scattered data interpolation problem. It was not

possible to test Vittitow's [55) variations of Maude's method [37], although

it appears they may perform reasonably well. Another idea which was not tested

has its genesis in Briggs [8], and Is available commercially [59]. The user's

manual contains some impressive material, but no tests of the software have

been conducted. There are no doubt more Ideas worthy of investigation appearing

in the literature.

In terms of the data considered here, it was for the most part rather

nice data, even though some effort was made to include some data with varying

densities. Real data exists which is very sparce in certain regions, or
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lies in clumps. Some methods will not work in a reasonable fashion for this

type of data, although we have not tried to determine which methods-will and-

which will not. Methods based on quadratic approximations will likely mis-

behave for such data. In addition, local methods based on distance weighting

may have holes in the domain of definition when density varies, greatly or

when data appears in clumps, Some additional work is necessary to see if

there are suitable local methods for such data.

The investigator is willing to make further tests (at least for the

supplier and perhaps for wider dissemination) of working programs, under the

following (negotiable) guidelines: (1) The program is to be supplied on

cards (preferably EBCDIC punch). (2) The program is to be in the form of

one or more subroutines, and a grid of interoolant values is to be returned

by calling one of them with the appropriate data and workspace. (3) The

program is to be in ANSI standard Furtran. (4) Program documentation will

be supplied to enable use of the program. (5) A sample driver program will be

supplied. The investigator will supply at least the plots of the type

1.4.1,n and 2.0.O.n and the corresponding error and timing statistics.

Depending on those results, additional tests may be performed and reported

to the supplier.
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Method Maximum Mean RMS
Deviation Deviation Deviation

1: Franke - 3 .0919 .00842 .0148
4: Akima .0647 .00787 .0125

10: Akima Mod. I .0856 .00784 .0133
13: Nteis-on - FrankeQ .0782 .00741 .0122
14: Hod. Quad. Shepard .0573 .00785 .0128

D16: AkTmaMod. 111 .0520 .00729 .0117
24: Franke - TPS .0940 .00887 .0164
28: Lawson .0951 .00783 .0124

19: Niel son Mh nNorm .0492 .00537 .00940
21: Hardy QuadrSc .0225 .00181 .00357
23: Duchon TPS .0618 .00525 .00947lli27: Hardy Rectp. Quad. .0247 .00283 .00518

30: Foley 111 .0636 .00473 .00941

2: Mod. Shepard I Plane .156 .0137 .0254
3: Mod. Linear Shepard .104 .00982 .0172
15: McLain Mo .0601 .00747 .0124

126: FrankeNilo .108 .0103 .0188t7: Mod. Shepard .224 .0272 .0440
•i 8: Mod. McLain M8 .194 .0167 .0316 i

11... l: Akima Mod. 11 .105 .00875 .0152 :
S12: Nielson - Franke L. .125 .0101 .0189

17: Quad Shepard .264 .0396 .0594
18: Shepard .273 .0417 .0620
20: Rotated Gaussians .0624 .00599 .0112
22: Duchon .0247 .00311 .00578
25: Foley I .201 .0153 .0305
26: Foley II .144 .0120 .0229
29: Rotated B-Splines .0488 .00790 .0112
31: Foley IV .128 .0113 .0204I

Deviations from Exponential test surface, 100 points

Table D.1.1
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Maximum Mean RMS
MethodDeviation Deviation Deviation

1: Franke - 3 .0518 .00286 .00586
4: aki.0520 .00303 .00609
4: Akima .0473 .00257 .00542

iO: Akima Mod. 1 .02 100265 .00683

13: Nielson - Franke Q .0721 .00264 .00653

14: Mod. Quad. Shepard .0468 .00264 .00551

16: Akima Mod. 1l1 .O02B .00293 .00809

24: Franke - TPS .0295 .00243 .00483

28: Lawson .0280 .00221 .00448

19: Nielson MtnNorm .0424 .00181 .00434

21: Hardy Quadric .0244 .00177 .00330
23: Duchon - TPS .0344 .00210 .00436

27: Hardy Recip. Quad. .0379 .00192 .00348

30: Foley III .0281 .00223 .O0419

"Deviations from Cl.iff test surface, 100 points

Table D.1.2
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Method Maximum Mean RMS
Deviation Deviation Deviation

