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Abstract

A method of analysis for determin-
ing crack propagation loads on wood
beams with end splits is presented.
The method is based on (1) linear
elastic orthotropic fracture
mechanics concepts, (2) theory of
tomplex variables, and (3) least
squares boundary value collocation
(BVC). Using this method, the critical

stress intensity factor,)(-lr-v.'rf—~-""‘L -
~Beugtas-tirbeams {

wmnnd-spm is

determined meas—p» SRR .

Also, a snmple failure equation for
end split beams is proposed.
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Introduction

In the grading of timber for beams
it is useful to have a quantitative
measure of the effect of end splits on
the strength of such beams. The
method presented gives a way of
predicting when an end crack will
propagate resulting in a foss of
stiffness and strength. Linear elastic
fracture mechanics has been applied
successfully to predict brittle failure
(crack propagation) in wood (2,8,14).2
Although the title problem has been
examined (2), this report uses a
different method of solution and
simplifies the results while investigat-
ing the effect of different orthotropic
parameters.

Before proceeding, linear elastic
tracture mechanics will be over-
viewed. The propagation of a planar
crack can be described, in the most
general case, by the combination of

avx\r‘\

three independent modes as shown
in figure 1. The first mode, or
opening mode, has the crack sur-
faces move in a normal direction with
respect to the surface planes. The
second, sliding, or forward shear,
mode has the surfaces move in their
respective planes in the direction
parallel to coltinear crack propaga-
tion. The third, tearing, or transverse

shear, mode has the surfaces moving -

in their respective planes but
perpendicular to collinear crack
propagation. The opening mode
results from inplane (a plane
perpendicular to the crack front)
symmetric (symmetric about the
ptane between crack plane surfaces)
loading while the sliding mode
resuits from inpltane skew-symmetric
loading. The third mode results from
out of or antipiane loading conditions
(loading parallel to crack front).

The theoretical stresses (see fig. 2
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for positive stresses) for a smail
region directly ahead of the crack
(the crack surfaces coincident with
the negative x, z half plane) for the
three modes are reduced from Sih et
al. (15):

Mode |
oy = Kid1i32rx) *72
o, = K(2mrx) "*?
—lv - 0
Mode 1l
e =0
Tye = Kp(2ax) V2
6, =0

Mode I
=20
o, = 0

Ty = Ki(2wx) '

' Maintained at Madison, Wis_, in cooperation
with the University of Wisconsin.

' Underlined numbers in parentheses refer to
literature cited at ehd of report.
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Figure 1.—Three basic modes of crack surface displacement.
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Figure 2.—Two-dimensional coordi-
nate system around a crack tip
with positive stresses.

(M 148 055)

where j3,,8, are orthotropic param-

eters, that is, the 3's characterize the
degree of orthotropy and are equal to

one for isotropy (see appendix A),
and the K's are stress intensity fac-
tors (SIF's) in |, I}, or 1} foading
modes.’ The SIF’s are linearly
dependent on remote boundary
conditions, strongly dependent on
geometry, and weakly dependent on
orthotropic parameters for finite
bodies (the dependence on ortho-
tropic parameters becomes stronger
as the distance ahead of the crack
and a free surface becomes smaller).
In single-mode loading and collinear
crack propagation, the crack
propagates when the SIF reaches a
critical value (K, K., or Ky,).

Theoretical Considerations

A boundary value collocation
method was employed to solve for
the theoretical SIF K. First a series
solution was formulated which satis-
fies identically the field equation (a
generalization of the biharmonic
equation) and the stress-free condi-
tion on the crack surfaces (see
appendix A). The unknown coeffi-
clents of the series solution were
solved using boundary value colloca-
tion (see appendix B). Boundary
values were resulitant forces and
moment (see eq. A5, A8). This
method was employed because (1)
after the coefficients are obtained,
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Figure 3.—End-split beam under concentrated foad (superposition of two

basic cases).
(M 148 036)

stresses and strains can be calcu-
lated anywhere in the body, (2) the
first coefficient is linearly related to
the SIF, (3) the set of linear equations
result in a dense matrix requiring
minimal computer storage space, and
(4) more than one problem (different
boundary values) can be solved
simultaneously. The number of
boundary points was increased until
the SIF (first coefficient) converged,
(e.g., in the concentrated load case,
increasing the number of boundary
points (each with three stress condi-
tions) from 24 to 32 changed the SIF

less than 0.8 pct). A more detailed
description of the theoretical analysis
is given in appendices A and B.

