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important special case of weak lumpability from a M4P to a renewal process. What is
shown here is that in an appropriate modified form, these concepts are important in
both application and in the foundational study of MRP's.

Equivalence and collapsibility between MRP's are defined, and necessary,
sufficient, and necessary and sufficient conditions are given for them. It is
shown that equivalence, collapsibility, weak lumpability and strong lumpability
are morphisms between MRP's, and their relations to one another are examined.

Equivalence between a MRP and a renewal process is examined in detail. Specific
results are obtained for irreducible, reducible, periodic and transient MP's. These
results are applied to problems concerning flows in queueing networks. It is shown
that several well known results in queueing theory are examples of equivalence (for
instance Burke's Theorem). New and simpler proofs are given for them. Some questions,
previously unresolved, are answered using the techniques developed here; most notably
the question of when the input process to the M/M/l queue with instantaneous Bernoulli
feedback is renewal.

Convolutions of hRP's are examined, and conditions are given for equivalence to be
preserved under convolution. It is also shown that an important class of Markov-
renewal equations can be simplified if the underlying MRP is equivalent to the renewal
process.

Finally, it is shown that the ideas developed here can be extended to MIP's on
general state spaces. The definitions of equivalence, collapsibility, weak
lumpability and strong lumpability are given in the general setting. Examples from
queueing theory that would make use of the generalized results are given.
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OUTLINE OF MAIN RESULTS

I. Equivalence

A. from a MRP to a renewal process:
1. general MRP: Thm's 2.2.1, 2.2.2, 2.2.7, 2.5.1, 2.5.2

2. finite MRP: Thm's 2.2.8, 2.2.9
3. irreducible MRP: Thm's 3.1.1, 3.1.2
4. reducible MRP: Thm's 3.2.1, 3.2.3, 3.2.4
5. periodic MRP: Thm 3.3.1
6. transient MRP: Thm's 3.4.1, 3.4.2
7. preservation under convolution: Thm's 4.2.1, 4.2.2, 4.3.1
8. Markov-renewal equations: Thm's 4.3.3, 4.3.4

B. from a MRP to a MRP: Thm's 2.7.1, 5.4.4

II. Other Morphisms (section 5.4)

A. collapsibility of a MRP to a MRP:

1. general MRP's: Thm's 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5,
2.6.6, 5.4.3

2. reducible MRP's: Thm 3.2.2
3. periodic MRP's: Thm's 3.3.2, 3.3.3

B. weak lumpability: Thm's 2.2.1, 5.4.2 (known results in section
1.2)

C. strong lumpability: Thm's 2.2.2, 5.4.1 (known results in
section 1.2)
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CHAPTER I

INTRODUCTION

1. Introduction

The main purpose of this work is to introduce some new concepts

in Markov-renewal theory which are of theoretical and practical interest.

A Markov-renewal process (MRP) is a sequence of pairs of random

variables [X n,T n ) where Xn takes values in some measure space (S,jd) and

T takes values in [0,-], that satisfiesn

P(Xn+ 1  A, T n < tXn ,'",X0' Tn,'",T l ) P(X n+l c A, Tn+l < t-X n ) a.s.

for n 1,2,. . , A ee, t c 10,-]. It is assumed that there is a transi-

tion function QxA(t) = P(Xn+1 c A, Tn+ 1 < tIXn = x) which is called the

kernel of the MRP. It is clear that the kernel and the initial distribu-

tion y (i.e. y(A) = P(X0 e A)) completely specifies the distribution of

the process (XnTn

It would seem that one of the basic questions in Markov-renewal

theory would be to determine when two MRP's with different characteriza-

tions (i.e. different state space, kernel, or initial distribution) are

l"the same". A review of the literature shows that this question has

been largely ignored. Actually, the only work done in this area has

been the extension of the concept of strong and weak lumpability between

Markov Chains to strong and weak lumpability between MRP's. A descrip-

tion and review of those results will be given in the next section.

Even the present knowledge of strong and weak lumpability

1
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between HRP's is quite incomplete since no attempt is ever made to apply

these ideas or to see if and when they occur in practice.

Consider the departure process from an M/M/i/N queue (N < ").

It can be shown ([41, for instance) that the departure process is most

naturally characterized as a NRP with N+l states (corresponding to the

length of the queue the instant after a departure). When N-- (i.e. the

M/M/i queue), a countably infinite state MRP characterizes the departure

process. It is well known, though, [2), [4], that the departure process

from a steady state M/M/l queue is a Poisson process, which like any
1

renewal process is a one state MRP. This is a nontrivial example of a

MRP with two different characterizations. Several other similar examples

can be found (see section 2.4).

Attempting to construct definitions for two KRP's being "the

same" leads to the construction of morphi.-,q between MRP's. Four

morphisms will be defined; strong lumpability, weak lumpability,

collapsibility and equivalence. Although strong and weak lumpability

have never been defined outside the realm of finite state MRP's, there

is no problem extending their definitions to the general case.

The conditions for strong lumpability are very restrictive and

although they can be written down in a mathematically attractive form,

strong lumpability is not as interesting a morphism as the others. Weak

lumpability is a more interesting morphism, but the mathematics

1A renewal process is a one state KRP since there is only one

kind of event. Sometimes the total number of renewals up to time t
(the counting process) is called the state of the renewal process. In
that context the state of a renewal process can take values in the
nonnegative integers. In our context though, the state of a MRP at the
time of an event specifies the distribution of the time until the next
event. Thus, a renewal process need have only one state since those
times are i.i.d. random variables.
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describing it is not very pleasant. Strong lumpability always implies

weak lumpability but the converse is not true.

From a mathematical point of view, collapsibility is the most

pleasing of the four morphisms. It is easy to show that weak lumpability

implies collapsibility but the converse is presently unresolved (due to

the complexity of weak lumpability). Strong evidence is given in sec-

tion 2.6 towards the belief that collapsibility is a weaker condition

than weak lumpability.

The weakest of the morphisms is equivalence. From a practical

point of view, though, it is the most important. Equivalence is exactly

the condition that allows one to substitute one MRP for another in (say)

a queueing network without changing any of the important aspects of the

system. It is easy to show that equivalence Is weaker than the other

three morphisms. It is also easy to show that in the important special

case where one of the MRP's is a renewal process, weak lumpability

collapsibility and equivalence are identical.

The precise definitions of these morphisms in the general

context is given in chapter 5. The definitions for the finite and

countable case are in chapters 1 and 2.

The vast majority of the present work is concerned with the

simplest cases of the morphisms (between a WRP and a renewal process,

and between two finite or countable MRP's). The reason for this is

tvofold. First of all, as far as applications are concerned, these are

the most important cases. Also, since so little work has been done in

this area it seems rediculous to jump into the general setting without

a thorough discussion of the important special cases.
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2. Lumpability

Probably the simplest case of equivalence between MRP's is lump-

ability in Markov chains (8]. Let {X ) be a Markov chain on a finite or

countable state space S. Let AA2,--.,An be a partition of S, and let

F: S -o {A1,A2 , - ,An I be the map that "lumps" the state space S onto the

partition {AI,A 2, -,An). The process {F(Xn)) may or may not be a Markov

chain. In general, the probability of going from Ai to A in {F(Xn )

will depend on precisely which element of Ai the {Xn} process is in. If

for each i and J, though, the probability of going from Ai to A is

independent of the state in Ai that the {Xn I process is in, then the

process {F(Xn )I is a Markov chain. When this happens we say {X n  is

strongly lumpable to {F(X ). This is a special case of the equivalence

to be defined.

For example, say S = {1,2,3} and let {X n have transitionn

probability matrix

i 1 3
5 5

1 1 1

1 1 3
2 8 8

Let F() t F(2) F(3) A 2 . The process {F(X ) is a Markov chain

on {A1,A2 with transition probability matrix

1 :2)

2 2a



If {X n } is strongly lumpable to {F(Xn ) then no matter which

state in S the process starts in, {F(Xn)) will be a Markov chain. In

fact, even if the precise state that the process begins in is not known,

the ensueing {F(X )) process is a Markov chain.
n

Sometimes, even though {X ) is not strongly lumpable to {F(X )},
nn

the process {F(X )} is a Markov chain when {X I is in steady state. When
n n

this happens we say {X I is weakly lumpable to {F(X n)I.n n

If S has m elements (m < -) and F(S) has n elements A1 ,A.,,.. ,A

(n < m), then the following m x n matrix, U, can be constructed. Let

S0, if i 0 A• j,
pij =

I, if i c Aj.

1here is a vector r that satisfies rP = n (the steady state

vector) where P is the transition probability matrix for {X n. Let 11n

be an n x m matrix with

0, if j j A i ,

ii - -- , if j E Ai.

k A
kcA

The ith row of 11 is the conditional probability of being in state j

given that the process is in steady state and that the process is in Ai.

Kemeny and Snell [8], show that IX I is strongly lumpable ton

{F(Xn)) if and only if PU - t(RPU), and that if {F(Xn)) is a Markov

chain then its transition probability matrix is TIPU. They also show

that HP - (HPU)H or PU - U(IIPU) is a sufficient condition for IX I to be

weakly lumpable to {F(Xn)1. For example let S = {1,2,31 and set

.. . ... ....... IJ r .... ..... .... .......... .... .. ....II11II ... ... ..... ... ' . .. . .
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F(l) Al, F(2) = F(3) A2. Suppose the transition probability matrix

for {Xn } is

1 1 1

1 1
p 2 20

1 3

In this case 7 = o) 0

(0 ;) and U = 0

21(0 1

{Xn I is not strongly lumpable to {F(X n)} since

P(F(X) = AIjF(XnI) = A2)

depends on whether Xn I is equal to 2 or 3. This can be seen formally

by noting that PU # U(HPU). In steady state, though, {F(Xn)} is a Markov

chain since HP = (HPU)n. The resulting Markov chain {F(Xn) has a

transition probability matrix

(11

TIPU

The necessary conditions for weak lumpability are much less

appealing than the necessary and sufficient condition for strong lump-

ability or the sufficient conditions for weak lurpability. If y is a

MAL
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probability vector on S then define (y]i to be the vector of conditional

probabilities of being in state j (j =1,2,.-.,m), given that the process

is in Ai. For example, the it h row of the matrix H is []i . Let r be

the set of all finite sequences of states in F(S) that end with A . If

AA -" A and A, AA . , Aj are two elements of r. then

1 2 k 'AJ2  q P
for {X to be weakly lumpable to {F(Xn)} it must be true that for each

n n

a e (1, 2,.',n).

icS cA ieS eA i

where

1 [[[i l p2 i3 i

Y 1] [ 2 [[[[[3].. P].- k] P]J

and

2 . [[[[ p] 2 pj 3 p4 ... p[q P]J
Y I* [Im 1 P1 2 ] P] [

Serfozo 116) showed that strong and weak lumpability can be

defined for MRP's in an analogous manner. In fact, the conditions for

strong and weak lumpability in MRP's are virtually indentical to the

conditions for Markov chains. If {Xn,T n I is a MRP on a finite state

space S - {1,2,3,...,m), with kernel Q(t)

(i.e. Qij(t) = P(Xn+1 = J, Tn+ I < tlX = i))

and F: S -+ {AI,A 2,..,A n  is a partition of the state space then

{X ,Tn I is said to be strongly lumpable to {F(Xn ), Tn if {F(X n), T I

is a MRP.

Again, let v be the steady state vector for the embedded Markov

chain (i.e. ffQ(-) = w), and let R, U be defined as before. Serfozo

shows that {X n,T n is strongly lumpable to {F(Xn), Tn if and only if



Q(t)U - U(fQ(t)U) for all t c [O.]J. Likewise if for all t, Q(t)1J

= U(UIQ(t)U) or nQ(t) = (TQ(t)U)II then {F(Xn), 'r ) is a MRP in steady11 n

state (i.e. weakly lumpable). Unfortunately, tile necessary conditions

for weak lumpability are again very complicated. iet r be the set of

all finite sequences of states in F(S) that end with Aj. If A1 , A1
J" I 1 2

.. ,Aik, A. and Ajl, A ,...,A q, Aj are two elements of 'j and

- q
(it t, ... tk ). (l't 8 "- q are two sequences of positive real

numbers then for (X n,T n ) to be weakly lumpable to {F(X n ),T n  it must be

true that for ach (l,.,n) and t c 10,'1,

E E QiP(t) y1 - 1: QE(t) Y1
2

i S B c A i r- S 8 r A

where

I iI 12 3 4 k

. 1 " | Q(t )i Q (t2) I Q(t.1)] ... Q(tkl)l Q(tk )J

aund

2I .I, )(s J1 Jg
-" "L" It 1 q(sil " Q~s) Qs .1) "'" I q )11

In tils paper a type of equivalence will be defined that includes

all ot tile vases discussed so far and has the added property that a

necessary and sufficient condition for two MRP's to he equivalent can be

written in a simple form.

3. Definitions and Notation

In the first four chapters, all MRIPs will have finite or count-

able state spaces. let S be a finite or countable subset of IR let

denote the Berel subsets of (0,'1 and let Q (S x 10,,,-) , the countable

c-artesian product of S x 10,-1 with Itself. Thus. u r 1) can be

represented by
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x I ( t) - t t I . I , o. t .

o-a lg |brai ott l) t thit makest' '| 11:  ii - 0, 1 ,. ,
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Markov- rctewa i proki'ss (MNRV') it' ther tis I si 0t W: x 0
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E ,...,X , t 1 ,...,' ( tl-

10 t At) .1 A it

Ctearl\ I , ' - As'(ii- .the

A t) t) it)
J~t At)

hl'pothse ts i s trut, lo t k , tit. "hiel .

At , 111

J mi m w-A A _

' - - m +M T

r. 5 .... .. . .. . .... . .. a
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S P(X m = Jm' T m< tm IX m-1 - Jm-l' Xm- 2 c Am-2'

... "Xo cO T' M-1 < t m-l'" ."",TT1 < tl1)

•P(X - "j-l o
rnX -i .rn-i' Xm2 cA 2 .*,XO A0 ,

T m-_1  t tm-l,'.',T 1 _t 1 )

"" P(Xm- Jm Tn< x =j Jl)

jmcA j l cAm-1

E E P(X0 -J 0 )QJI (tl).Q j (t m-)

J 0 cA0  Jm_2cAm_ 2

a Fa P(X0 - JON Joml(t I'Q m-lim (tm  
0

J 0 A0 jA rm A-

Let td be the semi algebra of sets of the form (X0 cA 0 ,-*.,Xnc An,

T1 < t l,..*,Tn < t n). For A c i, let P(A) = P(A). Since P is the

extension of P from t4to Sit is clear from the lemma that the kernel,

Q(t), and the initial distribution, y - {yj: c S) (where y =P(X0 =J))

completely specify the distribution of {X T n }, n = 0,1,2,---. For thisn i

reason, throughout this paper a MRP will be specified by its kernel and

initial distribution.