1: Franke - 3 .0198 .00164 .00294
4: Akima .0274 .00224 .00423

10: Aklma Mod. I .0254 .00198 .00367
13: Nielson - Franke Q .0168 .00110 .00206
14: Mod. Quad. Shepard .0125 .00112 .00194
16: Akima Mod. III .0142 .00105 .00202
24: Franke - TPS .0165 .00157 .00273
28: Lawson .0565 .00149 .00359

19: Nielson MinNorm .0195 .00091 .00200
21: Hardy Quadric .00461 .00025 .00052
23: Duchon - TPS .00597 .00049 .00092
27: Hardy Recip. Quad. .00928 .00068 .00136

( 30: Foley III .0117 .00117 .00196

Deviations from Saddle test surface, 100 points

Table D.1.3

I
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Method Maximum Mean RMS
Deviation Deviation Deviation

I: Franke - 3 .0114 .00122 .001894: Akima .0101 .00124 .00177
10: Akima Mod. I .00675 .00102 .00143
13: Nielson - Franke Q .00517 .00058 .0008314: Mod. Quad. Shepard .00388 .00065 .0008916: Akima Mod. III .00330 .00049 .0007024: Franke - TPS .00560 .00103 .0014128: Lawson .00899 .00061 .00109

19: Nielson MinNorm .00303 .00047 .0006921: Hardy Quadric .00102 .00005 .0001123: Duchon - TPS .00294 .00017 .0003027: Hardy Recip. Quad. .00227 .00034 .00050
30: Foley III .00604 .00083 .00117

Deviations from Gentle test surface, 100 points

Table D.1.4
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Method Maximum Mean RMS
. Deviation Deviation Deviation

1: Franke - 3 .0358 .00228 .00447
4: Akima .0434 .00242 .00510

10: Akima Mod. I .0317 .00215 .00436
13: Nielson - Franke Q .0206 .00176 .00337
14: Mod. Quad. Shepard .0218 .00182 .00361
16: Akima Mod. III .0212 .00171 .00337
24: Franke - TPS .0284 .00212 .00418
28: Lawson .0216 .00154 .00323

19: Nielson MinNorin .0195 .00101 .00229
21: Hardy Quadric .00280 .00012 .00031

( 23: Duchon - TPS .0175 .00088 .00217
27: Hardy Recip, Quad. .00736 .00030 ,00078
30: Foley III .0143 .00172 .00282

Deviations from Steep test surface, 100 points

Table D.1.5
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Method Maximum Mean RMS
Deviation Deviation Deviation

1: Franke -3 .0119 .00126 .00206
4: Akima .0196 .00196 .00313

10: Akima Mod. 1 .0172 .00171 .00286
13: Nielson - Franke Q.00343 .00022 .00043
14: Mod. Quad. Shepard .00361 .00026 .00050
16: Akima Mod. Ill .00796 .00058 .00094
24: Franke - TPS .0111 .00138 .00206
28: Lawson .00954 .00038 .00099

19: Nielson MinNorm .0117 .00077 .00165
21: Hardy Quadric .0106 .00041 .00111I
23: Duchon - TPS .0170 .00053 .00150
27: Hardy Recip. Quad. .0241 .00117 .00263
30: Foley Ill .00965 .00127 .00203

Deitin frmShr etsufc,10pit

Table D.1.6
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Method Maximum Mean RMS
* Deviation Deviation Deviation

