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K° Abstract
A method of analysis for determin-

ing crack propagation loads on wood
beams with end splits is presented.
The method is based on (1) linear
elastic orthotropic fracture
mechanics concepts, (2) theory of
complex variables, and (3) least
squares boundary value collocation
(BVC). Using this method, the critical
stress intensity factor, *-

d eter m i ned4ebm ;e851,-pe- ,f~ ....

Also, a simple failure equation for
end split beams is proposed.
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Introduction three independent modes as shown for positive stresses) for a small
in figure 1. The first mode. or region directly ahead of the crack

In the grading of timber for beams opening mode, has the crack sur- (the crack surfaces coincident with
it is useful to have a quantitative faces move in a normal direction with the negative x, z half plane) for the
measure of the effect of end splits on respect to the surface planes. The three modes are reduced from Sih et
the strength of such beams. The second, sliding, or forward shear, al. (15):
method presented gives a way of mode has the surfaces move in their
predicting when an end crack will respective planes in the direction
propagate resulting in a loss of parallel to collinear crack propaga- Mode I Mode U
stiffness and strength. Linear elastic tion. The third, tearing, or transverse ,= K 31 2(2x) =0
fracture mechanics has been applied shear, mode has the surfaces moving
successfully to predict brittle failure in their respective planes but Ki(2?rx) 'V =0

(crack propagation) in wood (2,Q,14).' perpendicular to collinear crack 0 Kn(2irx)
Although the title problem has been propagation. The opening mode - = 0 TV
examined (2), this report uses a results from inplane (a plane Mode III
different method of solution and perpendicular to the crack front)
simplifies the results while Investigat- symmetric (symmetric about the 7X = 0
ing the effect of different orthotropic plane between crack plane surfaces) Ty" = K,,(27rx) "
parameters. loading while the sliding mode

Before proceeding, linear elastic results from Inplane skew-symmetric 0
fracture mechanics will be over- loading. The third mode results from
viewed. The propagation of a planar out of or antiplane loading conditions ,Maintained at Madison. Wis.. in cooperationcrack can be described, in the most (loading parallel to crack front). with the University of Wisconsin.

I Underlined numbers in parentheses refer to
general case, by the combination of The theoretical stresses (see fig. 2 literature cited at ehd of report

1

JIH7. -_ ...... .



MOEIMODE Ul MODE
"OPENING" "SLIDING" "TEARING"

Figure .- Three basic modes of crack surface displacement.
(M 146 388)

WIOTH: b

d VQ o© = Vo R

?d - d M o O= MO= Ro

Figure 2.-Two-dimensional coordi-
nate system around a crack tip
with positive stresses.

(M 148 055)

where 31,/32 are orthotropic param- 00
eters, that is, the O's characterize the
degree of orthotropy and are equal to
one for isotropy (see appendix A), - - Ld/2 *VOI21
and the K's are stress intensity fac- V
tors (SIF's) in I, II, or Ill loading
modes.' The SIF's are linearly
dependent on remote boundary
conditions, strongly dependent on
geometry, and weakly dependent on
orthotropic parameters for finite
bodies (the dependence on ortho-
tropic parameters becomes stronger
as the distance ahead of the crack
and a free surface becomes smaller). A7
In single-mode loading and collinear -M)
crack propagation, the crack "
propagates when the SIF reaches a
critical value (KI0, K,, or K1,,c). Figure 3.-End-split beam under concentrated load (superposition of two
Theoretical Considerations basic cases).