Theoretical Problem
and Results

End-Split Beam Under
A Concentrated Load
The problem considered is an end-
split beam (end split horizontal, full .
width, and at middepth) as shown in
figure 3. Assume no tractions on the

* Some authors use ki, kz, and k3 as SIF's
where K; = Ky v v, Ky = ka ¢ ¢, and
Kiit = ky v 7.
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Figure 4.—End-split beam under uniform load (superposition of four basic

cases).
{M 148 087)

surfaces of the split. The problem
can be solved by superposing the
solutions of two problems shown in
figure 3. The two cases are solved
and then the SIF can be written
(using superposition):

K" =A b(’j"" + B_b% (1)

where the internal moment and shear,
M and V, are calculated at the crack
tip using elementary methods, A and
B are constants dependent on the

orthotropic parameters, and b and d
are the beam width and depth,.
respectively.

End-Split Beam Under
A Uniform Load

This problem is shown in figure 4
with subsequent breakdowns (again
assume no crack surface tractions).
The subcase with symmetric loading
gives a negative opening mode SIF
which would produce frictional forces
between the two crack planes; there-
fore, as a conservative estimate, K,
will be taken as zero. As can be seen,

e v e YT A MR RN 5. .

M D@o- Ma=/ﬁ-§ﬂ/a

only one more subcase is added than
the concentrated load case. The K,
for a uniform load can then be esti-
mated (conservatively) as:

Ky = A -——M + B - v (2)
bd’/’-' bdn:

+C_w_
bd"”

where w is the uniform loading and C
is a third constant dependent on the
orthotropic parameters. Note equa-
tion (2) reduces to equation (1) for the
concentrated load case (e.g.. w = 0).

Effect of Different Orthotropic
Parameters

Orthotropic parameters for
ditferent wood species and grain
orientations and plane stress condi-
tions are shown in figure 5 (see eq.
(A2), (A3)). The coefficients A, B, and
C (see eq. (2)) have been calculated
for four extreme and one average
combination of 3, and 3, shown in
figure 5. The coefficients are given in
table 1 and their respective concen-
trated load equations (eq. (1)) are
plotted in figure 6. An equation to be
used for any wood species and any
grain orientation (constants have two
significant figures) under concen-
trated or uniform load conditions is

K= -28_-M __o072_V
bd!l: bdn)
+ 006 __W__ 3)
bd-uz

Equation (3) is good (within 11 pct)
for all 3 combinations in figure 6.
Combined loading conditions can be
considered by summing up the K,'s
for each loading condition yielding a
total K,. Failure occurs when ab-
solute total K, reaches a critical
value, K, .. Therefore equation (3) with
an appropriate K, becomes a single
failure criteria for end-split beams.

End-Split Beams Concentrated
Load Experiments

The experimental data are from an
unpublished report by C. B. Norris
and E. C. O. Erickson, done in 1951.
The following section is verbatim*
from that report:

Description of Tests

“Two groups of substantially clear
Douglas-fir beams (7.5- by 1.62-in.

* Figures, tables, and references are renum.
bered.
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Figure 5.—Orthotropic parameters for
different wood species for the TL,
RL systems of crack propagation.
(First letter refers to normal to
crack planes or the y direction; the
second letter refers to direction of
crack propagation or the x direc-
tion.) Computed from elastic con-
stants in (§) or *obtained from J. D.
Barrett private communication.
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cross section) were tested as shown
in figure 7. Saw kerfs about 1/8-inch
wide and of various lengths (see table
2) were cut at the centerline of the
beams as shown in the figure. These
kerfs were filled with smooth splines
of wood which were well paraffined
to reduce friction. The beams were
supported on rockers and protected
from indentation of the knife edges
by steel plates 1-inch thick and
extending 3 inches each side of the
reaction in the direction of the length
of the beams. The beams were
laterally supported, near their ends,
during test to keep them in a vertical
plane. These supports did not
hamper the deflection of the beams.

