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1.0.0. Introduction
The basic problem which is being addressed here is that of constructing

a smooth (at least continuous first partial derivatives) bivariate function,

F(x, y), which takes on certain prescribed values, F(xk.ayk) = fk’ k=1, ...y N.

The po1n§s (;k, yk)lare not assumed to satisfy any particular conditions.as
to Spac{ng or density, hence the term "scattered". It is usually convenient.
to th1n5 qf thg_vaIges fk as arising from some underlying (not necessarily
known) fuﬁctioﬁ f(x, ¥), so that fk = f(xk, yk). k=1, ..., N,

The problem of interpolation of scattered data in two or more independent
variables has been addressed by numerous authors, as can be seen by the
bibliography. Many of the basic ideas involved are discussed in two survey .
papers (both over a wider class than we consider here) due to Schumaker [49]
and Barnhi11 [4].
a few numerical examp]es given, often not well thought out or very definitive

In addition, most of the

Some of the ideas seem to be mainly that, ideas, with only

in terms of the actual capabilities of the method.
methods involve one or more ad hoc assumptions requiring a user to specify
parameters (one or more). Generally only cursory attention has been paid to
appropriate choice of these parameters and their overall effect on the inter-
polant has usually not been determined.

Out of this situation arose a desire to attempt to answer a number of
questions, basically all related to the question: Which of these many
methods deserve further siudy and development, and which should be discarded?
Included here is the determination of some default values for ad hoc parameters
in methods which require them. The default values should give reasonably good
results over a number of different sets of data, and preferably the interpolant

should be rather stable with respect to changes in the parameter. Additionally,
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out the domain of definition. The idea of a "local" method is not so clear.

it is convenient for the user if the parameter is related to something
about the data which can be essily estimated. In many cases (perhaps all),
subjective judgements must be made about these matters, although some hard
information can be obtained.

Some previous fairly estensive work had been done by McLain [39].which
inspired a somewhat similar study of another class of ideas by the cur%ent |
investigator [16]. The initial thrust of the investigation was to compaFe a
few "local" methods to determine which seem to work reasonably'we]l. As
the investigation proceeded, more ideas were supplied by colleagues and
others, so that in the end, more than a few methods are tested and compared
here, including “global" methods. The total number of programs involved
in this study is 29, some of which are fairly minor variations of others.

The concept of a "global" method is easily understood. The interpolant
is dependent on all data points, and addition or deletion of a data pnint,

or a change of one of the coordinates of a data point will propagate through-

Typically one thinks of it meaning that addition or deletion of a point, or

a change of one of the coordinates of a data point will affect the interpolant
only at nearby points, that is, the interpolant will be unchanged at distances
greater than some given distance. There are some difficulties here. If the
data (the (xk. yk) points) are "randum", one must inspect (in some way) all
the data to determine which are "nearby". Does this mean there is no such
thing &s a "local" method? (Rosemary Chang first mentioned this idea). We
have taken a somewhat more 1iberal view of "local" and take it to mean that
the interpolant involves only "nearby" points and one or more parameters.

We allow the parameters to have been globally determined as a matter of user
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convenience, even though a (successful) argument can be made that then the
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L U method is not local. Thus, we classify methods as local or global without

regard to how parameters are chosen or computed.

The use of global mgthods is not feasible for very large N since they
often jnvd]vg thg solution of a system of O(N) equations (often exactly M)
and 1n any case 1nv01yg processing all points. When systems of equations
must be so1vgd, the systems are often full and not well conditioned. WUhile

our primary afm was to investigate local methods suitable for very large data

sets (several hundred points up to some millions, say), in many instances local

methods involve the use of global methods on smaller sets which are then
"blended" together to obtain a locally defined global interpolant. Thus %t
; makes sense to test global methods on moderately sized sets of data. By
the same token, it is not necessary to test local methods on sets of 10000

b ) points (say) by virtue of the fact that they are local. If very large sets

b Ao R I e G R N R i St AR

A of data were to be considered, it is ciear that a different implementation
approach might be necessary, one which would involve a larger amount of pre-

processing and perhaps additional storage.
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1.1.0, Tested Characteristics_of Methods |
The characteristics on which various methods are to be compared, and
how they are to be weighted in the final analysis, are somewhat‘subjectfve. _:‘
While no representation is made that the 1ist is exhaustive (or even close ’L‘
to:1t), nor that everyone will be in agreement on it, the following items
are the ones considered here. We give them and discuss them in order of
decreasing importance. In the presentation of information in the summary :
(tables and perspective plots) each reader may weight various aspects to
suit his own needs.
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1.1.1. Accuracy
Accuracy in reproducing a known surface is certainly one important

aspect of compar1sqn. In the usual application no representation of the
underlying surfacg z = f(x, y) 1is known..hpwgver.lif the method approximates

2 variety of sdrface behavior faithfully we can expect it to give reasonablc

results in other instances. Quantitative numbers can be put on the perfor-

mance of a method tested in this fashion, and we have used this idea extensively.
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1.1.2. Visual Aspects

It has developed during the course of this project that the appearance
of the interpolant when viewed in a perspective plot is very important.
Visual ratings are often closely related to the accuracy with which an inter-

po1ant'§eprodu¢es test surfaces. There seems to be a closer relationship

i when accuracy is high since there is less chance for the 1nterpo]antnto
t misbehave. At moderate accuracies one ihterprant'may be visually pleasing
‘ while another with similar accuracy is not.

The visual aspect is quite subjective and ratings by different persons
% will give somewhat different results, although probably not contradictory

ones. While 1t is felt that the visual aspect is quite important, exactly

how this information is integrated into the overall assessment of a method
i is also a subjective matter, however it is rare that a dilemma occurs in
{ this study.
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i 1.1.3. Sensitivity to Parameters

iﬁ 4 Many of the tested methods involve the choice of one or more parameters.
%ii % These choices have generally been converted to ones which are related to

mean distances to nearest neighbor, although precisely that idea is never
directly used. Here we are talking of nearest neighbor in the set of points
{(xk. yk)}. Sometimes the parameter takes the form of an anticipated number

of points in the region which defines a local interpolant.

Methods which involve parameters underwent informal testing for suitable ‘f
values of the parameters., Methods which survived this and other tests have k
parameter variation tests tabulated in the results. Some methods were found o
to be capable of generating creditable results for an appropriate value of j$

the parameter, but were sensitive to it, or gave poor results on similar data

when the same value was used. These results arementioned in Section 3., It is §

desirable to have a method which s stable with respect to changes in the

parameter, and such methods were found, as we note later.
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| 1.1.4. Timing
i 1he computational effort required 1s generally not of great interest,
% unless it 1s very high. In these raspects, only one method was tested which
t was discounted for this reason. Some methids are quite efficient in terms
% of time required for the calculations. These methods have generally been
: found deficient in other categories, unfortunately. For metheds which involve
g a preprocessing phase, distinct from an evaluation (of the interpolant) phase,
: the two times for standard problems are given separately. Execution times
were taken from the multiprogramming environment on the IBM 360/67 and as
such may vary considerably with exactly the same data. More is s2id of this
: later.
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1.1.5, Storage Requirements

i As with computational effort, storage requirements are not crucial, unless
#

they are very high. For very large problems this may be altered, of course.

We count storage requirements only in terms of additiovnal arrays needed to

R o ge k- 2o ookl MR T S R S

store data beyond the (xk. Yy fk) points. No account is taken of simple

N varizbles or program length.
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1.1.6. Ease of Implementation .

Ease of implementation is of no great concern if one obtains a working

program. In other instances it may be of considerable ijmportance. The a

Judgement 1s again subjective. Further, it could be different depending on 2%_
the philosophy behind the implementation. The form of the implementation  ;

i
could involve trade-offs between timing and storage and would doubtlessly -

dlter the ease of implementation.

Implementation of programs specifically for this project generally was

done with a lack of frills. Reasonable care was taken to assure that a

grossly inefficient algorithm was not coded, but no doubt it is possible to  $
improve on most of them. In particular, use of some preprocessing and

additional storage was not used to increase efficiency during the evaluation e

phase. For a general purpose program this should probably be done, in many

instances. Some of the documented programs did use these devices. Ease of lﬁ

implementation is generally meant to take into account the complexity of the

ideas involved in the method and the amount of code required.
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1.2.0. The Testing Process

The initial tests performed on a few methods eventually gave rise to a
standard set of test problems and a set of supporting subprograms to generate

statistics from the tests and generate perspective plots of surfaces. Due to
the evolution of ideas as the study progressed, some aspects of the process

are not as simple as they might have been. This is particularly true of some

of the test functions, but this has no bearing on the validity of the tests.

|
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1.2.1. The Test Program

To enable testing many different methods in a consistent manner, and with
a minimum of effort, a set of standard subprograms was developed which
generate the test cases, compute deviation statistics for known test surfaces,
obtain timing statistics, and generate and label perspéctive plots of the
surfaces. With the current set of supporting subprograms it is generally
quite easy to test a new method which is typically supplied as a subprogram
(or several) which generates the values of the interpolant at a grid of x-y
points., Typically all that is required is to set certain parameters. reserve
any required workspace, and call the subroutine, all of which can be done with a

few statements added to the prototype driver program,

e e e

2 e

I > .
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1.2.2. The Test Problems

The basic set of test problems consisted of six different teét functions
over three different x-y point sets, and two x-y-z point sets from the
literature, one of those used in a second version with one of the coordinates
scaled. Another interesting test was the computation of a "cardinal"
function obtained by setting all function values on a point set to zero, save
one. |

The six test functions were all to be approximated on [0, 1]2. Four of
them were basically obtained from McLain's paper [39], but were translated
to [0, 1]2 from [1, 10]2 and some modified slightly to enhance the visual

aspects of the surface. The other two were generated by the author to provide

a fundamentally different shape in one case (saddle), and to provide a surface
with a variety of behavior on one surface to serve as a principal test func- ' L8
tion. ‘

The principal test function is given by

2 2 2
f(x, ¥) = .75 exp[ - (8x-2) ZLQY"Z-L] + .75 exp[ - Q};ﬂ—- 31"—'5-1—]

2 2
v .5 expl - ATV OY8)y L g axpl - (9x-4)% - (9y-7)71.

D R S T O T DU T, S P

This surface consists of two Gaussian peaks and a sharper Gaussian dip

superimposed on a surface sloping toward the first quadrant. The latter
was included mainly to enhance the visual aspects of the surface, which is
shown in Figure 4.0.1.0.

The second test function, essentially obtained from McLain is
fz(x. y) = %{tanh(gy - 9x) + 1],

This surface consists of two nearly flat regions of height 0 and %. Joined

-13- 3




by a sharp rise, almost a cliff, running diagonaily from (0, 0) to (1, 1).
The test surface is shown in Figure 4.0.2.0.
The third test function was generated by the investigator and is
1.25 + cos(5.4y)
601 + (3x - 1)°]
This surface 1s saddle shaped and is shown in Figure 4.0.3.0.

f3(x, y) =

The fourth test function, essentially obtained from McLain, is
2 2
falxs ¥) = Fexpl - SH(x-D) + (=) )1,

This surface is a Gaussian hill which slopes off in rather gentle fashion in
(o, 1]2. It can be seen in Figure 4.0.4.0.
The fifth test function was also essentially obtained from McLain and is

2 2
fe(x, y) = % exp[ - %l (x-%) * (y-%) ).

This surface is a steep Gaussian hill which becomes almost zerc at the bound-

aries of the unit square. It can be seen in Figure 4.0.5.0.

The sixth test function is also essentially from Mclain, and is

2 1

2 =
Folxa y) = 3064 - 81((x-3) + (y-2) )12 - L.

"

This surface represents the part of a sphere above the unit square. The
sphere is of radius % with center at (%. %. - %). The surface is shown in
Figure 4.0.6.,0.

There were three different sets of points over [0, l]2 used in the tests.
The first set-consisted of 100 points generated by a pseudorandom number
generator, one point in each square of side % centered at (%. %) for

i1, 3=1, ..., 10. This yields a set of scattered points forced to have

-14-

i e i 0 i A SR



somewhat uniform density, although as can be seen in Figure 0.1.0.0. there
are locally large variations in density. The triangulated set of points is
also shown in Figure 0.1.0.0. Part of the unit square is outside of the
convex hull. The points are listed in Table 1.

The second set of data consists of 33 points and was generated by the
investigator to purposely have some areas sparsely populated by points
while other areas are not. This set of points is shown in Figure 0.2.0.0.
The points are 1isted in Table 2.

The third set of points was digitized by Gregory M. Nielson and is

similar in disposition to a set of points appearing in McLain [40]. This set
of points is shown in Figure 0.3.0.0. Part of the unit square is outside the
convex hull, The points are 1isted in Table 3.

Two sets of data were obtained from the 1iterature, and one of these was
scaled in one variable to obtain another. A fourth set was used to generate
a "Cardinal Function". The data given in Table 3, and shown in Figure 0.3.0.0.
was given the following function values: f(xk, yk) = 0 except
f(.1875, .2625) = ,2. Here .2 was used for visual purposes rather than 1 as
would ordinarily be done for a true cardinal function. This gives some infor-
mation about the influence of one point on the surface for moderate sized
point sets. Of the two sets of points from the 1iterature, one 1s from Akima
[1] and was obtained during a study of waveform distortion. It is repeated
here in Table 5, and shown in Figure 0.5.0.0. The second was obtained from

Ferguson [14] and is repeated here in Table 6, and shown in Figure 0.6.0.0.

§ | The same set of data, but with the y coordinate multiplied by three was
also used to show effects of scaling only one variable, and is shown in
Figure 0.7.0.0. For visual purposes, the function values given in Table 2

(;~ are actually .5 more than given by Ferguson. As can be seen from Figure

-15-
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0.6.0.0. the convex hull of the data is trapézoida] shaped. Since the
plotting routines expect function values on a rectangular grid it was

decided to evaluate the 1nterpo1at1nb surfaées on a rectangle which

contained most of the convex hull, but also included a mild amount of extrap-
olation. The rectangle was [2, 18] x [-3, 3.4] on the or{ginal data and

[2, 18] x [-9, 10.2] on the modified data. The convex hull of Akima's

data is rectangular and this rectangle was used for evaluating the surface .

PRy L Tt ST S © e ESan
tw R R L S - S e v LD

points. ,
IThe prablem of extrapolation outside the convex hull has been addressed
by taking the attitude that while it is undesirable to have to do so, it is

1ikely possible to do it in a "reasonable" fashion. Certainly in many
instances (our cases mostly among them) one may have better information for
mild extrapolation than for some points within the convex hull, The final
result is that some programs were modified to extrapolate in a "reasonable"
manner, some were implemented that way to begin with, and with others the
problem does not arise. Basically only triangle based programs need to

address the problem, and among those, only Lawson's [33] program does no

extrapolation. Points outside the convex hull were omitted from the ‘
deviation statistics in Lawson's method. For the 100 point data set, only @
13 points of the 1089 evaluation points were outside the convex hull, and

for the 25 point data set 54 points of the 1089 evaluation points were outside

the convex hull,

-16-
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1.3.0. Plot and Table Identification Scheme

The output of this study consists in part of a large number of per-
spective plots of surfaces and extensive tables. For ease in referencing
them they havé been gathered at the end of the report. and the entire
repart has been published in 1oose leaf form to facilitate reader compar-
{sons of corresponding plots.

The plots have been arranged according to a scheme involving 4 numbers,
each of which identifies a particular aspect of the plot. The plot ident-
ification fs of the form Figure NyNp.Ng.N,, Where the N, are used to
fdentify the characteristics 1isted below.

N1 - Type of plot
0 - plot of (x,“y) point set

1 = indicates plot has four 3" plots as arranged in Figure 1
2 - indicates plot has .four 3" plots as arranged in Figure 2
3 - indicates plot has four 3" plots as arranged 1ﬁ Figure 3
4 - one 6" plot per page

N, - Indicates (%, y) or (x, y, z) point set used
0 - does not apply
1

100 points as described in Section 1.2.2

33 points as described in Section 1.2.2
25 points as described in Section 1.2.2

all of 1, 2, 3 were used as indicated in Figure 1

50 points from Akima [1], given in Table 7

~3 (=) (9,1 o> « ny
§

J
25 points from Ferguson [13], given in Table 5 1
]

25 points, obtained as Ferguson's points with y coordinate x 3.