Definition 1.3.3. A MRP, (Xn, T , n - 0,1,2,..., with kernel

Q(t) and initial distribution y will be denoted (Q,y). A MRP with

kernel Q(t) and unspecified initial distribution will be denoted Q.

Occassionally, we will need to consider the individual sample

paths of the MRP (Q,y). This poses no problem since we can define



11 r

01.4 as before and construct P by extending ".

It S has only one element then Q - [O,-,', = and

Tkms, if (X , Tn), iv 0.,1,2,''' is a MRP with only one

state

r(.T , tI ,*-A-) P('' 0 - r(t) a.s.

Thus, (TT,.' } Is a sequence of t.t.d. nonnegative random variables

with common distribution r(t).

)e1inltion 1. 1.4. A MRP with one state will he called a renewal

process. Te kernel ot a renewal process Is a st'a|I ar |mi-(ion. r I.

Since there can he no confusion about the initial dist ribut ion o! .1 MR)'

with only one state. a renewal process, (T T,,-.. I with P(T t- r(t)

will be denoted r.

Let (Q.y) be a MRP. By renumbering the states, the kernel Q(t)

can always be put into the following canonical form. (see Qinlar 11)
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A2 (

A k(t)

(1here the A's ad B0 aret sqar. If lk~ B 1 aM i~.Qt

(1.3.2 Q.,t)

C 31(t) C32(t) C30) D3 1(tD3t)B3M

it t) .. k t
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where the columns of Qj(t) correspond to the rows of Qj+ 1 (t) (interpret

j+1 - I if j - n). If n-I (i.e. Q(t) - Q 1(t)), the MRP is called

aperiodic, otherwise it is periodic with period it.

Notation. U will always denote a column vector of l's.

Definition 1.3.5. If Q(t) is a kernel of a MRP then

Q(-) lim Q(t).

Since Q(t) is right continuous it is possible that for some 1,

Qj() < 1. Tis means that if X 1-' , there is a positive probabil-

ity that T n ,,. 'llis can be interpreted ts a process that terminates at
n

time T-T +T +... +Tn where n*(I) ",nf ITn+(,0 ,,,}. It is well

known ( inlar 131) that if Q is irreducible, P(n* -0 if Q(-)UL - 11

and P(n*- -)- if Q (-')U - U.

Definition 1.3.6. An irreducible MRP is said to be transient if

P(n*I ) -0 and presistent if P(n* - -) - 1. Note that a transient MRP

and a MRP with transient states are different concepts. For example.

if r(-) - I then

r (t)

is not a transient MRP even though every state is transient.

In this paper irreducible MRP's will be persistent unless stated

otherwise.

it is well known (Cinlar 13]) that if 0(-) is ani irreducible

matrix there is a unique positive eigenvector associated with the larg-

2t
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est eigenvalue 
of Q(.).

Definition 1.3.7. Let Q be an irreducible MRP. Let ii satisfy

.= and ,IM - I where A Is the largest positive elgenvllue of Q( )

n will be called the steady state vector for Q.

4. Elementary Facts about MRP's

Let (Q,y) be a MRP. We will need to work with equations involv-

ing terms like

(1) P(T1 < ti, T2 < t 2 ,'. 'T n < tnI X = J)

(2) P(T1  ti, T2 < t2,.*',Tn < tnIX 0 - 1)

(3) P(T1 < tit T2  t2,.''T n < tn)
1 2 t n - n

Fortunately, from lemma 1.3.1, these quantities can be written

down in an attractive form using the matrices {Q(t)}, t c [0,-I, and the

vector y.

(1') P(TI<tit T2 <t 2 "*'Tn<tn 9 Xn - J) - (YQ(t)Q(t2)"'Q(tn))J

(2') P(T <t 1 , T 2 <t 2 ,..,_ < tX 0 -i) - (o(tY)Q(t2)..Q(t )M)

(3') P(T <t 1, T2 <t 2 .. ,pTn tn) YQ(t)Q(t,). Q(tn )U,

Let Q(t) be the kernel of a finite state, irreducible, aperiodic

(possibly transient) MRP. By the Perron-Frobenitis Theorem (31 there Is

a unique largest elgenvalue of Q(-) which is positive, and that eigen-

value has an associated left and right elgenvector which have positive

elements. Let A be the eigenvalue, n the left eigenvector and 6 the

right elgenvector. Assume that r is normalized so that nU - I and 6 is

normalized so that ir - 1. Since X has multiplicity one, we can write

Q() - AJA - where

- 0 -{
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A it

jA- B A - C

Since A is the largest eigenvalue,

1 0

lir X-n jn 0

n-w

Thus,

lim A-nQn(_) - A(lim A-nJn )A-I
n-),w n--w

In the case where (Q,y) is persistent, X -1I, 8-U, and we get

the well known result that lim Qn(a) = Ur.
n-loo

If Q(-s) has period m (i.e. has form 1.3.2) then

Qm(W) U

where Q JQ QJ+I...QmQI...QJ_1. Each & is irreducible and has the same

maximal eigenvector X. Thus if wt and 8 are the normalized left and

right eigenvectors associated with X then
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lim A-nmQnm(a) 2

m m

Furthermore, if w - (wi 7r2 9 9 'm) and = (1i B2"'"'m T  then

m
r _ -(nm+k)Qnm+k() = si.

n- k-

Let Q have the general form (1.3.1) and assume now that

Q(-)U- U. Say A has period mi and let m be the least common multiple

of the mi's. Since each B is a transient sub MRP, we get

UW1

U1T2

0

m
lim .1 E Qnl~(_,)

m Uwn--l kl n

P 1 Ir P 12W2 ... Plnwn

P21 wl P2 2wT2 . P2nwn
* 0

Pdl1l Pd2Tr2 ... Pdnwn

where PJ is the probability of ending up in A] given the process starts

in the i transient state. (see [3]).



CHAPTER 11

EQUIVALENCE

1. E(Luivalence [

Associated with each MRP (Q.)) is a sequence of nonnegative (pos-

sibly extended valued) random variables {Ti,T.,... 1. The distribut ion

of (T1 ,T2,... 1 is given by
P(T l  < t1  'r., , t,,..T n  < tn  =yQ(tl)Q t.,). ..Q(tnU. -

Lemma 2.1.1. {TIT,,...1 is a sequence, ,of i.i.d. nonnegative

random variables (i.e. a renewal process) if and only if

%fn, tl,9t 2 , .• tn ,  "fQ(t )(t-,)  ..Q(tn)U= ('¢Q(tl)U)(YQ(t-l) ..- -()Q(t )U .

Proof. (,-&) If 'rr , ...- is a renewal process then

P(T 1  t T, < t ,''',T n  < tn ) -P(T < tl)P(T t ...'P(T t
2n • 1 1 1 11

But this says yQ(tI)Q(t,)- .Q(t n)U (yQ(t 1I)U) ('Q(t )). ()Q(t )

(4--) If YQ(t2)Q(tn) Q(tU)U (Q(t (Q(t 1)...Qttn)U)

then P(T1 < tI, T1 < t,,''',T n < t ) - P(T1 < t P(T1 -, t. )'-P(T 1 < t

This leads to the definition of equivalence between a MI' and

a renewal process.

Definition 2.1.1. Let (Q,y) be a MRP and let r be a renewal

process. (Q,y) is equivalent to r (written (QrI) - r) if

Vn, tl,t 2' tn , yQ(tM)Q(t2) .Q(tn)U - r(t )r(t2)"rt

17
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If for any initial distribution 6, (Q,O) - r then we write Q z r. If

there exists an initial distribution a, such that (Q,S) r then Q - r.

Clearly, if (Q,y) - r it must be true that r(t) yQ(t)U. The

main questions that will be answered in Chapters I and IIL are

(1) When is (Q,y) - r?

(2) For a given MRP Q, when is it impossible to find an initial

distribution y, and a renewal process r that yields (Q,y) - r?

(3) If (Q,y) - r and (Q,$)- f when must r =f?

(4) If (Q,y) - r and (Q,6) - r when must 6?

2. Conditions for Equivalence

In this section we give sufficient, necessary, and necessary and

sufficient conditions for (Q,y) - r.

Theorem 2.2.1. Let (Q,y) be a MRP and let r be a renewal pro-

cess. If Vt, yQ(t) - r(t)y then (Q,y) - r.

Proof. If Vt, yQ(t) - r(t)y then Vn, tn,t,,

yQ(t 1)Q(t2)...Q(tn)U - r(tl)YQ(t2)Q(t3 ) .. Q(tn)U

a r(tl)r(t2)YQ(t3).Q(tn)U

= r(tI)r(t2) ...r(tn)YU

a r(tI)r(t2) ".r(tn). L)

Theorem 2.2.2. IfVt, Q(t)U- Ur(t) then Qi r.

Proof. If Vt, Q(t)U- Ur(t) thenVn, t1, t2,'"tn

OQ(t 1)Q(t2)...Q(tn)U-aUr(t1)r(t2)..r(tn) r(tI)r(t 2)...r(tn)

for any. initial distribution B. o
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Theorem 2.2.1 and 2.2.2 are special cases of the sufficient con-

ditions for weak lumpability that Serfozo gives in [16]. Theorem 2.2.1

says that if y is a left eigenvector of Q(t) for every t then (Q,)) - T

where r(t) is the elgenvalue of Q(t) corresponding to the eigenvector '.

Theorem 2.2.2 is a special case of the necessary and sufficient condition

for strong lumpability in Serfozo [16]. Theorem 2.2.2 says that if the

row sums of the matrix Q(t) are the same for every t then Q ; r where

r(t) is the common value of the row sums. If the row sums are all the

same, the times between transitions do not depend on the state of the

process. Thus

P(T< t x ,X 2 ,..X 0 ,Tn, .,T) = P(T < t X )=P(T t)

so {TT 2,- .. ,Tn I is a renewal process. The intuitive justification of

theorem 2.2.1 is less obvious, but most interesting cases of equivalence

seem to be of that type. It will be shown in section four that Burke's

theorem is a corollary of theorem 2.2.1.

In everything that follows, the topology on IRn n < €o will be

the L1 topology (i.e. if XK 1 K = 1,2,''' then xk * x If Xk U x).

Let (Q,y) be an n state MRP (n < -) and let r be the renewal

process with distribution yQ(t)U. We define the following subsets of

Rn.

Definition 2.2.1.

(A) Let f lv cl : vQ(t)U = (vU)r(t), Vt).

(B) Let Yl' be the largest subset of e that is invariant under multi-

plication by Q(t) (i.e. Y'Q(t) C , Vt).
Y

(C) Let = {v : 1Rn v > 0, vU =11 . is the set of probability

vectors.

(D; Letk 7/ n
. .
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Lemma 2.2.3. Y" is well defined.

Proof. Let 44 be the class of all subsets of Ad that are

invarient under multiplication by each Q(t). Let {A , aL I be an

aa
itivreasing chain In cd. Since (- A %is invariant and is an uipper

bound for the chain, there is a maximal element of W (Zorn's Lemma).o

Lemma 2.2.4. jy and Y" are subspaces of Rn.
Y Y

Proof. Clearly {y,0}C. 4, sod has at least two elements.

Let B1. B2  4 ,. Then 61 Q(t)U = r(t)( 1 U) and $2Q(t)U = r(t)($ 2U).

Thus (aB +b6 2 )Q(t)U = r(t)(a6 +b62)U, so a +b6 C J. Thus j is
1 2 Yy

a subspace.

Let O be any invariant subset of 9 'and let * be the subspace

generated by 't Say w w w aiwi where w1 c(UV. But

k k
wQ(t) = 1) a1 a w' where w.' *since (J, is invariant.

Thus wQ(t) E * so is invariant. Since Y" is defined to be the

largest invariant set it must be a subspace. n

Lemma 2.2.5. Ivy is closed, convex and invariant under multi-

plication by Q(t)/r(t), Vt. If n < 0, X is compact.

Proof. Since 11 is a subspace, .11y is closed and convex. Let
Y 'V

c Xy. Since)( C J/, BQ(t) = r(t)$' where E' c 7' , and since

A B Q(t)U = (BU)r(t) = r(t). Thus 6'U= 1 so S' X  Since

yis closed and convex it is compact whenever n < -. u

Corollary 2.2.5.1. If Q(-) is irreducible and persistent, the

steady state vector 7 c

Proof. Say Q(-c) has period m. Then

I n+m-1

lim 1 'S-Q (o) = U7.n- 

_ok
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Thus,

V(3 EY( , 3(lim 1- 1 t

-l, n Q())

Since X( is closed and convex, ff c Xy. n

Consider the column vector Q(t)U. If Y, f2 EX Y then
r( t )U t

1 )U 2Q(t)U, Vt which says (0 1  2 ) is orthogonal to Q(t)U, Vt.

Lenma 2.2.6. If (Q,y) is an n state MRP (n < -) and there exist

times .. 1 such that {Q(tl )1, q(t2), ., )} is a linearlytie t~2, , n  .. 2 tn)

independent set thenJ1 Is tie subspace of IR generated by (y).

Y O'roof. If (3 r 4 then (C B- y) I q(t)U, Vt. ht onl,,I the z,'',,

vector can be orthogonal to n independent vectors in I 1. Thus, the only

elements of ed are the points on the line through Y and the origin. i
Y

We now show the importance of the set,-V.

Theo rem 2.2.7. (Q,y) - r if and only If y r , .

Proof. ( I) if (Q,y) r then Vn, tlt 2 ,'" ,t,

"YQ(t)Q(t2)".Q(tn)U = r(t )r(t2).. r(t). Say there exists tl,t 2 *-tk

such that YQ(t )Q(t 2  Q(t k 4 . Then there Is a t such that

YQ(tl)Q(t 2 ) "Q(tk)Q(t)U # (y?(tl)Q(t2) "Q(tk ))r(t). But this says

YQ(tl)Q(t 2 )*. -Q( tk)Q(t)U 0 r(tI)r(t 2 ) ... r(tk)r(t) which contradicts

(Q,y) - r. Thus Vk, tilt 2' t k we have yQ(tl)Q(t 2) Q(t k) k .

Iet . {y Iu {w: w - YQ(t )Q(t 2 ) ... Q(tn) for some n, t t2 .. , t "

OX C 4t and * is InvarIant under muIlt1p 1cat ion by Q(t) so 1v
'y

YYSince y v:*( ,Yi we have, V ,.

