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SECTION I

INTRODUCTION

Self excited oscillations have been experimentally observed in sepa-

rated flows for over hundred years. Rayleigh [1] in 1880 proved that for

inviscid, incompressible flow the unstable velocity profiles must have an

inflection point. Tollmein [2] in 1935 showed that for symmetrical velo-

city distributions, or for velocity distributions of the boundary layer

type, the existence of the inflection point implies instability.

Recently Hankey and Shang [3] have examined the self induced pressure

oscillations in an open cavity. Their numerical computations compare very

well with the previous experimental investigations. Roscoe and Hankey [4]

have studied the stability of hyperbolic tangent velocity profile in a

compressible fluid, while Hankey, Hunter and Harney [5] have examined the

self-sustained oscillations (Buzz) on spiked tipped bodies for large Mach

numbers. However, a systematic stability analysis of separated flows has

not been undertaken. It is the purpose of this report to conduct a sta-

bility analysis of a general class of separated flows (i.e. reversed flow

Falkner-Skan) in order to help shed light on the phenomenon of self-excited

fluid flows.
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SECTION II

OBJECTIVES OF THE RESEARCH EFFORT

The objective of this research effort was to analyze a series of

similar separated flows for different values of a and to determine the

amplification factors and propagation velocities in all these different

cases. Eight cases of different a were identified to be analyzed. These

cases were those with reversed flows which contained velocity profiles

with inflection points.
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SECTION III

MEAN 7LOW EQUATIONS

In this report, incompressible flows will be analyzed. In subsequent

work we plan to analyze the compressible flows.

The incompressible two-dimensional Navier-Stokes equations are as

follows

U +UU + VUy = 1 p + vV 2U (3.1)Ut+ Ux y x

V+UV+ = 1 P + vV 2V (3.2)
t+ x  y Y

U + V = 0 (3.3)x y

Applying the boundary layer approximations to the above equations for

steady flows results in the following:

UU + VU = U U + VU (3.4)
x y e ex yy

U + v = 0 (3.5)
x y

These equations may be reduced to one ordinary differential equation for
m

the case where Ue = cx by transforming with similarity variables.

Uedx
= -- (3.6)

V

dn = -edy (3.7)

Hence

f"' + ff" = 0(f' 2 
- 1) (3.8)

where Uf'(n) =V~)= U- (3.9)
e

EU 2m
and U m = constant (3.10)

U e m + 1e

with boundary conditions

f(O) - 0, f'(O) = 0, f'(.) = 1 (3.11)

3-IL



Falkner and Skan [61 originally derived this equation for attached flows

however, Stewartson [7] discovered a lower branch to these solutions which

represented reversed flows from incipient separation to the Chapman solu-

tion. Christian, Hankey and Petty [8] have tabulated these solutions for

compressible and incompressible flows. It is this wide class of flows

(which have inflection points) that are known to be unstable for which

we shall now perform a stability analysis.

4
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SECTION IV

PERTURBATION EQUATIONS

Let us dssume small perturbations of the form

^ ia(x - ct)

U = U (y) + U(y) e (4.1)

V = ?(y) eia(x - ct) (4.2)

p = P (x) + P(y) eia(x - ct) (4.3)e

where c = c + ic. and U, t and P are small in comparison to the meanr

quantities. If we substitute these values of U, V, and P in equations

(3.1), (3.2) and (3.3); retain only the first order terms and assume that

Reynolds number Uex/v is large then the equations (4.1), (4.2) and (4.3)

reduce to one single equation

2 "T

(2+ ----- ) = 0 (4.4)
U - c

The classical Rayleigh equation with the boundary conditions

(0) = 0, 4(o) = 0 (4.5a,b)

By transforming the equation from y to the n variable we obtain the fol-

lowing equation

nn  (2 + f t  0 (4.6)

where
c = ad

By inserting the values of f'(n, B) into the Rayleigh equation c(E, B)

can be determined as an eigenvalue which satisfies the boundary conditions

(4.5a,b).
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SECTION V

SOLVING SCHEME

Eigenvalues were determined by a shooting method; starting with a

given boundary condition, integrating over the range of T, and comparing

the result with the outer boundary condition, namely t = 0 at T)max*

The process involved minimization of the error in the outer boundary

condition which was chosen to be the square of the norm of .,

2 2 2
= OR + ' i = SSQ.(See Appendix 3). The integration was done using

a fourth-order Runge-Kutta method.

