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SECTION I

INTRODUCTION

Self excited oscillations have been experimentally observed in sepa-
rated flows for over hundred years. Rayleigh [1] in 1880 proved that for
inviscid, incompressible flow the unstable velocity profiles must have an
inflection point, Tollmein [2] in 1935 showed that for symmetrical velo-
city distributions, or for velocity distributions of the boundary layer
type, the existence of the inflection point implies instability.

Recently Hankey and Shang [3] have examined the self induced pressure
oscillations in an open cavity. Their numerical computations compare very
well with the previous experimental investigations. Roscoe and Hankey [4]
have studied the stability of hyperbolic tangent velocity profile in a
compressible fluid, while Hankey, Hunter and Harney [5] have examined the
self-sustained oscillations (Buzz) on spiked tipped bodies for large Mach
numbers. However, a systematic stability analysis of separated flows has
not been undertaken. It is the purpose of this report to conduct a sta-
bility analysis of a general class of separated flows (i.e. reversed flow
Falkner-Skan) in order to help shed light on the phenomenon of self-excited

fluid flows.
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SECTION II

OBJECTIVES OF THE RESEARCH EFFORT

The objective of this research effort was to analyze a series of 1
similar separated flows for different values of B and to determine the

amplification factors and propagation velocities in all these different

cases. Eight cases of different B were identified to be analyzed. These

cases were those with reversed flows which contained velocity profiles

with inflection points.

o —,




SECTION III

MEAN TLOW EQUATIONS

In this report, incompressible flows will be analyzed. In subsequent
work we plan to analyze the compressible flows.

The incompressible two-dimensional Navier-Stokes equations are as

follows
U+U0 +VU =-% p +wou (3.1)
t X y P X
VUV +VW =-1 p 4wy (3.2)
t X y P y
U +V =0 (3.3)

X y
Applying the boundary layer approximations to the above equations for

steady flows results in the following:

Uu _ +V (3.4)

uu_ + VU
X y e ex yy

Ux + Vy =0 (3.5)

These equations may be reduced to one ordinary differential equation for

the case where Ue = ex” by transforming with similarity variables.

Uedx
a5 = == (3.6)
v
Ued
dn = =2 (3.7)
vVIE v
Hence
£ 4 ££" = B(E'2 - 1) (3.8)
where U
f'() = T (3.9)
e
EUe 2
and B = —ﬁzi == 2 1= constant (3.10)

with boundary conditions

f(0) =0, £'(0) = 0, £'(») = 1 (3.11)

e e

M
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Falkner and Skan [6] originally derived this equation for attached flows
however, Stewartson [7] discovered a lower branch to these solutions which
represented reversed flows from incipient separation to the Chapman solu-
tion. Christian, Hankey and Petty [8] have tabulated these solutions for
compressible and incompressible flows. It is this wide class of flows

(which have inflection points) that are known to be unstable for which

we shall now perform a stability analysis.,

5
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SECTION IV

PERTURBATION EQUATIONS

Let us assume small perturbations of the form

U=1 (y) + a(y) eiOL(x - ct) (4.1)
v = o (y) el - ct) (4.2)
p =P (x)+ P(y) eX(x = ct) (4.3)

~ ~

where ¢ = ¢, + ici and U, ¢ and P are small in comparison to the mean
quantities. If we substitute these values of U, V, and P in equations
(3.1), (3.2) and (3.3); retain only the first order terms and assume that
Reynolds number Uex/v is large then the equations (4.1), (4.2) and (4.3)
reduce to one single eqqftion

o
¢)" — (0.2 + I_J———;—')(b =0 (4-4)

The classical Rayleigh equation with the boundary conditions
$(0) =0, ¢(=) =0 (4.5a,b)

By transforming the equation from y to the n variable we obtain the fol-

lowing equation

& - @+ =0 (4.6
nn f' - ¢ +6)
where _ d
a=oq S
dn

By inserting the values of f'(n, B) into the Rayleigh equation c(d, B)

can be determined as an eigenvalue which satisfies the boundary conditions

(4.5a,b).

k!
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SECTION V

SOLVING SCHEME

Eigenvalues were determined by a shooting method; starting with a
given boundary condition, integrating over the range of 1 and comparing
the result with the outer boundary condition, namely + = 0 at N nax”

The process involved minimization of the error in the outer boundary
condition which was chosen to be the square of the norm of ¢,

2 2 2
=0+ @i = 5SQ. (See Appendix 3). The integration was done using

R

a fourth-order Runge-Kutta method.