P E L e TRt AR S CY TSN e TS ST T A
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Ny - Test surface 5?
0 - does not apply ?ﬂ?
1 - f, as defined in Section 1.2.2., 1 s 1 < 6. | ;ig’
Ny = Program Number, as identified in Section 3, and given in Table S. ?¥
a F b
Test 100 point Cardinal Akima
‘Surface | interpo- Function| Surface i
lant
¢ d c d .
33 point | 25 point Ferguson | Modified 43
interpo- |interpo- Surface | Ferguson .
lant lant Surface 3
N 4
f;? Figure 1 Figure 2
lﬁf ) b
o Test |Parameten
b Surface {< Nominal
T Value
P Parameter|Parameter
i = Nominal |> Nominal
b, Value Value
i }
!ql, i ! ;'
i Figure 3 4
1 :';
“%j The plots all involved evaluation of the interpolant on a 33 x 33 grid 4
‘gi’ of equally spaced points. Generally this grid is fine enough so that piece- b
T k.
';3 wise linear plotting of the cross sections, which is the process used by ﬁ.
%% - the plot program, yields sufficiently smooth looking results. In some instances Q
3 ;
@é : this is not really fine enough to show the true character of the surface, but §n
o , il.
ﬂa ' ? in these rases the surface 1s not a good approximation to the test surface ‘
q { ()
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and the plot is considered sufficiently accurate to evaluate the visual
aspect of the surface anyway.

Tables of comparative results are arranged . 4 labeled accordfné to
information contained and test function and data set from which it arose,
if pertinent. There are several kinds of tables: (1) Deviation tabIes.'
giving the maximum, mean, and root-mean-square deviations over the set of
evaluation points used for plotting. These are 1abeled Table D.M1.M2. ;
where D indicates "deviation table", M.| = { means (X, y) data set 1, as
described for N, = 1, above; and M, = 1 indicates the test function f,
as described for N4 above. (2) Timing tables, giving the execution times in
seconds on the IBM 360/67. These times are divided into preprocessing (for
methods for which there is preprocessing), evaluation, and total., A1l pro-
grams were compiled using the Fortran H (optimizing) compiler. Since the
configuration of the machine involves multiprogramming, these times are

dependent on external factors, and may vary 10% or more, in either direction.

. on otherwise identical runs. Therefore, times are given to two digits, the

second probably not being significant. The tables are labeled Table T.M,
where T indicates "timing table" and M = i means for the (x, y) data set as
described for N, = 1, above. (3) Paramcoter variation tables give the devi-
ations for the nominal value of the parameter (for methods involving a param-
eter), and for values larger and smaller than the nominal value. The tables
are labeled Table P.M, where P indicates "parameter variation" and M = i

means for the (x, y) data set as described for N2 = {, above, (4) Summary

table, Table S summarizes the pertinent information about all tested methods.

(5) Two tables compact the information in the deviations tables, indicating

only which method (by number) has the smallest deviations for each test
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surface and point set. The two tables are for local methods (Table E.1)
and all methods (Table E.2).

A1l tables 1isting results for various methods are grouped into two or
three separate groups. The first group contains extensively tested local
methods, the second contains extensively tested global methods, and third
(when it appears ) contains all other methods.

Certain information in the summary table, Table S needs additional
explanat1oh. in particular those given letter grades. Sensitivity to
parameters is a purely subjective score, based on informal testing of the
scheme. Inciuded were whether some value of the parameter worked well for
a variety of surfaces for a given set of (x, y) points, and whether the
interpolant was stable with respect to changes in the parameter from that
value. Complexity simply reflects the investigator's perception as to the
complexity of ideas involved and the ease of implementation into a computer
program, Accuracy is again subjective and is based on the relative amount
of deviation one might expect from the true surface for a given method. Of
course, perusal of the deviations tables will reveal some methods do well
on some surfaces and not so well (relatively speaking) on others. Timing
is relatively well defined. The first letter represents the sum of the
evaluation times, given in Tables T.1, T.2, and T.3. Ranges for A, B, C,
D, and F, respectively, are (0, 7], (7, 211, (21, 30], (30, 50], and
(50, =). The secondletter represents the total time for 100 data points

and 1089 evaluation points, the time given in Table T.l. Ranges are (0, 4],
(4, 12], (12, 20], (20, 30], and (30, =)

.



2.0.0. Descriptions of Tested Methods

For description purposes the methods are classed into six groups:
(1) Inverse distance weighted methods, (2) Franke's method, (3) Triangle
based blending methods, (4) Finite element based methods, (5) Foley's
methods and (6) Nodal basis function methods. While there is necessarily
a blurring of distinctions across these group 1ines, they constitute fairly
distinct ideas and it is convenient to group them this way. In the Section |
headings, the number appearing is the number assigned to the program imple-

menting that scheme. This number has no significance except that it gives the

approximate order in which the programs were implemented or obtained, Not
all numbers appear because certain {deas were discarded as not within the
context of the study (in one case), or as extremely deficient (one case).

The programs inciuded in the test and a few words describing it (also used

TREETT S e S e i TS e

in Section headings in this chapter) are given in Table S to have them

available for easy reference.
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2.1.0. Inverse Distance Weighted Methods

The original inverse distance weighted interpolation method is due to
Shepard [50]. A1l methods of this type which we consider may be viewed as

generalizations of Shepard's method, or variations of such generalizations.

The basic Shepard's method is
- N N
(]) F(x, .Y) = kZ]wk(.x’ .Y)fk/kz]wk(xn .V)t

where wk(x. y) = dk'“, and typically u = 2, although other values may be
used. wu may be replaced by Mg and could possibly be different for each k.
Several authors have considered various aspects of Shepard's method [4], [5],
[20], [49].

Shepard's method is a global method, and the original paper suggested
a scheme for localizing it by piecing together a parabolic segment with
diz in such a way as to obtain & Wy which is zero outside some disk, say of
given radius R, centered at (xk, yk). and which is still c‘. A simpler and
more natural scheme suggested by Franke and Little [4, p. 112] is used 1in
much of this work, that is,

2
(2) W (X y) = IKR—R%& ] .
L
Shepard's method has an undesirable property for general use in that a
flat spot occurs at each data point. Use of information about derivatives,
either given or generated from the data was suggested by Shepard, and resulted
in an approximation of the form

(3) F(x )='§w(x )f, + () (x - x )+ (&) (y - )]/gw(x )
P YEE L M YT T R0 R S TR

More generally, one may consider approximations of the form
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(4) F(x, y) = pf W (s YL F(xs y)/ rZ‘ W (X5 ¥)s
k=1 k=1

where L f is an approximation to f such that ka(xk. yk)_s fi» This is the
basis for several of our methods. In this context we refer to the L, f as
nodal functions.

| Another way in which Shepard's method ¢an be generalized is to view the
method as an inverse distance weighted least squares approximation to f(x, y)
by a constant. One can then generalize to an approximation taking the form
(5) F(xs y) = Flags ay0 ooev api x4 ¥),
where 3gs --.» 8, are parameters chosen by taking them to minimize (for a

given (x, y)) the expression
kz'l[fk - F(a0Q al...o an; in yk)]zwk(xl .V).

This approach was taken by McLain [3%] in evaluating a number of methods where
¥ was taken as a linear combination of low order monomials and wk(x. y) as
dk'2 or exp(-adka)dk'z. McLain also considered some approximations where f
entered nonlinearly. We have considerad one of MclLain's methods and a
variation of another. A1l of the methods of this class may be derived as

variations of the above formula for F[18].
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2.1.1. Shepard's Method (18)

We consider Shepard's method mainly to show how the original method
performs in comparison with variations. The formula 1s described by Equation
_ (1), but was achieved computationally as a special case of the Modified
5 Shepard's Method by taking R very large.




2.1.2. Modified Shepard's Method (7)
This variation is obtained by using the weight-function

(R -.dk),]'z

wk(x..‘y), = [""R‘d"'—'k

in place of dk'z. In general R can be different for each k, but we.have not
done this. In order to simplify the choice o? R and to rerove effects of
scaling from the proéedure. R is actually computed'?rom the expression
(6) R=1/¥p
Z'N
where D is the diameter of the point set {(xk. yk)} and Ny is a new parameter .
to be specified. Geometrically Nw represents the anticipated number of points )
which will be in a disk of radius R. Computational experiments have led to f
a nominal (or default) value of N, = 12. For point sets of widely varying 'E
density this is probably not an appropriate value, since the use of constant g
R for all k assumes a somewhat uniform distribution. §
;
!
;i
ri
:
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2.1.3. Modified Linear Shepard's Method (3)

This variation is cbtained by taking Lf in Eq. (4) to be the inverse
distance weighted least squares upproximation to the (xd. Yy f,) by a plane

(2). The comments regarding the choice of R in the previous method apply
here as well, 1nc1ud1ng the nomina1 (or defau1t) va]ue of Nn a 12, The

coefficients of the plane are obta1ned in a preprocess1ng phase.
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2.1.4, Modified Shepard's Method Boolean Sum Plane (2)
Barnhi11, and Gregory [6] have shown that the operator Pe€Q=P+Q-PQ

has the interpolation properties of the operator P and the precision of
operator Q... A suggested scheme for.obtaining polynomial precision for
Shepard's methodwis to use an operator with linear precision for Q, while P

is taken as Shep;rd‘shnetho&. Ne:have hééd tﬁe following scheme, Let

L(x, ¥) = a(x, y)x + b(x, y)y + c(x, y) represent the approximation to f(x, y)
obtained by a least squares approximation with weight (R - dk)f for the kth
point, and let Sf represent the Modified Shepard's Method operator of Secticn

2.1.2. where R above 1s the same as in Section 2.1.2. Then the approximation
s F(x, y) = $ & Lf(x, y). Computationally this 1s achieved by S & Lf =
S(I - L)f + Lf, or

N N
(7) Flx, y) = kgl W (s IR = Lixys yk))/kg] We(xs y) + Lix, y).

Thus the values L(xk. yk) are computed as a preprocessing step, and the two

terms in Eq. (7) are computed for the given (x, y).
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2.1.5, Modified McLain Method Ma(B)

McLain's method Mg [38] is of the form given in Eq. (5) with
F(ao. a1 855 X y) = ao(x. y) + a](x.,y)x + az(x. y)y and inverse distance
weighting dk'z. We have modified this by taking weighting given by

(R_d)Z . ".
[}'"Raik;t , where R is again computed from expression (6)with a nominal

value of Nw =12, .

-28-
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2.1.6. Quadratic Shepard's Method (17) A ‘
This method is of the form given by equation (4) where wk(x.,y) = dk'z.

and Lk(x, y) is the inverse distance weighted Teast square quadratic at the.

point (xk. yk) with weight dk'2

+ The coefficients of the quadratics are
obtained in a preprocessing phase. This method 1s actually treated as 3

special case of the next method with R and Rq taken very Iargé.
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2.1.7. Modified Quadratic Shepard's Method (14)

In this method the weights for obtaining the nodal functions (quadratics)

are taken as I 2
[(Ri - dk)+] .
% 4 )
where Rq bears the same relaticnshib to Nq as R to Nw in Eq. (6), 1.e.,

Rq‘ = %/ :E D. The nominal value for Nq was determined by computational
experiments and is Nq = 18. If fewer than 6points 1ie in a disk of radius
Rq at some (xk. yk). the approximation 1s taken to be linear. In any case
nonuniqueness of the nodal functions 1s avoided by using the pseudo-inverse,
obtaining the least squares approximation which has minimum L, norm of the
coefficients. The weight function is given by equation (2), and R obtained
from Nw with the nominal value of Nw « 9, Complete details are given in

[18].
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2.1.8, MclLain's Method Hm.(S)

e

McLain's Method M, [39] is of the form given by Eq. (5) where
F(go.f....‘asa‘x.;y) 3, + ax + a5y + a3x2 + axy + asyz. and the weight

function for the approximation is taken to be‘exp(-udkz)dk'z. Here, in

order to remove the effects of scaling we have taken
' D

where D is the diameter of the point set {(xk. yk)}. This c¢hoice yields

a = 1 1n McLain's original numerical experiments, where McLain suggested

s i i 2 R S SRR

S S

o should be something 1ike the usual distance to the nearest neighbour.

i

Experiments have confirmed that the above o is a reasonable choice in a

T e - =

variety of instances. This 1s a global method.
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2.2.0. Franke's Method

The class of methods [16] was inspired by a short paper by Maude [37] ' ;Q
i which generalized the idea of deficient quintic splines to several variables.
z Unfortunately the original interpolation function exhibits rather poor
i behavior and has not even been included in our tests. The original idea was
|

to represent the interpolation function as . -@5

4 N N : N
. (8) F(x, y) = k§1wk(x. ¥)Q (xs y)/k§1wk(><. ¥)s

where Qk(x. y) is the quadratic polynomial interpolating f(x, y) at (xk, yk) L

and the five nearest neighbors to (x . y,) from the set {(x,, y,)}, and 3
. k K 3" A

1 - (g") <3 - 2§k>dk < R,
wk(xu .Y) . k k
0 dk > Rk ]

! where Rk {s the distance between (xk. yk) anu its 5th closest neighbor. This

idea was generalized to include any wk(x. y) which have finite support (to

{ﬁ[ make the method local) so long as the Qk(x. y) interpolate f(x, y) at all

i (xj. yj) where Nk(xj. yj) = 0. Use of approximations Qk(x. y) 1n Hilbert ”
%ﬁ ! spaces, particularly in Sard spaces, was suggested and implemented [17]. One A
1 -
i) of the chief advantages of this approach is that instead of taking Nk with

h

disks centered at the (xk, yk) as support regions, it 1s easy to use a smaller 1

number of overlapping rectangles in such a fashion that at most four terms 1in k.

the sum are nonzero, and ) wk(x. ¥) =1, lse of rectangles also simplifies

the problem of determining which terms are nonzero and thus results in a

faster algorithm. In general, schemes of this sort are given by f il

...

F(x, y) =} Nl(x. y)Qn(x. y), with W, = 1 and certain interpolation conditions
)

'y f imposed on the Qz'
o ?
‘y R § -32-
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The details of the rectangle selection process follow As. an option
the user may specify rectangle boundaries, however an automatic selection
process 1s available and is assumed to be the usual option. A parameter
NPPR (for number of points per rectangle) is specified, the suggested value
being NPPR = 6. In the automatic case we take ny = ny = [2 //NPPR EJ and
then grid 11nes in the x direction at xo. x]. ces xn M are chosen so that
each strip (x1 1 x1)x(-=. ») contains approximately N/(n + 1) points. A
simiIar partition yo. y1. ceen yn +1 is found in the y direction. Now,
weight functions N1J(x. y) with support [x1 1’ xM]x[yJ 1 yj+1] j

are used together with Q1J(x y) which satisfy Qid(xk' yk) = fk'whenever
(xk. yk) € R1J to form the {nterpolation function

(9) F(x, y) = Z NU(X y)Q.u(xo y)

Here we choose the Wiy so that Z LT

Recently, some work due to Junkins. Jancaitus, and coworkers [31], [33]
has come to the 1nvest1gator s attention. This work involves the idea of
weighted local approximations in a similar fashion, and was applied to the
problem of terrain modeling. In their case the local interpolation functions
were replaced by least squares approximations by polynomials and thus inter-

polation was not achieved

-33-
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2.2.1. Franke's Method (Mode One) (6)

In this method the QU of Equation (9) are taken as the optimal 1ntér-
polation function in the Sard corner space B[é,ﬂ . These functions are
bicubic spline functions and have continuous second derivatives except along
| two lineslg =aandy = b, By taking (a, b) outside of the rectangle Rid
; . the function Qid is then C2 on Rij' To preserve the approximation under ,
scaling (not necessarily the same in each variable) the optimal approximation

is computed after Rid is transformed to {0, 1]2. At least three interpolation

points are used, nearest points (in the &_ norm) being added if necessary,

To preserve the contiuuity of the second derivative it is necessary to take
O w,d with continuous second derivatives. Thus the choice of

wij(x. y) = Vi(x)Uj(y)- where

A
-34- \
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Vy(x) = q Hglz—=) Xy s x <X
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t
is made, where Hs(s) =1. 33(652 ~ 155 + 10) 1s the Hérmite quinti¢
satisfying H5(0) =1, H5'(0) = Hg(o) = Hg(1) = Hi(1) = Hg(l)‘= 0.
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2.2,2, fFranke's Method (Mode Three) (1)

Because the optimal appreoximations in Bfé.fl have no polynomial

precision, another choice for local approximating functions Q1j is available,
In this case the Qij are taken to be the optimal approximation in B[E,ﬂ
boolean sum the least squares (unweighted) plane fit to all data points in
Rid' Since the latter process has linear precision, so does the overall
approximation. The process is implemented as

BOLf = B(I - L)f + Lf, where
B is the optimal approximation and L is the least squares plane fit.