“Pillow blocks of hardwood were
used to transfer the loads to the
beams. For the beams of group 1, the
pillow blocks were out to a 24-inch
radius; and for the beams of group 2,
to an 18-inch radius. The speed nf the
testing machine was 0.194 inch per
minute for group 1 and 0.096 inch per
minute for group 2. The deflections
were measured to the nearest 0.01
inch at load increments varying from
200 to 500 pounds.

4

sl

Table 1.—Range of coefficients in an equation of K,, as a function ot loading

conditions.

Ku=Agin + B gor * Cdm
Orthotropic parameters Coefficients

By B2 A [-] C
0.75 3.0 -3.112 -0.657 0.057
1.5 3.0 —2.864 - 674 060
1.5 4.25 -2577 - .779 .060
75 4.25 -2728 - .769 .068
1.125 3.625 -2.79%0 - .723 .062

25 T T T T T T

Figure 6.—Graph of dimensionless K,

as a function of relative crack length

for an end-split beam under concentrated load.

{M 148 059)

“After the beams were tested, two
block-shear specimens were cut from
each of them in the neighborhood of
the end of the saw kerfs and, subse-
quently, tested (1).

Presentation of Data

“The data obtained from the tests
and some calculated values are given
in table 2. The first column contains
the beam number. Beams 3, 9, and 1(
were omitted from the table because
they were cross grained. Beam 15
was omitted because the shear
failure was so gradual that it was not
noted until the specimen was
removed from the testing machine.
The second column gives the length
of the saw kerf measured from the

position of the reaction toward the
center of the beam, as shown in
figure 7. The third column gives the
distance from the end of the kerf to
the position of the load. Column 4
gives the largest loads the beams
withstood; and column 5 the first
maximum load. These two loads are
identical except for four beams. In
these four tests the shear failures
were not completely destructive; the
beams failed and the load dropped,
and, as the test proceeded, the load
increased to a value greater than the
first maximum.

“Column 6 of the table lists the
value of the reaction at the first
maximum load, and column 7 the
shear stress computed by the
formula

T T S PR i -
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Table 2.—Pertinent data from the tests and some calculated values

Results of block-shear

Speci Maxi. First fosts
men s ca mum UL RET T SR Shen g
0 oa load No.1 No.2
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
in. Lb. Psi
GROUP 1
5 0 36 8420 8,420 4,210 516 1,480 1,472 1,476
1 4 32 8,150 8,150 4,075 500 1,416 1421 1,418
6 8 28 4700 4,700 2350 288 1,327 1,225 1,276
2 12 24 3690 3340 1670 205 1,342 1319 1,330
4 12 24 2670 2670 1,335 164 1,171 1,140 1,156
7 16 20 2630 . 1,315 161 1,389 1,616 1,502
8 20 16 2510 1,550 775 95 1,336 1,181 1,258
GROUP 2
1" 5 19 7170 7,170 4,710 578 1519 1,526 1,522
13 5 19 5240 5240 3440 428 1,435 1,302 1,368
16 9 15 3225 3225 2120 260 1352 1,222 1,287
19 9 15 3090 3,090 2030 249 1,277 1,130 1,204
12 13 11 3000 2500 1640 201 1,339 1,363 1,351
14 13 1" 2360 2360 1550 195 1,233 1,187 1,210
17 17 7 3900 2700 1,770 217 1,326 1,470 1,398
18 21 3 3600 3600 2360 2% 1,181 1,216 1,198
* Specimen 14 had adepth of 7.33in.
=3 R
Te 2 bd through the 4-inch overhang of the

Columns 8, 9, and 10 give the results
of the block-shear tests made on
specimens cut from the beam in the
general location of the end of the
saw kerf.