The method of finding eigenvalues utilized a minimization routine
written primarily by Roscoe [4]. Starting from a given guess the
routine searched along a constant line of ¢y with increasing steps until
it found a relative minimum of the error. It then used the last three
calculated points to determine a parabola, with the c, value at the vertex
used as the latest approximation. Then this value of ¢, was held constant
and a search along a line of changing ¢, was carried out. After a new
minimum was found, the quadratic approximation was again used to determine
a new value for cye The third step involved searching the line connecting
the original guess and the new point. After finding a minimum and utilizing
quadratic approximation, the error was checked to see if it was less than
some preset limit. If not, the routine started again with the latest value
used in place of the original guess.

Generally, the routine worked quite well. Most of the search time

was attributable to bad guesses and finding the direction in which the

search should be continued. An eigenvalue was usually located in a very




narrow region of the plane and even though the step size was continually
reduced, it was frequently large enough to move the test point out of the
acceptable region. For example, the initial guess in one case led to an
error of 4.1 x 1013, however, after only 128 new error computations, the
error had been reduced 17 orders of magnitude to 1.9 x 10—4, while c. had
been changed by 4.25% and ¢y had been changed by 3.827%. Convergence was A
also retarded for small values of Cys e.g. [cil < .001. This was concur-

rent with e, approaching its limiting value.

The Howard semicircle theorem [9] was used as an aid in determining

suitable initial guesses. If c, is the propagation velocity, o is the

{ wave number, ¢, is the amplification factor, and U and U are the
i ma nin
maximum and minimum values of the range of U, the theorem states
le. - 1/2(0__ +u )12+ 2 < (2 - v, )32
T max min i-— max min : {

Thus, the complex wave velocity for an unstable mode lies inside the upper

semi-circle which has the range of U as diameter.




SECTION VI

RESULTS

Eight cases were computed for B values of -.0001, -.0005, -.002,
-.04, -.08, -.12, -.16 and -.19884. For a wide range of o values the
eigenvalues were ascertained. These values are tabulated in tables B-1 -

B-8 in Appendix B. a is related to a by the relation

-
ad = a8 S= =a (1 -f£f') dn
o
*
The values of Cr and Ci versus a8 are plotted in figures la-lh and 2a-2h.

Figure 3a-3h shows Howard's plot (9) for these solutions. Some typical

eigenvalues for a series of solutions are also tabulated and plotted in

Appendix B.
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LEGEND
LETTER B8
a -.0001
b -.0005
¢ -.002
d -.04
e -.08
f =12
g -.15
h —.19884

FIGURE 3 ah

FIGURE 3
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SECTION VII

CONCLUSIONS

The stability of a series of similar separated flows have been
analyzed. Amplification factors and propagation velocities of the dis-
turbances were determined. The results show that a small zone of insta-
bility does exist for these flows with inflexion points. The ampli-

faction factor increases as the extent of the reversed flow increases.

13




SECTION VIII

RECOMMENDATIONS

Suggestions for follow-on research: We would like to investigate

the instability of laminar separated flows under the influence of compres-
sibility. For a hyperbolic tangent velocity profile Roscoe (4) showed

the instability to diminish with the increase of Mach number until the
Rayleigh instability actually vanished at Mach number M = 2.5. The
analysis should be repeated for the compressible, adiabatic, Falkner-

Skan velocity profiles. We have completed M = 0 cases for various values
of B, and would like to examine the influence of Mach number for the same
values of B. It was observed that for B = -.0001 and -.0005 the conver-
gence at the two ends of the spectrum was very slow. These cases should

be analyzed somewhat more thoroughly.

14




REFERENCES

Raleigh, Lord (1880) "On the Stability or Instability of Certain Fluid
Motions. Scientific Papers, Vol. 1, 474-87, Cambridge University Press.

Tollmien, W. Ein allgemeines Kriterium der Instabilitat laminar
Geschwindigkeitsverteilungen. Nachr. Ges. Wiss. Goltingen Math. Phys.

Klasse, Fachgruppe I, 1 79-114 (1935); English translation in NACA TM
No 792 (1936).