The choice of rectangles and weight functions is i{dentical to that of

the previous section.
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2.2.3. Franke's Method (Thin Piate Local Functions) (24)

The elegant theory and excellent fitting characteristics of the thin
plate approximations given by Duchon [11], (see Schumaker [47] and Section
2.5.4.) lead to their consideration as local approximations in the basic
method given by Equation (9). Several other modifications were incorporated
as well,

The suggested number of subrectangles remains the same. However the
selection of grid lines 71 and yj is done in a way which preserves symmetry
under reflections and also will result in a symmetric interpoiant 1f the
data itself is symmetric.

In selecting points to be interpolated by the Qid a slightly larger
rectangle than R1j is considered by including all points in the rectangle
[-.1125, 1.1125]2 after R1J has been transformed to [0, 1]2. This
rectangle has area approximately 50% larger than unity and interpolation on
the larger set of points tends to make the transition between regions somewhat
smoother. This choice was made on the basis of computational experience. Again,
at least three points must be interpolated and the nearest points (in the
%_ norm) are added 1f necessary.

Experienre has shown that many C] surfaces appear to be smoother than C1
in that second derivative jumps are apparently small. While the thin plate
approximations have discontinuous second derivatives at the data points, the
former reason is the primary one for using H3(s) =1 - 52(3 - 28) in place of
Hg(s) in the definition of the wij for this method.

The Tocal approximations have the form

2
Qid(x’ y)= ] Ai.a.kdk log d, + 3y yx+ bijy gy
kCIij
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] where Iid is the set of indices k for which (xk. Yyr fk) is a point to
\ f be interpolated by Qid‘ See Section 2,5.4. for a further discussion of
'¥§ thin plate splines.
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12,3.0. Triangle Based Blending Methods
. .

_ These methods are conceptually. the same as given by Equation (4),
butAglsiqn1ficant difference is that the weight functions are based on a
triaﬁéulatioq othhe canvex hull of.the paint set-{(ka yk)}.AzSeveral such °
schemes have been proposed, e.g. [9], [18], [19], and [40] One of those
considered here {s the one described in e8],

Assume a triangulation of the convex hull, and subpose (x, ¥) ¢ Tﬁjk where
T}Jk is the triangle with vertices (x, y,), (xj. yJ). and (X,s ¥)). We then
take ) ‘
(10) Flxy ¥) = Wylxa 910y (xs y) + Wylxy ¥)Q4{x0 ¥) + W (xs ¥)Q (%, ¥)

‘where the weight functions are finite element “shape" functions satisfying

Nm(xz' yz) 8, end Q (xz. y) = f, form, o= 1,4, k In al1 previously
referanced methods the weight functions may be viewed as nine parameter cubic

'.shape functions with a rational correction to obtain normal derivatives equal

to zero, and hence a CJ

approximation overall. There are many ways to obtain
such correction terms, all of which appear to lead to the possibiity of negatibé
values being taker on by one of the weight functions 1f the triangle is very
obtuse. This 1s probably not serious, although one has no control over the
shape of the triangles in the sense that very obtuse angles cannot be avoided

in some instances. The weight functions used here are obtained from a minimum
norm problem [43]. Let bi' bj. bk be the barycentric coordinates of (x, y)

in T}Jk' and let Ly EJ' and 2 be the lengths of the sides opposite vertices

i, J, and k, respectively. Then the weight function is given by

o "
with 2 2 2

b.b (1 + b ) Bty
k i A
5(1 - 5 ) ‘ '
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and the others being obtained by a cyclic permutation of the indices. - e
While the basic method 1s.defined only on the convex hull of the pdint

set, it is easily eitended'to be a globally defined function by the'fo1lowiﬁg 3

idea. The exterior’af the convex hull is divided into semiinfinite rectangles.' ’fff

shown in Figure 4, by construct1ng pérpendiculars to the exterior edges of
the convex hull at each exterior vertex,

Figure 4 e

To extend the definition of Equation (10) outside the convex hull we 3
proceed as follows. For a point in an exterior triangle, such as (X, ¥),
we take F(X, y) = Qd(i} y). For a point in an exterior rectangle, such as ﬁ“
(xs y), let p be the projection of (x, y) onto side 1j, and let (bi' bJ. 0) 'i'
be the barycentric coordinates of p in Tyjk+ Then we take 1

F(x, y) = h3(b1)01(§. y) + ha(bi)qj(g, ) E

where h3(s) - 32(3 - 25). These extensions yield a globally defined approx-
imation which 1s C.
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2.3.1. Nielson-Franke Linear Triangle Method (12)

This method uses the inverse distance weighted least.squares plane
Q{xs y) which 15 also used in the Modified Linear Shepard's Method. See
Section 2.1.3. for details.

Another idea was investigated for determining the slopes to be used in

the planar fit, but was abandoned as being a poor idea. Since the idea has

been mentioned by a number of persons, it is discussed here. At a vertex k,
determine the slopes ‘11 and bij of the plane a1Jx + b”y + €43 through the
points (x1. 77 f1). (xj. Yy fj). and (xk. Yo fk). where T*jk is a triangle
in the triangulation. The nodal function is taken as Qk(x. y) = Ak(x - xk)

+ Bk(y - yk) + fk' where Ak and Bk are the average values of 24y and bij'
respectively, We can think of this as taking the nodal function at each vertex
as the average plane from the piecewise 1inear approximation on the triangulation.
This fails because of the possib1eﬁex1stence of long thin triangles. This is
especially crucial when the triangle 1s very obtuse, and the plane through the
three points may have very large gradients because the three vertices 1ie

nearly on a straight 1ine while the three points on the surface do not.
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2,3.2. Nielson-Franke Quadratic Triangle Method (13)

This method uses the inverse distance weighted quadratic Qk(x. y) which
is also used in the Modified Quadratic Shepard's Method. See Section 2.1.7.
for details. A complete description is given in [18].

NI egee > 352 . = - SE

AT 2

N
eem )
L~ AR S L P 51

Lt
B I B e BT b AR 0.3 VN ED W Ny d




< PP S SO0, S - e
VS o i S e B 2 Tt T R
" 7 R

2.4.0, Finite Element Based Methods '
These methods are based on the concept of using 61 finite element
functions on a trigpgngtion of the convex hull of the point set. This

requires a scheme for estimating some der{vatives (which ones depend on:

the element used by the mathod) at the data points. Our test results indicate

that ac9qrate estimates of the derivatives are very important. and have a
pronounced gffect:on.the visual aspects of the surface, particularly, but v

also the accuracy.
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2.4.1, Akima's Method (6)

Akima's method (1] uses the 18 parameter quintic element and thus
requires both first and:second partial derivatives at each data point.

The scheme used is as follows. Thé user specifies a parameter, ng. Let

ranges over the n, ciosest points (xy, y,;) and (XJ, yd) to (Xs ¥,)» and
where the sign s chosen so that the z component of each cross product is

pos1t1ve.' The first partial derivatives are taken to be those of the plane

-rormal to V. The second derivatives are obtained by applying the same

process to the derived data. The cross partial is taken as the average of

the two s0 obtained. Akima suggests Ng ™ 3 or § as appropriate, but we have
i found ng " 6 generally works better.
Extrapolation cutside the convex hull is achieved by construction of an

appropriate polynomial in the exterior rectangle or triangular regions given

in Figure 4, and c"continuity 1s maintained. In a triangular region, the

conditions at the vertex Jdetermine a unique bivariate quadratic. For the

rectangular region the cuaditions at the two vertices determine a unique

polynomial of degree two in the direction normal to the boundary segment,
| matching the quadraiic in the adjacent triangular region, and of degree 5
in the tangential direction, matching the value and first two derivatives

across the boundary from rectangular to triangular region.
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2.4.3, Akima's Method - Modification Two (11)

It was felt that perhaps an inverse distance weighting of the cross

produets might be desirable, so this scheme formed the vector sum ‘
-'F X Pk;j

KA upkp vy

AN other‘aépects of the program were maintained,
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2.4.2, Akima's Method - Modification Cne (10)

It is easily observed that while Akima's scheme for estimating deriv-

atives puts less weight on nearly collinear points, which seems desirable,
it also puts more weight on d1§tant points, which does not seem to be
desirable. To remove the distance wéight{ng. the scheme was‘mod1f1ed to
form cross products of unftVVectorglip the same directions as before, 1.e.,
the sum g R
“ PP, « B.P
] TP PTIP. Pl
AL L
was formed. A1l other aspects of the program were maintained.
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2.4.3. Akima's Method - Modification Two (11)

It was felt that perhaps an inverse distance weighting of the cross
products might be desirable, so this scheme formed the vector sum =
PPy x PPy ‘ - ‘
v2 L t q F . .
- lny Iippy|

A1l other aspacts of the program were maintained.
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2.4.4., Akima's Method - Modification Three (15)

This modification incorporated use of the inverse distance weighted
quadratic least saudres polynomial fit used in the modified Quadratic Shepard
method dascribed in Section 2.1.7. The required derivatives wure then taken.
from the quadratic nodal function computed in this manner. AN other aspects

of the program were maintained.
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2.4.5, Nielson's Minimum Norm Network (19)
This scheme [43] uses a cubic element with a rational correction term
to obtain c‘ continuity. One of the basis functions s that described in

Section 2.3.0. Only first»dgrivatives are required. These are obtained by
mihimizing the value of ][;gf F(x(s), y(s))]ads. where the integral is over
. : s

the entire network of edges in the triangulation. We note that the inter-
polation function is a univariate Hermite cubic polynomial along eaéh edge.
This is a global method,

The original scheme 1s not able to extrapolate outside the convex hull,
but the following idea was incorporated to achieve extrapolation. In a
trianguiar exterior region as in Figure 4, the function is taken to be the
1inear function determihea by ﬁhe value and slopes at the vertex. In the
rectangular region the fuﬁctiod is extended by extrapolating from the pro-
Jection point, p, with tgé‘given slope and value along a straight line. The
resulting surface is only Co across exterior rectangular to triangular bound-

aries, but for mild extrapolation this will 1ikely not be noticeable. An

appropriate rational correction could probably be made in the triangular area

to achieve C1 continuity.




TS L RPEAICH e B L T w—a/* B DU LTt b ) ot S e

2.4.6, Lawson's Methcd (28) . : 'f
This method is somewhat similar to Akima's in philosophy except for the l
particular finite element used and the manner of estimating derivatives [34].
The Clough-TScher cubic element, which requires first derivatives at the
vertices, is used. The derivatives are estimated by fitting an inverse dis-
tanéé weighted quadratic at each vertex. The program is presently not set up

to extrapolate outside the convex hull of the point set, although a scheme

for extrapolation similar to that used in Nielson's program cou'd be incor-

porated. Time did not permit this, however.




2.5.0. Folay's Methods
Foley's methods [15] involve several ideas. The use of a generalized
Newton type interpolant 1s involved in them prominently and this idea is
discussed in Sectfon 2.5.1.
Another idea which is exploited successfully is that of using one
% interpolant to generate a grid of points on which product type approximations

can-be constructed. The product approximation will not, in general, inter-

polate the given data. Hence a correction based on the original approximation

is made to the error. This process is termed a "delta sum" by Foley, written
PAQ, defined by PaQ = P8QI, and implemented as (PAQ)f = ©(1 - QP)f + QPf.

TFETYE, T RS TIPENT N LTS ST L T g S
R LTE LR g T IR TR TR ol el LRI EY T I SAE e 2
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gf The idea has greater generality than considered by Foley, but the appii-
;;g- cation of it seems to be the appropriate cne. He considers cases where the
Eﬁj product type approximation (taking the part of Q) is efther the bivariate

%EJ product Bernstein .polynomial orgthe'bivariate product natural bicubic spline.

The first interpolant (taking the part of P) 1s taken as either the generalized
Newtcn interpolant, or a form of Shepard's method. The delta sum idea is

applied in iterated form for two methods.
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2.5.1, Generalized Newton Interpolant (25

The generaii;ed Newton interpolant as considered by Foley takes the
form F(x, y) = Ty(xs ), where T,(x, y) = fy, T (x, y) = Ty (xi y) +

f "T (X.,Y)
w(x.y) k = k=1'"k® Yk
k wk(xk. yk)

k=1 -
, V 2y ens N. ‘where Nk(x. y) = Jﬂ LJ(d ). with

V?x - xk) (y - yk)2 , and LJ(O) .0, L (t) 0 1f t = 0. Foley takes J

!

2
Ld(t)'- .1?__._"2 where the value of "y was obtained in an ad hoc fash1on as
ry .

, .81 . : .
rd [25dj.I + '|3dJz + 7dJa + 3dj4]. Here dd1 represents the d1stance‘to
the 1th nearest neighbor to (xj. yd) in the set of points {(xk. yk)}.

Unfortunately, unlike the univariate Newton polynomial, this function
depends on the ordering of the data points. A number of experiments ledd Foley '1
to two ordergng schemes. Let (X, y) be the centroid of the set {(xk. yk)}. i.e., %
= = _1 2 oy, 2 . (7. 2 4
(%, ¥) = § k2](xk. Yi). Let o = (x xk) + (¥ - ¥,)°, and arrange the points ;

in increasing order of 3 - This 1s called "in.side out" ordering, and the

opposite order is called "outside in". The two interpolants based on these i
orderings are called TIG(f) and TOI(f), respectively, by Foley. Since each t
appears to work better in the region fiom which the finai pnints come, i.e., ?
TIO is better in the outer regions, while TOI {is better in the central regions, #
a blending of the two is taken as the final interpolant. The weighting function
is given by :
: -2 =2 .
(x=-x)+ (y -y) ,

(x - x)2 + (y - y)° + D°

BL(X» .V) = % )

where D2

= % mﬁx [(xk - ;)2 + (yk - i)z]. The firal interpolant, TF, is then
given by

F(x, y) = BL(x, y)TIO(f) + (1 - BL(x, y))TOI(f).
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b1 2.5.2, TF Delta Sum Bernstein Polynomial (26) GE
{%“: o The only additiunal information in the implementation of this scheme is g

the region on which the data for the Bernstein polyriomial s to come (a

square in the bivariate case) and the degree of the polynomfal. Foley takes. .

thé sﬁbarelto be the sma1ies£ square containing the set {(xk.‘yk)}. aithough

]
o hotes it might be better to do otherwise in some circumstances. The degree ' k-
2 A is t&kon to be 10; dlthough thjs means 2 grid of 11 x 11 points 1s'used for
} the ﬁerhsfein approxfmat1on. We have followed Foley, but it might be more 3
reasonable to use an m x m grid where m’ N, as is'done in the next section. o
l Let the Bernstein polynomial for g(x, y) on(a, b) x (c, d) be denoted by
[ BRN(g). Then'the TF delta sum Bernstein polynomial approximation is given by

YFABRN(f) = TF(# - BRN(TF(f))) + BRN(TF(f)).




2.5.3, Iterated Delta Sums: TF Delta Sum Bicubic Spline'(30} = -

. The TF interpolant is also applied in conjunction with the natural
bicubic spline. We again need to give a grid of points on which to compute
the bicubic spline. The selection routine supplied by Foley (but not used
for the examples in his thesis) is as follows. Let m = [/N] (here [.] denotes
fhe,jnteéer_part)m-and k = E%~+ %J. Sort the x-coordfnates so that '
Xp € Xg S Xg S .. .S Xy Then the x-grid 1ines are given by

K
LRI
~ 7 N
LR 1§(m-l)m+1x1'

The y-grid 1ines are formed in dual fashion.

~

XJ-JE' fO\"j"l.....m-".

We now consider applying the delta sum in iterated fashion to obtain a
sequance of operators Go, 61. «»+ » Let B represent the natural bicubic spline
operator on the above grid. Then let G, » TF, and successively form operators
Goyp = TFOBG,, n =0, 1, ... .

