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1. INTRODUCTION

Interception of hostile communications is attempted for many diverse
reasons, such as reconnaissance, surveillance, position fixing, identi=-
fication, or a prelude to jamming, Different purposes require different
systems, but whatever the purpose, an interception system nearly always
must achieve the three basic functions of detection, frequency estima-
tion, and direction finding. Although these three elements of intercep-
tion are usually integrated in a practical system, they are discussed
separately in this paper for clarity of presentation. The basic con-
cepts and issues of the three elements are presented at the systems
level, assuming that 1little is known about the signals to be inter-
cepted. Primarily because of the rapidly changing technological base,
the implementation and the engineering details of the interception
systems are not addressed. Although this paper is concerned with the
interception of communications, only slight modifications of the results
are required to apply them to the interception of radar.

The potential interceptor has at least one major advantage over the
communicators. The accuracies of detection, frequency estimation, and
direction finding are determined by the energy of the entire message
transmitted, which may include many symbols. In contrast, the intended
receiver makes decisions with accuracies determined by the energy of
each transmitted symbol. From another point of view, the intended
receiver generally must make many separate decisions, whereas the inter-
ception receiver must make only a few decisions.

2. DETECTION

If the form and the parameters of the signal to be intercepted,
s(t), were known, optimum detection in white Gaussian noise, n(t), could
be accomplished by a matched filter or an ideal correlator. Figure 1
depicts a correlator for the received signal, r(t) = s(t) + n(t), and an
observation interval, T. The comparator input is compared with a fixed
threshold 1level, Vp, to determine the presence of an intercepted
signal. It is a standard result that the probability of false alarm,
Pp/ and the probability of detection, P, are given by1

—

v,
(v,5) 172 °

Vv, 1/2
Ja/ () he
erfc (NOE)I (“o) (2)

-

g, Whalen, Detection of Signals in Noise, Academic Press, Inc., New
York (1971).




where E is the signal energy, No/2 is the noise power spectral density,
and the complementary error functicen is defined as

erfc (x) = £ fw exp (vz) av .
= X

COMPARATOR

s(t)

Figure 1. Correlation detector.

Denoting the inverse complementary error function by erfc-l, we
define

erfc”! (ZPF) - (4)

£ = erfc”! (ZPD) . (5)

From equations (1) and (2), we can calculate the value of E/N necessary
to ensure specified Pp and Py The result is

B o By 6
No (B EX=in (6)

Although the ideal correlator cannot be used when s(t) is unknown,
equation (6) provides a basis of comparison for more realistic intercep-
tion receivers.

To detect the presence of an unknown signal, we assume that the
intercepted signal has random phase and frequency and an unknown con-
stant amplitude. The signal frequency is assumed to be one of M pos-
sible values; that is, the band to be searched is divided into M
channels with center frequencies w., w,, etc. To each discrete fre=
quency, Ww;, we assign a hypothesis, H « Thus, the multiple alternative
hypotheses over an observation interval are




r(t) = n(t), I e 3

r(t) = A sin (?lt + el) + n(t) ., e T B

Asin(wMt+6M)+n(t) e W

where the Si are phase angles. We assume that the phase angles are
uniformly distributed and that each frequency is equally 1likely to
occur. A comparison of the 1likelihood ratios! yields the receiver
depicted in figure 2. The decision rule is the following: choose Hi'
i=1, . .« .« M, if the largest envelope detector output is greater than
the threshold, and choose H, otherwise. If a signal is detected, this
receiver automatically identifies the frequency as the center frequency
of the filter with the largest output.

The matched filters of figure 2 are matched to intercepted signals
that are pulsed sinusoids. To accommodate more general, unknown sig=-
nals, the matched filters could be replaced by bandpass filters. How=-
ever, such a replacement would give a detector that is not necessarily
optimum.

st ENVELOPE

i, DETECTOR

SELECTOR

OF MAX {xl}
L] LARGEST

® INPUT - COMPARATOR
] EVERY
OBSERVATION

M:;:’.?I;SD ENVELOPE INTERVAL

DETECTOR

fm

Figure 2. Optimum detector for pulsed sinusoid of
unknown frequency.

la, Whalen, Detection of Signals in Noise, Academic Press, Inc., New
York (1971).




There remain other problems with this receiver. It is doubtful that
the envelope detectors can function efficiently against some signal
forms. Furthermore, the receiver is designed to operate on a single
pulse. Multiple~pulse operation, which may be necessary for detection
at low signal power levels, requires additional hardware.

2.1 Radiometer

Another approach is to model the signal as a stationary
Gaussian process with a flat power spectral density. Assuming that the
noise present is white and Gaussian, detection theory yields the optimum
receiver degicted in figure 3, which is called an energy detector or a
radiometer. This receiver has the major advantages that it requires
relatively little hardware and no additional hardware is needed for
multiple-pulse detection. The detection of spread spectrum communica-
tions presents no special problem.

r(t) y(t) y2(t)

e BANDPASS — SQUARING |
FILTER DEVICE p———==| INTEGRATOR COMPARATOR PROCESSOR

Figure 3. Radiometer.

Although the radiometer is optimum if we model the signal as a
stationary Gaussian process, it is intuitively clear that this receiver
is a reasonable configuration for determining the presence of unknown
deterministic signals. We now give a performance analysis of the detec-
tor, assuming a deterministic signal. The original analysis was done by
Urkowitz.

The output of the bandpass filter in figure 3 is y(t) = s(t) +
n(t), where s(t) is a deterministic signal and n(t) is Gaussian noise.
If the bandpass filter has center frequency fc and bandwidth W, the
deterministic signal can be represented as

s(t) = s (t) cos W t = s, (t) sin w.t (7)

where W, = 27f . Since the .,pectrum of s(t) is confined within the
filter bandwidth, s (t) and s,(t) have frequency components confined to

%y, L. van Trees, Detection, Estimation, and Modulation Theory, III,
John Wiley and Sons, Inc., New York (1971).

H. Urkowitz, Energy Detection of Unknown Deterministic Signals,
Proc. IEEE, 55 (April 1967), 523.




the band |f| < w/2. The Gaussian noise emerging from the bandpass
filter can be represented in terms of quadrature components as

n(t) = n (t) cos W t - n_(t) sin W t . (8)

If n(t) is filtered white noise of spectral density No/z, then nc(t) and
ng(t) have flat power spectral densities, each equal to N, over |£] %

W/2.

As shown in figure 3, the input to the comparator is

vit) = [t

s y2(1) at , (9)

where the integration interval is equal to the observation interval, T.
®

The comparator output may be sampled or continuously fed to a
Processor. We next determine the probabilities of false alarm and
detection associated with V(t) at a fixed time. For convenience, we
normalize the test statistic to

g A
v==:] yie) a . (10)
S

Substituting equations (7) and (8) and assuming that fc'r > 1, £,>> W,
we obtain the approximation

T
e Y 2
v - W fo [sc(t) + nc(t)] at

T
s 2
i No Jo [ss(t) + ns(t)] ag. !,

From the rsampling theorems for deterministic and stochastic processes,5

respectively, we obtain expressions that facilitate a statistical per-
formance analysis. After an appropriate choice of time origin, we may

write

“R. E. Ziemer and W. H. Tranter, Systems, Modulation and Noise,

Houghton Mifflin Co., New York (1976).
« Papoulis, Signal Analysis, McGraw-Hill Book Co., New York (1977).
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E ss<%) sinc

j=—w

& 1
n_ {t) i—-)-‘-w nc<-ﬁ) sinc

1
ns (t) iz_w ns(ﬁ) sinc

where sinc x = sin Tx/Tx. We make the following approximations, based
upon the known properties of the sinc function:

T
fo sinc (Wt - i) sinc (Wt - j) d&& =0 , i #* 3§ ,

T
[ sinc? (Wt - 1) at = [° sinc? (W - i) dt =+, 0< i< ™, (17)
0 oo

i
IO sinc? (Wt - i) dt =0, i< O0or i > T . (18)

The error introduced by each integral approximation is bounded by
1/2wW. Assuming that TW > 1, the error introduced by equation (18) at
i = 0 is nearly 1/2W. For other values of i, except possibly i = W,
the errors caused by the approximations are much less than 1/2W and
decrease as TW increases. Substituting equations (12) to (18) into
equation (11), we obtain

wegtd @y @

g d
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3 - A .
e v

where Y is the largest integer less than or equal to TW. In view of the
approximations made, this equation becomes an increasingly accurate
approximation of equation (11) as Y increases. It is always assumed

that Y > 1.

We assume that the bandpass filter has a transfer function that
is rectangular about fc' Since n(t) has a power spectral density that
is symmetrical about f_, n_(t) and ns(t) are independent Gaussian pro-
b Thus, nc(i/W) and ng(j/wWw) are independent Gaussian random

cesses.
variables. The power spectral densities of both n_(t) and ng(t) are
S(f) = N. for |f] < W/2 and S(f) = 0 otherwise. The associated auto-

correlation function is

R(T) = NW sinc WT . (20)

This expression indicates that nc(i/w) is statistically independent of
n,(j/w), i # j, and similarly for ng(i/W) and ng(3/W). T =nlt) 48
assumed to be zero-mean, so are n_(i/W) and ng(i/W). Using these facts,

we rewrite equation (19) as
Y Y
VvV = }‘ az -+ l bi ’ ‘21)

where - the a;'s and the b;'s are statistically independent Gaussian
random variables with unit variances and means

my; = Efay]= (;;J@TE Sc (%)' i
my; = E[by] = W sg (%) . (23)

The first sum in equation (21) has a noncentral x2 distribu~
tion! with Y degrees of freedom and a noncentral parametar A, = l m%i.
Similarly, the second sum has a noncentral X° distribution with Y
degrees of freedom and a noncentral parameter Xz = m3j. Since the two

la, whalen, Detection of Signals in Noise, Academic Press, Inc., New

York (1971).
“R. E. Ziemer and W. H. Tranter, Systems, Modulation and Noise,

Houghton Mifflin Co., New York (1976).
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x2 variables are independent, V has a noncentral x2 distribution with 2Y
degrees of freedom and noncentral parameter A = Al + A,. Thus,

y ok () + 7o J ()
Now Py c\W, Now L% s\W,
& 2 2
x ﬁ-; ]0 [sc(t) + ss(t)] at
b i
5 %‘ e (24)
0 0

In terms of the signal energy, E, we have the approximation
L (25)

By straightforward calculations using the statistics of Gaussian var-
iates, the mean and the variance of V are determined to be

E(V] = A + 2y, (26)

VAR(V) = 4X + 4Y . (27)

By using the known probability density functions for a noncentral x2
random variable, the false alarm and detection probabilities can be
expressed as integrals. 1In the absence of a signal, the x2 probability
density function for V is

Bgl®i =0 ¥ 0

where I'(x) is the gamma function. The false alarm probability is

Pp =/ pov) o . (29)
T

.




