

Revised LIDS-P-906-A
October 1979

A DISTRIBUTED ALGORITHM FOR MINIMUM WEIGHT SPANNING TREESt

by

R. G. Gallager*

P. A. Humblet**

P. M. Spira***

ABSTRACT

A distributed algorithm is presented that constructs the minimum

weight spanning tree in a connected undirected graph with distinct edge

weights. A processor exists at each node of the graph, knowing initially

only the weights of the adjacent edges. The processors obey the same

algorithm and exchange messages with neighbors until the tree is con-

structed. The total number of messages required for a graph of N nodes

and E edges is at most 5N log2 N + 2E and a message contains at most one

edge weight plus log2 8N bits. The algorithm can be initiated spontaneous-

ly at any node or at any subset of nodes.

tThis research was conducted at the M.I.T. Laboratory for Information and
Decision Systems with partial support provided by NSF under Grant ENG-77-19971
and by ARPA under GRANT ONR/N00014-75-C-1183. .
-*Room 35-206, Laboratory for Information and Decision Systems, Massachuse s
Institute of Technology, Cambridge, MA 02139.

C,
**Room 35-203, same as * - \

*** Apple Computer Co., 10260 Bandley Drive, Cupertino, .CA 9Sr4\.- \ 1- -"\\ ~~0

\ C'

i__ _ _ mi

-2-

I. Introduction

In this note we consider a connected undirected graph with N nodes and

E edges, with a distinct finite weight assigned to each edge. We describe

an asynchronous distributed algorithm which determines the minimal weight

spanning tree (MST) of the graph. We assume that each node initially knows

the weight of each edge adjacent to that node.

Each node performs the same local algorithm, which consists of sending

messages over adjoining links, waiting for incoming messages, and processing.

Messages can be transmitted independently in both directions on an edge, and

arrive after an unpredictable but finite delay, without error and in sequence.

After each node completes its local algorithm, it knows which adjoining edges

are in the tree and also knows which edge leads to a particular edge designated

as the core of the tree.

We view the nodes in the graph as being initially asleep. One or more

of the nodes then wake up in any order and start their own local algorithms.

The still sleeping nodes will wake up upon receiving messages from awakened

neighbors, and will then proceed with their local algorithms.

Under these assumptions, we shall see that the total number of messages

exchanged by the nodes to find the MST is less than 2E + SN log 2 N. Each

message consists of at most one edge weight, one integer between 0 and log2 N,

and three additional bits.

Our algorithm is similar to an earlier algorithm described by Spira (1],

which followed an earlier algorithm given by Dalal [2]. Spira did not

analyze in detail the number of messages required by his algorithm, but gave

a heuristic argument that the expected number of messages (over randomly

i i .
4 -|.J I I

-3-

selected graphs) would grow with E and N as E + N log N.

If the nodes of the network have distinct identities that can be ordered,

then it is easy to extend the algorithm to the case where the edge weights

are not distinct. One simply appends to the edge weight the identities of

the two nodes joined by the edge, listing, say the lower ordered node first.

These appended weights have the same ordering as before with ties broken by

the node identities. If the nodes do not know the identities of their

neighbors, then each node can send its identity over each adjoining edge

thus requiring a total of 2E extra messages. We have also developed another

algorithm, to be briefly described later, that doesn't require distinct

weights, and thus doesn't require these additional 2E messages.

If the network has neither distinct edge weights nor distinct node

identities, then no distributed algorithm (of the type described above)

exists for finding an MST with a bounded number of messages. This can be

seen most easily for a three node fully connected graph with equal weight

edges. Any two edges form an MST, but since the nodes obey the same algo-

rithms, they have no way to choose. If nodes choose random identities, then

the algorithm could be made to work as soon as the identities were all dif-

ferent, but there is no way to guarantee this in a finite number of choices.

Naturally the expected number of required choices is small, but any bounded

number of messages will fail with some positive probability.

