AD=A0B80 836 VIRGINIA POLYTECHNIC INST AND STATE UNIV BLACKSBURG ==ETC F/g¢ 12/1
EQUIVALENT MARKOV=RENEWAL PROCESSES.{(U)
DEC 79 8 SIMON NOOO14=77=C=0743
UNCLASSIFIED VTR-80-01 . NL




EQUIVALENT
MARKOV-RENEWAL PROCESSES

by

Burton Simon

Department of Industrial Engineering and Operations Research
Virginia Polytechnic Institute and State Unilversity
Blacksburg, Virginia

TECH REPORT
VTR 8Q91
December 1979

This research was supported under ONR Contracts N0O00l4-75-C-0492 (NRO42-296)
and NO0014-77-C-0743 (NRO42-296). Approved for public release; distribution
unlimited.

S SN AT P T ¢ i

Sy

A negrwe e

LY

T e R TV A ey T ) DA oA £ T an




(1

SECURIYY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
V. REPORT NUMBER / 2. GOVY ACCESSION NO.[| 3. RECIPIENT'S CATALOG NUMBER
| __Technical Report VIR 8001
4. TITLE (and Subtiile) | S. TYPE OF REPORY A PERIOD COVERED
R e - o . N o e s P it
:; Equivalent Markov-Renewal Processes.} " T - ~
S memese T m T (1 ORMING T UMBER
VTR 8001
7. AUTHOR(2) §. CONTRACTY OR GRANT NUMBER(s)

FUIIRIEE e Y

"
d)} Burton{Simon \
e N0O0014-77-C-0747%
[

. PERFORMING ORGANIZATION NAME AND ADORESS / to ::gCA-R.A:oE.LK!:SINTY.NPU':‘O’JEE'&‘:;. T ASK

Department of Industrial Engr. & Operations Res.
Virginia Polytechnic Inst. & State University

Blacksburg, Virginia 24061 NRO42-296

'l CONTROLLING OF FICE NAME AND ADDRESS . REP TE I
Director, Statistics and Probability Program QZE%H‘”
Mathematical & Information Sciences Division [ 13, NUMBER OF PAGES
800 N. Quincy St., Arlington, VA 22217 101

T4 MONITORING AGENCY NAME & ADDRESS(I! diiferent Conttalling Ofiige) | 18. SECURITY CLASS. (of fhis report)
-~
Ja)4 &~
A7 - . Unclassified

T8a. DECLASSIFICATION ' DOWNGRADING
SCHEDULE

OISTRIBUTION STATEMENT (of this Repor()

pproved for Public Release; Distribution Unlimited

(;%LVTWR»?¢~a/}

7. DISTRIBUTION STATEMENT (of the .-Q_-'ftﬁnlef(!nmflfdﬂhim! ftpm Report)
JSINTeD I Y- - 7 793,
N@grid-". & v J2

. SUPPL EMENTRAA-NOSES

. KEY WORDS (Continue on reverae alde If necessary and Identlly by block number)
Markov Renewal Process Lumpability
Renewal Process Collapsibility
Equivalence

20. A RACT (Continue on reverae elde il necessary and identify dy block number)

The concept of strong and weak lumpability between Markov chains was
introduced by Burke and Rosenblatt in 1958. 1In 1969 Serfozo showed that the
concept of lumpability extends easily to Markov-renewal processes (MRP's).
These concepts are apparently considered unimportant by the masses since there
has been very little reference to them in the literature since 1972. The
reason for the lack of interest is probably that the conditions for strong

DD , %%, 1473  eoimion oF 1 NOv 6818 OBsOLETE
S/N 0102-014-8601 |

- / /((, 74/7

SECURITY CLASSIFICATION OF THIS PAGE (When Data Rntered)

lumpability are too strong to b seful and nobody has ever considered the
o y g to be u u y 5?kﬂ}°v’

pe ey v

T N TR e IR

O AT e T T

B T cn W s T e i A T 313 rged et g




\\ﬁo.
important special case of weak lumpability from a MRP to a renewal process. What is
shown here is that in an appropriate modified form, these concepts are important in
both application and in the foundational study of MRP's.

Equivalence and collapsibility between MRP's are defined, and necessary,
sufficient, and necessary and sufficient conditions are given for them. It is
shown that equivalence, collapsibility, weak lumpability and strong lumpability
are morphisms between MRP's, and their relations to one another are examined.

Equivalence between a MRP and a renewal process is examined in detail. Specific
results are obtained for irreducible, reducible, periodic and transient MRP's. These
results are applied to problems concerning flows in queueing networks. It is shown
that several well known results in queueing theory are examples of equivalence (for
instance Burke's Theorem). New and simpler proofs are given for them. Some questions,
previously unresolved, are answered using the techniques developed here; most notably
the question of when the input process to the M/M/1 queue with instantaneous Bernoulli
feedback is renewal.

Convolutions of 's are examined, and conditions are given for equivalence to be
preserved under convolution. It is also shown that an important class of Markov-
renewal equations can be simplified if the underlying MRP is equivalent to the renewal
process.

Finally, it is shown that the ideas developed here can be extended to MRP's on
general state spaces. The definitions of equivalence, collapsibility, weak
lumpability and strong lumpability are given in the general setting. Examples from
queueing theory that would make use of the generalized results are given.
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OUTLINE OF MAIN RESULTS

Equivalence

A.

B.

from a MRP to a renewal process:

general MRP: Thm's 2.2.1, 2.2.2, 2.2.7, 2.5.1, 2.5.2
finite MRP: Thm's 2.2.8, 2.2.9

irreducible MRP: Thm's 3.1.1, 3.1,2

reducible MRP: Thm's 3.2.1, 3.2.3, 3.2.4

periodic MRP: Thm 3.3.1

transient MRP: Thm's 3.4.1, 3.4.2

preservation under convolution: Thm's 4.2.1, 4.2.2, 4.3.1
Markov-renewal equations: Thm's 4.3.3, 4.3.4
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.

from a MRP to a MRP: Thm's 2.7.1, 5.4.4

Other Morphisms (section 5.4)

A.

collapsibility of a MRP to a MRP:

1. general MRP's: Thm's 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5,
2.6.6, 5.4.3

2. reducible MRP's: Thm 3.2.2

3. periodic MRP's: Thm's 3.3.2, 3.3.3

weak lumpability: Thm's 2.2.1, 5.4.2 (known results in section
1.2)

strong lumpability: Thm's 2.2.2, 5.4.1 (known results in
section 1.2)
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CHAPTER 1

INTRODUCTION

1. Introduction
The main purpose of this work is to introduce some new concepts
in Markov-renewal theory which are of theoretical and practical interest.
A Markov-renewal process (MRP) is a sequence of pairs of random
variables {Xn,T“} where Xn takes values in some measure space (S,z!) and

Tn takes values in [0,»], that satisfies

P(X

41 € A < c|xn,---,x0, T ,---,T1)=1>(xn+1 €A, T

Th+l < n §_t|xn) a.s.

n+l

for n=1,2,--¢, A e,e[, t € [0,o]. It is assumed that there is a transi-
tion function QxA(t) = P(XM_1 € A, Tn+1 §.t|Xn = x) which is called the
kernel of the MRP. It is clear that the kernel and the initial distribu-
tion vy (i.e. y(A) = P(X0 € A)) completely specifies the distribution of
the process {xn’Tn}'

It would seem that one of the basic questions in Markov-renewal
theory would be to determine when two MRP's with different characteriza-
tions (i.e. different state space, kernel, or initial distribution) are
"the same'. A review of the literature shows that this question has
been largely ignored. Actually, the only work done in this area has
been the extension of the concept of strong and weak lumpability between
Markov Chains to strong and weak lumpability between MRP's. A descrip-
tion and review of those results will be given in the next section.

Even the present knowledge of strong and weak lumpability

BV



between MRP's is quite incomplete since no attempt is ever made to apply
these ideas or to see 1f and when they occur in practice.

Consider the departure process from an M/M/1/N queue (N < ®).

It can be shown ({4], for instance) that the departure process is most
naturally characterized as a MRP with N+ 1 states (corresponding to the
length of the queue the instant after a departure). When N=o (i.e. the
M/M/1 queue), a countably infinite state MRP characterizes the departure
process. It is well known, though, [2], [4], that the departure process
from a steady state M/M/1 queue is a Poisson process, which like any
renewal process is a one state MRP.1 This is a nontrivial example of a
MRP with two different characterizations. Several other similar examples
can be found (see section 2.4),

Attempting to construct definitions for two MRP's being '"the
same" leads to the construction of morphisms between MRP's. Four
morphisms will be defined; strong lumpability, weak lumpability,
collapsibility and equivalence. Although strong and weak lumpability
have never been defined outside the realm of finite state MRP's, there
is no problem extending their definitions to the general case,.

The conditions for strong lumpability are very restrictive and
although they can be written down in a mathematically attractive form,
strong lumpability is not as interesting a morphism as the others. Weak

lumpability is a more interesting morphism, but the mathematics

lA renewal process is a one state MRP since there is only one
kind of event. Sometimes the total number of renewals up to time t
(the counting process) is called the state of the renewal process. In
that context the state of a renewal process can take values in the
nonnegative integers. In our context though, the state of a MRP at the
time of an event specifies the distribution of the time until the next
event. Thus, a renewal process need have only one state since those
times are 1.1.d. random variables.
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describing it is not very pleasant. Strong lumpability always implies
weak lumpability but the converse is not true,

From & mathematical point of view, collapsibility is the most
pleasing of the four morphisms. It 1is easy to show that weak lumpability
implies collapsibility but the converse is presently unresolved (due to
the complexity of weak lumpability). Strong evidence i{s given in sec-
tion 2.6 towards the belief that collapsibility is a weaker condition
than weak lumpability.

The weakest of the morphisms is equivalence. From a practical
point of view, though, it is the most important. Equivalence is exactly
the condition that allows one to substitute one MRP for another in (sav)
a queueing network without changing any of the important aspects of the
system. It is easy to show that equivalence 1s weaker than the other
three morphisms. It is also easy to show that in the important special
cagse where one of the MRP's is a renewal process, weak lumpability
collapsibility and equivalence are identical.

The precise definitions of these morphisms in the general
context is given in chapter 5. The definitions for the finite and
countable case are in chapters 1 and 2.

The vast majority of the present work is concerned with the
simplest cases of the morphisms (between & MRP and a vrenewal process,
and between two finite or countable MRP's). The reason for this is
twofald. First of all, as far as applications are concerned, these are
the most important cases. Also, since so little work has been done in
this area it seems rediculous to jump into the general setting without

a thorough discussion of the important special cases.




2. Lumpability

Probably the simplest case of equivalence between MRP's is lump-
ability in Markov chains (8]. Let {Xn} be a Markov chain on a finite or
countable state space S. Let Al,Az,---,An be a partition of S, and let
F: S+ {AI,AZ,---,An} be the map that “lumps" the state space S onto the
partition {Al.Az.---,An). The process {F(Xn)} may or may not be a Markov

chain. In general, the probability of going from A, to A, in {F(Xn)}

i 3
will depend on precisely which element of A the {Xn} process is in. If
for each 1 and j, though, the probability of going from Ai to Aj is
independent of the state in Ai that the {Xn} process is in, then the
process {F(Xn)} is a Markov chain. When this happens we say {Xn} is
strongly lumpable to {F(Xn)}. This is a special case of the equivalence
to be defined.

For example, say S = {1,2,3} and let {Xn} have transition

probability matrix

1 1 3
5 5 5
1 1 1
2 4 4
1 i 3
2 8 8 .

Let F(1) = Al, F(2) = F(3) = A,. The process {F(Xn)} is a Markov chain

on {Al,Azl with transition probability matrix

vl

i
5
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If {Xn} is strongly lumpable to (F(Xn)} then no matter which
state in 5 the process starts in, {F(xn)} will be a Markov chain. In
fact, even if the precise state that the process begins in is not known,
the ensueing {F(Xn)} process is a Markov chain.

Sometimes, even though {Xn} is not strongly lumpable to {F(X“)}.
the process (F(Xn)} is a Markov chain when {Xn} is in steady state. When
this happens we say {Xn} is weakly lumpable to {F(Xn)}.

If S has m elements (m < =) and F(8) has n clements A, ,A,, - A

1° n

(n < m), then the following m x n matrix, U, can be constructed. Let

-~

0, if i ¢ A,,
]

I =
1, if i ¢ Aj'

f

There Is a vector n that satisfies nP 1 (the steady state
vector) where P is the transition probability matrix for {Xn}. Let 1

be an n x m matrix with

0, 1f J ¢4y,

1j . 1f j ¢

v

>

The ith row of 1 is the conditional probability of being in state j
given that the process is in steady state and that the process is in Ai.
Kemeny and Snell {8), show that {Xn} is strongly lumpable to
{F(Xn)} 1f and only if PU = U(NPU), and that if {F(Xn)} is a Markov
chain then its transition probability matrix is MPU. They also show

that TP = (MPU)T or PU = U(NPU) is a sufficient condition for {X } to be

weakly lumpable to {F(Xn)}. For example let S = {1,2,3} and set

el e
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: 6 ]
F(l) = Al. F(2) = F(3) = AZ' Suppose the transition probability matrix ]
for {Xn} is
1 1 1
2 4 4
4
1 1 j
f P 2 2 0 ;
; 1
L
1 3 g
0 3 3 4
. - (11l1l :
In this case n = (3,3,3) so i
E |
; //1 0o o 1 0
i
‘ ns= KO 1 1 and U = 0 1
I 2 2
| 0 1

{Xn} is not strongly lumpable to {F(Xn)} since

P(F(X ) = A [F(X ) = A))

depends on whether Xn_ is equal to 2 or 3. This can be seen formally

1
by noting that PU # U(NPU). In steady state, though, {F(X,)} is a Markov

chain since TP = (NMPU)N. The resulting Markov chain {F(Xn)} has a

transition probability matrix

1
2

N

Py =
1
4

Sl

The necessary conditions for weak lumpability are much less
appealing than the necessary and sufficient condition for strong lump-

ability or the sufficient conditions for weak lurpability. If y is a

bt . )




probability vector on S then define [Y]i to be the vector of conditional
probabilities of being in state j (j=1,2,---,m), given that the process
is in Ai' For example, the ith row of the matrix I is [ﬂ]i. Let Fj be
the set of all finite sequences of states in F(S) that end with Aj'
il, Aiz,-",Aik, Aj and Ajl, Ajz, ',qu, Aj are two elements of Pj then
for {Xh} to be weakly lumpable to {F(Xn)} it must be true that for each

E 1 E E 2
P, vy, = P,y
181 &5 A 18 4

ieSBe Aa

If
A

L

ae (1, 2,--+,n).

where

i i i .
Lo tmum ey 2ep 3. P]i“ p]]

<
1]

and

2
Y

H

TR TORE SR 3
[ eer L0002 YR 21 30174 o9 )3,

Serfozo [16] showed that strong and weak lumpability can be
defined for MRP's in an analogous manner. In fact, the conditions for

strong and weak lumpability in MRP's are virtually indentical to the

conditions for Markov chains. 1If {Xn’Tn} is a MRP on a finite state

space S = {1,2,3,---,m}, with kernel Q(t)

(d.e. () =P(X ., =3, T, < t]xn = 1))

Qij
and F: S » {Al,Az,---,An} is a partition of the state space then
{Xn,Tn} is said to be strongly lumpable to {F(Xn), Tn} if {F(Xn), Tn}
is a MRP.