A boundary value collocation (M 148 056)

method was employed to solve for stresses and strains can be calcu- less than 0.8 pct). A more detailed
the theoretical SIF K,. First a series lated anywhere In the body, (2) the description of the theoretical analysis
solution was formulated which satis- first coefficient is linearly related to Is given in appendices A and B.
fles identically the field equation (a the SIF, (3) the set of linear equations Theoretical Problem
generalization of the biharmonic result in a dense matrix requiring
equation) and the stress-free condi- minimal computer storage space, and and Results
tion on the crack surfaces (see (4) more than one problem (different
appendix A). The unknown coeffi- boundary values) can be solved End-Split Beam Under
cients of the series solution were simultaneously. The number of A Concentrated Load
solved using boundary value colloca- boundary points was increased until The problem considered is an end-
tion (see appendix B). Boundary the SIF (first coefficient) converged, split beam (end split horizontal, full
values were resultant forces and (e.g., in the concentrated load case, width, and at middepth) as shown in
moment (see eq. A5, AS). This Increasing the number of boundary figure 3. Assume no tractions on the
method was employed because (1) points (each with three stress condi- 'Some authors use ki, k2, and k3 as SIF'
after the coefficients are obtained, tions) from 24 to 32 changed the SIF Kh0 = k IJ/ i K11 2 %/ and

2



WIOTH-b only one more subcase is added than
the concentrated load case. The K.
for a uniform load can then be esti-

d a 0 V c( : OVO R_- /  mated (conservatively) as:
SM () 0- O  O K,= A M + B -- V (2)LI M Q@o zMO (R flo bdllt bd

. 2 .+ Cb d _

R bd

where w is the uniform loading and C
is a third constant dependent on thet1 ~ fl orthotropic parameters. Note equa-
tion (2) reduces to equation (1) for the
concentrated load case (e.g.. w = 0).

0 0 Effect of Different Orthotropic
Parameters

Orthotropic parameters forK o . different wood species and grainorientations and plane stress condi-
tions are shown in figure 5 (see eq.
(A2), (A3)). The coefficients A. B, and
C (see eq. (2)) have been calculated
for four extreme and one average
combination of 01 and 02 shown in
figure 5. The coefficients are given in

,,d 4.,d,2 . . 1 table 1 and their respective concen-" , " 1 'd) aud/2 trated load equations (eq. (1)) are
plotted in figure 6. An equation to be
used for any wood species and any
grain orientation (constants have two
significant figures) under concen-
trated or uniform load conditions is

Vd/ v/ l -1 I = 2.8 M -0.72 V
C bd3 2  bd"

+ 0.06 w (3)@bd""1

Equation (3) is good (within 11 pct)
for all $ combinations in figure 6.
Combined loading conditions can beM0 /' -  
considered by summing up the K,,'s

IV MO for each loading condition yielding a
total KI. Failure occurs when ab-
solute total K1, reaches a criticalFigure 4-End-split beam under uniform load (superposition of four basic value, K c . Therefore equation (3) with

cases). an appropriate Klc becomes a single
jM 14IOS? failure criteria for end-split beams.
surfaces of the split. The problem orthotropic parameters, and b and d End-Split Beams Concentrated
can be solved by superposing the are the beam width and depth, Load Experiments
solutions of two problems shown in respectively.
figure 3. The two cases are solved End-Split Boom Under The experimental data are from an
and then the SIF can be written En fori Bead unpublished report by C. B. Norris
(using superposition): A Uniform Load and E. C. 0. Erickson, done in 1951.

This problem is shown In figure 4 The following section is verbatim'
K, = A M V with subsequent breakdowns (again from that report:bd bd'" assume no crack surface tractions).

The subcase with symmetric loading Description of Tests
gives a negative opening mode SIF

where the Internal moment and shear, which would produce frictional forces "Two groups of substantially clear
M and V, are calculated at the crack between the two crack planes; there- Douglas-fir beams (7.5- by 1.62-in.
tip using elementary methods, A and fore, as a conservative estimate, K, Figures, tables, and references are renum.
B are constants dependent on the will be taken as zero. As can be seen, bered.
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2 Table 1.-Range of coefficients in an equation o K1 as a function of loading
conditions.