“The saw kerf in beam 5 was cut

beam just to the position of the

reaction. This kerf did not cause a
shear failure. The beam failed at a
modulus of rupture of 9,930 pounds
per square inch, which is consistent
with the average value of 11,200 given
for coast-type Douglas-fir (10), taking

into account the depth of the beam
It would be expected that the
presence of this kerf would not
weaken the beam.

“The saw kerfs in beams 17 and '8
extended to within 7 and 3 inches of
the position of the load. These two
beams are not expected to satisfy the
suggested equation because the
ends of the kerts are too close to the
position of the load."

Comparison of Experiment
with Theory

To analyze the experimental data. a
theoretical equation similar to equa-
tion (3) is needed. (Eq. (3) is a
suggested design equation, too
general when comparing theory with
experiment.) Using the orthotropic
constants published (see (5)) for
Douglas- fir (radial-longitudinal, RL)
and a stress function boundary value
collocation method (see appendices
A and B), the equation for the mode I
SIF was found to be

Ke= -2785 M _ 0731 V
ba*?

bd| ?

+ 00646 W 4
bd 12

For a concentrated 1oad case.
equation (4) can be rewritten to

K= [-2785(4) - 0.731) - R (5
d bd'?

where

K, is the sliding mode SIF

a is crack length (column 2,
table 2)

d is beam depth (7.5 in)

b is beam width (1.62 in.)

R is reaction at support
(column 6, table 2).

Using the experimental data and the
theoretical equation (5). values ot K,
were calculated for 12 beams (beams
5. 17, and 18 were not considered
because of reasons noted earlier) and
are listed in table C1. Because group
1 beams had two end splits and
group 2 beams had only one, some
adjustment between the two groups
had to be made to obtain an average
critical SIF K, for a beam with only
ohe end split. c~rh.s adjustment is
explained in appendix C. From the
data of the 12 beams and statistical
calculations, Kj,_ was found to be
2,035 psi \ in. with a

coefticient of variation (COV) =
percent, tor a beam with one end
sp'it. This compares to the value

R e i o & ‘“‘ ol o et T




obtained by Barrett and Foschi (2) tor
western hemlock of 2,107 psi

Vin.. Figure 8 graphs % _de_
versus ﬁ using equation (5)

(w = 0) and K. = 2,035 and 1,865
psi v in. tor single and double
end-split beams, respectively. Aiso
plotted in figure 8 are the experi-
mental data showing the excelient
agreement between experiment and
theory. If the generalized species
equation (3) is used instead of
aquation (4) with the test data, the
K, would be calculated 10 be about
V2 percent higher.

Conclusions

1. Boundary value collocation can
be used to accurately calculate the
shear mode SIF in orthotropic wood
beams.

2. Using superposition principles,
one single equation can be written to
calculate K, for an end-split beam for
either concentrated or uniform load
cases.

3. Complex l10adings can be
handied by superposition of K;,'s.

4. The eftect ot ditterent
orthotropic parameters on the
simplified equation is small enough
so that one equation can be used for

a majority of structural wood species.

5. Using the BVC method and
species specific coefficients in the
simplitied equation, K, for a species
can be determined experimentally.

6. Douglas-tir K, in the RL system
was determined to‘be 2,035 psi \ in,
at a moisture content of 11 percent.

7. A proposed simple failure equa-
tion for end-split beams is

Kies -28 M. o072 Y,
+ 006 ¥ _
bd e

3 g4 900

(psi)

d

Figure 8.—Comparison ot experimental data with theory, for end-split beams
under concentrated loads (*—single-end split, 0- -double-end split).

(M 148 080}
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Appendix A
Formulation of the Complex Series Stress Functions for Cracked Orthotropic Bodies

Sih et al. (15) have given a general complex series stress tunction tor a cracked rectilinearly anisotropic
body. These functions simplity when the crack is parallel to a material axis. Leading up 1o these functions
consider first an orthotropic body with a crack coincident with the negative x-axis (fig. A1) and a material axi(s.

