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INTRODUCTION

An attractive application for advanced composite materials is as face
sheets for honeycomb-stabilized sandwich structures due to the high structural
efficiency intrinsic with this type construction. A source of concern in
applying this configuration to aircraft is its resistance to low velocity
impact loading which might be experienced in operational service, such as
runway stones, dropped tools, and hail. Although previous reseazrch is limited,
several papers are available on tae impact tolerance and post impact residual
properties of thin-skinned composite sandwich structures. References 1 and 2
conducted experimental investigations of the impacted surface for visual
damage and the load-carrying capacity of graphite/epoxy and Kevlar/epoxy com-
posite sandwich structures after low velocity impact. Damage was measured by
visual observations only. Significant reductions in tensile and compression
strengths were caused by sub-visual damage. Reference 3 carried out an elastic
analysis of a sandwich panel indented by a rigid sphere to determine stresses
and deformations, and to identify critical parameters. The analysis showed
core crushing is possible at relatively low loads and that face sheet strains
depend primarily on the indenter radius and the relative stiffnesses of core
and face sheet. Impact tests were conducted on graphite/epoxy and S-glass/
epoxy sandwich structures. Graphite/epoxy was determined to be highly sus-
ceptible to impact damage due to its low failure strain.

The results of these previous studies demonstrate graphite/epoxy sandwich
construction to be susceptible to impact damage and to suffer static strength
reductions when compared to unflawed reference panels. The objective of this
etudy was to determine the sensitivity of graphite/epexy sandwich construction
to low velocity impact threats with the object of determining criteria for uce
in design and to develop a model to relate laboratory test results to design
situations. The approach used to meet these objectives were: (1) examine
damage mechanisms of graphite/epoxy face sheets subject to hard object impact
type loading, (Z) determine the damage propagation characteristics under com-
pression fatigue, and (3) provide a method to predict the impact response of
a sandwich structure based on a simple static test.

TEST SPECIMENS

The test specimens used in this investigation were rectangular sandwich
beams 3 in. (76.2 mm) wide by 14 in. (355.6 -8) Aong. Face sheets were 8 ply
AS/3501-6 graphite/epoxy laminates of (0 /445 /0 ), layup. Large panels were
fabricated by hand layup and autoclave cure following the cure cycle suggested
by the prepreg supplier. These laminates were then bonded to honeycomb core
to form two large honeycomb panels from which the individual test specimens
were machined, The adhesive used was FM-123-5 film adhesive. The core materials
were 0,50 in (12.7 mm) thick and consisted of HRP-3/16-5.5 in the central 3 in.

x 3 in. (76.2 mm x 76.2 mm) test section and AL-1/8-5052-,003-12 elsewhere,

see Figure 1. These specimens, manufactured by General Dynamics, Convair Division,
are of the same construction as the sandwich specimens studied in a concurrent
program, reference 4. The test section of these specimens is intended to be
representative of typical composite full depth honeycomb sandwich construction
for a secondary structure.
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STATIC INDENTATION TESTS

Static tests were conducted with a Baldwin machine using steel indenters
with 0.25 in. (6.4 mm) and 1 in. (25.4 mm) tip radius. The sandwich test panels
were fully supported on a rigid foundation, Figure 2. Load versus indentation
was recorded during each test on an x-y recorder. Loading was continued until
the indenter had penetrated the face sheet to various predetermined depths, the
depth of indentation being used as a parameter to which any resulting damage
will be related. Note that depth of indentation and depth of damage are not
necessarily equal. From the load-indentation history, the elastic energy for
indentation could be obtained as well as a simple spring constant to represent
the contact force between indenter and sandwich panel. Following each test
the surface of the sandwich panel was inspected for damage both visually and
by NDE using ultrasonic pulse-echo techniques. The ultrasonic detector unit
used was a portable AN/GSM-238 Ultrasonic Flaw Detector Set. This equipment
is currently available in Navy fleet maintenance organizations, therefore,
damage detected during this test program is representative of damage levels
detectable in Navy field service.