00 a _^ KI = A M  +B B-V- +C C-IV
00bd3/2 bdi/I bd"1/

A ' * '1 4 Orthotropic parameters Coefficients
o 01 02 A B C

0.75 3.0 -3.112 -0.657 0.057
1.5 3.0 -2.864 - .674 .060
1.5 4.25 -2.577 - .779 .060

2 4 .75 4.25 -2.728 - .769 .068
02 1.125 3.625 -2.790 - .723 .062

SPECS SYSTEM
TL RL

ALPINE-FIR 0 * 25
BIRCH - 4

DOUGLAS FIR 0* 0 I
SPRUCE 1 I with x b
SWEET GUM C 20-
WALNUT " J dl 
PMPAR &

PINE .R

Figure 5.-Orthotropic parameters for 15 a
different wood species for the TL, -Kr
RL systems of crack propagation.
(First letter refers to normal tocrack planes or the y direction; the 10
second letter refers to direction of
crack propagation or the x direc-
tion.) Computed from elastic con-
stants in (5) or *obtained from J. D. 5
Barrett private communication.

cross section) were tested as shown 0 I I I I I
in figure 7. Saw kerfs about 1/8-inch 0 I 2 3 4 5 6 7
wide and of various lengths (see table
2) were cut at the centerline of the a
beams as shown in the figure. These d
kerfs were filled with smooth splines
of wood which were well paraffined Figure 6.-Graph of dimensionless KI as a function of relative crack length
to reduce friction. The beams were for an end-split beam under concentrated load.
supported on rockers and protected (M 148 059)

from indentation of the knife edges
by steel plates 1-inch thick and "After the beams were tested, two position of the reaction toward the
extending 3 inches each side of the block-shear specimens were cut from center of the beam, as shown in
reaction in the direction of the length each of them in the neighborhood of figure 7. The third column gives the
of the beams. The beams were the end of the saw kerfs and, subse- distance from the end of the kerf to
laterally supported, near their ends, quently, tested (1). the position of the load. Column 4
during test to keep them in a vertical gives the largest loads the beams
plane. These supports did not Presentation of Data withstood; and column 5 the first
hamper the deflection of the beams. maximum load. These two loads are

"Pillow blocks of hardwood were "The data obtained from the tests identical except for four beams. In
used to transfer the loads to the and some calculated values are given these four tests the shear failures
beams. For the beams of group 1, the in table 2. The first column contains were not completely destructive: the
pillow blocks were out to a 24-inch the beam number. Beams 3, 9, and I( beams failed and the load dropped
radius; and for the beams of group 2, were omitted from the table because and, as the test proceeded, the load
to an 18-inch radius. The speed of the they were cross grained. Beam 15 increased to a value greater than the
testing machine was 0.194 inch per was omitted because the shear first maximum.
minute for group 1 and 0.096 Inch per failure was so gradual that it was not "Column 6 of the table lists the
minute for group 2. The deflections noted until the specimen was value of the reaction at the first
were measured to the nearest 0.01 removed from the testing machine, maximum load, and column 7 the
inch at load Increments varying from The second column gives the length shear stress computed by the
200 to 500 pounds. of the saw kerf measured from the formula

4
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L, #R into account the depth of the beam

It would be expected that the
_____-- presence of this kerf would not

d-73" eaken the beam.
"The saw kerfs in beams 17 and '8

extended to within 7 and 3 inches of

.c.6" - 36 36" the position of the load. These twoIT beams are not expected to satisfy the
R 194MS OF GROUP / R suggested equation because the

ends of the kerfs are too close to the
position of the load."

Comparison of Experiment
with Theory

d. 7.3" To analyze the experimental data, a
theoretical equation similar to equa-

' tion (3) is needed. (Eq. (3) is a
C.24" 46" suggested design equation, too

R O.SttR general when comparing theory with
M Oexperiment.) Using the orthotropic

BEAMS OF GROUP e constants published (see (5)) for
Douglas- fir (radial-longitudinal, RL)

Figure 7.-Sketches of beams tested. and a stress function boundary value
M 148063) collocation method (see appendices

A and B), the equation for the mode II
SIF was found to be

Table 2.-Pertinent data from the tests and some calculated values K = - 2.785 M - 0.731 V___ __ __ __ __ __ __ __ ___ __ __ __ __ __ __ __bd
3  bd''

