
::...1
,;;

J
I .

L '

/-,·-··· ----------------------..
I
!

I
l I

I
l I
!

I

COMPUTER SCIENCE
TECHNICAL ·-REPORT SERIES

Ul'{.[VERSITY OF MARYLAND
COLLEGE PARK, MARYLAND

20742

~-? .l9

:· .. {,
·'

-~TR-25 V'Novdin79

ZB: A Mob of 256 Cooperative
Z80-BaedMicrocomputers.#

104 Chuck /Rie ger -

Computer-Sciencei Depar-Ement
University of Maryland
college Park, MD 20742

The research described in this report was
funded in part by the Office of Naya -Research
under grant number N00014-76C-0477wand in
part by the National Aeronautics and Space
Administration under grant number NSG-7253.

I6~)M cn or t-jl-6'a h A'1
/t

/?ld Pr t A)

ZMOB: A Mob of 256 Cooperative Z80A-Based Microcomputers

Chuck Rieger

Computer Science Department

University of Maryland

College Park, MD 20742

..1 ntr oduction

Current directions of computer science and computing in

general are toward more parallel machine architectures and

distributed models of computing based upon these new

architectures.roadly speaking, parallel architectures fall into

two categories: \arallel synchronous machines, which execute the

same code lock-st in many processors operating on different

data, and parallel \ utonomous machines, in which many independent

processors can be ut to work on different aspects of a large

computation.

In past and much curt rk emphasis has been on the

former variety of machine [1-3]. Recently, howevvTthere has

been considerable interest in highly parallel architectures

capable of supporting complex distributed computation via a large

number of autonomous processors. [4,5]. While many interesting

machines have been proposed or are currently being developed,

there has apparently been no specific attempt to build a machine

_ __

with a truly large number of autonomous processors, each having

substantial independent computing power.

-- > ZMOB is such a machine, currently under design and

simulation, a-dged. Architecturally, ZMOB is a collection of

256 identical but autonomous Z80A-based microcomputers

(processors). Each processor X comprises 32K bytes of

375 ns read/write central memory (expandable to 48K bytes), up to

4K bytes of resident operating system on 450ns EPROM, an 8-bit

hardware multiplier, and interface logic for communications

functions. (This is a non-trivial microcomputer, comparable in

size and power to the average small business or personal

computer.) Each processor will reside on its own PC board, making

a total of 256 processor boards mounted in four rack cabinets,

and supplied by a distributed system of local switched power

supplies. Although the machine will initially consist of 256

processors, its architecture is extensible (in principle) to any

number of processors. In practice, we will anticipate

extensibility to 1024 processors. The current cost estimate for

the 256 processor machine is $100K.

Good intercommunication pathways and bandwidths are critical

to the success of any highly parallel machine. As described

below, we have what we feel is a attractive solution to

inter-processor communication, and processor-to-outside-world

communication. The strategy will be non-blocking (e.g., there

can be 128 full-speed conversations between pairs or processors),

and will give each processor the illusion of data communication

4mhz 8 BIT
CLOCK MULTIPLIER

1/O PORT GROUP

2-4K 32-48K
BTSZ80A CPU BYTES

SYSTEM375ns
EPROMDYNAMIC

RAM

_I/O PORT GROUP

NON-MASKABLE INTERRUPTS-

MASKABLE. INTERRUPTS--

COMMUNICATIONS ACrSC o

Figure 1. Processor Organization. DID TqB

IAva I wi~d/or
lD~st special

rates as high as the Z80A itself can manage. In one mode, for

example, data rates into or out of ZMOB can exceed 20 megabytes

per second.

2. Background and Motivation

The ZMOB idea sprang originally from needs of the Computer

Vision Lab at Maryland. In certain vision tasks based on

relaxation algorithms [6], each pixel of, say, a 512 by 512 image

must be processed once per "iteration". The processing of each of

the quarter million pixels is identical, and independent of the

processing of other points during one iteration. A typical

relaxation algoritnn will require 5-10 iterations to converge.

The particular algorithm used will vary with the application.