Distributed MST algorithms are useful in communication networks when one wishes

to broadcast information from one node to all other nodes and there is a

cost associated with each channel of the network. If the cost of using a

channel in one direction is different from that in the opposite direction,

______ kl

-4-

then the MST does not provide the desired solution, but a companion paper

[5] treats this more general problem. In addition to the broadcast ap-

plication there are many potential control problems for networks whose com-

munication complexities are reduced by having a known spanning tree. With

topology changes caused by possible failures in the network, it is desirable

to be able to generate a spanning tree starting from any node or subset of

nodes, and the algorithm here is as efficient as any we have been able to

find for generating an arbitrary spanning tree. Finally there are a number

of applications for distributed algorithms that can select the node in the

network with the highest identity number. An efficient distributed algorithm

for this problem starts with the MST algorithm and then uses the resulting

tree to find the higlhest numbered node.

-5-

II. Review of Spanning Trees

We assume the reader is familiar with the elementary definitions and

properties of graphs, paths, cycles, trees, etc., which can be found, for

example, in [3], [4]. Suppose that each edge e of a graph has a weight

w(e) associated with it. The weight of a tree in the graph is defined as

the sum of the weights of the edges in the tree, and our objective is to

find a spanning tree of minimum weight, i.e., an MST. A fragment of an MST

is defined as a subtree of the MST, i.e., a connected set of nodes and edges

of the MST. The algorithm starts with each individual node as a fragment

and ends with the MST as a fragment. Define an edge as an outgoing edge of

a fragment if one adjacent node is in the fragment and the other is not.

Property 1: Given a fragment of an MST, let e be a minimum weight o tgoing

edge of the fragment. Then joining e and its adjacent non-fragment node to

the fragment yields another fragment of an MST.

Proof: Suppose the added edge e is not in the MST containing the original

fragment. Then there is a cycle formed by e and some subset of the MST edges.

At least one edge x # e of this cycle is also an outgoing edge of the fragment,

so that w(x) > w(e). Thus deleting x from the MST and adding e forms a new

spanning tree which must be minimal if the original tree were minimal. The

original fragment with e added is a fragment of the new MST.

Property 2: If all the edges of a connected graph have different weights,

then the MST is unique.

Proof: Suppose, to the contrary, that there are two different MST's. Let e

be the minimum weight edge that is in one but not both of the trees, and let

T be the set of edges of the MST containing e and T' be the edge set of the

V,_

-6-

other MST. The edge set (eIUT'must contain a cycle and at least one edge

of this cycle, say e', is not in T (since T contains no cycles). Since the

edge weights are all different and e' is in one but not both of the trees,

w(e) < w(e'). Thus {e}UT' - {e') is the edge set of a spanning tree of

smaller weight than T', yielding a contradiction. These properties immediate-

ly suggest a general type of algorithm for finding the MST for a graph with

different edge weights. One starts with one or more fragments consisting of

single nodes. Using property one, these fragments can be enlarged in any

order. Whenever two fragments have a common node, property two assures us

that the union of these fragments is also a fragment, allowing fragments to

be combined into larger fragments. The standard algorithms for generating

MST's correspond to different orders in which the above fragments are enlarged

and combined. For example, the Prim-Dijkstra algorithm [6], [7] starts

with a single node and successively enlarges the fragment until it spans the

graph. The Kruskal algorithm [81 starts with all nodes as fragments and

sucessively extends the fragment with the smallest weight outgoing edge,

combining fragments where possible. Other algorithms [9], [1], [2] start

with all nodes as fragments, extend each fragment, then combine, then extend

each of the new enlarged fragments, then combine again, and so forth.

The . Prim-Dijkstra and Kruskal algorithms work equally well if some of

the edge weights are the same. To see this, simply impose an arbitrary order-

ing on the equal weight edges consistent with the choices made in the execution

of the algorithms. Algorithms such as [9], [1], and [21 that extend several

fragments without intermediate combining do not necessarily work correctly

with equal edge weights. For example, in a three node fully connected network

I,.
, ,= , ii :J -

-7-

with equal weight edges, each node could extend with a different edge, giving

rise to a cycle when the fragments are combined.

The algorithm to follow is similar to [9], [1], and [2], but is some-

what less synchronized in the sense that each fragment proceeds at its own

speed to find its minimum weight outgoing edge and then to combine with the

fragment at the other end of that edge. More specifically, we call the

fragments consisting of individual nodes level 0 fragments, and for each

i > 1, fragments formed by combining two or more level i-l fragments are

called level i fragments. If the minimum weight outgoing edge from a level

i fragment, F, goes to a node in a level i' fragment, F', then if i < i',

the fragment F simply joins the fragment F'. If i = i', and if the minimum

weight outgoing edge from F' is the same as that from F, the two fragments

join into a level i + 1 fragment. Otherwise fragment F simple waits until

F' joins some fragment that F can join by the previous rules. This waiting

cannot lead to a deadlock, since the fragment of lowest level in the graph,

with the smallest minimum weight outgoing edge at that level never has to

wait; either the minimum weight outgoing edge goes to a fragment of higher

level or to a fragment of the same level with the same minimum weight out-

going edge.