( 4 ) I f y tNfY then Vi, tilt 29',tn, YQ(t )9(t 2 ) 'Q(t
a r(tI)r(t2 )... r(t )y' where y' c, NY. Thus yQ(t )(t 2) ... Q(t)U

ft r(tI)r(t2)...r(t ) so (Qy) - r. Ii



Corollitgy 2.2.I.t. t, Is 41 1 irr'ducfhIe IR1' with t ady Nttatt,
v e c to r V, ti l r ( t ) (. t Ile I , r I t %%u d xl v ' t :It

IProol. (+"'b) It+y t:L~roli~arv 2. . i.. !1 (Q,1 .) r Io 'Oll
Clit.i (Q/. ,) . a .ail.+ti. flrhi : . b h ' x ....

. - r. 4,

N I 
0 /

1 1 7.

I (1/ A, it 0 * eln b (mly%(it
I I t,,/

! t~ * r t tt t *
0~ It t",t

(: Idim: (q n). .

Proof.

rRt)W YQW t-( it t

ityQt) -
- rt)x i t.

r ~ ) , t t t - t * t ( t - 'i ) , I t p'
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Ttus, Vn,l tilt 2, .t. , tQ(t M(t 2)'"Q(t)J - r(t )r(t,)... r(tn).

Clearly (Qy) - r also. Note that Q(t)IU 0 r(t) if t* < t - t**

nQ(t) 0 r(t)n if t < t** and yQ(t) 0 r(t)y if t - t** so the conditions

of theorem 2.2.1 and 2.2.2 are not satisfied, In this example

Theorem 2.2.1 and 2.2.2 give sufficient conditions for (Q ) r

which are relatively easy to use in practice. Theorem 2,2.7 gives a

necessary and sufticlent condition, but there is not yet any strilplt' way

to determi ne What . is Iu gent'era lI. 'lt' Iollowing theorems ),tI v ntet'

sary conditions for (Qf) - r which are also usefutl in pract ic. It

everything that follows, (t) " 0 It r(t) - o.
r( t)

Theorem 2.2.8. If (Q,,y) is a fiite state MRP and (Q.) r then

r(t) is an eigenvaluc of Q(t) for each t. If in addition Q(t) is irreduc-

Ible for each t. r(t) is the largest elgenvalue of Q(t).

Proof. If (Q, ) is a finite state MR)', X71' is compact and con-

vex and satisfies dy' Q(t) C r(t) d' Vt. Thus, by the Brouwe v Ixed

point theorem, for each t there is a )t such that t ) - r(t)) t .o S

r(t) Is an elgenvalue.

Say Q(t) is irreducible. Assume k is the largest ttgenvalut, tl

Q(t) (which must be positive) and \ , r(t). Thus the largest etgenval ue

of Q(t)/r(t) is strictly greater than one. This Implies that

yQ(t)/r(t)) i1 diverges. But It' (Qy) - r then )(Q(t)/r(t)) u - for all

n. so r(t) must be the largest etgenvalue.i

Example 2.2.2. If (Q, y) Is an Infinite state MRP and (Q,') -.

It may be that r(t) is not an eigenvalue of Q(t). For Instance, say

0 t t* and

.P.....
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0 if t < t

Q(t) - iif t < t

g g 0 t < t

1 1

By theorem 2.2.2. Q :z r where r(t) = if t < t < t

2 .- **

1 if t > t

but clearly r(t) is not an elgenvalue of Q(t) for t < t < t

Although it is unrealistic to expect to be able to check to see

whether r(t) is an eigenvalue of Q(t) for each t, theorem 2.2.8 says

that one can show that Q - r by merely finding a value of t where r(t) is

. . . ... . .... . .
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not an elgenvalue. The following theorem Is useful in the same way.

Theorem 2.2.9. If (Q,y) is an n state MIIP (n < o) and there

exists times tl,t2,...,t n such that {Q(tI)U,Q(t2)u,...,Q(tn)U) is a

linearly independent set then (Q,y) - r if and only if Vt, yQ(t)- r(t)N.

Proof. By lemma 2.2.6, is a one dimensional subspace so

either or Y - {0). By theorem 2.2.7, (Q,y) - r implies

y , sooty must consist of the single vector {y). Since. is

invariant under multiplication by Q(t)/r(t), we have yQ(t) = r(t)),. Vt.

The converse is a restatement of theorem 2.2.1. (1

Corollary 2.2.9.1. If Q is an n state irreducible MRr (n <'

with steady state vector r and there exists times tl,t 2 '',t 11 such that

{Q(tO)U,Q(t 2)u,...,Q(tn)U} is a linearly independent set then Q - r If

and only if (Q,) - r.

Proof. If Q is irreducible and (Q,y) r then (Q, -) r also.

But the theorem says that at most one initial distribution can yield a

renewal process. Thus either (Q,n) - r or Q 7L r. (i

3. A Rough Al_ Oithm for Detetinin Wether q r.

In general, a MRP (Q,y) is not equivalent to the renewal process

yQU. In fact, for a given MRP, Q, there is usually no initial distribu-

tion that yields a renewal process. In many queueing and other processes

there are random processes that can be easily characterized as MRP's. but

the interesting and important question is whether or not the random

process is a renewal process (see the examples in the next section).

Unless there Is a very good reason to believe that the process is

renewal It makes sense to first try to show that there Is no tIittial

distribution that yields a renewal process. If Q is irreducible (as It
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usually will be in practice) the simplest and most successful approach

is to use corollary 2.2.5.1 and the fact that if y1, y2 C X1 then

(Yl-Y2) I Q(t)U, Vt is a necessary condition for (Q,y) - r. Corollary

2.2.5.1 says that if Q is irreducible with steady state vector ff then

w c XY whenever X 0 o. SinceXY is invariant under multiplication

by Qt)/r(t) we must have (w - q(t) )Q(x)U-O , Vt, x. If Q 7. r thereby Qt)/~t)we mst ave ( t)

is often a simple argument showing one will not get zero for all values

of t and x (e.g. example 2.4.3 in the next section). Otherwise (as in

example 2.4.4) the multiplication has to be carried out. Of course it

is posible hat ( - t)

is possible that (nv - 7(t) )Q(x)UO, Vt, x even if (Q,w) (- r since

nQ(t)Q(x)U - r(t)r(x), Vt, x is not a sufficient condition for (Q,1) - r.

An example where this occurs would be very difficult to construct,

though, and it is very doubtful that one would ever come across one in

practice. If this multiplication appears to be difficult it may also be

possible to show that Q * r by showing that r(t) is not an eigenvalue of

Q(t) for some t. (see example 4.2.1)

If the tests to show that Q - r fail, there is every reason to

believe that Q - r. To verify that Q - r it makes sense to show that

nQ(t) - r(t)O. V t where w is the steady state vector or that 
Q(t)U -

Ur(t), Vt (theorems 2.2.1, 2.2.2). If Q has n states (n<-) and {Q(t)M

j - 1,2,...,n is a linearly independent set for some tl t2 ...,tn,

theorem 2.2.9 says that LY 
= * if y 0 w and nQ(t) - r(t), Vt becomes a

necessary (and sufficient) condition for Q - r. (see example 2.4.1).

4. Examples and Applications

Eale 2.4.1. Disney, Farrell and DeMorais [4] show that the

output of an M/Df1/1 queue in steady state is a renewal process. 
The

-7 77
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results obtained thus far allow for a quick verification of that fact.

The output from an M/D/i/i queue is a two state MRP with kernel

Q/0(t) Qll(t)

where Qij(t) is the probability that given a customer departs (at time

zero) leaving i customers in the queue, the next departure occurs before

time t, and when that customer leaves there are j customers left in the

queue.

If arrivals are Poisson with rate X and the service times are

deterministic with duration d then

Se-'d(le - X~t-d) (1-e-'d)(1-e(t-d)

Q(t) 1 eAd ld(L),

0 if t < d
where ld(t) -

1 if t > d.

The embedded Markov chain has transition probability matrix

e-Jd l-e-d

-Ad l-e - d

so the steady state vector is t = (e- d , l-e-'d). Performing the multi-

plication wQ(t) we get

nQ(t) - ((l-e-'t)e-'d, (l-e-t)(-e-d))ld(t) = (l-e- At)d(t.
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By theorem 2.2.1 we know (Q,r) r where r(t) (l-e )Id(t).

It is easily verified that for any t I  t2 the vectors Q(t1 )U

ald (t 2)I1 are linearly Independent. Thus, by theorem 2.2.9, (Q,y)- r

if and only if yQ(t) - r(t)y for each t. By the Perron-Frobenius

theorem we must have y - w. Thus n is the only initial distribution

that yields a renewal process.

Example 2.4.2. Burke's theorem [2] implies that the output from

a steady state M/M/1 queue is a Poisson process. The output process is

a MRP with kernel Q(t) where Qij (t) has the same interpretation as in the

first example except that in this case i and j range over all the non-

negative integers. If the arrival rate is A and the service rate is V,

the kernel has the form

qo (t )  ql ( t )  
q 2( t )  .•

f 0(t) fl(t) f2 (t)

Q(t) = f0 (t) fl(t) .

f 0 (t)

where

f (t) - As es jie ds and

qj(t) = Ae-afj(t-s)ds.

It is well known that the steady state vector for this MRP is
~2

(l-p)(l,p,p ,..), where p - X/p. Performing the multiplication

wQ(t) we get

mm m
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j

(wQ~t))P - l-p)- (qj(t) + Z fjk(t)Opk+l)
k-0

=(1-e- At ) (1 - P) - 1 (1- e- At )..

Thus, the steady state output is a renewal process with distribution

l-e-At (a Poisson process).

ExaMpie 2.4.3. Now consider the M/M/l/N queue (N < -). The

output from this queue is an N + 1 state M'RP with kernel

qo ( t )  ql1 tW q 2( t )  ." q N 1 (t )  E' q. i W

J-N

f 0(t) f l(t) f 2(t) ... f N-l(t) E fj Wt

J-N

QN(t) f0 (t) fl(t) fN-2(t) t f itW
J=N-1

fo0(t) . .• f N_3(t) E fjitW

J=N-2

,.. fo(t) j~.(t).

where q (t) and f (t) are as in the last example. The steady state

N I - N p)
vector is u p- (I~,.l

If the steady state output from the M/Mjl/N queue is a renewal

process then the renewal process would have to have distribution

-At N+I -lt
rNW)- NQN(t)U - 1 eN+I + N+l1-p 1-p

N N~l N +



30

N l NQ (x)

If IFN E (for some y) then so is __ for any x. Thus,
rNW

N N Q(x)
rt, N - N(X)

I -Ax

Clearly QNt)U has the form (a,b,b,..,b) and rN(x) < -e

NQN(X) i-P (l-e- X)(1,p,.,p N-IK(x)) whereAlso, since w N -N+l
1-p

r NW) l p N+  I -l~ N

K(x) = l- - a straight forward calculation yields

I-_ lx -p 1-P

(N "NQN(X)

r- N) N Q(t)U 0 0 for any t, x > 0. By corollary 2.2.5.1, the

output from an M/M/I/N queue is not a renewal process for any initial

distribution.

Example 2.4.4. Consider the following Jackson network.

p

There is a Poisson arrival stream with rate A, an exponential

server with rate V. and a Bernoulli switch that feeds a departing cus-

toer back to the end of the line with probability p. The input process

is defined to be the superposition of the arrival process and the feed-

back process. (see [5] for a complete discussion of this problem). The

Input process is a MRP with kernel Q(t) where
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0 if j I + I

t(e- As -qe Xt )qi i e ds if j-O, i>O,

Q i W e -X S , o x _ -( X + ) ( t -s ) ) + P siP O O i -J e -  s i f I < j ,
fA ( (l +i i)t +p/qi- i-j) if l< j_<i.je A+P(Ie (i-j):

e- t(l-e - t) if J=i+1.

Since the system is a Jackson network, the steady state queue

length probabilities embedded at inputs is known to be

AA A 2IT _ (I - -_ _L) ( 1 , ( q)2 "''..) .

Pq iq pq

If the input process were renewal it would have distribution

r(t) = nQ(t)U = 1 - e- t -- e-

U-A e -

and Vx,y, (n - o)Q(Y)U 0. But
r(x)

(W - v )Q( y ) _ r(x)-(l-e-X) x -) A- Y -X -y--- e- 1'y + Pe-(U+A)Y)

-r(x) r(x) VlI-A e -A p

Since r(x)- (l-e- ix ) < 0, the process cannot be renewal if for some y

p e- Ay - P e-1Y + pe-('+X)Y 0 0. By the linear independence ofli-A u-A

exponentials, this expression can only be zero if p = 0. Thus

if there is a positive probability of a customer feeding back, the

input process is not renewal. If p - 0, a direct calculation shows that

Q(t)U - (-e-At )U (as it obviously should be). By theorem 2.2.2 the

input process is a Poisson process in that case. The question of whether

or not the input process of this network is renewal was previously
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unresolved.

Exaple 2.4.5. Now consider the M/G/l queue with delayed feed-

back, where the delay mechanism is a ./M/1 queue.

p

A full discussion of this system can be found in Foley [7].

It is shown that if the departure process is renewal it must be Poisson

with rate A. The idea of equivalence yields an interesting corollary

to that fact.

Assume the G server has service time distribution g(t) where g

is differentiable at zero and g'(0) = p. The departure process is most

naturally represented by a MRP with state space

S - (0,1,2,...l x {0,1,2,-.-} since the future of the system is condi-

tionally independent of the past at a departure point given the length

of both queues.

Let y - {Yij: i,J - 0,1,2,'", lexicographically ordered) be a

distribution on S. Let Q(t) be the kernel of the MRP representing the

departure process.

Clearly Q(t) has the form
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QO0 (t) Q01 (t) Q02(t) Q03 (t)

Q10 (t) QII(t) Q1 2(t) Q1 3 (t)

Q2 0(t) Q21 (t) Q22 (t) Q23 (t) .

Q30(t) Q3 1(t) Q32(t) Q3 3(t)

where Qij(t) is the matrix Q~i (t), i',j' £ {0,1,2,°"} •

Although Q(t) cannot be easily written down, it is a simple

matter to verify that

Vql

Q'(O) = pqI

jiqI

A t
Say (Q,y) ~ r. We know that r(t) 1 - e , so by taking

derivatives the definition of equivalence yields

n n
n, yQ(O)U= A
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To justify the last step note that Q' (0) = r(t) since
t40 t

Q(O) = 0. Thus

yQ' (0) = lira-On ! lr r-i t)

t-*O t t-*O t - t

where yt E X . Likewise

yQ' (0)n = jim lrm .. rt 1)r(t2 ).t~~~ ~ 0 tnlO t l2.t Yt t2...t
n n-n n

where Ytlt2 t C X . Since lx' is closed,
tl~n

YQ' (0) n -= r' (0)n

where ' c f, so YQ'(O)nU r'(0) n .