The equilibrium equations (no body forces):

l"t" [N \"\' 37
. + '™ =0 ) + N o
ax dy dy ax 0
and compatibility equation:
(vt.\ + a’t‘ - A"t“
dy? dy? axdy
are combined into one tield equation:
U MU *U
as + s + =
2 e (2a,; + ag) axtay? + ay aye Q A
using the following relations
o = U o = ¥uo U
* ay: axt axady

& = anpe, + a,.‘n‘

= Ao, + 80,

1

and
tw T Be6Twy
The coefficients a, are related to the engineering constants by
1 T Hyx 1 1
a,, = L8y = “.ay = . = A2
RN E™ 76, ‘
tor plane stress and
a,, = - fanbhg a, = _“"E-" Hanbiye
AY Al
1

L TP TN
8y = (3 100 L =
22 E, e G.,

tor plane strain.
Specializing the rectilinearly anisotropic case ot (3.9.11.13). the solution to the orthotropic field equation (A1)
in terms of analytic functions F, of complex variables z, is

U(Z'.Z_s) =2 ROIF|(Z|) + F_\(Z:)]

where
2, = X + idy = ncosd + id, sinh - 1~ x
where
i= N -1
Re means the real part of, and the 3,'s satisty the characteristic equation
4,00 ~ (28:; + 8g)3! + Ay = 0. (A3)
introducing the notation
g:l = afz) and g::l = oz}
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The remaining coefficients (a,,’s and by,'s) of the complex series stress function are obtained using a boundary
value collocation method as described in appendix B.
The ieading coefficient \,, is related to the SIF's K, K, by the relationship:

K, = = Ay \/BI(L‘;—&)

Ky = by, V8r By = B2).

Appendix B
Boundary Value Collocation and Numerical Method

In a boundary value collocation method (or point matching) the form of the solution satisties the governing
tield equation everywhere in the interior of the body. The constants or coefficients appearing in the solution are
obtained by evaluating the solution at a finite number of boundary points. Infinite series solutions are first
truncated such that the number of unknown constants are at most equa! to the number of boundary conditions
to be evaluated. If more boundary conditions are specified than unknown coefficients, the unknowns can be
solved for in a least-squares sense. Solving in a least-squares sense has the advantage of reducing off-point
errors, though making the linear system ot equations more ill-conditioned.

To apply the boundary value collocation method to a cracked orthotropic body, the complex stress function
(see appendix A) and associated integrals are approximated by:
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These tunctions are now used {(according to eq. (Ad) to (A6) to specify stress, displacement, or resuitants at a
discrete number of boundary points, and the resulting linear equations can be written in matrix notation as

AX =8B

where X contains M (not to be confused with moment M in text and appendix A) unknown complex constants z,.
matrix A contains functions of position and g;'s, and B contains N corresponding boundary stress, displacement,
or resultant values. For the orthotropic crack-alined case the Re[z ] = a, corresponds to symmetric (about the x-

axis) in-plane loading only, while Im[\,,] = b;, corresponds to skew-symmetric in-plane loading. Thus the general
case is really the sum of two separate problems:

A Re[\] = Bgyy and A Im[\] = BSKEW

which are solved separately. Each case automatically satisfies appropriate stress derivatives ahead of the crack
and because of geometric symmetry only the region y > 0 has to be considered. The procedure used will be
given and then the rationale for each procedural step will be explained later.

Begin first with an overspecified system

AX = 8,
where

A is an N X M known matrix
X is an M X 1 unknown column vector

and
B is an N X 1 known column vector
and
M < N.
First postmultiply A by an (M x M) diagonal matrix D to get
ADD'X = ADy =Cy = B
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and premultiply C and B by the transpose of C knowing that
C'Cy = C™B.