The calculation can then be organized as follows: Compute the current
approximation at the grid points; construct the natural bicubic spline inter-
polant for the grid; correct the spline interpulant for the grid to obtain
interpolation at the scattered points by adding in the TF interpolant for the
‘error. Computationally this all amounts to writing G ., as BG f + TF(1 - BGn)f.
Under certain conditions the iteration may converge, and can converge to a
bicubic spline function which interpolates the original data. In other instances
the {teration appears to diverge, unforiunately, We have taken 3 as the nominal

number of iterations to be used.
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2.5.4, Iterated Delta Sums: ‘A Shepard's Method Delta Sum Bicubic Spline (31)

The basic idea of the pravious section was also applied using a modified
Shepard's method in place of the TF interpolant. The stable, 1f somewhat
undesirable, behavior of Shepard's method would appear to be well suited for '
this use.

The basic madification to Shepard's method was one to force a d1m1n1shed

region of influence on the points, taking the weights to be "1%"1?""2; s where
+r
2 _23 k k
N

r , D2 - mgx [(xJ - x)2 + (yd -y) ]. and (X, ¥) is the centroid of the

set {(xd. yd)}. as in Section 2.5.1, The modified Shepard's method used here

is of the form f

N
1
F(x, y) = » where
k§1 k(' v/ k§1 K% Y)
(% ¥) = “'a—r-r
4 td S+ r)
The iterated deita sum interpolant 1s then formed in exactly the same

manner as in the previous section, with the modified Shepard operator, SM,

replacing TF. Thus we have G = SM, G n+l = SMOBG s N0, 1, ... . We have

again -taken 3 {iterations as the nominal value, and comments regarding conver-

gence/nonconvergence of the iteration of the previous section apply here.
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2.6.0, Global Basis Function Type Methods Co s S

These methods can be characterized by the following idea. For each
(xk. yk) simply choose some function Gk(x, ¥), and then determine coefficients
Ak so that F(x, y) = E Aka(x. y) interpolates the data. Schemes which work
are not so simple in that appropriate choices of function Gk are not partic-
ularly easy to make. Even if the functions Gk have only local: support the
methods are global and further they require solution of a system of N 1inear
equations. 1In all instances we consider, the systems have a symmetric coefficient
matrix (Gitxj. yJ)). but this need not be the case. Usually the G, are really
functions of one variable, dy = V(x - xk)2 + (y - ykiz. While 1t seems that

functions Gk which diminish as one moves away from the point (xk. yk) would be
best, this has not been borne out computationally. Numerous colleagues have
suggested (among others) B splines, Gaussian distributions, and other basis
functions which seem to have an at best shaky mathematical justification. We
investigated several methods of this type and have found them to work better

than expected. They are, as mentioned, global methods.
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2.6.1, Rotated Gaussian (20)
This scheme is mentioned by Bolandi, etal. [7], Arthur [3], and more

recently was rediscovered with a slight variation [48]. It consists of using
G, gxp,(qdkle?). where R 1s taken to be a constant for ;11 k. The method

s quite sensitive to the choice of R and yields poor resiits with ease, but '
will yield quite good results for an appropriate value of R. We used a

nominal value of R -.ij%;gg-. where D fs the diameter of the point set. The

' factor %-%E‘reprasents (approximataly) the radius of a disk in which one

could anticipate finding one point of the set and in some sense is proportional
to the mean distance to the nearest neighbor.




2.6.2. Hardy's Multiquadric (21)
This method has been used extensively by Hardy and his coworkers [22-28],

in geographic and related applications. The basis function used is the upper
hyperboioid Gk s ((x = xk)2 + (y - yk)2 + r2)1/2
determines the semi-axis of the hyperbcla. Hardy [26] indicates that the best

, where r is a parameter which

value for r is approximately .815d, where d is approximately the mean distance
to the nearest neighbor. We have not verified this and have used a nominal
value of r = 2.5R, where R is the radius of the disk which could be anticipated
to contain one point. The actual parameter used by the program is NPPR and
the value of r is computed from r = H;%& Ry R » % D//N where D s the diameter
of the point set {(xk. yk)). and a nominal value of 25 is assumed for NPPR.

We observe better results are generally obtained with larger r, but this'qﬂso
leads to poorer conditioning of the coefficient matrix (61(xd. yJ)). and we
have compromised on the above value which cogresbonds to approximately 1.6d.

Because of the scattered nature of the data this may vary.
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2,6.3. Hardy's Peciprocal Multiguadric (27)

1
{ .
f,l For this method the reciprocal hyperboleid G,(x, y) = ((x - xk)a
?i (y Yy )2 +r ) 1/2 1s used. The value of r used is the same as that for
! the previous method.
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2.6.4. Duchun's Radial Cubic Method (22)
Duchon [12] has derived this method as the optimal solution in a certain

Hilbert space via consiruction of the reproducing kernel (see [49] for some

detafls). For practical purposes the user must solve a system of the form

n .
lelAa«(’AJ(xiy.') + axi + by.l +Cc= f." {= 1. veeg N
S A%, =0, TAY, =0, A 0

J§1 -dxd ’ j-] Jy‘j ] JZ] j » ‘
2)3/2.

where Gk(x. y) = ((x - xk)2 + (y - yk) G is seen to be of the fofm'

dks, where dk is distunce from (xk, yk). hence my name for it.
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2.6.5. Duchon's Thin Plate Function (23)

: - This method 1s similar to the previous one in that it is the optimal ;
: solution in some Hilbert space. This one is particularly 1nteres¥1ng since ;Q
: over all interpolating ;unction* in the H1lgert space it minimizes the thin . ,-;
] plate functional ff (a F)2 + Z(axay) + (a F) The form of the solution -ﬁu
§ R2 W o
' R
5 ! had Leen previously given by Harder and Dasmarais [21]. The method is also jﬁ
'! discussed by Meinguet [41] and its fitting properties in connection with f
; smoothing has been 1nvest1gated by Wahba [52]. ‘ f
i The system of equations 1s identical in structure to that of the prev1ous f
| method except that Ge(x, y) = dkz log d, . where again d, is the distance from 4
i (Ko ¥)-
e i
IR
y
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2.6.6. Rotated B-Splines (29)

This idea has been suggested by various persons. We took the B-sp|1ne

based on equally spaced points, with knots at R, tR/2, and 0. where R was A

choseh In a manner similar to other schemes previously desceibed. The

nominal value of R was taken as 4;3;P4D. where D 1s the diameter of the .

point set, and again the factor %-;%hrepresents the radius of a disk 1in which
one could anticipate finding one point in the set. The basis function was .

d 2d
8 (d) = 20 - }pd - (1 - 03,
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3.0.0. Results

The resu1ts of the study are discussed in this section in the same

tsequence as the methods are discussed in Section 2, with corresponding

subsection numbers relating to classes of methods. We confine our comments
here to absolute merits of each method, insofar as possible, although it is
almost ﬁer£;1n‘we are "grading on the curve". Merits of some methods (the
better ones or more available ones, in our opinion) versus other methods are
discussed 1n'Section 4.

It 1s hardly possible to discuss the performance of each method on each
surface in the detail which would be desirable from a completeness point of
view, 1f not the writer's (and perhaps not the reader's efther). In order to
point out pertinent behavior which one can look for in various methods, it
was decided to discuss in some detail all plets of surfaces for one method.
In addition, there are a number of comments about tha test surfaces relative
to the data sets which apply to all methods. The method dicussed is neither
the best, nor the poorest, but simply a method which 11lustrates some of the
behavior one can watch for. The method chosen for discussion 1s program #30,
Foley's iterated generalized Newton delta sum bicubic spline. We discuss
each figure separately.

Figure 1.4.1.30. Part a is the test surface. Part b is the interpolant
based on 100 points. The peak of the test surface occurs near (%, %) and
Inspection of the set of points in Figure 0.1.0.0. reveals a relatively large
gap in that vicinity. Thus the peak value of the surface 1s not well defined.
Part b shows the left rear of the peak to be the poorest portion of the peak
definition. At the left front ofthe surface an undesirable flattening of the

surface occurs. Cross sections throughout the interior appear to be quite



== ‘__=,f e 74'55-_"51“-. T TR ONA
i o R 5 2. 2 St k.

SRR

e A N T it
H T - PRI, A ey 25 s
g T L TY e T CTT SOMeOREESITes RN

smooth. At the rear of the dip there is an extended depressed regian.
Reference to Figure 0.1.0.0. again reveals that there is a relatively large
gep in the points which causes the extent of the dip to be poorly defined.
The dip 1s near (é"é)~‘ Figure 4.1.1.30 1{s a larger plot of the surface

in Figure 1.4.1.30b. Part c shows several 111 defined portions of the surface

corresponding to regions with gaps in the data set, shown in Figure 0.2.0.0,

In particular, near the rear ecge of the surface behind the peak, and to the -

right. The dip 1s completely missed because of a lack of data to define it.
The surface basically appears reasonable, except possibly for the behavior
at the rear edge rear the right. A larger plot of the data 1s shown in Figure
4.2.1.30. The surface in part d shows basically appropriate behavior. The
peak is reasonably well defined, although s1ightly Tow. Again, no point is
on the tnp of the peak. The dip is somewhat defined, but spread out because
of a lack of nearby points to pull the surface back up. The near corner is
somewhat low, hovever this corresponds to an area of extrapolation. Figure
4.3.1,30 shows a larger plot of the surface.

Figure 1.4.4.30. The test surface is shown in part a, and part b appears
almost indistinguishable from it. There is a very slight flattening at the

right edge near the center. Part c is also a good approximation, with a somewhat

flattened area at the right, in front of the center. While there are many
points r .rby, there is a relatively large gap along the edge which accounts
for poor definition of the surface there. less noticeable is a slightly
raised area to the rear of the center, along the right edge. The most notice-
able defect in part d is the poor behavior at the front edge, the surface
beirg siightly hign toward the right of the center, and low at the right front

corner,
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Figure 1.4.5.30. This surface is difficult to fit closely because of

its sharply peaked behavior, shown in part a. While the peak in part b is
well defined, to the right one observes small "kinks", and generally wavy
behavior around the edges, more noticeable at the front and right because of -
the viewing point. The peak (at (%u %0) is poorly defined by the set of -
points in part ¢ and thus 1s considerably low. The wavy behavior around the
edges is again observed, but somewhat amplified. In part d the peak is higher,
but the wavy behavior away from the peak is very pronounced, although the
surface is smooth in the sense there are no apparent "kinks" in the surface,

Figure 1.4.6.30. . This surface, a part of a sphere, is shown in part a.
The surfaces shown in parts b, ¢, and d show varying amounts of imperfect
behavior, mostly appearing as flattened spots on the surface.

Figure 2.0,0.30, Part a chows the cardinal function. The waviness that
extends throughout the square is not desirable and is probably an artifact
of the underlying polynomial - 1ike interpolant., Part b shows the surface for
Akima's data and pasically appears reasonable. Thers is some wavy behavior
in the cross section 1ines near the base of the sharp rise toward the rear.
Part ¢ shows & portion of the surface for Ferguson's data. Extrapolation is in-
volved at the front corners and the surface dips a 1ot toward the right front.
The same data scaled by a factor of 3 in the y-direction is shown in part d.
Here the surface dips at the left front corner as well and rises at the left
rear corner where mild extrapolation occurs. Parts ¢ and d exhibit some of
the effects of scaling differently in the two variables.

Figure 3.1.1.30. This figure shows the effects of varying the parameter

from its nominal value, For this method the parameter is the number of delta

iterates performed. The test surface is shown in part a. Part b is the surface
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obtained with the 100 point data set after one iteration. Part ¢ shows the
surface after the nominal number of iterations, which is three. Part d shows
the surface after five iterations. The surface shows definite improvement
with additional iterations, particularly when comparing b and c.  Some
improvement is seen in d compared to c, particularly in that-the peak 1s
filled out, although the flattened portion near the left front. persists.
The deviation statistics table P.1 shuws improvement in that aspect also.
Figure 3.3.1,30, This figure 1s the analague of the previous. but with
the 25 point data set ruther than the 100 point data set. In this case it
s not readily apparent that the surface improves with more iterates, although
part ¢ is 1n some respects more pleasing than part b, since the sljght‘rise
toward the rear edge neai the right corner has been lessened. . However the -
surface has been depressed at the front edge near the right corner, which
continues with more iterations, as seen in part d. The deviation statistics,
Table P.3 show improvement in the maximum deviation, but increases in the mean
deviation and root mean square deviation after 3 iterations.

Figures 4.1.1.30. These figures are larger copies of the figures given

in Figure 1.4.1,30 , and were previously discussed.

Figure 4.1.2.30. This function is probably the most difficult to fit

well. There 1s some irregularity along the sharp rise about three-fourths of
the way back along the diagonal. The most obvious defects are near the front
corner, on the right, and a waviness along the front edge.

Figure 4.2,2.30. The appearance of large gaps between data points (see
Figure 0.2.0.0) leads to a quite wavy surface. With the exception of a few
cross sections at about % of the way back along the diagonal, the surface is

quite smooth, however, with the greatest overshoot occuring near the left




rear and right front corners, as might be expected.

Figure 4.3.2.30. The regularity of the set of data points (see

Figure 0.3.0.0.) used here leads to a more regular appearing, if somewhat '
wavy, surface. - The surface 'appears to be very smooth with no apparent "kinks"
obseévableuqtqngfthe,cross-sections. As usua?.iédge behavior seems to accaunt
for the largest deviations: A ; |

Figure 4:1,3.30, - This su;fade is: almost indistinguishable from the
original. The only apparent defect is a s1ight flattening of the surface at
the right edge near the center.

- 'Figure-4,2.3,30. The large gaps in the data show on this surface, but

less ‘conspicuously than on some others, The right end of the surface dppears
depressed, with the front edge also appearing to be lower than the test surface.
The surface 1s quite smooth, however,

Figure 4.3.3.30. This surface is quite smooth and pleasing, but the left
rear corner is considerably higher than that of the test surface. The slope of
the surface toward tue right center seems to be more gentle than that of the
test surface .

3.1.0. Inverse Distance Weighted Methods

The performance of schemes within the general class of methods varies a
great deal. The basic Shepard's method (program #18) with exponent 2 is
unacceptable for a variety of reasons for all but scme very special applications
(perhaps). For more than a few points the method does not perform as one would
be led to believe when observing the method for 5 or 10 points. These are
mainly the size examples given in previous 1iterature. As can be seen from the
plots, Figures 1.4.1.18 and 2.0.0.18, the surfaces often tend to have sharp
peaks and dips at the data points. In fact, the resolution of the plots is not
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fire enough to show the exact na;yre of the surface.

COhsiderab1$ improvement aéerues from localizing the method (program #7)..
This could 11ke1y be accomp11shed in a variety of ways other than the approach
we have taken. for example by using an appropr1ate (1arger) exponent. No
experfﬁenf&t1on waS done in this ~direction. The plots for this program. '
F1gures 1.4, 1 7 and 2 0 0.7 %how c1ear1y the 1ncreasqd influence of. a data

point on the surface nearby. Thie 1s espec1a11y ev1dent in the cardinal

function plot where the influence of a single po1nt is seen. Basically,

loéa1iz1ng the séheﬁe causes the well advertised flat spots to become more
prominent and the surfaqes to bgcome more pleasing. However, for general
purpose 1interpolation the scheme is sti11 basically unacceptable.

Form1ng boolean sums with other approximations does not seem to work well
in this case. It appears that for the idea of boolean sum approximations to work
the second approximation in the boolean sum must be a good approximation itself,
The least squares plane used in our program (#2) is not suitable since 1t will
consistently allow undershoot near peaks and hence appears to have flat spots
(not necessarily with zero slopes) at points where this occurs. This ts partic-
ularly noticeable in Figure 1.4.1.2, Yess so in Figure 2.0.0.2, The alternative
to the least squares plane, a higher degree approximation such as a quadratic
would 1ikely work very well, but is quite expensive as we will note later.

Another way to generalize Shepard's method is through the use of more
information about the surface near the data points. Use of the least squares
plane passing through each data point in conjunction with a local weighting
function (program #3) leads to an improved surface, however the surfaces often
tend to look somewhat lumpy, as can be seen from the plots, Figures 1.4,1.3 and

2.0.0.3. It is particularly bad in Figure 1.4.1.3c, probably because of the
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(intended) varying sparseness of the cata points. The use of planar fits
does’nﬁf*seém adequate,

" The use of a quadratic function passing through each data point (program
#17) leads to v1rtua11y no. 1mprovement over the basic Shepard's method due »
to the 1nfluence of "far away“ points. The plots are shown in Figures 1.4. 1 17
and 2.0.0.17, and are similai to these for program #18, although these are
generally somewhat nicer in that the number of sharp peaks 1s reduced.