If the signal is present, the x2 probability density function for V is

1(v\(Y= + A
p, v = 33) "2 oy (- Y1, O, vro,

pl(v) =0, wiR Dy (30)

where In(x) is the modified Bessel function of the first kind and order
n. -The probability of detection is

pD=f P (v) & .
VT

Numerous schemes for evaluating Pp and P, have been proposed in the
literature. !’

We are particularly interested in the case in which T™W is large
since this case includes the interception of spread spectrum communica=-
tions. When T™ is large, Y = TW, and the central 1limit theorem indi-
cates that V is approximated by a Gaussian variate. Using equations
(26) and (27) with A = 0 and equation (29) with a Gaussian density for
po(v), we obtain

- 1 3 _.(.!_-_ZM)_Z]
s gz, o [ S

Vo = 2TW
=1 __1:__7_
2 erfc [(s'rw)l 3 ]

Similarly, we obtain

- 2TW = A

- (o] .
s b (8w + 8x)1/ 2

la. Whalen, Detection of Signals in Noise, Academic Press, Inc., New
York (1971).

34. uUrkowitz, Energy Detection of Unknown Deterministic Signals,
Proc. IEEE, 55 (April 1967), 523.
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Combining equations (4), (5), (32), and (33) gives
(8w + 8A)Y2 g = (gw)/2 8 - 2 . (34)

We can solve this equation to determine the value of E/N0 necessary to
achieve specified values of Po and Ppe Solving for A and using equation
(25), we obtain

V2
= 282 + B(2mw) /2 - E[zqw + 482 + 23(8TW) 1/2] : (35)

Zlm

0

If we assume that TW >> B2 and ™ >> 52, then further simplification is
possible. The result is

E -om¥2@-9, ™ > max (B2, £2) . (36)
=3

Comparing equations (36) and (6), we see that the disparity in perform-
ance between the radiometer and the matched filter increases with TW.
Equation (36) indicates that detection difficulties increase as the
intercepted signal spectum is spread.

Denoting the intercepted signal power by R, and the signal duration

by Ty, the intercepted power necessary to achieve specified values of Pn
and Pp is

1/2
RS=N0-L2.}.—'H1-L—(3-€), T < ¥, W oaex(8 00,

NO(-Z-%)VZ B= 8y o an, o » e, BY L 13N

x
[}

As long as Tlll T, this equation indicates that increasing the observa=-
tion interval decreases the required power. However, if 'I‘l <-T, . an
increase in the observation interval increases the required power.

If the outputs of N, independent. radiometers are averaged, a
straightforward calculation shows that the required R, can be reduced by
a factor of Nr' 2,

i ailadie o i
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2.2 Channelized Radiometer

A channelized radiometer forms when M radiometers are inserted
1 in the branches of figure 2, as depicted in figure 4(a). Each block
‘ labeled radiometer contains a bandpass filter of bandwidth W/M, a squar=-
ing device, and an integrator, but no comparator. Let Ts denote the
sampling interval, which is the observation interval of the constituent
radiometers. To avoid processing extraneous noise, the arrival time of
the signal to be intercepted may be estimated by additional hardware.
The sampling interval may equal or be somewhat less than the minimum
expected signal duration in a channel. To increase effectiveness
against frequency hopping or multiple frequency-shift keying (MFSK), the
processor examines N consecutive comparator outputs and determines that
i a signal is present if r of these outputs correspond to comparator
| inputs that exceed the threshold. For example, if N is odd, a majority
] decision rule requires r = (N + 1)/2. The effective observation inter-
val of the channelized radiometer, given by T = NT_, should usually be
less than the minimum expected message duration. If it is known that
the intercepted signal is narrowband, we can set N = 1. If the presence
of more than one signal is to be verified, it is desirable to employ an
array of radiometers of the form of figure 3 with the comparator outputs
feeding into a processor that analyzes the activity of individual chan-
nels, as shown in figure 4(b). In this configuration, N = 1 and each
bandpass filter has a bandwidth of W/M.

ity

it i et M 2

RS

R T e N R

ik

X
| RADIOMETER

v

SELECTOR
oF

. LARGE ‘

) mvu‘rST A () g

EVERY COMPARATOR f=p| PROCESSOR

3 SAMPLING ]

INTERVAL 1

v

v

$| RADIOMETER

(a)

RADIOMETER #| COMPARATOR

v

v

r(t) PROCESSOR
e

v

RADIOMETER —$| COMPARATOR >

(b)

Figure 4. Channelized radiometers (a) for
detection of presence of hostile communi-
cations and (b) for simultaneous detection
of multiple signals.
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To simplify the analysis of the interception of a single sig-
nal, we assume that the N sets of radiometer outputs are statistically
independent. If Pl,', is the probability that a particular radiometer
output exceeds the threshold when no signal is present, then the proba-
bility that none of the radiometer outputs exceeds the threshold is (1 -
P{,)M, assuming that the channel noises are statistically indepen=-
dent. The probability that exactly i out of N comparator inputs exceeds
the threshold is

i
N N\ M o\ M(N=-i)
P(i,N)—(i>[1-(1-PF)](1-PF) pud ¢l
P (i, N) i>N. (38)

It follows that the probability of false alarm associated with the
observation interval is

N
Py = L P(i, N) .
i=r

If the intercepted signal duration, T,, is less than the observation
interval, T, we assume for simplicity that twl1 = Tl/Ts' the number of
sampling intervals during which the signal is present, is an integer.
Further, we assume that a single radiometer contains the intercepted
signal during each sampling interval. Iet Py denote the probability
that the threshold is exceeded at the end of a sampling interval when a
signal is present. Let Pl') denote the probability that a particular
radiometer output exceeds the threshold when a signal is present in that
radiometer. From these definitions, it follows that

Bp= 1 -(1 mEp)(r p;?)”“ : (40)

The probability of detection associated with the observation interval is
determined by reasoning similar to that which led to equations (38) and
(39). The result is

N

B)j (1 - p[';) g P(i -3, N- Nl) ; (a1)




To compare the channelized radiometer with a single wideband
radiometer, we assume that N = N, and that the energy of the intercepted
signal is equally divided among the N sampling intervals. Since the
total receiver bandwidth is W, the bandwidth of each constituent radi-
ometer is W= W/M. Thus, for large values of T Wg o PI:' and Pf) are given
by equations (32) and (33) with Wy = W/M substituted for W, s T/N
substituted for T, and A; = A/N substituted for A. We have

- 2TW

5 3 rE s
erzc —Tﬁ" ’
AR (BTWMN)I 2

erfc

MNV, = 2TW - AM
(sTwmn + 8dm2y)/2 | °

We define

BIA = erfc”! (21:5.) S

El = erfc”! (ZPI')) .

If Pp and P, are specified, we solve equations (38) to (41) for
P! and P'. Using equations (42) to (45), we perform a calculation
analogous to that used in deriving equation (37). The result is that
the required Rj for detection with specified values of Pp and Py is

i /2 2 2
Ry * N, (13,1.“) (81 - 51) » TP 2T, W >> MN malx(B1 ’ El) . (486)

If a frequency-hopping signal is to be intercepted, the parameter N is
proportional to the hopping rate. Thus, equation (46) indicates that
the required power is proportional to the square root of the hopping
rate. If M >> N, the channelized radiometer requires less power than a
wideband radiometer with the same values of T and W If we set N = 1
and attempt to intercept a frequency-hopping signal by processing each
hop, then T must be decreased as the hopping rate increases.

17




Suppose that the energy is concentrated in a narrow bandwidth
during the observation interval and that the bandwidths of the radi-
ometers are sufficiently wide so that the energy enters a single radiom-
eter. Then we may take r = N = N, = 1. Equations (39) and (41) reduce
to

™
Pp=1-(1-2p)", (47)

= = 5 M=-1
Pp=1- (1 p;))(1 p;.) -
The required value of Ry for detection is determined by the usual method

to be

R, * N, (ﬁ%)l/z (B1 - El) , T, 2T, TW > M max (Bf, E%) ,  (49)

8, = erfc”! [2 -2( - pF)l/M] :

o arpat Tl 2(0 - Pp)
o [ (1 5 PF)l-I/M

Thus, the required power falls approximately as the square root of the
number of channels.

To determine Pp and P) when equations (42) and (43) do not
apply, we assume that the intercepted signal energy is equally divided
among the N, sampling intervals. We use equations (28) to (31) with As
= X/‘N1 substituted for A and n, the largest integer less than or equal

to Tsws, substituted for Y. The results are

1

Pl=___
2“P(n)

F




s Rl

iy

(n - 1)/2 v + A
(‘;—) exp (- e s) In_1(Vv>\s) s (53)
G

By numerical methods, this pair of equations can be solved simultan=-
eously to eliminate V, and express A = N;A_ as a function of Pp
and Py . If we solve equations (38) to (41) for P! and P' in terms of
PF and PD’ then we can obtain an equation for A in terms of PF and PD'
From this equation, we finally obtain the required value of R, necessary
to achieve specified values of Pp and Pp.