Hankey, W. L., Shang, J. S., '"The Numerical Solution of Pressure
Oscillations in an Open Cavity," AIAA Paper 79-0136, Jan 79.

Roscoe, D. F. and Hankey, W. L., "The Stability of a Compressible Free
Shear Layer (To be published as an AFFDL-TR).

Hankey, W. L., Hunter, L. G., Harney, D., "Self Sustained Oscillations
on Spiked Tipped Bodies at Mach 3." AFFDL-TM-79-23-FXM.

Falkner, V. M., Skan, S. W., "Some Approximate Solutions of the Boundary
Layer Equations, Phil. Mag. 12 #*65(1931) ARC R & M 1314 (1930).

Stewartson, K., "Further Solutions of the Falkner-Skan Equations. Proc.
Camb. Phil. Soc. 50 454-465 (1954).

Christian, J. W., Hankey, W. L., Petty, J. S., "Similar Solutions of
the Attached and Separated Compressible Laminar Boundary Layer with
Heat Transfer and Pressure Gradient. ARL 70-0023, Feb 1970.

. Howard, L. N., Note on a Paper of John W. Miles: Jour. Fluid Mech.

10 (1961) pp 509-512.

15

A




APPENDIX A

THE HOWARD CIRCLE THEOREM

The Howard semicircle theorem {9] is an extension of the well known
fact that if the amplification factor Ci > 0 then the propagation velocity
Cr must lie in the range of U. Howard was able to restrict the permissible A
values of Cr and Ci so that the complex wave velocity C is confined to a

semicircle which has the range of U as its diameter. If U and U .
max min

are the extrema of the range of U, the theorem states

2 1172+ )12, ¢, >0

2
(C_ - 1/2(a + B)1” + ¢ < ‘

where a = U s, D=1
max

16




APPENDIX B

EIGENVALUES FROM STABILITY ANALYSIS
FOR REVERSED FLOW BOUNDARY LAYERS




.01

.02

.03

.04

.05

.07

.10

.15

.18

.20

.22

.25

.27

.29

.30

.31

.32

.35

.40

.41

.42

EIGENVALUES FROM STABILITY ANALYSIS FOR
REVERSED FLOW BOUNDARY LAYERS

TABLE B-1

B = -.0001

.90538414714
.91223794353
.89422525454
.87074750211
.8412659309
.80533205
.76425576
.72900063223
.67639882435
.651890026062
.637798788145
.62587353506
.60392754004
.60253175376
.58908572761
.58616022
.58992531643
.58748966823
.58168544052
.57632116036

.56994477164

.56963082632391

.025680518247
.071997946349
.11766985541
.12610731927
.14572816584
.17071090
.21131732
.23958792186
.24398318931
+235453936491
.22696852817
.21686502743
.19700990613
.18702547786
.17144819857
.16481124
.16063748234
.15388430488
.13349344451
.099664728940

.090751023415

.08414875686479

A




EIGENVALUES FROM STABILITY ANALYSIS FOR
REVERSED FLOW BOUNDARY LAYERS

TABLE B~2 |
8 = ~.0005 !
a c, c, |
!
0 .91530377348 .02166761564 A
.01 .91372171557 .025240777143 |
.05 .85274628651 .13020125042 |
.10 . 74360436406 .21320430557
.15 .67480093675282 .242348611646626
.20 .63120621598575 .23023864570417
.25 .60282728906963 .20264037260815
.30 .58491658821 .16939693499
.35 .57438769614 .13455531319
.40 .56967589511 .099924636095
.45 .56930353919 .066316584587
.46 .5696486522 .059749391713
4
1

19




.01

.05

.10

.15

.20

.25

.30

.35

.40

.45

.50

.55

.56

.57

.58

EIGENVALUES FROM STABILITY ANALYSIS FOR
REVERSED FLOW BOUNDARY LAYERS

TABLE B~3

B = -.002 i
Cr Ci X

.9237409069 .0095488477066

.92117830521 .010983058744

.88971797 .091967207

. 78686024 .15214965

.70466415 .20301679

.64798726 .21161601

61069242 .19445403

.58711391 .16596060 |

.57311136 .13306074 '

.56593472 .098968376

.56371274 .065174535

.56504181973 .032280308591

.56865534872 .00023011047136

.57775580781 .19174876005(10) 10

.58685371398 .61658214056 (10) 11 '