The use of a quadratic 1e#st squares fit at each data point 1in conjunction

with localization of the weights (program #14) leads to a significant improve-
ment over other methods of this type in most (not all) instances, especially for
larger numbers of data points., For small numbers of data points the surfaces 1
seam to be adversaly affected by what might be termed "edge effects". This is
not unfque tu this scheme but occurs with other methods, particularly local |
methods. More will be said of this 1n Section 4. The plots shown in Figures (r
1.4.n.14, 2.0.0.14, 4.1.n.14, 4.2.n.14, and 4.3.n.14,, show some of this, and
a particularly good i1lustration is given by the cardinal function plot,
2.0.0,.14a, which can be seen to behave in unseemly fashjon near the left rear
corner. Within this class of tested methods, the modified quadratic Shepard
method 1s undoubtedly the best performer overall. The effect of changing the
parameters in the method are shown in Figures 3.1.1.14 and 3.3.1.14. A greater
tolerance to changes in the parameter is seen for the larger data set, while
edge effects are more prominent as the radius of influence is decreased,
particularly for the smailer data set.
The other approach to modifying Shepard's method is that taken by MclLain
[39], and implemented here in program #5 for the quadratic approximation. From

the point of view of fitting, the method works quite well, although it may be
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more prone to "edge effects" as can be seen from the plots, Figures 1.4.1.5
and 2.0.0,5, especially 2.0.0.5 & and c. The main reason for discounting
the method 1s the rather high computational burden. The modified quadratic
Shepard's method yields results as good or better, but at much 1es$ cost.

The second McLain type of interpolant was the fit with 2 1inear function,
but with modified weights (program #8). Because of the necessary undershoot
near peaks one can not expect the method to perform in a satlsfactory f&shion.
As we see from the plots, Figures 1.4.1.8 and 2.0.0.8, we are not d1sappo{nted
fn that respect. Overall the surfaces appear to be quite lumpy and generally
unacceptable. The cardinal function plot shows a somewhat more peaked function
than might be expected, almost 1ike Shepard‘s method.

3.2.0. Franke's Method

The performance of this class of methods is somewhat uneven, giving quite
reasonable results in some cases and not in others. Edge effects seem to come
into the method prominently giving poof resuits for data sets with small
numbers of points. When the local approximations are optimal approximations
in B|2.§] (program #6) the plots are shown in Figures 1.4.1.6 and 2.0.0.6.
Typical edge effects are seen in Figure 2.0.0.6a, the cardinal function.

When the optimal approximations are taken boolean sum with a least
squares plane (program #1), the resulting surfaces are virtually unchanged,
as can be seen in Figures 1.4.1.1 and 2.0.0.1. Thus it appears that the use
of the boelean sum with the plane is mainly to incorporate polynomial pre-
cision, and its use with a reasonably good approximation will not improve it
very much. This observation was also made by Foley in his thesis [15].
Additional plots are given in Figures 1.4.n.1, 4.1.n.1, 4.2.n.1, and 4.3.n.1,
and basically show that the method perforins competently for larger data sets

and not so well on smaller ones. The variation of the parameter in the metnod,
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Figures 3.1.1.1 and 3.3.1.1 show the effects of localizing too much are
drastfc (plot b). whereas the reverse has les:er overall impact.

The use of th1n plate local functions (program #24) generally results
in much mqre p}ggsgn} appeaping“gpprpximat1qns. This 1s particularly true
for sma1ier'nhmbers of data points as can be observed in the plots. in Figures
1.4.1. 24 and 2 0 0 24, wh11e error statisties indicate some improvement
over programs #1 and #6. the plots general1y appear to be considerably more
p]gasant,‘ Additional surfaces are shown in Figures 1.4.n.24, 4.1.n.24,
4,2.n,24, and 4,.3.n.24. The variation of the parameter shown in Figures
3.1.1.24 and 3.3.1,24 show basically the same trend as before: localizing
too much tends to degrade the approximation, while the reverse has less
impact. Overall, the use of thin plate functions in the method is a nice
improvement.
3.3.0. Triangle Based Blending Methods

The pgrformance of this class of methods is dependént on the type of nodal

function used, If they are good Tocal approximations to the surface, the

overall approximation will be good. In 1ine with this, the Tinear nodal

function method (program #12) does not perform adequately. The plots, shown
?% . , in Figures 1.4,1.12 and 2.0.0.12 show the transition between local approx-
}ﬁA : imations resulting 1n apparent creases in some instances. This 1s due partly
ﬁf‘ ; to the resolution of the plots. Another defect, but one which is an artifac:
%w : of the triangulation is the appareni edge especially noticeable in Figure
2.0.0.12¢c and d. This is due to the occurence of a very long thin triangle
‘? . along the edge of the convex hull. The result is that the blend of approximations
i near the middle part of the triangle does not reflect the actual behavior at

nearby points (not in the triangle). This 1s not a defect unique to this
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method, but occurs to some extent in all triangle based methods.

The use of quadratic nodal functions (program #13) rasults in a very
reasonable approximation, as can be seen in the plots given in Figures
1.4.1.13 and 2.0.0.13. The apparent discontinuity in Figure 2.0.0.73d near
the back is due to the previously mentioned problem of long thin triangles
which can occur.' The other edge at the left front is not neariy so apparent
here., Additional plots are given in Figures 1.4.n.13, 4,1.n.13, 4.2.n.13,
and 4.3.n.13. The parameter variation plots 3.1.1.13 and 3.3.1.13 basically
show that too much localization degrades the surface. This method generally
parforms in quite an acceptable manner provided the disadvantages of triangles
are acceptable iand are outweighed by the advantages of triangles and the
overall method.
3.4.0. Finite Element Based Methods

The performance of a method in this class is greatly dependent on the
quality of the estimated partial derivatives. This 1s the major problem with
Akima's method (program #4) and causes the surfaces to have a somewhat iumpy
and uneven appearance. The plots for Akima's method are given in Figures
1.4.n.4, 2.0.0.4, 4.1.n.4, 4.2.n.4, and 4.3.n.4, The poor derivative estimates
are especially noticeable in Figure 1.4.6.4 where the surface has a somewhat
crumpled Tock. The variation of parameters plots, Figures 3.1.1.4 and 3.3.1.4
indicates that the nominal value we have chosen is probably about the right
one to use. Figure 3.3.1.4 seems to show less sensitivity to the parameter
than 3.1.1.4. Figures 2.0.0.4c and d show the characteristic defect of triangle
based methods. Akima's method is very fast, usually faster than other methods
by a factor of 4 or 5 or more.

Akima's method, modification one (program #10) performs somewhat better
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- to be s1ightly better,

than the original, but still does not_achigve the good fits which the under- : g;
lying approximatiops should be capable of making. A1l plots, Figures 1.4.n.10, i
2.0.0.10, 4.1.n,10, 4.2.n,10, and 4.3.n.10 are basically similar to those of
the original method, although the statistics on deviations generally show it

Akimg); method, modification two (program #11) would seem to promise to
be better than cither of the previous. However, the results basically show
1ittle or no improvement over either one. The plots, given in Figures 1.4.1.11
and 2.0.0.11 are basically similar to those for programs #4 and #10,

Akimgfs method, modification three (program #16) 1s undoubtedly the best
performer of the four., The uneveness of the surface is gone from nearly ali
of the plots, shown in Figures 1.4.n.16, 2.0,0.16, 4.1.n.16, 4.2.n.16, and
4,3.n.16. Even the artifact of an apparent edge due to the triangulation,
usually prominent in the analogues to Figure 2.0.0.16¢c ;nd d, have been reduced
a great deal. However, the cardinal function now shows some unbecoming behavior
along the left edge near the rear corner. This seems to be caused by the
quadratic approximation as 1t also occurs in programs #13 and #14, where the
identical quadratic approximation is used. The method seems to be fairly
insensitive to the parameter value, as 1s shown in Figures 3.1.1.16 and 3.3.1.16,
although the larger value in Figure 3.1.1.16d shows some more noticeable
defects along the front slope. Incorporation of the quadratic to estimate
derivatives results in considerably larger preprocessing time.

Nielson's minimum norm network (program #19) shows the capability of
triangle based approximation, given the appropriate values of the derivatives.
As can be seen in the plots for the method, Figures 1.4.n.19, 2.0.0.19, 4.1.n.19,

4.2.n.19, and 4.3.n.19, the surface almost always appears quite smooth and
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visually pleasing. Thn one displeasing behavior is seen in Figure 2.0.0.19c

and d (and to some extent in b) where the occurence of long slim triangles

givas rise to appareni discontinuities across the triangie. Again, this

simply. reflects the fact that in the middle of such a triangle the function '].  @Eg
may not:-be appropriately represented since it is far from the vertices of -ﬁ;’
the triangle, and generally closer to other data points thch have minimal | ;g{
influence. The method is. reasonably fast and is undoubtedly the best per- i:,

former in this class of methods. o
Lawson's method (program #28) is similar in spirit'to Akima's, but | ﬁf‘
basically performs in much better fashion than all but modification three | ‘}
of Akima's method (progfam #16). The plouts, chown in Figures 1.4.n.28, v ”%ﬁ
2.0.0.28, 4.,1.n.28, 4,2.n.28, and 4,3.n.16. One caution regarding the‘blefs - i
for this method: The program does not extrapolate outside the conQex hul i
of the set {(xk. yk)} and the function values at such points have been set
to zero in the plots. Care should be taken when viewing the plots based on
the 100 point and 25 poini data sets, as well as the Ferguson data set to not

let these points influence one's perception of the surface. Such points are

omitted from the deviation statistics for this method. The usual artifact of ﬁ
triangulation methods 1s not seen in Figure 2.0.0.28¢ and d because no grid 3

, ¥
points fall in the appropriate place. It was extrapolation in the other N

methods which made it more visible. It is noticeable in Figure 2.0.0.28b

along the left edge and the back, just as ii is in the other triangulation ?;
based methods, Lawson's method is quite efficient in terms of timing., being f
only slightly slower than Akima's method (#4). 1

3.5.0. Foley's Methods

Foley's generalized Newton interpolant (program #25) performs in a somewhat
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expected manner in that polynomials of high degree generally do not work very well.

This 1s p&rticularly evidont when any extrapolation is involved, or in regions
where no points are nearby. The plots given in Figures 1.4.1.25 and 2.0.0.25
show this. ospaciaily in the latter, Figures 2.0.0.25c and d, where more extrap~
olation 1§“requ1red than in the other examples. The cardinal function, 2.0.0.26a
has some polynomial type (mis)behavior near the front corner, also.

The Newton delta sum Bernstein interpolant (programs #26) 1s something of
an improvement in most instances, although the overall set of surface plots,
shown in Figures 1.4.1.26 and 2.0.0.26 show basically the same kind of behavior.
The additional program complexity and time required are probably not worth the
result obtained here.

The use of bicubiz splines and iteration in connection with the generalized
Newton polynomial (program #30) often results in vastly improved surfaces as
can bq seen from the plots in Figures 1.4.n.30, 2.0.0.30, 4.1.n.30, 4.2.n.30,
and 4.3.n,30. However, this {s not universally true, and in particular the
cardinal function shown in Figure 2.0.0,2a 1s less desirable. Other surfaces
based on the 25 point set are alsn adversely affected. This is shown in Figure
3.3.1.30 as more iterations of the delta sum produce poorer surfaces. On the
other hand Figure 3.1.1.30 shows definite improvement as the number of iterations
increases, All things said, however, this method seems to be the best of Foley's
methods. Computation time is not excessive, although it is slower than most
methods for the problems in our tests.

The use of a modified Shepard's method in place of the generalized Newton
interpolant in the iterated delta sum with bicubic splines (program #31) generally
gave poorer results than program #30. The plots are shown in Figures 1.4.1.31

and 2.0.0.31., As can be seen in 2.0.0.31a, the cardinal function is improved
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over that in Figure 2.0.0.30a, as are the surfaces in 2.0.0.31c and d. That
the latter are better is no doubt due to the stable extrapolation of Shepard's
method. ..
3.6.0. Global Basis Function Type Methods

The performance of this class of methods varies widely. Most (Duchon's
methods are the exception) are dependent on scaling or a paraméter specified.
by the user, We have attempted to reduce these to an automatic value based on
some estimate of mean distance between points.

The rotated Gaussian (program #20) did not perform well. The plots,
shown in Figures 1.4.1.20 and 2.0.0.20 are quite smooth and give reasonable
- appearing approximations in the former, The cardinal fqnction in Figure
2,0,0.20a appears to have some undue influence near the front corner. The
other plots in Figure 2.0.0.20, especially b, show a téndency of the surface
to exhibit local Guassian "bumps". The surface tends to zero far away from
the data, Experimentation with the parameter (related to the variance) showed
the method to be sensitive to 1ts value, and to depend on the function values
rather than only the (xk. yk) points. For example, a nicer cardinal function
could be obtained by varying the parameter, but this degraded the performance
on the surface shown in Figure 1.4.1,20d, which is based on the same (xk. yk)

sets. For these reasons we don't think this is a suitable jdea.

”ﬁ—iti 2otk

-

The multiquadric method proposed by Hardy (program #21) performs very well,
The plots, shown in Figures 1.4.n.21, 2.0.0.21, 4.1.n.21, 4.2.n.21, and 4.3.n.2]

show that the method produces very smooth and pleasing surfaces. The deviations

tables, D, and the related tables E show that the method 1s consistently among

the most accurate, as well, The value of the parameter was computed from a

formula and 1s related to the mean distance to nearest neighbor in the set
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{(xk. yk)}. The surface is quite stable with respect to changes in the value
of the parameter, as can be seen in Figures 3.1.1.21 and 3.3.1.21. The "best" 1
value 1s probably dependent on the function values as well, but we obtained
excellent results without considering that. Larger values of the parameter,

r. seemed to give better results, but the system of equations became too .j@

111-cond1t1on§d to solve in single precision. Thus a somewhat smaller nom’inal ;&
value was chosen than might have been otherwise. Larger values did degrace ,g

the performance on smaller sets of data while they improved it on larger sets -

| of data, The method has also performed well on recent tests with ocean bottom
topography [47].