s

STATIC TEST RESULTS

Results of tests performed by statically pressing the indenter into a
sandwich panel fully supported on a rigid foundation, show there are several
distinct segments to the load-indentation curve. Although similar for each
indenter, the shape of this curve depends greatly on the radius of the indenter,
see Figure 3. The initial portion of the load-indentation curve is linearly
elastic. No damage is incurred by the specimen in this region. Upon additional
load the core cripples, (the boundary is marked Damage Threshold in Figure 3),
while the face sheet remains intact, Figures 4 and 5. Although visual inspection
and NDE indicate no damage to the specimen at this point, it is obvious from
the knee in the load-indentation curve that, while undectable by the above
means, damage has occurred. Additional displacement of the indenter past the
threshold point is agein essentially linear in load-indentation until face
sheet bending failure occurs and damage becomes readily visible. Between damage
threshold and face sheet bending failure some face sheet delaminatfion occurs
and damage becomes easily detectable by NDE, Figures 6 and 7. At the visual
threshold, damage can be seen as a slight depression in the face sheet, but it
is not obvious and the observer must know the eontact location to be able to
detect the damags. Additional loading past face sheet bending failure results
in another load-indentation curve slope change as both the face sheet and core
break and crush under additional indenter displacement, Figures 8 and 9. The
load will continue to increase until the face sheet has been damaged sufficiently
to allow the indenter tip diameter to pass through, after which the load-indentation
curve is horizontal (zero slope) because the displacement is resisted predomi-
nately by core crushing. Note that for the 1/4 inch (6.4 mm) radius indenter
this occurs just after face sheet bending failure. Results of all static tests
are presented in Table 1. Figure 10 presents the idealized load versus indentation
results for the static tests. Figure 11 is a plot of the damage area determined
by NDE versus indentation. Damage area was calculated considering the damage to
be elliptical in shape.
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x
Damage Area = =~ AB

4
where,
A = maximum length of damage region
B = maximum width of damage region

Although the data has considerable scatter, a definite correlation between
indentation and damage area is apparent.

DYNAMIC MODEL

Reference 3 observes that static tests give a good representation of the
impact response of sandwich panels at low impact speeds representative of drop
tests. Assuming the static and dynamic behavior to be identical, it is possible
to model the dynamic impact of a hard object on a sandwich structure as a two-
degree-of-freedom (2-DOF) spring mass problem, Figure 12. 1In this figure

m; = effective mass of sandwich structure
k1 = effective structural stiffness
w, = impact mass
k., = contact stiffness
w, = coordinate of structure
w, = coordinate of impact mass
and the contact force is approximated by
F=k

- wl), where k, = 0 if w2< vy

2 ¥y 2

The equations of motion of this system are:

mlw1 + (k1 + kz) wl - k2w2 = 0

m.w, + k2 (w

Y2 B e

2
while the sandwich and impactor are in contact,

During periods when the two are separated, the sandwich structure vibrates
freely, so that

nw, +kw, =0

11 11
u . for wz-wl(o
2
-
o e ER
WL s
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where this second condition corresponds to free flight of the impactor. Using
the initial conditions

Wy (0) = vy (0) =0
&1 (0) =0
w, (0) = v (velocity at impact)

2

Reference 5 developed a numerical solution for this 2-DOF spring mass problem
while studying hard object impact on solid laminate beams. This solution was
utilized with slight modification for the present case of impact on sandwich
beams to develop an impact mass versus indentation curve. The modification

was required to account for core crushing. A plastic-elastic load-indentation
curve was assumed, Figure 13. A contact stiffness of k, was assumed during
loading along the plastic portion of the curve and a zontact stiffness of ko
along the elastic portion. For the present study a value of kop = 2k, was used.
The value of k., is approximated from the experimental load-indentation curve by

a linear load-indentation relation assumed so that the ares under the approximate
curve (elastic energy for indentation) equals the area under the experimental
curve at the expected indentation, Figure 14. An indentation versus impact mass
curve for impacts of 20 ft/sec (6.1 m/s) was generated for impact on the sandwich
beams used in this experiment, Figure 15. The beams were assumed simply supported
on a span of 12 inches (304.8 mm) with k, = 4132 1bf/in (723.6 kN/m), m =

0.135 1bm (61.2 g).