Results of block-shear + 0.0646 / - (4)
First tests bd ,,Spc.Mx-maxi- Reac- rc Speci- Speci. Aver-

men a c-a mum mum lion men men age For a concentrated load case.
No. load load No. 1 No. 2 equation (4) can be rewritten to

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) K1  = [- 2.785 (A) - 0.7311 - (5)
In. Lb. Psi d bl

GROUP 1 where
5 0 36 8,420 8,420 4.210 516 1,480 1,472 1,476
1 4 32 8.150 8,150 4,075 500 1,416 1,421 1,418 K,, is the sliding mode SIF
6 8 28 4,700 4,700 2,350 288 1,327 1,225 1,276 a is crack length (column 2,
2 12 24 3,690 3,340 1,670 205 1,342 1,319 1,330 table 2)
4 12 24 2,670 2,670 1,335 164 1,171 1,140 1,156 d is beam depth (7.5 in.)
7 16 20 2,630 2,630 1,315 161 1,389 1,616 1,502 b is beam width (1.62 in.)
8 20 16 2,510 1,550 775 95 1,336 1,181 1,258 R is reaction at support

GROUP2 (column 6, table 2).
11 5 19 7,170 7,170 4,710 578 1,519 1,526 1,522 Using the experimental data and the
13 5 19 5,240 5,240 3,440 428 1,435 1,302 1,368 theoretical equation (5), values of K,,,
16 9 15 3,225 3,225 2,120 260 1,352 1,222 1,287 were calculated for 12 beams (beams
19 9 15 3,090 3,090 2,030 249 1,277 1,130 1,204 5. 17. and 18 were not considered
12 13 11 3,000 2,500 1,640 201 1,339 1,363 1,351
'14 13 11 2,360 2,360 1,550 195 1,233 1,187 1,210 because of reasons noted earlier) and
17 17 7 3,900 2,700 1,770 217 1,326 1,470 1,398 are listed in table C1. Because group
18 21 3 3,600 3,600 2,360 290 1,181 1,216 1,198 1 beams had two end splits and

- 'Spowwn 14 had adeoth of 7.33 in. group 2 beams had only one, some
adjustment between the two groups
had to be made to obtain an average

critical SIF 9 1, for a beam with onlytc = through the 4-inch overhang of the one end split.,This adjustment is
2 bd beam just to the position of the explained In appendix C. From the

Columns 8, 9, and 10 give the results reaction. This kerf did not cause a data of the 12 beams and statistical
of the block-shear tests made on shear failure. The beam failed at a calculations, , was found to be
specimens cut from the beam in the modulus of rupture of 9,930 pounds 2,035 psi - in. with a
general location of the end of the per square inch, which Is consistent coefficient of variation (COV) = 15
saw kerf. with the average value of 11,200 given percent, for a beam with one end

"The saw kerr In beam 5 was cut for coast-type Douglas.fir (1Q), taking split. This compares to the value
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obtained by Barrett and Foschi (2) for 800
western hemlock of 2,107 psi
\'in.. Figure 8 graphs -a .__

2bd
versus J using equation (5) 6

(w =0) and Ri = 2,035 and 1,865
psi , In. for single and double
end-split beams, respectively. Also
plotted in figure 8 are the experi-
mental data showing the excellent 4W
agreement between experiment and
theory. If the generalized species (psi)
equation (3) is used instead of
equation (4) with the test data, the 200
Rk would be calculated to be about

percent higher.

Conclusions 0
1. Boundary value collocation can 0

be used to accurately calculate the
shear mode SIF in orthotropic wood
beams.

2. Using superposition principles. Figure 8.-Comparlson of experimental data with theory, for end-split beams
one single equation can be written to under concentrated loads (o-single-end split. o- -double-end split).
calculate K11 for an end-split beam for (M 40OWO)

either concentrated or uniform load
cases.

3. Complex loadings can be
handled by superposition of K,'s.

4. The effect of different
orthotropic parameters on the
simplified equation is small enough
so that one equation can be used for
a majority of structural wood species.