Again, let m be the steady state vector for the embedded Markov
chain (i.e. mQ(») = #), and let M, U be defined as before. Serfozo

shows that {Xn,Tn} is strongly lumpable to {F(Xn), Tn} if and only if




Q)Y = q(nQ(t)y) for all t ¢ [0,«]. Likewise if for all t, Q(t)U F
- Q(“Q(t)g) or NMQ(t) = (HQ(t)y)n then (F(x“). Tn} is a MRP in steady

atate (i.e. weakly lumpable). Unfortunately, the necessary conditions

for weak lumpability ave again very complicated. Let I' be the set of

]
all finite sequences of states in F(8) that end with Aj' 1{ A1 . Ai . i
1 2
se A, A, and A, L A L A, A, are two elements of ', and H
WA 5L, 3 3 1
k 1 Py q :
L

«+,8 )} are two sequences of positive real

L ety 1* 2
:
numbers then forv {X“.T“} to be weakly lumpable to (F(Xn).T“} it must be ¢
i
true that fov each o ¢ (1,2,°++,n) and t ¢ [0,~] ¢
¢
:E:: (t) Yi :E:: :E:: )13(t) 712 i
1 e SRBeA t
a ‘
where
) 11 i. i ik )
vos e T T e Q(t )] Q(t )] 4 Qe T et
and
| 1. 3 3 3 :
2 e 2 3 4 q i i
™ v (BN ) ) “n e s (s < .
Yom L T QG T Qe ] s CHIRIILRCRY i
In this paper a type of equivalence will be defined that includes ;
all ot the cases discussed so far and has the added property that a §
necessary and sufficifent condition for two MRP's to be equivalent can be ¢
written in a simple form. E
¥
3. Definftions and Notation
In the first four chapters, all MRP's will have finfte or count- g
i
able state spaces. Llet S be a finite or countable subset of R, let 8‘? }
o /]
denote the Borel subsets of [0,~] and let & = (8 x [U,=]) |, the countable !
vartesfian product of 8 x [0,~] with {tself, Thus, w ¢ ¥ can be
represented by E
\
!
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Let X (@) = x () and T (@) =t (w). let o‘*‘ be the smallest
n n n n
o-algebra on & that makes (X“. 'l‘“: no= 0, 01,0, ) random variables, and
let "‘k be the smallest o-algebra that makes {X“. 1‘“: noe 0,00 k)
random vartables, Let P be a probability measure on (4, ,‘ﬁ‘\.

Detinition 1.1, The process (X“. 'l‘“). noe= 01,2+, {8 a

Markov-renewal process (MRPY {t theve (s a Q” Y: o8 x N x |0,~] 2 0,1])

such that

Y\ - 1 [N gs = ) {
Va, B(X o= 00Tt e ) l\xn-l"\(” AR

Detinition 1.0, 20  The kevnel ot a MRP in the matrix ot sub-
distributton tunctions, Q(t) = “‘H ) 1) v 8, o [0~
lLemma 1. 4.1, 1 {X“‘ 'l‘“) {s a MRE with kernel Q) then

l('\(\' "\\\'”"xm t "\m’ ll b ‘l'.”'lm * (m)

- Yoo \]
: : 2 :“\U 'O)Q ul Q_\ i “m ’

‘ ”\ | “\ m-lm

Prootf. Clearly an v .'\n) - E I(Xu - 103. Aasume the
jnt‘t\u
hypothesis {8 true for k ~ m.  Then,

\l X LI ) \ .
‘('\0 ' Al\' ‘\m Am' \

E E “(\ '\u\"'\' v t ‘\l“’ AN

“\ m i
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J eA  J €A (Xm Jm’ Tm = t:llllxm-l jm—l' xm—2 € Am—Z’
mm “ml m-l
L taXgEAy T <t et T <)

CPRL gt g Xpea €A Xg e Ay

Tl S Gyt 0T 2 6
= :: z I’(xm =y T 2 tmlxm--l - jm—l)
jmeAm jm-leAm-l
! P(X,=3,)Q, , (t.):--Q (e )
0 707303 1 Uiy ™1

Joehy Ipo2fAn 2

- z E PG = 3900 g (&0 (5. 0
J0 A0 jm Am

Letg,dbe the semi algebra of sets of the form (XOEAO,---,xne An,

T, <ty

extension of 5 from oﬁ{to J;rit is clear from the lemma that the kernel,

booosT <t ). For Aced, let P(A) = P(A). Since P is the

Q(t), and the initial distribution, vy = {y,: j € S} (where y =P(x0-j))

N 3
completely specify the distribution of {Xn, Tn}, n=0,1,2,-+*. For this
reason, throughout this paper a MRP will be specified by its kernel and

initial distribution.

Definition 1.3.3. A MRP, (Xn, Tn}, n=0,1,2,>-+, with kernel
Q(t) and initial distribution y will be denoted (Q,Y). A MRP with
kernel Q(t) and unspecified initial distribution will be denoted Q.

Occassionally, we will need to consider the individual sample

paths of the MRP (Q,y). This poses no problem since we can define




11

(sl.&‘) as before and construct P by extending lA’

If S has only one alement then § = [().m]m, y-«“ﬂm and
egi -;ﬂ?k. Thus, if {X“. Tn). n=20,1,2,-°+, 18 a MRP with only one
state

PT < t| F) =PI Ct) = () as.

Thus, {TI‘TJ"‘°) Iz a sequence of 1.1.d. nonnegative random variables
with common distrvibution r(t).

Definition 1.3.4. A MRP with one state will be called a rencwal
process.  The kernel ot a renewal process is a scalar tunction, r(t).
Since there can be no contusion about the inittal distributfon ot a MRP

with ouly one state, a rencwal process, (T,,T,,- <} with P(T“ < t) = r(t)

1* 2
will be denoted r.
Let (Q.y) be a MRP. By renumbering the states, the kernel Q(t)

can always be put into the following canonical form. (see Qinlav (3]

o L R R A

PRy

S r TRt gy N T BT




(1.3.1) Q(t) =

where the A's and B's are square.

12

Al(t) { (
p- - - e e o
Az(t)
G IS n_..__J,-‘n_u“,---~4,«,.m-4,<, U SOOI O,
—t - — -
Ak(t)
3 A
7711
Cn(t) Clz(t) Clk(t) Bl(t)
USRI W SN S, .T.___ p
c“(t) sz(t) N C2k(t) Dzl(t) Bz(t)
C3ft)c3§t) 03¢t)03ft)03§t) B3(t)
— RIS S
L—-—- ——-—r-————-»~—-4-—»~—-<-~L«~—‘—-- B R e e ante DS -———‘—-qL ———
C (t)]c, (t) C,.()D ()b (OOHID (&) ... |B, (¢t)
[3) L2 Lk L1 L2 L3 L
i . I I

the MRP 1s called irreducible.

Otherwise it is reducible.

If k = 1 and £ = 0 (1.e. Q(t) = Al(t)).

By renumber-

ing the states of an ifrreducible MRP the kernel can always be put into

the following canonical form

(1.3.2)

Q(t) =

Ql(t)

S

_15..*-——

RIPUNEPI S,

Q,(t)

e S
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where the columns of Qj(t) correspond to the rows of Q (t) (interpret

j+l
J+1l =1 if J=n). If n=l (d.e. Q(t) = Ql(t)). the MRP is called
aperiodic, otherwise it is periodic with period n.

Notation. U will always denote a column vector of 1's.

Definition 1.3.5. 1f Q(t) is a kernel of a MRP then

Q(*) = lim Q(t).

o

Since Q(t) is right continuous it is possible that for some {,
Z:QU(“) < 1. This means that {f xn—l-i there is a positive probabil-
ity that T“ = w,  This can be iuterpreted as a process that terminates at
time T= T1+'l‘2+ +T“* where n¥(w) = i:f {Tn-H(m) aw}, 1t is well
known (Cinlar [3]) that if Q is irreducible, P(n* =) m( {f Q(a)U <« U
and P(n*=w) =1 {f Q(™)U = U,

Definition 1.3.6. An 1irreducible MRP is said to be transient if
P(n* = ») = 0 and presistent if P(n*=w) =1, Note that a transient MRP

and a MRP with transient states are different concepts. For example,

if r(=) =1 then

e |

r(t)

N I S

is not a transient MRP even though every state {s transient.

In this paper {rreducible MRP's will be persistent unless stated
otherwise.

It is well known (Cinlar [3]) that {t Q(~) is an {rreduclible

matrix there {s a unique positive eigenvector associated with the larg-

P T
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est eigenvalue of Q(«).
Definition 1.3.7. Let Q be an {irreducible MRP. Let n satisfy

#Q() = An and 8 = 1 where ) is the largest positive eigenvalue of Q(=).

n will be called the steady state vector for Q.

4. Elementary Facts about MRP's

Let (Q,Y) be a MRP. We will need to work with equations involv-

ing terms like

(1) P(Tl <, tl' Tz < tzﬁ"'vT“ < tn' xn - j)
(2) P(T; <t Ty <ty oo, T < ‘n'xo = 1)
(3) P(Tl i tly T2 i tzs""Tn f t“)'

Fortunately, from lemma 1.3.1, these quantities can be written
down {n an attractive form using the matrices {Q(t)}, t € [0,=], and the

vector y.
' ’ e - - ) T

a" P(Tlf_tl. sztz. ‘Tnft“, X“ » (YQ(tl)k(t:) Q(t“))j
* veo - - A vee

(2") P(T <ty Ty<ty, .I'n_<_t“|X0 1) = Qe Q) Q(e JU),
L - v

(3" P(T <), Ty<tyeeee, T o<t ) = vQ()Q(t,) -+ - Qe I,

Let Q(t) be the kernel of a finite state, irreducible, aperiodic
(possibly transient) MRP. By the Perron-Frobenius Theorem [3] there is
a unique largest eigenvalue of Q(~) which {s positive, and that ecigen-
value has an assoclated left and right eigenvector which have positive
elements. Let A be the eigenvalue, n the left eigenvector and g the

right eigenvector. Assume that n is normalized so that nU=1 and R is

normalized so that n8 = 1., Since ) has multiplicity one, we can write

Q=) = AIA"Y where

i, ¥ Ay, WD e

O, e

e TS ok a7

A

e g et T b O A

1 2 A, G o
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A "
J
J -
J = bid A= |8 B A 1. c
B . .
Since A is the largest eigenvalue,
1 0
Hm A" 3" = o 0
n-reo

Thus,

lim A7Q%(®) = A(lim AT"3MA7! = gr.

n-« n-re

In the case where (Q,y) is persistent, A=1, 8=1U, and we get

the well known result that lim Qn(w) = Un.
n-eo

If Q(») has period m (i.e. has form 1.3.2) then

" = | 8]

-

W

where Qj:-QJQJ+1...QmQ1...Qj_1. Each Qj is irreducible and has the same

maximal eigenvector A. Thus if n, and B, are the normalized left and

] |
right eigenvectors associated with A then

f I Ry .
\..—..—.—-—...-J . v L L et ey A - oo ukan T

A I S

;
£
i
i

7 *gmega
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11

-nm.nm 2°2

lim A 7Q (w) =
n-e

T
Furthermore, if n = (“l’ "2a"';"m) and B = (Bls 82,""8'“) , then

m
1 =(norHk) nmtk
lim - E A Q («) = Bm.

e k=1

Let Q have the general form (1.3.1) and assume now that

Q(«)U=U. Say A, has period m, and let m be the least common multiple

h| J
of the mj's. Since each Bj is a transient sub MRP, we get
U1r1
Un2
0
m ' .
1 nmtk
rlxi-: m z Q (=) U"n

k=1

P11"1|P12"2f - [P1n™n

P21"1{P22™2} | P2n™n
. . - o

. . .
. . .

P41"1|Pa2"2( -+ |Pdn™n

where pi.1 is the probability of ending up in AJ given the process starts

in the ith transient state. (see [3]).

=N

ot

TR




CHAPTER 11

EQUIVALENCE

1. Equivalence
Associated with each MRP (Q,y) is a sequence of nonnegative (pos-
sibly extended valued) random variables (TI’T“'."}' The distribution

-

of {Tl.Tz.---} is given by
PAT, <ty Ty < tyyme e T < tn) ‘YQ(tl)Q(tz)"'Q(t“)U-

Lemma 2.1.1. {TI.T,.---} is a sequence of i.,i.d. nonnegative

random variables (i.e. a renewal process) if and only if
Vn.tl,tz.---.tn. yQ(tl)Q(tz)---Q(tn)U- (vQ(tl)U)(vQ(tz)U)---(N(t“w)-
Proof. (=e») If Tl.T,.--- is a renewal process then

P(T1 < tl' T2 < tz.-'-.Tn < tn) -P(T1 < t])P(Tl < t‘)"'P(Tl S t“).

-

But this says yQ(tl)Q(t,)---Q(tn)U- (YQ(tI\U)(YQ(t,)U)"'(\Q(t“\U\.
(em=) If YQ(tl)Q(tq)--'Q(t“)ll-(wQ(t])U)(wQ(t23U\"'(\Q(t“\U)
then P(T1 <t Ty Sttt TS tn)' P(T, < tl)l’(T1 < tz)---P(T1 < t“).n

This leads to the definition of equivalence between a MRP and

a renewal process.

Definition 2.1.1. Let (Q,v) be a MRP and let r be a renewal

process. (Q,y) is equivalent to r (written (Q,y) ~ r) ¢t

Vu, Epotyeent o YQ(tl)Q(tz)-'-Q(t“)U - r(t‘)r(tz)---r(t“).

17
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I1f for any initial distribution 8, (Q,8) ~ r then we write Q = r. If
there exists an initial distribution 8, such that (Q,B) ~ r then Q ~ r.
Clearly, if (Q,Y) ~ r it must be true that r(t) = yQ(t)U. The

main questions that will be answered in Chapters II and III are

(1) When is (Q,y) ~ r?

(2) For a given MRP Q, when is it impossible to find an initial
distribution y, and a renewal process r that yields (Q,y) ~ r?

(3) If (Q,y) ~ r and (Q,B8)~ f when must r = f?

(4) If (Q,y) ~ r and (Q,8) ~ r when must y = B?

2. Conditions for Equivalence

In this section we give sufficient, necessary, and necessary and
sufficient conditions for (Q,y) ~ r.

Theorem 2.2.1. Let (Q,y) be a MRP and let r be a renewal pro-
cess. If Vt, yQ(t) = r(t)y then (Q,y) ~ r.

Proof. If Vt, yQ(t) = r(t)y then Vu, LIRSS PERR

YQEQCE,) Qe DU = £(EI¥AE,)Q(E5) " +Q(E U

= r(tl)r(tz)YQ(t3)"'Q(tn)U

= r(tl)r(tz)'--r(tn)yU

= r(tl)r(tz)"'r(tn). &

; Theorem 2.2.2. I1fVet, Q(t)U=Ur(t) then Q= r.

Proof. If Vt, Q(t)U=Ur(t) thenVn, te Gyttt

BQ(tl)Q(tz)"'Q(tn)U*-BUr(tl)r(tz)---r(tn) = r(tl)r(tz)---r(tn)

for any initial distribution B. O
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Theorem 2.2.1 and 2.2.2 are special cases of the sufficient con-
ditions for weak lumpability that Serfozo gives in {16]. Theorem 2.2.1
says that 1f vy is a left eigenvector of Q(t) for every t then (Q,y) ~ 1t
where r(t) is the eigenvalue of Q(t) corresponding to the eigenvector .
Theorem 2.2.2 is a special case of the necessary and sufficient condition
for strong lumpability in Serfozo [16]. Theorem 2.2.2 says that if the
row sums of the matrix Q(t) are the same for every t then Q =~ r where
r(t) is the common value of the row sums. If the row sums are all the

same, the times between transitions do not depend on the state of the

process. Thus

P(Tn < tnixn-l’)\n--Z'.“:‘0"1}1-1’”."1‘1)= P(Tn t tnl‘\n—l)= l(Tn E tn)

so {Tl,TZ,---,Tn} is a renewal process. The intuitive justification of
theorem 2.2.1 is less obvious, but most interesting cases of equivalence
seem to be of that type. It will be shown in section four that Burke's
theorem is a corollary of theorem 2,2.1.

In everything that follows, the topology on Rn, n < o will be

n = 7 e ¢ 1 T\
the L1 topology (i.e. if X eR, K 1,2, then X X i x, U » xU),

k
Let (Q.,y) be an n state MRP (n < «) and let r be the rencwal
process with distribution yQ(t)U. We define the following subsets of
R".
Definition 2.2.1.
(A) Let JY = {v ¢ R": vQ(t)U = (vU)r(t), Ve,
(B) Let Zg be the largest subset of ed; that is invariant under multi-
plication by Q(t) (i.e. 1@(:) C . Yo,

(C) Let e? = {v ¢ an: v >0, vU =1}, e‘?is the set of probabil{ity

vectors.

(D, Let:’(y = 1<n y

& 8 g

NI T he
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Lemma 2.2.3. 7/‘Y is well defined.

Proof. Let 4 be the class of all subsets of dY that are
invarient under multiplication by each Q(t). Let {A“}. a ¢ 1 be an
fncreasing chain in .,d Since U Aa is invariant and is an upper
bound for the chain, there is a maximal element of Ud (Zorn's Lemma).0)

Lemma 2.2.4, JY and VY are subspaces of R".

Proof. Clearly {Y,O}CJY, so dY has at least two elements.
Let 8, 8, egy. Then 8,Q(t)U = r(t)(8,U) and B,Q(t)U = r(t)(B,V).
Thus (a81+b82)Q(t)U = r(t) (a81+b62)U, SO 381+b82 sdy. Thus AY is
a subspace.