The channelized radiometer has been shown to be relatively
effective against conventional and frequency-hopping communications. It
is also useful against pseudonoise spread spectrum communications if
preliminary processing is used to produce a signal with a narrow band-
width (sect. 3).

2.3 Cross Correlator

The ideal correlator of figure 1 can be approximated if the
signal is intercepted at two spatially separated antennas. The cross-
correlation function of the two antenna outputs is estimated for various
relative arrival times, and the peak value of this function is applied
to a comparator. Figure 5 is a block diagram of a realization employing
the discrete Fourier transform (DFT). One way to implement the DFT is
to use a digital filter and the fast Fourier transform algorithm. 2n
alternative implementation is to use the chirp Z-transform algorithm and
charge-coupled devices. An analog realization of the cross=-correlation
function that is similar to the configuration of figure 5 can be accom-
plished with dispersive filters providing Fourier transforms (sect.
3.6). Elegant realizations are possible with acousto-optical devices.

Figure 5a depicts the initial processing of each antenna out-
put. After passage through the bandpass filter of bandwidth W, the
intercepted waveform, r(t) = s(t) + n(t), can be represented as

r(t) = r.(t) cos Wt = rg(t) sin Wty

where the quadrature components, rc(t) and rs(t), are confined to the
band [£f]| < W/2. If the two lowpass filters have bandwidths W/2 and £,
= w/2m > W/2, then r (t) and r (t) are extracted by the operations
shown in figure 5(a). Analog-to-digital converters produce the discrete
sequences rc(i/W) and rs(i/W).

5. a. Sprague, A Review of Acousto-optic Signal Correlators, Optical
Engineering, 16 (September 1977), 467.
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Figure 5. Cross correlator: (a) initial processing of each antenna
output and (b) final processing.

; We regard one of the antennas as a reference and denote its
E - output by the subscript 1. In terms of the signal and the noise, we
: have

rl(t) = g(t) + “1“:) '

r1c(t) = sc(t) + n1c(t)

r.ls(t) = ss(t) + n1s(t) o




Denoting the output of the other antenna by the subscript 2, we have

r,(t) = s(t - Tr)+ ny(t) (58)

aolt) = 8ok = 2,) + nj (&) (59)

ralt) = sgft - T,) + my(6) (60)

where T, is the arrival time of the intercepted signal at this antenna
output relative to the arrival time at the reference antenna output. By
inserting a sufficiently long delay before this antenna output, we
ensure that T, > 0. It is convenient to use the notation

+
A e O O gt

i+ 1 ‘
bi:rZC(W>' 13011'..0, Y"1

for two of the discrete sequences observed during the interval T. We
form sequences with K = y + Ng .t 1 points by augmenting the a; and b,
' with N, - 1 zeros, where N, < Y. As indicated in figure 5(b), the
y conjugate DFT of a, is calculated, giving

:

where Q. = exp (-j27/X) and j = Y=1 . similarly, the DFT of b; is

K=-1

E : L B A Tl B P B S BTSSR (63)

i n;'O b 0




n(-m+k=1i)
K

=1
abs e b
YRRt m k m,k-i k=i %-i°k

where Gik is the Kronecker delta. From the original definitions and
equations similar to equations (12) to (18), we obtain for i << TW,

: Y=1
X+ 1 =9 1
c,= ) r (————————)r ( )
i ek 1c W 2c W

IT L
=W : of (t - —)r () (65)
i/w 1c W/ 2c

This sequence is the output of one of the inverse DFT operations showa
in figure 5(b). An analogous expression can be written for the output
of the other inverse DFT operation. The addition of the two sequences
produces a sequence proportional to

= i i
2 iy f r1c( B V-V)rZC(t) + r.1s(t X VI)IZS(t) Gy
i/w

If £, >> W, then expansions similar to equation (54) lead to the approx-
imation

% &
D = f 2r ( - -') r (t) dat 1= 0, Yo o % o Ny = 1 s (67)
i i/w 1 w 2 C




To interpret the next operation in figure, 5(b), we initially
assume that no noise is present. In this case, equations (55) and (58)
yield

T ;
D, =/ Zst-%st-Trd't,i=0,1,...,Nc-1.(68)
i/w

Thus, the Dy provide sampled values of an approximation of the auto-
correlation Ffunction of s(t). Let i_ denote the index that corresponds
to the largest D; « Assuming that the approximation is adequate and that
the autocorrelation function has a sharp peak, i  is the index closest
to the value T, W. When noise is present, this statement may not be
true; however, to proceed with the analysis, we assume that it is. Note

that Tr can be estimated as iO/W. This estimate can be used for
direction finding (sect. 4.2).

Assuming that the largest D; has index i = T, W< N, ~ 1 and
normalizing, the input to the comparator in figure 5(b) is the test

statistic

T
qf: rl(t & Tr)rz(t) at

0 %y

T=T
0 ({ rl(t)rz(t + 'rr) dtw.

N
~

Substituting equations (55) and (58) and defining nz(t) = n;(t R

and Ta =T = T,., we get

v = ;—0 ({T" [s(t) + nl(t)] [s(t) + nz(t)] at .

In the usual manner, we obtain the series expansion

W) <) * i)
(&) 2@ [6) * )] -
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where Y, is the largest integer less than or equal to T,W. Assuming
that nl(t) and nz(t) are statistically independent, zero-mean, Gaussian
processes, a straightforward calculation yields

BIVE = (72)

VAR(V)-= 2A  +.2¥%. (73)
a a

where Aa = 2Ea/N0 and E, is the energy in interval T,.

For large values of T, W, the test statistic is approximately
normally distributed. It follows that

According to equation (67), the cross-correlation function is
computed for N, sample values. However, the maximum possible value of
T, may be such that only N, <<y sample values need to be computed to
obtain V. When no signal is present, a false alarm occurs if any of the
N. estimated cross-correlation values exceeds the threshold. If N, is
sufficiently small, it is reasonable to assume that each estimated value
has approximately the same probability, denoted by P%, of exceeding the
threshold. This assumption implies the approximation,

Nc
= - - v
PL=1 (1 pF) ;

where P% is the probability that

T
A n,(t) n,(t) at
0

exceeds the threshold. The mean and the variance of equation (76) are
given by equations (72) and (73) with Aa = 0. For large values of T.W,
we obtain




Vv,
P' = erfc -

F V.2
(4'raw)
Equations (44) and (75) yield

8, = erfc™! [2 - 2(1 A Pé.)‘mc]

We obtain in the usual manner the required Rs to detect a signal
with specified values of P, and Phe The result is

'r w)l/2 (B

e TREE R

uo(%)l/z (B -8 T

where '1'1 is the signal duration.

Comparison with equation (37) indicates that the cross corre-
lator can give a theoretical improvement of approximately 1.5 dB over a
single wideband radiometer. Taking into account the approximations made
to derive equation (79), it is possible that in practice the cross
correlator provides no improvement at all. A comparison of figures 3
and 5 indicates that the implementation of the cross correlator entails
considerably more hardware than the implementation of a wideband radi-
ometer. However, as discussed in subsequent sections, the cross corre-
lator requires 1little additional hardware to provide frequency esti=-
mation and direction finding.

The channelized cross correlator is an array of M cross corre=-
lators, each of which has a bandwidth of W/M. The outputs of the array
are applied to a processor. BAnalogously to the channelized radiometer,
the channelized cross correlator may be preferable to a single wideband
cross correlator when the hostile communications are narrowband or when
two or more simultaneous signals are to be intercepted.

Equations (37) and (79) indicate that increasing the bandwidth
of a frequency-hopping system degrades the performance against a single
signal of both the wideband cross correlator and the wideband radiom=~
eter. However, neither of these receivers is sensitive to the hopping
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rate. Increasing the hopping rate makes the practical design of a
channelized receiver more difficult and degrades its performance. £ 4
the rate is sufficiently high, the channelized receiver may have to be
abandoned in favor of a wideband receiver.

3. FREQUENCY ESTIMATION

The immediate purpose of a frequency estimation system is to deter-
mine ‘the center frequency and possibly the spectral shape of an inter-
cepted signal. If a frequency-hopping signal is intercepted, the
purpose is to determine each hopping frequency or at least the frequency
range over which the hopping occurs.

Although not desirable for some purposes, such as message analysis,
preliminary processing of pseudonoise spread-spectrum communications is
desirable before estimation of the center frequency is attempted. An
intercepted binary pseudonoise signal has the form

s(t) = Am(t)p(t) cos wot ¥ (80)

where A is the amplitude, w is the center frequency, m(t) is the
binary message sequence, and p(t) is a binary pseudorandom sequence.
Both m(t) and p(t) take the values +1 or -1. Suppose s(t) enters a
wideband receiver and is squared. Since m = p2 = 1, the output of the

squaring device is proportional to

2 2
Dbl miiire, oD T =
s“(t) A“ cos ot > ) cos 2 ot .

(81)

The double-frequency term is now a pure pulsed sinusoid. Its frequency
and, thus, the center frequency of s(t) can be estimated by the systems
described in this section. The same preliminary processing is useful
against phase-shift keyed communications.

3.1 Channelized Receiver

Estimation theory leads to the receiver of figure 2 for fre-
quency estimation, assuming that the arrival time and the signal wave-
form, except for a uniformly distributed phase angle, are known . ! After
the largest output is selected, the unknown frequency is estimated as
the center frequency of the filter producing the largest output. A
practical approximation to this receiver is the channelized radiometer

of figure 4.