! The use of "reciprocal multiquadrics" for the basis functions (program #27)
1 also worked quite well, The plots are shown in Figures 1.4.n.27, 2.0.0.27,
4 } 4.1.n.27, 4.2.n.27, and 4.3.n.2/. The surfacos are again seen to be very
; smooth, The basis functions resemble the rotated Guassian (#20) but generally
| perform much more relfably than it. In particular, tne method is much less (
: sensitive to variations in the parameter, although very small values of tie
parameter will lead to a surface consisting of sharp peaks at each data point
(or holes, 1f the function value is negative). For a range of values near the
nominal value chosen for the parameter the method 1s quite stable. Overall
its peformance is nearly as good as the multiquadric method.
| The method of Duchon which involves the use of basis functions dk3 (pro-
gram #22) works quite well., The plots, shown in Figures 1.4.1.22 and 2.0.0.22,

show very smooth surfaces with a pleasing appearance. The cardinal function,

Figure 2.0.0.222 1s very nicely shaped. This method was among the better

performers overall, however solution of the system of equations often required

the use of double precision. For this reason the "thin plate splines"

e
FEA Y
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(program #23) were considered more desirable even though the method was not
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- superior in many cases. The plots for the thin plate splines are shown in
Figures 1.4.n.23, 2.0.0.23, 4.1.n.23, 4.n.2.23, and 4.n.3,23. The surfaces
are quite smooth, Figures 1.4,1.22 and 1.4.1.23 being very similar., The

T
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cardinal function, Figure 2.0.0.23a, is very similar to that of the previous,

e

although it seems to be slightly more peaked with less undershoot at the
front. Wi*h the exception of Akima's surface, Figure 2.0.0.23b, all calcu-

e e v T

lavions v re performed in single precision on the IBM 350/67.
The use of rotated B-splines as a basis function for each data point

(orogram #29) yields variable results. The method {s very sensitive to the

choice of radius at which the function goes to zero. The nominal value
used was chosen on the basis of good performance for the surface shown in .
gyi 2_ Figure 1.4,1.29. This resulted in unacceptable behavior in the cardir:l 5
: function, Figure 2.0.0.29a. In this respect the methcd seems to be similar

to program #20, the rotated Gaussians. The use of a radius which resulted

e i aneb

in an acceptable cardinal function seriously degraded its performance on the
surface 11. Figure 1.4.1.29d, which is hased on the same (xk, yk) points. For
‘ that reason the method is judged unacceptable. '

;% ( : 4.0. Summary

] This summary generally deals only with the extensively tested methods,

v ar et
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§ in the first two groups of Tabie S. These two groups were selected on the
basis of meetingone or both of two criteria, (1) availability (are documented !
programs readily availablev , and (2) performance in these tests. The following

local methods were selected (given by number; refer to Table S for a pointer

to the description): 1, 4, 10, 13, 14, 16, 24, 23. The global methods selected
were: 19, 21, 23, 27, 30.
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The discussion of overall performance is made in separate sections for

local and global methods. As we have noted previously, global methods are

not feasible for very large sets of data. If a data set consists of some

100 - 200 points, it is feasible and practical to use a global method. We
have demonstrated here that for 100 points or less, some real advantages

accrue for global methods. In particular, global methods perform better in

terms of their deviatinns from test surfaces, This fs seen in Table E.2,

where local methods are "best" in only 4 of 18 cases. Global methods seem

to be less 1ikely to exhibit edge effects than local methods. It is possible
that this is partially responsible for the results in Table E.2, although the
surfaces for global methods are generaliy much smoother and more pleasant
appearing than those for local methods. For very large sets of data the

regions where edge effects occur should be a smaller part of the overall .

region of interest. |
The processing time for local methods is generally less than that for f

global methods, although some global methods are faster than some local

methods. The trend of local methods is generally to increase at least linearly

with the number of points when total time is considered. Global methods gener-

ally increase at least linearly also since all points must be inspected The
potentia! savings for local methods comes from not having to solve a linear

system of N equations in the preprocessing phase and use of only nearby points

PR TR NE S S ST S i

in the evaluation phase. Specific comments are made in the next two sections. j
4.1. Local Methods %

; Tne best performing local methods are probably the Modified Quadratic

i Shepard Method and a similar program based on a triangulation of the convex '

\ hull, the Nielson-Franke Quadratic Triangle method. Both methods perform 3
|




(f% consistently well, with the method based on triangles generally being s1ightly

a more accurate and-faster. It 1s, however somewhat prone to misbehave when
long s1im triangles occur, and tﬁe triangulation requires a great deal of -
auxiliary c+orage. ' For general purpose use the Modified Quadratic Shéﬁdkd's
Method 1s favored for severa1 reasons. It fc easy to implement and gendratfzeg
in rather easy fashion to higher dimensional spaces. The apparent time '
penalty in the evaluation phase could be reduced by some additional preprocessing
and auxiliary storage to allow quicker determination of points which (potentially)

- affect the interpolant. This sort of scheme should be incorporated when dealing
with very Targe sets of data to avoid excessive evaluation: times. Tr1ang1e
based methods (whether local or global) have this kind of scheme buil+ in and
partly accounis for their efficiency duf1ng the evaluation phase.

Akima's method suffers from poor estimates of the derivative values.

( Modification one results in modest improvement, generally, but still does not
perform as well as is possible for the underiying approximation. Both versions
are subdeét to the appearance of extraneous bumps, as seen in Figures 4.1.6.4 !

and 4.1.6.10, as well as overshoot as seen in Figures 1.4.1.4b and 1.4.1.10b.

Lawson's method, based on a similar idea, but with a different element and
tetter estimates of the derivatives, generally nerforms better than Akima's -
method. The use of inverse distance weighted least squares gquadratics to
estimste the derivatives in Akima's method generally (but not always) results :

in improved accuracy, and even more often gives a much more pleasing surface,

as can be seen by comparing the corresponding plots for the three different

schemes for estimating derivatives. This latter version of Akima's program

performs about on a par with Lawson's method. It requires considerably more

. preprocessing time, however. It is subject to edge effects in some cases.




. Lawson's method generally gives smooth appearing surfaces, although

the occurance of long s1im triangles can cause problems. Some of these
effects are not apparent because no evaluation points fall within the long
s]1mﬁtrtgngJes_thg;yqqcurvalong:edges. as in Ferguson's dhta. for example.
While 1t 1s not g,localimethod. it should be mentioned that Nielson's.
Minimum Norm Network method generally performs better than any of the. locai
‘.methods.basedfon triangles. It -avoids thg usual storage problem involved in -
.solving a large system of equations by solving iteratively, and rapid conver-
gence is obtained. The overall storage requirements are similar to Akima's
method (and its variants) but more than for Lawson's method. Timing 1s some-
what slower than a]] but modification three to Akima's method in the preprocessing
phase. It is also slower in the evaluation phase, but a different implementation
of this could result in it being about as fast as Lawson's method. The under-
:1ying approximation §s somewhat more complicated than Akima's, but use of an
evaluation phase following a strategy similar to Akima's should not be slower
by a factor of more than about two. So far this modificatinn has not been made.

The remaining two local methods are due to the investigator. The under-
lying idea of partitioning the plane into rectangles seems to be sound, result-
ing in reasonable (not fast, but nearly independent of N) evaluation times.
The use of thin plate splines as the local approximations is a definite improve-
mant in both the appearance and accuracy of the method. Overall, however,
performance of the method is somewhat disappointing. It seems there is no
inherent reason why its performance should not be nearly as good as the local
approximations, which are very good, according to our results on global methods.
It seems that the amount of overlap in the local interpolating functions is not

sufficient to prevent transition from one rectangle to another resulting in




transition to a fundamentally different surface, as can be seen, for

example, in Figure 1.4.5.24c. Use of much larger values of NPPR could

result in better approximations, although our tests (in Tables P.1 and P.3) -
show conflicting evidence. No further experimentation has been performed.

The amount of auxiliary storége required is mild, compared to the methods based

on.griang1es. particularly, Evaluation times.are nearly independent of the
n&ﬁber.of data points, which could be useful for very large N. Triangle E
basgd'methods also possess this property and are faster than rectangle based - i
methods because faster evaluation of the local interpolants is possible.

A11 things considered, the method of choice here seems to be the . ' B

Modified Quadratic Shepard's Method. Its advantages of simplicity and mild

e b i AL

auxiliary storage requirements overcome its relatively expensive evaluation
phase. A preprocessing phase to determine (potential) points which affect

the interpolant in various regions could be implemented at a modest cost in

time (probably less than one second) and storage (about 5/3 N locations),
which for large data sets would probabiy result in evaluation times of 10
seconds or less (independent of N), but this has not been implemented as yet.

4.2, Global Methods

The most impressive method in these tests is the multiquadric method of
Hardy. It 1s consistently best or near best in terms of accuracy, and always
results in visually pieasant surfaces. Nonetheless, # certain skepticism
persists because the method has no apparent mathematical basis to explain its

efficacy. In some respects the basis functions are somewhat similar to the

ﬁ ; thin plate spiines of Duchon in that they take on large values at points far
? , % away from the data point. Further, they appear (for r = 0) to #it the class
of approximations discussed by Meinguet [41], but the proofs do not hold.

) =-81-
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In the degenerate case (r = 0), initially investigated by Hardy, the multi-
quadrics are cones with zero value at the data point (just as dzlog d is zero

at the data point). Given only the basis functions d21og d one might also be

" perplexed at how well they work. Perhaps there is an equally elegant (but
-unknown) theory to explain the abilities of the multiquadric method. On the

basis of our-tests we can recommend the use of efther the multiquadric method
or the thin plane splines as the best of the global basis function methods,
and perhaps the best of all global methods considered. The reciprocal multi-

quadric has some potential bad effects and for too small a value of r will

~give poor results, as noted in Section 3.6.0. There seems to be no reason to

use it rather than the multiquadric method.

Nieison's minimum norm networrk has been discussed a bit in connection
with Tocal methods in the previous section. Computationally it is a viable
method for larger sets of data than the methods requiring solution of a full
system of N or more equations since it uses jteration on a sparse system of
equations. It does use considerable storage which yj11 probahly 1imit the
method before excessive computation time. The use of the method must be done
with the knowledge that poor behavior can occur in long slim triangles, a
caution that applies to all methods based on triangles. Nielson's method is
reportedly soon to be available 1n a version which does not require a convex
regfon, and this could easily be used to eliminate undesirable triangles
along the edges. Extrapolation will not be so easily implemented in this
version, however, so if that is important, it is a consideration.

Foley's TF delta sum bicubic spline 1s a relatively poor performer here.
Results using the method have been discussed in great detail as an example 1in

Section 3.0.0. While the method yields some very nice interpolants, 1t is
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rather inconsistent and often has undesirable ripples.
5.0. Epilog

This investigation has consumed a great deal of time and effort.
Thanks are due to numerous colleagues, among them Greg Nielson, Bob Barnhill,
Frank Little, Tom Foley, Rosemary Chang, and others with whom I discussed
many ideas and who made valuable (sometimes followed!) suggestions. Thanks -
are also due to those who supplied working programs, among them Greg Nielson,
Hiroshi Akima, Charles Lawson, and Tom Foley. Last, but hardly least, thanks
go to Linda Dent for her patience and good humor during the period when the

manuscript was being typed and revised, and (especially) during the process of

pasting up plots, I : M

Despite the number of ideas explored and programs written and tested, ;3:
there are a number of ideas which were not investigated. Among them are ﬁ
several from the CAGD group at the University of Utah. Many of these are ‘
based on the use of triangulations, which the investigator feels are much
more suitable for the design problem (where long s1im triangles can be ;
avoided) than for the scattered data interpolation problem. It was not ‘}
possible to test Vittitow's [55] variations of Maude's method [37], although i
it appears they may perform reasonably well., Another idea which was not tested
has its genesis in Briggs [8], and is available commercially [59]. The user's
manual contains some impressive material, but no tests of the software have
been conducted. There are no doubt more ideas worthy of investigation appearing g
in the 1iterature.

In terms of the data considered here, it was for the most part rather
nice data, even though some effort was made to include some data with varying

densities. Real data exists which is very sparce in certain regions, or




-;ﬁé o 1ies in clumps. Some methods will not work in a reasonable fashion for this
f&fﬁﬁ '; type of data, although we have not tried to determine which methods will and:
o which will not. Methods based on quadratic approximations will 1ikely mis-
behave for such data. In addition, local methods based on distance weighting
may have_holes-in the domain of definition when density varies greatly or
when data appears in clumps. Some additional work is necessaéy'to see 1if

there are suitable local methods for such data.

: The investigator is willing to make further tests (at least for the

é supplier and perhaps for wider dissemination) of working programs, under the
| following (negotiable) guidelines: (1) The program is to be supplied on

5 cards (preferably EBCDIC punch). (2} The program is to be in the form of

r . one or more subroutines, and a grid of interpolant values is to be returned
aﬁﬁ‘ | by calling one of them with the appropriate data and workspace. (3) The

| 4;*_ f program is to be in ANSI standard Furtran. (4) Program documentation will
| be supplied to enable use of the program. (5) A sample driver program will be

supplied. The investigator will supply at least the plots of the type

v}¥* 1.4.7.n and 2.0.0.n and the corresponding error and timing statistics.

5)‘ 4
. - Depending on those results, additional tests may be performed and reported ;ﬁ

to the supplier. §
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Maximum Mean
Deviation Deviation
Franke - 3 - 0919 .00842
, 0647 .00787
/ ] Akima Mod. I .0856 .00784
g 13: Nielson - Franke Q .0782 .00741
‘e B 14; Mod. Quad. Shepard ,0573 .00785
O 16: Akima Mod. III .0520 .00729
g - 24: Franke - TPS .0940 .00887
a7 B 28: Lawson .0951 .00783
'§ 19: Nielson MinNorm .0492 .00637
‘ 21: Hardy Quadric .0225 .00181
r 23: Duchon TPS .0518 .00525
: 27: Hardy Recip. Quad. .0247 .00283
. 30: Foley III .0636 .00473
g.
% 2: Mod. Shepard & Plane 156 0137
[ 3: Mod. Linear Shepard .104 .00982
! 6: McLain M, .0601 .00747
¢ 6: Franke - .108 .0103
$ 7: Mod. Shepard 224 .0272
| 8: Mod. McLain Mg .194 .0167
: | 11:  Akima Mod. II .105 .00875
g 3 12: Nielson - Franke L. .125 0101
TR 17: Quad Shepard .264 .0396
A 18: Shepard .273 0417
" : 20: Rotated Gaussians .0624 .00599
R 22: Duchon .0247 .003N
S 25: Foley I .201 .01563
v | ! 26: Foley II 144 .0120
SR 29: Rotated B-Splines .0488 .00790
| 31: Foley IV 128 0113
¢
ﬂ" 3
- R Deviations from Exponential test surface, 100 points
b Table D.1.1

RMS

Deviation

.0148
.0125
.0133
0122
,0128
0117
.0164
0124

.00940
.00357
00947
.00518
.00941

.0254
0172
0124
.0188
.0440
.0316

.0152
0189
.0594
.0620
.0112
.00578
.0305
0229
.0112
.0204
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Method

-
WO

14:
16:
24:
28:

19:
2l
23:
27
30:

Maximum Mean RMS
Deviation Deviation Deviation
Franke - 3 .0518 .00286 00586

Akima

Akima Mod. 1
N{elson - Franke Q
Mod. Quad. Shepard
Akima Mod. I1I
Franke - TPS
Lawson

Nielson MinNorm
Hardy Quadric
Duchon ~ TPS
Hardy Recip. Quad.
Foley III

.0520
0473
.a721
.0468
.0958
0295
.0280

0424
.0244
.0344
0379
.0281

.00303
,00257
.002€5
.00264
.00293
.00243
.00221

.00181
00177
,00210
,00192
00223

Deviations from Cliff test surface, 100 points

Table D.1.2

.00609
.00842
.00683
.00551
,00809
.00483
.00448

.00434
.00330
.00436
.00388
00419
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Method

10:
13:
14:
16:
24:
28

19:
21:
23:
27
30:

. Franke - 3

Akima

Akima Mod. 1
Nielson = Franke Q
Mod. Quad. Shepard
Akima Mod. II1
Franke - TPS
Lawson

Nielson MinNorm
Hardy Quadric
Duchon - TPS
Hardy Recip. Quad.
Foley 111

D

Maximum
eviation

.0198
.0274
.0254
.0168
0125
.0142
.0165
0565

0195
.00461
.00597
.00928
0117

Mean
Deviation

.00164
.00224
.00198
00110
.00112
.00105
.00157
.00149

.00091
.00025
.00049
.00068
00117

Deviations from Saddle test surface, 100 points

Table D.1.3

RMS
Deviation

.00294
.00423
.00367
.00206
.00194
.00202
.00273
.00359

.00200
00052
.00092
00136
.00196
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| Method © Maximum Mean RMS '?g
L Deviation Deviation Deviation .
| 1 1: Franke - 3 0114 .00122 00189
3 4 4: Akima .0101 .00124 00177 il
T B 10: Akima Mod. I .00675 .00102 .00143 ‘s

T 13: Nielson - Franke Q .00517 .00058 .00083
! 14: Mod. Quad. Shepard .00388 00065 00089
16: Akima Mod. III . 00330 00049 .00070
24: Franke - TPS .00560 .00103 00147

28: Lawson .00899 .00061 .00109 ;{}

19: Nielson MinNorm .00303 .00047 .00069 1
21: Hardy Quadric .00102 00005 . .0001) i’
23: Duchon - TPS .00294 .00017 .00030 3

T e T S - T

St

0 ff 27: Hardy Recip. Quad. 100227 .00034 .00050 j
SO 30: Foley III »00604 .00083 .00117 4
Z. ? Deviations from Gentle test surface, 100 points b
] ¢ i
a Table D.1.4 ]
8 4
i! k | {
. f - . .)
i | 3
.g ; :




’» i
bl

o ‘.Ii:,-i‘
%

10T
Py i
)

U

Method

Franke - 3

Akima

Akima Mod. I
Nielson - Franke
Mod. Quad. Shepar
Akima Mod. III
Franke - TPS
Lawson

Nielson MinNoru
Hardy Quadric
Duchon - TPS
Hardy Recip. Quad.
Foley III

Maximum

Deviation

.0358
.0434
0317
.0206
.0218
0212
.0284
0216

.0195
.00280
L0175
.00736
0143

.....