Let Wbe any invariant subset of ﬁfyand letW* be the subspace

generated by W Say w EW*. w = 12}5; aw, where Wy EW. But

k

k
wQ(t) = > a,w Q(t) = a,w,' where w,' cu)l’since O)f'is invariant.
=1 i1 =] i"i 1

Thus wQ(t) cH* so W* is invariant. Since Y/Y is defined to be the
largest invariant set it must be a subspace. O

Lemma 2.2.5. gﬂY is closed, convex and invariant under multi-
plication by Q(t)/r(t), Vt. 1If n < =, 'XY is compact.

Proof. Since 1/Y is a subspace, (XY is closed and convex. Let
R e Qﬂy. Since,}{YC Y/Y, BQ(t) = r(t)8' where R' ¢ 'VY, and since
7"'}“-‘11’ BQ(t)U = (BU)r(t) = r(t). Thus B'U=1 so &' s,]{y. Since
tﬂy is closed and convex it is compact whenever n < =, Q0

Corollary 2.2.5.1. 1If Q(=) is irreducible and persistent, the
steady state vector T e.}{y.

Proof. Say Q(~) has period m. Then

nim-1
lim i— Qj (®) = Um,
ne =n

e o)

+ g

W I ~cxes,

¥
Iy
I
i
]
!




n+m-1
AV cJ{Y, B(lim ;t ;: Qj(oo)) - 1.
=n

n-*w

Since ‘Xy 18 closed and convex, 7 C‘ﬂY' 0
Consider the column vector Q(t)U. 1f 3., R c,’( then
1 2 Y
£8,2(t)U = R,Q(t)U, V't which says (8, - 8,) is orthogonal to Q(t)U, Ve.
Lemma 2.2.6. If (Q,y) is an n state MRP (n < «) and there exist
times tl,tz.---,tn such that {Q(tl)U, Q(tz)U,---,Q(tn)U} is a linearly
independent set then,dY is the subspace of rR" generated by {y].

Proof. If B ¢ dy then (BBU -y) L Q(oyu, V. But only the zero

n
vector can be orthogonal to n independent vectors in R . Thus, the only

elements of A&Y are the points on the line through y and the oripin.
We now show the importance of the set ,’{Y.
Theorem 2.2.7. (Q,Y) ~ r if and only if y r,ﬂy.

Proof. (=) If (Q,y) ~ r then Vn, t Y

1't2". n
YQ(tl)Q(t2)°--Q(t“)U = r(tl)r(tz)o--r(tn). Say there exists tiatyerooaty

such that YQ(t])Q(tz)---Q(tk) "‘JY' Then there is a t such that
YQ(tl)Q(tz)"’Q(tk)Q(t)U ¢ (YQ(tl)Q(tz)"'Q(Lk)U)r(t). But this says
YQ(tl)Q(tz)'--Q(tk)Q(t)U ¥ r(tl)r(tz)---r(tk)r(t) which contradicts
(Q,¥) ~ r. Thus Vk, tl,tz,"',tk we have yQ(tl)Q(tz)'”Q(tk) t d].
1,l2,'--.(“].
WC JY and Wis invariant under multiplication by Q(t) so o)l\ "/Y

Since vy QTW(\Q? we have v ¢ JK .

Y
(o) If y 1',7{Y then Vn, t

Let W = {y} ) {w: w= Y()(tl)()(tz)---Q(tn) for some n, t

l'tZ‘.”'tn' YQ(tl)Q(tz)"'Q(t“)
= r(tl)r(tz)---r(tn)y' where y' L‘,’{Y. Thus y()(tl)(‘)(tz)---Q(tn)l)

- r(tl)r(tz)...r(t") 80 (Q'Y) ~or. ()

.

t‘ o R« ks




torollary 2,2,7.1.

vector n, and r(t) = MOV then @ ~ ¢ gy

Prool, (-~} gy

then (Q,n) .

It Q is an {rreducible MRP

[ %4
re

Corollary 20000, 0

(o) yy .ﬁ'ﬂ ¢ ¢ then n v ,ﬁ'"

W) ~ y,
Example 2,01,
()

0

1
NG o

T - T -

Clatm; (0, n) <
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r(t)y
n(t) = ’
} t(tIn
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it

]

]

t

t

S

~
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Let 0~ t* ot

{
O
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v(t) =

‘**

L1
{

by Covollary 2,2

roalse, Thas g o ,ﬁ’“ by theovem 2.0, 7,

vy

and
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it o~

0 tr ¢« o
X ™oy
1 (g~ ™
’ r{t)y
YQ(t) =
r(tln

and only {¢ .73’" 1 4

5

with stoeady state
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Thus, Va, SELITAAE Y uQ(tl)Q(tz)"‘Q(t“)U - r(tl)r(tg)---r(t“).
Clearly (Q,Y) ~ r also. Note that Q(t)U ¢ r(OOU 1( t* <t Skl
Q) 4 r(t)n 4F t < t™ and yQ(t) ¢ r(t)y i1 t > t** so the conditfons

of theorem 2.2.1 and 2.2.2 are not satistied. In this cxample
e’{“ - c’l,‘ $ .

Theorem 2.2.1 and 2.2.2 give sufficient conditions for (Q,\) ~ r
which are relatively easy to use in practice. Theorem 2,2.7 pives a
necessary and sufticient condition, but there {s not yet any simple wav
to determine what .Z; fs o general,  The following theorems plive neves-
sary conditions tor (Q,y) ~ v which are also useful in practice. In
everything that tfollows, S?:; =0 {f r(t) = 0.

Theorem 2.2.8. 1f (Q,y) {s a finfte state MRP and (Q.y) ~ t then
r(t) {s an efgenvalue of Q(t) for cach t. 1f {n addition Q(t) s {rreduc-
ible for each t, r(t) is the largest eigenvalue of Q(t).

Proof. If (Q,y) is a fialte state MRP, N s compact and con-

o Y

vex and satisfies e,ny(t)C: r(t),)yy. Yt. Thus, by the Brouwer tixed
polnt theorem, for each t there is a Y such that th(t) - r(t)}t. 80
r(t) is an elgenvalue,

Say Q(t) fs {rveducible. Assume \ {s the largest ecigenvalue of
Q(t) (which must be positive) and \ > r(t). Thus the largest cigenvalue
of Q(t)/r(t) is strictly preater than one. This implies that
YQ(t)/r(t))nU diverges. But {f (Q,y) ~ r then y(Q(t)/r(t))“U~ 1 for all
n, 80 r(t) must be the largest eigeunvalue.uy

Example 2.2.2 It (Q,y) s an infinite state MRP and (Q,y) ~ v
it may be that r(t) is not an cigenvalue of Q(t)., For {(nstance, say

0 < t* < t* and
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Q
—
z
1
7
1
Q(t) = 2 1
-f .
]
Eh B
R
1 %
1
7y
1
! .
H -
: N

By theorem 2.2.2, Q ~ r where r(t) =

*
but clearly r(t) is not an eigenvalue of Q(t) for t < t < t

N =

*
1if t <t

L33
ift >t

i *
ift<t

% Kk
ift <t«<t

. *k
itt>t ,

Rk

Although 1t is unrealistic to expect to be able to check to see

whether r(t) is an eigenvalue of Q(t) for cach t, theorem 2.2,.8 says

that one can show that Q + r by merely finding a value of t where r(t) is
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not an eigenvalue.

If (Q,y) is

exists times tl,tz,---,tn such that
linearly independent set then (Q,vy)

Proof. By lemma 2.2.6, QJY
either 1/Y =dY or 1/Y = {0}, By

Y e,)f}. so()Y§ must consist of the

tnvariant under multiplication by Q(t)/r(t), we have yQ(t) =

The following theorem is useful in the same way.

an n state MRP (n < =) and there
{Q(t U, Q(t,)u, -+ +,Q(t JUY is a

~ r if and only if Vt, yQ(t) =r(t)y.
is a one dimensional sutspace so
theorem 2.2.7, (Q,y) ~ r implies
single vector {y}. Since,){§ is

r(t)y, Vt.

The converse is a restatement of theorem 2.2.1. ()

Corollary 2.2.9.1.

If Q is

with steady state vector n and there exists times t

{Q(tl)U’Q(t2)U""
and only if (Q,n) ~ r.

Proof. 1f Q is irreducible

an n state irreducible MR’ (n < =)

.t such that
n

1‘t2‘..

,Q(tn)U} is a linearly independent set then Q ~ r if

and (Q,y) ~ r then (Q,m) ~ v also.

But the theorem says that at most one initial distribution can vield a

renewal process.

Thus either (Q,n) ~ r or Q & r. (1

3. A Rough Algorithm for Determining Whether Q ~ r.

In general, a MRP (Q,y) is not equivalent to the reunewal process

yQu.

tion that yields a renewal process.

In fact, for a given MRP, Q, there is usually no initial distribu-

In many queueing and other processes

there are random processes that can be easily characterized as MRP's, but

the interesting and important question is whether or not the random

process is a renewal process (see the examples in the next section).

Unless there is a very good

renewal it makes sense to first try

distribution that yields a renewal process.

reason to believe that the proceas is
to show that there {8 no Inftial

1f Q {8 {rreducible (as 1t
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usually will be in practice) the simplest and most successful approach
s to use corollary 2.2.5.1 and the fact that if v, v, e,)f; then
(yl-Yz) | Q(t)U, Vit 1s a necessary condition for (Q,¥) ~ r. Corollary
2.2.5.1 says that if Q is irreducible with steady state vector n then

n CQ)Y§ whenever,jg; $ 0. Since,)f§ is invariant under multiplication

by Q(t)/r(t) we must have (m - %)Q(K)U-O. Ve, x. If Q»~ r there
is often a simple argument showing one will not get zero for all values
of t and x (e.g. example 2.4.3 in the next section). Otherwise (as 1In
example 2.4.4) the multiplication has to be carried out. Of course it

is possible that (m - 3';9(%-)-)()&)11-0, Vt, x even if (Q,m) »* r since

1Q(e)Q(x)U = r(t)r(x), Ve, x is not a sutficilent condition for (Q.n) ~r.

An example where this occurs would be very difficult to construct,
though, and it is very doubtful that one would ever come across one in
practice. If this multiplication appears to be difficult it may also be
possible to show that Q = r by showing that r(t) is not an eigenvalue of
Q(t) for some t. (see example 4.2.1)

1f the tests to show that Q = r fail, there is every reason to
believe that Q ~ r. To verify that Q ~ r it makes sense to show that
nQ(t) = r(t)m, WVt where n is the steady state vector or that Q(e)U =
Ur(t), Yt (theorems 2.2.1, 2.2.2). If Q has n states (n<«) and {Q(tj)U}
j=1,2,--+,n is a linearly independent set for some tl,tz.---,tn.

theorem 2.2.9 says that,)%& = ¢ 1f y ¢ n and nQ(t) = r(t)n, Vt becomes a

necessary (and sufficient) condition for Q ~ r. (see example 2.4.1).

4. Examples and Applications

Example 2.4.1. Disney, Farrell and DeMorais [4) show that the

output of an M/D/1/1 queue in steady state is a renewal process. The

T T T N
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results obtained thus far allow for a quick verification of that fact.

The output from an M/D/1/1 queue is a two state MRP with kernel

Qoo(t) Q01(t)
Q(t) =

where Qij(t) is the probability that given a customer departs (at time
zero) leaving i customers in the queue, the next departure occurs before
time t, and when that customer leaves there are j customers left in the
queue.

If arrivals are Poisson with rate A and the service times are
deterministic with duration d then

M) ~MEmd), My (M)

e (1-e

Q(e) = 1,(0),
-Ad -d
e l-e
0 if ¢t <d

where ld(t) =
1 ift>d.

The embedded Markov chain has transition probability matrix

-Ad -Ad
e 1-e
Q=) =
e-kd 1_e—xd ,
ad -Ad

so the steady state vector is 7 = e "%, 1-e "), Performing the multi-

plication nQ(t) we get

nQ(e) = ((1-e"26He™, (e a-ey1 (0 = (a-eH1 0.

B LE

PET e o e g
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By theorem 2.,2.1 we know (Q,n) ~ r where r(t) = (l-e-xt)ld(t).

It 18 easily verified that for any tl ¢ t2 the vectors Q(tl)U
and Q(LZ)U are linearly Independent. Thus, by theorem 2.2.9, (Q,y) ~ r
if and only if yQ(t) = r(t)y for each t. By the Perron-Frobenius
theorem we must have y = w, Thus 7 is the only initial distribution
that yields a renewal process.

Example 2.4.2. Burke's theorem [2] implies that the output from
a steady state M/M/1 queue is a Poisson process. The output process is
a MRP with kernel Q(t) where Qij(t) has the same interpretation as in the
first example except that in this case 1 and j range over all the non-

negative integers. If the arrival rate is A and the service rate is y,

the kernel has the form

qq(0) q, (t) q,(t)
fo(t) fl(t) £,(t)

Q(t) = fo(t) £,(0)
fo(t)

where
c gxsgj -As -us
fj(t) = df 3 e ve ds and
t

-As
qj(t) = Gf Ae fj(t s)ds.

It is well known that the steady state vector for this MRP is

n- (1-0)(1,9,92,---), where p = A/u. Performing the multiplication

nQ(t) we get

R -

s e A e T A SOV, g A e T e

.

Erzt: rTEPE AR oI TR ) iR Y FA BT S Mo




29

3
Qe = (1-0) 7 gy (1) + 2 £y (005

3 k=0

At

= (e -0 - (- M

j°
Thus, the steady state output is a renewal process with distribution
l-e-)\t (a Poisson process).

Example 2.4.3. Now consider the M/M/1/N queue (N < «). The

output from this queue {s an N + 1 state MRP with kernel

qq(t) q, (t) a(e) e gy (D) qj(t)
=N

f,(t) £,(0) fo(t) - e ey 4 (0) fj(t)
3=N

Q(t) = £,(t) 000 L (D) ifj(t)
3=N-1

fo(t) s e foo.(t) Ef (t)

fo(t) Z;fj(t)

where qj(t) and f (t) are as in the last example. The steady state

J
- N
vector is ﬂN -1-p (1,0, ++,p ).
1_pN+l

I1f the steady state output from the M/M;1/N queue is a renewal

process then the renewal process would have to have distribution
Y -
t pN+1e ut

N
rN(t) =0 QN(C)U =] - N1 + N+1°
l-p 1-p

, s e e - o

PP= gt e CUT FRDT VT IIE ©iniry wr MW A4ty @0 F7 % 4

T v s ey
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N nNQ (x)
If e K (for some y) then so is ————— for any x. Thus,
Y rN(x)
N
N (®)
Ve, x, (0 - -;sz;;ﬁ 1 Q(u)u.

Clearly QN(t)U has the form (a,b,b,--:,b) and rN(x) < l—e_Ax.

N - - -
Also, since w QN(x) - ‘“AEEI (1-e Ax)(l.o.--~.oN I,K(x)) where
1-p
r,. (x) 1__pN-O-l 1-
K(x) = —-mr " - L , a straight forward calculation yields
1_e~xx 1-p 1-p
N
NoT Q)
(n - “;f?;j_) Q(t)u # 0 for any t, x > 0. By corollary 2.2.5.1, the
N

output from an M/M/1/N queue is not a renewal process for any initial

distribution.

Example 2.4.4. Consider the following Jackson network.

P

Y -

There is a Poisson arrival stream with rate i, an exponential
server with rate u, and a Bernoulli switch that feeds a departing cus-
tomer back to the end of the line with probability p. The input process
is defined to be the superposition of the arrival process and the feed-
back process. (see [5] for a complete discussion of this problem). The

input process is a MRP with kernel Q(t) where
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0 4f 1 >4 +1

t

_ _ i -us
(e As—qe )‘t)qi Eg-“'—%f'—- ds 1if j=0, i>0,

Q,(t) =
3 t i-j -us
Je-xs(i%_}; Q —e” (AH1) (t-—s)) + P)qi“J %’“ if 1<3<d,

At

e Mt(1-e) if §=i41.

Since the system is a Jackson network, the steady state queue

length probabilities embedded at inputs is known to be

A A A2
w= (l h uq)(ly uqo (uq) [} )o

If the input process were renewal it would have distribution

- o 1 - Qu-A -At  pp -ut
r(t) ®Q(t)U 1 = e . e .

and Vx,y, (1 - %)Q(yw = 0. But

- M) - 1--e™) pA oAy pu -y - (ukN)y
x r(x) AWV r(x) Gx © w1 & tope ).