12, Whalen, Detection of Signals in Noise, Academic Press, Inc., New
York (1971).
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Suppose we desire a frequency resolution of A, where A is not
less than the Cramer-Rao bound.! If the entire range of reconnoitered
frequencies is W, then each filter must have bandwidth 2A and M = W/2A
is the number of required filters to attain the desired accuracy. If
the intercepted signal has duration T, then each filter must have band-
width 2/T for most of the signal energy to pass through it. Thus, we
have

A= . (82)

1
T

If M > 6, the number of required filters can be reduced by
arranging the filters in successive stages, as shown in figure 6 for the
case in which each stage has the same number of filters. After an
intercepted signal passes through the first filter bank, its frequency
is theoretically known within an accuracy of 4, = W/ZMS, where M_ is the
number of filters in each stage and 2A1 is the bandwidth of the first
stage filters. A bank of mixers ensures that the filter outputs are
shifted in frequency so that the input to the second stage has a fre-
quency between f T and f el T 2 A ., where fll is the
center frequency of the top flllter in the first bank and f c1 is the
frequency of a local oscillator. After the input passes through the
second filter bank, the frequency is known within an accuracy A, =
A /Ms, and so on. If N, stages of M, filters each are employed, then an

accuracy of A is attained if

N gl (83)

The total number of filters required is M Ng. Disadvantages of the
channelized receiver of figure 6 relative to that of figure 4 are the
increased processing time required for frequency estimation, the reduced
amount of noise and interference filtering, and the ambiguities that
arise when more than one signal is intercepted.

It is not necessary that each stage have the same number of
filters. However, if Ns' W, and A are fixed, it can easily be shown,
using Lagrange multipliers, that the total number of filters is mini-
mized if each stage has approximately the same number of filters (exact-
ly the same number if an integer M_ exists that satisfies eq [83]). If
each stage has the same number of filters and W and A are fixed, it can
be shown that the total number of filters is minimized if each stage has
three filters. (Lagrange multipliers yield H, = e but Mg must be an
integer.)

la, Whalen, Detection of Signals in Noise, Academic Press, Inc., New
York (1971).
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Figure 6. Channelized receiver with filters arranged in
successive stages.

Even when minimized, the number of filters and detectors
required in a channelized receiver may make this method of frequency
estimation expensive. 1In this case, a limited number of filters can be
used to reduce the total bandwidth examined by other fregquency estima~

tion devices.

3.2 Spectrum Analysis with Discrete Fourier Transform

The outputs of the two conjugate DFT blocks in figure 5(b)
provide a scaled phase-shifted estimate of the intercepted spectrum over
the receiver bandwidth. To see how the spectrum is estimated, we first
define the truncated waveforms:

s'(t) = s(t)ql(t) ,

sé(t) = sc(t)q(t) ’

' = (84)
ss(t) ss(t)q(t) '
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where

[}
-
~
o
A
ot
A
=
-~

q(t)

(85)

q(t) 0, otherwise .

We denote the Fourier transforms of s'(t), s'(t), and s'(t) by S(w),
Sc(w), and Ss(w), respectively. From equation (7),

s = 35 (o -0 + 3,6+ 0)

-;—jss(w-wc) +;—j-ss(w+mc) . (86)

We are interested in determining S(w) for w > 0. If wc > W, then

S(m)=%sc(w-wc)-;—j-ss(m-wc), w>0, 0 > . (87)

Thus, we can estimate S(w) if we first estimate Sc(w) and Ss(w).

v' We give the details of the estimation of Sc(w); the estimation
: of S_(w) is similar. For simplicity, we assume K = TW. The sample
values of S (w) are related to those of sc':(t) through the fundamental

relation®
N-1

(o 2 = 2m an

Sc(nx) Nx z sc(m x) N
: m=0
{ 2 S 2T

= § 2 Sc( F‘;)Q:n ’ p ¢ e 0, 1, e s o9 N = 1 ’ (88)

: m=1

where §_ = exp (=j27/N) and

.; -
| S (my) = ) s'(my + kNy) , (89)
Cc Cc
k==®
s - ) 20
s_ (nx) 12-'- S_(nx + iNx) (90)
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We apply these equations with N =Y = ™W, x = 27/T, and y = 1/W. Since
sé(t) = 0 unless 0 < t < T, equation (89) implies that

(o () -

Consequently, equation (88) becomes

We assume that S(®W) = 0, unless |W - w | < ™ or |W + w | < ™. Con-
sequently, S_(w) * 0 for |w| > ™W, and equation (90) yields the approx-
imate result

- 2T 2T
Sc(“T) SC(T 0 <n<T™W?2 ,

e 2T 2™
Sch)—scéxT-zﬂw), ™/2 <n<TW =1 .

Equations (92) and (93) imply that

We conclude that, in the presence of noise, a reasonable estimator of
the sample values of Sc(w) is given by the right side of equation (94)

with s replaced by L Using equations (61) and (62), we obtain

Sc(n—)=ll\ﬂ“ .0 <0< ™/2 ,
Sc(n—) "n'IW' -'1W/2_<_n<0 .
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If no noise is present, then Sc(w) = Sc(w) at the sample values. The
resolution of sc(w) and Ss(w), the corresponding estimator for S (w), is
primarily determined by the duration of the sample pulse. The
resolution is

>
(14

H|=

To obtain a more accurate expression for 4, the effects of the random
noise must be evaluated. However, equation (96) is adequate for roughly
comparing the frequency estimation potential of the cross correlator
with that of competitive systems.

If the frequencies of frequency hopping or MFSK communications
are to be successfully estimated, the observation time, T, must be less
than the period between frequency changes.

3.3 Acousto-optical Receiver

Spectrum analysis using acousto=-optical diffraction has the
potential capability for real-time, wideband frequency estimation of
many simultaneous signals. The principal components of an acousto-
optical spectrum analyzer are shown in figure 7. The diffraction
geometry associated with the Bragg cell is illustrated in figure 8. The
Bragg cell converts an electronic input at frequency £  into a traveling
acoustic wave with velocity v, and wavelength Ay = vy/fg. The laser
light has wavelength Ao in free space and A_/n inside the cell, which
has an index of refraction n. According to Bragg's law, the sound wave
interacts with the light beam to produce a principal diffracted beam,
which is offset from the incident beam by an angle

A £
o0
8' = 2 gin~! (2nv ) (97)

inside the cell and an angle

LI
o-0
- [t 98
¢ =2 8in <2va ) (98)

outside the cell. These equations are valid provided that the acoustic
wave has a single wavelength across the cell. For small values of the
argument, equation (98) becomes

A £
o0
6 = o el RO i (99)
o a
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Figure 7. Acousto-optical spectrum analyzer.

DIFFRACTED
LIGHT

LASER LIGHT

TRANSDUCER
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Figure 8. Acousto-optical diffraction geometry
for input at single frequency.

The lens produces a Fourier transform on its focal plane at the
photodetector array. The center of the diffracted beam converges to a
position a distance

FA £
il
(100)

F6 =
v
a

from the center of the corresponding undiffracted beam, where F is the
focal 1length of the transform lens. Thus, the frequency fo can be
estimated by measuring the relative intensities at the photodetector

array elements.

'De Le Hecht, Spectrum Analysis Using Acousto-optic Filters, Optical
Engineering, 16 (September 1977), 461.
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The diffracted beam has an angular width on the order of 1
A /D, where D is the effective aperture of the Bragg cell. |
Oogsequently, the diffracted beam spreads over length of FA /D in the
focal plane. The frequency resolution is defined to be the Qr!ifference
in frequency between two intercepted signals such that the corresponding
positions in the focal plilane differ by the spread of the diffracted beam
in the focal plane. From this definition and equation (100), the
resolution is

i e A i e

ARy

e o oliga o

(101)

G ki R e

1
ik
c

where T,  is the time that it takes an acoustic wave to cross the cell l
aperture. This equation applies when an acoustic wave of fixed |
wavelength occupies the aperture. A necessary condition for its |
validity most of the time is that T, be less than the period between
frequency changes of a frequency-hopping signal or an MFSK signal.
Thus, the resolution is no better than the inverse of the hopping
period.

In frequency estimation, only one spatial dimension of the
Bragg cell is used. It is possible to design a two-dimensional Bragg
cell array to estimate frequency and direction of arrival simultan-
eously,8 as shown in the schematic diagram of figure 9. The cell inputs
are the outputs of spatially separated antennas. The intensity distri-
bution across the photodetector array has one or more maxima that are
vertically deflected proportionally to the intercepted signal fre-
quencies and are horizontally deflected proportionally to the signal's
angle of arrival. If the largest of the outputs of the photodetector
elements is compared with a threshold, the presence of an intercepted
signal can be determined. Thus, in principle, an acousto-optical system
can detect hostile communications, estimate their frequencies, and find
their directions.

3.4 Instantaneous Frequency Measurement

The instantaneous frequency measurement (IFM) receiver,
illustrated in figure 10, is often used to estimate radar frequencies.
It is possible to use it as a supplementary frequency estimator for
communications, but usually not by itself. Its operation is based on
the relationship among carrier frequency, path length, and phase shift
of a signal. Suppose that, after passage through the bandpass filter of
bandwidth W, an intercepted signal has the form

e A R i T

s(t) = A(t) cos [wot + ¢(t)] : (102)

i 8. a. Coppock, R. F. Croce, W. L. Regier, Bragg Cell RF Signal
: Processing, Microwave J. (September 1978), 62.
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where A(t) is the amplitude modulation and ¢(t) is the angle modulation
function. As shown in figure 10, this signal is delayed by time § in
one branch relative to the other branch. If § is sufficiently small,
then A(t - §) = A(t) and ¢(t - §) = ¢(t) for most of the time. It
follows that

s,(t) = A(t) cos E»Ot + 0(t) - w06] j

A(t - §) = A(t) , ¢t = S) = ¢(t).

BRAGG CELLS FREQUENCY

ANGLE

TWO-DIMENSIONAL
PHOTODETECTOR
ARRAY

RF INPUTS

Figure 9. Array of Bragg cells for simultaneous frequency
estimation and direction finding.