The method of finding eigenvalues utilized a minimization routine

written primarily by Roscoe [4]. Starting from a given guess the

routine searched along a constant line of c. with increasing steps until
1

it found a relative minimum of the error. It then used the last three

calculated points to determine a parabola, with the c value at the vertex

used as the latest approximation. Then this value of cr was held constant

and a search along a line of changing c. was carried out. After a new1

minimum was found, the quadratic approximation was again used to determine

a new value for ci . The third step involved searching the line connecting

the original guess and the new point. After finding a minimum and utilizing

quadratic approximation, the error was checked to see if it was less than

some preset limit. If not, the routine started again with the latest value

used in place of the original guess.

Generally, the routine worked quite well. Most of the search time

was attributable to bad guesses and finding the direction in which the

search should be continued. An eigenvalue was usually located in a very

6



narrow region of the plane and even though the step size was continually

reduced, it was frequently large enough to move the test point out of the

acceptable region. For example, the initial guess in one case led to an

13error of 4.1 x 10 , however, after only 128 new error computations, the

error had been reduced 17 orders of magnitude to 1.9 x 10- 4 , while cr had

been changed by 4.25% and ci had been changed by 3.82%. Convergence was

also retarded for small values of ci, e.g. Icil < .001. This was concur-

rent with c approaching its limiting value.

The Howard semicircle theorem [9] was used as an aid in determining

suitable initial guesses. If cr is the propagation velocity, a is the

wave number, ci is the amplification factor, and Umax and Umin are the

maximum and minimum values of the range of U, the theorem states

[c - 1/2(U + U ]2)] + c2
r max min ) 2 2 [i/2(Umax - Umin

Thus, the complex wave velocity for an unstable mode lies inside the upper

semi-circle which has the range of U as diameter.

7 4
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SECTION VI

RESULTS

Eight cases were computed for 0 values of -.0001, -.0005, -.002,

-.04, -.08, -.12, -.16 and -.19884. For a wide range of a values the

eigenvalues were ascertained. These values are tabulated in tables B-1 -

B-8 in Appendix B. a is related to a by the relation

* *drn -a6" a6 (T*dy = a (1 - f') dn

The values of C and C. versus a6 are plotted in figures la-lh and 2a-2h.
r 1

Figure 3a-3h shows Howard's plot (9) for these solutions. Some typical

eigenvalues for a series of solutions are also tabulated and plotted in

Appendix B.
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SECTION VII

CONCLUSIONS

The stability of a series of similar separated flows have been

analyzed. Amplification factors and propagation velocities of the dis-

turbances were determined. The results show that a small zone of insta-

bility does exist for these flows with inflexion points. The ampli-

faction factor increases as the extent of the reversed flow increases.

13
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SECTION VIII

RECOMMENDATIONS

Suggestions for follow-on research: We would like to investigate

the instability of laminar separated flows under the influence of compres-

sibility. For a hyperbolic tangent velocity profile Roscoe (4) showed

the instability to diminish with the increase of Mach number until the

Rayleigh instability actually vanished at Mach number M = 2.5. The

analysis should be repeated for the compressible, adiabatic, Falkner-

Skan velocity profiles. We have completed M = 0 cases for various values

of a, and would like to examine the influence of Mach number for the same

values of 6. It was observed that for 8 = -.0001 and -.0005 the conver-

gence at the two ends of the spectrum was very slow. These cases should

be analyzed somewhat more thoroughly.

14
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APPENDIX A

THE HOWARD CIRCLE THEOREM

The Howard semicircle theorem [93 is an extension of the well known

fact that if the amplification factor C. > 0 then the propagation velocity1

C must lie in the range of U. Howard was able to restrict the permissibler

values of C and C. so that the complex wave velocity C is confined to ar i

semicircle which has the range of U as its diameter. If U max Umin

are the extrema of the range of U, the theorem states

2 2 2
[C r  l/2(a + b)] + C1 < [1/2(a + b) , C > 0

where a =Umax , b =Umin *

16



APPENDIX B

EIGENVALUES FROM STABILITY ANALYSIS

FOR REVERSED FLOW BOUNDARY LAYERS
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EIGENVALUES FROM STABILITY ANALYSIS FOR

REVERSED FLOW BOUNDARY LAYERS

TABLE B-i

= -. 0001

Cr C.