1: Franke -3 .347 .0477 .0732
4: Akima .158 .0384 .0535

10: Akima Mod. I .197 .0400 .0570
13: Nielson - Franke Q .150 .0326 .0455
14: Mod. Quad. Shepard .184 .0340 .0478
16: Akima Mod. I1l .164 .0372 .0521
24: Franke - TPS .218 .0346 .0517
28: Lawson .287 .0462 .0657

19: Nielson MtnNorm .150 .0305 .0437
21: Hardy Quadric .137 .0181 .0269
23: Duchon - TPS .153 .0293 .0421
27: Hardy Recip. Quad. .140 .0153 .0244
30: Foley III .296 .0350 .0546

2: Mod. Shepard I Plane .208 .0402 .0604
3: Mod. Linear Shepard .321 .0566 .0870
5: McLain M. 217 .0438 .0625

6: Franke -. 357 .0484 .0741':7: Mod. Shepard .377 .0571 .0872
! 8: Mod. McLain M8, .193 .0379 .0566

11: Aklma Mod. II , .232 .0401 .0582
12: Nielson - Franke L. .274 .0446 .0651
17: Quad. Shepard .223 .0701 .0915
18: Shepard .225 .0709 .0922
20: Rotated Gaussians .137 .0174 .0287
22: Duchon .140 .0235 .0338
25: Foley I .162 .0277 .0387
26. Foley II .161 .0281 .0383
29: Rotated B-Splines .137 .0210 .0337
31: Foley IV .273 .0422 .0626

Deviations from Exponential Test Surface, 33 points

Table D.2.1
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Method Maximum Mean RMS
Deviation Deviation Deviation

1: Franke - 3 .0776 .0124 .0190
4: Akima .0543 .00850 .0133

10: Akima Mod. 1 .0518 .00747 .0122
13: Nielson - Franke Q .0878 .0137 .0219
14: Mod. Quad. Shepard .0876 .0121 .0206
16: Akima Mod. III .0680 .0106 .0176
24: Franke - TPS .0561 .00913 .0147
28: Lawson .0956 .0126 .0205

19: Nielson MinNorm .0582 .00800 .0140
21: Hardy Quadric .0577 .0129 .0170
23: Duchon -'TPS .0526 .00777 .0134
27: Hardy Recip. Quad. .0500 .00853 .0130
30: Foley 111 .0914 .0165 .0262

Deviations from Cliff test surface, 33 points

Table D.2.2
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Method Maximum Mean RMS
Deviation Deviation Deviation

1: Franke - 3 .111 .0121 .0224
4: Aklma .0578 .0110 .0165

10: Akima Mod. I .0578 .0104 .0156
13: Nielson - Franke Q .0679 .00939 .0146
14: Mod, Quad. Shepard .0724 .00907 .0139
16: Akima Mod. I11 .0597 .0104 .0162
24: Franke - TPS .0662 .0109 .0175
28: Lawson .0685 .0133 .0199

19: Nielson MinNorm .0571 .0102 .0159
21: Hardy Quadric .0262 .00442 .00689
23: Duchon - TPS .0574 .00912 .0140
27: Hardy Recip. Quad. .0505 .00571 .00970
30: Foley II .0885 .00888 .0148

Deviations from Saddle test surface, 33 points

Table D.2.3
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Method Maximum Mean RMS
Deviation Deviation Deviation

1: Franke - 3 .0446 .00608 .0101
4: Akima .0167 .00487 .00623

10: Akima Mod. I .0160 .00442 .00573
13: Nielson - Franke Q .0312 .00422 .00637
14: Mod. Quad. Shepard .0272 .00451 .00679
16: Akima Mod. III .0204 .00394 .00565

¾ 24: Franke - TPS .0339 .00681 .0107
28: Lawson .0269 .00652 100815

19: Nielson MtnNorm .0214 .00371 .00563
21: Hardy Quadric .00724 .00121 .00204
23: Duchon - TPS .0259 .00415 .00714
27: Hardy Recip. Quad. .0188 .00266 .00485
30: Foley III .0349 .00438 .00674