Since r(x) - (1-e ") < 0, the process cannot be renewal if for some y

%Ai e-Ay - EEX e W 4 pe-(u+ny # 0. By the linear independence of

exponentials, this expression can only be zero if p = 0. Thus

if there is a positive probability of a customer feeding back, the

input process is not renewal. If p = 0, a direct calculation shows that
Q(t)U = (1-e-xt)U (as it obviously should be). By theorem 2.2.2 the
input process is a Poisson process in that case. The question of whether

or not the input process of this network is renewal was previously
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unresolved.
Example 2.4.5. Now consider the M/G/1 queue with delayed feed-

back, where the delay mechanism is a -/M/1 queue.

———— [y ] =

A oL ° JE , 3 i

A full discussion of this system can be found in Foley [7].

It is shown that if the departure process is renewal it must be Poisson
with rate A. The idea of equivalence yields an interesting corollary
to that fact.

Assume the G server has service time distribution g(t) where g
is differentiable at zero and g'(0) = u. The departure process is most
naturally represented by a MRP with state space
s = {0,1,2,---) x {0,1,2,-++} since the future of the system is condi-
tionally independent of the past at a departure point given the length
of both queues.

Let y = {Yij: i,j = 0,1,2,-+-, lexicographically ordered} be a
distribution on S. Let Q(t) be the kernel of the MRP representing the
departure process.

Clearly Q(t) has the form

an fh a8,

T i
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(t) (t) (t)

Q (V)] Qp;

(t) Qll(t) le(t) Q13(t)

Q50 (6)[ Q) (6] Ay (8] Q4 (2

Q3O(t) Q31(t) Q32(t) Q33(t)

where Qij(t) is the matrix Q(i ,)(t), i',j' ¢ {0,1,2,---}-

»1') (3,3
Although Q(t) cannot be easily written down, it is a simple

matter to verify that

uql

Q'(0) = uql

uql

Say (Q,Y) ~ r. We know that r(t) = 1 - e-At, so by taking !

derivatives the definition of equivalence yields

Vn, vQ'(0)"u = 2",
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To justify the last step note that Q' (0) = 1im-9%§l since
t-+0

Q(0) = 0. Thus

YQ' (0) = lim 1‘1}9- < 11m W8]
t-+0 t+0 °© t

where ;t € ,)YY. Likewise

r\tl)r(tz)---r(tn)

n
¥yQ'(0) = lim 1lim .-+ 1im 3
C v .o
td+o tn-f*o ti*o 1t2 tn t1t2 tn
where Ytltz"'tn € Q)YY. Since ,)Y; is closed,

Q' (0" = ' (0)"y
where y e.)Y;, so yQ'(O)nU = r'(O)n.

Let vy = (YO.YI-Y2,°“) where Yy = (on'le’sz"")‘ By the

form of Q' (0) we have

n
Q" (" = (0,0,--7,0, W)™y, Wy, . ---)
Y U, »Us, (4q Yn' Hq Yn+l'
so E y,U = (“lﬂn. This implies y U = (—l) (l-<j—). The conclusion is
i uq n uq uq
i=n

that if the departure process is renewal, the marginal queue length dis-
tribution at the G server must be geometric with parameter ﬁ% .
Say the G server has a distribution g(t) that is not differenti-

able at zero. If the departure process is renewal we must have

Y(Q(t) - Q(0))U _ r(t) - r(0)
t t

/
for all t > 0, and since r(t) = 1 - ¢ At we must have

lim Y(Q(t) - Q(O))U _ AL
t
>0

If g(t) 1is not right-differentiable at zero the limit does not exist so

< AR e o

e

Pl PRV 2 28 o

o
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the departure process camnot be renewal.

Example 2.4.6. Cousider an M/M/1/N queue (N > 0) where the
arrival rate and service rate depend on the length of the queue. Let
An > 0 and My > 0 be tke arrival and service rate when the queue length
is n. Assume lim sup —gil < 1 .to assure a steady state. Let Q(t) be

n

the kernel of the MRP associated with the departure process. If N < w,

Q has N + 1 states and

U]
SO VU SOPSN U S
Q'(0) = My
— -T}»A - - '.;_ -4 —
it
____,b_m__L_”__L,,NVHmW_

Assume (Q,n) ~ r for some r, where n is the steady state vector.
N

Q' (0)U = r'(0) so v'(0) = ﬂju). But, tor n > N, Q'(O)n = 0 so
=1
0 = nQ'(Q)nU = r'(O)n. Thus, r'(0) = 0, which implies "j = 0,
Jo= 1,2, ,N. Since Q is frreducible, this is impossible so we
conclude that the departure process can uever be renewal,
I[f N =« the situation changes slightly since Q'(O)n is never

zero. First consider the case where uj =2y, § = 1,2,++*. In this case

(Q,y) ~ r implies yQ'(O)“U = r'(O)n. Vi, which implies

_ ' (0 n (o)
Y"—( » ) Q )

). sl
It 1s ecasily verified that the steady state queue length distribution is

n, where

AT AT 5 UG At B0 B, 30D
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L S
J ud 0

This is not geometric unless A, = A, j = 0,1,2,:--. Thus the departure

3

process cannot be renewal unless A, is a constant (i.e. the M/M/1 queue).

J
If we allow uj to depend on j the equations YQ'(O)“U = r'(O)n
yield
RPN
y =20
J ”1”2"'“j 0

Since the steady state queue length distribution is

it is again impossible to have a renewal departure process unless Aj is
a constant (i.e. Aj = r'(0)).

We cannot deduce from these equations that uJ must also be con-
stant. In fact, by [13, theorem 3], any birth-death queue with a steady

state and An = A has a Poisson departure process with rate A. For

example, let Xn = A and say

Nu, J > N

This is precisely the M/M/N queue, which is known to have a Poisson

departure process with rate A when in steady state.

If we relax our assumption that the un‘s and An s be nonzero

there are other classes of queues with rencwal departures, 1f un =0
the MRP {s no longer irreducible since the queue length can never be less

than n once it is greater than n. Likewise, {f X“ = 0 the queue length
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can never exceed noonce {t is below n. An fuvariant queue length
distribution need not be strictly positive.

. . \\
Let N <o, Say (Q,y) ~ r for some vy and v. Let oo« Him yQ ()
[ Rl

be an {uvarfant distvibut{on that satisties (Q,n) ~ r, Sayv "0 ~ 0.

It \0 S~ 0 we have "l > 0 which tmplies “l » 0 which fmplices “0 -~ 0 a

coutradiction, 1t \0 « O vither n0 = 1, fn which case there {5 no

departure process, or ny - [US

Sav n‘ S0 tor some |~ 0, Then ul - 0, so """ 0.

ko~ 0, 1,20 -1, lfkl-(\tmwvls:m«kpmwun‘wvmws.sux"lL

It we alsoe had \ > 0 we would have ap >~ 0 tor some k > § which {mplies

j+1

noo= 0 a contradication.

k

The only remafuing possibility ts that tor some |,

~ ) ~ 0 - ) ¢ “r "
0, X‘\ U, \.H*l O (all other

and \'s arbitrarv).  In this case the queue length fs alwavs | oatter a

- Y (). e e () ~ )
n (0,0, t, UN My (.u“‘

departure, and the dpearture process (s renewal with disteibutton

“t -Am “H L (=)
r(t) = / \‘l‘ 1 (1 - ¢ \h Vs,
SO0

Sav N = o and suppose (0,1 ~ r where nots an Invartant distribue

tion, Apain, {f u“ = 0 and n“ S 0 then "k =0, k + n, Likewise it

- ) {1\ ~ () v e () ~ + . The at MtR g ‘otorv
\m 0 and w1 O then " 0, k m 1 he arguments give ot

N <« show that the departure process caunot be renowal {f \m - 0,

>0, u =0, 0 >0 unless noem + L,
m u u

Thus, the only other way there can be a vetewal departure process

~ 0, A SO0,k = e I thds

(s as tollows., Rav u = 0,
as tollows VY H\ a1

un%k

Case
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n A(t) B(t)

Q(t) =
0 Q (t)

where é is irreducible. 1TIn fact Q(t) is the kernel of the MRP for the
departure process from an M/M/1 queue with M = un+k’ xk_l = An-l-k—l’
k = 1,2,---. Let m be the steady state vector for 6 If (Q,;r) ~ r then

(Q,7) ~ r where 7 = (O,;r).

5. Equivalence as a Homomorphism.

Lgt (Q,Y) be a MRP and let r(t) = vQ(t)U. Associated with each
t € [0,o] is a matrix Q(t). Let Q be the R-algebra of matrices gen-
erated by {Q(t)}, t ¢ [0,2]. For each probability vector B we have a
map FB: Q + R where

FB(A) = BAU.

A necessary and sufficient condition for equivalence can now be
written in a very simple form.
Theorem 2.5.1. (Q,Y) ~ r if and only if FY is a homomorphism.

Proof. (==») If (Q,y) ~ r then
Vn,tl’tz,"‘tn, yQ(tl)Q(tz)---Q(tn)U = r(tl)r(tz)"'r(tn).

Also, if Al, A2 € Q then Y(A1+A2)U = YA U+yA2U os FY is a

1
homomorphism.

(=) If FY is a homomorphism then V"’tl’tZ"”tn’

I
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vQ(tl)Q(:z)---Q(tn)U-(vQ(tl)U)(vQ(tz)U)---(vQ(tn)U)- rer(ey)-.or(t ),

so (Q,Y) ~r. N

The maps {FB} also give an alternate characterization of the set
g)k; when Q is an irreducible MRP with steady state vector m.

Theorem 2.5.2. 8 e.)E; if and only if FB is a homomorphism,

Proof. (=me) 1If B ¢ QJY; then (Q,B) ~ r where r(t) = 8Q(t)U so
FB is a homomorphism by theorem 2.5.1.

BA(x;)Qxp) - Qx )
;Qxl)r(xz)il-r(xm)

(=) Let £ = {y:y= PRI I B

for some xl. 2 m
If v e 5? then FY is a homomorphism since

BQ(x))Q(x;)+ -+ Q(x )
YQ(e;)Q(ty) Qe HU = rGIT() T E(x ) Q(t,)Q(t,) -+ Qe U

r(xl)r(xz)---r(xm)ﬁifl)r(tz)---r(FHZ
r(xl)r(xz)---r(xm)

a r(tl)r(tz)---r(tn).

Furthermore, FY = FB. Clearly if vy € S? R FY = FB and 1if y is any

linear combination of elements in (Qp then FY = F _,

8
so B eJ(“.CJ

Thus F = F
w B

6. Collapsibility.

Let (Q,7) be a k state MRP (k < =) and let (A, ,A -.Am). (m<k)

ISR AN
be a partition of the states of (Q,n). Let N, U be as defined by (1.2.1)
and (1.2.2).

MQ(t)Y 1s an m x m matrix whose (i,j) element is
P"(X1 € Aj' T < t | Xo € A;). Say F is the function that maps the state
space of (Q,n) to {AI.AZ.--~,Am}. Serfozo [16] shows that if (F(Xn),T“}

is a MRP, its kernel is no(e)y.
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The definition of equivalence between a MRP and a renewal process
has a natural generalization to collapsibility between two MRP's.
Definition 2.6.1. Let (Q,w) be a MRP with state space {1,2,-..,k}
(k < @) and let Y be an m state MRP (m < k). Let
F: {1,2,---,k} + {Al’Az""’Am} be a partition of the states of (Q,m).
We say (Q,%) 1s collapsible to Y via the partition F, written (Q,w) F Y,
if

Vnotlttzt"';tn! HQ(tl)Q(tz)"‘Q(tn)Q = Y(tl)Y(tz)"'Y(tn)-

1f F is clear from the context we will write (Q,m) ~ Y. Note that the
initial distribution of Y depends only on n and F; namely y = =l.

Lemma 2.6.1. If nQ(%) = 7 and (Q.m) ~ Y then YY(®) = y where
y = nl.

Proof. Since

0 if 3 ¢ Fl)
n =
ij " -1
'———i-— if € F ~(1),
T
k
keF 1(1)

we have YY(») = ylIQ(w)y = aUNQ(«)l! = 7Q(=)l = nll = .0

In the case where Y has one state (a renewal process) we showed
that collapsibility is the same as weak lumpability. If (Q,w) is
{xn, Tn} and (Y,y) is {Zn' Sn} (where vy = nll), then definition 2.6.1 says

that for each i, j ¢ {1,2,-+: ,m} and Vn,tl.tz.--‘.tn.

(2.6.1) P (X €A.,T <tn,-",'1‘1§t1|xoeAi)-P(Zn-j.sn<t IERTIN

n®hyrTn <t <t 1Zg=1).

1
For weak lumpability between {Xn. Tn} and {Zn. Sn} we would need
that for each i, j ¢ {1,2,°-+,m} and Vh.tl.t2.°--.tn, and

i.,1

1’ 2|'°'oin_1 € {1,2,"'.M},




(2.6.2) P"(XneA €A cen < tn""’T

32 X0-1544 n

< tllxoeAi)
n-1

1

= P(Z_},2 .,z S <t .00,

17110 54 <t |zg=1).

n—lgin—l’. 1

It seems inconceivable that every {Xn, Tn} and {Zn, Sn} that
satisfy (2.6.1) would also satisfy (2.6.2) but all attempts to find a
counterexample have failed so far. Clearly weak lumpability implies
collapsibility, though.

Since the definition of collapsibility between two MRP's is
analogous to the definition of equivalence between a MRP and a renewal
process one might suspect that the conditions for collapsibility would

be similar. First of all, any sufficient condition for weak lumpability

will also be a sufficient condition for collapsibility. Thus we hanve

Theorem 2.6.2. If MQ(t) = Y(t)N, Vt then (Q,Y) 13 Y for any vy

Y
that satisfies —ils—* = whenever k € A, .
Y

ik i

jeAi ]

Theorem 2.6.3. If Q(t)U = UY(t), Vt then (Q,y) Ey for any y.
Theorems 2.6.2 and 2.6.3 can be proved the same way theorems 2.2.1 and
2.2.2 were proved. They can also be found in Serfozo [15].

Let (Q,N) be a k state MRP, let Y be an m state MRP and let F be
a map from the state space of (Q,m) to the state space of Y. Lete4z; be

the set of all m x k matrices, M, with Mi > 0 and MU = al where U is

3

the summing matrix induced by F and a is a scalar. In other words, M

must have the form

Xoe X
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and each row sum must be the same. Let JF- (MEV”F: MQ(t)Y = (MUY (L), Vi)

and let ’% be the largest subset of AJF that satisfies

F

analogous to the sets defined in section 2 and not too surprisingly we

VQ‘(t)C Y(t) Y/F' Vi. Let 'XF - {Me 7/!_.: MU = 1]. These sets are

have
Theorem 2.6.4. (Q,n) ) Y if and only if Il ¢ e)V%.
Proof. (==e) TIf N t"(b‘ then 1 ¢ ,/F Thus, for some

tetoet it nQ(tl)Q(tz)-:'Q(tn) ¢ 41}. But this says that for some t

MQ(e,)Q(ty) Qe )Q(e)Y # MQ(t,)Q(e,) -+ Qe JUY (L)

= Y(E))¥(E)) X (e DY (L),
This contradicts (Q,n) E'Y.

(em) If N c.)ﬁ% then Vh.tl.t..---,tn.