If static and dynamic behavior are the same, damage areas obtained from
the static indentation tests should equal the damage areas resulting from impact
tests for equivalent indentation depths.

IMPACT TESTS

Drop weight tests were performed employing variable weight steel indenters
of 1/4 inch (6.4 mm) and 1 inch (25.4 mm) tip radii dropped from a height of
6.211 ft. (1.89 m) to give an impact velocity of 20 ft/sec (6.1 m/s). The
sandwich specimens were simply supported as beams with a 12 in. (304.8 mm) span.
Results are presented in Table II and Figures 16 through 23, Table II also
includes the equivalent static indentation calculated using the 2-DOF dynamic
model for each impact test.

Comparison between static penetration test results and dynamic impact test
results for fixed indenter radius show essentially identical damage resulting
from equivalent indentations. The predicted damage area for dynamic impact is
obtained by using equivalent indentation from Figure 15 and NDE damage area for
this indentation from Figure 11. This predicted damage area is plotted against
the measured damage area and is presented in Figure 24 where good correlation
is seen to exist up to a predicted damage area of 1.0 in.? (6.45 cmz) approxi-
mately, which corresponds to a penetration depth of 0.1 in (2.54 mm) approxi-
mately. Thus, the assumption of identical static and dynamic damage mechanisms
for sandwich panels is viable, at least to describe impacts up to 20 ft/sec

“§e
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(6.1 m/s) and for indentations less than 0.1 in., (2.54 mm). Therefore the
potential damage to a sandwich structure resulting from a range of low speed,
hard object impact threats can be determined from static tests using results
from the simple 2-DOF dynamic model.

FATIGUE TESTS
A. MODIFIED FOUR-POINT BENDING FIXTURE

Compressive fatigue tests were performed on specimens damaged by static
indentation and by drop weight impact, using a four-point bend test fixture
with off-center load introduction at the top support, Figure 25. The specimens
were oriented to place the damaged face sheet in compression. The damaged
region of the face sheet was always on the center of the specimen. The off-
center loading was used to impose a small shear stress through the specimen
test section. The ratio of the average shear stress through the sandwich cross
section to the inplane face sheet stress at the damaged region is 1:588. Test
specimens were loaded cyclically by a hydraulic actuator to a stress ratio for
the test face sheet of R = -coat a frequency of 1.25 Hz until either failure
or 60,000 cycles had been achieved. To facilitate testing, any specimen which
sustained 60,000 cycles without failure was considered to be a run-out. Specimens
were removed for visual and NDE examination at 2000, 4000, 10,000, 20,000,
40,000, and 60,000 cycles in order to observe and measure damage growth.

A undamaged specimen was tested for a reference.
B. FATIGUE TEST RESULTS

Fatigue tests were conducted to a maximum compressive stress at the center
of the test face of 58.7 ksi (405 MPa). The strain corresponding to this stress
is .0059. This reference stress level was determined by taking two-thirds of
90% of B-basis tensile strength for the face sheet laminate and is considered
to be the design ultimate stress (and strain) for a fully bonded (no manufactured
holes) structure. Due to the off-center loading, maximum shear stress in the
core was 100 psi (689 kPa). Fatigue test results are summarized in Table III.
The first entry in Table III, the results for the undamaged specimen, demonstrates
the ability of the basic specimen to withstand fatigue cycling at the reference
strain level. Initial tests were performed on the large-damage specimens (damage
readily visible) to access the effect this level of damage would have on com-
pressive fatigue life, All specimens failed during the first cycle (static
failure)., Failure stress (and strain) ranged from 65% to 100% of reference
(Table II1I, specimens 1 through 6). The failures were all buckling failure of
the compressive face through the center of the damage area, Figure 26.