5. Using the BVC method and
species specific coefficients in the
simplified equation. 9;,, for a species
can be determined experimentally.

6. Douglas-fir KI-1 in the RL system
was determined to 1 e 2,035 psi , in.
at a moisture content of 11 percent.

7. A proposed simple failure equa-
tion for end-split beams is

K0s -2.8 M - 0.72.- Vbde
l

+ 0.06 -W--
bd

[ .6



Sw~ A.

a a .1 cna 92 *0

g6 r- 00-M 0%4 4 4
4.1 V44 4 1

0 0~ -A00

~ ~ 41 A 41 A

N0 - 0* 44

0 0

al a .44 - W 0 13 14 "4

ki 100 424

CIO 4.0 w 0 04 "4 10 ..
AZ- P40 0 gs 0 w 8

. 'a it 4

I14 10 $

60 14.4 00 
04.V4 4.

00 wo V

V4 -404

A .) *0)"

0 t9.4 00 *

41 0 4 p T 4 1 Wri V-4 0

~0 0 Ia 4 0). $43 ri *10 w~ 4 e~ 50 .~ o %W 44 . ! ~ 0be 4 a 4.104

0 v .40 V



Literature Cited
1. American Society for Testing and Materials.

1949. Shear parallel to grain. ASTM Stand. D-143-49.

2. Barrett. J. 0.. and R. 0. Foschi.
1977. Mode II stress-intensity factors for cracked wood beams. Eng.
Fract. Mech. 9(2):371-378

3. Bowie, 0. L.
1973. Solutions of plane crack problems by mapping techniques Ch 1
In Mechanics of Fracture 1-Methods of Analysis and Solutions of Crack
Problems. Noordhoff Int. Publ. 1-55.

4. Bury, K. V.
1975. Statistical models in applied science. J. Wiley and Sons. Inc.

5. Forest Products Laboratory.
1974. Wood handbook: Wood as an engineering material. U.S. Dep. of
Agric., For. Ser., Agric, Handb. No. 72, rev.

6 Hogg. R, U.. and A. T. Craig
1970. Introduction to mathematical statistics. Macmillan Co.

7. Isaacson, E., and H. B. Keller.
1966. Analysis of numerical methods. J. Wiley and Sons. Inc,

8. Johnson. J. A.
1973. Crack initiation in wood plates. Wood Sci. 6(2):151-158.

9. Lekhnitskii. S. G,
1963. Theory of elasticity of an anisotropic body Holden-Day, Inc.

10. Markwardt. L. J._ and T. R. C. Wilson.
1935, Strength and related properties of woods grown in the United
States. U.S. Dep. of Agric.. Tech. Bull. No. 479. Sept.

11. Muskhelishvili, N. I.
1953. Some basic problems of mathematical theory of elasticity.
P. Noordhoff and Co.

12. Rao. C. R.
1965. Linear statistical inference and its application.
J. Wiley and Sons. Inc.

13. Savin. G. N.

1961. Stress concentration around holes Pergammon Press.
14. Schniewind, A. P.. and J. C. Centeno.

1973. Fracture toughness and duration of load factor I, Si-x principal
systems of crack propagation and the duration factor for cracks
propagation parallel to grain. Wood and Fiber 5(2):152.159,

15. Sih, G. C.. P. C. Paris, and G. R. Irwin.
1965. On cracks in rectilinearly anisotropic bodies. Int. J. Fract. Mech.

1~
1:189203.

7



Appendix A
Formulation of the Complex Series Strss Functions for Cracked Orthotropic Bodies

Sih el al. (15) have given a general complex series stress function for a cracked rectilinearly anisotropic
body. These functions simplify when the crack is parallel to a material axis. Leading up to these functions
consider first an orthotropic body with a crack coincident with the negative x-axis (fig. Al) and a material axis.