0 .90538414714 .025680518247

.01 .91223794353 .071997946349

.02 .89422525454 .11766985541

.03 .87074750211 .12610731927

.04 .8412659309 .14572816584

.05 .80533205 .17071090

.07 .76425576 .21131732

.10 .72900063223 .23958792186

.15 .67639882435 .24398318931

.18 .651890026062 .235453936491

.20 .637798788145 .22696852817

.22 .62587353506 .21686502743

.25 .60392754004 .19700990613

.27 .60253175376 .18702547786

.29 .58908572761 .17144819857

.30 .58616022 .16481124

.31 .58992531643 .16063748234

.32 .58748966823 .15388430488

.35 .58168544052 .13349344451

.40 .57632116036 .099664728940

.41 .56994477164 .090751023415

.42 .56963082632391 .08414875686479

18
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EIGENVALUES FROM STABILITY ANALYSIS FOR

REVERSED FLOW BOUNDARY LAYERS

TABLE B-2

= -.0005

cr C.

0 .91530377348 .02166761564

.01 .91372171557 .025240777143

.05 .85274628651 .13020125042

.10 .74360436406 .21320430557

.15 .67480093675282 .24234861164626

.20 .63120621598575 .23023864570417

.25 .60282728906963 .20264037260815

.30 .58491658821 .16939693499

.35 .57438769614 .13455531319

.40 .56967589511 .099924636095

.45 .56930353919 .066316584587

.46 .5696486522 .059749391713

19



EIGENVALUES FROM STABILITY ANALYSIS FOR

REVERSED FLOW BOUNDARY LAYERS

TABLE B-3

S = -.002

Cr  ci

0 .9237409069 .0095488477066

.01 .92117830521 .010983058744

.05 .88971797 .091967207

.10 .78686024 .15214965

.15 .70466415 .20301679

.20 .64798726 .21161601

.25 .61069242 .19445403

.30 .58711391 .16596060

.35 .57311136 .13306074

.40 .56593472 .098968376

.45 .56371274 .065174535

.50 .56504181973 .032280308591

.55 .56865534872 .00023011047136

.56 .577755801.81 .19174876005(10)-I0

.57 .58685371398 .61658214056(10)-11

.58 .58704040582 .34648626536(10)-11

20
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EIGENVALUES FROM STABILITY ANALYSIS FOR

REVERSED FLOW BOUNDARY LAYERS

TABLE B-4

= -.04

SCr  Ci

.12 .9462446953107 .00077598474441

.13 .94480294724055 .00092398603074

.14 .93834475353190 .0019712426475

.15 .92864533 .0041227836

.17 .91398636 .009481253

.20 .88234356 .031932225

.23 .78918067 .079558300

.25 .73325251 .10055163

.30 .63589654 .12879591

.35 .57744885 .12534423

.40 .54449017 .10193011

.42 .53642765 .089694409

.44 .53060095 .076599668

.46 .52663117 .062983805

.48 .52423199 .049089198

.50 .52306536 .035068680

.52 .52292271 .021022046

.54 .52356367 .0069847632

.55 .52416855 .34183573(10)-6

.56 .53445687 .11840627(10)- 8

21
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TABLE Br-4 (con't)

=-.04

cr 
1

.57 .53445745 .28132369(10)-9

.58 .53445776 .10618506(10)-9

.59 .53445776 -.16007328(10)1io

.60 .534457761505 -.581878617(1~f0)1

.61 .53445776292 -. 75694864203(10f 10o

22



EIGENVALUES FROM STABILITY ANALYSIS FOR

REVERSED FLOW BOUNDARY LAYERS

TABLE B-5

=- .08

cr ci

.20 .94462051904 .00060442053448

.22 .93168283195 .0023838799717

.25 .91152233835 .007171373662

.27 .89227578 .014429883

.30 .83585489 .036775313

.35 .68705498 .067058934

r.40 .57949813 .076982790

.45 .51260920 .067262598

.47 .49694639 .057479918 1

23
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EIGENVALUES FROM STABILITY ANALYSIS FOR