The next series of fatigue tests were run on specimens with damage insufficient
to be detected either visually or ultrasonically. This is the most critical test
point because if this "undectable'" damage affects the sandwich properties, it
could severly limit the use of sandwich construction in aircraft structural elements.
Results of fatigue tests showed no discernible effect from the level of damage,
at least to 60,000 cycles.

PIRER R i
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Tests run on specimens with ultrasonically detectable, but not visually
detectable damage, showed no effect on fatigue life for 1 in. (25.4 mm) radius
induced damage; but two specimens, with 1/4 in. (6.4 mm) radius indenter induced
damage, failed in fatigue. Again, failures were compressive buckled through the
test section.

Specimens damaged at the visual threshold level all failed during fatigue
testing, one specimen failed in as few as 9 cycles while another survived as many
as 7411 cycles. Failure modes were the same as previous tests.

Figure 27 presents fatigue life versus indention from the above tests, with
the results for those specimens which failed statically (upon initial load
application) shown to have a life of 0.5 cycles or less each. Because of the
large scatter in this data, only qualitative conclusions can be drawn.

The results tend to support the equivalence of static to dynamic damage.
Indentations of up to .030 in. (.76 mm) for the 1/4 in. (6.4 mm) radius indenter
and up to .045 in. (1.14 mm) for the 1 in. (25.4 mm) radius indenter do not
affect the fatigue life. These indentations correspond to ultrasonically detect-
able damage areas of equivalent diameter of .45 in. (11.5 mm) for the 1/4 in.
(6.4 mm) radius indenter and .60 in., (15.2 mm) equivalent diameter for the 1 inm.
(25.4 mm) radius indenter based on the indentation versus damage area curve,
Figure 11,

Fatigue tests were conducted on specimens with impact damage less than
readily visible but above the visual threshold to determine the maximum strain
level the subject sandwich structure can tolerat: in service and still suffer
no degradations due to the greatest damage which would not be easily seen and
therefore not immediately repaired. From the results of these tests as pre-
sented in Figure 28 (Table III specimens 33 thru 39), it is seen that these
visually damaged specimens can withstand fatigue cycling to a strain of .0033
for at least 100,000 cycles.

Current Navy design criteria for graphite/epoxy structures sets the design
ultimate compression strain at ,0050 for laminates with 1/4 in. (6.4 mm) diameter
manufactured holes. This results in a design limit strain of .0033, equal to the
maximum reference strain determined above. Thus designs which compensate for the
inclusion of fastener holes should also accommodate visual threshold impact damage.

It is interesting to note that the effects of the damage caused by the
.696 1b (316 g), 1/4 in. (6.4 mm) radius indenter impacting the sandwich beam
at 20 ft/sec (6.1 m/s) on compressive-fatigue life is roughly equivalent to the
effects of the 1.5 1b (680 g), 1 in, (25.4 mm) radius indenter impacting the
beam at the same speed.

The four-point-bending test fixture used in the previous tests imposes a
load state on the sandwich beam which would be encountered on secondary structures
such as flaps, spoilers, elevators, etc. In these cases, the sandwich is loaded
by bending so that the upper and lower faces are stressed oppositely. This is
considered a severe test since failure of one face destablizes the structure.
Uniaxial in-plane compression, with both faces loaded the same,would allow the
load to transfer by shear through the core from the damaged face to the undamaged

-10-
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face. It was postulated that the effect of damage would therefore not be as

great. A structural example of sandwich panels under such uniaxial type loading
is fuselage skins.

Fcur sandwich beams were impact damaged and subsequently fatigue tested in
uniaxial compression at R = -©coin a 100 KIP MTS fatigue machine to determine if
there was a difference in the fatigue life of the damaged face sheet when compared
with results of identically damaged panels in four-point-bending fatigue tests.