Deviations from Gentle test surface, 33 points

Table D.2.4
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Method Maximum Mean RMS
Deviation Deviation Deviation

1: Franke - 3 .143 .0162 .0298
4: Akima .115 .0120 .0240

10: Akima Mod. 1 .109 .0113 .0227
13: Nielson - Franke Q .0835 .0104 .0181
"14: Mod. Quad. Shepard .110 .0113 .0220
16: Akima Mod. II1 .115 .0119 .0240
24: Franke TPS .150 .0148 .0305
28: Lawson .139 .0129 .0289

19: Nielson MinNorm .115 .0106 .0228
21: Hardy Quadric .0716 .00850 .0148
23: Duchon - TPS .149 .0130 .0296
27: Hardy Recip. Quad .0963 .00878 .0180
30: Foley III .110 .0143 .0249

Deviations from Steep test surface, 33 points

Table D.2.5
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Method Maximum Mean RMS
Deviation Deviation Deviation

1 : Franke 3 .0464 .00614 .0106
4 : Akima .0383 .00796 .0110
10: Akima Mod. 1 .0393 .00732 .0104
13: Nielson - Franke Q..0983 .00585 .0177
14: Mod. Quad. Shepard .101 .00400 .0136
16: Akima Mod, 111 .0819 .00556 .0139
24: Franke - TPS .0307 .00629 .00886
28: Lawson .0137 .00210 .00313

19: Nielson MmnNorm .0186 .00273 .00460
21: Hardy Quadric .0203 .00278 .00473

(23: Duchon - TPS .0232 .00315 .00545
27: Hardy Recip. Quad. .0351 .00414 .00737
30: Foley 111 .0269 .00493 .00726

Deviations from Sphere test surface, 33 points

Table D.2.6
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Method Maximum Mean RMS
Deviation Deviation Deviation

It Franke - 3 .240 .0359 .0486
4: Akima .134 .0282 .0386

10: Akima Mod. 1 .129 .0280 .0390
13: Nielson - Franke Q .153 .0350 .0478
14: Mod. Quad. Shepard .158 .0353 .0486
16: Akima Mod. 111 .155 .0355 .0484
24: Franke - TPS .129 .0267 .0374
28: Lawson- .202 .C327 .0458

19: Nielson MmnNorm .124 .0235 .0328I21: Hardy Quadric .119 .0235 .0322
23: Duchon TPS .121 .0253 .0348
27: Hardy Recip. Quad. .119 .0214 .0294
30: Foley 111 .165 .0196 .031.0

2: Mod. Shepard $.Plane .167 .0328 .0466
3: Mod. Linear Shepard .254 .0418 .0593
5: McLain M 0  .255 .0369 .0529

-A6: Franke - 1 .241 .0356 .0484
7: Mod. Shepard .212 .0481 .0661
8: Mod. McLain M8  .262 .0377 .0579

11: Aklima Mod. 11 .1263 .0284 .0396
12: Nielson - Franke L. .249 .0366 .0513
17: Quad. Shepard .233 .0550 .0670
18: Shepard .238 .0559 .0709
20: Rotated Gaussians .118 .0237 .0321
22: Duchon .117 .0246 .0330
25: Foley 1 .200 .0375 .0517
26: Foley 11 .166 .0333 .0449
29: Rotated 8-Spllnes .131 .0279 .0368
31: Foley IV .121 .0195 .0276

Deviations from Exponential Test Surface, 25 points

Table D.3.1
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Method Maximum Mean RMS
Deviation Deviation Deviation

1: Franke - 3 .161 .0225 .0408
4: Akima .0999 .0148 .0257

10: Akima Mod. I .0987 .0143 .0252
13: Nielson - Franke Q .148 .0166 .0304
14: Mod, Quad. Shepard .163 .0166 .0314
16: Akima Mod. III .146 .0164 .0305
24: Franke - TPS .106 .0148 .0257
28: Lawson .132 .0164 .0283