V<

III. Description of the Distributed Algorithm

The algorithm to follow has two major parts: first the nodes in a

fragment must co-operatively find the minimum weight outgoing edge from the

fragment, and second the fragment must combine into a higher level fragment

at the appropriate time. We first describe the structure of a fragment.

Each fragment (other than a single node, level 0 fragment). has an identity

known to all the nodes in the fragment. This identity is in fact the weight

of a particular edge in the fragment called the fragment core. Each edge of

the fragment other than the core has a direction associated with it, the

direction of thepath in the fragment to the core (see Figure 1). Each node

in the fragment has one adjacent

-0------------

FIGURE 1

FRAGMENT

Fragment edges and nodes are indicated by solid lines and
dots; non fragment edges and nodes by dotted lines and circles.

fragment branch directed toward the core, and the node calls this branch

the in-branch. The core itself is the in-branch for each of the two adjacent

nodes. This structure allows the nodes adjacent to the core to broadcast

messages efficiently to the other nodes of the fragment and to collect

information from them. We shall first describe the algorithm for fragments

at non-zero levels. Zero level fragments will be described later.

• . II I I I4

-9-

A new fragment, at some level i, is formed when two level i-i fragments

combine, both having the same minimum weight outgoing edge. The core of this

new fragment then becomes the above minimum weight outgoing edge. The two

nodes adjacent to the core then broadcast an Initiate message to the other

nodes of the fragment. This message is sent outward on the tree branches

and is relayed outward by the intermediate nodes on the tree. The initiate

message carries the new fragment level and identity as arguments, providing

all nodes in the fragment with this information. The initiate message also

contains the node state, which we discuss later. If other fragments at level

i-1 are trying to connect in to the nodes of the new level i fragment, the

initiate message is passed on to them also, putting them into the new fragment.

The initiate message is also passed on to fragments trying to cunnect into

these new nodes, and so forth.

When a node receives this initiate message, it starts to find its

minimum weight outgoing edge. The difficulty here is that a node does not

know which edges are outgoing. This difficulty is resolved as follows: Each

node classifies each of its adjacent edges into one of three possible states:

Branch, if the edge is a branch in the current fragment; Rejected, if the

edge is not a branch but has been discovered to join two nodes of the fragment;

and Basic if the edge is neither a branch nor rejected.

In order to find its minimum weight outgoing edge, a node picks the

minimum weight Basic edge and sends a Test message on it. The test message

carries the fragment identity and level as arguments. Subject to a few ex-

ceptions, the node receiving a test message sends back the message Accept if

its own fragment identity differs from that in the message.
If the fragment .

.tr

-10-

identities are the same, the node puts the edge in the Rejected state and

sends back the message Reject. .Ahen a node receives a reject message, it

puts the edge in the Rejected state and tests the next best basic edge, con-

tinuing until it finds the minimum weight outgoing edge, indicated by an

accept message, or until all basic edges are exhausted.

One exception to the above rule for sending accept and reject messages

is taken to improve the worst case communication complexity. It a node has

both sent and received a test message on an edge with equal fragment identities,

then no reject messaggs are sent and each node rejects the edge and continues

testing its next best edge.

Another exception to the above rule arises because of the asynchronous

nature of the algorithm; it is necessary to ensure that after a node sends an

accept message it does not join the same fragment as the node receiving the

accept message. A property of the algorithm, which can be verified by

induction on any allowable time ordering of events in the algorithm, is that

whenever a node joins a new fragment, the level increases. Thus if the node

sending an accept message is at the same or higher level as the recipient,.

the sender can never become part of the current fragment of the recipient. A

node doesn't send an accept message if it is at a lower level than the potential

recipient; instead it will put the test message back on the end of the incoming

message queue. The message will keep getting returned to the queue until the

node is at a higher level. This forces the higher fragment to wait, but can-

mot cause a deadlock because lower level fragments never have to wait for

higher level fragments.