Q(e)Q(e,) -+ Q) € Y(e IV(E)) ¥ (e ) K
so
MQCe;)Q(ey) Qe JU = Y(£))¥(ty) -+ -¥(E ). 0
Another result that carries over easily from the renewal case 1is
that collapsibility is identical to a certain algebra homomorphism. Let
Q be the ring generated by {Q(t)}, t ¢ [0,=] and let ¥ be the ring
generated by {Y(t)}, t € [0,»]. Let @“‘F; d -+ Y be éﬂ‘F(A) = NAU.
Theorem 2.6.5. (Q,m) £ Y if and only if Qn,F is a homomorphism.
The proof here is identical to the proof in the renewal case.
One result that has no counterpart in the renewal case is
Theorem 2.6.6. Let (Q,w), Y and D be k, m and ¢ state MRP's
(k >m > ). If (Q,m ¥ Y and (Y,v) g D (wherve y = nl)) then (Q.w)(tf D
Proof. Let Nl and I' be the matrices induced by the vectors » and

y and the partitions F and G. Let 1? be the matrix {nduced by n and the

N
partition G°F ., First of all, a direct calculation vields Tl = 1, Also

¥
i
¥
{
¥
t
i

Py oy
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gpgc - QGOF where EF‘ uC and EGoF are the summing matrices associated

with the partitions F, G and GeF. Since (Q,n) E Y, Vn,t ot

t .o
172 n
ﬂQ(tl)Q(tz)"'Q(tn)EF = Y(tl)Y(tz)"'Y(tn). Also, since (Y,y) ¢ D,

I‘Y(tl)Y(tz)---Y(tn),U,C = D(t,)D(ty)+-+D(t ). Thus

rnQ(tl)Q(tz)“-Q(tn)_uPuC = D(tl)D(tz)"'D(tn). Thus

M(e,)QAE) Qe DY, = D(EID(ED++D(e ), s0 (Q,m) “F Do

7. Equivalence Between two MRP's.

In section 6, equivalence between a MRP and a renewal process
was generalized to collapsibility between two MRP's., The results in

that section will prove to be useful in the next two chapters. In view

€ S gt W W T

of (2.6.1) and (2.6.2), though, it seems that the real meaning of

(Q,v) F Y is cloudy. A more intuitively appealing generalization of

equivalence between a MRP and a renewal process is given by
Definition 2.7.1. Let (Q,y) and (Y,B) be two MRP's. We say

(Q,y) is equivalent to (Y,B8) (written (Q.y) ~ (Y,B)) if

Vo,ty.t,,000,t ¥Q(e)Q(Ey) -+ - Qe JU = BY(£,)Y(t,) Y (t JU.

tz.
Let (Q,Y) be {Xﬂ. Tn} and let (Y,B) be {Zn. Sn}' If (Q,v)~ (Y,8)
then the distribution of {TI,TZ,'--} is the same as the distribution of
{Sl.Sz,---}. Strong lumpability, weak lumpability and collapsibility
are not really equivalence relations between MRP's since the relation is
always from the bigger one to the smaller one. Equivalence is an
equivalence relation between MRP's. It is also the condition that must
be satisfied by two random processes 1if one is to be substituted for the
other in (say) a queueing system. Furthermore, it 18 a weaker condition

than strong lumpability, weak lumpability and collapsibility.
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Theorem 2.7.1. Let Nl and U be given by (1.2.1) and (1.2.,2). If
(Q.w)«E Y then (Q,%) ~ (Y,B) where 8 = .

Proof. (Q,w) X Y implies

Vn,tl,tz,---,tn, nQ(tl)Q(tz)'--Q(tn)g - Y(tl)Y(tz)---Y(tn).

If 8 = v then Bl = v = x, so

e BN o T

N(tl)q(t2)° * 'Q(tn)u - 6“Q(t1)Q(t2) b 'Q(tn)gu
- sY(tl)Y(tz)--'Y(t“)U.

Thus, (Q") ~ (Y’B)' 8]

PP Eem—

G T

o

Pty

T o . SR TS W ey AT
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CHAPTER 111

EQUIVALENCE BETWEEN CANONICAL MRP'S

1. The Core
Theorem 2,2.7 states that (Q,Y) ~ r if and only 1if y r:,)ﬁ’Y where

,)f; is the largest set of probability vectors satisfving
H QD) Cr() . Ve and BR(OU = vQ(OU, VB € J .

By Corollary 2.2.5.1, if Q is irreducible and (Q,Y) ~ r then
(Qum) ~r wpere n is the steady state vector for Q. Thus, if (Q.¥) ~ r
and (Q.8) ~r then,)fg -,)f“ and .)fé = ,)V“ ) ',VY = Q)YB. This leads
to the tollowing definition.

Detinition 3.1.1. Let Q be an irreducible MRP with steady state
vector n. The core of Q is the set .,Y“. It will be denoted K.

1f K= ¢ then Q is not equivalent to any renewal process. For
any probability vector y, either ',?Y = § or QJYY = e)Y.

Theorem 3.1.1. If Q is irreducible with steady state n and
Q ~ r then r(t) = aQ(c)U.

Proot. Q ~ r implies that for some y, (Q::Sv-r. Since Q is
irreducible y ¢ K so yQ(OIU = nQ(edU, Vt. Thus r(t) = mQ()U.0)

In general it is very difficult to determine what .)Y is unless
it can be shown to be empty or contain a single vector., C(learly, tf K
consists of a single vector, 1t must be the steady state vector, 1t

Q ~r where Q is a finite state, irreducible MRP, one can find a set

that must be inside the core.

45
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Theorem 3.1.2. Let Q be a finite and irreducible and assume
Q ~r. Let 9'(: [0,»] be the set {t: Q(t) is irreducible}. For
each t ¢ g let Ye be the unique probability vector that satisfies
th(t) = r(t)*yt and let W be the linear subspace generated by {Yt}’
te J. e HWNPCH.

Proof. By Lemma 2.2.5, ;7{13 convex, compact and invariant under
multiplication by Q(t)/r(t). Thus there exists Ye ed{that satisfies
th(t)/r(t) =Y, by the Brouwer Fixed Point Theorem. Thus, if 8 EW
then BQ(t)U = (BU)r(t) since B is a linear combination of elements of c%,
and BQ(t)/r(t) ¢ Wsince it too is a3 linear combination of elements of

27{. Thus (@"ny)Q(t)/r(t) cC (W) which implies that Wnch{.

Example 3.1.1. We continue example 2.2.1. Recall

0 0 0
*

0] 0 0 if t <t

0 0 0

1 11

6 12 6

1 1 1 * %%

§ 3 & ift <tc<t
Qe) = 1 1 1

6 12 6

11 1

6 3 2

1 1 l *%

3 3 2 ift>t ,

o
W=
N[

AR 1 R o RN MO AL 4.8

LI ISP " W O Y 9k
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0 4f t < t*

* k%
ift <t«<t

1 11 1 1 1
Yg(iy '5" '5'), "=(ga '5: E)) l‘(t)=

o=

kk
1 ift>t .

* *%
Note that yQ(t) = r(t)y if t <t<t and 1 1s the steady state vector.

Since Q ~ r we know that both y and 7 must be in ,7{ (this was also proven

in example 2.2.1).

Consider the vector 8=(1,0,0), which is not a linear combination

*%
of vy and n. Since BQ(t)U = TSZ— when t* <t<t , 8 ¢ . By theorem
3.1.2, the intersection of the line through y and 7 and & is in N .

Since B ée%/ s xcannot be two dimensional. Thus J{is the line

through vy and 7 on 9

(0,0,1)

R

Oy

S o beld

(1,0,0) (0,1,0)

P

If Q is not irreducible there 1s no unique steady state vector

so one must be careful when talking about equivalence and about the core.

2. Reducible MRP's

The main problem with reducible MRP's is that they can be

equivalent to different renewal processes depending on the initial




48

distribution. For example, say (Ql,nl) ~ r, and (Qz,ﬂz) ~ I,. 1f

n= (nl,O), n' = (O,nz) and

Ql(t)

Q) =
Q,(t)

then (Q,n) ~ r, and (Q,7') ~ r

1
Another problem with reducible MRP's is that in general they

2°

contain some transient components. Recall the canonical form of a kernel
(1.3.1). The states corresponding to the Ai(t)'s are irreducible sets

of recurrent states and the states corresponding to the Bi(t)'s are
irreducible sets of transient states. Let.grbe the set of states

corresponding to the B Let G(t) have the form (1.3.1).

L
{8
Theorem 3.2.1. If (Q,Y) ~ r then there is a probability vector
¥' such that y; =0, Vje g and (Q,y') ~ r.

Proof. Globally, Q(«) has the form

(3.2.1)

where A and B are square matrices, and Qn(m) has the form

SR 1% S

PR

KA FTIMOA 90
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Since B I8 a transiceat MRP, Bt 0 pointwise and lim Cn s well

detined. Thus

L (")), =0, Vo 7.

e

crin e ambind Araboay .

By theorem 2.2.7, (Q.y) ~ v Implics y ,ﬂy. Since '”Iy s

closed, convex and fnvarfant under multiplication by Q(») we have

&

i n4m-1

. . Lim ! Qk(m) )¢ 4
Y m Y L Y ‘

R k=n ﬁ

where m {8 the perfod of the states in A ({.e. the lTeast common multiple
* -~
= Q, V\ ¢ ¢/ and

; *
| of the perfods of the Al'“)' y satisfies Y,

L]
(Q'Y ) ~ .

Corollary .2, 1.1, Let Q have the form 1,01 where A s k x k.

Tt (Quy) ~ v then (Q,y") ~ v where y' {9 made up of the tirst k entries

*
ol y
. . *
Proot.  From the theorem, (Q,y) ~ v laplies (Q,y ) ~ v where

* -
y‘ =0, V_l ¢ ¢/ . Thuas,

*
: Yn, Lpetperssat vy Q(l')()(l?)"'l)(l")ll - r((lh-((.’,\---r((n).

"
But y Q(tlm(t.,)---Qu“)u - y'A(tl)A(l.,)---A(l“)l‘. g0 (W,y") ~ vl oo
In essence, we have shown that as fav as equivalence to a renewal

process {s concerned, transient components arve frrelevant.  We will y

N

return to MRP's with trausfent components {n a dit{erent context in
gection 5,

A peneval MR without transicunt components has a kernel ot the

form
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Ql(t)
-t
Qz(t)
(3.2.2) Q(t) = L‘--~1L_.__~~**WL”“~,Nh~
r___
Qm(t)

where Qj(w) is an irreducible n, x n, stochastic matrix.

3 3

Theorem 3.2.2. Let y = (plyl, pzyz,-'-,pmym) where Yj has nj

elements, ij = 1, V3, and E P; = 1. Let p = (pl,pz,-‘-,pm) and

1
rl(t)
rz(t)
Y(t) = —
S—
rm(t)
DU R e

Then (Q,Y) ~ Y if and only if (Qj.Y ) ~ Ty for each j.

h|
Proof. (e==) If (QJ,Yj) A'rj then the core, QJYS of Qj contains
Yj' Let
¥l
Y2 |
I = .

S u. I

and let

S |
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K L&z ]

Since T zeZ{, gZ{Q(t)C Y(t) K , Vt and Y(t) = rQ(t)Y, we have (Q,y) ~ Y.

Note that the starting vector for Y is yU = p.

(==#) First, > 0, V3 since if not r (t) = 0, Vt. Thus,

Py 3

since (Q,Y) ~ Y there must be an invariant set of matrices .ﬂwith

T e K such that (ﬂQ(t)C Y() K ., Vt. Let ‘7{j be the set of vectors

t
that correspond to the j h row of the matrices in g7{ Thus

%Qj(t)er(t).ﬂj. Vt. Since Yj

The main result of this section says that if a reducible MRP

€ ,]{j, this implies (Qj,yj) ~ rj.n

is equivalent to a renewal process, then every component (with positive
initial probability) must be equivalent to that same renewal process.

Theorem 3.2.3. Let Q(t) have the form (3.2.2) and let w_ be

]
the unique vector satisfying w Q ,(») = n,, n. U = 1. Let
I I il
n o= (plnl. p,)nz."-,pmnm) where ij = 1. Then (Q,n) ~ r if and only

j=1"
if for each j either (Qj’"j)~ r or pj = 0.

Proof. (e=) Let Jpadpecee be the set {3: P, > 0}. Clearly,

Iy
(Q,m) ~ Y where ‘

le(t)
] SN ISR S—
Q, (v) (
P
Y(t) = iantIEE SRIRIEEEEEE SRR dae N
ijm




52

By theorem 3.2.2, (Y,n') ~ Z where ' = (pJ ) and
1

“jllpjzﬂjz’. v ’pjk"jk

r(t)

r(v)| F
Z(t) =

jr(t)

Since Z is strongly lumpable to r we have (Z, p') ~ r where

P' = (p, »P PS4 ). Thus, (Q:“) ~Y, (Y’“') ~ Z and (Z:P') ~ r,
jl Pt jk
By theorem 2.7.6 we have (Q,n) ~ r.
( =) If (Q,n) ~ r then Vn, tl,tz,---,tn,

ﬂQ(tl)Q(t2)°-~Q(tn)U = r(tl)r(tz)---r(tn). By the form of Q(t),

wQ(tl)Q(tz)---Q(tn)U = ;;; pj"ij(tl)Qj(tz)-"Qj(tn)U.
For any N,

mQ(t)Q(e,) -+ Qe IQ" (£)Q(E)Q(E) Qe U = (x(eIr(e,) - x (e )7

Thus, for any N,
m

; P47y (EIQ (£5)+++@, (£ Q] (=), (£)Q, (£~ Q (&)

- (r(tr(ey) - r (e N2.

Say Q,(w) is periodic with period kj. We have for any N,

] N4k

;E; 3
*ee 1 i o e
3739y (8)Q, (€p) Qj(tn)[kJ ZI: Q¢ )]Qj(tl)Qj(tz) Q, (£,)V

= (r(e)e(ey) e N2,

Thus,
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N+kj-l
1 e
ji;pjnjqjul)qj(cz)...qj(:n)[‘ﬂ 3 Z Q) ¢ ’]%“1’%“2’ Q (e )0
- i=N

= (e(e R r e )

Let w,Q (tl)QJ(tz)"'Qj(tn) = g v, where Yy, U = 1. Since

3 3 J
Nky-1
1 i
Yj[:;i: .k.j i Qj(m)] = n, we have
=N
N'H(J-l
1 1w
2PJnJQj(t1)Qj(t2)"'QJ(tn)[:l_i;l: i, Z; Q) ( )]Qj(tl)Qj(tz) Qy (e )U
= = n
2
Pjaj.
i=1
Thus,

?n;pja;' = (r(tl)r(tz)' . -r(tn))z,
=1

m

Z; pyay = r(er(ep)  er(e ),
. 2 4
2

S (gl w

This term says that the variance of some random variables that

and

S0

with probabilicty p, is zero. The only wav this can be

h| J

is if there 1is some common value, a, such that for each j either a, = a

i

take values a

= 0,
or p,
Thus r(tl)r(tz)---r(tn) - S pjaj = a. This says that if P >0
=
then ﬂjQ

(tl)Qj(tz)"'Q (tn)U - r(tl)r(tz)"'r(tn). Since n.tl.tz.“'.t

n

3 3

were arbitrary, we have (Qj.nj) ~r.0D
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Theorem 3.2.3 is not the strongest result imaginable on this
topic. A stronger result would be

Conjecture 3,2.1. 1If Q has form (3.2.2) them (Q,y) ~ r

(where y = (plyl. pzyz.-'°,pnyn)) if and only if for each j either

Q )~rorpj-0.

1°Y3

Although (Q )~ ror pj = 0 for all j clearly implies

3° Y
{(Q,y) ~ r, the idea behind the proof of theorem 3.2.3 cannot be used to

T R & T . Y

prove the converse. The problem is that in general we cannot force the

distribution on the state space back to y once it leaves it. We can

© e S < AT Bt

force it back to 7w by looking far enough into the future. We can say

PR T

something slightly stronger than theorem 3.2.3 though,
Corollary 3.2.3.1. If (Q,y) ~ r then for each ] either

o

Q )~rorpj-0.

33

n
Proof. Since (Q,y) ~ r, (Q,7) ~ r where n = lim y Qj(w)

n-o
=N

and m is the period of Q. The result follows from the theorem. D

The theorems in this section can be reformulated in an enlighten-
ing way if we extend the notion of a core to reducible MRP's.

Definition 3.2.1. A set Jf will be called a core of a MRP, Q,
if there is some renewal process r such that Kat) C r()A, Ve, and X
is the largest set with that property.

If Q@ is irreducible the core is unique. If Q is not irreducible

there may be several cores. For example, say

, ]
; Ql(t)
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where Ql(t) and Qz(t) are irreducible and there exist cores J{l and ‘XZ
such that ._7(1(21(:)(: rl(t) J{l and ,ﬂzQz(t)C r,(t) J{z, Ve (1.e.

Q1 ~ 1 and Q2 ~ rz). Then ( JK,,0) and (o, ﬂz) are both cores of Q
yielding different renewal processes.