REVERSED FLOW BOUNDARY LAYERS

TABLE B-6

-.12

r 
Ci

.28 .93771615513 .00057735106118

.30 .92267372951 .0025385188104

.32 .90428630103 .006241760255

.35 .86703422542955 .016184737774036

.37 .82518601942224 .025407066978775

.40 .74110563666309 .033621469860405

.42 .68545236670957 .034160709745084

.45 .60602465101 .029295418399

.47 .54979488217 .020797858572

.50 .47928620449 .17208372583(10)-8

.51 .47900001254 .164119887(10)- 8

.52 .47900001195552 .2969542445(10)-9

24

I~



EIGENVALUES FROM STABILITY ANALYSIS FOR

REVERSED FLOW BOUNDARY LAYERS

TABLE B-7

=-.16

.35 .92539848853 .00064674041646

.37 .90652445594 .0030732291515

.40 .87214263 .0087996030

.42 .839073304 .013608897

.45 .76943755 .016917978

.47 .71714018755 .014067976705

.50 .63945116 .0025996533

.52 .59255631588 -. 0054550150066

25
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EIGENVALUES FROM STABILITY ANALYSIS FOR

REVERSED FLOW BOUNDARY LAYERS

TABLE B-8

= -.19884

OLC cir

.37 .92379057577 .00067331237442

.38 .91876397945 .00087323704317

.39 .91329400663 .001065562476

.40 .90688937 .0013915674

.42 .89032638669 .00295916137

.45 .85880806 .0055504066

.47 .83019514805718 .0066806913008495

.50 .77300900 .0043585794

.52 .7283639558 .48854083711(10)-6

.53 .70401641 .28953714(10)-7

.54 .70412941 -.19018251(10) ~7

26
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APPENDIX C

COMPUTER PROGRAM

The following FORTRAN program was used in the search for eigenvalues.

The driver program FINDMIN gives the initial guesses for CREAL and CIM and

then calls the minimization routine. The error is returned as SSQ. Sub-

routine MAINFCN does the integration using a system routine RKDF which

uses a fourth order Runge-Kutta method. The arguments to RKDF are:

X - the independent variable, Y - the dependent variables, N - the number

of variables, DX - the step size, and IER - an error return. RKDF also

requires a function F which computes the derivatives of the dependent

variables and stores them in P.

The minimization routines are fairly general. The equivalence causes

the minization to be done with respect to CREAL and CIM. To minimize with

respect to CIM and ALPHA the equivalence statement would be: "EQUIVALENCE

(CIM, X(l)), (ALPHA, X(2))." Note that the two variables which are

equivalenced with X(l) and X(2) must be stored consecutively in memory.

The array Y represents the following quantities. Y(l) = f, Y(2) = ,

Y(3) = f", Y(4) = R' Y(5) - 0I' Y(6) =R' Y(7) = PI'" Convergence was

generally achieved when minimization errors of 10- 5 to 10- 9 occurred for

most cases.

30



PROGRAM FINDMIN(INPUT,OUTPUT,TAPE5=IN4PUTTAPE2zOUTPUT)
COMMON CREAL,CII',ALPHA,BETAP30

COM40N /92/SSQ O
* CREAL z.571j4967522

CIM =.0339421.76531
ALPHA a .5- -------- ---

* CALL MINI
WRITE (2,1)ALPHA,BETA,CfREAL,cim,SSQ

* I FORMAT(50(21 4)1" ALFHA=*,E14.c,5XC,"OETA=",E14.8/" CREAL=" ,Ei4.85XC-
IX,'*CIM=",EI4.8,FX,"EPROR=',E14.8/50(2H')

100 CC.JTINUE
* ENO

SUBROUTINE MAINFCN
COMMON CREAL,CIM,ALPHA,BETA,P3D __

COMMON /B2/ SSQ_
DIMENSION Y(7),P(7)
BETA =-.030c _______ ________

Y(3) = t.05T15C6
XENO = .O

X =00.0 ____

Y(2) =0.0
Y(4.) = 0.0
Y(5) z0.0
CCeAR =CREAL*CREAL + CII,*CIM
&CC =BETA /CCt3AR

FACT R ALPI1A*ALPHA _+ 3.C* CREAL------
Rv. FACTR*FACTRZ + BCC*BCC*CIM*CIM
R SQKT (SO(T (Rul)-FT_
GAMMA =0.*ATAN2 (-qCC*CIM PA R -

Y(6) =R * COS(GAMP'A)
Y(?) =R * SIN(GAMMA)