.58704040582 . 34648626536 (10) 11

20




EIGENVALUES FROM STABILITY ANALYSIS FOR
REVERSED FLOW BOUNDARY LAYERS

: TABLE B-4
B = -.04
a C. €
J
.12 9462446953107 .00077598474441
.13 .94480294724055 .00092398603074
.14 .93834475353190 .0019712426475
[ .15 92864533 .0041227836
.17 .91398636 .009481253
} .20 .88234356 .031932225
.23 .78918067 .079558300
.25 .73325251 .10055163
.30 .63589654 .12879591
! .35 .57744885 12534423
.40 54449017 .10193011
.42 .53652765 .089694409
.44 .53060095 .076599668
.46 .52663117 .062983805
.48 .52423199 .049089198
.50 .52306536 .035068680
.52 .52292271 .021022046
.54 .52356367 .0069847632
.55 .52416855 .34183573(10)~° ’
.56 53445687 .11840627(10) 8 i '
. 21




TABLE B~4 (con't)

B = -.04
o Cr Ci
.57 .53445745 .28132369 (10) 7
.58 .53445776 .10618506(10) 2
.59 .53445776 -.16007328(10) 10
: .60 .534457761505 -.581878617(10) 10
.61 .53445776292 ~.75694864203(10) "1°




EIGENVALUES FROM STABILITY ANALYSIS FOR
REVERSED FLOW BOUNDARY LAYERS

TABLE B-5
: B=-.08
o C. €4
.20 .94462051904 .00060442053448
.22 .93168283195 .0023838799717
.25 .91152233835 .007171373662
.27 .89227578 .014429883
.30 .83585489 .036775313
.35 .68705498 .067058934
l .40 .57949813 .076982790
.45 .51260920 .067262598

47 49694639 .057479918 ;




EIGENVALUES FROM STABILITY ANALYSIS FOR
REVERSED FLOW BOUNDARY LAYERS

; TABLE B-6
B = -.12
a c. Cy
|
.28 .93771615513 .00057735106118
.30 .92267372951 .0025385188104
.32 .90428630103 .006241760255
.35 .86703422542955 .016184737774036
.37 .82518601942224 .025407066978775
F .40 .74110563666309 .033621469860405
42 .68545236670957 .034160709745084
.45 60602465101 .029295418399 ‘
.47 .54979488217 .020797858572
.50 .47928620449 .17208372583(10) 8
.51 .47900001254 .164119887(10) "8

.52 +47900001195552 .2969542445(10)—9




EIGENVALUES FROM STABILITY ANALYSIS FOR
REVERSED FLOW BOUNDARY LAYERS

TABLE B-7
B =-.16
a C, €
.35 .92539848853 .00064674041646
.37 .90652445594 .0030732291515
.40 .87214263 .0087996030
.42 .839073304 .013608897
.45 .76943755 .016917978
' Y .71714018755 .014067976705
.50 .63945116 .0025996533

} .52 .59255631588 -.0054550150066 ‘




1241

.37
.38

.39

EIGENVALUES FROM STABILITY ANALYSIS FOR
REVERSED FLOW BOUNDARY LAYERS
TABLE B-8

B = -.19884

.92379057577
.91876397945
.91329400663
.90688937
.89032638669
.85880806
.83019514805718
.77300900
.7283639558
.70401641

.70412941

.00067331237442
.00087323704317

.001065562476

.0013915674

.00295916137

.0055504066

.0066806913008495 ‘
.0043585794

.48854083711(10) ~°

.28953714(10) 7

-.19018251(10)"7
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APPENDIX C
COMPUTER PROGRAM

The following FORTRAN program was used in the search for eigenvalues.
The driver program FINDMIN gives the initial guesses for CREAL and CIM and
then calls the minimization routine. The error is returned as SSQ. Sub-
routine MAINFCN does the integration using a system routine RKDF which A
uses a fourth order Runge-Kutta method. The arguments to RKDF are:

X - the independent variable, Y - the dependent variables, N - the number
of variables, DX - the step size, and IER - an error return. RKDF also
requires a function F which computes the derivatives of the dependent
variables and stores them in P,

The minimization routines are fairly general. The equivalence causes
the minization to be done with respect to CREAL and CIM. To minimize with
respect to CIM and ALPHA the equivalence statement would be: "EQUIVALENCE
(CIM, X(1)), (ALPHA, X(2))." Note that the two variables which are

equivalenced with X(1) and X(2) must be stored consecutively in memory.