19: Nielson MinNorm .0942 .0138 .0242
21: Hardy Quadric .0995 .0143 .0231
23: Duchon - TPS .101 .0135 .0235
27: Hardy Recip. Quad .105 .0139 .0236
30: Foley III .0832 .0165 .0250

( Deviations from Cliff test surface, 25 points

Table D.3.2
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Method Maximum Mean RMS
Deviation Deviation Deviation

1: Franke - 3 .0688 .0111 .0171
4: Akima .0864 .0121 .0202

10: Akima Mod. I .0866 .0119 .0203
13: Nielson - Franke .0794 .0115 .0189
14: Mod. Quad, Shepard .0759 .0114 .0183-
14' 16: Akima Mod. 111 .0787 .0116 .0189
9 24: Franke - TPS .0714 .00983 .0171
28: Lawson .0875 .0126 .0205

19: Nielson MinNorm .0704 .0100 .0172
21: Hardy Quadric .0397 .00570 .00952
23: Duchon - TPS .0688 .00810 .0137
27: Hardy Recip. Quad. .0443 .00528 .00955
30: Foley III .0823 .00853 .0165

Deviations from Saddle test surface, 25 points

Table D.3.3

i(.
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Method Maximum Mean RMS

Deviation Deviation Deviation

1: Franke - 3 .0247 .00491 .00651
4: Aklma .0256 .00541 .00686

10: Akima Mod. I .0248 .00541 .00681
- 13: Nielson - Franke Q .0340 .00562 .00746

14: Mod. Quad. Shepard .0227 .00529 .00669
16: Akima Mod. III .0232 .00575 .00760

24: Franke - TPS .0245 .00440 .00556
28: Lawson .0234 .00399 .00541

19: Nielson MinNorm .0161 .00307 .00433
21: Hardy Quadrlc .00709 .00107 .00158
23: Duchon - TPS .0128 .00265 .00351

27: Hardy Recip. Quad. .00528 .00055 .00089
30: Foley I11 .0224 .00436 .00588

Deviations from Gentle test surface, 25 points

Table D.3.4
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Method Maximum Mean RMS
Deviation Deviation Deviation

I: Franke - 3 ,113 .0178 .0257 r J
4: Aktma ,0534 .0108 .0149 •i:

10: Aktma Mod. I .0520 .0103 .0140 ....
13: Ntelson - Franke Q .0550 .00890 .0127 •
14: Hod. Quad. Shepard .0468 ,00911 .0126

: 16: Aktma Hod. I11 .0510 ,00908 .0128 ,
•" 24: Franke - TPS .0317 ,00756 .0100 ,,i•!
•' .0456 ,0129 .0286 '
•;,,, 28: Lawson ....
li 19: Ntelson HlnNorm .0314 ,00487 .00694
;: 21 : Hardy Quadrtc .0189 ,00453 .00595

S23: Duchon - TPS .0233 .00462 .00653
• 27: Hardy Rectp. Quad .0144 .00288 .00386' ,0161

'r•k 30: Foley III .0743 .0107 ii

• Oevtattons from Steep test surface, 25 potnts

, Table D.3.5

t

-110-

i
I



Method Maximum Mean RMS
Deviation Deviation Deviation

1: Franks - 3 .0323 .00498 .00748
4% Akima .0646 .00903 .01321

10: Akima Mod. 1 .0634 .00811.02
13 ilo rne0.0174 .00199 .00324
13: N~lsn -Frnk ~.0190 .00200 .00336

14: Mod. Quad. Shepard 021.00190 .00303
16: Akima Mod. 11I.23
24: Franke - TPS .0482 .00690 .0106
28: Lawson .0212 .00216 .00378

19: Nielson MinNorm .0412 .00470 .00765
21: Hardy Quadric .0371 .00403 .00650
23t Duchon -TPS .0581 .00557 .00925