BANDPASS '
FILTER ENVELOPE
DETECTOR

ENVELOPE
DETECTOR

Figure 10. Instantaneous frequency measurement receiver.
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By trigonometric identities,
operations in the figure are found to be

[ NOGT
s,(t) = |2A(t) cos\—5—

-

—

wot + d(t) -
2

w06

2

-

wOG

the outputs of the sum and difference

(105)

[ mOG
2A(t) sin\—— wot + ¢(t) = —5—

s,(t)
3 L o i i

The envelope detectors produce the magnitudes of
the first factors in equations (104) and (105). These signals pass
through logarithmic amplifiers, and the difference is taken. Thus, if
wg8 < m, the processor input is proportional to

for most of the time.

s,(t) = log tan ‘*’0‘5 5 (106)

Since the modulation effects have been removed and 8§ is known, the
processor can calculate an estimate of f; = wp/2m. The tangent
function has an unambiguous inverse only over a range of 7 radians.
Thus, for unambiguous operation over the frequency range of W hertz, we
must have § < 1/2W. A major problem with the IFM receiver is that the
resolution is inversely proportional to §. Since § must be sufficiently
small so that equation (103) is valid for most of the time, the resolu-
tion may be inadequate. Another problem is that the IFM receiver cannot
handle two or more simultaneously intercepted signals of comparable mag-
nitudes.

3.5 Scanning Superheterodyne Receiver

Figure 11 shows a block diagram of a realization of a scanning
superheterodyne receiver for frequency estimation. To explain the oper-
ation, we consider the system response to one scan of the local oscil=-
lator and an input that has constant amplitude, frequency, and phase
over the scan period, T. The input is represented by

s(t) = Acos(ut +6) ,0¢t<T, (107)

where W, is the carrier frequency and § is the phase angle at t = 0,
which defines the beginning of the scan. The scanning waveform, which
is the output of a swept local oscillator, is proportional to

y(t) = cos (wst-nutz) ,0Ct<T,
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Scanning superheterodyne receiver.

Figure 11.

where Wy is the frequency at t = 0 and p is the scan rate, which is the
rate of frequency change. The output of the mixer, s4(t) = s(t)y(t),
passes through a bandpass filter with impulse response h(t) and band-
width 2B. Ignoring a high-frequency term that is suppressed by the
bandpass filter, we have

51(t)=~;-Acos (w1t+'ﬂut2+9) TR e,

where w1 = wo - ws.

The symmetrical bandpass filter has transfer function H(W) that
can be written as

H(W) = H1(w - wc)+ ﬂ1cn + wc) : (110)

where H1(w) is the transfer function of a lowpass filter and Wy is the
center frequency of the bandpass filter. The first term on the right
side has significant values only for positive frequencies, while the
second term has significant values only for negative frequencies.
If h,(t) is the impulse response of the lowpass filter, then

h(t) = 2h1(t) cos wct . (111)

The output of the bandpass filter is

©o

s,(t) = [ s (Dh(t -1 ar. (112)

T —




By using equations (109) and (111) and the pertinent trigonometric
relations, equation (112) becomes

f
A 2
s (t) = — h.(t - T) cos I W - W T + MUTS + 6 + w tl art
2( ) 2 ID 1( ) (1 C) C

(113)

T
A P
- -1 W T T 0 - w gk
Fals Io h (¢ ) cos I:(w1 + c) + mut? 4 ct] a

It is assumed that H)(w) has a sufficiently narrow bandwidth
that the second integral on the right side of this equation is negli-
gible. The time-frequency diagram of figure 12> in  'which
f = w/2r, illustrates the effect of the filter. The filter out-
put, sz(t), is significant only over a portion of the scan period.
Thus, we can extend the 1limits of the first integral to 1= with
negligible error if f, + uT > f. + B/2 and £, < f. - B/2. Under these
assumptions,

2]

{ h1(t ~ T) cos 6»21 + Tut? + 61) T3 (114)

00

N3

sz(t) =

where w, = wy - w - w_and 6, = 08 + w t. To further simplify equation
(114), we assume a Gaussian bandpass filter; that is,

w2 '
H1(w) = exp [= —/— - jws » (115)
4a2

FILTER PASSBAND FREQUENCY LOCUS OF s, (t)

f':“;———-ﬂ I
B eSB

FREQUENCY

fo— 7 e}

TIME ==t

Time-frequency diagram for scanning
superheterodyne receiver.

Figure 12.
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where parameter a is proportional to the bandwidth and § is the filter
delay. If § is sufficiently large, equation (115) approximates a
realizable filter. The corresponding impulse response is

1 iwt
h,(t) = o= {W i, (et av = RS [—az(t -89 . (e

Substituting eguation (116) into equation (114), expressing the
cosine in terms of complex exponentials, and simplifying the result, we
obtain

sz(t) = Re 2 exp [—az(t - 5)2 °F je1 + scz]
2/w

X f exp [-s('r + c)2] at

where Re(x) denotes the real part of x and

s = a2 - jmy ,

-2a2(t - §) - ju,
2s

CcC =

The integral in equation (117) has been evaluated as®

/2
exp [-s(T + c)2] dat: = (g) , Re(s) > 0, Re(VYs) > 0 . (119)

Thus, we have

s,(t) = Re lex ~a?(t - §)2 + 30, + scz] Aa _
¢ § e [ £ 2Vs

= s,(t) cos [6(t)] , bl

Sa. Papoulis, Signal Analysis, McGraw-Hill Book Co., New York (1977)
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2

amatu(e - 6)2 + 4au,(t - 8) - muwl § =
-l
+91+2tan (:E)

a(a* + m2p?)

2
-1/4 a? (21ru1_-_ - 27ué + wz)
) exp

e et a(a” + 122

As indicated in figure 11, sp(t) is applied to an envelope detector
that extracts the envelope, s3(t), from the input. The peak value
of s3(t) is attained when t = § - (m2/21ru) =5 = (f = £, = fc)/u >
Thus, the input frequency f  can easily be estimated from the time
location of the peak value. The normalized peak value, a, which is
defined as the peak value relative to A/2, the peak value for

small p, is
W% o
a = <1 -+ 1'—.1‘-—) 5 (122)

A

The half-power points of s, (t) are determined by setting the
exponential factor in equation (121) equal to 1//_. The pulse duration
of s3(t) between half-power points is determined to be

22 1/2
L ——La“ .

The frequency resolution in hertz, A, as determined by the processor of
figure 11, is approximately equal to WT_, the frequency range scanned

during pulse duration Tp. Thus, the resolution is

U 4

a

1/2
s - a2 1n 2172 6 : "2"2) . L ks

From equation (115), the 3-dB power spectrum bandwidth in hertz
is related to parameter a by

G B LA (125)
™
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In terms of B, we can write

2\1/2
=B (1 + 0.195 Hﬂ .
B

These equations were originally derived for the theory of spectrum
analyzers.

If the scan rate, M, is high,

which clearly show the effects of increasing u.

Using elementary calculus, we determine the optimal filter
bandwidth, Bj, to minimize A, Substituting this value of B, into
equation (127), we obtain AO' the minimum resolution as a function of
H. The results are

B =0.664/u, A =V/2B
0 0 0

The corresponding normalized peak value is

o 0.84 , (130)

which is no longer a function of M. If the optimal bandwidth is used,
these equations indicate that the achievable resolution becomes worse as
W increases, but the peak value does not change.

M. Engelson and F. Telewski, Spectrum Analyzer Theory and
Applications, Artech House, Inc., Dedham, MA (1974).
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3.6 Microscan Receiver

Improved resolution at a high scan rate can be achieved by a
microscan receiver, which uses the compression of pulses. The microscan
receiver (fig. 13a) includes a dispersive filter, whereas the scanning
superheterodyne receiver includes a bandpass filter.

oispersive [ %200 | Enverore | 5300
FILTER > DETECTOR

SWEPT
LOCAL
OSCILLATOR

DISPERSIVE
| FILTER | FILTER

h(t).YStSTd

DISPERS I VE DISPERSIVE
FILTER FILTER

A

DELAY
T

t

IMPULSE
GENERATOR

(b)

Figure 13. Microscan receivers for (a) frequency estimation or
magnitude of Fourier transform and (b) real part of
Fourier transform.

The impulse response of the dispersive filter is modeled as

h(t) = cos (wct - “utz) e 4 R (131)

where Ty is the duration of the impulse response and the amplitude has
been normalized to unity. The dispersive filter can be realized by a
surface acoustic wave device. !’ Substituting this equation and equation
(109) into equation (112) yields the dispersive filter response to one

104, a. Oliner, ed., Acoustic Surface Waves, Springer-Verlag New
York, Inc., New York (1978).




scan of the local oscillator and an input represented by equation (107)
over the scan period. Initially, we set Ty = T Using 2 cos u cos v =
cos (u = v) + cos (u + v), we may write the result as the sum of the two
integrals. We assume that Jwg - Wy = W] << Ju, - wg + W.| so that, for
most values of t, we may neglect one of the integrals. We are left with
the approximation

T

S(t)=5f2cos(w1+6 7S b s Q'R k20
2 4 ™ 3 2 i g
1

sz(t)=0, T O o il T e (132)
where

o e ST TR O

Yy 0 s c R o

8 =0+ w0t - mut? £ (133)

2 c

T1=max (t-Tl 0) ’

T2=.min (t, T) .