The array Y represents the following quantities. Y(1) = f, Y(2) = f',

Y(3) = £", Y(4) = ¢R’ Y(5) = ¢I’ Y(6) = R" Y(7) = ¢I'. Convergence was
5

generally achieved when minimization errors of 107 to 10_9 occurred for

most cases.,




PROGRAM FINDMINCINPUT ,OUTPUT,TAPES=INPUT,TAPE2=0UTPUT)
COMMON CREAL,CIP.ALPHA BETA PSD
COMMON /82/SSQ B
CREAL = 57144967522
CIM = .9339#2176531 1
ALPHA = 577~
CALL MIN
WRITE(2,1)ALPHALBETA,CREAL,CIM,SSQ
1 FORMAT (EG(24 ) 7" ALFHA-“,Eik.c.BX,“BETA-",Eih 8/ CREAL=",E14.8,5X ~
11Xy CIM="yE1448y5X,"EFROR="yELL.8/50(2H *))
100 CCHTINUE
END A N - o e e e e e e et + i e+ e o e
SUBROUTINE MAINFCN }
COMMON CREZAL,CIM,ALPHA,BETA,P3D
COMMON /B2/ sSQ B o T T T
DIMENSION Y(7),P(7)

« BETA = -,000F

ST Y(3) = <,0051568 -
XEND = 40,
X = 00.0

) Y1) = .00 - -

Y(2) = 0.0
Y(4) = 0.0
YU5) = 0.0 T T T e e

CC2AR = CREAL®*CREAL & CIM*CIM
8CC = BETA / CCBAR
FACT R = ALPHA®ALPHA ¢ JCCPCREAL™ ™~~~ "~ T T mm
R4 = FACTR*FACTR ¢ BCC*SCC*CIM*CIN
R = SQRT(SQART(RGL))
GAMMA = 0,5%ATAN2(-3CC*CIM,FACT R ) ~—— — — —~— T Tt
Y(6) R * COS(GAMMA)
Y(7) R *+ SINC(GAMMA)
OX = 0.5 TTTrmT e T
N =7
CALL FAXyYyP)
C“' ;Olb#.!l'b.l'.'!'#]NNER LOQP'“'IN?EGRATIQN APXRESFRPBF SRR P EFEREY T T T
2 CONTINUE
CALL RKOF (X, Y,NyDX,IER)
IF(X.LE.XZMND) 50 TQ 2 ~
c... 0.0!.0.5.000‘.00"INNER Loop IN]‘EGRATION SR BBV LILBIBIIBISINLEY
SSQ=Y (5)*Y(E) $Y(4) *Y (L)
o " RETURN
- END
SUBROUTINE F(X,Y,yP)
ik ' COMMON CREAL,CIM,ALFHA,BETA,P30
DIMENSION Y(7) , P(D)
_Pl1) = Y(2)
P(2) = Y(3)
PU3) = BETA*(Y(2) =1,0%(Y(2) ¢ 1.) = Y{(1)*Y(3)
. . Plw) = Y(B) _
P(5) = Y(7) ‘
U = Y(2)
uos = P{3) B N
D = UDB/((U-CREAL)**2 ¢+ CIM**2)
8 = 0*CIM
A = ALPHA®ALPHA ¢ D*(U-CREAL)
TTPi6) = A%Y(4) - BA*Y(S)
P(7) = B*Y(h) = A%Y(2)

I RETURN . 3
END f
~ o _SUBROUTINE MINi :

et ¢t e e s i m e e i e e e o e mmm ae e s e m = — e q

e e m e oA -

-r-
|
i

.r-\

P

COMMON_ CREALCIW,ALPHA,BETA,P3D

.. rmme .- -

31 R;




————— e T T T T

COMMUN 7827 SSQ

GIMENSION XEST(2,2),X(2)4STEP(2)

EQUIVALENCE(CREAL X (1)), (CIM,X(2))
STEP (1) = 1.E-10 ' ‘
STEP(2) = 1.E=& 1
ERS3Q=1,E~-3

P30=0, T o S B e {

2 CONTINVE

DY=STEP (1)