We have just described how each node in a fragment eventually finds its

minimum weight outgoing edge, if any. The nodes must now co-operate, by send-

ing Reportmessages, to find the minimum weight outgoing edge from the entire

, e | J I

-11-

fragment; if no node has outgoing edges, the algorithm is complete and the

fragment is the MST. In particular, each leaf node of the fragment, i.e.,

each node adjacent to only one fragment branch, sends the message Report (W)

on its inbound branch; W is the weight of the minimum weight outgoing edge

from the node, and W is infinity if there are no outgoing edges. Similarly

each interior node of the fragment waits until it has both found its own

minimum weight outgoing edge and received report messages on all outbound

fragment branches. The node then denotes the edge (either outgoing edge or

outbound fragment branch) on which the smallest of these weights, W, was

found as best-edge, and the node sends Report W on its inbound branch.

Eventually the two nodes adjacent to the core send report messages on the

core branch itself, allowing each of these nodes to determine both the

weight of the minimum weight outgoing edge and the side of the core on which

this edge lies.

After the two core nodes have exchanged report messages, the best edges

saved by the fragment nodes make it possible to trace the path from the core

to the node having the minimum weight outgoing edge. The message Change-core

is then sent over each branch of this path, and the inbound edge for each of

these nodes is changed to correspond to Best-edge. When this message reaches

the node with the minimum weight outgoing edge, the inbound edges form a

rooted tree, rooted at this nodeq Finally this node sends the message

Connect CL over the minimum weight outgoing edge; L is the level of the

fragment.

As explained before, at least two fragments at the lowest level, L, must

have the same minimum weight outgoing edge, so that the message Connect (L)
. .. . a.

U ..- w--~ ~

-12-

will travel in both directions over the edge. At this point, this edge

becomes the core of a new fragment at level L+l, and initiate messages are

sent out from this core as described earlier. This rule for forming new

fragments ensures that a level L+l fragment always contains at least two

level L fragments (L>O); it follows that level L fragments contain at least

2L nodes, and thus that fragment levels are at most log2 N.

As each node in the new level L+l fragment receives the level L+l

initiate message, it checks whether it has received connect messages from

nodes at level L or less and if so, it responds with an initiate message.

Similarly it checks for test messages that can now be responded to. In the

algorithm this delayed response to messages is handled by placing messages

whose response must be delayed back on the queue; they are then automatically

served in the normal way after the receipt of an initiate message.

Level 0 fragments are quite different from other fragments in that they

have no core and thus no identity. Finding the minimum weight outgoing edge

is trivial, however; it is simply the minimum weight adjacent edge. Thus

level 0 fragments can start directly by sending the connect message over

the minimum weight edge. We also assume that level 0 fragments can be in a

quiescent state called Sleeping. The algorithm is started by one or more

nodes spontaneously awaking and sending a connect message as described above.

Other nodes wake up on receipt of the first message from another node, which

must be either a connect message or a test message. In general, a node can

be in one of three possible states--the initial state Sleeping, the state

Find while participating in finding the minimum weight outgoing edge, and

the state Found at other times.

Finally, consider what happens when a connect message from a node in a

low level fragment F reaches a node n' in a higher level fragment F'.

.,..- --.--- ~4.

-13-

Due to our strategy of never making a low level fragment wait, node n'

iJmediately sends an initiate message to n. If node n' has not yet sent its

report message at the given level, fragment F simply joins fragment F' and

participates in finding the minimum weight outgoing edge from the enlarged

fragment. If, on the other hand, node n' has already sent its report message,

then we can deduce that an outgoing edge from node n' has a lower weight

than the minimum weight outgoing edge from F. This eliminates the neces-

sity for F to join the search for the minimum weight outgoing edge. These

two cases are distinguished by sending the node state, either Find or Found

in the initiate message. The nodes in fragment F go into state Find or

Found depending on this parameter of the initiate message, and send Test

messages only in the Find state.

We now briefly describe a modification of the algorithm that can be

used for non-distinct edge weights and that does not require 2E extra mes-

sages for appending the adjacent node identities to the edge weight. In the

modification, fragments are identified by node identities, which are ordered

and distinct. A minimum weight outgoing edge from a fragment is found as

before, and a connect message is sent over that edge as before. The new

feature is that a connect message on edge e from fragment F to F' is later

cancelled if 1) both fragments are at the same level and F > F'; 2) some

fragment F" at the same level has sent a connect message to F and F" < F;

3) an initiate message has not already been sent back on edge e. When a

connect message is cancelled, the node that sent it increases its level and

sends out a new initiate message, in this case joining fragments F and F".