(27: Hardy Recip. Quad. .0628 .00774 .0123
30: Foley 111 .0305 .00568 .00822

Deviations from Sphere test surface, 25 points

Table D.3.6
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Test Surface 1 2 3 4 5 6

Data Set

100 points 16 28 14 16 13-16-28 13

33 points 13 10 14 16 13 28

25 points 24 10 1-24 28 24 16

Local Method With Smallest Deviation

Table E.1

"Test Surface 1 2 3 4 5 6

Data Set

100 points 21 21 21 21 21 13

33 points 27 10 21 21 21 28

25 points 31 30 21 21 27 16

Method With Smallest Deviation

Table E.2
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Method Parameter Value Max.Dev. Mean Dev. RMS Dev.

1: Franke - 3 NPPR = 4 .144 .0113 .0210
6 .0919 .00842 .0148
8 .0831 .00864 .0145

4". Akima NCP - 4 .130 .00857 .0153
6 .0647 .00787 .0125
8 .0934 .00925 .0156

10: Akima Mod. I NCP u 4 .152 .00898 .0169
6 .0856 .00784 .0133
8 .0696 .00874 .0146

13: Nielson - Franke Q NPPR • 12 .0997 .00729 .0126
18 .0782 .00741 .0122
24 .0899 .00831 .0139

14: Mod.Quad.Shepard NPPR * 6 - 12 .0663 .00704 .0117
9 - 18 .0573 .00785 .0128

12 - 24 .0735 .00894 .0148

16: Aklma Mod. III NCP - 12 .101 .00709 .0124
18 .0520 .00729 .011724 .0599 .00821 .0133

21: Hardy Quadric NPPR * 15 .0287 .00303 .00578
25 .0225 .00181 .00357
35 .0185 .00138 .00257

24: Franke - TPS NPPR * 4 .146 .0104 .0203
J, 6 ..0940 .00887 .0164

8 .0919 .00804 .0150

27: Hardy Recip. Quad. NPPR • 15 .0912 .00601 .0129
25 .0247 .00283 .00518
35 .0220 .00217 .00399

30: Foley III NIT - 1 .104 .00745 .0155
3 .0636 .00473 .00941
5 .0449 .00376 .00707

Al
Deviations from Exponential test surface, 100 points, varying parameters

Table P.1

S (i :
-1 13- •i



Method Parameter Value Max.Dev. Mean Oev. RMS Dev.

4 1: Franke - 3 NPPR 4 .600 .0446 .0775
6 .240 .0359 .0486

• 9 .234 .0428 .0595

4: Akima NCP * 4 .133 .0256 .0369
6 .134 .0282 .0386
8 .153 .0302 .0430

10: Akima Mod. I NCP " 4 .133 .0255 .0371
6 .129 .0280 .0390
8 .146 .0301 .0432

13: Nielson - Franke Q NPPR = 12 .214 .0394 .0704
18 .153 .0350 o478
24 .132 .0322 .0433

14: Mod. Quad. Shepard NPPR - 6 - 12 .230 .0372 .0549
9 - 18 .158 .0353 .0486

12 - 24 .135 .0338 .0456

16: Akima Mod. III NCP • 12 .176 .0394 .0560
18 .155 .0355 .0484
24 .127 .0319 .0433

21: Hardy Quadric NPPR a 15 .120 .0225 .0307
25 .119 .0235 .0322

( 35 .129 .0280 .0397

24: Franke - TPS NPPR 4 .186 .0318 .0455
5 .129 .0267 .0374
9 .143 .0281 .0404

27: Hardy Recip. Quad, NPPR 15 .122 .0239 .0333

S25 .119 .0214 .0294
35 .119 .0234 .0323

30: Foley III NIT * 1 .191 .0238 .0355
3 .165 .0196 .0310
5 .154 .0209 .0324

Deviations from Exponential test surface, 25 points, varying parameters

Table P.3

( i
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Method Preprocessing Evaluation Total