If Wy # 0, equation (132) yields

sz(t) Zz_ [sin (1»3'1'2 + 92) - sin (w3'r1 + 62)]

3
(134)
A s 3
N e (-1-2-'1'1) cos |5= ('I‘1+T2)+ o1 -

3

The final form of equation (134) is valid even if wy = 0. For practical
values of the parameters, the cosine factor varies much more rapidly
with time than other factors. Consequently, using equations (133), the
output of the envelope detector is

At 2
= == - f - + 0Lt T
sa(t) 2 Sinc [(fo £ fc)t ut ] #0881

(135)
AC2T - t) SRAES i E s
s (t) = BELEEL gy [(fo £, - £+ ut) (21- t)] , Tt om,
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where we have set w = 2nf.

ko b A ST S e 5

The peak value of s3(t) is AT/4. We define parameter € as

e g

= - - % 136
> fs + fc f0 uT ( )

: If the frequency of the intercepted signal is such that € = 0, then the
: peak value of s3(t) occurs at t = T; that is,

= AT =
B ) e g TR = (137)

We also have [
! '

1 AT 1
s (? & 2uT) S (0.64) , € =0, T >» 0T

(138)
1

1
— o~ = >> .
53('1‘ - uT) Q€ i ¥ g _uT

These equations indicate that 1/uT is an approximate measure of the E
width of the compressed output pulse. Satisfying the inequality ensures |
that the response of the microscan receiver due to one scan does not %
interact significantly with the response due to the next scan.

If the frequency of the intercepted signal shifts slightly,
thren € # 0. A small shift yields

'

S(T+_e_)=a'r'|_e_| « T, (139)
3 H H

where the right side of the equation is the peak value of s3(t). Thus,
the peak value occurs at time t = T + £/p. Using equation (136), we can
estimate the input frequency, fo = mo/Zw, from the time location of the
peak value.

We define the resolution of the microscan receiver, A, as the
value of the frequency shift in hertz, €, that produces a shift in the
time of the peak output equal to the width of the output when & = 0.
Thus ’

B oatie K (140)
= W
where W = uT is the total bandwidth scanned.

43

£
%

:

T e e

e T T R 1 g A 7 M T VP Sy S Py i e




ez b4

The ratio of the input pulse width 'to the compressed output
pulse width is TW, which is called the compression ratio of the micro-
scan receiver. When this ratio is large, a comparison of equations
(140) and (129) indicates that there is a substantial improvement in
resolution of the microscan receiver over the scanning superheterodyne
receiver. A comparison of the receiver outputs for typical inputs of
the form of equation (107) is depicted in figure 14.

SUPERHETERODYNE !

FILTER PASSBAND V bR
&
1.+ & I / e Zz

v

L

t:;//’

FREQUENCY

i

TIME =P
SIGNAL 1

RESPONSE

)

SRR o

SIGNAL 2
RESPONSE SCANNING
SUPERHETERODYNE

P

TOTAL

/ ] N\ RESPONSE
A A TOTAL RESPONSE, MICROSCAN

TIME —

DETECTOR
OUTPUT

Figure 14. Response of scanning s'perheterodyne and
microscan receivers to simultaneous signals.

Due to the presence of the sinc function, equation (135)
exhibits smaller subsidiary peaks in addition to the main peak. In a
multiple~target environment, these side lobes can mask adjacent main
peaks due to other targets, thus limiting the frequency resolution and
dynamic range of the receiver. Consequently, it is sometimes desirable
to follow the dispersive filter with a shaping filter for side-lobe
reduction or to modify the impuvlse response of the dispersive filter

itself.

For a large compression ratio, the transfer function associated
with equation (131) has a flat, nearly rectangular amplitude response
and a quadratic phase response!l over bandwidth W.

The preceding analysis is valid if the modulation period of the
input is large compared with the scan period. If a more rapidly modu-
lated input is present, the microscan receiver can be designed to

L1y, 7. Blinchikoff and A. I. Zverev, Filtering in the Time and
Frequency Domains, John Wiley and Sons, Inc., New York (1976).
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produce an output that is an approximation of the Fourier transform of
the modulation. In this case, the system is often called a chirp trans-
form processor. As previously, we consider the system response to one
scan of the 1local oscillator. Over the scan period, the input is
assumed to have the form

s(t) = s (t) cos(nt-i-a) ,0<t<T., (141)
0

This input is mixed with the scanning waveform of equation (108) to
produce

S(t)=';'s(t)cos(wt+1rut2+9),0£t5T. (142)
1 0 1

The impulse response of the dispersive filter is given by equation
(131), where we assume that T4 > T. We calculate the system output in
the time interval T < t < T4q. Substituting equations (142) and (131)
into equation (112), using trigonometry, dropping a negligible integral,
and substicuting a complex exponential, we obtain

]
Re ;11- exp[j@)ét = 1rut2+6)] L so(r)q(r)exp[-jr (mc o 21mt)] dt

sz(t) =
= Re ;} exp [j(wct - nut2+e)] S, (“’c o he 21rut)
=% IS0 (mc - wl - 21rut)| cos Enct - mut2+0 + ¢(wc - ml - 21rut)] y
Tgtg’rd,. ' (143)

where q(t) is defined in equation (85), Sj(w) is the Fourier transform
of sy(t)q(t), and ¢(w) is the phase angle of the Fourier transform. The
output of the envelope detector is proportional to

= + - - i (144)
s3(t) Iso(ws o Bl 21rut)| yTL R LT

Thus, the magnitude of the Fourier transform of the input
modulation has been produced as a time signal.
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If s,(t) is multiplied by h(t), then equations (131) and (143)
indicate that, after elimination of a double frequency term by filter-
ing, the phase-shifted real part of So(w) is produced as a time sig-
nal. As shown in figure 13(b) the waveform h(t), T £t < Ty, can be
produced by applying an impulse at time T to a dispersive filter with
impulse response h,(t) = h(t + T), 0 < t < Ty = T. The phase-shifted
imaginary part of S;(w) can be produced as a time signal by multiplying
s,(t) by sin (w t = mut?).

Let w, denote the maximum value of w for which Iso(w)l has a
significant value. If

W w, tw, - w,
+ (145)
> 2Ty - 2Ty r oA

then during the time interval T < t < Ty, s3(t) exhibits all the values
of |So(m)l for 0 < w < w_. The range of possible values of fo = wy/2m
for which equation (145) can be satisfied is

£ .
-fm-uT,TzT+—E, (146)

W =
uT a

R d

=

where fm = wm/2n. If we wish to avoid the interference of the Fourier
transform generated by a scan, which occurs during T < t < T_, with the
Fourier transform generated by the next scan, then we set Td < 2T. 1In
terms of the total bandwidth scanned, W = uT, we have

£

m m
s m 3§ 147
o<wR<w< )’T+u<Td<2T ( )

If fm << W and Tgq = 2T, then WR = We

The inequality for Td in equation (147) is necessary for
satisfactory spectral analysis. However, for frequency estimation
alone, setting Tq = T not only is adequate, but also minimizes the
interference between scan responses. :

The chirp transform processor can be used as the basic building
block of an analog version of the cross correlator of figure 5.

In addition to frequency estimation, the microscan receiver can
be used for detection. Alternatively, if interception is verified by a
parallel system designed expressly for that purpose, frequency can be
estimated by the microscan receiver.
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If the scanning period is 1less than the period between
frequency changes of the intercepted signal, the microscan and scanning
superheterodyne receivers can estimate each frequency of a
frequency-hopping or MFSK signal. If not, some frequencies may be
missed, and the estimation accuracy is degraded. The inherent linearity
of these two receivers makes them potentially effective in énalyzing
many simultaneous intercepted signals.

4. DIRECTION FINDING

Signals must be detected, and sometimes the frequency must be
estimated, if direction is to be found. Conversely, direction finding
provides signal sorting, which restricts the number of signals that the
detection and frequency estimation systems must process simultaneously.

For simplicity, the estimation of a single bearing angle is
considered. In a ground-based interception system, an azimuth angle may
be all that is needed. However, airborne systems may require estimates
of both the azimuth and the elevation angles to the intercepted
transmitter.

4.1 Energy Comparison Systems

Energy comparison systems are analogous to the amplitude
comparison systems used in radar!?, but when communications with unknown
parameters are to be intercepted, it is logical to base comparisons upon
the energy rather than the amplitude. The stationary multibeam system
for direction finding is illustrated in figure 15. First, the largest
of the receiver outputs is selected. Next, the larger of the two
receiver outputs corresponding to beams adjacent to the beam that pro-
duced the largest output is selected. The two selected outputs are
denoted by Ly and Lye The processor compares the outputs to a threshold
for detection. The angle of arrival is estimated from the logarithm of
the ratio of L, to Lge The radiation patterns of the adjacent beams are
illustrated in figure 16, where ¢ represents the angle of arrival of an
intercepted signal, and beam pattern Fi(e) produces Lj. The origin of
the coordinate system is defined so that +y and =} indicate the peak
responses of the two beams, respectively. Suppose that the beam
patterns are approximately Gaussian; that is, they are described by

¥ (8 - w? . (148)
Fl(e) = Kl exp [ 2 ]

125, k. Barton, Radar System Analysis, Artech House, Inc., Dedham, MA
(1976) .
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2 Pl st 2L (149
Fz(e) K, exp [ 2 , )
where K, and K, are constants independent of 6, and b is a measure of
the beam width. If the receivers contain radiometers, then the Li are
proportional to the sqguaresof the Fje Thus, in the absence of noise,
the processor input is

(150)

The angle of arrival can be determined by inverting this equation. In
the presence of noise, the same inverse provides an estimate, ¢, of
the actual angle ¢ We have

K
PR ¥
b = Z -2 1n— (151)
8y x2

where Z is now a random variable. Since a is a linear function of Z,
the required processing is quite simple. We give an error analysis
assuming that L, and L, are correctly chosen.

BEAM
PATTERNS

L

BEAM FORMING NETWORK

BEAM 1 BEAM N
RECE‘IVEI‘I e o o |REC:IVER|

y

LECTOR OF LARGEST INPUT
AND LARGEST ADJACENT INPUT

-LOG
ARRIVAL
ANGLE

Figure 16. Adjacent antenna
radiation patterns.