Theorem 3.2.4. If ,7(1 and ’ﬂZ are different cores of Q then
H, L KA,
Proof. Say le(t)U = rl(t) and ,ﬂzQ(t)U = r,(t) where rl#rz.
Let ¥ = (B)Y)sPyY,u s, ¥,) € K and B = (q;8,,9,8,,7°*,q 8) ¢ K,
Say (quj)(BJOYj) # 0 for some j. By theorem 3.2.3 this means
(Qj,wj) ~ T and (Qj‘"j) ~ T, which is impossible. Thus either ijj = (O

or q = 0 (or both), soy e g = 0, 1

i1
Let

Q; (t)

Qz(t)

Q(t) = =

Q, (t)

and suppose K 1is a core of Q ylelding the renewal process r. Let
JC {1,2,--+,n} be the set of indices such that there exists some
= . 2.3.1,
Y € H with PyY, 40 (y/\ (PyY > PpYp o tsP Y ). By corollary 3.2.3.1
Q ~ T, Vield., Let J{j = (0,0,°°",0, ,1(1,0,0,-.-.0) where J{,
(the core of Q,) is in the jth spot. Let .&? be the convex hull

3

~
of U ,ﬁ . 1In other words Jf is all vectors of the form
jed

S TS O o M RN Y W7 e
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n

(PlYl,szz,“‘.PnYn) where pJ =1, p:l =0 if jJ ¢ J, and yj € ,](j if
J=1

J ¢ J. Clearly 3?(:.)&’.

Conjecture 3.2.2. K = K .

Theorem 3.2.5. Conjecture 3.2.2 is true if and only if conjec-
ture 3.2.1 is true.

Proof. (===) Say ﬁ = K and (Q,Y) ~ r where

Yy = (PlYl-szz,'“,pnYn). Then y = E pjyj where Yy € ,](j. Thus
Jed
(QJ.Yj)~ r whenever pj ¢ 0.

(o= ) If (Q,y) ~ r implies (Qj'Y ) ~ r whenever Py # 0 then

J
N "(j whenever P $ 0. Thus any y € ) is of the form E i’jyj

jed
where Yj € J{j.m

3. Periodic MRP's

In this section we consider MRP's whose states are arranged so

that the kernel has the form

Q (t)

b— - B de e
Q,(t)
Gan qw = o4 L]

Q (0)

(t) fs n, x n (interpret § + 1 as 1 if j = m), 1 < m < o,

J h| i+l
<w Juwl,2,++.,m, and Qj(t) is irreducible.

where Q

l1<n

]

R B A P e i+ re R ¢ i o 1 o)

ety

-

e

a0 gy M

D L

e

AT At Y W AT e i G IGE C  i

ey

R AR A 1 XAt £ ¢

N P o
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Such a MRP is said to have period m.

Since a MRP of the form (3.3.1) is irreducible, by theorem
3.1.1 there is a unique core Qﬁ(, so if (Q,y) ~ r then r(t) = mQ(t)U
where 7 is the steady state vector.

Let Q(t) have the form (3.3.1) and let m be the steady state
vector for Q. Let 7 =<i(nl,n2,---,nm) where ﬂj has nj elements and
njU = 1, It might seem possible for Q ~ r even if anj(t)U depends on
j. Since one cannot be sure which phase the process starts in, r(t)
could be an average of the random processes arising from each phase. It
turns out this cannot occur.

Theorem 3.3.1. If Q ~ r then anj(t)U = r(t), Vi.

Proof. If Q ~ r then Vn, et

tlltzi

ﬂQ(Cl)Q(tz)“'Q(tﬁ)U = r(tl)r(tz)"'r(tn). In particular,
2 @t ) @)a(e,) @ @RI = (e Pr(e) e ox(t). Thus

(6.u)'~ r where 6(t) = Qm'l(w)Q(t). But

Q, ()

&2(t)

&(t) =

Q (V)

where Q(E) = Qu(®)Q,; (=)+++Qq ()@ (=) +Q_p(=)Qy_, (©).

3

By theorem 3.2.3 we must have (Qj’"j) ~r, VJ3j. Thus
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ﬂjéj(t)U = r(t), V3i. Since 'nJQJ(w) = "j+1 we have

anj(t)U = nj_lQJ_l(t)U. 80 ijj(t)U = r(t), Viji.o

The following results will be useful in the next chapter.

Theorem 3.3.2. Let Q(t) have the form (3.3.1) and Y(t) have the

form 3

le

R a0 N 4

.
py=em—

Y(t) =

()

r
me=

rm(t)

P TSI

Let « -i (nl,nz,-"ﬂm) be the steady state vector for Q. If
1TjQJ(t) = rj(t)ﬂjﬂ. Vi then (Q,m) ~ Y.

Proof. We have NQ(t) = Y(t)N where

80 the result follows from theorem 2.7.2. O

Theorem 3.3.3. (Q,Y) ~ Y 1f and only if there are sets
" R "m
,](1. J{z,'--, J(m of probability vectors inR ", R “,:**,R

=
[ ]
B
.
P PO, A < U = IO LS St s IR B R SR A WY AL ;T WT PO T F T

respectively such that ijQj(t)C rj(t) .7(1+1. j=12,---,m, Ve, and

YJ c(ﬂj‘

!
F




59
Proof. (e==) Let
A\
o~ K
[——T—m |
Thus,
Ji’lol(t)
Ha(r) = T
ALt
Ao (t)
and
£y (O

rm(t);f)Tt;I

Since J{ij(t)c rj(t) '7{;]-0»1’ VY j we have .Z{Q(t) oy Y(t),ﬂ so
(Q’Y) ~ Y.

(==) Since (Q,Y) ~ Y there is a set of matrices ,z’ satisfying
(ZQ(t) CY) K, Vt. Let ,ﬂ’j be the set of vectors corresponding to

the jth row of (NX . Let

r - | v ]

r Yﬂ [

e

Ty T
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lel(t)
rqQ(t) =
m-lQm-l(t)
YQO(t)
Since z{Q(t)C Y(t),Z{ there is a I'' € JK
!
r' = Y2
Yo ,
such that TQ(t) = Y(t)I'. But
rl(t)Yé
Y(er: = o,
' rm(t)Yil

]
Thus for any vy € gjfj there is a Yia € ‘7{j+1 such that

YJQJ(t) - rj(t)y:')_'_l. This implies ,ﬂjqj(c)er(c),]{jﬂ, Vi, Vt.

4. MRP's with transient states.

Let

Q(t) = A 0

c(t) B(t)
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where A(t) and B(t) are square and irreducible and C(t) # 0. In section
2 it was shown that Q ~ r if and only if A~ r so in the context of that
section, the transient components could be ignored. If we examine the
situation a little more closely it becomes apparent that MRP's with
transient components can exibit some interesting properties of their own.
Let (Q,v) be a MRP where Q(t) has the form (3.4.1). Let
Y = (Yl,yz) where Yy corresponds to A (the recurrent components) and Yy
corresponds to B (the transient components). Clearly (B’Yz) is a tran-
sient MRP. When equivalence between a MRP and a renewal process was de-
fined there was nothing preventing the MRP from being transient. Thus,

(B,v,) ~ r if

Yn,t,,t et YZB(tl)B(tz)"'B(tn)U=r(tl)r(tz)-ur(tn).

1’2’
Lemma 3.4.1. If (B,yp) is a transient MRP and (B,YZ)—v r then
(1) r is a transient renewal process (i.e. r(=) < 1).
(2) The lifetime of (B,yz) has the same distribution as the lifetime of
r.
Proof. (1) By Theorem 2.2.8, r(=) is the largest eigenvalue of
B(») which is strictly less than one since B is transient.
(2) The lifetime of a MRP is the random variable T1-+T2+"'+Tn*.

where n*(w) = inf {T (w) = »}. For the renewal process r, the
n

n+l
distribution of n* is given by P(n* = k) = r(w)k (1 -r(«)). For the MRP
(B,yz), the distribution of n* is given by P(n*=k) = YZB(w)k(I-B("))U.
Since (B.yz) ~ T, yZB(w)k(I-B(w))U = r(w)k(l—-r(w)), so n* has the same
distribution for both processes. Furthermore, in both cases the

distribution of the lifetime, L(t), is given by the convolution of r(t)

with itself n* times (i.e. L(t) = (l—r(w))zr(w)kr(k)(:) where r(k)(t)
k=1

¥
f.
;
|
l‘
|
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is the k-fold convolution of r(t) with itself). 0
One of the interesting properties that MRP's with transient
states can exibit is equivalence to a delayed renewal process.
Definition 3.4.1. Let {So,Sl,---} be a random process. If

{Sl,Sz,“'} is a renewal process and S, is independent of {Sl,Sz,---}

0
then {So,Sl,---} is called a delayed renewal process. If P(Soit) =g(t)
and P(Snit) = r(t), n=1,2,-+-, the delayed renewal process is denoted
(g,1).

Definition 3.4.2. Let (Q,y) be a MRP on (9, & ,P). 1If there is
a stopping time n* such that {Tn*+1’Tn*+2"“} is a renewal process with

distribution r(t) and {Tn*-f-l’T .++} is independent of {Tl,Tz,"‘,Tn*}

n*+2°
then (Q,v) ~ (g,r), where g(t) = P(Tl + T2 +eoot Tn* < t).

Theorem 3.4.2. Let (Q,y) be a MRP where Q(t) has the form

(3.4.1). Say (A,yl) ~ r and A has core K . If

Y,B(t;)B(t,) " +B(t, _1)C(t )

Vo,c n 7,B(t)B(E,) --B(t__)C(E )T

t I 4 Eej{

1! 2’.
then (Q,y) ~ (g,r) where g(t) is the distribution of the first exit time
from the set of transient states.

Proof. Let (Q,y) be {xn’Tn} and let n* = 1nf{xn e A}. Clearly,

n
n* is a stopping time. Let yé be the vector

() = P(X , =1 | Ty + Ty +ooo+ Ty < 8).

1f Y; e, Vt then (’I‘1+'1‘2 oot Tn*) is independent of

(Tn*+1’Tn*+2" **} and I,(Tn’|=+1 hd t1’ Tn*+2 5-:2’ e ’Tn*hitn)

= r(tl)r(tz)---r(tn), so to prove that (Q,y) ~ (g,r) it suffices to show

YE e K, V.
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Let l‘l be the set of states in A, let I‘2 be the set of states in B,

and let hn*(t) - l’('l‘1 + 'I‘2 S SRR 'l‘n* < t). Thus

S ; ! o -
yt\i) = P(x“* =1, X5 ¢ PP Tyt Ty +eeed T o <t)

+ P(X i, X, T

- W - .o N
n* * 0 T T + +.ln*< t)

2 [T+ Ty

J 1
() T (c) ”zZ"‘“*‘k) /O m/o'[n(dtl)n(dtz)

--B(dtk_l)C(t—EtJ)h

By hypothysis, this is

Yl(i) o t- ):t:1 t-tl t
- kI .

O *(t) [) P(n*=k) / ﬁzB(dtl)B(tltz)

n n k=1 Q 0 0

-+ B(dt, )C(t-t, . )Uy . (1))
k-1 k-1 tt by
where vy € e’(. Since 07{ is convex we have
B8 a1

v, (1)
] = 1 — 1 -
Yt(i) hn*(t) + hn*(t) kE 1P(n* k)hk(t)Yl‘:(i)

where Yl‘: e K. so

Y () + [y (6) = P(axe0) Iy*(d)

I TG It

where y* ¢ 17{ Thus

vy * [ 4 (0) - Plak=0) Jy*

i
’ i
Since y,U = P(n*=0) and y*U = 1 we get YLU = 1. Thus Y, € K. This .,

proves that (Q,Y) ~ (g,r) where r(t) = ylA(t)U and g(t) = hn*(t)' 0
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Example 3.4.1. Say (A,yY) ~ r and let

A(t) 0
Q(t) =

(1-p) £(t)y pf(t)

where f(t) = l-e-lt. Let Y* = (qy, (1-q)), where 0 < q < 1.

Claim. (Q,y*) ~ (g,r) where g(t) = q + (1-q)(1-e_(1'p)xt),
Proof. Let TO be the time that the process first enters the set
of recurrent states. Since Vn,tl,tz,- se,t

n’

(1-Qp™ 1 a-p) £ (6)%y
(l-q)pn-l(l-p)f(t)"YU

=y e A,

the theorem shows that (Q,y*) ~ (g,r) where g(t) = P(Ty < t). But

P(T0 <t) =q+ (1‘q)(1‘P)ijf(j)(t) -q+ (1-q)(1-e—(1—p)>‘t), |
=1 B

Thus, with probability q, (Q,y*) is a renewal process from time .

zero, and with probability 1-q there is an exponential delay (while the

system is in the transient state) followed by a renewal process.




CHAPTER 1V

CONVOLUTLONS OF MRP'S

1. Convolutions of MRP's

Let v, and r, be two renewal processes. The convolution of r

1 1

and r, is denoted T *r, and is the renewal process with distribution

rlkrz(t) = J/Srl(t - s)rz(ds).
0

rl*rz(t) =- rl(ds)rz(t - 8).

or equivalently

The interepoch tfmes in r *r, can be thought of as an L epoch followed

1

by an r, epoch. Clearly r »r, = r *r Let r,,r.,>++,r be renewal
2 MRS Rk ) 1°'2 n

L

processes. The renewal process r *r,*---*r“ is defined inductively by

172
rl*rz*---*rn(t) = J/lrl*rz*---*rn _ I(ds)rn(t - 8).
0
Definition 4.1.1. 1f r is a renewal process then r(n) is the n-

fold convolution of r with inself defined inductively by
L

D)

(¢) = 1

(t) = r(t)
r(k + 1) r(k)

\)

(t) = (ds)r(t - s).

Let Ql and Q2 be m state MRP's (1 < m < =), The convolution of

Ql and QZ‘ denoted QI*QZ can be defined i{in an analogous manner.

¢
Q,%Q, (t) -/ Q, (d8)Q,(t - 8).
(\]

b5
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Likewise, {f Ql,Qz.---,Qn are MRP with the same state space,

QI*QZ*"'*Qn is the MRP with kernel defined inductively

t
Ql*qzw--~*qn(t) - 6/a1*Q2*'°-*Q“__l(ds)Qn(t-s)-

Definition 4.1.2. 1f Q is a MRP then Q(“) is the n-fold convolu-

tion of Q with itself defined inductively by

Q(o)(t) -1

AP0y = Qo)

Q(“*'l)(t) - *7a(n)(ds)Q(t"S)-
A

Again, the interepoch times in QI*QZ can be thought of as a Ql

epoch followed by a @, epoch. TIn other words

t
CRUNCINNE :%::6/1q1(ds>11qu2<r- SINe

Note that the convolution only makes sense if the MRP's have the same
state space, and that QI*Q2 and taql are not necessarily the same MRP
since matrix multiplication does not commute.

Notation. The n-fold convolution of Q with itself will be de-

noted Q(n)

s and the matrix Q(t) raised to the nth power will be denoted
Q“(t).

To prove that the definition of convolution of MRP's makes sense

we need the following lemma.

spaces, Every entry of Q]*QZ*-..*Qn(t) ia a nonnegative, nondecreasing,
right continuous function.
Proof. Since for each }§, Q1 is a MRP, Q‘(t) is nonnegative,

nondecreasing and right continuous. Thus Ql*Q,*---*Qn(t)

S i W Aoy T
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n-1
t- 1 t -~ kilsk n-1
- [ cer Of Q; (d8;)Q,(ds,)-++Q,_,(ds__1)Q (t- kflsk) >0

Assume Ql*Q2*~..*Qk(t) is nondecreasing for k < n. Then

Qq#Qpx« - -#Q (t) = JQ,%Qy%---#Q _, (t-8)Q_ (ds)

t- t
= U/AQI*QZ*- e*Q _, (t-8)Q (ds) + thl*Qz*- - o%xQ _,(t-8)Q (ds)
=A

where 0 < A < t, By the induction hypothesis this is

|v

t-A t

f Ql*Qz*- . -,‘an_l(t:--A—s)Qu (ds) + /A'QI*QZ*' . .*Qn_l(t_s)Qn(ds)
0 t-

t-A

lv

f Ql*Qz*o . -*Qn_l(t—A-s)Qn(ds) = Q *Qq-- -*Qn(t-A).
0

Assume Q1~IcQ2=k---*Qk is right continuous for k < n. Let

{t

} §=1,2,--- be a decreasing sequence with lim t,=t. To show
b oo J
Ql*Qz*---*Qn(t) is right continuous it is sufficient to show that

?411: Ql*Qz*' ¢ '*Qn(tj) = Ql*QZ*. * '*Qn(t) .

t
3|
1im Q *Q - - .*Qn(tj) = 1im Q) *Qy*- - .*Qn_l(tj—s)Qn(ds)

I I

t L
= 1im Ql*QZ*' . -*Qk__l(tj—s)Qn(ds) +1lim f Ql*QZ*' . -*Qn_l(tj-s)Qn(ds) .
o= %t

j-no

By the Monotone Convergence Theorem, this is

t

J

= Jlim QI*QZ*' . -*Qn_l(tj—s)Qn(ds) +1im f Ql*Qz*- . -*Qn_l(tj—s)Qn(ds) .
j-ba j-)co t

Since QI*QZ*"'*Qn-l(t) is right continuous,
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t
67112 Ql*Qz*'"*Qn_l(tj-s)qn(ds) - S/al*QZ*'..*Qn—l(t-s)qn(ds)

- Ql*Qz*.‘.*Qn(s).