DX z O.C 5 -

CALL F(XY,P)
C*** *******44VNE LOOP--- INTEGRATION4

2 CONTINUE
CALL RKDF(X,Y,NDX,IER)

IF(X.LE.XtPJD) -GO TO 2 - __' ------
C** ***********NER LOOP INTEGRATION

SSQ=Y 5)4YV( ) +YllI) *V 14)
RETURN
END
SUBROUTINE F(XVP)
COMMON CPEAL,CIM ALPHA 'TAP3D
DIMENSION Y(7) , P(7)
P11) =Y(2) __ ______ __

Pt2) = (ff)
P13) a ETA*V(2) -ia)*V12) * ) -'V(I)4V(3)

* ~P(4) x Y(6) ________

* * P(5) _x I?
U = Y(21

* _____UDS P(3)

0 UDB/((U-CREAL)'*'2 + Cl.q**2

--- A = ALPMA*ALPHA .-*.'U.-CREAL)________
P(G) AfY44 - 13*YIS)
P(?) B'VI'.) - A*Y(2)
RE TURN

___SUBROU "T INE MINI_______________________ ___

--------- COMMON. CREAL,'llpALPHA, OftkP3D
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COMIIUN 1821 S50
U IMEW1SION XEST( 2 p21 X (2),9STEP ( 2
EQUIVALENCE(CKEAL,X (1)) , CIM,X (2) 3

*STEP (1) I.E-10
S7EP(2) I.E-I.
ERSSQ=1.E-3

* P30=0 .
2 CONTINUE

OY=ST EP (1)
* XEST(1,1)=X(i)-

GRAO=i .E-30
C
C SEAR~CH ALONG X1-AXCIS
C

CALL MIN2(XoYGPAO)
IFCSSQ.LT.ERSSO) RETURN

ST EP( 1 ) =OY
XE ST ( 2, 1) =X ( 2)
DY =ST EP (2)
GRAD 1. E.3C' ___

* C SEARXH ALCNG X2-AXIS
C

CALL MIN2(X,0Y,GRAD)___-
IF(SSQ.LT.ERSSG) RETURN

XEST (2,2)=X(2)
STEP( 2) :QY
GRA)=(XEST(i,2)-XEST(igi))/(XEST(2,2)-XEST(2,1))

C SEARCH ALONG LINE
C

CALL MIN2(Xp)Y,GRAO)
IF(S: Q.GT.ESSQ)GOTO2 --

RETURN
END
SUE:OUTINE MI,'42(X,STEP,GRA6)-
COM40N /B2/ SSQ
LCGICAL DIRP,DIRN
DIMENSION X (2) ,YI.(3) ,Y2( 33,F(3)--------------------
ERSSQ=I .E-3

C
C FINb DIRECTION-

- C
WRITE(2,2JC)-- -

* 200 FORmAT(l1X"F1140 DIRECTION")

SGRAD=SIGN(i.,9GRAD)
CALL MAINFCN

2 CONTINUE
OIRP=.*FALSE. _____

DIFN=.F'ALSE.
XISTAR:X C )
X2STAk=X(2) __

* F(l) SSQ-
YI(l)=X(1)
Y2(i) :X(2)_____
WRITE(2,1O(C) S X,(f)X2
IF(SSQoLT.Ek$SSORETU;N

Igo FORMAT (11X9 *ERR= ,qElT.li,"CRz *4,EI?.lIp 01= ", El?. 11) __ ____

I3 CONTINUE
C
C TRY POSITIVE INCREMENT
C

-STEPXZSTEP___ ______________________

OxSTEPX/SORr (i.#GRAo4 *2)-
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X(1)=XISTARGDX
X(2) :X2STARZ+SGRAD*SQRT (STEPX'*2-DX4*2)
CALL MAINFCN----------------.- --.-

F(2)=SSQ

Y2 (2) =X(2)
IF(F(2)-F(i))9,livii -

9 CON~TINUE
C

* C POSITIVE INCREMNT WORKED - - - - - - - -

C
DIRP=.TRUE.
S TEPX =2*STEP
DX=STEPX/SQRT 1.fGRAD'42)
X(1)=XISTAR+DX

CALL MAINFCN
F(3) =SSQ
Y1C3)=X(1)
Y2(3)=X (2)
WRITE2,10,P) SSO,X(1),X(2) __

IF (SSQ.LT.ERSS-))RETURN -__ __ _

GOT014
ii CONTINUE
C
C TRY NEGATIVE INCREMENT

STEPX=STEP - -- - - -

* OX:STEPX/SQRT(1.+GRAD*2)
* XC1)=XiSTAR-DX

X(C=X2STAR-SG;RDSPT(STIPX*2-DX*'2) -- - -- .--

* CALL HAINFCN
* F(2)=SSO

Y2(C?) X(2)
WRITE(2,10O,) SSQ,X(i),X(2)
IFCSSQ.LT.E--SSJ) RETURN
IF(F(2)-F(i))10iO12,12

10 CONTINUE

C NEGATIVE INCREMENT WORKED
C

.4 STEPX=2.*STEP
*DXST EPX/SrQRT(I. +GRAD**2)