DIRECTION
ESTIMATE

Figure 15. Stationary
multibeam system.
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Because L, and L2 are the outputs of radiometers, they are
statistically independent, noncentral x’- random variables with Yy degrees
of freedom and noncentral parameters A4 and Aos respectively. From
elementary probability theory, the probability density function of Y =
L1/L2, the quotient of two nonnegative random variables, is

p (y) = (yx) (x) dx >0
2 fo S T

Pz(y)= e e

where p"(x) and p12(x) are the density functions for L, and L,,
respectively. The density function p1i(x) is given by equation (30)
with >‘i substituted for A. The noncentral parameters are given by

_ 26 = 9)?
b2 :
25 2(¢ + )2]
r exp ¥ ’
0 b2

where E; is th: energy received when the intercepted signal enters the
center of the beam associated with L; .

From equations (151) to (153) and the fact that 2 = ln Y, we
can determine the root-mean-square error of ¢, which we denote by Ege
By definition and a straightforward expansion,

22 = £[(3 - 912] = var(d) + 82,
where VAR(&) is the variance of $ and B¢ is the bias,

By = 3[3] - . (155)

To evaluate ER, we need the first two moments of 2. For simplicity, we
assume that K, = K, and E4 = E,. When ¢ = 0, equations (153) give A, =
A, so that L, and L, are identically distributed random variables.
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Since Z = 1ln Ly - 1n L2, it follows that

E[(Z] =0 5 ¢ A | e (156)

At other values of ¢, closed~form expressions for the mean and other
moments are difficult to obtain. 1In general, the distribution of L, at
¢ is identical to the distribution of L, at -d« Thus, Ep is symmetric
about ¢ = 0. |

To obtain an approximate expression for E([Z], we write the
integral for E[ln Y] as a double integral and change coordinates:

] =)
E(zl =/ [ x1lnyp (yx)p (x) d dy ?
0 ‘0 11 12 \
o o =
= In(— (v)p (x) ax av . (157)
fo 'ro n(")pu o' : {

The logarithm 1is approximated by the first six terms of its
two-dimensional Taylor series expansion about the point v = my, x = my,
where mq and m, are the mean values of L, and L,, respectively. Thus,

2
m v - m X = m v-m
1n(2)= 1n<—1) + L e o ( 12
x m,

m my 2m?

. {r 2m)?s e - A - o) : (158)

2
2m2 2m1m2

This approximation is accurate over some range of v and x about v = my,
If p11(v) and p12(x) are negligible outside this range, then

xsmz.

the substitution of equation (158) into equation (157) yields an accu-
rate approximation of E[Z]. The ranges of significant values of p,,(v)
and py,(x) are approximately limited by lv - m1| < 304 and |x - m2| <
302, where o, and g, are the standard deviations of L, and L., respec=-
tively. Thus, sufficient conditions for the valid use of equation (158)

are o4 << my and gy << My




e

Making the substitution and using the properties of density
functions, we obtain

’ m\ F o
3 E[Z] = In[—])- — + —— , 0, << m, , O, << m. . (159)
m 2 2 1 1 2 2

2, 2m1 2m2

From equations (26) and (27), we have

mi=Ai+2‘Y,i=1,2, (160)

o§=42\1._+ " I S e et » (161)

An approximate expression for E(z%2] is obtained in an analogous
manner . Combining this expression with equation (159) and dropping
terms higher than second order in <71/m1 and °2/m2' we obtain

fr0 L G, T O SN e (162)

VAR(Z) = 1 1 2 2

-taN ‘ -IQN
+
N R

By using K4 = K, and equations (151), (154), (159), and (162), an
equation for ER can be derived,

2 2 2 9
o o m o [¢)
b2 )1 2 1 1 2 8y¢
B e (e —_— L - — — -
ER 8y + 1n (m) +

m% m2

(163)

Figures 17 and 18 show representative plots of Ep versus e
Figure 17 illustrates the effect of the normalized beam width, b/Yy, on
Eg. For E:/No = 104, y = 103, and ¢ = Y the normalized beam width that
minimizes Ep is approximately 4.5. However, the curves show that this
normalized beam width is not optimal for other values of ¢. Figure 18
= illustrates the effect of increasing the observation interval, T. Since
i an increase in T causes proportionate increases in E and Y, we set E/Ng
. = 10y for each value of Y. The optimal normalized beam width for each
i value of Y and ¢ = Y is chosen. The curves show a steady decrease in Ep
as Y increases.
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Figure 17. Root-mean-square error versus arrival angle
for different beam widths.
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Figure 18. Root-mean-square error versus arrival angle
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Suppose many frequency-hopping signals are simultaneously
intercepted by a channelized receiver. 1If it is impossible to correlate
successive hopping frequencies, the direction of a signal must be esti-
mated on the basis of the energy received in a single channel during a
single hopping period. With this interpretation, Y is proportional to
the hopping period, and figure 18 indicates the loss in directional
accuracy resulting from an increase in hopping rate.

b




Energy comparison with a rotating beam is illustrated in fig-
!5 ure 19. A rotating dish or an electronically scanned phased array is
: used with an omnidirectional antenna a small distance apart. The
receivers are radiometers. Detection of a signal is verified and an
estimate of direction is obtained by measuring the ratio of L, to L, and
comparing the ratio to a threshold. Because a ratio is used, the
effects of amplitude modulation and rotation can be largely eliminated
by the processor. Signals entering through the side lobes and the back
lobes of the rotating beam are inhibited. Alternatively, if two simul-
taneously rotating beams are offset relative to each other, sum and
difference outputs can be produced (fig. 20), as in monopulse radar
systems. If the intercepted signal duration is sufficient, the accuracy
of the direction estimates of the systems of figures 19 and 20 can be
improved by continued processing. After the target is detected, the
4 rotation slows or stops. Processing over an increased observation
! interval allows further adjustment of antenna position until the inter-
i cepted signal's direction of arrival is fixed near the center of the
rotating beam or beams.

S ke o el SRR Rk R g
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Figure 19. Rotating beam system.
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Figure 20. Rotating monopulse system.

The performance analysis of the system of figure 19 is similar
to the analysis of the stationary multibeam system. We give an analysis
of the monopulse system.

Assuming that the receivers of figure 20 contain radiometers,
L; is proportional to the square of the pattern F;(¢). It follows that,
in the absence of noise,

- 2 - F2
L, 2 F1(¢) F2(¢)

2 2
2 Fi(¢) + F3(4)
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If the antenna beam patterns are given by equations (148) and (149) with
K4 = Ky, then

¥ v Sanbiald (165)
b

The angle of arrival can be determined by inverting equation (165). In
the presence of noise, the same inversion provides an estimate of the
actual angle. Near ¢ = 0, the estimate is approximated by

A

2 2
beaBry, sy,

where Y is now a random variable.

The probability density function of Y is complicated. However,
the first two moments of Y can be approximately determined without
explicitly deriving the density. By definition,

o o0 n
(Y] = =t av .
ikmd e (x 7 v) B (P (v) ax

Proceeding in a manner analogous to the evaluation of equation (157), we
derive equations for E[Y] and VAR(Y) from equation (167) with n =
1, 2. Using equations (154) and (166) and retaining only second order

terms in 01/m1 and °2/m2' we obtain

o 11-2- 4(m§0? e m%cg)

SR (m1 + mz)“

1/2
4 e i 2
i i (2 2(my0% - m93) _ 4vs

o M (m1 + m2)3 b2
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At ¢ = 0, we have my =my, =m and 0y =0, =0 s0O that
V2b2g
i EeD-0 = % 169
ER s g 0 5 Yo << m ( )

Appropriate substitution into this equation indicates that we can
achieve ER << b if the observation interval, T, is sufficiently large.
Thus, the potential direction-finding accuracy is much better than a
beam width.

To compare this result with the corresponding result for the
stationary multibeam array, we set my = m, = m, 04 = 0, = O, and ¢ = 0
in equation (163). The result is equation (169). Thus, if ¢ = 0, the
stationary multibeam array performs as well as the monopulse system.
However, if ¢ # 0, increases in the multibeam case. In the monopulse
case, if the intercepted signal duration is sufficient, the antennas can
adjust their positions until ¢ = 0 so that the Ep after adjustment is
given by eguation (169). The main disadvantage with the monopulse or
other rotating beam system is the narrow instantaneous field of view,
which may cause a signal to be missed or may decrease the possible
observation time. On the other hand, when many hostile communications
are present, the narrow field of view provides a valuable signal-sorting
capability.

4.2 Interferometer

Another direction-finding system is the interferometer, which
also forms the heart of phase-comparison monopulse radar systems.12 An
interferometer consists of two or more antennas or groups of elements of
a phased array that use phase or arrival~time information to estimate
direction (fig. 21). The antennas may be rotating and directional.

We first consider the interferometer of figure 21(a). Suppose
a plane wave arrives at angle ¢, where |d| < m/2. If two antennas are
separated by distance 4, then since phase angles are modulo 2T numbers,
the phase difference between the antenna outputs is

eaw-znn,leliﬂl ,¢'_<_

A
s

‘ (170)

N3

125, k. Barton, Radar System Analysis, Artech House, Inc., Dedham, MA
(1976).
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where A_ is the signal wavelength and n is an integer that ensures
satisfaction of the first inequality. If 4 < Ag/2, then n = 0. If
d > A_/2, then n varies with ¢, taking negative and positive values and

the vglue Zero.
Y
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Figure 21. Interferometers using (a) phase information and
(b) arrival-time information.

One antenna output provides a reference. Each of the other
antenna outputs is applied to a separate device that estimates its phase
relative to the reference. This device may be similar to the part of
the IFM receiver in figure 10 that is fed by s(t) and s,(t). The esti-
mates of the relative phases are denoted by 6y.
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E Estimates of the angle of arrival are calculated from the
9, by inverting equation (170). If there are m antennas, the (m - 1)
estimates are given by

~ R 5 K n.
63 = sin”! <2j1riidi g di> ’ S

ki, i S G vt e

where AS is an estimate of AS.