In a complex relaxation algorithm, each pixel is represented

by a "probability vector" of perhaps 10 bytes, and the per-point,

per-iteration computation in such an algorithm might involve 1000

8-bit integer multiplies and a corresponding number of additions.

Rough calculations show that one complete iteration can therefore

--requt-re Upwards of 250,000,000 multiplies and a comparable number

o f...adds, a staggering computation which requires hours on a

medium-size conventional machine. our preliminary studies

(relatively complete Z80A code, hand-simulated timing results)

indicate that ZMOB will require on the order of 100 seconds for

such a-computation.

Although motivated by relaxation processing needs, it

quickly became obvious that a machine with such a great computing

potential ought to be general-purpose as a research tool for

distributed computing models in all of computer science.

Specifically, it became of concern that the geometry of

intercommunication paths not be unduly biased by the machine's

applications in vision (where 4-neighbor adjacency is natural),

and that the 8 megabytes of high-speed central memory not be

inaccessible to computations desiring to view the machine as a

large single address space. The design of the intercommunication

system reflects these concerns, and results in a machine which is

both general-purpose, and which (from timing studies) supports

the initial vision applications as fast as any other

special-purpose Z80A-based architecture could.

3. Basic Processor Architecture

ZMOB is a collection of automomous Z80A-based

microcomputers. The Z80A is an 8 bit microprocessor chip with a

158 instruction repertoire, two sets of 7 8-bit registers, and

several 16 bit registers for stack pointer, program counter, and

indexed addressing. It is a stack machine with a 64K byte

address space, 256 logical I/O ports, and a T-cycle time of

250ns. A typical instruction will require about 2 microseconds to

execute, and there are several rather powerful block search and

transfer instructions. High-speed vectored interrupt linkage is

another virtue of the chip, which sells in quantities for less

than $15.

In the initial conception, the plan was to assign each ZMOB

processor to two scan lines of image data in a 512 by 512 pixel

image. In such a machine, each processor would be connected to

its two adjacent processors (handling adjacent scan lines), and

to an external controlling computer (e.g., a PDP-ll), all over

interrupt driven 8-bit parallel ports with handshaking. At

power-on, ZMOB would be cleared, bringing each processor back to

its basic resident operating system. This system would allow for

the loading of applications programs and parameters into the

processor's RAM. After initialization, all processors would be

forced into their DMA condition while the external machine,

having access to the individual processors' address spaces (as

pieces of one large virtual space) , loaded in the starting image

data. After loading and removal of the DMA condition, the

external machine would broadcast a system-wide start command over

all control ports. Once running, each processor would request

information from its neighboring processors, compute two pixels'

worth of probability vector updates, then advance to the next of

the 512 pixels across its two scan lines. The operation would

progress (pretty much synchronously) in all processors

simultaneously until, at the end of the scan line, each would

broadcast "ready" messages to the external computer. When all had

been accounted for, the external computer would again force all

processors to their DMA state, read the iteration's results for

TV display update, then release the processors on the next

iteration.

Timing simulations showed that such a machine would be quite

profitable. For example, the time required to compute each image

pixel's 3 by 3 8-bit gray-scale average in a 512 by 512 image

would be about 2 fifths of a second, while the time required to

run a simple edge detector over a 512 by 512 image would be about

one second. Even an elaborate relaxation algorithm involving 10

labels per image point would complete each iteration in about 100

seconds, orders of magnitude faster than presently possible on a

conventional machine.

The initial conception of the machine rapidly evolved into a

design capable of supporting a variety of. distributed computing

models, in addition to the vision models .from which the idea

came. The current design, ZMOB, supports the original vision

applications within the same time estimates, and will result in a

machine that is a flexible and general purpose research tool.

4. The Conveyor Belt

In the current design, there are no direct neighbor-neighbor

communication paths. Rather, each processor is a mail stop on a

high-speed, synchronous "conveyor belt" (Fig. 2). The ZMOB

portion of the conveyor belt is thus 256 positions long (but

indefinitely extendible) , and resembles certain existing

synchronous ring networks in its concept [7] (although the types

of messages passed are quite different) . The external

controlling computer, and perhaps other devices such as high

..