X(1)=XISTAR-OX
XC2)=X2STAR-SGRADOSORT(STEPX$*2-DX*#2)
CALL MAINFCN
F AZS SQ

Y2(3)=X(2)_____
WRITE (2,1OVS W)T -396 -___ 21
IF(SSQ*LT.ERSSQ) RETURN

* __ GOT014

12- C CNT INUJE
~: C
_C_ NEITHER _WORKED. NAIVE STEP___'I C

STEP=STEP/2.

14 CONTINUE 4

* C DIRECTION FOUND
c

WRITE(2,ZBIl ________ ___

_ _ FO__AL



IF CDIK~P) XSIGN: 41
IF CDIRN) XSIGN=-1

15 CONTINUE
* IF(F(3)-F(2))16,17,17 -

16 CUNTINUE

STEOX=N*STEP
* OX=STEPX/SjQRTC1.4-GRAO**Z)

X(I)=X(±)+X'iIGN#3X

Y1CI)ZYlC2)
rIC2)=YiA3)
Y1(3) =XC1)
Y2(1) =Y2 (2)
Y2 (2)=Y203
YZ (3) =X (2)
F (1) =F (2)
F (2)=F (3)
CALL MAINFCN
F(-)=SSQ
WRITE (2, lUC) C X( 1)x (2)

IF(SSG.LT.ERSSQ) RETURN --
* ~IF CF C3)-F (2)) b, 17,17
* 17 CONTINUE

C
C MINIMUM ERACKETTED
C
C NOW FIT QUADRATIC
C

wRITE C2,202)
202 FCqlATC10)X,"'JSEE f.Ut~kATIC APPROGX FO. MINIMU4")

IF ( ASS(CGRADi).GT.O .5*1 ) GOTO3
F1=Yi i) -Y1(2)
F2=Yl(i)-Yl(3)

iIT2=-F(CZ)/Fi/F3
1lIT3=F(C3)/F2/F3

CIT3=Yl(3)*U3Tli4OIT2)
x (i) = CCITI+01' 24CIT 3)12 . (31T 1+B1T2+BIT3).
IF(45S(G~iAU).LT.1.5E-IS)GOT04

3 CCNTJINUE
Fi=Y2(1)-Y2(2)
F2=Y2(1)-Y2C3)
F3=Y2(Z)-Y2(3)

* E3T=F~i)/Fl/F2
8IT2t-F (2)/Fi/F3---------------
BIT3=FC3)/F2/F3
CITl=Y2 C1)*C3IT2+9IT3)____
CIT2=Y2 C2)* (ITl+tJIT3)
CIT3=Y2(3)' CtITI+BIT2)
X (2) = (CIT1.CI 24CIT3) 12.1 WtIT1 461T2.BIT3)

4 CONTINUE
CALL MAlNFCN
WRITE (2%10( ) S:s1),X C) X(2
IF(SSO.LT.ERSSO) RETURN

STEP=STEP/2.
I CONTINUE

RETURN
E NO
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LIST OF SYMBOLS

C = C + iC., where C and C are real and i 1

C propagation velocityr

C. amplification factor1

df _U

f defined by d- = - ; dimensionless velocity ratio
e

m pressure gradient parameter (eqn 3.10)

p pressure

U longitudinal velocity component

V transverse velocity component

wave number

U am

pressure gradient parameter (eqn 3.10)

6 boundary layer thickness

6" displacement thickness

transformed similarity variable (eqn 3.6)

n transformed similarity variable (eqn 3.7)

4(y) small perturbation variable for transverse velocity (eqn 4.2)

V kinematic viscosity

Subscripts

e external flow

x partial derivative with respect to x

y partial derivative with respect to y

partial derivative with respect to n

small perturbation variable function of y
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