Unless 4 £ As/2, the appropriate value of n; is unknown. In fact,
many different values of n; may satisfy the first inequality. On the
other hand, the accuracy of the estimate of ¢ increases with di' To
obtain an estimate of ¢ that is both accurate and unambiguous, three or
more antennas are used. The first antenna is a reference. The second
antenna 1is separated by d1 < A_/2 from the reference. The other
antennas are separated by increasingly greater distances from the
reference. The first antenna pair provides an unambiguous estimate of
the angle of arrival, ¢. The first and third antennas provide a more
accurate estimate of ¢ but an ambiguous one. However, this ambiguity is :
resolved by the first estimate. Subsequent antennas allow increasingly !
accurate estimates of ¢, provided that the ambiguities can be resolved E

by the less accurate estimates. In designing the interferometer,
distance dy should correspond to the shortest wavelength to be
intercepted.

Assuming that nj is correctly determined, thé probability
density function and moments of ¢; can be calculated by standard
methods once the joint probability density function of 8; and Ag is
specified. If there is a negligible error in Ag, only the probability
density function of 6, is required. Both of these density functions
depend on the details of the receiver implementation.

An alternative method, depicted in figure 21(b), which
eliminates the need to estimate As and the need to resolve ambiguities, ;
is based on the direct measurement of the relative arrival time of a }:
plane wave at two antennas. This relative arrival time can be estimated
by using the vector output, Dy, of the cross correlator in figure 5, or
by using two arrival-time estimators.

Assuming that a plane wave is received, the relative arrival
time is given by

T-d—a—iﬂ,wu%, (172)
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where v_ is the speed of electromagnetic waves. Consequently, the
of arrival estimator is

~ VT ~
¢ = sin”! (_ga£) . 1ol < %

where T, is the relative arrival-time estimator. Retaining the first
three terms of a Taylor series expansion of equation (173) about the
point T, and using equation (172), we obtain

~ v ~
¢=¢+m§7(’1‘r-ﬂl‘r)+ T, )21 1¢l < n/2 , (174)

If T, provides an unbiased estimate of T., then

E["i'r] = Ty s

It follows that

si
=4¢ +—L—-——2d2 2.3 VAR( ) 1¢] < m/2 .

Equation (176) shows that the angle estimator is biased even if the
arrival-time estimator is unbiased. A straightforward calculation
yields the variance of ¢.

The root-mean-square error of $ is obtained by substituting

equation (174) into equation (154). By retaining only the lowest order
term, the result is

v n
Rl T
ER = T cos [ o(r:) L % !
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where a(%r) is the standard deviation of T.. If ¢ = 0, Ep has its min-
imal value. We have

v ~
B =gt o) . e=0. (178)

This equation indicates that large antenna separations are sometimes
necessary if Ep is to be small. For example, if O(Tr) = 100 ns and we
desire Er = 0.05 radians, then we need d = 600 m. However, unless the
antenna separation is much smaller than the distance to the source of
the intercepted signal, the plane wave assumption and, hence, equation
{178) do not apply.

To determine VAR(%I), we must specify the details of the rela-
tive arrival-time estimation. For example, if the relative arrival time
is computed by subtracting one arrival time from another and if the
arrival times are statistically independent with equal variances,
VAR(TI) is twice the variance of the arrival times. Expressions for
the latter variance and various methods for arrival-time estimation can
be found in the literature.l3s1%

5. CONCLUSIONS

When little is known about a signal to be intercepted, the signal
energy and the autocorrelation function present two natural character-
istics upon which the interception receiver can base its processing. A
radiometer, which measures the signal eneygy, and a cross correlator,
which estimates the autocorrelation function, perform similarly as
detectors. The choice between using a rédiometer and using a cross
correlator is best made on the basis of the additional hardware needed
for the receiver's other functions. For example, if a Fourier analysis
of the signal and the direction finding with an interferometer are
planned, then detection with a cross correlator is preferable since it
requires little additional hardware.

A receiver is channelized if its total bandwidth is divided into M
parts by a filter bank, and the filter outputs are processed in paral=-
lel. Against narrowband communications, the intercepted power required
by a channelized receiver is reduced by a factor of YM compared with a
wideband receiver with the same total bandwidth. Channelized receivers
often improve performance against frequency-hopping communications,
although a sufficiently high hopping rate may render a channelized
design impractical. Pseudonoise spread-spectrum communications require
preliminary processing before being applied to a channelized receiver.

135, n. Mityashev, The Determination of the Time Position of Pulses in

the Presence of Noise, MacDonald, London (1965).
%p. J. Torrieri, Adaptive Thresholding Systems, IEEE Trans. Aerosp.

Electron. Syst., 13 (May 1977), 273.
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Channelized receivers, digital filters, acousto-optical devices, and
microscan receivers (chirp transform processors) provide comparable
resolutions as frequency estimation systems. The systems also theoret-
ically can handle multiple signals that are simultaneously inter-
cepted. The IFM and scanning superheterodyne receivers are 1less
attractive systems in terms of potential capabilities, but may be useful
as auxiliary frequency estimators. If speed of frequency estimation is
important, it is desirable to use channelized receivers, microscan
receivers, or acousto-optical devices with parallel readout of the
photodetector outputs. All three systems can provide detection with
little additional hardware. In choosing among these three systems, cost
and practical implementation problems are among the most important

considerations.
1

If widely separated antennas can be deployed and if the signal to be
intercepted has a narrow autocorrelation function, then an interfer-
ometer is an effective system for direction finding. Under other cir-
cumstances, energy comparison systems and possibly acousto-optical
devices are attractive alternatives. Energy comparison systems can be
either stationary or rotating. Rotating systems can adjust the antenna
position to increase the angle estimation accuracy. When many hostile
communications are present, the narrow field of view provides a valuable
signal~sorting capability. However, a narrow instantaneous field of
view may cause a signal to be missed cor may decrease the possible
observation time, thereby decreasing the angle estimation accuracy.

By what electronic countermeasures can the communicators thwart
interception? The data rates and the transmission powers can be kept to
a minimum. Cables and optical fiber links are very helpful whenever
feasible. Directional antennas help to conceal the existence of commun-
ications from the opponent. However, there are constraints on the
degree of directionality that can be designed into an antenna to be used
in the battlefield. An important constraint is the need to keep the

antenna small to hide it from sight.

Since the antenna beam angle can be decreased by the use of a
smaller wavelength as well as by a larger antenna, millimeter or even
higher frequencies are sometimes viable alternatives to radio frequen-
cies. The decision to use smaller wavelengths is tempered by such
things as cost, available power, and propagation properties. The
shorter wavelengths in general are attenuated more than the longer
wavelengths and are more easily blocked by obstructions in their path.
Furthermore, if the beam width is exceedingly narrow, it is difficult to
keep it centered on another station of a communication network.

Time hopping, in which transmissions are increased in total dur-

ation, but contain pseudorandom time gaps, is another general counter=-
measure. Because of the pseudorandom gaps, an interception receiver
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must either process more noise energy than it would otherwise or
decrease its observation interval. In either case, performance
degrades.

Spread-spectrum communications are inherently more difficult to
intercept than are conventional communications. Frequency hopping over
a wide bandwidth, a powerful countermeasure, complicates the design of
an interception receiver and degrades its performance. Detection,
frequency-~estimation, and direction-finding difficulties increase with
the hopping rate.
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GLOSSARY OF PRINCIPAL SYMBOLS

Parameter proportional to bandwidth
Signal amplitude

Amplitude modulation

Measure of beam width

Bandwidth of filter

Distance between two antennas

Signal energy 3

Root-mean-square error of direction estimate

Expected value of x

Center frequency of filter (hertz)

Frequency of swept local oscillator (hertz)
Carrier frequency of intercepted signal (hertz)
Beam pattern

Impulse response of filter

Filter transfer function

Modified Bessel function of order n

Receiver output

Binary message sequence

Number of channels in channelized radiometer
White Gaussian noise

Number of comparator outputs examinec during observation
interval

Twice noise power spectral density
Number of comparator outputs examined during signal duration
Probability density function

Probability of detection




GLOSSARY OF PRINCIPAL SYMBOLS (Cont'd)

Probability that particular radiometer exceeds threshold
when signal is present in that radiometer

Probability that some radiometer exceeds threshold at end of
sampling interval when signal is present

Probability of false alarm

Probability that particular radiometer output exceeds
threshold when ne¢ signal is present

Received waveform, usually after bandpass filtering
Received power of intercepted signal

Signal component

Waveform resulting from truncation of s(t)

Fourier transform of s'(t)

Observation interval; period of single scan
Duration of impulse respongse of dispersive filter

Delay in arrival time of intercepted signal at one antenna
output relative to arrival time at another output

Duration of sampling interval of channelized radiometer
Signal duration

Acoustic velocity

Electromagnetic velocity

Test statistic

Fixed threshold level of comparator

Variance of x

Total bandwidth of system (hertz)

Bandwidth of constituent radiometers of channelized
radiometer

Normalized peak value of response of scanning
superheterodyne receiver

Parameter defined by equation (4)

Parameter defined by equation (44)

66




GLOSSARY OF PRINCIPAL SYMBOLS (Cont'd)
Largest integer less than or equal to ™

Time delay due to filter or device
Resolution of frequency estimation system
Parameter defined by equation (136)

Largest integer less than or equal to T Wy
Phase angle; geometrical angle

Noncentral parameter of chi-square distribution
Acoustic wavelength

Optical wavelength

Signal wavelength

Rate of frequency change (hertz per second)
Parameter defined by equation (5)

Parameter defined by equation (45)
Variance

Arrival angle of intercepted signal

Angle modulation function

Chi squared, pertaining to probability distribution
Parameter related to maximum of radiation pattern
Center frequency of filter (radians per second)
Frequency of swept local oscillator (radians per second)

Carrier frequency of intercepted signal (radians per second
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