Let y = (yoyiy 2,...) where yj = (YjO,'ylY 2 ,...). By the

form of Q' (0) we have

n
n = ( q )ny ,YQ'(O) =(0,0'*.,.0, (11q n' p y'*

so --U (!) n . This implies ynU = (_q)n(l- -- ). The conclusion is
E q q Piq

i=n

that if the departure process is renewal, the parginal queue length dis-

tribution at the G server must be geometric with parameter -

pq
Say the C server has a distribution g(t) that is not differenti-

able at zero. If the departure process is renewal we must have

y(Q(t) - Q(O))U = r(t) - r(O)
t t

-At
for all t > 0, and since r(t) - 1 - e we must have

urn Y(Q(t) -Q(O))U = .

ttO

If g(t) is not right-differentiable at zero the limit does not exist so
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the departure process cannot be renewal.

Example 2.4.6. ConsIder an M/M/i/N queue (N > 0) where the

arrival rate and service rate depend on the length of the queue. Let

An > 0 and p n > 0 be the arrival and service rate when the queue length

is n. Assume lrm sup --- < 1 -to assure a steady state. Let Q(t) be
n

the kernel of the MRP associated with the departure process. If N <

Q has N + I states and

p1

Q'(0) 2

Assume (Q,n) r for some r, where 71 is the steady state vector.

N

nQ' (0)U = r' (0) so r' (0) = En-1 ." But, for n > N, Q' (0) = 0 so

.1=l

O = nQ' ( 0 )n11 = r' () u1 . Thus, r'(0) = 0, which implies IT 0,

.= 1, 2
,',N. Since Q Is Irreducible, this Is impossible so we

conclude that the departure process can never be renewal.

If N = =' the situation changes slightly since Q'(0) n Is never

zero. First consider the case where p =  ,J = 1,2 . In this cask.

(Q, y) - r impl Les yQ' (0)nU = r'(O) n , Vn, which implies

,Y_ nr (0)(r(0O)) (1 - r' ()

It is easily verified that the steady state queue length distribution is

r, where
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0 1 
0

This Is not geometric unless A = A, ] = 0,1,2,*.. Thus the departure

process cannot be renewal unless A j is a constant (i.e. the M/M/l queue).

If we allow V to depend on j the equations yQ'(0) n U r'(0)n

yield

Since the steady state queue length distribution is

it is again impossible to have a renewal departure process unless A is

a constant (L.e. = r'(0)).

We cannot deduce from these equations that pj must also be con-

stant. In fact, by [13, theorem 31, any birth-death queue with a steady

state and X = A has a Poisson departure process with rate A. For

example, let X = A and say

jp, j = 0,1,2,''',N

j Np, *J > N.

This is precisely the M/M/N queue, which is known to have a Poisson

departure process with rate A when in steady state.

If we relax our assumption that the p 's and A 's be nonzero
n 1n

there are other classes of queues with renewal departures. If P - 0

the MRP is no longer irreducible since the queue length can never be less

than n once it is greater than n. Likewise, if A 0 the queue length
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cAnl ltver, e.xveed it onice it Is below it. Ani ivartint titieue lengt h

istribiut ioni need nolt be striCtly Positive.

Le t N '". Say (Q y) r for sou, ' y anld r . Le t 11 - illY11m
11

he an Iivar ianit d is t rtit in t hat sat( I -, if' (Q vs ) r. Sm. n .

if 1X % 0 we have it I 0 whtI ch I ill) it's 11 * wilch1 tmi It' I v 1 0;, .

co'nt rad Ict Itn. if \( - C) ither 110 - 1. Ill which vast' tht'rt. is Ito

tTArtut' atcessV., Or' Ii) - 0.

Say It ', 0 to r soitte j 1 0. '1henl 11, 0. so ii It 0

k -0, t1. 2. - - * - I .Itf A -0 t ht-t e is tio depart U rep rov s 11,0V8 so A'

Ift we a I ski had X - 0 we woil d have ii tk 0 tor some kIt wh ichi I nil, I I v'

i ;a conlt ad icat ion)I.

'Flt'on v emanig posslb lilttv Is tha toroe

ii (t).t), ' I . . 0), i 0, 1, 1+ N' (). A ' I 0. \ - 0 (.ill other ti's

and V's arirh rarv). lt this vase tilt tileuie lngth is always .1 at tt' a1

dt'pa rttire anld thle dplea rttore p roess I-. renelwal withi di4tvilit ionl

Sav N mi* ad stipplose4 (Q. v~ whetl-v it 1.4 an itivitii anlt tit st Himn

t kil. Aga Iit , If p 0 andl it 0 thell n k - 0 . It it .li kevwAse viI

in- 0 anld \ l1 0 t hel ti k - 0, k tit + I . The argumnilts giveni tolt-

N ' ' how that thle departtire, process4 ot'no t be voilowax i \ ti 0

it il 0. ti it , 0 it 0 tanless n - il + I .

TIhim t he on Iv o thelr way theret canjj lit' 3 1'enleWi 1 d.tIM1111rt- reT-CVW-

14 as follows. Say I11, p i t4 A t A it - 0. k - l,.. in this
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n A(t) B(t)

Q(t) 0

where Q is irreducible. In fact Q(t) is the kernel of the MRP for the

departure process from an M/MI1 queue with k = n+k' k-l = 'nk-l'

k = 1,2,". Let ir be the steady state vector for Q. If (Q,r) ' r then

(Q,n) - r where ir = (0, ).

5. Equivalence as a Homomorphism.

Let (Q,y) be a MRP and let r(t) = yQ(t)U. Associated with each

t C 10,I ] is a matrix Q(t). Let Q be the IR-algebra of matrices gen-

erated by {Q(t)}, t c [0,o]. For each probability vector 8 we have a

map F: Q IR where

F8 (A) = OAU.

A necessary and sufficient condition for equivalence can now be

written in a very simple form.

Theorem 2.5.1. (Q,y) - r if and only if F is a homomorphism.Y

Proof. (m-) If (Q,y) - r then

Vnn,t 1 t2,...tn, yQ(tl)Q(t2).Q(tn)U = r(t1)r(t2).. r(t n).

Also, if A1, A2 c Q then y(A 1 +A 2 )U = YAIU+yA2 U os F is a

homomorphism.

( ) If F is a homomorphism then Vn,t,,t 21-t nt r



39

YQ(tl)Q(t2)...Q(t n)U- (YQ(tl)U)(rQ(t2 )U)... (YQ(tn)U) - r(t1)r(t2)...r(tn),

so (Q.y) -, r. -

The maps {F also give an alternate characterization of the set

when Q is an irreducible MRP with steady state vector n.

Theorem 2.5.2. 0 c if and only if F is a homomorphism.

Proof. () If 8 C d then (Q,B) - r where r(t) = 8Q(t)U so

F is a homomorphism by theorem 2.5.1.
8Q(X1 )Q(x2) • • Q(x)

(4==) Let Yf {y: Y r(xl)r(x2)...r(Xm) for somexx X.x}
r-6x1)r5r(x x) 1--M 2'

If y CY then F Yis a homomorphism sinceY

yQ(x1)Q(x2) ... Q(XM)
YQ(tl)Q(t2)'"Q(tn)U r(xl)r(x2 ) ..r(xm) Qt 1)Q(t 2 )"'Q(t)U

r(x1)r(x2). . r(xm)r( t1)r(t2) . ..r(t )
r(x)r(x2).. r(xm

Lr(t 1)r(t 2) ... r(t n).

Furthermore, F. . F . Clearly if y c , Fy = F and if y is any

linear combination of elements in Y then F = F8 . Thus F = F

so 8 C 6 -

6. Collapsibility.

Let (Qiw) be a k state MRP (k < 00) and let (AI, A2 ,...,A, (m<k)

be a partition of the states of (Qr). Let H, U be as defined by (1.2.1)

and (1.2.2).

Q(t)U is an m x m matrix whose (i,j) element is

PW(X 1 c Ail T1 < tj X0 c AI). Say F is the function that maps the state

space of (Qw) to (A1 A2,...,Am). Serfozo (16] shows that if {F(Xn),T n }

is a iRP, its kernel is nQ(t)J.
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The definition of equivalence between a MRP and a renewal process

has a natural generalization to collapsibility between two MRP's.

Definition 2.6.1. Let (Q,r) be a MRP with state space {1,2,...,k)

(k < -) and let Y be an m state MRP (m < k). Let

F: (1,2,...,k) {A1,A 2,..,Am ) be a partition of the states of (Q,n).

We say (Qr) is collapsible to Y via the partition F, written (Q,T) F y.

if

Vn,tlt 2 ..*, t, Q(t 1 )Q(t 2 ).. .Q(tn)1 = Y(tl)Y(t 2 ).. Y(t).

If F is clear from the context we will write (Q,n) - Y. Note that the

initial distribution of Y depends only on w and F; namely y = vU.

Lemma 2.6.1. If wQ(-) = w and (Q,n) Y then yY(-) - y where

Proof. Since

0 if j F (i)

iJ= if J -l(i),

kcF (i)

we have yY(-o) yHQ(-)U - IQ(o)j wQ(co). - i y.o

In the case where Y has one state (a renewal process) we showed

that collapsibility is the same as weak lumpability. If (Q,w) is

(Xn, T n  and (Yy) is (Z n Sn ) (where y - iJU), then definition 2.6.1 says

that for each i, j c (1,2,...,m) and Vn,t1 ,t2,..,t n,

(2.6.1) P (XnEAj ,T , ",T 1 
< t, XoAi)= P(ZfiS Sn' ,',S 1tIZ 0 ").

For weak lumpability between {X n T I and {Z , S ) we would needn n n n

that for each i, j c (1,2,''.,m) and Vn,tl,t 2 ,"' ,t n, and

ilt2'-9n 1inl {1,2,''',m),
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(2.6.2) P (XnCAj,x CAi ,..,XlcAi T < t, ...,T1 < tlIXocAi)
n-i 1

- P(Zn=JZ nl=n,',Zlil S<t n, ',S <tIZ O i).

It seems inconceivable that every {Xn , T n and {Zn , Sn ) that

satisfy (2.6.1) would also satisfy (2.6.2) but all attempts to find a

counterexample have failed so far. Clearly weak lumpability implies

collapsibility, though.

Since the definition of collapsibility between two MRP's is

analogous to the definition of equivalence between a MRP and a renewal

process one might suspect that the conditions for collapsibility would

be similar. First of all, any sufficient condition for weak lumpability

will also be a sufficient condition for collapsibility. Thus we haxq

Theorem 2.6.2. If nQ(t) - Y(t), Vt then (Q,y) E Y for any y

that satisfies Y = Hik whenever k c Ai.

J 
AV

Theorem 2.6.3. If Q(t)Q - UY(t), Vt then (Q,y) F Y for any y.

Theorems 2.6.2 and 2.6.3 can be proved the same way theorems 2.2.1 and

2.2.2 were proved. They can also be found in Serfozo [151.

Let (Q,H) be a k state MR, let Y be an m state MRP and let F be

a map from the state space of (Q,ir) to the state space of Y. Letel4 be

the set of all m x k matrices, M, with Mij > 0 and MP al where U is

the summing matrix induced by F and a is a scalar. In other words, M

must have the form

... vix

X-...X
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and each row sum must be the same. Let (m (-? t):F P. Q(t) =- (I )Y (t), Vt)

and let F be the largest subset of Ai that satisfies
FF

l'FQ(t)C Y(t) Y Vt. Let * (Mc Y :H - 1). These sets areF. F' F F -

analogous to the sets defined in section 2 and not too surprisingly we

have

Theorem 2.6.4. (Q,r) F Y if and only if n r

Proof. (=-) If n j then 111 t". Thus, for some
FX

tilt 2''',tn, HQ(t)Qt2).. Q(tn) A d. But this says that for some t

TQ(t Mqt2)-".Q(tn)Q(t)o 0 HQ(t Mqt2)'"..Q(tn)Yt

= ¥(t 1) '(t2) .. • Y(tn)y(t).

This contradicts (Q,w) F Y.

(em) If 11 C JXF then Vn, tl,t29-1.tn ,

ftQ(t M(t2)...Q(t ) Y Y(t )Y(t2) -. Y(t) A!

so

TQ(t 1)Q(t2) "Q(tn)U - Y(t1)Y(t2)' .Y(tn).()

Another result that carries over easily from the renewal case is

that collapsibility is identical to a certain algebra homomorphism. Let

Q be the ring generated by {Q(t)), t c [0,o) and let V he the ring

generated by (Y(t)}, t c [0,as]. Let tt,; O7 V be . F(A) - IIAU.

Theorem 2.6.5. (Q,w) F Y if and only if 4,nF is a homomorphism.

The proof here is identical to the proof in the renewal case.

One result that has no counterpart in the renewal case is

Theorem 2.6.6. Let (Qw), Y and D be k, m and t state MRP's

F(k > m > t). If (Q,w) Y and (Yy) D (where y - WU) then (Q.0 ("-) D

Proof. Let nI and r be the matrices induced by the vectors r and

y and the partitions F and G. Let HI be the matrix induced b, r and the

partition G*F. First of all, a direct calculation yields rn n f. Also
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U P- "CoF where XF' G and -GoF are the sunning matrices associated

with the partitions F, G and GoF. Since (Q,n) Z Y, Vn,tt 2,...,t,

fQ(tl)Q(t2)"-Q(tn) F = Y(tl)Y(t 2 )'"Y(tn). Also, since (Y,y) D.

rY(t )y(t2). .Y(tn) IG - D(t)D(t2) .D(tn). Thus

rIQ(tl)Q(t 2).. 'Q(tn)VA - D(t1 (t2)".D(tn). Thus

i(tl)(tt 2 ) .Q(tn)14gF - DD(t 2).. .D(tn), so (QZ) F D.o

7. Equivalence Between two MRP's.

In section 6, equivalence between a MRP and a renewal process

was generalized to collapsibility between two MRP's. The results in

that section will prove to be useful in the next two chapters. In view

of (2.6.1) and (2.6.2), though, it seems that the real meaning of

(Q,y) Z Y is cloudy. A more intuitively appealing generalization of

equivalence between a MRP and a renewal process is given by

Definition 2.7.1. Let (Q,y) and (Y,B) be two MRP's. We say

(Q,y) is equivalent to (Y,6) (written (Q,y) ' (Y,)) if

Vn, tl,t 2,*''t n  YQ(tl)Q(t2) ...Q(tn )U O Y(t1YMt 2 )..--Y(tn )V.