This modification also works for multigraphs (graphs with multiple edges

joining a pair of nodes), whereas special provisions are required for mulit-

graphs otherwise.

... _ - I .

-14-

IV. Communication Cost Analysis

We determine here an upperbound on the number of messages exchanged

during the execution of the algorithm. Note that the most complex message

contains one edge weight, one level between 0 and log N, and a few bits to

indicate message type.

Since an edge can be rejeeted only once, and each rejection requires

two messages, there are at most 2E test or reject messages leading to re-

jections.

Next, while a node is at a given level except the zeroth and the last,

it can receive at most one initiate and one accept message. It can transmit

at most one successful test message, one report message and one change-root

or connect message. Since log2 N is an upper bound on the highest level, a

node can go through at most (-1 + log N) levels not counting the zeroth and

last, and this accounts for at most 5N(-1 + log N) messages.

At level 0, each node can receiv at most one initiate message and can

transmit at most one connect message. At the last level, each node can send

at most one report message. This adds less than 5N messages to our grand

total which becomes 5N log N + 2E.

Note that if the number of nodes in the graph is initially unknown,

as we have implicitly assumed, then no distributed algorithm can find the

NST with fewer than E messages; if there is an edge over which no message

is sent, then there might have been a node at the center of that edge, caus-

ing the algorithm to fail.

777 Ti- --- ---

-15-

V. Timing Analysis

Although it appears that the algorithm typically allows a large amount

of parallelism in messages, it is not difficult to find examples such as

Figure 2 in which most of the messages are sent sequentially. In particular,

if node S originally wakes up, each node j sequentially both sends a test

message to each i < j-2 and receives a reject before any j' > j is awakened.

This leads to N(N-l) sequential messages.

If time is important, it is preferable to awaken all nodes originally;

this can be done in at most N-1 time units assuming each message transmission

requires at most one time unit. We now show that with this assumption of initial

awakening, the algorithm requires at most 5N log2 N time units. Note first

that by time N, each node will be awakened and will have sent a connect

message. By time 2N, each node must be at level 1 through the propagation

of initiate signals.

We proceed by induction on the level numbers showing that it takes at

most 5IN-3N time units until all nodes are at level Z. This is true for

I - 1; assume it true for L. At level X, each node can send at most N test

messages which will be answered before time 5N.- S. The propagation of

the report, change-root and connect, and initiate messages can take at most

3N units, so that by time 5(1+1)N - 3N all nodes are at level 1+1. At the

highest level, Z < log2 N, only test, reject, and report messages are used,

so the algorithm is complete by time 5N log2 N.

A worst case O(N.log N) is possible, as is shown by the fllowing ex-
N

ample (Figure 3), where the handle and the head both contain - nodes. If
2

the edge weights in the handle increase as one gets away from the head,

___ __ - [

-16-

31

2 N-3

W(*iS) j + j>

S originally awakened

FIGURE 2

Example When Algorithm Requires N (N-i) Message Time Units

-17-

NN Nodes

FIGURE 3

Example when 0 (N log2 N) Message Time Units are Required With

Initial General Awakening.

• "MOM

-18-

then all nodes in the handle will be in the same fragment at level 1. If

processing the head requires log R levels and if at each level a fragment2

joins the handle, which can happen, then the time until completion will be

O(N log N).

-Now

.. -i .l

-19-

References

[1] Spira, P., "Communication Complexity of Distributed Minimum Spanning
Tree Algorithms", Proceedings 2nd Berkeley Conf. on Distributed Data
Management and Comuter Networks, June 1977.

(21 Dalal, Y., "Broadcast Protocols in Packet Switched Computer Networks",
Stanford University, Dept. of Electrical Engineering, Technical Report
No. 128, April, 1977 (revised version for publication in preparation).

[3] Liu, C.L., Introduction to Combinational Mathematics, McGraw Hill, 1968.

(4] Lawler, E., Combinatorial Optimization-Networks and Matroids, Holt,
Rinehart, and Winston, New York, 1976.