1: Franke - 3 1.1 8.8 9.9
4: Aklma 2.2 0.8 3.0

10: Akima Mod. I 2.8 0.8 3.6
13: Nielson - Franke Q 10. 1.9 12.
14: Mod.Quad. Shepard 8.6 15. 24.
16: Aklma Mod. II1 11. 0.8 12.
24: Franke - TPS 2.7 6.5 9.2
28: Lawson 1.8 1.7 3.5

19: Nielson MinNorm 5.7 3.8 9.5
21: Hardy Quadric 7.1 13. 20.
23: Duchon-TPS 7.5 17.8 24.
27: Hardy Recip. Quad. 7.1 13. 20.
30: Foley III 15. 11. 26.

2: Mod. Shepard I Plane 2.1 25, 27.
3: Mod. Linear Shepard 1.2 15. 16.
6: McLain M1O -... 110. 110.

6: Franke - 1 1.0 8.0 9.0
7.: Mod. Shepard --- 12. 12.
8: Mod. McLain M8  --- 14. 14.

11.: Akima Mod. II 2.8 .8 3.6
( 12: Nie!qon - Franke L. 2.4 1,5 3.9

17: Quad. Shepard 33. 22. 55.
18: Shepard - 17. 17.
20: Rotated Gaussians 7.1 13. 20.
22: Duchon 7.4 15. 22.
25: Foley I --- 13. 13.
26: Foley II 4.0 16. 20.
29: Rotated B-Splines 7.7 23. 31.
31: Foley IV 11. 6.3 17.

Timing : 100 points

Table T.]

-1171
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Method Preprocessing Evaluation Total

1: Franke - 3 0.3 7.8 8.1
4: Akima 0.5 0.7 1.2

10: Aklma Mod. I 0.7 0.7 1.4
13: Nielson - Franke Q 2.4 1.8 4.2
14: Mod. Quad. Shepard 2.1 5.6 7.7
16: Akima Mod. 1II 2.7 0.7 3.4
24: Franke - TPS 0.6 4.6 5.2
28: Lawson 0.5 1.5 2.0

19: Nielson MinNorm 1.9 3.1 5.0
21: Hardy Quadric 0.5 4.0 4.5
23: Duchon TPS 0.5 5.3 5.8
27: Hardy Recip. Quad. 0.5 4.0 4.5
30: Foley II 1.6 4.0 5.6

2: Mod. Shepard I Plane 0.2 9.9 10.
3: Mod. Linear Shepard 0.2 5.1 5.3
5: McLain M1c --- 50. 50.

6: Franke - 1 0.3 6.9 7.2
7: Mod. Shepard --- 4.6 4.6
8: Mod. McLain M8  5.7 5,7

lit Akima Mod. II 0.7 0.7 1.4
12: Nielson - Franke L. 0.3 115 1.817: Quad. Shepard 4.1 7.1 11.

18: Shepard --- 6.4 6.4
20: Rotated Gaussians 0.5 4.0 4.522: Duchon 0.5 5.0 5.5

25: Foley I --- 4.0 4.0
26: Foley II 0.9 8.2 9.1
29: Rotated B-Splines 0.5 7.8 8.331: Foley IV 1.1 2.7 3.8

Timing: 33 points

Table T.2
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Method Preprocessing Evaluation Total

0.2 7.7 7.9
1: Franke - 3 0.6 0.9

4: Akima 0.3 0.6

10: Aklma Mod. 1 0.5 0.6 1.1

13: Nielson - Franke q 1.7 1.7 3A4

14: Mod. Quad. Shepard 1.5 4.2 5.7

16: Akima Mod. III 1.8 0.6 2.4

24: Franke - TPS 0.4 4.5 4.9

28: Lawson 0.4 1.4 1.8

19: Nielson MinNorm 1.4 2.9 4.3

21: Hardy Quadric 0.2 3.1 3.3

23: Duchon - TPS 0.2 4.0 4.2

27: Hardy Recip. Quad. 0.2 3.1 3.3

30: Foley III 1.1 3.1 4.2

2: Mod. Shepard 0 Plane 0.1 7.6 747

3: Mod. Linear Shepard 0.1 4.0 4.1
..-- 40. 40.