The square (M x M) matrix C'C is equal to T'T where T is an upper triangular (M x M) and is obtained by
triangular reduction by an orthonormal matrix R such that

RA = () ‘
(see (12)). The matrix equation is now .1
Ty = C'B
Taking the inverse of the left side gives the matrix equation for the unknown column vector i
X = DT'T'C'8 E
Both the matrices X and 8 can be generalized to K columns so that a K number of problems (with the same
orthotropy and geometry and different loadings) can be solved simultaneously. !
The matrix A is scaled by postmultiplying it by the diagonal matrix D in equation (B1) to achieve greater
accuracy in the solution than when it is not scaled. The resulting scaled matrix is required to have column

Euclidean norms approximately equal to unity and the diagonal elements of D are powers of two to avoid
introducing computer roundoff errors. Finding T from A directly by triangular reduction by an orthonormal matrix
is believed to be numerically more stable than by Gram-Schmidt triangular reduction (12) and requires less
computation than using Cholesky factorization of C'C into T'T. Finally then, the only matrix inversion is the
simple inversion of a triangular matrix (T). It was found that scaling and triangular reduction increased the
accuracy of X and in some instances (M large) gave answers when elimination methods, double precision, and
iteration improvement did not.

Appendix C
Statistics

Using the experimental data from table 2 and the theoretical equation (4), table C1 is constructed.

Since in group 1 the weaker of two K, was measured, the data cannot be lumped together without some
algebraic adjustment first. Assume that for a single set of conditions (one split, etc.) K, is normally distributed
N{ui. o,%): assume also that for two splits the measured K, is the lower value of two independent K, ., each
having the same distribution; then, the probability density function (p.d.t.) of this measured K, is (using series
reliability (4))

gAY: r. o) = 2[1-Fply: pan o)} Inlys m o)) (CH
where
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Falx: iy 0y) = by, 0)dy
Using the method of maximum likelihood (6), we write a likelihood function L as
Ly, o0d Xou X oo Xeo Y Voo o -2 Ye)
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where x, are observed values from group 2 (column 3, table C1) and y, are observed values from group 1 (column
4, table C1). The maximum likelihood estimates for , and o, are found such that

oL _ al
dy 0 and doy2 T 0.

This was done with the data from table C1 resulting in

Ay = 2,035 psi vin,
and

&, = 301 psi Vin. .

These are estimates of the mean and standard deviation for a single-split beam.
The expected value tor the group 1 set is

nz = | % ga{dx (C2)




With a change of variables equation (C2) becomes
2 = [alxoy + g 201 — d{x)] o{x)dx (C3)

where ¢(x) is the p.d.t. and #(x) is the c.d.f. (cumuiative distribution function) of the standardized normal
distribution. Equation (C3) can be evaluated:

re = 0yl X2[1 = ¢(x)] o(x)dx + 41 - S %
nz = Coy + gy (C4)
The variance is
of = |5 xig,{x)dx — i

but
{7 xigu(x)dx = [ (xa, + 1) 2[1 = d(x)] e{x)dx
= o} {5 X &(X)dx + | x2[V2 - d(x)]e(x)dxi
+ 210, 1% X2 - &(x)] o(x)dx + L% 201 - d{x)o(x)dx
= off140] + 2;,0,C + !
resulting in

ol = ot + 25,0,C + pi - W
Using equation (C4) gives
o} = [V -Coi (C5)
The constant C was calculated by numerical integration to be - 0.5642 yielding:
f, = fiv - 0564248, = 1,865 psi \ in.
and
4, = 0.82564, = 249 psi \ in. (C6)

Therefore. if a beam has one split which would always fail first, ;, and o, would describe the mean and
variance of K,.. and if a beam has two splits (each with the same K,), x; and o, would describe the mean and
variance of the observed K.

Table C1.~Computed K, from experiments

: Somper K Ky SRimer KX Kio.
GROUP 1 GROUP 2
1 - 2.036 1 2,747 —
6 -— 1.961 13 2,006 -
2 - 1,952 16 1.946 —
4 —_ 1.561 19 1,864 -
7 - 1.978 12 2,055 -
8 - 1.425 14 2,004 -
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