An undamaged specimen was also tested. Results are presented in Table IV and in
Figure 28. 1It is seen that fatigue life of the damaged specimens during the
uniaxial fatigue test is below that determined from the four-point-bending fatigue
tests. The reason for this difference is discussed in the next section.

DAMAGE GROWTH

0f the 39 specimens fatigue tested under four-point-bending, only in 7 cases
was damage growth observed; see Table III specimens 14 through 17, 29, 35 and 36.
Where growth was noted, it usually occurred within the first 2000 cycles, after
which no additional growth was noted, even though in one case the specimen failed
6000 cycles later. Of the total of 14 specimens which failed in fatigue only 2,
specimens 16 & 36, had any observed damage growth prior to failure. Damage growth
consisted of a slight increase in the ultrasonic detectable damage region and/or
minor delamination of the surface ply. In general, though, the size of damage
did not grow with cycling, although there may be a weakening of the matrix around
the damage region and/or a growth of damage within the initial damage region
which contributes to eventual failure.

The results of the uniaxial compression fatigue tests were in sharp contrast
to those of the four-point-bend fatigue tests. Dramatic delamination of the
surface 0° ply was observed in uniaxial testing on the damaged face sheet. Static
strength of a damaged sandwich panel in uniaxial compression was also less than
a similarly damaged sandwich panel in the four-point-bend test. Table IV
summarizes the results of the uniaxial compression fatigue tests and Figure 29
traces the growth of the surface ply delamination for one specimen. It can be
concluded that the effect of cycling tended to reduce the stress concentration,
as two specimens which had been cycled at strains below that of the static failure
point were then able to withstand limited cycling above the static failure strain.

The reason for the difference in damage growth between uniaxial and four-
point-bend tests is attributed to the curvature of the sandwich face imposed by
the bending test which constrains the 0% surface ply in the direction normal to
the face and prevents this ply from buckling upward away from the face sheet
and therefore causing delamination. The uniaxial loading imposes no such con-
straint, Figure 30, Reference 6 observed that the use of a 0 ply as the outside
layer causes delamination to occur much sooner than if the outer plies were 1ﬁ5°.
According to reference 6, it was uncertain if the reason for the matrix failure
resulting in the delamination results from the cycling of the interlaminar shear
stress, the tensile stress normal to the face or a combination of both. The
results of this work suggests the delamination results from the tensile stress
normal to the face.
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CONCLUSIONS

A method which employs static tests to simulate impact damage of a graphite-
epoxy sandwich structure has been developed and validated.

For graphite-epoxy structures, impact damage which is not visually detectable
can degrade structural properties, although designs which compensate for the
use of fastener holes will also accommodate visual threshold impact damage.

For graphite-epoxy structures, ultrasonic pulse-echo inspection will detect
impact damage which degrades structural properties. -
Failures in graphite/epoxy sandwich structures with impact damage are
associated with crippling of the core which results in higher bending stress

in the face sheet, and delamination of the face sheet, both of which contribute
to ultimate buckling failures in compression.

Indenter radius is an important parameter in influencing impact damage of
graphite-epoxy structures.

RECOMMENDATIONS

Gr/Ep structures subject to impact threats should be designed to reduced
strain allowables to compensate for possible impact damage. An approach
could be to require a design to be able to tolerate a 1/4 in. (6.4 mm)
diameter hole at any location on the surface of the structure.

An impact damage indicator system should be developed. This could be a
permanent coating applied to the surface of the structure which would change
color upon a structurally degrading impact.

A core material for graphite-epoxy sandwich structures should be developed
which would absorb more loading normal to the face sheet before crippling.