5: McLain M10  4.

6: Franke 1 0.2 6.7 6.9

7: Mod. Shepard - 3.7 3.7

8: Mod. McLain M8  ... 4.4 44

11- Akimb Mod. II 0.5 0.6 1.1

12: Nielson - Franke L. 0.2 1,4 1.6

7 Quad. Shepard25 5.5 8.0
1: Shepard ... 4.1 4.118: Shepard 3 3.3

20: Rotated Gaussians 0,2 3.8

22: Duchon 0.2 3.8 4.0

25: Foley I - 3 3.0

26: Foley II 0,7 7.3 8.0

09 .3 5.96.
29: Rotated B-Splines 0.8 1.8 2.6

31: Foley IV

Timing : 25 Points

Table T.3
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Franke's Method, Mode 3

Figure 1.4.1.1
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Modified Shepard's Method Boolean Sum Plane

Figure 1,4.1,2
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Modified Linear Shepard's Method ,1

( Figure 1,4.1.3 ,
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Almna's Miethod

( Figure 1 .4.1 .4
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McLain's Inverse Distance Weighted Quadratic

~ Figure 1.4.1.5
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Nielson-Franke Linear Triangle Method

( FIgure 1.4.1,12
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Modified Quadratic Shepard Method

Figure 1 .4.1 .14
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Akirnals Method, Modification Three

Figure 1.4.1.16
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Quadratic Shep~ard's Method

(2 Figur-e 1.4.1.17
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Shepard' s Method

S.....Figure 1.4.1.18
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Rotated Gaussian Basis Functions

Figure 1.4.1.20
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Dur-hon's Thlin Plate Method

Figure 1.4.1.23

-'146-



WINR
II

Frane's etho, Thn Pate ocalFuncion

Fiue1412



fl -, �. ,inJ.o...rn,,m�. -- -

� I

�1 �
4,

p ,

41

;V" �. 
3
4

�wp 1

Foley's Generalized Newton Polynomial

C. Figure 1.4.1.25

-148-



-___!_1__;_;;77

41

Foe' eealzdNwo BoenSmBenti..N

Fiue14I2
"M~ "'N



Hardy Reciprocal Muitiquadric Method

Figure 1.4.1.27
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Rotated Cubic B-Spline Basis

Figure 1 .4.1 .29

-15.

A~ ~~~~ .2 .' .L .Ld± .l~ 
' 

..~ ~ .l .. .........



X1's

'At1

Foley's Iterated Generalized Newton
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Figure 1.4.1.30
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Franke's Method, Mode *3

Figure 1.4.4.1

-155-



7'~

~~II

Akima'Is Method
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Akimals Method, Modification One

Figure 1.4.4.10
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Modified Quadratic Shepard MethodIN Figure 1.4.4.14
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Hardy Multiquadric Method

Figure 1.4.4.21
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(7' Figure 1,4.4.23
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Franke's Method, Thin Plate Local Functions
Figure 1.4.4.24
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Franke's Method, Mode *3

Figure 1.4.5.1
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Modified Quadratic Shepard Method
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Nielson Minimum Norm Network
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Modified Quadratic Shepard Method

Figure 1.4.6.14
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Akinials Method. Modification Three
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Hardy Multiquactric Method
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Franke's Method, Mode =1

Figure 2.0.0.6
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Nielson-Franke Linear Triangle Method

( Figure 2.0.0.12
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Shepard's Method
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Foley's Iterated Generalized Newton
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