Since Ql*Qz*---*Qn_l(t) is nonnegative nondecreasing and bound-

ed,

j-nn

t
3
0 < lim fQl*Qz*'-'*Qn_l(tj-S)Qn(dS)
t
t

j-m

J
< lim fQI*QZ*---*Qn_l(w)Qn(ds)
t

- Ql*QZ*"‘*Qn_l(“) lim (Qn(tj) - Qn(t)) =0
Joe
Thus ;.i:a Qthz*ou*Qn(tj) - Ql*QZ*...*Qn(t). 0
Lemma 4.1.2. Ql*Qz*..-*Qn(w) = Q1(°°)Q2(°°)°'-Qn(°°)-
Proof. Assume Ql*QZ*---*Qk(m) = Ql(w)Qz(m)---Qk(w) for k < n.

Since Ql*QZ*---*Qn(t) is right continuous and bounded,

Q*Qyk- - +*Q (=) = 1im [Q #Q,*---#Q _, (t-5)Q (ds)

Lo

= lim QxQ %+ -%xQ _(t-8)Q (ds) - lim fQ *Q koo kQ  (t-8)Q (ds)
e 17%2 n-1 n toe o 1772 n-1 n

By the Monotone Convergence Theorem and the induction hypothesis,

oo

lim fQI*QZ*o . -*Qn_l(t-s)Qn(ds) = jlim Ql*Qz*' . -*Qn_l(t—s)Qn(ds)
t+> 3
- le*Qz*- =oxQ _; (=)Q (ds)
- Q (“)Qz (@) 'Qn_l(“) an(ds)
0

= Q) (=)Qy(=) - +Q (=),

A R I AT
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Since QI*Qz*---*Qn_l(t) is nondecreasing and bounded

0 < 1lim _IBI*QZ*'"*Qn-l(t-s)qn(ds)
t

e o

o

< lim {/bl*qz*---*Qn_l(“)Qn(ds)

£

- Ql(m)Qz(m)°”Qn_1(°°) lim (Q(“’) - Q(t)) = 0,
t

-0
Thus Ql*Qz*' * ‘*Qn("") - Ql(m)Qz (°°) i 'Qn (cn) - 0
Corollary 4.1.2.1. If Ql,QZ,---,Qn are persistent then
Qu#Qyxe - +xQ (=)U = U.

Proof. Since Q,(«)U = U for each j,

h|
QI*QZ*-.-*Qn(m)U = Ql(oo)Qz(co)...Qn(eo)U = U. D

Lemmas 4.1.1, 4.1.2 and corollary 4.1,2.1 show that
QI*QZ*--'*Qn(t) is the kernel of a MRP. We also have
(n)

Corollary 4.1.2.2. If Q has steady state vector m then Q also
has steady state vector m.

Proof. 1™ (=) = Q" (=) = n. O

In general, the canonical form of Q1*Q2 will not be the same as

Q1 or Q2. In fact knowing just the canouical form of Q1 and Q2 is not

enough to determine the canonical form of Q1*Q2' For example, say

0 0 X
Ql(t) = X X 0 Qz(t) = 0
X X 0 ’ 0 0

{where X is a nonzero function of t). Ql and Qz are both {rreducible

and aperiodic but Q,%Q, is reducible.
1772
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Ql*QZ(t) =1 0

Lemma 4.1.3, If Q is an irreducible, aperiodic, non-null MRP
(n)

then so is Q .
Proof. Since Q is irreducible and non-null the steady state

vector 7 has all entries positive. Also, lim Qk(w) = Ur. Thus, Ve > 0
koo

and Vi,j there is a kij(e) such that

k .
Vk > kij(e)’ IQ1j (=) - “j( < e,

Choose ¢ < L and k' large enough so that k'n > kii(c). Thus,

Q:;n(m) > 0 and Q:;(n+1)(m) > 0.

Thus, the greatest common divisor of {k: [Q(“)(w)]‘;1 > 0} is ome. Since

(n)

this can be done for every state, Q is aperiodic.

Choose € < n, and k' large enough so that k'n > kij(c)' Thus

J
]
[Q(n)(m)]l;j > 0, so it is possible to get from state i to state j in

(n) (n)

Q . Since this can be done for any i and j, Q is irreducible.

2. Convolutions and Equivalence.

Ideally we would like Ql'w rl'Q° ~ rz,---.Qn'~ L to imply that
QI*QZ*---*Qn RS LLPLAREL L Unfortunately, the situation is not quite

that simple. Ccnsider the following example.

pre-e—ereatyy

r———————

& e R S W 7. > ST

R

B AT T TS e AV % W

i e &0
- MWWW B L




Example 4.2.1. Let,
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¥ 7 PR te e AR TS M

0 ift <1,
By theorem 2.2.2, Q1~ r, where rl(t) = % if 1 <t <2,
1 if t > 2,
0 ift«<l,
and by example 2.2.1, Q2 ~r, where rz(t) - % if 1<t <2,
1 if t > 2.
Direct calculations yield rl*r2(3) = -§- and
11 5 }
6 3 18 ;
i 1 5 i
Q1*Q, (3) & 6 18 :
1 1 5 ¥
6 3 18 :
:
It turns out that %— is not an eigenvalue of Ql*QZ(S) so by theorem H

2.2.8, Ql*Qz + I kr,.

Theorem 4.2.1. If Q ~ r then W~

Proof. Let J satisfy JHQ(t)C r(t)f , Vt. say
Ho®ere MK, Ve, Vk <n. Then

)

t
Ho™ (o) - .)S’D/o‘“‘l)(t-s)cz(ds)
[ jr(n_l)(t—s)r(ds)J{

= r(n) )X .

Thus e’{Q(n) (v) C r(n) ()N , so Q(n)~ r(n).u

TP AR I AN O Sl Ky MR W R T

(n) (n).

Corollary 4.2.1.1. If (Q,y) ~ r then (Q Y)Y ~ t
Proof. Say (Q(k).Y) ~ r(k) for k < n, and yQ(k)(t) € r(k)(t),j’,

Vt. Then,

AT R TE oty A1 7 ok U OPRSB - OTIT £ AN ¢
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@™ = v j ™D (¢-g)q(ds)

t
€ J;(n-l) (t-s)r(ds) A

i = r(") (K .

(n),Y) ~ ™ ang YQ(n) (t) € r(n) () K . a

& Thus (Q
Corollary 4.2.1.2. Let Qj’ §=1,2,-+,n be MRP's and assume

there is a set J that satisfies .%’Qj (t)c T @WK , Vt, Vij. Then

QI*OZ*' . .*Qn ~ rl*rZ*' ekT .

Proof. By hypothesis, Ql~ . Say Ql*QZ*---*Qk ~ rl*r-z*-- S*Ty

and ,_7{Q1*Q2*...*Qk(t) (- rl*rz*...*rk(t,),yf, Yt, Vk < n. Then

t
HQ#Qy*- - 4Q (t) = J [Q#Qy%-+-2Q _, (£-8)Q_ (ds)

c 07;:1*1:2*- SUSMMCDINCDY 4

= T AT ke -*rn(t)J( .

Thus, Ql*QZ*' . '*Qn ~ T Rr ke “kr . O

1
Corollary 4.2.1.3. Let Q and Y be MRP's, If Q X Y then
Q(n) Ey)

Proof. By theorem 2.6.4, Q 3 Y implies there is a set of

matr:lces,e/” , of the form
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(where each row is nonnegative and sums to one) so that
./((Q(t)C Y(t),/{(, Yt. Say Q(k) E Y(k) for k < n, and
AM™ ) Y () ¢, Ve. Then

t
: M (1) - u{{fz(“‘l) (t-8)Q(ds)

t
C 5/,;(11) (t-8)Y (ds) M = Y(n) (&M,

so Q™ Ey® 4

The MRP Ql*Qz*- . -*Qn can be analyzed in a different manner.

Consider the MRP with kermel

Ql(t)

Q,(t)

Q(t) = .

Qp1(®)

Q ()

Let {Al,Az,'",An} be a partition of the states of Q where Aj is the

collection of states corresponding to Qj‘ Let £ be the map that lumps

the states of Q to {Al,Az,--uAn} and let .




Y(t) =

Proof.
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rl(t)

rz(t)

(t)

n-1

rn(t)

form of Q and Y yields

The theorem follows by observing the top left components of Q

From Corollary 4.2.1.3 we know that Q

F
Theorem 4.2.2., If Q ~ Y then Ql*QZ* *inv T AT % L

(n) E Y(n). The

Y
Q2*Q3*' b *Ql (t)
Q™ () -
Qn*Ql*"'*Qn—ft)
and
tl*tzﬁ---*rn(t)
—
rz*ra*--o*rl(t)
Y(n)(t)_

rn*rl*...*rn_ﬁt)

——————

(n) and Y

(n)
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with theorem 3.2.2 in mind. o
Corollary 4.2.2.1. If Q E Y then Vj,

Qj*Qj+1*...*Qj—l'” rl*rz*"'*rn'
Proof. Since r_ »r keookY

3 in
(n) and Y(n) give the result.Q

j_l(t) = rl*rZ*---*rn(t), the remain-
ing components of Q
Clearly, any sufficient condition for Q E Y is sufficient for
QI*Q2*"'*Qn~ rl*rz*-..*rn.
Theorem 4.2.3. 1If there exists YoYost oYy such that Vi,
Yij(t) = tj(t)YJ+l‘ Vty then Ql*Qz*"'*Qn ~ rl*rz*“'*l‘n,

Proof. Let

N
Y
' = 2
Yn .
By hypothesis,
[rl(t)‘r2
rz(t)v3
I‘Q(t) = * .. = Y(¢)T,
rn—l(t)yn
rn(t)yn—l

80 Q'E Y by theorem 2,7.2. DO

3. Markov-Renewal Functions and Markov-Renewal Equations.

Definition 4.3.1. Say Q is a MRP. Let Ry(t) = 2 ™.
© n=0

Similarly, if r is a renewal process then Rr(t) = }E:r(n)(t). RQ(t) is

n=0

called the Markov-renewal function associated with Q and Rr(t) is called

the renewal function associated with r.
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In this section we will only deal with irreducible, persistant
MRP's. It can be shown [3] that RQ(t) is well defined and finite. Let

(Q,Y) be defined on (Q,é;r,P), and let

N(Q,y)(t’w) = sup {n: ;S;Tj(w) <t}

Mo,y (&) = EM g,y (Es°).

Similarly, if r is defined on (R, JF,P) let N_(t) be defined analogously.

For a MRP (or a renewal process) let us call the set of points
n

{g'rj(w): n=1,2,"*"}, events. Thus N(Q,Y)(t) and N (t) are the

expected number of events in the interval [0,t] for the corresponding
random process (we assume there is an event at time zero). It is well
known [3] that N_(t) = Rr(t) and N(Q.Y)(t) - YRQ(t)U. Thus, theorem
4.2.1 has an important corollary.

Theorem 4.3.1. 1I1f (Q,Y) ~ r ther N(Q.Y)(t) = Nr(t).

Proof. Corollary 4.2.1.1 states that (Q(n),Y) ~ r for every n,
80
™ (e3u = ¢ @ oy,
Thus,
- - (n) - (n) .
Niquy () = TRQ(E Y(ZQ (£)U Zor () = R (1). O
N= n=

Actually, theorem 4,3.1 can be strengthened slightly. If Q has

core K then N )(t) - Nr(t) for every B € Jf .

Q.8
Definition 4.3.2. Let Q be an n state MRP (1 < n < =), and let

'3\() be a column vector of n nonnegative functions bounded on finite

intervals. An equation of the form

KB ac b hia i
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t
N\ A al
(4.3.1) f(t) = g(t) + '/B(ds)f(t-S)
0

A
(where f(t) is an unknown column vector of functions) is called a
Markov renewal equation.

If r is a renewal process and g(t) is a scalar function bounded

on finite intervals then
t

(4.3.2) f(t) = g(t) + j;(ds)f(t—s)
0

(where f(t) is an unknown scalar function) is called a renewal equation.

The sclution of (4.3.2) is unique and is given by

(4.3.3) f(t) = 87;r(ds)g(t-s).
Lemma 4.3.2. The solution of (4.3.1) is unique and is given by
Iy ¢ A
(4.3.4) f£(t) = Gﬁzq(ds)g(t-s).

Proof. Since Q is irreducible and persisteat the lemma follows
from [3, Chap. 10]. 0
th o
The } element of f(t) can be thought of as the value of some-
thing at time t given that Q is in state j at time zero. Thus, 1if we

start with initial distribution vy, the expected value is
2 t A
(4.3.5) yi(t) = YRQ(ds)g(t—s).

Let 7 be the steady state vector for Q and assume Q ~ r. It

would be nice if it were always true that

nf(t) = Gigr(dS)(wg(t—S))

since this involves only scalar integration. Unfortunately the situation

is not quite that simple.
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t
A
Theorem 4.3.3. nf(t) = d/ar(ds)(ﬁgit—s)) for all bounded

nonnegative g 1f and only if nRQ(t) = Rr(t)n, Yete.

t
Proof. (e==). E(t) = WRQ(ds)/g\(t—s)- b;ilr(ds)(n/g\(t-s)).

(===) Say there exists a t such that nRQ(t) ¢ Rr(t)n. Then for

some Jj, [ﬂRQ(t)]j ¢ Rr(t)"j' Since RQ(t) and R _(t) are right continuous,

there exists € > 0 such that

t+e t+e
f [wRQ(ds)]j # er(ds)wj.
t t
Define’a' as follows:
0 if 1 ¢ 3,
@i(c)- 1 if 1=3, 0<t<e,
0 if 1+ =3, t> ¢,
Thus,
t+e t+e
~ A,
nf(t+e) = er(ds)(ng(t+e-s)) = f Rr(ds)"j
¢
tte tie
¥$ tf ["RQ(ds)]j = Of WRQ(ds)@' (t+e-s)

A
= nf(t+¢),

which is a contradiction. O

Corollary 4.3.3.1. If nQ(t) = r(t)m, Yt, then
wE(e) = bﬁ,.(cls)(w’g\(t -8)).

Proof. First we show that nQ(“)(t) = r(n)(t)n, Vt, Vn. Assume

it is true for k < n. Then

e el mheacie e ST
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. t
Q™ () = njq(“‘“(t-s)o(ds) - D/;(n-l)(t-s)r(ds)ﬂ ) ey

Thus, WRQ(t) = HZQ(n) (t) -Zr(n)(t)ﬂ = R (t)n, so the result holds.O

n=0 n=Q

Thus, 1if aQ(t) = r(t)w, Vt, the solution of any Markov-renewal

equation in steady state is the same as the solution of the correspond-

ing renewal equation. Unfortunately, wQ(t) = r(t)n, ¥Yt, is not a

necessary condition for Q ~ r.

i e X RN

Let zx(“)(c) - Q(“)(x4-:). and let I be the ring of matrix

(n)(.) : xe€R, n=0,1,2,"') under the

valued functions generated by {Zx
usual operations of matrix multiplication and addition. 1If Q has core
.7(, then for any vy ¢ S and Z(:) ¢ 7 (closure of Z in the usual sense)
we have yZ(t)U = wZ2(t)U, where n is the steady state vector for Q.

Theorem 4.3.4., If Q ~ r and /g\(t) = Z(t)U where Z(+) e Z then

t
vy e Hy VE(O) = Eﬁr(asuﬁz\(c—s)).

Proof. Since @(t) = 2(t)U we have y{;\(t) = y'/g\(t), Vv, v' e K.

Thus,
Y/f\(t) - 07‘7RQ(ds)/g\(t—s)
t oo
- YQ(“)(dSYQTt-s)-
n=0
Since YQ(“) (ds) = £ (ds)y_, where y_ e K we have

© t
U ) SEC TS {Rr(ds)(v/a\(t-s)).o
n=0
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Although it appears that theorem 4,3.4 imposes a large restric-

tion on the number of Markov-renewal equations we can consider, it should

become clear from the following examples that in many problems of
interest, /g\(t) will have that form, In the following examples, Q ~ r
and Q has steady state vector 7.