Let (Q,y) be X n, T n } and let (Y,) be {Zn, S n}. If (Q,y)- (Y)

then the distribution of {T1'T2,"' is the same as the distribution of

{SIS 2 ,.-.). Strong lumpability, weak lumpability and collapsibility

are not really equivalence relations between MRP's since the relation is

always from the bigger one to the smaller one. Equivalence is an

equivalence relation between MRP's. It is also the condition that must

be satisfied by two random processes if one is to be substituted for the

other in (say) a queueing system. Furthermore, it is a weaker condition

than strong lumpability, weak lumpability and collapsibility.
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Theorem 2.7.1. Let n and X be given by (1.2.1) and (1.2.2). If

(Qw) F Y then (Q,w) - (Y,O) where 8 " wV.

Proof. (Qw) F Y implies

Vn,tl,t2,.' ,t, IHQ(tl)Q(t 2 )"Q(tn)U - Y(tI)Y(t 2). "'Y(tn).

If 0 - wy then Bl - wjjl - w, so

(tl)Q(t2)... Q(tn)U - WnQ(tl)Q(t 2) ... Q(tn)U

- 1O¥(t )¥(t,) ..•.y (tn)IT.

Thus. (Q. w) (Y. ). 11



CHAPTER III

EQUIVALENCE BETWEEN CANONICAL MRP'S

I. The Core

Theorem 2.2.7 states that (Q,y) - r if and only if I c.. .where

A is the largest set of probability vectors satisfying

)VYQ(t) C r(t),.7' y, Vt and t6Q(t)U -yQ(t)U, V c, NY

By Corollary 2.2.5.1, if Q is irreducible and (Qy) - r then

(Qit) r where v is the steady state vector for Q. Thus, if (Q,)) - r

and (Q.6) r then it( - e74 and eIT1 - eA so ej' - . This leads

to the following definition.

Definition 3.1.1. Let Q be an irreducible RP with steady state

vector w. The core of Q is the set ex' . It will be denoted ex .
11"

If e71' ,N then Q is not equivalent to any renewal process. For

any probability vector ). either , -
=  or e4-

Theorem 3.1. 1. If Q is irreducible with steady state r and

Q -. r then r(t) - wQ(t)U.

Proof. Q - r implies that for some 1, (Q.y) - r. Since Q is

irreducible I r ex so YQ(t)U - wQ(t)11. Vt. Thus r(t) - IvQ(t)1.l

In general it is very difficult to determine what p' is unless

it can be shown to be empty or contain a single vector. Clearly, iffx

consists of a single vector, it must be the steady state vector. if

Q - r where Q is a finite state, irreducible MRP, one can find a set

that must be inside the core.

45
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Theorem 3.1.2. Let Q be a finite and irreducible and assume

Q - r. Let FC M0,-1 be the set {t: Q(t) is irreducible). For

each t c tf let yt be the unique probability vector that satisfies

ytQ(t) - r(t)y t and let W be the linear subspace generated by {yt},

t c . Thenw nMl C

Proof. By Lemma 2.2.5, X is convex, compact and invariant under

multiplication by Q(t)/r(t). Thus there exists yt cXthat satisfies

YtQ(t)/r(t) - yt by the Brouwer Fixed Point Theorem. Thus, if 8 c

then OQ(t)U = (BU)r(t) since 8 is a linear combination of elements of X,

and OQ(t)/r(t) c Wsince it too is a linear combination of elements of

Thus (w le)Q(t)/r(t) C (~ ) which implies that ntc.

Example 3.1.1. We continue example 2.2.1. Recall

00 0 0 O0

0 0 if t < t

0 0 0

1 -1 1

1 1 i * **

if t <t < t

Q(t) 2

1 1 1(6 126

1 1 **
1 if t>t ,

i
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0 if t < t*

(j, 3ij), i ( r(t) = 1 if t < <**

i1 if t > t

Note that yQ(t) = r(t)y if t < t < t and n is the steady state vector.

Since Q - r we know that both y and n must be in X (this was also proven

in example 2.2.1).

Consider the vector 8= (1,0,0), which is not a linear combination

5 * **of y and w. Since OQ(t)U = T when t < t < t , 8 E . By theorem

3.1.2, the intersection of the line through y and ?t and Y is in f.

Since 8 , , 5 cannot be two dimensional. Thus Xis the line

through y and n on
(0,0,1)

Y

(1,0,0) (0,1,0)

If Q is not irreducible there is no unique steady state vector

so one must be careful when talking about equivalence and about the core.

2. Reducible MRP's

The main problem with reducible MRP's is that they can be

equivalent to different renewal processes depending on the initial
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distribution. For example, say (QIpI)- r1 and (Q2,ir2) 2 r 2. Iff

w- (cr'0o, Wr' - (O'ir2) and

Ql(t)

Q(t)
Q2(t)

then (Q,7))- r1 and (Q,w') r 2 .

Another problem with reducible MRP's is that in general they

contain some transient components. Recall the canonical form of a kernel

(1.3.1). The states corresponding to the A i(t)'s are irreducible sets

of recurrent states and the states corresponding to the Bi(t)'s are

irreducible sets of transient states. Let ,'be the set of states

corresponding to the Bi's. Let Q(t) have the form (1.3.1).

Theorem 3.2.1. If (Q,y) r then there is a probability vector

y' such that y = 0, Vj e ' and (Q,y') r.

Proof. Globally, Q(-) has the form

(3.2.1) A

C B

where A and B are square matrices, and Qn(a) has the form

An

Cn Bn
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Sinice.1 is lt1 aranlsient MRP, Bi I 0 OIIItWi.IIandI Im C iN Well

clef I ed. Tu

tim (yON&)) -0 VJ i l

By theorem 2. 2. 7 ~ 1(111 1) es I imXI -i Si w I liv

closed, von~vex aiid inivarian t uder mulitip i cat ioni liv 00-) we have

V - In

k-ii

where m is the period of' the states tin A (i.e. the leit commion miulti pie

ot the periods tit the A 's). 'Y 4Nat iNIteNt y 0, V.1 r 4, anid

Co rolIIi lrv 1. -. 1.. Let Qhave t he I ormn 1. 1. 1 whevre A Ils k x It

It Qy r thenl (Qy -) where y' tq made lip kit tilt first k viltries

ProofI From theit theorem * (Q. Y V) 1 vm ti Ia I I vs rI *tWhere

l IIt ty I y(t N~tt.*t0( .. Q* (t r(Q,'y ) (

ltrovess Is~ contcernied, t rnlenvt componlenit aret, ie IeVaiIt . we w i II

return to MIAP's wi th t v:uieict. compon,1enit Niiadilrn ots

sect ionl S.

A getieral MRI' withouit t railsienit componiet asa a kerniel olt thet

form



50

2(t)

(3.2.2) Q(t) .. ...

•Q (

Qm(t )

where Qj(o) is an irreducible n x n stochastic matrix.

Theorem 3.2.2. Let Y - (ply1, P2Y2' '. , m' frm ) where Y has n
elements, y jU - 1, Vjand P, = 1. Let p = (plP2,...,pm and

r l(t)a

r 2(t)

Y(t) - -

r M(t)

Then (Q,y) - Y if and only if (Qjy) j r for each J.

Proof. (O.-) If (QJY) r j then the core, NJ of Q contains

Y J* Let

Y

and let



51

Since r E .i, J'j¢(t) C Y(t)f , Vt and Y(t) = rQ(t)U, we have (Q,y) ' Y.

Note that the starting vector for Y is y = p.

(') First, pj > 0, VJ since if not rjCt) = 0, Vt. Thus,

since (Q,y) - Y there must be an invariant set of matrices exwith

r E S such that XQ(t)C Y(t), , Vt. Let k be the set of vectors

that correspond to the j th row of the matrices in X. Thus

Q % (t) C r (t),jX , Vt. Since y c this implies (Qj,y 1) rj .(

The main result of this section says that if a reducible MRP

is equivalent to a renewal process, then every component (with positive

initial probability) must be equivalent to that same renewal process.

Theorem 3.2.3. Let Q(t) have the form (3.2.2) and let ni be
I

the unique vector satisfying irQ 1(-) = 7, jU - 1. Let
m

= (Pl1 P2't29'-'pm m) where ]  1. Then (Q,n) r if and only

J=l
if for each j either (Qj, 1 )- - r or pj 0.

Proof. (-,) Let JlJ2'..'Jk be the set 1J: pj > 01. Clearly,

(Q,n) Y where

O.(t)

Q.(t)
Q 2W

Y (t) -------

Q (t)
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By theorem 3.2.2, (Y,nw) Z where iw - (pjltJ 'pj ,. pjktJ) and
1r) 1

r(t)

r(t)

r(t)

Since Z is strongly lumpable to r we have (Z, p') - r where

P'= (P l'P J2""P k). Thus, (Q,n) - Y, (Y,r') Z and (Z,p') r.

By theorem 2.7.6 we have (Q,w) - r.

( -==) If (Q,n) - r then Vn, tl,t 2,-.-,tn,

WQ(t 1)Q(t2) ...Q(tn)U - r(t1)r(t2 )... r(tn). By the form of Q(t),

WQ(t l)Q(t2)'".Q(tn)U - pj"jQJ(tl)Qj(t2)'".Qj(tn)U.

For any N,

N 2nQ(tl) t2)... Q(tn)Q (c)Q(tl)Q(t2 ) .. Q(tn)U = (r(t1)r(t2 ) .. r(tn))

Thus, for any N,

m

j(tAj(t2'"Q (tn)N()Qj(t)Aj(t2) "Qj(tn)U

= (r(t1)r(t2)...r(tn)

Say Q4 (-) is periodic with period kj. We have for any N,
N+k-l

(r(t1)r(t2) 'r(t n )

Thus,
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N+kiI Q (t A (t E 1 Q'( )]Qj(tl)Qj(t2) ... Qj (t n)tif

J-1 Ln- i 1 -N

- (r(tI)r(t 2)...r(t)) 2

Let v Q (t 1 )Qj(t 2 )' Q (t) a jy where -y U - 1. Since

N+k -1

r J
kH- -

N+kj-1

(tLiQ-- Q k Qj t I A t 2) .Q(t)UJ'f j

Thus,

_Pjaj (r(t1 )r(t2 )... r(tn))2

and

mp aj r(t 1)r(t2).r(tn

so

pja - jaI - 0.

This term says that the variance of some random variables that

take values aj with probability p Is zero. The only way this can be

is if there is some common value, a, such that for each j either a j a

or P j 0.

Thus r(t )r(t2 ) ... r(t) - pja - a. This says that if Pj > 0

J.1

then w Q (tl)Q(t 2)"'Q*(tn)U = r(t1 )r(t2) ...r(tn). Since n~t1,t 2,'...t n

were arbitrary, we have (Qjrj) - r. n
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Theorem 3.2.3 is not the strongest result imaginable on this

topic. A stronger result would be

Conjecture 3.2.1. If Q has form (3.2.2) them (Q,Y) - r

(where Y - (plyl, P2y2,"',Pnyn)) if and only if for each j either

(Wify i -r or pj - 0.

Although (Qj,y) r or pj . 0 for all j clearly implies

(Qy) - r, the idea behind the proof of theorem 3.2.3 cannot be used to

prove the converse. The problem is that in general we cannot force the

distribution on the state space back to y once it leaves it. We can

force it back to w by looking far enough into the future. We can say

something slightly stronger than theorem 3.2.3 though.

Corollary 3.2.3.1. If (Q,y) - r then for each j either

(QnJ) - r or p I 0.

Proof. Since (Q,y) - r, (Q,n) - r where n - lim y Q(00)
n-*mo

and m is the period of Q. The result follows from the theorem. ii

The theorems in this section can be reformulnted in an enlighten-

ing way if we extend the notion of a core to reducible MRP's.

Definition 3.2.1. A settV will be called a core of a MRP. Q,

if there is some renewal process r such that XQ(t)C r(tM, Vt, andX

is the largest set with that property.

If Q is irreducible the core is unique. If Q is not irreducible

there may be several cores. For example, say

Q(t)
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where Q1 (t) and Q2( ) are irreducible and there exist cores X1 and -V2

such that *Q 1(t) C rl(t) W X and JIf2Q2 (t) C r2 (t) V2, Vt (i.e.

Ql r 1 and Q2 - r2)" Then ( i,0) and (, ,2 ) are both cores of Q

yielding different renewal processes.

Theorem 3.2.4. If XI and X2 are different cores of Q then

X .. 2 i

Proof. Say XIQ(t)U - rl(t) and X 2Q(t)U - r2 (t) where r1 'r2.

Let y ( (lYlp 2Y2, ... ,PY) ex. and B (q1B1,q20 2 ,
' ' ,qnB) C

Say (p q )(B yj) # 0 for some J. By theorem 3.2.3 this means
(Qjf) - r1 and (Qin) - r 2 which is impossible. Thus either p B - 0

or q yj - 0 (or both), soy. 80 O. n

Let

Ql(t)

Q2(t)

Q(t)

n t)

and suppose X is a core of Q yielding the renewal process r. Let

J C {1,2,-,n) be the set of indices such that there exists some

y EX with p yj 0 0 (y - (PlY1, P2y2...pnyn)). By corollary 3.2.3.1.

Qj-r, Vj £ J. Let . (0,0,11, , 0.0,.0)where W f

(the core of Q is in the Jth spot. Let be the convex hull

of U . In other words t. is all vectors of the form
JCi
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n

(PlYlP2Y2,...,PnYn) where EPj . 1. pj - 0 if j J J, and yj ECX if
i-i

j c J. Clearly 
Jcx .

Conpj.cture 3.2.2. t  = k•

Theorem 3.2.5. Conjecture 3.2.2 is true if and only if conjec-

ture 3.2.1 is true.

Proof. (-) Say X and (Q,y) , r where

Y - (plYl 2Y2 ,"' ,pn Yn). Then y - E pj where y 1 17 . Thus
Jj j1

J CJ

(QJY) " r whenever Pj @ 0.

(4.--) If (Q,y) r implies (Qj,yj) r whenever Pj 0 then

'rj C S whenever p 0. Thus any 'f ct is of the form j J
where yj c CA . C1 "-

3. Periodic MRP's

In this section we consider MRP's whose states are arranged so

that the kernel has the form

Ql(t)

Q2(t)

(3.3.1) Q(t) .. .