XEST(1,1)=xX¢1) o Tt/ T o7 T Tom o o m

GRAD=1,E-30

c SEARCH ALONG X1-AXIS

CALL MIN2(X,DY,GRAD)
IF(SSQ.LT.ERSSCIRETURN ~~ ~~ ~~7 e A
XEST(1,2)=X(1)
STEP(1)=DY
XEST(2,1)=X(2)
DY=STEP(2)
GRAD=1.E+30

c SEARXH ALCNG X2-£XIS

CALL MIN2(X,0Y,GRAQD)Y ~
IF(SSQ.LT.ERSSO) RETURN
XEST(2,2)=X(2)

STEP(2) =DY
GRAD=(XEST(142)=-XEST(1,11) /7 (XEST(2,2)-XEST(2,1))

c SEARCH ALONG LINE

CALL MIN2(X,3Y,GRAD)
IF(S35Q.GT.ERSSQAIGOTO02 7~
RETURN

END

SUEROUTINE MIN2(X,STEP,GRAD)
COMMON /827 5SQ

LCGICAL DIRP,DIRN

DIMENSION X{2),Y1(3),Y2(3),F(3) ~—
ERSSQA=1,.E-3

i OO O . o [

~ WRITE(2,290)
g9 FORMAT (11X, *"FIND OIRECTION™)
N=1
SGRAD=SIGN(1.,GRAD)
CALL MAINFCN
2 CONTINVE
DIRP=, FAL_SE.
DIRN=.FALSE,
X1STAR=X (1)
X2STAk=X(2) o L N o ‘
F(1)=SsQ
. Yi€1)=x(1)
‘ Yaey=x¢e2y.
: WRITE(2,10C) SSQA,X(1),X(2)
T IF(SSQ.LT.ERSSQIRETURN
t1__ 100 FORMAT(10X,“ERR=_“,E17.11,"CR= “,E17.11," CI= *,E17.41)
. 13 CONTINUE

c
C  FIND DIRECTION
c
2

c
c TRY POSITIVE INCREMENT

i
STEPX=STEP H
OX=STEPX/SORT (1, +GRAD**2)
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PR

TTTTX UL =X ASTAR DX
X(2) =X2STAR+SGRAD*SQRT (STEPX**2-DX**2)
CALL MAINFCN
23 F(2)=SSQ ot mTom T Tmemm o s T Tr T o e T
! Y1(2)=x(1)
Y2(2)=Xx(2)
IF(F(2)=F(1))9,14,14 ~° =~ =m0 o — T

] CONTINVE 1

c

¢ POSITIVE INCREMENT WORKED =~ ~ "7 "777 777770 == = o oo s s s e

R

. DIRP=.TRUE,
STEPX=24STEP oo TmTmTm T o em s mrm e rme e
DX=STEPX/SQRT (1, +GRAD**2)

. X (1) =X1STAR#DX 1

" X{2)=X2STAR+SGRAD*SART(STEPX *¥¥2-0X*¥*2) ™~ TTToTTTTher e mmmmmmmm e e A
CALL MAINFCN
F(3)=SSQ

a Y1(3)=X(1) T T T T T S s e s s e e

; Y2(3)=X(2)

‘ WRITE(2,100) SS0,X(1),X(2)

o IF(SSQ. LT ERSSQAIRETURN - o : T e

GOTOo14

- 11 CONTINUE

c : e _ R - e

c TRY NEGATIVE INCREMENT

c

STEPX=STEP T T T T T o mm T e e
DX=STEPX/SQRT (1. +GRAD**2)
X (1) =X41STAR=-DX
X(2)=X2STAR=-SGRAD*SIPT (STEPX#¥2-DX¥42) = ~ 7 "7 = —77  Tmmommmioememems s
CALL MAINFCN
F(2) =SS0
Y1(2)=x(4) T - T T S e e
Y2(2)=X(2)
WRITE(2,100) 553,X(1),X(2)
IF(SSQWLTLERSSOIRETYRN =~ 777 77 7T o m e e e
IF(F(2)-F(1))10,12,12
10 CONTINUE
DIRNSTRUE, 7 77 7 7T T n s S s I ns s e

c

c NEGATIVE INCRZMENT WORKED

p : N R
! STEPX=2,*STEP

- DX=STEFX/SART (1, +GRAD**2)

» X (1) =X1STAR-0X T T I s s mmTT mem e s

" X(2)=X2STAP=SGRAD®*SART (STEPX#»2-DX**2)

. CALL MAINFCN

" Py aSSa T s e

o Y1(3)=X(1)

o Y2(3) =x(2)

v WRITE (2,10C) 580, X01¥, X2y~ - T

o IF(SSQ.LT.ERSSQ) RETURN

.1 GOTO1s .

w712 CONTINUE ~ ~ — 7T T T T T T T T T e e e e “
PR ¥

U _ C__ NEITHER WORKED. HALVE STEP e

v‘ c

N STEP=STEP/2.