PROCESSOR

PROCESSOR MAIL STOP

PROCESSOR MAIL STOP

INTERRUPTS

MAIL STOP Figure 2. Conveyor Belt.

PARALLEL PATH

APPROXIMATELY
5 BYTES WID]

20 mhz

CLOCK IN E

PULSE
LINE

speed disk interfaces, are additional mail stops on the conveyor

belt.

Each mail stop (Fig. 3) is associated. with a processor, and

is physically a part of that processor's PC board. Mail stops are

connected together over dedicated backplane bus lines. Each mail

stop is a high-speed synchronous latch capable of switching data

between the processor and the conveyor belt. While the optimal

width of the conveyor belt has not been determined, we are

presently conducting timing studies based on a width of four

fields of between 8 and 10 bits each: source ID, destination ID,

data, and control.

Conceptually, the conveyor belt's role is to accept a

message from a processor and deliver it to another directly or

indirectly referenced processor, or population of processors.

Ideally, we would like the conveyor belt to serve as a

non-blocking message switcher, i.e., one in which n/2

simultaneous processor-processor conversations could be in

progress at maximum Z80A rates. This would give each processor

the illusion of having instant access to any other processor.

As it turns out, this ideal is achievable. Aside from DMA,

the Z80A's highest memory or I/O data transfer rate is one byte

per 5.25 microseconds (achieved during several of the block

memory-move instructions). This is a hardware limitation of the

Z80A, and cannot be improved upon by clever programming

techniques. To act as a non-blocking message switcher, the

conveyor belt needs only to make one complete revolution every

PROCESSOR PROCESSOR
INTERRUPTS INBOUND MESSAGES

PROCESSOR

SOURCE DATA DEST. ID
PROCESSOR

HOLDING REGISTER OUTBOUND MESSAGES

DECISION t
LOGIC - Q
CONDITIONING SOURCE DATA

INBOUND LOADING
NON-MASKABLE DECISION CONTROL
CONTROL LOGIC
INTERRUPT

L A I GDESTRUCTIVE/NON- CONTROL
DESTRUCTIVE READ \

SPECIFIC DEST./
CATEGORY REQ.

, ,, SOURCE DATA DEST.
TID BYTE ID-

CONTROL BITS

20 mhz
CLOCK IDEX

Figure 3. Mail Stop.

I.

I

5.25 microseconds so that a specific position on the belt (a bin)

will always be available for each processor's next memory

transfer every 5.25 microseconds. Conventional high-speed digital

electronics can support the approximately 50 mhz shift frequency

required for such a conveyor belt. While engineering and

economic considerations might dictate a somewhat slower conveyor

belt in the 20 mhz range, even at a lower rate, most forms of

interprocessor communication can proceed at full Z80A rates.

The conveyor belt is synchronized by two system-wide control

lines, the conveyor belt shift clock, and the index pulse. The

shift clock controls the basic movement of data into and out of

each mail stop, and hence around the conveyor belt. The index

pulse is emitted once per complete revolution of the belt, and

signifies to each processor that its own bin is under the

processor.

Each processor owns the bin indicated by the index pulse.

When this bin is at the processor, any data waiting in the

STAGING REGISTER will be taken onto the conveyor belt. The

staging register, loaded byte-wise by the Z80A at its

convenience, and armed when its data field has been loaded,

serves to synchronize the otherwise asynchronous operations of

the processor and conveyor belt. Outbound data will only be

accepted when the processor's bin is flagged as empty by a bit in

the control byte (i.e., if the message is not consumed by the

intended destination, it will be retained on the belt, unless the

originating processoL has indicated that it wishes to intercept

its own transmission if not consumed in one revolution).

Outbound data requires only a go, no-go decision about

whether the bin is free to accept the contents of the staging

register. For the inbound pathway, each mail stop requires a

small amount of high-speed decision logic for intercepting

conveyor belt messages directed at its processor. In addition to

its numerical address on the conveyor belt, each processor can

advertize a category code. when armed, this category code will

accept any message whose destination field matches the code,

permitting call-by-capability in addition to call-by-name.