%(t)-

where Qt) is nj x nj+ 1 (interpret j + 1 as I if j = m), 1 < n<

1< n1 ( *, J-l,2,...,m, and QW(t) is irreducible.
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Such a MRP is said to have period m.

Since a MRP of the form (3.3.1) is irreducible, by theorem

3.1.1 there is a unique core It , so if (Q,y) , r then r(t) - iQ(t)U

where w is the steady state vector.

Let Q(t) have the form (3.3.1) and let w be the steady state

vector for Q. Let -i =( l,52,'", w ) where i has n elements and

it U - 1. It might seem possible for Q - r even if w Qi(t)U depends on

J. Since one cannot be sure which phase the process starts in, r(t)

could be an average of the random processes arising from each phase. It

turns out this cannot occur.

Theorem 3.3.1. If Q - r then wrQ (t)U = r(t), Vi.

Proof. If Q ~ r then Vn, tlt 21-.tn9

71Q(t 1)Q(t2) ...Q(ti )U r(t1)r(t2).- r(tn). In particular,

WQm- ( )Q(tl)Qm (-)Q(t2). .Qm-l ()Q(tn)u U r(t1)r(t2 )... r(tn). Thus

(Q,) r where Q(t) = Q-(-)Q(t). But

Ql(t)

Q2
(t)

Q(t)

where Q (t) - Q )+ '(-)Q I (
1(

)) ' .( _)QI(c).. Q 2()Q
I (t).

By theorem 3.2.3 we must have (Qj, 1 ) - r, VJ. Thus
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irQ(t)U - r(t), VJ. Since wjQj() - n we have

1 jQJ(t)U - NjriQJl(t)U , so 'rJQj(t)U r(t), VJ. o

The following results will be useful in the next chapter.

Theorem 3.3.2. Let Q(t) have the form (3.3.1) and Y(t) have the

form

r(t)

Y(t) -

r (t)

r (t)

1m

Let vr-- (ir1171 2 • i) be the steady state vector for Q. If
m 1'2' m

7rjQj(t) - rj(t)irj+l, Vj then (Q,n) - Y.

Proof. We have RQ(t) Y(t)H where

so the result follows from theorem 2.7.2. a

Theorem 3.3.3. (Q,y) - Y if and only if there are sets
nI1 n 2  n

l ' tX 2 ' ' m of probability vectors in] O, lR ,Rm

respectively such that XkQ (t)C rj(t)'j+I, J 
= 1,2,.,-9, Vt, and

Yj •
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Proof. ( ) Let

Thus,

XQ (t) -

m"m(t

and

Y -) r Mlt) jm

rT

Since X jQj(t) C r (t) xi'+ 1 9 Vj we have XQ(t) CY(t)XY SO

(Q,Y) - Y.

(f) Since (Q,Y) - Y there is a set of matrices I satisfying

gQ(t) C Y(t),!, Vt. Let ,j be the set of vectors corresponding to

the j th row of e Let

which is in . Thus,
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Y ¥Ql (t).

rQ(t) -m-iQM-it)

Ym(t)

Since JVQ(t) C Y(t) there is a r' c

Y1

such that rQ(t) = Y(t)r'. But

Y(t)r' l) Y

Thus for any y c X, there is a yj+l c such that

YJQJ(t) - r itMyi+I .  This implies XJQJ(t) C rj(t) Xi+12 Vi, Vt.

4. MRP's with transient states.

Let

(3.4.1) Q(t) - A(t) 0

C(t) B(t)
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where A(t) and B(t) are square and irreducible and C(t) 0 0. In section

2 it was shown that Q r if and only if A - r so in the context of that

section, the transient components could be ignored. If we examine the

situation a little more closely it becomes apparent that MRP's with

transient components can exibit some interesting properties of their own.

Let (Q,y) be a MRP where Q(t) has the form (3.4.1). Let

= (YlY2) where y1 corresponds to A (the recurrent components) and Y2

corresponds to B (the transient components). Clearly (BY 2) is a tran-

sient MRP. When equivalence between a MRP and a renewal process was de-

fined there was nothing preventing the MRP from being transient. Thus,

(B,Y2) - r if

Vn,tl~t2,''n9,t, Y2B(tI)B(t2 ) ''B(tn)U = r(t1 )r(t2 ) ...r(tn).

Lemma 3.4.1. If (B,y2) is a transient MRP and (B,y2) ~ r then

(1) r is a transient renewal process (i.e. r(-) < 1).

(2) The lifetime of (B,Y2) has the same distribution as the lifetime of

r.

Proof. (1) By Theorem 2.2.8, r(-) is the largest eigenvalue of

B() which is strictly less than one since B is transient.

(2) The lifetime of a MRP is the random variable T1 + T2+' '+Tn*

where n*() - inf {T () -}. For the renewal process r, the
n n+l

distribution of n* is given by P(n* -k) = r( )k (1 -r(-)). For the MRP

(B,Y2), the distribution of n* is given by P(n*-k) 
= y2B()k (- B())U.

Since (B,y2) - r, y2B(-) k(I-B(-))U - r(-) k(l-r(-)), so n* has the same

distribution for both processes. Furthermore, in both cases the

distribution of the lifetime, L(t), is given by the convolution of r(t)

with itself n* times (i.e. L(t) u (l-r(-)) r(-)kr(k) (t) where r(k) (t)
k I
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is the k-fold convolution of r(t) with itself). o

One of the interesting properties that MRP's with transient

states can exibit is equivalence to a delayed renewal process.

Definition 3.4.1. Let {So,SV...) be a random process. If

{S,$2,.'} is a renewal process and S is independent of $1,$ 2,...

then {SoS ,...} is called a delayed renewal process. If P(S0 <t) =g(t)

and P(Sn <t) f r(t), n f 1,2,-.-, the delayed renewal process is denoted

(g,r).

Definition 3.4.2. Let (Q,y) be a MRP on (fl, 4,P). If there is

a stopping time n* such that {Tn,+1 ,Tn,+ 2,..-} is a renewal process with

distribution r(t) and {Tn* + Tn+2,"..} is independent of {TI,T2,"'',Tn,}

then (Qy) - (g,r), where g(t) - P(T1 + T2 +...+ T n, < t).

Theorem 3.4.2. Let (Q,y) be a MRP where Q(t) has the form

(3.4.1). Say (A,y2 r and A has core X. If

Y2B(t1 )B(t2) ''B(tnl)C(tn)
Vn'tlt 2" "n Y2B(t1 )B(t2)..B(tn-l)C(tn)U

then (Q,y) - (g,r) where g(t) is the distribution of the first exit time

from the set of transient states.

Proof. Let (Q,y) be {X ,T ) and let n* = inf{X n E A). Clearly,n n n

n* is a stopping time. Let be the vector

Yt'(i) - P(Xn i I T+ T2 + + T,<t).

If y' £ ', Vt then (T +T 2 +.. +Tn) is independent of

{Tn,+lTn+ 2,.. and P(Tn+ 1'<t I, Tn+ 2 t2,.,Tn,+n~t)
r(t 1)r(t 2 )---.r(t n), so to prove that (Q,y) (g,r) it suffices to show

En
Yt e3 t
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Let r1be the set of states in A, let r 2be the set of states in B~,

and let h nCt) -P(TI + T., +--+ T~ n* t). Thus

-:" i) -P(X* = p 1, c0  r T + Tn +---+ T~ < t)

11 x0  r2

+ P(X - , t. r + T 2  * < t)

1 j(t~ (n*-k) fji(dt 1 )B(dt 2 )

n*~t)h(t) k-i 0

... B(dtklCt.4t ) I

By hypothysis, this is

Mt-Et t-t It

I -- + Y--- N'pn= fYB(dt )B(dt)
h*(t) h (t

1* k-I 0 0 0

where y~ t 1 - - X Since X is convex we have

12 k-i

where y*c ex. so

Y1 (i) + [h n*(t) - P(n*=0)Iy*(i)

-tI 11~ n( t)

where y* c Thus

-1 + [1h*(t) - P(n*.-O)Jy*

Yt h n*(t)

Since Y1U - P~n*mO) and y*U - I we get y I = 1. Thus Yc X. This

proves that (Q,y) ~-(g,r) where r(t) - yA(t)U and g(t) - h*(t). 1
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Example 3.4.1. Say (A,y) - r and let

A(t) 0

Q(t) -

(l-p)f(t)y pf(t)

-At
where f(t) 1 -e . Let y* - (qy, (1-q)), where 0 < q < 1.

Claim. (Q,y*) - (g,r) where g(t) = q + C1-q)(l-e-(lP)t).

Proof. Let T be the time that the process first enters the set

of recurrent states. Since Vn,tl,t2,-0,tn,

(l-q)pn- (l-p)f(t)n Y

(l-q) pn-l(l-p)f(t) nyU

the theorem shows that (Q,y*) - (g,r) where g(t) = P(T0 < t). But

P(T0 < t) - q + (l-q)(l-p jf()(t) - q + (l-q)(le - (l -p)At)

j.1

Thus, with probability q, (Q,y*) is a renewal process from time

zero, and with probability l-q there is an exponential delay (while the

system is in the transient state) followed by a renewal process.

,00,



CHAPTER 1V

CONVOLUTIONS OF MRP' S

1. Convolutions of MRP's

Let r and r. be two renewal processes. The convolution of

and r 2 is denoted rI*r 2 and is the renewal process with distribution

r *r'J(t) - r(t - s)r2 (ds).

or equivalently

r rr.)(t) . irI(ds)r.2(t - s).

The interepoch times in rI *r 2 can be thought of as an r 1 epoch followed

by an r, epoch. Clearly r *r, 2 . r2*r Let r ,r *,r be renewal

processes. The renewal process r1 *r 2 *.. .*r is defined inductively by

r *r2*'*rn(t) r */r1 *r 2 *.r (ds)r (t - s).nIn foII- 1 r11

Definition 4.1.1. If r is a renewal process then r ( n ) is the n-

fold convolution of r with inself defined inductively by

r ()(t) = 1

r (1) (t) =  r(t)

r(k + 1) (t) f r(k) (ds)r(t - s).

Let q and Q2 be m state MRP's (I < m < '). The convolution of

and Q,, denoted Q,*Q2 can be defined in an analogous manner.

Q *Q2(t) Q1 (ds) 2 (t - s).

1 15
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Likewise, if Q1 ,Q2 ,...,Q are MRP with the same state space,

Ql AQ2 .*Qn is the MRP with kernel defined inductively

t

1*Q 2 ' ' *Q n (t) - fQI- (ds)Qn(t - s).

Definition 4.1.2. If Q is a MRP then Q(n) is the n-fold convolu-

tion of Q with itself defined inductively by

Q(0) (t)-J

(1) ( Q(t)

Q(n + (t) - (ds)Q(t-s).

Again, the interepoch times in QI*Q 2 can be thought of as a Q

epoch followed by a Q.2 epoch. In other words

QQ Q2 (t)l " k [Ql(dS)I k[Q2(t -S)1kj

Note that the convolution only makes sense if the MRP's have the same

state space, and that QI Q2 and Q2*Q1 are not necessarily the same MRP

since matrix multiplication does not commute.

Notation. The n-fold convolution of Q with itself will be de-

(n) thnoted Q) and the matrix Q(t) raised to the n power will be denoted

Qp(t).

To prove that the definition of convolution of MRP's makes sense

we need the following lemma.

Lemma 4.1.1. Let QIQ 2,..,Qn be MRP's with identical state

spaces. Every entry of QI*Q 2 ... *Qn(t) is a nonnegative, nondecreasing.

right continuous function.

Proof. Since for each J, Q is a MRP, Q.(t) is nonnegative,

nondecreasing and right continuous. Thus Q *Q *... *Q (t)
n
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n-i
t E s k n-1 k

0 7 .. fI Q(s (s).. n1(silQ( k

Assume Qi1*A ",*Qk(t) is nondecreasing for k < n. Then

Ql f2*Q..*Q 2 *.- *Q 2t sQ n(-s)fQ1* 2*..*1 (-sQ)s
t- t

where 0 < A < t. By the induction hypothesis this is

.fi*2-*nA 5)nt5

f Qi*Q2 ***Qn-i(t_'s)% (ds) + fQ Q2 . Q- tSQn(
0 -

t-A

f 'Qi*Q2*. *Qi-(tA-s)Qn(ds) = Q*2 . Q~-)

Assume Q 1*Q 2*. *Q k is right continuous for k < n. Let

{t} J= 1,2,. be a decreasing sequence with urn t.-t. To show

Q *Q2*... *Qn(t) is right continuous it is sufficient to show that

lis Q1*Q 2* .. .*Q(ti Q i*Q2* *.*Qn(t).

tj

him Qi*Q2* .. *urnlm Q*Q*..*n1(tJ8Qn(s

'Lim~ ~ ~ ~~ .Qi*Q2***Q- (t. ) Id)+i l*Q 2(t. *Q-)tQ~)Qn(d

j ~t

By the Monotone Convergence Theorem, this is

im ~ ~ ~ ~ ~ r Q Qu2".Qn- tjSQn d)+i*Q 2** *'n- t 'd' N.

Since QI*Q2* ... *ni W is right continuous,
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I 'M Q *Q*. .*Qn 1 (ti- S)Q n(do) - / 1 *Q 2*. ..*Qn1 (t-s)Q (ds)

Since Q 1*Q2*... .*Q 1 (t) is nonnegative nondecreasing and bound-

ed,

0 < lrn fQ*Q2*...*Qn1 (tJ- s)Q (ds)

p< tr fQn 2 . * 1 o)~s

i~t

Thu lrn QQ 2 . . Q t HQ -d

j4~ Q *Q *Q. Q*nt)
Le Qt 4..2 Q1 lim. (Q (t(0

Proof. Assume Q 1*Q 2 * ...*4 k(-) -Q 1 (o')Q2 (oo)... *Qk(oo) for k < n.

Since Q 1*Q2*... .*Qn(t) is right continuous and bounded,

Q1 *Q 2* .*Q n o)- lin Q* * *Qn1 (t-s)Q n(ds)

- im ?q*Q 2* *Q n-1(t-s)Qn(ds) - lrn fiQ*Q* 2 .*Q n1(t-s)Q n(Ws)
t-l-t /IiQ n-if n

By the Monotone Convergence Theorem and the induction hypothesis,

f Q*Q2*... .*Qn 1(tsB)Qns - 1*Q2*... *Qn-I t8)nd)
0

-/I*Q 2*.. .*Q 1(wQns

. Q1(w)Q2(m) ... n-i (c) fQ(ds)

0

- Ql-Q()..Q()
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Since Q1*Q2*...*Qn_ (t) is nondecreasing and bounded

0 < lim ..*Q2*'"*Q-1 (t-S)Qn(ds)

t

< lir {QI*Q2, • .*Qnl()Qn (ds)

= QI(Q)Q2()'".QnI() lim (Q(M) - Q(t)) - 0.
t+w

Thus Q1*Q2* ...*Qn() -Ql()Q 2 ()...Qn(a). o

Coroll1ry, 4.1.2.1. If Q1,Q2,... ,Qn are persistent then

Q1*Q2 * ... *Q n()U . U.