The equilibrium equations (no body forcesl:

Jo, + '; ,1 = 0 X11 + 0,lx '1y dy J

and compatibility equation:

( W e +
')y. 'y JOY

are combined into one field equation:

a,(2a, + a,) y + a 0 (Al)

using the following relations
XtU X U O.U

ti = y = x : - ,xy

'I x J"a t x' '110,,J.

a +

and

The coefficients a, are related to the engineering constants by
1 1 1ral a,: a (A21 'a ,2= .a:=E a':= E,' G = (A,2,

for plane stress and

a,, 1 a,.

a.2 =ae ,

for plane strain.
Specializing the rectilinearly anisotropic case of (Q,9.L1.D), the solution to the orthotropic field equation (All

in terms of analytic functions F, of complex variables z, is

U(z,,z.) = 2 Re[F,(z,) + F,(z.))

where
z, = x + i,'y = r(cos t + id, sin M - t

where
= ,-1

Re means the real part of. and the 3,'s satisfy the charActeristic equation

ai$ - (2a,2 + ayJid + a.: = 0. (A3)

Introducing the notation
dF dodz = ,,(z,) and d =,

dz 1dz,
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The remaining coefficients (a,,'s and b,,'s) of the complex series stress function are obtained using a boundary
value collocation method as described In appendix B.

The leading coefficient X1 Is related to the SIF's K1, K11 by the relationship:

K, = - a,, 1/8ir(I- 2)

and

KI1 = bl, %/8r (01 - 132).

Appendix B

Boundary Value Collocation and Numerical Method

In a boundary value collocation method (or point matching) the form of the solution satisfies the governing
field equation everywhere in the interior of the body. The constants or coefficients appearing in the solution are
obtained by evaluating the solution at a finite number of boundary points. Infinite series solutions are first
truncated such that the number of unknown constants are at most equal to the number of boundary conditions
to be evaluated. If more boundary conditions are specified than unknown coefficients, the unknowns can be
solved for in a least-squares sense. Solving in a least-squares sense has the advantage of reducing off-point
errors, though making the linear system ot equations more ill-conditioned.

To apply the boundary value collocation method to a cracked orthotropic body, the complex stress function
(see appendix A) and associated integrals are approximated by:

M n

0' (Zi) a E Xin(Zi)2

nM Xjnn nz)
-ti; (zi) n - (Z

2

and
M X ZFi (Zi) =_r(i

_n nn +1

242
These functions are now used (according to eq. (A4) to (A6) to specify stress, displacement, or resultants at a
discrete number of boundary points, and the resulting linear equations can be written in matrix notation as

AX = B
where X contains M (not to be confused with moment M in text and appendix A) unknown complex constants X,,,.
matrix A contains functions of position and 3,'s, and B contains N corresponding boundary stress, displacement.
or resultant values. For the orthotropic crack-alined case the Rexn] = a,, corresponds to symmetric (about the x-
axis) in-plane loading only, while Im[Xin] = bn corresponds to skew-symmetric in-plane loading. Thus the general
case is really the sum of two separate problems:

A Re[,\] = BSyM and A Im[X = BSKEW

which are solved separately. Each case automatically satisfies appropriate stress derivatives ahead of the crack
and because of geometric symmetry only the region y > 0 has to be considered. The procedure used will be
given and then the rationale for each procedural step will be explained later.

Begin first with an overspecified system

AX = 6,
where

A is an N X M known matrix
X Is an M X 1 unknown column vector

and

B is an N X 1 known column vector

and

M s N.

First postmult!ply A by an (M x M) diagonal matrix D to get
AD D' X = ADy = Cy = B (Bt)

10



and premultiply C and B by the transpose of C knowing that
CTCy = CTB.

The square (M x M) matrix CrC is equal to TTT where T is an upper triangular (M x M) and is obtained by
triangular reduction by an orthonormal matrix R such that

RA = ()

(see (12)). The matrix equation is now

TTTy = CTB

Taking the inverse of the left side gives the matrix equation for the unknown column vector

X = DTITTCTB

Both the matrices X and B can be generalized to K columns so that a K number of problems (with the same
orthotropy and geometry and different loadings) can be solved simultaneously.