When deemed appropriate, a conveyor belt message is lifted

off the belt into the processor's HOLDING REGISTER, and the bin

from which it came marked as empty. It is appropriate to lift a

message into the holding register only when the holding register

is empty and the inbound decision logic determines its processor

to be an appropriate receiver of the message. The processor can

be an appropriate receiver of a message if (1) the message is

directed to the processor by direct numerical address, (2) the

capability code of the message matches the processor's capability

code, or (3) the processor's own message has arrived back at the

processor after one complete revolution on the belt without being

read. Each of these three receive conditions can be selected or

deselected by the processor via processor-writable control bits

in the inbound decision logic. When none are enabled, the mail

stop will accept no conventional messages.

In addition to these three receive conditions, there is a

fourth condition used in conjunction with high-speed block bursts

between a pair of processors. In this mode, neither processor of

the pair will be inspecting or setting any conveyor belt field

but the data field. The receiver must therefore be in a mode

which excludes all inbound messages other than those originating

from the processor with which it is communicating. To support

this private conversation mode, a fourth, overriding component of

the inbound decision logic permits the receiver to identify an

exclusive source of inbound messages. When in this mode, only a

message whose source ID matches the contents of the EXCLUSIVE

SOURCE register will be intercepted by the inbound decision

logic.

when a conventional message is accepted into the holding

register by the inbound decision logic, the BELT DATA AVA.LABLE

status flag is set, and a maskable interrupt generated. The

processor can then inspect the message at its convenience by

reading the holding register contents as a group of input ports.

For block burst mode, in which both the sender and receiver are

executing block instructions (and have disabled their

interrupts), the inbound decision logic will also control the

PROCESSOR WAIT line to provide hardware synchronization between

the processor and belt.

Inbound messages can be read either destructively (i.e.,

consumed) or non-destructively (i.e., noted) by the mail stop,

according to another control bit associated with the message.

Destructive reads are used for one-one conversations, while

non-destructive reads are used for broadcasting messages to the

* population at large.

For absolute external control, there is a class of conveyor

belt control messages that will be unconditionally accepted by a

mail stop. Some of these can be directed at a specific processor

* or class of processors, while others can be broadcast to the

population at large (i.e., are not consumed by mail stops, but

*instead passed along) . All control messages release any

processor-wait condition, and generate a non-maskable processor

interrupt to bring the processor back to its operating system. In

this way, the controlling computer maintains ultimate control

over ZMOB.

5. Patterns of Use

ZMOB will be a general purpose research tool for distributed

and autonomous, parallel computating. As mentioned, each

processor itself would be powerful enough to run its own

operating system with text editors and iLigh level languages, if

it were a stand-alone personal computer attached to a floppy disk

system. (For example, with a 48K memory, each processor would be

capable of supporting a PASCAL compiler.)

In the vision relaxation applications for which the machine

is to be used initially, each processor will be running the same

code on its own subregion of the 512 by 512 pixel image. In a

large relaxation algorithm, each pixel will be represented by,

say, a 10 byte probability vector, meaning that each processor

will work on 10,240 bytes of image data. This data, together with

the relaxation algorithm's code and constant data, will be

shipped to each processor at very high speeds over the conveyor

belt during initialization. The code and constant data can be

loaded at the 5.25 microsecond rate of the Z80A by having the

external computer load one byte of data onto the belt in

non-destructive read mode each 5.25 microsecond. All processors

will note and store each byte via their high-speed block input

instruction loops. This means, for example, that all ZMOB

processors could accept a 10,000 byte program in just over one

tenth second, assuming a conveyor belt speed of 20 mhz. After

loading the program, the external computer loads the image data

at whatever rate it is able. In this mode, if capable of the high

data rate, the external computer could load each revolution of

the conveyor belt with the next 256 bytes of image data, each

directed to a different processor. Assuming the conveyor belt

runs at 20 mhz, and that the external computer is capable of

meeting this data rate, the 2.5 million bytes of a 512 by 512

pixel image of 10-byte-deep probability vectors can also be

loaded in slightly over one-tenth second. After processing,

delivery of results would occur at a comparable data rate.