Proof. Since Q (o)U - U for each J,

QI*Q2 *. .. *Q n(w)U QI()Q 2(w) ..Qn()U - U. 0

Lemmas 4.1.1, 4.1.2 and corollary 4.1.2.1 show that

Q1*Q2 *... *Qn(t) is the kernel of a MRP. We also have

Corollary 4.1.2.2. If Q has steady state vector n then Q(n) also

has steady state vector w.

Proof. nQ (n)(_) _Qn(_) _ W. 0

In general, the canonical form of Q1 *Q2 will not be the same as

Q1 or Q2" In fact knowing just the canonical form of Q1 and Q2 is not

enough to determine the canonical form of Q1 *Q2 . For example, say

0 0 X /0 x x

Ql(t) X X 0 Q2(t) - 0 x
X X 0 X 0 0

(where X is a nonzero function of t). Q and (2 are both Irreducible

and aperiodic but QI*Q 2 is reducible.
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QI*Q 2 (t) - 0 X X

(0 X X

Lemma 4.1.3. If Q is an irreducible, aperiodic, non-null MRP

then so is Q(n)

Proof. Since Q is irreducible and non-null the steady state

vector w has all entries positive. Also, lim Qk( ) k Uv. Thus, Ve > 0

and Vi,j there is a k ij(c) such that

Vk > kij(c), IQijk(W) - 7il < E.

Choose c < w i and k' large enough so that k'n > kii(c). Thus,

k'n k'(n+l) > .
QI (-) > 0 and Q(i 0

Thus, the greatest common divisor of {k: [Q(n)(-)) k > 0} is one. Since

this can be done for every state, Q(n) is aperiodic.

Choose E < Wi and k' large enough so that k'n > ki (c). Thus

IQ (n)(M) kv> 0, so it is possible to get from state i to state j in

Q(n) Since this can be done for any i and J, Q is irreducible. t

2. Convolutions and Equivalence.

Ideally we would like QI- rlQ, - r2 "'"Qn. r to imply that

Ql*Q2*... *Qn r,*r 2*.. * rn. Unfortunately, the situation is not quite

that simple. Consider the following example.
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Example 4.2.1. Let,

0 0 0 if t <1,

0 0 0

/0 0

3N
Ql(t = K0 0 if 1 < t <2,

1 3
0 0

1 2 0
0O 2 if t >2,

3 

1 2

3 1

0 0 0 if t < 2.

0 0 0

Q2( t )  1 1 1 if 1 < t < 2,

1 1 1 ift>2

1 1 1

6 i t 2
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0 if t < 1,

By theorem 2.2.2, Q~ r- where r (t) - if 1 < t < 2,

I if t > 2,

0 if t< 1,

and by example 2.2.1, Q2 ' r2 where r2(t) 
=  if 1 < t < 2,

1 if t > 2.

2
Direct calculations yield rI*r 2(3) =- and

1 1 5

Ql*Q2(3) = 8

6 3 82

It turns out that - is not an eigenvalue of Q1*Q2 (3) so by theorem

2.2.8, QI*Q 2 * rl*r 2 ,

(n) (n)
Theorem 4.2.1. If Q - r then Q n) r

Proof. Let x satisfy XQ(t) C r(t)X , Vt. Say

Q)(t)C r (t)X, Vt, Vk < n. Then

V, (n)I-(t) _ fQ(n-1)(t-s)Q(ds)

C r(n-l) (t-s)r(ds)oX

= r(n) (t)x%.

ThusXQ (n)Ct)r(n) (t)Xt, so Q(n). (n).

(n) (n)
Corollary 4.2.1.1. If (Q,y) - r then (Q y) r

(k) (k) (k) (k)
Proof. Say (Q ,y) - r for k < n, and yQ (t) c r)(:),

Vt. Then,
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YQ (n) (t) = I yi(n-1) (t-s)Q(ds)

SIr (n-1) (t-s)r(ds)f

= r (n) (t)k.

Thus (Q(n),y) -. r and yQ (t) c r n(t)x. 0

Corollary 4.2.1.2. Let Qj, j-1,2,--',n be MRP's and assume

there is a set X that satisfies Q(t)C r.(t)Ek , Vt, Vi. Then

QI*02 *
" .*Qn - r *r 2 "*rn"

Proof. By hypothesis, QI- rl" Say Ql*Q2*...*Qk - rl*r2*..-*rk

and XQ 1*Q2 *.. .*Qk(t) C rl*r2 * .. *rk(t,)X, Vt, Vk < n. Then
t

XQI*Q2*
' 
.. *Qn (t) = XQ 1*Q2*... *Qn - l (t-s)Qn (ds)

r r2, • *r n-l (t-3) rn (dS)X :.

- rI *r2 *...*r n(t)xf
nm

Thus, QI*Q 2*.. *Qn - rl*r 2*..*r n o

Corollary 4.2.1.3. Let Q and Y be MRP's. If Q Y Y then

Q(n) F Y(n).

Proof. By theorem 2.6.4, Q F Y implies there is a set of

matrices,,K, of the form

.x
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(where each row is nonnegative and sums to one) so that

,RQ(t)C Y(t).,, Vt. Say Q(k) F y(k) for k < n, and

,Q(k) (t)C yk)(t)/#, Vt. Then

t

Q() = (n-i) (t-s)Q(ds)

C fy(n) (t-s)Y (ds) ff Y(n) (t),-/#,

(n) F y(n) O
so Q - Y

The MRP Q1*Q2*-. "*Qn can be analyzed in a different manner.

Consider the HRP with kernel

Ql(t)

Q2(t)

Q(t) =

%(t)

Let {A 1,A 2 ,''',A n} be a partition of the states of Q where A is the

collection of states corresponding to Qj. Let f be the map that lumps

the states of Q to {AIA 2 ,...,A n } and let
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rl(t)

r2 (t)

Y(t)

rn- 1(t)

r n(t)

Theorem 4.2.2. If Q F Y then Q1 Q2*. .*Q r1*r 2'*r .

(n) F (n)Proof. From Corollary 4.2.1.3 we know that Q F . The

form of Q and Y yields

QI*Q 2 *... *Qn(t)

(n _Q 2 *Q 3 * 
'  *Q (t)

Q~n) (tt)

Qn*Ql* • *Qn- l(t)

and

1 n

The tee flsybrnt tntso Q nd*rt)

The theorem follows by observing the top left components of Q(nl) and y(n)
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with theorem 3.2.2 in mind. o

Corollary 4.2.2.1. If Q F Y then VJ,

Qj*Qj+I*"'.*Qj_I - rl*r 2,...,rn.

Proof. Since r *r * ...*r l(t) = r *r2* .. *r (t), the remain-
-j 1+1 -j

ing components of Q(n) and Y(n) give the result. o

Clearly, any sufficient condition for Q F Y is sufficient for

QIQ2**.*Qn - r,*r2*... * r.

Theorem 4.2.3. If there exists ylY2,..Yn such that VJ,

YJQJ(t) - r (t)yj+, Vt, then Q1*Q2*...*Qn - r,*r2*-..,rn'

Proof. Let

r - 2

By hypothesis,

rl()Y r2(t)y3

rQ(t) - . - Y(t)r,

r nl(t)yn

so Q- Y by theorem 2.7.2. 0

3. Markov-Renewal Functions and Markov-Renewal Equations.

Definition 4.3.1. Say Q is a MRP. Let RQ(t) - ,(n(t).

Similarly, if r is a renewal process then Rr(t) r(n)(t). Ro(t)
n-0

called the Markov-renewal function associated with Q and Rr (t) is called

the renewal function associated with r.
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In this section we will only deal with irreducible, persistant

MRP's. It can be shown 13] that R(t) is well defined and finite. Let

(Q,y) be defined on (f2,e?,P), and let

N(Qy)(tw) = sup tn: T (w) < t}

NQ'y(t) - E(N(Q,y)(t,-)).

Similarly, if r is defined on (Q, $,P) lef N r(t) be defined analogously.

For a MRP (or a renewal process) let us call the set of points
n

,;.;T W: n- 1,2,'''}, events. Thus N (Qy)(t) and Nr(t) are the

expected number of events in the interval [O,t] for the corresponding

random process (we assume there is an event at time zero). It is well

known (31 that Nr(t) - R r(t) and N(QF)(t) - YRQ(t)U. Thus, theorem

4.2.1 has an important corollary.

Theorem 4.3.1. If (Q,y) - r the N(Qy)(t) - Nr(t).

Proof. Corollary 4.2.1.1 states that (Q (n), y) - r for every n,

so

YQ(n)(t)U - r (n) (t).

Thus,

N(Q.Y)(t) - RQtU - ((t))U - (t) - R Ct). o
n-0

Actually, theorem 4.3.1 can be strengthened slightly. If Q has

core X then N 010)(t) - N r(t) for every B c X.

Definition 4.3.2. Let Q be an n state MRP (I < n < -), and let

"(t) be a column vector of n nonnegative functions bounded on finite

intervals. An equation of the form
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(4.3.1) f(t) = g(t) + (ds)f(t-s)
0

(where f(t) is an unknown column vector of functions) is called a

Markov renewal equation.

If r is a renewal process and g(t) is a scalar function bounded

on finite intervals then
t

(4.3.2) f(t) - g(t) + fr(ds)f(t-s)

0

(where f(t) is an unknown scalar function) is called a renewal equation.

The solution of (4.3.2) is unique and is given by

(4.3.3) f(t)- jRr(ds)g(t-s).

Lemma 4.3.2. The solution of (4.3.1) is unique and is given by

(4.3.4) f(t) - Q (ds).(t-s).

Proof. Since Q is irreducible and persistent the lemma follows

from [3, Chap. 10]. n

th AThe j element of f(t) can be thought of as the value of some-

thing at time t given that Q is in state j at time zero. Thus, if we

start with initial distribution y, the expected value is

t

(4.3.5) Yf(t) R (ds)g(t-s).

Let w be the steady state vector for Q and assume Q - r. It

would be nice if it were always true that

Wf(t) R 7r(d)(wg(t-s))

since this involves only scalar integration. Unfortunately the situation

is not quite that simple.
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~t

Theorem 4.3.3. If(t) JR(ds)(rg~t-s)) for all bounded

nonnegative g if and only if wRQ(t) - Rr(t)W, Vt.

Proof. (f). if(t) -f1
i RQ(ds)'(t-s) r(dS)(t-s)

0

(==) Say there exists a t such that vR Q(t) 0 Rr (t)v. Then for

some J, [wRQ(t)lj 0 R r(t)n j. Since RQ(t) and Rr (t) are right continuous,

there exists c > 0 such that

t+C t+C

f [wR Q (dS))] i t R r(dS)w j "

Define g as follows:

j if i J ,

gA, (t) 1 if i= J, 0 < t < C,

0 if i =J, t > C.

Thus,

t+0 t+C
Wf (t +) Of R r(dS) (7('*(t + C - s)) t R r (ds) ?r

t+C t+"

tf [nRQ(ds)]j f J iRQ(dsXg'(t+c-s)

t 0

If it(t+c)0

which is a contradiction. o

Corollary 4.3.3.1. If wQ(t) - r(t)w, Vt, then

wf(t) R r(dS) (7g

Proof. First we show that ffQ (t) r (n)(t)w, Vt, Vn. Assume

it is true for k < n. Then
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(ttWQ~n W t M V (n-1) (t-s)Q(ds) -= (n-1) (t-s)r(ds)u r r(n ) (t)v.

Thus, wRQ(t) w E Q(n)(t) - r(n)(t)ff - Rr(t)0r, so the result holds.o

n-0 n=0

Thus, if wQ(t) - r(t)n, Vt, the solution of any Markov-renewal

equation in steady state is the same as the solution of the correspond-

ing renewal equation. Unfortunately, wQ(t) - r(t)w, Vt, is not a

necessary condition for Q - r.

Let ZX (n ) (t) (x+ t), and let Z be the ring of matrix

valued functions generated by {Zx(n)(.) : x cR , n-0,1,2,'" under the

usual operations of matrix multiplication and addition. If Q has core

X, then for any y c X and Z(.) E 7 (closure of Z in the usual sense)

we have yZ(t)U - nZ(t)U, where w is the steady state vector for Q.

Theorem 4.3.4. If Q - r and g(t) - Z(t)U where Z(-) c Y then

t

V Y C X yf't W Rr(s=Ygts

Proof. Since 'g(t) - Z(t)U we have yi't) - y"g'(t), Vy, y' e

Thus,

Th(t) yRQ(ds)(t-s)

t O
W YQ(n) (dsYigt-s).

Since yQ(n)(ds) r (n) (ds)yn, where yn c X we have

t

t)- r (do)(yg'(t-s)) R o

U zuhhnuu=mhOiI~
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Although it appears that theorem 4.3.4 imposes a large restric-

tion on the number of Markov-renewal equations we can consider, it should

become clear from the following examples that in many problems of

interest, g(t) will have that form. In the following examples, Q - r

and Q has steady state vector w.

Example 4.3.1. Let

Px(t)i - Pr (no events in the interval (t,t +x]Q starts in state i].

Then

P(t) = (I - Q(t +x))U + (ds)P(t - s).

Since (I - Q(t+x)) c Z, we know that

t

x - JRr(dS)n(1-Q(t+x-s))U

t

-tRr(d)(1-r(t+x-s)).

Example 4.3.2. Let

,P (t), M Pr [exactly one event in (t, t+x~JQ starts in state i].
xi

Then,
'f( t)Y Q(ds) (I -Q(t + x-s))U + (asp (t-s).

tIQ

Since / Q(ds)(I-Q(t-x-s)) c we have
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,ffpN (t) " (ds) J Q(du) (I - Q(t + x - u))
t-S

t t+X-8

/R r (ds) f r(du)(l-r(t+x-u)).
t-S

Example 4.3.3. Let N(t,w) be the number of events up to time t

(including the events at 0), and let {T1 (w),T2(c(),-) be the interepoch

times. The forward recurrence time at t, F () is defined to be the time

N(tw)

until the next event starting at t (i.e. Ft(W) - (1 Tj())- t). Let

J-l

fx Wl- Pr(F t xIq starts in state i).