Mean
Deviation

.00228
.00242
.00215
.00176
.00182
00171

.00212
.00154

.00101
.00012 !
.00088 .00217 1
.00030 00078 4
.00172 00282 |

RMS ?‘“: ¢
Deviation '

.00447 k.
.00510 3
.00436 .
.00337

.00361 ‘

.00337 r
.00418 }
.00323 3

.00229
.00031

Deviations from Steep test surface, 100 points 5

Table D.1.5
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Method

Franke - 3

Akima

Akima Mod. I
Nielson - Franke Q
Mod. Quad. Shepard
Akima Mod. III
Franke - TPS
Lawson

Nielson MinNorm
Hardy Quadric
Duchon - TPS
Hardy Recip. Quad.
Foley 111

Max{mum
Deviation

019
.0196
0172
00343
00361
.00796
0111
.00954

07
.0106
0170
.024]
.00965

Mean
Deviation

.00126
.00196
.00173
.00022
.00026
.00058
.00138
.00038

.00077
.00041
.000563
.00117
.00127

Deviations from Sphere test surface, 100 points

Table D.1.6

A it A A, A 0, s

RMS
Deviation

.00206
.00313
.00286
.00043
.00050
00094
.00206
.00099

00165
00111
.00150
.00263
.00203
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i ¢ Method Maximum Mean RS ;
ﬁ Deviation Deviation Deviation E
h 1: Franke - 3 Ty .0477 .0732
ﬁ 4: Akima - .158 .0384 .0535
: 10: Akima Mod. I 197 .0400 .0570 o
: 13: Nielson - Franke Q 150 .0326 .0455 g
] 14: Mod. Quad. Shepard .184 .0340 .0478 Iy
i 16: Akima Mod. III 164 .0372 .0521 4
: 24: Franke - TPS .218 .0346 .0517 g
{ 28: Lawson .287 .0462 .0657 g
19: Nielson MinNorm 150 .0305 0437
v 21: Hardy Quadric 137 .0181 .0269 %
{ 23: Duchon = TPS 153 .0293 .0421 :
; 27: Hardy Recip. Quad. .140 .0153 .0244 7
% 30: Foley III ( . o .296 .0350 .0546 -
- u )
] 2: Mod. Shepard @ Plane 208 0402 0604 -
v 3: Mod. Linear Shepard . 321 0566 .0870 g
) §: Mclain M, _ 217 .0438 .06256 R
i 6: Franke - 1 QR 0484 0741 i
b : 7: Mod. Shepard Y ¥ | .0571 .0872 .
b 8: Mod. McLain Mg too.193 .0379 .0566
1: Akima Mod. II | ", .232 ,0401 .0582
v 12: Nielson - Franke L. 274 .0446 .0651 K
,\ 17: Quad. Shepard 223 .0701 .0915 ;;
: 18: Shepard .225 .0709 .0922 j
[ 20: Rotated Gaussians 137 0174 .0287 .
j 22: Duchon 140 .0235 .0338 .
¢ 25: Foley I .162 .0277 .0387
b 26: Foley II 161 .0281 .0383
v 29: Rotated B-Splines 137 .0210 .0337
? 31: Foley IV 273 0422 . 0626
i
3 Deviations from Exponential Test Surface, 33 points
E% Teble D.2.1
N
A i
§ $
S
i '
b, j

"N o _-100-
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Method

Franke - 3

Akima

Akima Mod. I
Nielson - Franke Q
Mod. Quad. Shepard
Akima Mod. III
Franke - TPS
Lawson

Nielson MinNorm
Hardy Quadric
Duchon - TPS
Hardy Recip. Quad.
Foley III

Maximum
Deviation

0776
.0643
.0518
0878
.0876
.0680
.0561
.0956

.0582
0677
.0526
.0500
.0914

Mean
Deviation

0124
.00850
.00747
0137
0121
0106
00913
0126

.00800
.0129
.00777
.00853
.0165

Deviations from Cliff test surface, 33 points

Table D.2.2

RMS

R R AR

Deviation

.0190
.0133
.0122
.0219
.0206
0176
0147
0205

.0140
.0170
.0134
.0130
0262




Method

Franke - 3

Akima

Akima Mod. I
Nielson - Franke Q
Mod. Quad. Shepard
Akima Mod. III
Franke = TPS
Lawson

Nielson MinNorm
Hardy Quadric
Duchon - TPS
Hardy Recip. Quad.
Foley III

Max1mum
Deviation

AN

.0578
.0578
0679
0724
.0597
.0662
.0685

0571
.0262
0574
.0505
.0885

Mean
Deviation

0121
0110
.0104
.00939
00907
.0104
.0109
.0133

.0102

.00442
.00912
00571
.00888

Deviations from Saddle test surface, 33 points

Table D.2.3

RMS
Deviation

0224
.0165
.0156
0146
.0139
0162
0175
.0199

0159
.00689
.0140
.00970
.0148




Method - Maximum Mean RMS
Deviation Daviation Deviation

1: Franke - 3 .0446 .00608 0101
4: Akima .0187 ,00487 00623
10: Akima Mod. I L0160 00442 00573
13: Nielson - Franke Q .0312 .00422 .00637
14: Mod. Quad. Shepard : 0272 .00451 .00679
16: Akima Mod. IIl .0204 .00394 .00565
24: Franke - TPS .0339 .00681 .0107
28: Lawson .0269 .005652 .00815
19: Nielson MinNorm 0214 .00371 .00563
21: Hardy Quadric .00724 00121 .00204

L 23: Duchon - TPS ,0259 .00415 .00714

SN 27: Hardy Recip. Quad. .0188 .00266 .00485

£ . 30: Foley III .0349 .00438 .00674

3

i Deviations from Gentle test surface, 33 points

e

Table D.2.4
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Methad

1:
4

Franke - 3

Akima

Akima Mod. I
Nielson - Franke Q
Mod. Quad. Shepard
Akima Mod. II1
Franke TPS

Lawson

Nielson MinNorm
Hardy Quadric
Duchon - TPS
Hardy Recip. Quad
Foley 111

Maximum
Deviation

0143
116
.109

.0835
110
.]15
160
139

.115
.0716
149
.0963
110

Mean
Deviation

0162
.0120
L0113
.0104
L0113
0119
.0148
.0129

.0106
.00850
0130
.00878
.0143

Deviations from Steep test surface, 33 points

Table D.2.5

RMS
Deviation

.0298
.0240
.0227
.0181
.0220
.0240
.0305
.0289

.0228
.0148
.0296
.0180
.0249
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Method Max{mum Mean RMS
Deviation Deviation Deviation

1: Franke - 3 . 0464 .00614 0106 ¥
4: Akima .0383 .00796 .0110 4
10: Akima Mod. I .0393 .00732 .0104 i
13: Nielson ~ Franke Q. .0983 .00585 0177 B
14: Mod. Quad. Shepar 101 .00400 .0136 ;
16: Akima Mod. III .0819 .00556 0139 3
24: Franke - TPS 0307 .00629 .00886 "
28: Lawson 0137 .00210 00313
19: Nielson MinNorm .0186 .00273 .00460 |
21: Hardy Quadric .0203 .00278 .00473
23: Duchon - TPS .0232 .00315 .00545 o
27: Hardy Recip. Quad, .0351 .00414 .00737 :
30: Foley III .0269 .00493 .00726 3
Deviations from Sphere test surface, 33 points l

Table D.2.6 i
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- Method Max {mum Mean RMS
29 (;j Deviation Deviation Deviation
e o .
A 1t Franke - 3 240 0359 .0486
g 4: Akima 134 .0282 .0386
Y£ 10: Akima Mod. I 129 .0280 .0390
13: Nielson - Franke Q .163 0350 .0478
: 14: Mod. Quad. Shepard .158 .0353 . .0486
@ 24: Franke - TPS 129 .0267 .0374
. 28: Lawson: 202 .3z7 .0458
e 19: Nielson MinNorm 124 0235 .0328
) 21: Hardy Quadric 119 0235 .0322
k. 23: Duchon TPS 121 .0253 .0348
; 27: Hardy Recip. Quad. 19 0214 .0294
5 30: Foley III 165 .0196 .0310
g 2: Mod. Shepard ® Plane 167 .0328 .0466
L' 3: Mod. Linear Shepard .254 .0418 .0593
e 5: McLain My, . 255 0369 .0529
. 6: Franke - 1 241 .0356 .0484
n 7: Mod. Shepard .212 .0481 .0661
fu | 8: Mod. McLain Mg .262 0377 .0579
i;uJ] 11: Akima Mod. II 126 .0284 .0396
g1 ( 12: Nielson ~ Franke L. .249 .0366 0513
; h 17: Quad. Shepard 232 .0550 0670 !
v 18: Shepard .238 .0559 .0709 )
A 20: Rotated Gaussians 118 .0237 0321 ;
A 22: Duchon N7 .0246 .0330
g 25: Foley I .200 .0375 0517
R 26: Foley II .166 .0333 .0449 ‘
e 29: Rotated B-Splines 131 .0279 .0368 ]
A 31: Foley 1V g2 .0195 .0276 ;
‘3;.1 X 41
VﬂA Deviations from Exponential Test Surface, 25 points 4
['1; .
o Table D.3.1 b
t i
8 3
g K
h :5 |‘
., .
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Method Maximum Mean RMS

Deviation Deviation Deviation

1: Franke - 3 .161 .0225 .0408
4: Akima : .0999 .0148 .0257
10: Akima Mod. 1 0987 .0143 .0252
13: Nielson - Franke Q .148 .0166 .0304
14: Mod. Quad. Shepard .163 .0166 .0314
16: Akima Mod. III 146 .0164 .0305
24: Franke - TPS .106 .0148 0287
28: Lawson 132 .0164 .0283
19: Nielson MinNorm .0942 .0138 0242
21: Hardy Quadric .0995 .0143 .0231
23: Duchon - TPS A0 .0135 .0235
27: Hardy Recip. Quad 108 .0139 0236
30: Foley IlI1l .0832 .0165 0250

-

Deviations from Cl1iff test surface, 25 points

Table D.3.2




Method

1+ Franke - 3

4: Akima

10: Akima Mod. I

13: Nielson - Franke
14: Mod. Quad, Shepar
16: Akima Mod. I1l
24: Franke - TPS
28: Lawson
19: Nielson MinNorm
21: Hardy Quadric
23: Duchon -~ TPS
27: Hardy Recip. Quad.
30: Foley III

Max{imum
Deviation

.0688
.0864
.0866
.0794
0759
.0787
0714
.0875

.0704
.0397
.0588
0443
.0823

Mean
Deviation

0N
0121
0119
015
0114
0116
.00983
.0126

.0100

.00670
.00810
.00628
.00853

Deviations from Saddle test surface, 25 points

Table D.3.3

RM3

Deviation

0171

.0202
.0203
.0189
.0183
.0189
017

.0205

0172
.00952
0137
.00955
0165
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Method . Maximum Mean RMS

i B _ Deviation Deviation Deviation

. )

il 1: Franke - 3 .0247 .00491 00651

A B 4: Akima : .0266 .00541 .00686

kb 10: Akima Mod, I .0248 .00541 .00681

H 13: Nielson - Franke Q .0340 .00662 .00746

1t 14: Mod. Quad. Shepard .0227 .00529 .00669

1 g 16: Akima Mod, 111 0232 .00575 00760

§ ; 24: Franke - TPS .0245 .00440 .00556

il 28: Lawson .0234 .00399 - .00641

al 19: Nielson MinNorm 0161 00307 00433

1 21: Hardy Quadric .00709 .00107 .00158

an’ 23: Duchon - TPS .0128 .00265 .00351

On 27: Hardy Recip. Quad. .00528 .00055 .00089

SR 30: Foley IlI .0224 .00436 .00588 }

Al

'R g
L Deviations from Gentle test surface, 256 points
? Table D.3.4
,.: !
; {g
: !
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Method

Franke - 3

Akima

Akima Mod. I
Nielson = Franke Q
Mod. Quad. Shepard
Akima Mod. IIl
Franke - TPS
Lawson

PR —F — =
O oOPOPWOP—-

Nielson MinNorm
Hardy Quadric
Duchon = TPS
Hardy Recip. Quad.
Foley III

I PN N —
O~ —
sw 8o o= e o

Maximum
Deviation

113

0534
.0620
.0860
.0468
.0810
.0317
.0455

.0314
0189
.0233
0144
.0743

Mean
Deviation

.0178
.0108
.0103
.00890
00911
.00908
.00766
.0129

.00487
.00453
.00462
.00288
0107

peviations from Steep test surface, 25 points

Table 0.3.5

RMS
Deviation

.0267
0149
.0140
0127
.0126
.0128
.0100
.0286

.00694
.00695
.00653
.00386
0161

B PO,
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Method

1: Franke - 3

4: Akima

10: Akima Mod. I
13: Nielson - Franke Q
14; Mod. Quad. Shepard
16: Akima Mod. III

24: Franke - TPS
28: Lawson

Nielsan MinNorm
Hardy Quadric
Duchon - TPS
Hardy Recip. Quad.
Foley III

L PN NS~
O~ O

ae se oo se ew

Max.imum

Deviation

.0323
0646
0634
0174
.0190
0231
.0482
.0212

0412
.0371
.0581
.0628
.0305

Mean
Deviation

.00498
.00903
00811
00199
.00200
.00190
.00690
.00216

.00470
00403
.00557
.00774
.00568

Deviations from Sphere test surface, 25 points

Table D.3.6

RMS
Deviation

.00748
.0132
0121
.00324
.00336
.00303
.0106
.00378

.00765
.00650
.00925
0123

.00822



Gate . 1
L

Test Surface 1 2 3 4 5 6
Data Set

100 points 16 28 14 16 13-16-28 13
33 points 13 10 14 16 13 28
25 points 24 10 1-24 28 24 16

ST L o T
[

el iR s

s e

S e

' Local Method With Smallest Deviation
g Table E.1

(" Test Surface 1 2 3 4 5 6
Data Set

- 100 points 21 21 21 21 2 13

§ 33 points 27 10 21 21 21 28

- 25 points 3 30 21 21 27 16

ST e i ME.

i Method With Smallest Deviation
E | Table E.2 §




Method Parameter Value Max.Dev. Mean Dev. RMS Dev.

1: Franke - 3 NPPR = 4 144 0113 .0210

- 6 .0919 .00842 .0148

> 8 .083 .00864 .0145

& Akima NCP = 4 .130 .00857 .0153

6 .0647 .00787 .0125

8 .0934 .00925 .0156

10:  Akima Mod. I NCP = 4 .152 .00898 .0169

6 .0856 .00784 .0133

8 .0696 .00874 .0146

13: Nielson - Franke Q NPPR = 12 .0997 .00729 .0126

18 .0782 .00741 .0122
1 24 .0899 .00831 .0139 J
A 14: Mod.Quad.Shepard ~ NPPR = 6 - 12 .0663 .00704 0117 5
d 9 - 18 .0573 .00785 .0128 ;
o ¥ 12 - 24 .0735 .00894 .0148 1
10 16: Akima Mod. 11I NCP = 12 101 00709 0124 .
: 18 .0520 .00729 0117 b
i 24 .0599 .00821 .0133 :
¥ :
: 21: Hardy Quadric NPPR = 15 .0287 .00303 .00578 1
1 25 .0225 .00181 .00357 :
P 35 .0185 .00138 .00257 g
oL 24: Franke - TPS NPPR » 4 .146 .0104 .0203 ?
§ 6 0940 .00887 .0164 :
|t 8 .0919 .00804 .0150 :
, 27: Hardy Recip. Quad. NPPR = 15 ,0912 00601 0129 )a
Ll 25 .0247 .00283 .00518 ]
Bl 35 .0220 .00217 .00393 :
1 30: Foley III NIT = 1 .104 .00745 .0155 :
4 3 .0636 .00473 .00941 i
; 5 .0449 .00376 ,00707 ;
; i
w Deviations from Exponential test surface, 100 points, varying parameters f
| Table P.1 ;
A j
| !
an |
Yy g 1




AT ——— - i
, Method Parameter Value Max.Dev. Mean Dev. RMS Dev.
- 1t Franke - 3 NPPR = 4 .600 .0446 0775
v 6 .240 .0359 .0486
i 9 .234 .0428 .0595
¢ 4: Akima NCP = 4 .133 .0256 .0369
i 6 134 .0282 .0386
E 8 .153 .0302 .0430
S 10:  Akima Mod. I NCP = 4 133 0255 0371
il b 6 129 .0280 .0390
. 8 .146 .0301 10432
b §
D 13: Nielson - Franke @ NPPR = 12 214 ,0394 .0670
T 18 .153 .0350 .0478
an 24 132 .0322 .0433
I 14: Mod. Quad. Shepard NPPR = 6 - 12 230 .0372 .0549
i I 9 - 18 .158 .0353 .0486
T ' 12 - 24 135 .0338 .0456
i r
Mod 16:  Akima Mod. 1II NCP = 12 176 .0394 .0560
o 18 .155 .0355 .0484
: . 24 127 .0319 .0433
S I 21: Hardy Quadric NPPR = 15 120 0225 0307
: S 25 119 .0235 ,0322 {
o 24: Franke - TPS NPPR = 4 186 0318 .0455 E
o ! 6 129 .0267 - .0374 :
X g 9 .143 .0281 .0404 k
[,'-; “l 27: Hardy Recip. Quad. NPPR = 15 .122 .0239 ,0333
- : 25 119 .0214 .0294 ]
% { 35 19 .0234 .0323 ]
b i 3
i 30: Foley Il NIT = 1 .191 ,0238 .0355 i
¥ : 3 .165 .0196 .0310 3
ﬁﬂ ' 5 154 0209 0324 |
“ d Deviations from Exponential test surface, 25 points, varying parameters j
E Table P.3 5
£§ i b
f zf: j
: [
| | ¢ |
| ; 4
. ! {
b i -'”4"
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Method Preprocessing Evaluation Total
9.9
3.0
3.6

[ -]
oo

Franke - 3
Akima

© ® Yom wwowm

1
2 0
10: Akima Mod. I 2. 0.