The vision applications can be characterized as

highly-parallel, nearly synchronous computations, not dissimilar

to those for which ILLIAC IV was designed. However, these

applications use ZMOB in a highly structured way. Another obvious

* mode of operation is one in which each processor runs its own

ANonni& _ _ __ _ _ __ _ __ _ __ _

expert code, and the machine is used more as a population of

experts in the MICROPLANNER [8], CONNIVER [9], or ACTORS [10]

paradigm. We expect much interesting research to open up in this

area.

Another mode of operation would segment ZMOB into fiefdoms.

Each fiefdom would be a cluster of processors, governed by one

agreed-upon distinguished member. This member would be

responsible for one ongoing computation, and would use his serfs

primarily as extended memory which he could page in as needed.

Since the conveyor belt has been designed to be responsive to

high-speed data bursts among processors, we will be able to

develop a very fast paging system capable of paging rates equal

to or surpassing good disks (i.e., no seek latency, but somewhat

slower data rates). In this pattern of use, for example, we might

run LISP on ZMOB by creating a fiefdom for the evaluator, one for

the garbage collector, one for the scanner, one for a real-time

debugger/monitor, and so on.

In a more conventional pattern of use, only one of ZMOB's

processors would be distinguished as the central computing

processor, and all other processors would support high speed

paging and memory management for that one processor. This would

make all 8 or 12 megabytes of high speed memory directly

accessible, and would resemble a large conventional computer with

very fast paging potentials. However, since a single Z80A is

admittedly not a high throughput machine, it will probably turn

out that ZMOB will seldom be used in this mode.

6. Conclusion

It is anticipated that ZMOB development will be in full

swing by late spring 1980. Before that time, we hope to have a

prototype system of 4 to 8 processors running on a small conveyor

belt. The project will be supported by several faculty and

graduate students, and will hopefully be in relatively complete

form by spring 1981. During development, extensive software

development tQols (assemblers, higher level system languages,

simulators, debuggers) will emerge. Hopefully, the machine will

also stimulate and make possible new theories of distributed

problem solving and parallel computing.

Acknowledgements

Azriel Rosenfeld supplied the vision application which

stimulated initial thinking about ZMOB. Through discussions, John

Bane, Randy Trigg and Milt Grinberg have greatly contributed to

the ideas described here.

7. References

1. Duff, M. J. B., and Watson, D. M., The Cellular Logic Array

Processor, Computer J. 20, 1977, 61-72

2. Slotnick, D. L., Research in the Application and Design

Refinement of the Massively Parallel Processing Computer

(MPP), Quarterly Progress Reports, University of Illinois,

Urbana, IL, Oct. 1977 ff.

3. STARAN, in Enslow, P. H., Jr., ed., Multiprocessors and

Parallel Processing, Wiley, NY, 1974

4. Fuller, S. H., et al., A Collection of Papers on CM*: A

Multi-Microprocessor Computer System, Carnegie-Mellon

Computer Science Memo, 1977

5. Dennis, J. B., Misunas, D. P., and Leung, C. K., A Highly

Parallel Processor Using a Data Flow Machine Language, CSG

Memo 134, Lab. for CS, MIT, 1977

6. Rosenfeld, A., Iterative Methods in Image Analysis, Pattern

RecoS. 10, 1978, 181-187

7. Prime Computer, Inc., Prime Net Reference Manuals

8. Sussman, G., Winograd, T., and Charniak, E., Microplanner

Reference Manual, MIT Al Memo 203a, 1971

9. McDermott, D., and Sussman, G., The Conniver Reference

Manual, MIT Al Memo 259a, 1972

10. Hewitt, C., Viewing Control Structures as Patterns of Passing

Messages, MIT Al Memo 410, 1976

....