The matrix A is scaled by postmultiplying it by the diagonal matrix D in equation (B1) to achieve greater
accuracy in the solution than when it is not scaled. The resulting scaled matrix is required to have column
Euclidean norms approximately equal to unity and the diagonal elements of D are powers of two to avoid
introducing computer roundoff errors. Finding T from A directly by triangular reduction by an orthonormal matrix
is believed to be numerically more stable than by Gram-Schmidt triangular reduction (12) and requires less
computation than using Cholesky factorization of CTC into TTT. Finally then, the only matrix inversion is the
simple inversion of a triangular matrix (T). It was found that scaling and triangular reduction increased the
accuracy of X and in some instances (M large) gave answers when elimination methods, double precision, and
iteration improvement did not.

Appendix C
Statistics

Using the experimental data from table 2 and the theoretical equation (4). table Cl is constructed.
Since in group 1 the weaker of two K,1 was measured, the data cannot be lumped together without some

algebraic adjustment first. Assume that for a single set of conditions (one split, etc.) K,,, is normally distributed
N(pl, 711); assume also that for two splits the measured K, is the lower value of two independent K1,, each
having the same distribution; then, the probability density function (p.d.f.) of this measured K, is (using series
reliability (4))

92(Y; Ill, "0) =  21I"FN(Y; I'll 1)1 fN(Y; PI-, "0l (C 1)

where

fN(X: , ,, 01) =  1 e

and

FN(X; l l, ) " = iX fN( j,, ,,)dy

Using the method of maximum likelihood (§), we write a likelihood function L as

L(It, (,I; x1, X, X6.  Y, 2, y .  Y)

6= r 6 2(Yi: 111, (11) fN(x,: 111, -'0

where x, are observed values from group 2 (column 3, table C1) and y, are observed values from group 1 (column
4, table Cl). The maximum likelihood estimates for t, and a, are found such that

OL = 0and OL = 0.
,14

This was done with the data from table C1 resulting In

= 2,035 psi v in.

and

a, 301 psi .in.

These are estimates of the mean and standard deviation for a single-split beam.
The expected value for the group 1 set is

x g2(x)dx (C2)

-11



With a change of variables equation (C2) becomes
'xt+ #,) 2[1 - *,(x)j o(x)dx (C3)

where ojjx Is the p.d.f. and 41{x) is the c.d.f. (cumulative distribution function) of the standardized normal
distribution. Equation (M3) can be evaluated:

p2 = .X2[1 - 4*(X)J o(x)dx + pIll -41x'

The variance is I?=C,+~(4

t'.= x'g,(x)dx - l

but
I. xlg,(x)dx I . (xa, + it,)' 211 - +(x)I .ix)dx

a,1 j4l,_ x' o(x)dx + '.X'2111 - 4,(x)J,(x)dxl
+ 2sw',l. )(20 - 40111] o(x)dx + p? ',, 211 - 4'(x)],:(x)dx

af a~1 + 0] + 21, o.C + 14

resulting in
of( + 2p,oPC + p'. -p'

Using equation (C4) gives
= I - C'jo (C5)

The constant C was calculated by numerical integration to be - 0.5642 yielding:
r, r,- 0,56421l, = 1.865 psi \ in.

and
=0.8256o, = 249 psi \ in. (M6

Therefore, if a beam has one split which would always fail first, 1, and ., would describe the mean and
variance of K11,. and if a beam has two splits (each with the same K11).,~ and o, would describe the mean and
variance of the observed K11,

Table Cl.-Computed K11, f rem experiments
Specimen K1., x, K11, y, Specimen

number number K11.. x, K11,. y,
GROUP 1 GROUP2

I - 2.036 11 2.747 -
6 - 1.961 13 2,006 -
2 - 1.952 16 1.946 -
4 - 1,561 19 1,864 -
7 - 1.978 12 2.055 -
8 - 1.425 14 2,004 -

2. 0-12/79
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