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COMMENTS ON KHACHIAN'S ALGORITHM FOR LINEAR PROGRAMMING
by
George B. Dantsig®

Jack Edmonds once defined a “good” algorithm as one that can solve any
problem within a class in a polynomial bounded time where each factor of each
term of the polynomial is some parameter either expressing the size of the problem
or the number of digits needed to store the data of the problem. The point of this
little essay, is this: Solving in a polynomially bounded time says little.

: A POLYNOMIAL BOUND CAN BE A BIG NUMBER

The expected number of steps to find a feasible solution to a linear program
using Phase 1 of the Simplex Method, for moderately sized problems,is conjectured
to be, of the order

a-m STEPS,

where m is the number of equations and a is typically 2 to 3 (or 4 to 8 for an
optimal solution using both Phase I and II). Thousands of linear programs are
solved each day using some variant of the simplex method—a value of @ > 4 is
rarely seen. The effort to do each pivot step is of order m? but, because most
coefficients of the matrix are usually zero, the work to do a pivot can be reduced
to a fraction of m?.

Even for problems involving 1000 equations and 3000 variables , a appears
to be small. It is conjectured for n large relative to m, that the expected value of
a will grow slowly, say

expla) < logy(2 + )

Khachian seeks a solution to a system of strict inequalities were 7 is the
number of variables and 7 the number of strict linear inequality constraints, [1)].
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Peter Gécs and Laszlo Lov4sz state in [2] that the effort involved to solve a
problem by Khachian's algorithm, is of the order 8L(7i 4 1)? steps. Richard Stone
has pointed out that the correct value is 4L(fi 4 1)2. For convenience below I have
rounded this down to 4L73 steps. The work of each step (which is not a pivot
operation) is of order 113; it can be thought of as comparable to a simplex iteration.
Moreover, the devices that have been so successful in reducing the work of each
iteration of the Simplex Method appear applicable to reducing the work of each
step of the Khachian method. If coefficients range in value by 10° and are given
to 5 significant decimal figures, then L is about 30mn. This gives as an upper
bound for the number of steps for the Khachian algorithm:

1207n° STEPS.

As polynomials go, this is of surprisingly low order—a truly remarkable theoretical
result and the beginning of a promising and exciting new area of research. It shows
the essentially algebraic character of linear inequality systems in spite of the fact
that the number of extreme points can be exponential in 7 and 7.

Whether or not the algorithm is practical depends on the size of this bound for
moderately large linear programming problems of interest. The example discussed
below is typical.

At Stanford we have developed a dynamic linear programming model, called
PILOT, for Energy/Economic planning. It is used by the Electric Power Research
Institute in their planning for the Utility Industry and by the Department of
Energy for their long range studies. Case studies (scenarios) usually require 5 to
10 minutes of CPU time on the IBM 370-168 if started with a good guess. From a
“cold start” it can take up to 1 hour of CPU time. Because the problem is dynamic
in structure, the number of pivot steps seems to run a little higher on the average
— about 3.5 m for each phase of the Simplex Method.

For the PILOT Model:

m = 1000 , n = 3000

or
H==2000 , %= 3000

The comparative number of steps are:

KHACHIAN: 1207an® STEPS == 120 X 3000 X 2000° == 2.88 X 10!> STEPS
SIMPLEX: 3.5m STEPS ==3.5X 10® STEPS
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For a 1000 equation system of the sparsity of PILOT, each step takes about
1/2 second on the IBM 370-188 or at the rate of 8.3 X 107 steps per year. Thus
the estimated and actual times to solve this problem are

KHACHIAN: 2.88 X 10!3 STEPS == 50,000,000 years

SIMPLEX: 3.5 X 10° STEPS == 30 minutes

This comparison is, of course, unfair. The upper bound given by Khachian
is not tight and a tight bound for the worst case could turn out to be a much
smaller number. Walter Murray has looked into the way that the ellipsoids adjust
and contract in volume. Each ellipsoid appears to be a slight perturbation of its
predecessor. Because of this, Murray believes that the expected number of steps
(for problems of the same dimensions and size of the coefficients) will not be much
different from that of the worst case [4].

There is a great deal of interest in the Khachian algorithm. One can expect
a reexamination of similar previously proposed algorithms that converge in the
limit to a feasible solution. Restated in terms of integer coefficients, a finiteness
proof with a polynomial bound might also be obtained perhaps some will turn out
to have practical upper bound and expected value estimates. For a discussion of
this possibility see [4].

It has been suggested by N. Zadeh, Alan Hoffman and others, that the Simplex
Algorithm be reexamined to see if it too has polynomial bound under the assump-
tions that the class of linear programs considered has:

(1) integer coefficients, and

(2) the maximum of the absolute value of coefficients is less than a constant
independent of m and n.

Examples have been constructed by V. Klee and G. Minty [3], P. Wolfe, and N.
Zadeh such that the number of steps grows exponentially but these do not satisfy
(1) and (2) above.

In summary, the existence of an algorithm with a polynomial bound of 120/ 7?
steps, each step requiring about 7 operations, is an important theoretical result.
Unfortunately a polynomial bound does not imply a “good algorithm”. To qualify
as good, the bound must not be too high for practical problems of interest such as
those routinely solved by the Simplex Method. The effect of the Khachian result
will be to intensify the research to find an algorithm with a more practical bound
like 2(7— 1) steps, each step requiring about (73— 7)3 operations (the empirically
observed rough average for finding a feasible solution using the Simplex Method).
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