3 13: Nielson -~ Franke Q 10. 1. 12.
x 14: Mod.Quad. Shepard 8. 15, 24,
5 16: Akima Mod. I11 1. 0 12.
g 24: Franke - TPS 2. 6. 9.2
48 28: Lawson 1. 1. 3.5

9.5
20.
24,
20.
26.

Nielson MinNorm
Hardy Quadric
Duchon=TPS

Hardy Recip. Quad.
Foley III

— o —a~y 0o~ (=] O Py —

O W —O OPABWO

) I N D) —
e +v 2o as oa
R~~~ on
s » .

—t ok o et
—t ) ~5 W

-—

5% '
W ':‘ 4 )
Bl | 2: Mod. Shepard & Plane 2.1 5. 27,
A 3: Mod. Linear Shapard ' 1.2 15, 16.
% % 6: Franke - 1 1.0 8.0 9.0
--{ ! 1: Mod. Shepard -— 12, 12.
o) b 8: Mod. McLain MB .- 14, 14,
)t 1M: Akima Mod. II 2.8 .8 3.6
k. | ( 12: Nielson - Franke L. 2.4 1.5 3.9
‘I 17: Quad. Shepard 33, 22, 55,
g | 18: Shepard ——- 17. 17.
g 20: Rotated Gaussians - 7.1 13. 20.
2R 22: Duchon 7.4 15. 22.
] 25: Foley I ' -—- 13, 13.
b : 26: Foley 11 ‘ 4.0 16. 20.
| 29: Rotated B-Splines 7.7 23. 3.
SR 31: Foley IV 1. 6.3 17.

Timing : 100 points
Table T.1
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Method Preprocessing Evaluation Total
1: Pranke - 3 0.3 7.8 8.1
4: Akima 0.5 0.7 1.2 =
10: Akima Mod. 1 0.7 0.7 1.4 g
13: Nielson -~ Franke Q 2.4 1.8 4.2 .
14: Meod. Quad. Shepard 2.1 5.6 7.7 4
16: Akima Mod. III 2.7 0.7 3.4 :
24: Franke - TPS 0.6 4.6 5.2
28: Lawson 0.5 1.5 2.0
19: Nielson MinNorm 1.9 3.1 8.0
21: Hardy Quadric 0.5 4.0 4.5
23: Duchon TPS : 0.5 5.3 5.8
27: Hardy Recip. Quad. 0.5 4.0 4.5
30: Foley IT1 1.6 4,0 5.6
2: Mod. Shepard @ Plane , 0.2 9.9 10.
3: Mod. Linear Shepard L 0.2 5.1 5.3
5: MclLain M10 --- ' 50. 50.
6: Franke - 1 0.3 6.9 7.2 ‘
7: Mod. Shepard --- 4.6 4,6
8: -Mod. McLain Mg -—- 5.7 5.7 '
; 11: Akima Mod. Il 0.7 0.7 1.4 3
g 12: Nielson - Franke L. 0.3 1.5 1.8 j
I 17: Quad. Shepard 4.1 7.1 1. |
- f 18: Shepard --- 6.4 6.4 i
¢l 20: Rotated Gaussians 0.5 4.0 4.5 ;
kb 22: Duchon 0.5 5.0 5.5 |
3 25: Foley 1 -—— 4.0 4.0 |
- 26: Foley II 0.9 8.2 9.1 :
5 29: Rotated B-Splines 0.5 7.8 8.3 !
; 31: Foley 1V 1.1 2.7 3.8 i
u i
' Timing: 33 points

Table T.2




— I e
Method Preprocessing Evaluation Total
1: Franke - 3 0.2 7.7 7.9
4: Akima 0.3 0.6 0.9
10:  Akima Mod. I 0.5 0.6 1.1
13: Nielson - Franke qQ 1.7 1.7 3.4
14: Mod. Quad. Shepard 1.5 4.2 5.7 .
16: Akima Mod, III 1.8 0.6 2.4
24: Franke - TPS 0.4 4.5 4.9
'28: Lawson : 0.4 1.4 1.8
19: Nielson MinNorm 1.4 2.9 4.3
21: Hardy Quadric 0.2 31 3.3
23: Duchon - TPS 0.2 4.0 4.2
27: Hardy Recip. Quad. 0.2 3.1 3.3
. 30: Foley III 1.1 3.1 4.2
2: Mod. Shepard & Plane . 0.1 7.6 7.7
3: Mod.-Linear Shepard 0. 4.0 4,1
5: McLain M.|0 -—- 40. - 40,
6: Franke =1 0.2 6.7 6.9
7: Mod. Shepard .- 3.7 3.7
8: Mod. McLain My . 4.4 4.4
11: Akim& Mod. Il 0.5 0.6 1.1
12: Nielson - Franke L. 0.2 1.4 1.6
17: Quad. Shepard ¢.5 6.5 8.0
18: Shepard - 4.1 4.1
20: Rotated Gaussians 0.2 3.1 3.3
22: Duchon 0.2 3.8 4.0
25: Foley ! - 3.0 3.0
26: Foley II 0.7 7.3 8.0
29: Rotated B-Splines 0.3 5.9 6.2
31: Foley IV 0.8 1.8 2.6
5 ' Timing : 26 Points
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Modified Quadratic Shepard Method
Figure 1.4.1.14 |




Akima's Method, Modification Three
Figure 1.4.1.16




f
fr
]

il

0

e
i

4]
1 ”’"l. .~~
RN

(L L)
NS

RN

A
,'N\:

m\\i\\
RN
0’#’5\&‘:::\\:;\\
‘\\\ ™
\5 O

R
\\ "\?;“é

Quadratic Shepard's Method
Figure 1.4.1.17



A
AN 7B LA
el

LAY
AAA L5
e eaa

N

e R
‘\sz

Shepard's Method
Figure 1.4.1.18

i e 5 i s A d e N e e 4
1 i o s 5 AP0t N s AL 500 s 2 T Ly




ITIQRKR
IR

R T e e L TR AT Y SR R

B
T

.,A

iy S TSR EE T

R\
N0 S
\\\'\\\\\\‘b

§i\\$\
".... "é\\: \\~¢\~:

Nielson Minimum Norm Network
Figure 1.4.1.19

I B LY WY

PP N T SR DNy ¥ S A SERY




Rotated Gaussian Basis Functions

Figure 1.4.1.20




"f Hardy Multiquadric Method
Figure 1.4.1.21
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Duchon's Radial Cubics
Figure 1.4.1.22
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Durhon's Thin Plate Method
Figure 1.4.1.23
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Franke's Method, Thin Plate Local Functions

Figure 1.4.1.24




Foley's Generalized Newton Polynomial

Figure 1.4.1.25
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Foley's Generalized Newton Boolean Sum Bernstein - G. N. F

A Figure 1.4.1.26




Hardy Reciprocal Multiquadric Method
Figure 1.4.1.27
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Rotated Cubic B-Spline Basis
Figure 1.4.1.29
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Foley's lterated Generalized Newton
Delta Sum Bicubic Spline

Figure 1.4.1.30
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Akima's Method
Figure 1.4.4.4
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3 : Nielson Minimum Norm Network

(. Figure 1.4.4.19
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Hardy Multiquadric Method

Figure 1.4.4.21
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Franke's Method, Thin Plate Local Functions
Figure 1.4.4,24
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Akima's Method, Modification Three

Figure 1.4.5.16
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Franke's Method, Thin Plate Local Functions
O : Figure 1.4.5.24
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Akima's Method, Modification One
Figure 1.4.6.10




Braaaloaesy Krtgcaibid

R

o

e

Nielson-Franke Quadratic Triangular Method

Figure 1.4.6.%3




A

. i
el §
mmmmm.smw'mrmm P A T I NN Pt aF41 20

Modified Quadratic Shepard Method
Figure 1.4.6.14

. LRI SR A G s




Akima's Method, Modification Three
Figure 1.4.6.16




A\ ‘\\
1T g Ty P T @ O AN
172 L AT AN OAAGOARNRN
/,’r’,’,’nll"‘,"ll,".' QAR \\\‘\\ N
D A

T A T T T I T R T et T T AT A T T e e T e e SR

CEL S s i e

Nielson Minimum Norm Network

Figure 1.4.6.19

U CTY NP S70%]
AR T T W




7 Ty ¥, N O N N
L T NS AN AS
S AL T TR NN YONSEARA) .
S
il "l" A N QQ.Q’Q AN é’ 'I '
loroedersddesiilh
f QOO

¢

@ l

Hardy Multiquadric Method

Figure 1.4.6.21



;:f‘;" :

B

,
oy

o SRS L R

R Y ]

.- ,ay
l,",II"l'.' Ny Ny ~
ML L L P TS AN
,’r:l:lr,,'.".:.'o:: SOON

‘‘‘‘‘‘‘‘

YrasaTarny Sy Wy NN \
L R ONORRS
FHHHHALARD vy " QAN \\X\
7
LIl
I
Wy,
/ /I’ I /]
/ [IIIII (L]]
gy
LT

|

......

LA
IR RS
mqydﬁv'4‘ LR
AR
RO
lz’“l,'i? 0
l',""' (]

Duchon's Thin Plate Method
Figure 1.4.6.23

AT YRR




31127

1) (/
viiring,) Yo
TN

m {
R | 1
b q Al

ik Franke's Method, Thin Plate Local Functions

SN S Figure 1.4.6.24 5

T -190-




T

Ll l )
@ 1AL
', I’ Ll L)

Hardy Reciprocal Multiquadric Method
Figure 1.4.5.27

PRI AALYS
“ ”
. ‘,”:vl"""." e,
¥,
anar .".... .. ¥,

LTI ey

BSOS

(7
(S '.




s S

W TS R T ST il 2 o
= SRS R 4 FEE I z
R T R I w2 Tt e 7 T e eI T T R T T T R T e e R A A T g L

. [P el TN N

4 ‘-l’,',’l’lfvl ",""'q..'.b >y OO \‘,‘1\\\\\\\‘. N

BT adhf ) T N AN

DAL bl LTS ';. &,

‘ ‘l’ ,llll",, l.' .. O
AR T AARLINCINA

BTATR O LA e R AT PRI TR F PRV LRI A R P

N
RN
RN

Lawson's Method
Figure 1.4.6.28

PPN AT IPEILCA LD TS 5 S A R S DR I NI TR LA E TR AP FRON . S0 P AR




Foley's Iterated Generalized Newton
Delta Sum Bfcubic Spline

'f - b Figure 1.4.6.30
3 g
i

IR L T o g T CARS I




Franke's Method, Mode = 3
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Figure 2.0.0.31

OONRIIN)
NN

’.: eIl O ”/////I Q
” '1*\1:".’0:0’.5 0"4", % AT .Q'
Wl ey Y

S gy ()

' 4/;4’. ,
o

Wi '7/1?0’0:0:0,0‘0‘
0”.0

s'm

y

O
O

o,
- minate,

I AR O
LA

E
Y
b

iz,



Franke's Method, Mode = 3

Figure 3.1.1.1




Akima's Method
Figure 3.1.1.4

-224-




/ /)
ATEONN
"l’ )
p ", 7' REMOSAA O ANt N
Ill’;’l"'.',.’"\\\\\\\\\\\\\‘ -, Q‘Q:Q‘Q”:": ..;::.~
5 SN, LA
B T
G RN
)] “\“0,0..0 & X

it e e e b i ot el el P e R et i et T -

{ Akima's Method, Modification One
e Figure 3.1.1.10

S S P U IS Y

e e eyl HES dperd



e 54

- A T T

s Lo

T

!

.\ e 3 n,
MANOT S Ea 7
%‘\'M:S;%\' L,
N
YR
¥ 4.,,2’: Y~

Nielson-Franke Quadratic Triangular Method

Figure 3.1.1.13




Ty

-y

T {1 SO oag 1 11" . v ~

e e oy S,

T

T N S

-

——

O VA IR TR

Modified Quadratic Shepard Method
Figure 3.1.1.14

i i




TR T T e e

CIRRIET A S T PEN RO T TR R A -y

N
R
s NN
4 7{ R R R e
//l \/Y 3 .:"; :ﬁ o, ?.5.:2:::/
(14 N\ i 7 fl )’
AN Nhrert
WL (,’

Akima‘s Method, Modification Three
Figure 3.1.1.16




Hardy Multiquadric Method
Figure 3.1.1.21

0 AR V50PN A e 5 At ot e U b ey o




LT U AR £ A A gty eavery ey VAR AN e

Franke's Method, Thin Plate Local Functions

A coannan bl g ek, e

Figure 3.1.1.24

i PR RN L Vo TR s S A gt o,

=230-

JOE DV ST AR N YA N Sy



! :
u .' ;‘1
4 R )
" v
'
iy ’f‘
o I
d i
K -
1Ty :
P k-
i W
Y
i R
o Ll
e ,
h, ! '
1
3 )
A1t
N
d
Vs
-

--5!;-—"—-'»3“«:'.’#5.’;_‘_‘8_ =T

I}
|

- 3
s
[+ -
g
i
i
b
R
5

N
QR
A

Hardy Reciprocal Multiquadric Method
Figure 3.1.1.27




ORNRRRINXY
\JURRA O
\\\\\\\\‘¢ 0

ORI
R

R

Foley's Iterated Generalized Newton
Delta Sum Bicubic Spline

Figure 3.1.1.30




AN
Wit III'Q\\\\\\\
i 'Q.\\\\\\\\
N
VRN
AN
’l/ L0000
I SN, TN
J;//” ¢\\\\\\\\‘\~‘Q.” f R
"'l"llll"l:’ll \‘\‘ 7
/0o,
i

Franke's Method, Mode = 3
Figure 3.3.1.1

13 b Paikdia £ s

s

1Z




R R T R e T U

RN

\\\\\\\\\‘ OO0
\\\\ -

ALY

Q
'\‘z\'
N

Akima's Method
Figure 3.3.1.4




£ LRR
(g QR
s S
e

S
SN
\\\\\\"‘\\‘\Q
\\\\ \\‘ \‘)\ \“’“
R

R

”llf’ TR QQ’
LN
)ﬂ R

Akima's Method, Modification One
Figure 3.3.1.10

' =235~ |

b \ i b T o i 8 PRI b 012 Al

__-ﬂ—-u—-wmmwm——mp -




\'\-\ \‘.f(t" N\
A 8%
QR
R

FFTTE T s

h b .;!‘l

i) '
,u- '; |
i
N “l
! .

o

Nielson-Franke Quadratic Triangular Method 3
{ Figure 3.3.1.13 g

-236- 4

i

ad5 WAL ARG, st el




Modified Quadratic Shepard Method

Figure 3.3,1.14
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