[5] Humblet, P.A., "A Distributed Algorithm for Arborescences", in preparation.

[6] Prim, R.C., "Shortest Connection Networks and Some Generalizations",
Bell System Tech. Journal, 36, pp. 1389-1401, 1957.

[7] Dijkstra, E., "Two Problems in Connection with Graphs", Num. Math. 1,
pp. 269-271, 1959.

[8] Kruskal, J.B., "On the Shortest Spanning Subtree of a Graph and the
Traveling Salesman Problem", Proc. Amer. Math. Soc., 7, pp. 48-50, 1956.

[9] Yao, A.C.C., "An O(E log log V) Algorithm for Finding Minimum Spanning
Trees", Inf. Proc. Let., 4, pp. 21-23, 1975.

_ _ . -. ::' 7'.

-20-

Appendix

The algorithm to follow is obeyed by each node and consists of listing

the responses to each type of message that can be generated. In addition

the response to a spontaneous awakening of the node is given. Each node is

assumed to queue the incoming messages and to respond to them in first come

first served order. One particular response is to place the message back on the

end of the queue for delayed servicing, but aside from this, each response

is completed before the next is started. Each node, of course, maintains its

own set of variables, consisting of its state (denoted by SN and assuming

possible values Sleeping, Find, and Found), and the state of the adjacent

edges. The state of edge j is denoted by SE(j) and can assume the possible

values Basic, Branch, Rejected. It is possible for the edge states at the

two nodes adjacent to the edge to be temporarily inconsistent. Initially

for each node, SN = Sleeping and SE(j) = Basic for each adjacent edge j.

Each node also maintains a fragment identity, FN, a level, LN, and variables

best-edge, best-wt, test-edge, and in-branch all of whose initial values

are i-material. There is also an initially empty list of edges called

find-list and an intially empty first come first serve queue for incoming

messages. Finally the weight of each adjacent edge j is denoted w(j).

I,
-, 7i m T"

-21-

The Algorithm
(as executed at each node)

1) Response to spontaneous awakening (can occur only at a node in the

sleeping state)

Execute procedure wakeup

2) Procedure wakeup

begin let m be adjacent edge of minimum weight;

SE (m) 4- Branch ;

SN 4 Found

send Connect (0) on edge m end

3) Response to receipt of Connect (L) on edge j

begin if SN = Sleeping then execute procedure wakeup

if L < LN

then begin SE(j) +- Branch

send Initiate (LN, FN, SN) on edge j

if SN - Find then

find-list + find-list U fj} end

else if SE(j) - Basic

then place received message on end of queue

else send Initiate (LN+l, w(j), Find) on edge j end

-,

-22-

4) Response to receipt of Initiate (L,F,S) on edge j

begin LN 0 L; FN 4 F; SN A S; in-branch - j

best-edge 4- nil best-wt ;

if S - Find then execute procedure test ;

for all i y j such that SE(i) = Branch

do begin send Initiate (L,F,S) on edge i

if-S = Find then find-list - find-list U fi} end end

5) Procedure test

if there are adjacent edges in the-state Basic

then begin test-edge * the minimum weight adjacent edge in state Basic;

send Test (LNFN) on test-edge end

else begin test-edge 4- nil; execute procedure report end

6) Response to receipt of Test (L,F) on edge j

begin if SN = Sleeping then execute procedure wakeup;

if L > LN then place received message on end of queue

else if F # FN then send Accept on edge j

else begin if SE(j) = Basic then SE(j) - Rejected;

if test-edge # j then send Reject on edge j

else execute procedure test end end

.- -.

-23-

7) Response to receipt of Accept on edge j

begin test-edge 4- nil ;

if w(j) < best-vt

then begin best-edge 4- j; best-wt - w(j) end;

execute procedure report end

8) Response to receipt of Reject on edge j

begin if SE(j) = Basic then SE(j) 4- Rejected;

execute procedure test end

91 Procedure report

if find-list = nil and test-edge = nil

then begin SN 4- Found;

send Report (best-wt) on in-branch end

10) Response to receipt of Report(w) on edge j

if j # in-branch

then begin find-list - find-list - {j};

if w < best-wt then begin best-wt 4 w; best-edge j end;

execute procedure report end

else if SN - Find then place received message on end of queue

else if w > best-wt

then execute procedure change-root

else if w best-wt = then halt

- - .~.----. -. | -