Lamination sequences used in graphite/epoxy sandwich skins incorporating
+45° outer plies seem desirable.
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Figure 4. Damaged Face for 1/4 inch (6.4 mm)
Radius Indenter at 0,0144 inches (0.37 mm) Indentation
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Figure 5. Damaged Face for 1 inch (25.4 mm)
Radius Indenter at 0.020 inches (0.51 mm) Indentation

25

- -




NADC-77305-60

R T e Lo W S

FRERRRRY 1 T

rll[”'lllll’lll]'vl!]f/ [ .’ [ 1 | I | , | ’ | ,

e 1

o’

f{,‘lll,f{n;:’:,:w:{,

T
2

Figure 6. Damaged Face for 1/4 inch (6.4 mm)
Radius Indenter at 0.032 inches (0.81 mm) Indentation.
(Delamination Outlined by White Pencil Circle)
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Figure 7., Damaged Face for 1 inch (25.4 mm)
Radius Indenter at .029 inches (.74 mm) Indentation.
(Delamination Outlined by White Pencil Circle)
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Figure 8. Damaged Face for 1/4 inch (6.4 mm)
Radius Indenter at .15 inches (3.81 mm) Indentation.
(Delamination Outlined by White Pencil Circle)
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INDENTATION

Regions

A - no damage, linear repeatable action

B-1 - damaged, undetectable visually or by UPE (Ultrasonic Pulse-Echo)
B-2 - damaged, detectable by UPE only

B-3 - damaged, detectable visually and by UPE

C - load drop with no or minute indentation increase

D =~ obvious damage, face sheet in bending failure and core in crushing
E - obvious damage, face sheet penetrated, core in crushing

Unique Points

1l - initiation of damage, core crushing only

initiation of UPE detectable damage, of face sheet
initiation of visually detectable damage of face sheet
initiation of obvious face sheet damage

initiation of load increase after sheet failure
penetration of face sheet

test end at predetermined maximum indentation

NoOOWVMPWN
(]

Figure 10, Idealized Load vs. Indentation Results for Static Test.
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Indentation

Figure 13. Plastic Elastic Load Indentation Curve

Load

Indentation

Figure 14. Approximation of ky from Actual Load-Indentation Curve.
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Damage Face for 1/4 inch (6.4 mm) Radius

Indenter Impact of 0,110 1bm (49.9 g) at 20 ft/sec (6.1 m/s).
(Delamination Outlined by White Pencil Circle)

Figure 16.
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Figure 17. Damage Face for 1/4 inch (6.4 mm) Radius
Indenter Impact of 0.246 1lbm (111.6 g) at 20 ft/sec (6.1 m/s).
(Delamination Outlined by White Pencil Circle)
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Figure 18, Damage Face for 1/4 inch (6.4 mm) Radius
Indenter Impact of 0.386 1bm (175.1 g) at 20 ft/sec (6.1 m/s),
(Delamination Outlined by White Pencil Circle)
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Figure 19, Damage Face for 1/4 inch (6.4 mm) Radius
Indenter Impact of 0.696 1lbm (315.7 g) at 20 ft/eec (6.1 m/s).
(Delamination Outlined by White Pencil Circle)
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Figure 20, Damage Face for 1 inch (25.4 mm) Radius
Indenter Impact of 0,220 1bm (99.8 g) at 20 ft/sec (6.1 w/s).
(Delamination Outlined by White Pencil Circle)
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Figure 21, Damage Face for 1 inch (25.4 mm) Radius
Indenter Impact of 0,500 lbm (226.8 g) at 20 ft/sec (6.1 m/s).
(Delamination Outlined by White Pencil Circle)

-38-




NADC-77305-60

. w. -

Apl ,V;Jf IHIV’W

ERLING 1

Il Ul ; [T
| 3

/‘!l’ill,

Figure 22, Damage Face for 1 inch (25.4 mm) Radius
Indenter Impact of 0,800 1bm (362.9 g) at 20 ft/sec (6.1 m/s).
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Figure 23, Damage Face for 1 inch (25.4 mm) Radius
Indenter Impact of 1.50 lbm (680.4 g) at 20 ft/sec (6.1 m/s).
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Figure 25.
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Typical Fatigue Failure Mode

Figure 26,
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