. ____ Goto13 L N o
G CONTINUVE - - '

c R
| c ODIRECTION FOUND : -
! c : p i

WRITE(2,261) L s s

201 FORMAT (10X, “BRACKET WINIMUN™) M ; '
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I\l

~n
(=]
[pM]

IF(OIRP)XSIGN= ¢1

IF(DIRN) XSIGN==1

CONTINUE

IF(F(3)~F(2))164,17,17

CONTINUE

N=N+1

STECX=N*STEP

DX=STEPX/SQRT (1. +GRAD®**2)

X(1)=X (1) ¢XSIGN®*OX 1

X(2)=X(2) +XSISN*SGRAD®SART(STEPX**2-DX**2) ’ )

Y1{1)=Y1(2)

11(2)=Y1(3) B S )

Y1(3)=X(1) o T - |
Y2(1)=Y2(2)

¥Y242)=Y2(3) ] |
y2(3)=x(2y T T o o ' - ’ ’ ‘

F(1)=F (2) Y

F(2)=F(3)

CALL MAINFCN

F(3)=SsQ

WRITE(2,100) SSGyX(1),X(2)
IF(SSQ.LTLERSSCIRETURN
IF(F(3)=F(2))1b6,17,17
CONTINUE

- - - JUN o - {

MINIMUM ERACKETTED

NOW FIT QUABRATIC

WRITE(2,202)
FCRAATULOX,“USE LURDHATIC ABPROGX FOR MINIMUM®™)
IF(ASS(GRAD) «GT«0.CEE+#13)G0TO3
F1=Y1(1)=Y1(2)
F2=Y1(1)=-Y1(3)
F3=Y1(2)=-Y1(3)
BIT1=F(1)/FL/F2
3IT2==F(Z2)/F1/F3
RIT3=F(3)/F2/F3
CIT1=YL1(1)%(3ITZ+BIT2)
CIT2=Y4(2)*(3IT1+8IT2)
CIT3=Y1(3)*(SITL+BIT2)
A(1)=(CITL+C1T24CITI) /2. /(3TTL+BIT2+BIT3)
IF(A55(GRAD) st To1452-15)G60TO
CONTIMNUE
F1=Y2(1)=Y2(2)
F2=Y2(4)-Y2(3)
F3=Y2(2)=-Y2(3)
BIT1=F (1) /FL/F2
BIT22-F(2)/F1/F3
BIT3=F(3)/F2/F3
CIT1=Y2(1)*(3IT248ITI)
CIT2=Y2(2)*(31T4+B81IT3)
CIT3=Y2(3)*(RIT1+BIT2)
X(2)=(CIT1¢C172¢CIT3I/2./7(BIT1+8IT2+8IT3)
CGNTINUE
CALL MAINFCN
WRITE (241000S374X (1) 43X (2)
IF(SSG.LT.ERSSO) RETURN
STEP=STEP/2,
CONTINUE
RETURN
END
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LIST OF SYMBOLS

C = Cr + iCi, where Cr and Ci are real and i = v -1
Cr propagation velocity
Ci amplification factor
f defined by %% = %—-; dimensionless velocity ratio
e
m pressure gradient parameter (eqn 3.10)
p pressure
U longitudinal velocity component
A transverse velocity component
’ a wave number
G = aodv
dn
B pressure gradient parameter (eqn 3.10)
§ boundary layer thickness Q
6* displacement thickness
3 transformed similarity variable (eqn 3.6)
n transformed similarity variable (eqn 3.7)
¢ (y) small perturbation variable for transverse velocity (eqn 4.2)
v kinematic viscosity
Subscripts
e external flow
X partial derivative with respect to x
y partial derivative with respect to y
n partial derivative with respect to n 3
~ small perturbation variable function of y 'g :
.
?:
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