Example 4.3.1, Let

/\
Px(t)i = Pr [no events in the interval (t,t+x]|Q starts in state 1i].

Then
/P\x(t) = (I - Q(t+x))U + f)(ds)/l}x(t—s).

Since (I - Q(t+x)) ¢ Z, we know that
t

"?x(t) = Jilr(ds)ﬂ(l—()(t-!-x—s))u

t
= z!Rr(ds)(l—r(t+x-s)).

Example 4.3.2. Let

/I};((t)i = Pr [exactly one event in (t, t+x]|Q starts in state i].

Then,
t

t
/I},"(t) = fo(ds)(I-Q(t+x-s))U+ 0/EI(ds)/I};‘(t-s).
t

t+x _
Since Q(ds)(I-Q(t-x-8)) € Z, we have

vy g e

L e i e
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A t+x-s
an(t) - j;l:(ds)'n f Q(duw) (X -Q(t +x+-u))
t=s
t ttx-s
= b/i\l_(ds) f r(du)(1-r(t+x-u)),
t=s

Example 4.3.3. Let N(t,w) be the number of events up to time t
(including the events at 0), and let {Tl(m),Tz(m),"'} be the interepoch

times. The forward recurrence time at t, Ft(m) is defined to be the time

N(t,w)
until the next event starting at t (i.e. Ft(m) = ( Z Tj(m)) -t). Let
=1

A
£.(t), = Pr(F < x|Q starts in state i).

Then

t
T = @e+x) - v+ foesf -9,
0

80
t

n/f\x(t) - JRt(dB) (r(t+x-8)-r(t-8)).

N(t,w)~1
Example 4,3.4. Let Bt(w) -t - jz; T.‘i (w), be the backwards

recurrence time., Let
/i\;‘(t) = Pr(B, > x|Q starts in state 1).
Then

t
™ N
fx(t) = (I—Q(t))1{t>x} + lS/EQ(ds)fx(t:-s).

Since (I-Q(t))l{ - (I—Q(t))Q(o)(t-x) e 2,

t > x}

I T




N
fx(t) = b7;{1_(ds) (1-r(t-8))l

{t-8>x}

X

t-
- 0/ Rr(ds)(l-r(t-s))-
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CHAPTER V

DISCUSSION

1. Summary

The study of equivalent MRP's has its roots in the study of
functions of Markov chains. Burke and Rosenblatt [1] gave conditions
for functions of a Markov chain to be Markov. This came to be know
as strong and weak lumpability. Kemeny and Snell [8] gives the best
discussion of this topic. It can also be found in Rosenblatt [14].
Serfozo {15], [16] showed that the concept of lumpability in Markov
chains extends easily to MRP's. These concepts are apparently considered
unimportant by the masses since there has been very little reference to
them in the literature since 1972.

The reason for the lack of interest is probably that strong
lumpability is too strong a condition to be useful, and nobody has ever
considered in detail the idea of weak lumpability to a renewal process,
What has been shown here is that these concepts, in an appropriate
modified form, are important both in applications and in the foundational
study of MRP's, It would seem that any thorough discussion of MRP's
would contain a section discussing the idea of the "time" processes of
two MRP's having the same distribution. This has not been the case. The
first discussion of this concept is found here in Chapter II and III,

There is a better reason for studying equivalence than the
intuitive feeling that it should be done. Equivalence is exactly the

condition for being able to substitute one MRP for another in (say) a

R
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queueing network without changing the character of the system.
Examples of the use of this sort of tactic for simplifying the

analysis of queueing systems abound, although until now there has been

no theory that encompasses all of them. The best known example is that

the output from a steady state M/M/1 queue is a Poisson process (as
opposed to the infinite state MRP by which it is most naturally

characterized). More results of this form can be found in Disney et al.

S & DI Pt

[4] and Laslett [9]. There are also results that show certain flow

processes in Jackson networks are Poisson [12]. The value of these kinds

St o A s

of results should be clear. They make it possible to analyze systems
that would otherwise be intractable. As a simple example, consider two ;
queues in tandem where the first queue is M/D/1/1 and the second is
*/M/1/=. Since the output from the M/D/1/1 queue is a renewal process in
steady state, the second queue is a G/M/1l/» queue, which is well under-
stood. We can easily write down the steady state queue length distribu-
tions, waiting times, and other quantities of interest. This would be

impossible if it were not known that the output from the M/D/1/1 queue

P PEE

is renewal.

From the results of Chapter II, one can quickly verify all of

o P o 0 18

these known results. One can also settle some previously unsolved
problems (example 2.4.4) and come up with curious and unexpected results 4
such as in examples 2.4.5 and 2.4.6.

Section 2.4 has shown that the tools developed in Chapter 11
are useful for solving important problems, especially problems dealing
with flows in queueing networks. The emphasis {n this paper, though,
| was on the development of the theory of equivalent MRP's., More %

specifically, the emphasis was on equivalence between a finite or count- i
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able state MRP and a renewal process.

In Chapter II, necessary, sufficient and necessary and sufficient
conditions were given for (Q,Y) ~ r. The ideas of collapsibility and
equivalence between two finite or countable state MRP's were discussed
and conditions for them were given.

In Chapter III the various canonical forms of MRP's were
examined in detail. Reducible and periodic MRP's were analyzed in terms
of their components. One interesting observation was that a weighted
average of steady state MRP's can only be renewal if each MRP is
equivalent to the same renewal process (Theorem 3.2.3). It s likely
(though unproven) that the same conclusion holds even if the MRP's are
not in steady state (conjectures 3.2.1, 3.2.2). It would also be very
interesting if these conjectures turned out to be false,

For the general finite or countable state MRP, answers were
given to the questions
(1) For a given Q, which r can satisfy Q ~ r?

(2) For a given Q and r which y can satisfy (Q,y) ~ r?

Also, equivalence between a MRP and a delayed renewal process
was defined and conditions were established for {t.

Chapter IV was a look at the idea of convolutions of MRP's. The
goal was to determine when equivalence is preserved under convolution.
It became obvious that the answer {s not simple. It 1{s casy to produce
an example of Q1 ~ Ty Q2 ~ T QI*QZ 4~rl*r2. although conditions can
*r,. One computational trick is to

1772
realize that Qlquk"-*Q“ can be thought of as a periodic MR where

be given to assure ngqz ~T

the Qj'a are stages. The solution of Markov renewal equations involves

the convolution of a MRP with itself. One would hope that if Q ~ r, the

[
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solution of a Markov renewal equation involving Q could be simplified.

This idea is made precise, and although not all Markov renewal equations

can be simplified, it is shown that a large and important class can be.

2. Extensions.

Consider a renewal stream of customers entering a queueing system
of n exponential servers in tandem (each with infinite waiting room).
There is no problem analyzing the first queue. It is a G/M/1 queue, and
its properties are well known. Unfortunately, the behavior at the second
queue is almost impossible to analyze since the output from a G/M/1 queue
is not a renewal process. In fact, according to the definitions in this
paper, it is not even a MRP., In order to get the distribution of the
time between one departure and the next, one must know whether the queue
is empty or not. If it is empty, one still needs to know the distribu-
tion of the time until the next arrival in order to get the distribution
of the time until the next departure. The foward recurrence time, except
for the Poisson process, is a nontrivial function of a continuous param-
eter, t € (0,»). Thus, the only Markov chain one can find embedded at
departure points must keep track of the queue length and the time since
the last arrival (i.e. the state space is [0,»] x {0,1,2,-++})., The out-
put from the second queue is even worse. Again, the state space must
include the queue length and the time since the last arrival. Unfortu-
nately, the foward recurrence time for the input to the second queue is
the foward recurrence time of a MRP with state space [0,~] x{0,1,2,*°*}.
Thus, the departure process from the second queue is described by a MRP
with state space [0,~} x {0,1,2,--+}x{0,1,2,°""}. (i.e. must keep track
of the queue length at the first and second queue, and how long it has

been since the last arrival to the first queue). The state space for the
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departure process from the nth queue is [0,«] x {0,1,2,---}“.

Although finding the steady state queue length distribution (or

even approximating it) in this very simple queueing network is a very
difficult problem, the fact is that if any method is developed to deal
with this problem the same method could probably be used to solve for
queue length distributions in an arbitrary network with independent
renewal arrivals and servers. This is because in a network of that form
the state space needed to describe the flow of traffic on any arc in

the network can never be worse than [0,°°]n1 X {0,1.2,"'}n2.

The concept of equivalence between a MRP and a renewal process

can easily be extended to MRP's with general state space, and state

n ny
spaces like [0,] 1 x {0,1,2,°**} © pose no problem at all. Let

(S,.gﬂ) be a measure space and let (n,,g?,P) be a probability space.
Let Xn: 2 + S be -measurable and let Tn: { + [0,~] be
%-measurable. Then {Xn, Tﬂ} is a MRP with state space (S,¢¢) if

for each t there 1is a QsA(t): S x & + [0,1] such that

P(X AT < t|X WX o0r ot X, T (0T oueee,T)) = O _ A0

where Q-A(t) is measurable for fixed A, and Qs-(t) is a measure on (9"

n n
for fixed s. In queueing networks S = [0,x] 1 x {0,1,2,+--} 2 and

. I , e
P = ol B x A} where A = 21012 me fndetal distribution

of the MRP is a measure u on (S, y) where p(A) = P(X0 € A). We can
denote a MRP on (S, ,97) with kernel Q(t) and initial distribution u by

(Q,u). Let r be a renewal process. We say (Q,u) ~ r if '

Vn,tl,tz,'“,tn, P('r1 < Ty S gy, T < tn) = r(tl)r(tz)“-r(tn)

which implies

—
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V“’tl’tZ’“"tn’ ff"[u(dso)Qsodsl(tl)Qsldsz(tz)"'an-ldsn(tn)
= r(tl)r(tz)'°-r(tn).

It seems clear that the conditions and properties for equivalence
in this more general context should be analogous to those given in this

paper.

3. Generalizations.

There is at least one direction that the concept of equivalence
between MRP's can be generalized that could prove to be invaluable in the
applied study of random processes. Equivalence is the condition that en-
ables one to substitute one MRP for another without changing the char-
acter of the system at all. If there were some metric on the space of
MRP's, one would expect equivalent MRP's to be zero distance apart (i.e.
the same point) in that space. The general notion referred to above is
this metric on equivalence classes of MRP's. Tdeally, this metric would
be easy to compute and a large class of queues (thought of as operators
on the space of MRP's) would be continuous operators.

First of all, it is possible to define a metric on the space of

MRP's; for instance the Levy metric [10]

4CQ 1)) Q1)) = 1RELF, (B) <Fy(B) + 6, By () <7y (B) +e, VB e )

where{j?co are the Borel sets in R , B, is the open e-neighborhood around

B, and F, is the measure on 9" defined by

3

FJ(TI _<_ tloTz f t2,'.0,Tn f_ tn) = Yij(tl)Q (t_z)--.Q (tn)u'

B 3

Since the Levy metric induces the topology of weak convergence,

results such as Whitt [18] show that a large class of queues are




90

continuous operators in this metric. The problem is computing or
approximately computing distances in the metric. If this can be done
it might be possible to get bounds on the error when one MRP is sub-
stituted for another. One suspects that if two queues are identical
except for the arrival streams, behavior of the queues will be 'close"
if the two arrival streams are "close" in the metric. For example
consider two queues in tandem where the first is M/M/1/N and the second
is +/M/1. 1f N < = the arrival process to the second queue is not a
renewal process, and the steady state queue length at the second queue
will not be geometric as it would be if N = », For large N, though, one
would expect to find little difference between the true steady state

distribution and the geometric. (see example 2.4,3)

4. Abstractions

Some of the rich mathematical structure of the space of MRP's
should be pointed out, although no attempt will be made here to exploit
these ideas.

First of all, corresponding to each N < = is the space of N
state MRP's. This space can be furthe- broken down to the space of N
state MRP's with initial distribution v, v ¢ éi%. The space of N state
MRP's with initial distribution y is a semigroup under at least two
different forms of multiplication. The results of Chapter IV show that
the space is a semigroup under convolution, and it is easy to verify
that (Ql,Y)'(Qz,Y) = (Q3,y) where Q3(t) = Ql(t)Qz(t) is a mu{tiplication.
Both of these semigroups are noncommutitive.

The space of finite or countable state MRP's is also a metric
space where d((Ql.vl), (Q,Y,)) = 0 if (Q;,vy) ~ (Qy.v,). By allowing

more general state spaces, the space might be complete with respect to
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the metric. A reasonable conjecture is that the space of MRP's with state
spaces in Qw is complete under the Levy metric. The topology of this
space (or even the space of finite state MRP's) ia interesting to think
about since MRP's with vastly different state spaces can be “close” in
the metric.

Perhaps the most fundamental observation is that the space of
MRP's is a category. There are several morphisms between MRP's to choose
from. Strong lumpability, weak lumpability, collapsibility and equiva-
lence are all morphisms (theorem 2.6.6). Consider the {inite and count-
able state MRP's. Let £ be a map from the category of MRP's to the

category of matrix rings defined by

E{@,)} =2

where Q is the matrix ring generated by {Q(t)}, t € [0,«]. Equivalence
between two MRP's is too weak to induce a functor since it is possible
for (Q,y) ~ (Y,B) without a homomorphism between @ and Y. Theorems 2.5.1
and 2.6.5 show that € is a functor if the morphism used is strong
lumpability, weak lumpability or collapsibility. In fact, collapsibility
occurs between two MRP's if and only if there is a certain homomorphism
between the rings. Thus, from this point of view, collapsibility is the
most pleasing morphism of the four. Although strong and weak lumpability
imply homomorphisms, the converse is not necessarily true. It is impor-
tant to note that weak lumpability, collapsibility and equivalence are
identical in the special case where one of the MRP's is a renewal
process. It has still not been formally shown that collapsibility and
weak lumpability are different, although in the finite or countable case,

weak lumpability clearly implies collapsibility, and in view of (2.6.1)

and (2.6.2) the converse is doubtful.
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Let us examine these morphisms in a general setting. Let (Q,u)
be a MRP with state space (Sl’ .?1) and let (Y,)A) be a MRP with state

space (SZ’ .9’2). Let 9 be a measurable map of S, onto SZ’ Say

1
@Qw) is {X, Tn} and (Y,A) is {Zn, Vn}'

Since (Q,u) is a MRP,

P(X

n+l © A, T

n+1 S tlxn = S) = QSA(t)
is a regular conditional probability on ,71 Assume that P(x0 eA|D)(s)

is also a regular conditional probability on .?1. Since
Vs e &), P(Xy € Ald)(8) = P(Xy € A%y ¢ & 1(w))

we can denote P(Xo e A|®)(s) by P(u,A) where u = $(s}). P(u,-) is a
measure on % for each u ¢ .%, and P(-,A) is ggg-measurable for every
A€ .?1 P(u,A) is analogous to Il in section 2.6.

Let Q be the set of all maps Q: S1 X ,71 -+ R such that for
each 8 € Sl’ Q(s,+*) is a (signed) measure on .?1 and for each A ¢ .?,
Q(-,A) is Z—measurable. Likewise let @ be the set of all such maps
Y: 82 X ,% +R. Define addition in Q and @ to be pointwise addition
and define multiplication to be

Qle(ssA) = /Ql(s9dx)Q2(x’A)'

Let Q © 9 be the ring generated by {Q(t)} and let ¥ C %Y

be the ring generated by {Y(t)}. Define themap Z : Q > Y to be

E(Q)UB = ﬁ(sa Cb_l(B))P(u,ds).

The morphisms can now be defined in the general setting.
Definition 5.4.1. Q is strongly lumpable to Y via ¢ if for
every probability measure u on (Sl' .?1),‘ { ¢(Xn), Tn} is a MRP on

(s, 9’2) with kernel Y(t).
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Definition 5.4.2. Q is weakly lumpable to Y via @ 1if for some
probability measure u on (Sl' éfa). {<b(Xn), Tn] is a MRP on (52' éf;)
with kernel Y(t).

Definition 5.4.3. (Q,u) is collapsible to Y via ® if = is
a homomorphism.

Definition 5.4.4. (Q,u) is equivalent to (Y,)) if {Tn} and {Vn}

have the same distribution.
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