Then

(t) (Q(t+x) - Q(t))U + fQ(ds)f x(t- s),

so

xt t
fx~t W rd)(r N t + x-s) -r(t-sa)).

N(t,w)-I

Example 4.3.4. Let Bt (W) - t - .E Tj (w), be the backwards

J-l

recurrence time. Let

M"(t) - Pr(B t x> Q starts in state i).
x

Then

t

f'(t) - (I-Q(t)) } + JQ(ds)f' (t-s).

S(I-q(t))l{tx X )

since (I (I-I t> ) Q(t))Q (t- X) C Z
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we have

f J% (d) (1- r(t -s))1 (t >

t-x



CHAPTER V

DISCUSSION

1. Summary

The study of equivalent MRP's has its roots in the study of

functions of Markov chains. Burke and Rosenblatt [1] gave conditions

for functions of a Markov chain to be Markov. This came to be know

as strong and weak lumpability. Kemeny and Snell [8) gives the best

discussion of this topic. It can also be found in Rosenblatt [141.

Serfozo [151, [161 showed that the concept of lumpability in Markov

chains extends easily to MRP's. These concepts are apparently considered

unimportant by the masses since there has been very little reference to

them in the literature since 1972.

The reason for the lack of interest is probably that strong

lumpability is too strong a condition to be useful, and nobody has ever

considered in detail the idea of weak lumpability to a renewal process.

What has been shown here is that these concepts, in an appropriate

modified form, are important both in applications and in the foundational

study of MRP's. It would seem that any thorough discussion of MRP's

would contain a section discussing the idea of the "time" processes of

two MRP's having the same distribution. This has not been the case. The

first discussion of this concept is found here in Chapter II and III.

There is a better reason for studying equivalence than the

intuitive feeling that it should be done. Equivalence is exactly the

condition for being able to substitute one MRP for another in (say) a

84
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queueing network without changing the character of the system.

Examples of the use of this sort of tactic for simplifying the

analysis of queueing systems abound, although until now there has been

no theory that encompasses all of them. The best known example is that

the output from a steady state M/M/l queue is a Poisson process (as

opposed to the infinite state MRP by which it is most naturally

characterized). More results of this form can be found in Disney et al.

[41 and Laslett [91. There are also results that show certain flow

processes in Jackson networks are Poisson [12]. The value of these kinds

of results should be clear. They make it possible to analyze systems

that would otherwise be intractable. As a simple example, consider two

queues in tandem where the first queue is M/D/l/l and the second is

*/M/l/-o. Since the output from the M/D/l/l queue is a renewal process in

steady state, the second queue is a G/M/l/o queue, which is well under-

stood. We can easily write down the steady state queue length distribu-

tions, waiting times, and other quantities of interest. This would be

impossible if it were not known that the output from the M/D/l/l queue

is renewal.

From the results of Chapter 11, one can quickly verify all of

these known results. One can also settle some previously unsolved

problems (example 2.4.4) and come up with curious and unexpected results

such as in examples 2.4.5 and 2.4.6.

Section 2.4 has shown that the tools developed in Chapter 11

are useful for solving important problems, especially problems dealing

with flows in queueing networks. The emphasis in this paper, though,

was on the development of the theory of equivalent MRP's. More

specifically, the emphasis was on equivalence between a finite or count-
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able state MRP and a renewal process.

In Chapter II, necessary, sufficient and necessary and sufficient

conditions were given for (Qy) , r. The ideas of collapsibility and

equivalence between two finite or countable state MRP's were discussed

and conditions for them were given.

In Chapter III the various canonical forms of MRP's were

examined in detail. Reducible and periodic MRP's were analyzed in terms

of their components. One interesting observation was that a weighted

average of steady state MRP's can only be renewal if each MRP is

equivalent to the same renewal process (Theorem 3.2.3). It is likely

(though unproven) that the same conclusion holds even if the MRP's are

not in steady state (conjectures 3.2.1, 3.2.2). It would also be very

interesting if these conjectures turned out to be false.

For the general finite or countable state MRP, answers were

given to the questions

(1) For a given Q, which r can satisfy Q - r?

(2) For a given Q and r which y can satisfy (Q) r?

Also, equivalence between a MRP and a delayed renewal process

was defined and conditions were established for it.

Chapter IV was a look at the idea of convolutions of MRP's. The

goal was to determine when equivalence is preserved under convolution.

It became obvious that the answer is not simple. it is easy to produce

an example of Q I r V Q2 - r2 QI*Q 2 1' rl*r 1 . although conditions can

be given to assure Q IQ 2 - rl*r2. One computational trick is to

realize that Ql*Q2*" *Qn can be thought of as a periodic MRP where

the Q 's are stages. The solution of Markov renewal equations involves

the convolution of a MRP with itself. One would hope that if Q - r, the
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solution of a Markov renewal equation involving Q could be simplified.

This idea is made precise, and although not all Markov renewal equations

can be simplified, it is shown that a large and important class can be.

2. Extensions.

Consider a renewal stream of customers entering a queueing system

of n exponential servers in tandem (each with infinite waiting room).

There is no problem analyzing the first queue. It is a G/M/l queue, and

its properties are well known. Unfortunately, the behavior at the second

queue is almost impossible to analyze since the output from a C/M/1 queue

is not a renewal process. In fact, according to the definitions in this

paper, it is not even a MRP. In order to get the distribution of the

time between one departure and the next, one must know whether the queue

is empty or not. If it is empty, one still needs to know the distribu-

tion of the time until the next arrival in order to get the distribution

of the time until the next departure. The foward recurrence time, except

for the Poisson process, is a nontrivial function of a continuous param-

eter, t c (0,). Thus, the only Markov chain one can find embedded at

departure points must keep track of the queue length and the time since

the last arrival (i.e. the state space is [0,-] x {0,1, 2,"'}). The out-

put from the second queue is even worse. Again, the state space must

include the queue length and the time since the last arrival. Unfortu-

nately, the foward recurrence time for the input to the second queue is

the foward recurrence time of a MRP with state space [O,a]x {0,1,2,'"}.

Thus, the departure process from the second queue is described by a MRP

with state space [0,-] x {0,I,2,''1'x{0,i,2,'''}. (i.e. must keep track

of the queue length at the first and second queue, and how long it has

been since the last arrival to the first queue). The state space for the
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th .. n
departure process from the n queue is [M,-1 x {0,1,2, •

Although finding the steady state queue length distribution (or

even approximating it) in this very simple queueing network is a very

difficult problem, the fact is that if any method is developed to deal

with this problem the same method could probably be used to solve for

queue length distributions in an arbitrary network with independent

renewal arrivals and servers. This is because in a network of that form

the state space needed to describe the flow of traffic on any arc in

nl n2the network can never be worse than [0, -1 x 10,i,2,'''1

The concept of equivalence between a MRP and a renewal process

can easily be extended to MRP's with general state space, and state

spaces like [0,]I x {0,1,2,."n pose no problem at all. Let

(S, ) be a measure space and let (Qt, ,P) be a probability space.

Let X : 0 ) S be Y-measurable and let T n: a- 1 0,-1 ben n

C4-measurable. Then {X, T I is a MRP with state space (S,,?) if

for each t there is a QA(t): S x 9? [0,11 such that

P(Xn A ,T n< tn-lXn-2 n- n-2 ,T1 ) = QX 1At) a.s.

nn-

where Q.A W) is measurable for fixed A, and Q S(t) is a measure o

for fixed s. In queueing networks S - 10,'] x {0,1,2,.-.) n 2 and

9? o j xt } where 20' T . The initial distribution

of the MRP is a measure p on (S, 9?) where P(A) - P(X0 c A). We can

denote a MRP on (So9 ') with kernel Q(t) and initial distribution p by

(Q,i). Let r be a renewal process. We say (Q,u) r if

Vn,t 1 ,t 2 ,''',t, P(T 1  tl,T 2 < t 2,'',T n < t n) r(tl)r(t2) .r(t n)

which implies
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Vn, tl t 2,''',t n , ff ..fp(ds0)Qs ds (t1)Qsd2 t2 • • n-idsn (tn)

= r(t 1)r(t2).....r(tn)

It seems clear that the conditions and properties for equivalence

in this more general context should be analogous to those given in this

paper.

3. Generalizations.

There is at least one direction that the concept of equivalence

between MRP's can be generalized that could prove to be invaluable in the

applied study of random processes. Equivalence is the condition that en-

ables one to substitute one MRP for another without changing the char-

acter of the system at all. If there were some metric on the space of

MRP's, one would expect equivalent MRP's to be zero distance apart (i.e.

the same point) in that space. The general notion referred to above is

this metric on equivalence classes of MRP's. Ideally, this metric would

be easy to compute and a large class of queues (thought of as operators

on the space of MRP's) would be continuous operators.

First of all, it is possible to define a metric on the space of

MRP's; for instance the Levy metric [10]

d((Ql,¥1 ) ' (Q 2 ,y 2 )  in f {F 
I ( B ) < F 2 (B ) +c, F 2 (B ) < F I1 (B ) + c, V B ceJ

C>O

where A are the Borel sets in R , B is the open c-neighborhood around

B, and Fj is the measure on w defined by

Fj(T I < tlT 2 < t 2 ,.. ,T < tn) Y jQj(t)Qj(t 2 ) ' '.Qj(tn)U "

Since the Levy metric induces the topology of weak convergence,

results such as Whitt [181 show that a large class of queues are
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continuous operators in this metric. The problem is computing or

approximately computing distances in the metric. If this can be done

it might be possible to get bounds on the error when one MRP is sub-

stituted for another. One suspects that if two queues are identical

except for the arrival streams, behavior of the queues will be "close"

if the two arrival streams are "close" in the metric. For example

consider two queues in tandem where the first is M/M/l/N and the second

is ./M/l. If N < - the arrival process to the second queue is not a

renewal process, and the steady state queue length at the second queue

will not be geometric as it would be if N = -. For large N, though, one

would expect to find little difference between the true steady state

distribution and the geometric. (see example 2.4.3)

4. Abstractions

Some of the rich mathematical structure of the space of MRP's

should be pointed out, although no attempt will be made here to exploit

these ideas.

First of all, corresponding to each N < - is the space of N

state MRP's. This space can be furthe7 broken down to the space of N

state MRP's with initial distribution y, y E dN The space of N state
N

MRP's with initial distribution y is a semigroup under at least two

different forms of multiplication. The results of Chapter IV show that

the space is a semigroup under convolution, and it is easy to verify

that (2,Y) - (Q3,y) where Q3(t) = Ql(t)Q2(t) is a multiplication.

Both of these semigroups are noncommutitive.

The space of finite or countable state MRP's is also a metric

space where d((Ql,Y1 ), 02Y) = 0 if (QIsy) - (Q2 ,.y2 ). By allowing

more general state spaces, the space might be complete with respect to

_.. .. .... . -.. . .. .
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the metric. A reasonable conjecture is that the space of HRP's with state

spaces inV is complete under the Levy metric. The topology of this

space (or even the space of finite state MRP's) is interesting to think

about since MRP's with vastly different state spaces can be "close" in

the metric.

Perhaps the most fundamental observation is that the space of

MRP's is a category. There are several morphismas between MRP's to choose

from. Strong lumpability, weak lmpability, collapsibility and equiva-

lence are all morphisms (theorem 2.6.6). Consider tho finite and count-

able state IIRP's. Let 6 be a map from the category of MRP's to the

category of matrix rings defined by

-= Q

where Q is the matrix ring generated by {Q(t)}, t e [0,-]. Equivalence

between two NRP's is too weak to induce a functor since it is possible

for (Q,y) - (Y,B) without a homomorphism between Q and V. Theorems 2.5.1

and 2.6.5 show that e is a functor if the morphism used is strong

lumpability, weak lumpability or collapsibility. In fact, collapsibility

occurs between two MRP's if and only if there is a certain homomorphism

between the rings. Thus, from this point of view, collapsibility is the

most pleasing morphism of the four. Although strong and weak lumpability

imply homomorphisms, the converse is not necessarily true. It is impor-

tant to note that weak lumpability, collapsibility and equivalence are

identical in the special case where one of the MRP's is a renewal

process. It has still not been formally shown that collapsibility and

weak lumpability are different, although in the finite or countable case,

weak lumpability clearly implies collapsibility, and in view of (2.6.1)

and (2.6.2) the converse is doubtful.
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Let us examine these morphisms in a general setting. Let (Q,p)

be a HRP with state space (Sl ,9) and let (Y,X) be a MRP with state

space ($2- 2)' Let 0 be a measurable map of SI onto S2. Say

(Qi) is {Xn, Tn ) and (Y,X) is Zn, V .

Since (Q,U) is a MRP,

P(X+i c A, Tn+l < tIX n s) = QsA(t)

is a regular conditional probability on . Assume that P(X0 cAbO)(s)

is also a regular conditional probability on e9 1' Since

Vs C -l(u), P(X 0 c AIl)(s) - P(XO e AIX 0  0-1(u))

we can denote P(X0 c A10)(s) by P(u,A) where u -0(s). P(u,-) is a

measure on for each u c Y, and P(-,A) is 99,-measurable for every
12

A c 9i" P(u,A) is analogous to R in section 2.6.

Let Q be the set of all maps Q: S1 x 99 -1R such that for
each s c S1, Q(s,.) is a (signed) measure on 1 and for each A c Y,

Q(.,A) is 99-measurable. Likewise let W be the set of all such maps

Y: S2 x 9 *JR. Define addition in 2 and * to be pointwise addition

and define multiplication to be

Q1Q2 (s,A) = fQl(s,dx)Q2 (x,A).

Let Q C 2 be the ring generated by {Q(t)} and let Y C

be the ring generated by {Y(t)}. Define the map : 4 Y to be

-(Q)uB = fQ(s, V-(B))P(u,ds).

The morphisms can now be defined in the general setting.

Definition 5.4.1. Q is strongly lumpable to Y via ( if for

every probability measure p on (S {4 (Xn)n Tn} is a MRP on

(S, 9P) with kernel Yt).
29S
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Definition 5.4.2. Q is weakly lumpable to Y via ' if for some

probability measure u on (S. iti), {(D(Xn), Tn ) isa IURP on (S2' Y2)

with kernel Y(t).

Definition 5.4.3. (Q,u) is collapsible to Y via (D if .- is

a homomorphism.

Definition 5.4.4. (Q,)) is equivalent to (Y,) if {T n and (V n

have the same distribution.
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